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Abstract 

The effect that the resolution of spatial data has on uncertainty is important to many areas of research.  

In order to understand this better, the effect of changing resolution is considered for a range of data.  

An estimate is presented for how the average uncertainty of each grid value varies with grid size, 

which is shown to be in good agreement with observed uncertainties.  The effect of bilinear 

interpolation is also investigated and is observed to provide no reduction in uncertainty relative to 

uninterpolated data.  Finally, the effects of combining aggregated spatial data are found to obey 

standard properties of error propagation, which means that the presented estimate of uncertainty can 

be used to estimate resolution-related uncertainty in spatial model results, relative to the input data.  

The study quantitatively demonstrates the important role of the spatial autocorrelation of data in 

uncertainties associated with the resolution of spatial data. 
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1. Introduction 

Gridded spatial data are used as parameter inputs and outputs in all kinds of spatial models, including 

ecological, meteorological and hydrological (Fischer and Wang, 2011; Pogson et al., 2012; Yang et 

al., 2008).  The spatial detail, or resolution, of data affects how well they represent reality, as well as 

how accurately they can be combined with other spatial data within models to make predictions.  The 

use of gridded data, or rasters, is central to a variety of other disciplines such as biological and 

medical imaging (Sensen and Hallgrímsson, 2009), hence the effect of data resolution on uncertainty 

is important for a wide range of research.  It is of particular importance to environmental modelling 

due to the crucial role of spatial data (Beale et al., 2010), the inherent limitations of environmental 

spatial data (Schmidt et al., 2006), the computational requirements of many models (Wood, 2006), 

and the large spatial scales often considered (Yue et al., 2011).  The present study therefore considers 

the spatial resolution of data from the perspective of environmental modelling, but the generic 

formulation is applicable to any field where rescaling and combining of rasters of different resolutions 

is performed. 

 

Model uncertainty, also referred to as error, can be affected by data resolution not just in terms of the 

uncertainty of the original data, but also by combining multiple rasters, interpolating data to higher 

resolutions (Stampfl et al., 2007), and lowering resolution for reasons of computation or compatibility 

with other rasters.  Environmental models commonly take a number of spatial data inputs; for 

example, a soil organic matter model might require a range of meteorological, land use and soil data 

(Smith et al., 1997).  The model then performs calculations using these data, which amount to 

different combinations of the data; furthermore, if the data are of different resolutions, there may also 

be some form of aggregation or interpolation.  The way in which uncertainty in the input data is 

propagated by these operations is crucial to understand the resultant uncertainty in model outputs. The 

effects of aggregating spatial data are particularly important for spatial optimisation models, which 

commonly require very low resolution data due to their high computational demands (Wang et al., 

2012). 

 

Previous work has investigated the resolution which is appropriate to represent different types of data 

(Hengl, 2006), as well as the effect that data resolution has on results from specific models (Booji, 

2005; Chaubey et al., 2005; Pisoni et al., 2010), the accuracy of particular datasets and derived values 

(Vaze et al., 2010), error propagation in the production of rasters from observed data (Huevelink, 

1993; Lark, 2000; Knotters et al., 2010), the behaviour of metrics calculated from rasters (Stein et al., 

2001) and the level of detail that can reasonably be modelled (Pogson, 2011).  The effect of changing 
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the resolution of gridded data has also been considered in a number of ways, such as by fractal 

dimension (Bian, 1993).  However, the way in which uncertainty changes with the resolution of 

gridded data has not been predicted for the general case.  

 

This paper considers a range of data operations which are used in spatial models, namely aggregation 

(lowering resolution), interpolation (increasing resolution) and combination (using a number of 

datasets to perform calculations).  The study first examines the average change in uncertainty of 

individual grid values caused by aggregating spatial data to lower resolutions, with the aim of 

predicting the mean uncertainty of values relative to the original, for any grid size.  That is, if an 

aggregated value v’ is used to represent a parameter value at point x, the aim is to predict the expected 

uncertainty of v’ relative to that of the original value v at the same point.  Consideration of 

interpolating rasters to higher resolutions and combining aggregated or interpolated rasters is 

performed in order to see how the uncertainty estimate for aggregating individual rasters can be used 

to estimate resolution-related uncertainty in model outputs relative to input uncertainty.   

 

Spatial data are considered in this paper as any regular grid of values.  While it is uncommon for 

spatial datasets to be obtained directly from observation, the consideration of uncertainty in the 

present study is simply relative to the uncertainty of the input data; how the data were obtained or 

generated does not matter for the present purposes.  An estimate is presented for how uncertainty 

varies with resolution for different types of data distribution, thus enabling prediction of uncertainty 

for any aggregated grid size.  The estimate is tested with a number of artificially generated rasters, as 

well as data from a widely-used environmental dataset.  The effects of interpolating and combining 

rasters are then investigated by using a number of representative examples.  The findings of the study 

enable quantitative prediction of uncertainties introduced by rescaling gridded spatial data. 

 

2. Methods 

2.1 Raster and aggregation definition 

We first define an n1-by-n2 raster A containing N = n1n2
 cells; a value n is also defined as the larger of 

n1 and n2.  For convenience, each cell in A is identified by a single index i, which is a unique value 

combining the row index u and column index v.  The mean of A is thus: 
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The resolution of A is reduced to an n’1-by-n’2 raster A’, with n’ the larger of n’1 and n’2, where n’ < 

n.  This is achieved by aggregating square groups of cells in A (square in terms of number, rather than 

distance), as commonly performed by a geographical information system (GIS); therefore each cell in 

A’ is an aggregate of g-by-g cells in A (as shown in Fig. 1), and the grid size (the side length of each 

cell) in A’ is g times larger than in A, so n’ = n/g, where g > 1.  The present study only presents results 

for aggregation by the mean of cells (i.e. each cell in A’ is the mean of g-by-g cells in A), although use 

of the mode is also considered in the Discussion.  No specific assumption is made of the shape of the 

grid cells themselves, but the shape must be such that it is not changed by the described aggregation; 

this is the case for any square or rectangular cells, assuming the grid is regular and aligned.  

