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over Diversity in Consensus Decision-Making

Mark Pogson*

Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom
Street, Liverpool L3 3AF, United Kingdom
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Abstract

Aggregation of many species of invertebrate is an example of a consensus decision, the
success of which is central to survival. Personality is a stable form of behavioural diversity
which has been observed in the aggregation process, but neither the reasons for its stability
nor its effects on consensus decisions are well understood. By using an agent-based
model of invertebrate aggregation, it is found that diverse personalities have only limited
benefits to the experimental consensus decision-making process, but may have a more
valuable role in natural settings. Importantly, although certain personalities may ostensibly
have potential drawbacks at the individual level, such as choosing to rest in unfavourable
places, all individuals are likely to benefit from maintaining a constant personality, which
promotes group stability. These findings help to improve understanding of consensus deci-
sion-making and the prevalence of stable personality.

Introduction

A consensus decision is a form of collective decision with the requirement of a unique outcome
to which the group adheres [1,2]. Consensus decisions have many potential benefits including
maintenance of group cohesion and greater speed and accuracy of outcome compared with
lone decisions [3]. Success or failure of consensus decision-making can have major conse-
quences [4]; hence its study is of fundamental importance.

Aggregation of woodlice (Crustacea: Isopoda: Oniscidea) is an example of consensus deci-
sion-making as it depends not only on shared individual preferences but also social attraction
[5,6]: given a choice of two identical shelters, woodlice are observed to aggregate under just one
chosen at random [7]. As the process is decentralised and self-organising it is an example of
swarm intelligence [8]. Aggregation and sheltering are particularly important survival behav-
iours for woodlice due to their vulnerability to desiccation [9]. Similar aggregation processes
exist in other invertebrates and it is likely that many of the mechanisms involved are evolution-
arily conserved or convergent across species [10]. Aggregation is considered to be a precursor
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to more complex forms of sociality; therefore a generic description of aggregation is of wide
interest [7,11].

Dynamics of invertebrates may be quite predictable at the group level, but diverse behaviour
typically occurs at the individual level, which may help to increase overall exploration [2].
Diversity of individuals has previously been shown to be beneficial to group decisions, with
the potential for diverse groups to outperform groups of more highly-able individuals
[12,13,14,15,16]. Personality is a form of diversity where behavioural differences between indi-
viduals are temporally and contextually stable [17,18], and the shy-bold continuum is recog-
nised as a basic component of personality in several animals [19]. The role of personality in
consensus decision-making is of increasing interest [20] and has recently been observed in
cockroaches [21].

The present study simulates woodlice aggregation in order to investigate the effects of indi-
vidual personality on consensus decisions. While the evolutionary basis for diversity of
behaviour is well established, the benefits of consistent behaviours which constitute distinct
personalities are not fully understood [15,20,22,23]. The present study therefore investigates
the role of diversity in woodlice aggregation and whether the stability of individual personali-
ties is beneficial to the decision-making process compared with unstable but equally diverse
individual behaviours. That is, is the benefit of individual personality that it generates diversity,
or does its stability also provide advantages? By addressing this question, the aim is to improve
understanding of why personality exists, why it is so prevalent across species and how it affects
consensus decisions.

Existing models of invertebrate aggregation either use a compartmental differential equa-
tion approach to characterise group dynamics [21] or an agent-based approach to model
explicitly the behaviour of individuals [2,11,24,25]. The present study develops an agent-based
model to investigate the effects of individual personalities on decision-making at both the indi-
vidual and group level. The model is evaluated against existing woodlice data due to the quality
of information available in the literature, but the generic formulation is widely applicable. The
present study does not aim to determine the existence of personality in woodlice, but since per-
sonality has been identified in other invertebrates with directly comparable aggregation mecha-
nisms, woodlice are used as a model taxon in order to investigate the role of personality in
consensus decision-making.

Methods

Each woodlouse is modelled as a distinct agent which may be either in a moving or stationary
state. Space is continuous in two dimensions and time is discrete; each iteration of time is
termed a time step. Transitions between the two states may occur randomly at each time step.
The probability of transition depends on the presence of shelter, the number of stationary
neighbouring agents, the length of time spent in the moving state and the personality of the
agent, as shown in Fig 1 and discussed further below. A time-wise exponential decrease in the
probability of transition between states has previously been observed at the group-level in cock-
roaches [26] and foraging herbivores [19], which is consistent with a fixed probability of transi-
tion occurringat regular time intervals at the individual-level, as performed here (i.e. for each
additive change in time, there is a constant fractional probability of transition). It should be
noted that agents only sense the local environment; there is no long-range attraction either to
shelter or other agents. Agents are only attracted to adjacent stationary agents, and not moving
agents, hence there is no herding behaviour. Agents do not carry out any form of learning and
the group is non-hierarchical.
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Fig 1. Transitions between moving state M and stationary state S. Transitions occur in discrete time. If an agent is in
state M and the time since entering the state f,,does not exceed the minimum permitted time k;then no transition occurs.
Otherwise, a random number ay; is generated from a uniform distribution between 0 and 1. If ay; is less than the probability of
moving p(M), accounting for the number of stationary neighbouring agents, the presence of shelter and personality (as
shown in Eq 1), then the agent will be in state M; otherwise it will be in state S.

doi:10.1371/journal.pone.0165082.9001

Agents are confined to a circular arena which contains two identical shelters on opposite
sides, based on the experimental arrangement of Devigne et al. [7]. Each agent is initialised in a
stationary state near the centre of the arena (which is not under shelter) with a random initial
direction. When in a moving state, agents move with constant speed. An agent does not change
direction until it encounters the arena boundary; the direction of the agent is then rotated such
that it remains inside the boundary without changing speed (the change in direction is calcu-
lated to keep the agent within the arena, rather than being random). For simplicity, agents pass
freely over one another. This is reasonable given that woodlice stack over each other in aggre-
gates and are observed when moving to pass each other without significant change in overall
direction [7]; note that agents nevertheless sense each other in terms of their behaviour, as
described below. For simplicity also, the direction of movement of each agent does not fluctu-
ate; hence once an agent encounters the boundary it will subsequently move along it due to the
successive rotations required