Depending on the raster dimensions and rescaling factor g, some aggregated grid cells at the edge of 

the raster may include a non-square aggregation of cells, but for a sufficiently large raster the effects 

of this are not deemed important.  Integer values of g are most straightforward to implement but non-

integer values are also possible by appropriately weighted allocation of grid cells that span 

aggregation boundaries. 

 

Fig. 1. Grid for original n-by-n raster A (faint lines, n = 4), and grid for aggregated n’-by-n’ raster A’ 

(heavy lines, n’ = 2, g = 2).  For convenience, each cell in A is identified by a single index i, a unique 

value which combines the row index u and column index v. 
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In the case of a raster which contains nulls (i.e. values which are either non-numerical or are arbitrary 

numbers used to signify something other than their numerical value), null values must be excluded 

from calculations as they cannot be aggregated with other cells (at least, not by aggregation according 

to the mean).  In this case, N is the total number of non-null values in the raster,which means N < n1n2 

if null values are present. 

 

2.2 Uncertainty definition 

Uncertainty E for any aggregated grid size is defined in the present study as the mean absolute error 

between the original and aggregated raster (Witten and Frank, 2005): 
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where index i’ denotes the cell in raster A’ which corresponds to cell i in raster A (hence there are g2 

values of i for each i’).  Note that although the described aggregation method is unbiased, E > 0 for 

any aggregated raster (assuming it is not uniform) due to the use of absolute differences, which do not 

cancel out. 

 

The mean absolute error represents the expected difference between a cell in A and the corresponding 

cell in A’; it therefore gives the average magnitude of uncertainty caused by using A’ instead of A.  

Mean absolute error is used instead of other metrics, such as mean squared error, as it provides a very 

tangible measure of error (i.e. the average magnitude of difference between aggregated and original 

values).  However, the choice of metric generally has a relatively straightforward effect on results, as 

described in the Discussion. 

 

2.3 Spatial autocorrelation 

The effect of spatial resolution on uncertainty is clearly dependent on the spatial distribution of values 

within the raster.  For example, if neighbouring cell values are similar to each other, the uncertainty 

resulting from aggregating them into a single cell would be smaller than if they were highly 

dissimilar. 

 

The spatial autocorrelation of a raster is a measure of how closely related the values in the raster are, 

with a weighting according to the distance between cells.  Moran’s I is a widely used metric for 

spatial autocorrelation (Anselin, 1995; Moran, 1950), defined for raster A as: 
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where wij is a spatial weight between cells i and j.  For the purpose of this study, the weight is defined 

as inversely proportional to distance (as discussed below): 
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where rij is the distance between cells i and j, and the value of 1 in the denominator is included to 

avoid division by 0 when rij = 0.  Since all calculations are performed on a regular grid, the distance 

between cells is defined in terms of Taxicab geometry (Krausse, 1987): 

  vvuuij jijir −+−=      (5) 

where iu and ju are the row indices of cells i and j respectively; similarly, iv and jv  are the column 

indices.  Because rij is dependent only on cell indices, the method is valid for any shaped grid cell (so 

long as aggregation does not change cell shape), since aggregation is performed according to the 

number of cells rather than physical dimensions. 

 

The choice of weight function is a compromise made to accommodate all possible length scales.  Any 

two cells are either aggregated together (and hence should have weight function 1 for the purposes of 

this study), or they are not (and hence should have weight function 0).  Since this would require a 

separate autocorrelation value to be obtained for each grid size of interest, as well as knowledge of the 

alignment of original and aggregated grids, it would be far less useful for making predictions.  

Therefore inverse proportion to distance is used instead, as it represents the decreasing probability of 

cells being aggregated together if they are further apart (which varies inversely with grid size), but 

unlike the more common inverse-square weight function, does not over-penalise cells which are 

distant but could still be aggregated together given a sufficiently large grid size.  It is clear from this 

that any prediction of uncertainty will be limited to some extent, but this is for the benefit of general 

applicability. 

 

By definition, values for I range from -1 (completely dispersed) to +1 (completely correlated); a value 

of 0 indicates no correlation.  For example, a chessboard-like pattern would tend to I = -1 (depending 

on the weight function, as discussed below), a uniform area would tend to I = 1, and independently 

assigned random values would tend to I = 0.  However, the value of I depends on the method of 

spatial weighting.  The definition used here makes values of I < 0 very unlikely, since although values 

may be locally dissimilar, the weight function gives unusually large weighting to more distant cells, 

and hence differences between cells are on average smaller because distant cells are liable to be 

similar in value for dispersed patterns.  For example, the nearest neighbours (in terms of Taxicab 

geometry) of a white square on a chessboard are all black, but at greater distances the distribution of 
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white and black squares is almost equal.  This means that highly dispersed data may not be 

represented well by the autocorrelation method used here, but this is intentional since the weight 

function is chosen to represent all possible length scales.  Furthermore, such patterns are uncommon 

in nature (Beale et al., 2010).  The performance of the method on spatially dispersed data will be 

considered as part of the Results in order to test its potential limitations. 

 

2.4 Estimated uncertainty 

We seek to predict uncertainty E as a function of grid size g relative to the original raster, so that the 

uncertainty defined in Eq. 2 can be estimated for any grid size without obtaining the aggregated raster.  

The maximum possible uncertainty EG is obtained by aggregating A to a single cell; i.e. using a single 

value to represent the entire area.  Using the mean to aggregate cells, EG is given by Eq. 2, with A’i' = 

Ā for all i: 
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For any choice of grid size, uncertainty relative to the original raster will clearly lie between a 

minimum of 0 (when g = 1) and a maximum of EG (when g ≥ n).  How E(g) behaves between these 

values is dependent on the distribution of data in the raster. 

 

For an uncorrelated raster (I = 0), the difference between E(g) and EG will change in proportion to the 

inverse square of grid size due to the number of aggregated cells present (since grid size is a linear 

measure, and aggregation is based on square groups of cells).  As a general estimate, the relationship 

E(g) = EG(1-g-2) satisfies this behaviour.  In particular, E(g)=0 when g=1, and E(g) increases with 

grid size as described above, approaching a maximum of EG for large g. 

 

For a correlated raster (I > 0), E(g) will approach EG more slowly, since local fluctuations between 

values are smaller.  Likewise, for a dispersed raster (I < 0), E(g) will tend to EG more quickly, since 

the spatial distribution of data is similar at all scales, thus E(g) ≈ EG for g > 1.  However, due to the 

nature of the weight function used in this study, occurrences of I < 0 are unlikely, as explained above. 

 

To reflect the effect of spatial autocorrelation on uncertainty, we introduce a factor of gI/nI for E(g) , 

which tends to 1 as either I tends to 0 or g tends to n, hence satisfying the behaviour described above.  
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The approximation only holds for I ≥ 0, but this is not considered restrictive due to the spatial weight 

used, and will be investigated as part of the Results.  Thus for any raster A, we propose that the mean 

absolute uncertainty introduced by aggregating the raster to a larger grid size may be estimated as: 

  I

I

G n
ggEgE )1()( 2−−=     (7) 

This result addresses the major aim of the study, which is to predict uncertainty in aggregated rasters 

for any grid size. Since Eq. 7 is for the aggregation of cells, the condition exists that g ≥ 1; this is 

explored further in the Results.  Both g and n are dimensionless, hence the units of uncertainty E(g) 

are the same as the units of the maximum uncertainty EG, which for the definition in Eq. 6 are the 

same as the units of the original values in raster A.  Uncertainty due to aggregation E(g) can be added 

to the uncertainty of the original raster in order to obtain total uncertainty.  As indicated above, any 

prediction of uncertainty for different grid sizes will contain flaws, in part due to characterising 

autocorrelation as a single value for all length scales, but also due to being unable to generically 

represent all possible types of data distribution, as well as implementation-specific issues relating to 

the alignment of grids.  It is worth noting that the only part of Eq. 7 which is specific to the choice of 

uncertainty metric is the value of EG, as considered in the Discussion. 

 

In summary, Eq. 7 is formulated to satisfy the basic properties of how uncertainty is likely to change 

according to grid size, and is intended to work as a general estimate for the effects of aggregating 

spatial data.  As described above, its formulation is guided in part by conjecture.  Limitations in its 

applicability are most likely to apply to spatially dispersed rasters and rasters where the alignment of 

the aggregated grid is important due to the highly regular nature of the data; it should also be noted 

that using a single value of Moran’s I for all length scales means Eq. 7 will not be perfectly accurate 

at any single grid size, as described above.  The effectiveness of Eq. 7 is evaluated for a number of 

rasters in the Results, including cases which are expected to test its limitations. 

 

In order to apply Eq. 7 to estimate the effect of aggregating any raster A to a larger grid size, only five 

pieces of information are required, all based on the original raster A itself (i.e. the aggregated raster A’ 

does not need to be obtained to estimate its uncertainty): 

1. The grid size rescaling factor g, where g ≥ 1. 

2. The number n of grid cells on the longer of the two sides of raster A. 

3. The number N of non-null cells in raster A.  
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4. Moran’s I for raster A, as described by Eq. 3-5 (note the inverse-distance definition of spatial 

weight in Eq. 4).  If the raster is particularly large, this may be computationally expensive to 

calculate, and therefore it may be necessary to estimate I from smaller samples of the raster 

(as discussed further in Section 2.8). 

5. The maximum possible aggregated uncertainty EG of raster A.  In the present study we use the 

mean absolute difference between each raster value and the mean raster value, as described by 

Eq. 6; for other metrics, please see the Discussion.   EG is typically less computationally 

expensive to calculate than I, but may still be estimated from smaller samples if necessary. 

 

2.5 Interpolating rasters 

Aggregated raster A’ may be interpolated to the same resolution as A by bilinear interpolation (Buss, 

2003); the uncertainty of the interpolated raster A’’ is then explicitly calculated from Eq. 2 by using it 

in place of A’; in the case of interpolating to the original raster resolution, i’ = i.  This is performed to 

evaluate the effectiveness of interpolation as a means to increase resolution.  An example of 

interpolation is provided in Section 2.8, and the effect of the choice of interpolation method is 

considered in the Discussion. 

 

2.6 Combining rasters 

In order to investigate uncertainties when rasters are combined (such as by addition or multiplication), 

raster A may be created by combining M separate rasters Am.  Raster A’ is then created by combining 

the M corresponding aggregated rasters A’m in the same way.  For example, if A is obtained by 

summing rasters A1 and A2 (i.e. corresponding cells in the rasters are added together), then A’ is 

obtained by summing A’1 and A’2, which are the aggregated rasters of A1 and A2 respectively.  The 

uncertainty of the combined raster is calculated from Eq. 2 as normal. 

 

Uncertainties of combined rasters are expected to follow standard properties of error propagation.  

Because operations are performed on individual cells in the rasters, and each cell has an unknown 

uncertainty around the mean uncertainty for the raster, uncertainties are treated as independent and 

random.   The covariance of separate rasters is assumed to be zero for the rasters under consideration 

in this study.  Hence for sums and differences (Taylor, 1997): 
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where Em(g) is the mean uncertainty of raster A’m, Ā’m is the mean of raster A’m, and Em(g) <<  Ā’m in 

the case of Eq. 9.  Similar formulae exist for other mathematical functions and for data with non-zero 

covariance. 

 

2.7 Raster values 

In order to investigate the effect of resolution on uncertainty for a range of spatial data distributions, 

the following rasters are considered, as shown in Fig. 2: 

(a) Highly dispersed values in a chessboard-like pattern. 

(b) Highly correlated values, defined as two distinct uniform areas. 

(c) Highly uncorrelated, independently assigned random values. 

(d) An implementation of Perlin noise (Perlin, 1985), with large short-scale fluctuations. 

(e) As (d), but with smaller short-scale fluctuations and larger long-scale fluctuations. 

(f) Values defined by diagonal random fluctuation from neighbouring cells. 

 

Fig. 2. Artificially generated rasters under consideration: (a) highly dispersed, (b) highly correlated, 

(c) highly uncorrelated, (d) Perlin noise with large short-scale fluctuations, (e) as (d) but with smaller 

short-scale fluctuations, (f) fluctuation from diagonally neighbouring cells.  Values range from 0 

(black) to 1 (white). 
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Rasters (a)-(c) are intended to provide a range of different spatial autocorrelations in order to test Eq. 

7 across its parameter range, and identify potential limitations, while rasters (d)-(f) are perhaps of 

more interest, since they represent locally correlated but noisy values, similar to most data which are 

obtained from nature.  All rasters are square, with n = 100 and N = 104.  Please see the Appendix for 

further details of the rasters. 

 

In order to provide an environmental example, a raster from the Harmonized World Soil Database 

(HWSD) version 1.2 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) is also used to test the validity of Eq. 

7.  Values are extracted from HWSD for soil carbon content in the top 30cm layer of the dominant 

soil type in each 30-by-30 arc second grid cell in the UK, as a percentage of soil mass.  Like almost 

all environmental spatial datasets, HWSD data are obtained from a combination of practical 

observation and data processing, and therefore include an element of artificiality, but this is not 

considered important for the purposes of the study.  The HWSD raster includes null values for grid 

cells without soil (as shown in Fig. 5a).  The entire raster for the UK is 1401-by-1249 grid cells, with 

N ≈ 4.8×105 non-null grid cells out of a total of over 1.7×106 grid cells, and n = 1401. 

 

2.8 Assessment methods 
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Each raster is aggregated to a number of larger grid sizes in order to assess the effectiveness of Eq. 7.  

Estimated uncertainties are compared against observed uncertainties by use of the r2 correlation 

coefficient (Edwards, 1976): 
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where L is the number of grid sizes considered, oi and ei are the observed and estimated uncertainty 

respectively for the ith grid size, and ō and ē are the mean of observed and estimated uncertainties  

respectively.  By definition, values for r2 range from -1 (perfectly uncorrelated) to +1 (perfectly 

correlated).  For the artificially generated rasters (a)-(f), all possible integer values of g from 1 to n are 

considered, hence L = 100.  For the larger HWSD raster, 30 evenly spaced integer values of g from 1 

to n are considered, hence L = 30. 

 

All calculations, including raster creation and cell aggregation, are programmed in Fortran.  HWSD 

values are extracted using ArcGIS; the resultant raster is exported as a text file which is read in by the 

Fortran program.  Results from the Fortran program are plotted using Matlab. 

 

For reasons of computation, the autocorrelation I for the HWSD raster is estimated from ten randomly 

located 10-by-10 samples of data, rather than using the whole raster.  Only samples which include at 

least one non-null value are considered (i.e. any sample which contains only nulls is discounted and 

another one is taken until ten non-null samples are obtained).  The mean of sampled I values is used to 

provide the global I value; this method is expected to give a reasonable estimate of the actual value of 

I for the raster.  Clustered samples, rather than the same number of randomly dispersed points, are 

used to estimate I due to the importance of local values to the calculation of I.  Due to the dimensions 

of each sample, only small distances relative to the total raster size are represented by the 

autocorrelation value; the effectiveness of this is noted in the Results and Discussion.   

 

In order to illustrate the aggregation and interpolation methods used in this study, an example of each 

is shown in Fig. 3. 

 



14 
 

Fig. 3. Aggregation and interpolation of raster (f).  (a) raster aggregated to g = 5; (b) aggregated g = 5 

raster interpolated to original resolution by bilinear interpolation. 

 

3. Results 

3.1 Single rasters 

The effect that grid size has on uncertainty (as defined in Eq. 2) for rasters (a)-(f) is shown in Fig. 4, 

along with the estimated uncertainty obtained from Eq. 7.  For simplicity, a single instance of each 

raster is used, which is roughly equivalent to several instances of smaller rasters (it is not exactly 

equivalent due to the reduction of edge effects and the presence of greater length scales).  In order to 

emphasise small changes in resolution, which are generally of most interest, a logarithmic scale is 

used for the g-axis.  Uncertainty values are divided by the mean of the original raster Ā for generality; 

uncertainties are divided by Ā rather than EG so that the maximum uncertainty of each raster relative 

to its mean can be seen.  Shown also in Fig. 4 are results for bilinear interpolation of aggregated 

rasters back to the original grid size.  Values for I are shown in Table 1, along with values for the 

correlation coefficient r2 between observed and estimated uncertainty for each raster. 

 

Fig. 4. Uncertainty as a function of aggregated grid size g for rasters (a)-(f), as shown in Fig. 2.  

Uncertainties are divided by the mean of each original raster for generality.  Dashed line (‘Obs.’): 
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observed uncertainty; dotted line (‘Int.’): observed uncertainty following interpolation; solid line 

(‘Est.’): estimated uncertainty according to Eq. 7.  Values for I are shown in Table 1, along with 

values for the correlation coefficient r2 between observed and estimated uncertainty for each raster. 

 

 

Table 1.  Moran’s I spatial autocorrelation value for each raster (a)-(f), and correlation coefficient r2 

between observed and estimated uncertainty. 

Raster (a) (b) (c) (d) (e) (f) 

Moran’s I (as defined in Eq. 3-5) 0.002 0.726 0.008 0.029 0.126 0.304 

Correlation coefficient r2 between 

observed and estimated uncertainty 

0.925 0.776 0.982 0.952 0.933 0.993 

 

It is evident from both Fig. 4 and Table 1 that estimated uncertainty is close to observed uncertainty 

for all the rasters considered, and is particularly close in the case of raster (f), which is highly 

correlated.  Very good agreement is also found in the case of raster (c), which is highly uncorrelated; 

this is due to the near-uniform spatial autocorrelation across the raster, without significant local 

patterns.  Even in the case of raster (a), which is highly dispersed, estimated uncertainty is reasonably 

close to observed uncertainty, despite the formulation of Eq. 7 having limited applicability for 

spatially dispersed rasters.  As expected, the uncertainty for raster (a) approaches EG too slowly 

because the value of I is close to that for uncorrelated data, due to the definition of the weight function 

in Eq. 4.  A value of I < 0 would of course make Eq. 7 invalid, hence the limitation is inherent to the 



16 
 

approximation used; furthermore, such patterns are uncommon in nature, and the issue only exists at 

small scales.  It is noteworthy that observed uncertainties for interpolated rasters are very similar to 

those for uninterpolated rasters in all cases and at all resolutions, even for rasters (d) and (e) which are 

generated in part by bilinear interpolation. 

 

Fluctuations in observed uncertainties in Fig. 4 are partly due to the particular spatial distributions of 

data at different scales, but also due to edge effects and varying commensurability between the 

original and sampled raster grid sizes, which changes the alignment of grids.  It is for these reasons 

that r2 for raster (b) is relatively low, as the highly ordered raster is particularly sensitive to these 

effects: uncertainty is highly dependent on whether aggregated grid cells cross the divide between 

uniform areas.  Because such uniform patterns are unusual in nature, this issue is not considered to be 

important, and it is unavoidable without explicit consideration of the alignment of aggregated grids, 

which would be at the expense of generality. 

 

Similarly to Fig. 4 for artificially generated rasters, Fig. 5 shows the effect of grid size on uncertainty 

for HWSD soil carbon data in the UK.  Moran’s I for the raster is estimated as 0.25 from 10 randomly 

located samples, with a standard deviation of 0.27.  Eq. 7 is again found to be in good agreement with 

observed uncertainties, with r2 = 0.943; this demonstrates the ability of Eq. 7 to estimate uncertainties 

from spatial aggregation of environmental datasets.  It also suggests that estimating Moran’s I from 

small samples of the original raster is an adequate method for the purposes of Eq. 7, and it provides 

good results for grid sizes which are far larger than the distances used in the estimate of I.  The 

distribution of HWSD data and the method to estimate I are considered further in the Discussion. 

 

Fig. 5.  Uncertainty as a function of grid size g for HWSD soil carbon values in the UK.  (a) Map of 

soil carbon as a percentage of soil mass in top 30cm layer (n.b. white denotes null values); data from 

HWSD version 1.2 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). (b) Uncertainty as a function of 

aggregated grid size.  Dashed line (‘Obs.’): observed uncertainty; solid line (‘Est.’): estimated 

uncertainty according to Eq. 7.  Moran’s I is estimated as 0.25, and the correlation coefficient between 

observed and estimated uncertainty is r2 = 0.943. 
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Results in Fig. 4 and Fig. 5 show uncertainties relative to the original raster A.  However, this 

provides no information on uncertainties associated with the grid size of A itself; i.e. what is the 

uncertainty of A relative to a grid size tending to zero.  It is therefore of interest to consider how 

spatial autocorrelation and maximum uncertainty vary with grid size, and hence how predictions of 

uncertainty are dependent on the grid size of the original raster.  The symbols I’ and E’G are 

introduced to represent values for sampled raster A’ which are equivalent to I and EG for raster A, as 

described in Eq. 3-6.   These are plotted in Fig. 6 for rasters (a)-(c), which are used to provide a wide 

range of spatial autocorrelation properties. 

 

Fig. 6. Graphs of spatial autocorrelation and maximum uncertainty as a function of grid size g for 

rasters (a)-(c).  (a) Spatial autocorrelation I’ (n.b. logarithmic scale on both axes).  (b) Maximum 

uncertainty E’G as a fraction of the raster mean. 
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It is evident from Fig. 6 that values for I’ and E’G vary significantly with grid size.  As grid size 

increases, I’ tends to 0 (except when g = n, hence n’ = 1 and therefore I = 1 by definition); correlation 

between values therefore decreases as resolution decreases.  Fluctuations in I’ are very large for raster 

(a) because odd values for g tend to preserve a chessboard pattern, while even values tend to a 

uniform pattern; this suggests that spatial autocorrelation for highly dispersed data is particularly 

sensitive to changes in grid size.  Increasing grid size also causes E’G to tend to zero.  By comparison 

of Fig. 6b with Fig. 4a-c, E’G appears to vary approximately as EG – E(g), where EG is the maximum 

uncertainty of the original raster.  This seems reasonable given the inverse dependence on the number 
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of grid cells present; for example, if there is only one grid cell present in A’, there is no difference 

between cells in A’ (hence EG = 0), but the average absolute difference between A’ and each cell in A 

is at a maximum, namely EG.  The consequences of these results are considered further in the 

Discussion. 

 

3.2 Combined rasters 

The effects of combining multiple rasters are shown in Fig. 7.  Rasters (c) and (f) are used as their 

uncertainties are predicted well by Eq. 7, and their autocorrelation values approximate the expected 

range of real-life data.  Different versions of raster (f) are created by using different random seeds, 

hence these rasters are distinct but possess very similar values of I and EG.  Uncertainties for 

individual rasters are estimated from Eq. 7, and combined using Eq. 8-9, depending on the method of 

combination.  Observed uncertainties are calculated directly from the combined rasters.  Fig. 7 shows 

that estimates obtained from Eq.7 for individual rasters can be combined for multiple rasters by using 

standard formulae for error propagation, which provides close agreement with observed uncertainties. 

 

Fig. 7.  Combination of rasters as a function of grid size g.  Uncertainty is shown as a fraction of the 

mean of the combined raster.  Dashed line (‘Obs.’): observed uncertainties of combined rasters; solid 

line (‘Est.’): estimated uncertainties from individual rasters combined according to standard equations 

for propagation of error.  The combination method and rasters are listed in the graph (n.b. 10×f means 

10 different versions of raster (f) are added together, whereas f×f means 2 different versions of raster 

(f) are multiplied together). 
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4. Discussion 

4.1 Single rasters 

Results in Fig. 4 and Table 1 suggest a good match between observed uncertainties and estimates 

obtained from Eq. 7, with r2 typically over 0.9 for both artificially generated rasters and 

environmental data based on observation.  This means that for any given raster, the uncertainty caused 

by aggregating grid cells can be reasonably estimated for any grid size.  Small discrepancies are 

present at different length scales due to the difficulty of defining a spatial autocorrelation weight 

function which is able to represent all possible grid sizes, as stated in the Methods, but the effect of 

this is generally small. 

 

In order to illustrate the predictions of Eq. 7 for any raster, its results are plotted in Fig. 8 for a number 

of spatial autocorrelation values.  To provide general applicability, uncertainties are plotted as a 

fraction of maximum aggregation uncertainty, and the grid size is plotted as a fraction of maximum 
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grid size.  Fig. 8 clearly illustrates the strong effect that spatial autocorrelation has on uncertainties 

resulting from aggregating grid cells, and the changing effect of aggregation on uncertainty at 

different length scales.  It is worth noting that not only does uncertainty (as a fraction of the 

maximum) increase faster with grid size for rasters with low spatial autocorrelation, but the maximum 

uncertainty itself is likely to be larger too, hence the effect of spatial autocorrelation on aggregation 

uncertainty is often even larger than shown. 

 

Fig 8. Uncertainty E as a function of grid size g for any raster, as predicted by Eq. 7.  Uncertainty is 

plotted as a fraction of maximum aggregation uncertainty EG, and grid size as a fraction of maximum 

possible grid size n.  Results are shown for a number of raster spatial autocorrelation values I, as 

labelled. 

 

 

4.2 Interpolation 

It is evident from Fig. 4 that bilinear interpolation has almost no effect on uncertainty relative to an 

uninterpolated raster, as the observed uncertainties for both are almost the same for all grid sizes (the 
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uncertainty for interpolated rasters would be expected to be smaller were the interpolation method 

effective at increasing raster resolution).  This suggests that there is no benefit in using interpolation 

to increase the resolution of a raster, a technique which is sometimes used for compatibility with other 

data used in a model (Mishra et al., 2013).  For example, while the raster shown in Fig. 3b appears to 

be of a higher resolution than the raster shown in Fig. 3a, both represent the original raster shown in 

Fig. 2f equally well in terms of mean absolute error.  Although the present study has considered only 

one of a number of possible interpolation methods (Li and Heap, 2008), it is unlikely that any other 

method would behave significantly better (Carletti et al., 2000).  The only exception to this is if 

further information exists for the expected spatial properties of the data, in which case this 

information might be able to help increase the resolution of a raster, but using information only from 

the raster itself is unlikely to have a beneficial effect.  The definition of uncertainty used in the present 

study does not account for the statistical properties of the distribution of raster values, only the 

difference with original data at each cell location, but it is possible that interpolation might improve 

this.  It should be noted that the main purpose of interpolation is to extrapolate data samples or 

estimate missing data values rather than increase resolution, although there is some overlap between 

the two concepts.  It is clear from this that the resolution of datasets which contain interpolated values 

may be misleading, depending on the degree of interpolation. 

 

4.3 Environmental data example 

From Fig. 5a it is evident that there are several distinct regions in the HWSD raster in which values 

are similar.  This explains the large standard deviation of Moran’s I obtained from samples of the 

raster: local values of I will be large if the sample is within a single region, but small if it crosses 

regions.  Although the size of each sample (10-by-10 cells) is very small compared with the total 

raster size, the global estimate of I appears good given the agreement of Eq. 7 with observed 

uncertainties, and the agreement holds at length scales far greater than the lengths considered in any 

sampled calculation of I.  Because spatial weights to calculate I are greater for closer cells, it is clear 

that local values have a dominant effect on the calculation.  Therefore by having a sufficiently large 

number of samples to capture the range of local spatial distributions of data in the raster, using only a 

small number of grid cells in each sample appears sufficient to provide a reasonable estimate of I, 

which is useful as the size of each sample (rather than the number of samples) is the computationally 

expensive part. 

 

4.4 Choice of metric 
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For simplicity, results have only been presented for the mean absolute error.  Results for other metrics 

are likely to scale very similarly since most would have the same dependence on the number of cells 

being aggregated.  For example, using the root mean square uncertainty gives similar results (not 

shown for simplicity); observed uncertainties are effectively rescaled according to the maximum 

uncertainty EG, which is defined in terms of the uncertainty metric being used  (in the case of root 

mean square error, the value of EG is simply the standard deviation of values in A).  Similarly, only 

results for aggregation by the mean have been presented, although results for aggregation by the mode 

are comparable; calculation of EG simply needs to be changed according to the aggregation method 

(here the mode of A would simply be used in place of Ā in Eq. 6).  Uncertainties for aggregation by 

the mode tend to be slightly larger than for the mean since the mode is by definition less 

representative of all the cells being aggregated, particularly for highly uncorrelated data (results not 

shown). 

 

4.5 Original raster resolution 

Results shown in Fig. 6 suggest that the estimate of uncertainty by Eq. 7 is highly dependent on the 

original raster resolution, because values for spatial autocorrelation I’ and maximum uncertainty E’G 

vary greatly with the resolution of the raster.  Estimates of uncertainty due to changes in resolution are 

therefore relative only to the original raster, and estimates cannot be made for grid sizes smaller than 

the original raster, because Eq. 7 requires values for I and EG at the highest resolution, and these 

cannot be estimated from larger grid sizes.  The consequence of this is that uncertainties associated 

with the resolution of the original raster itself (relative to the underlying parameter it represents) 

cannot be estimated by this method.  This is unsurprising as the available information is limited by the 

original raster, much as interpolation is not in itself effective at increasing the resolution of a raster.  

However, it is possible to say qualitatively that rasters with a low spatial autocorrelation are likely to 

contain greater uncertainty due to resolution than rasters of the same grid size with a high spatial 

autocorrelation.  Furthermore, an uncertainty value should ideally be provided for the original raster, 

based on both the resolution and methodology used to create it, in which case estimates from Eq. 7 

may be added to this for uncertainties introduced by aggregation to larger grid sizes. 

 

4.6 Combined rasters 

The effect of combining aggregated rasters is investigated in Fig. 7.  Uncertainties for individual 

rasters are estimated from Eq. 7 and combined using Eq. 8-9.  These estimates are found to be in very 

close agreement with observed uncertainties.  Estimates of uncertainty for any combination of 
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aggregated rasters can therefore be made by first using Eq. 7 for each individual raster, and then 

combined by using the appropriate equation for error propagation.  This allows the aggregation-

related uncertainty in model results to be estimated relative to the uncertainty in input data. 

 

4.7 Application 

The implications of Eq. 7 are of course specific to the data in question.  For example, consider a raster 

of temperatures on a 1km grid, with EG = 2 ̊C, n = 1500 and I = 0.2.  If A were aggregated to a 5km 

grid (i.e. g = 5), then according to Eq. 7 this would introduce mean absolute error E = 0.61 ̊C.  If the 

original data were less correlated, say I = 0.1, but with all other values equal, then E = 1.09 ̊C for the 

same grid aggregation, which is almost double the uncertainty.  For the I = 0.2 data to have the same 

uncertainty would require an aggregated grid size of greater than 70km.  This surprising result 

demonstrates the importance of the spatial autocorrelation of data when considering uncertainties due 

to changing grid size: highly uncorrelated data on a high resolution grid are liable to contain greater 

uncertainty due to the grid size than highly correlated data on a low resolution grid. 

 

Although it would be possible to explicitly calculate uncertainty in aggregated rasters on a case-by-

case basis, perhaps using a sampling technique to reduce computation, the method described by Eq. 7 

offers a number of benefits.  It is simple to apply and it only requires calculation of Moran’s I; while 

this can be computationally intensive, it is a common calculation and it need only be performed once 

for a given raster.  However, the method was formulated for reasons other than simplicity and 

computational efficiency.  The method provides an insight into how uncertainty varies with grid size 

for any raster, and the effectiveness of Eq. 7, as demonstrated in the Results, shows that spatial 

autocorrelation alone is sufficient to estimate uncertainties due to spatial aggregation.  Eq. 7 also 

provides information on the rate of change in uncertainty with changing grid size, as evident in Fig. 8.  

The non-linear response of uncertainty to grid size means there are ranges in which grid size can be 

increased with little effect on uncertainty, and others where small changes have a large effect on 

uncertainty, as demonstrated in the above hypothetical example with temperatures.  This is valuable 

information in order to balance computing requirements with precision in results. 

 

The limits of the applicability of Eq. 7 are noted in its formulation as being for rasters with spatially 

dispersed data, where the definition of spatial autocorrelation used in the method is less valid, and 

highly correlated rasters, where the alignment of the aggregated grid to the original grid is especially 

important; it is also noted that due to the nature of using a single spatial autocorrelation value, the 
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method is not perfectly accurate at any single grid size.  These limitations are explored in the Results 

section.  The extreme cases of rasters (a) and (b) show that even when the assumptions of Eq. 7 are 

stretched to their limits, the method still performs well overall.  The accuracy of Eq. 7 tends to vary 

across different length scales, which can be due to changing commensurability between original and 

aggregated grid sizes, or local differences in spatial autocorrelation.  These effects are particularly 

evident in the extreme examples of rasters (a) and (b), which are highly ordered; however, for natural 

or natural-looking data, these limitations tend to be minor, as shown by rasters (d)-(f) and the HWSD 

raster. 

 

4.8 Related uncertainties 

A single measure of uncertainty for aggregated rasters has been provided, but the uncertainty of 

individual grid cells will of course vary.  Prediction of the range of uncertainties for a particular 

aggregated raster might be possible based on local fluctuations of Moran’s I in the original raster, but 

this is beyond the scope of the present study. 

 

It should be emphasised that resolution is only one of a number of sources of uncertainty, and a higher 

resolution dataset is not necessarily more accurate than a lower resolution one for the same parameter. 

 

A benefit of higher resolution data which has not been considered in this study is that representation 

of spatial boundaries may be improved.  However, if resolution is increased for this or any other 

reason, such as for convenience to combine with other data, interpolation is probably both 

unnecessary and misleading. 

 

5. Conclusion 

The effect that spatial resolution has on uncertainty has been investigated for a range of data 

distributions.  An estimate of how uncertainty changes with increasing grid size has been presented 

and found to be in good agreement with observed uncertainties for a range of spatial data, with r2 

correlation coefficient values typically over 0.9.  The estimate is straightforward to apply to any raster 

without any cell aggregation being performed, and it can be used for a range purposes, such as to 

determine the minimum grid size required for a spatial optimisation model to work within a specified 

uncertainty limit.  It should be noted that estimates of uncertainty are relative to the original raster, 
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and not the underlying parameter itself; quantitative estimates of underlying uncertainties are not 

possible, but the study illustrates that rasters with low spatial autocorrelation are likely to contain 

greater uncertainty due to their resolution than rasters of the same grid size with high spatial 

autocorrelation. 

 

By using a number of examples to provide a range of possible data distributions, the use of bilinear 

interpolation to increase the spatial resolution of data has been observed to have no significant effect 

on mean absolute error compared to uninterpolated data.  Therefore the uncertainty of an interpolated 

raster can be reasonably assumed to have the same uncertainty as the original raster.  The 

uncertainties resulting from combining spatially aggregated data obey standard properties of error 

propagation; this means that the presented estimate of uncertainty can be used to estimate uncertainty 

in spatial model results, relative to the uncertainty of the input data.  The study quantitatively 

demonstrates that the spatial autocorrelation of data plays an important role in uncertainties associated 

with the resolution of spatial data, and therefore that grid size alone cannot be used to infer resolution-

related uncertainties. 
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Appendix 

Each raster (a)-(f) shown in Fig. 2 is an n-by-n grid of values Au,v where row and column indices are 

denoted by u and v respectively, and n = 100.  The method to create each raster is described below.  

Random values r(a, b) follow a uniform distribution between a and b. 

Raster (a): Au,v = 1 if u and v are both odd, or u and v are both even; else Au,v = 0. 

Raster (b): Au,v = 0 if v ≤ 50; else Au,v = 1. 

Raster (c): Au,v = r(0, 1) for all u, v. 

Rasters (d) and (e): These matrices are based on a simple implementation of Perlin noise (Perlin, 

1985).  First define the number of ‘octaves’ T (where different octaves have different distances 

between random values in the raster), and then create an n-by-n matrix B for each octave. The final 

raster A is obtained from the sum of the B matrices.  For each B matrix, random values are assigned to 

a number of points defined from a list d, with the number of points dependent on the octave.  All other 

values in B are calculated from bilinear interpolation between these points. 

For octave t, where t = 1, 2, …, T: 

 m = 2(1 + T – t) 

 p = 1+int(n2 / m)  , where int() rounds down to the nearest integer 

 d(1) = 1 

For i = 2, 3, …, p – 1: 

  d(i) = i * m 
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 d(p) = n 

 For i = 1, 2, …, p: 

  For j = 1, 2, …, p: 

   Bd(i),d(j) = 2 * k * r(-0.5, 0.5) 

 For all u, v not included in d: 

Bu,v = 2 * t * bilinear(d) , where bilinear(d) is bilinear interpolation between 

the 4 nearest points defined from the list d 

Following summation of B matrices to obtain A, normalise values to the range [0, 1]: 

 x = min(A)  , where min(A) is the minimum value of Au,v in A 

 y = max(A) – min(A) , where max(A) is the maximum value of Au,v in A 

 Au,v = (Au,v – x) / y 

For raster (d), T = 3, and for raster (e), T = 10.  Due to the described implementation, adding octaves 

tends to dampen high ‘frequency’ (short length scale) noise, as lower frequencies dominate. 

Raster (f): Values are defined sequentially from the 1st corner of the raster, in the following order. 

If (u, v) = (1, 1), assign a random value: 

A1,1 = r(-0.5, 0.5) 

Else if u = 1, assign a random deviation from the preceding column value in row 1: 

A1,v = A1,v-1 + 0.1r(-0.5, 0.5)  

Else if v = 1, assign a random deviation from the preceding row value in column 1: 

Au,1 = Au-1,1 + 0.1r(-0.5, 0.5) 

Else assign a random deviation from the mean of preceding row and column values: 

Au,v = (Au-1,v-1 + Au,v-1 + Au-1,v)/3 + 0.1r(-0.5, 0.5) 

Finally, normalise values to the range [0, 1], as described above for rasters (d) and (e). 


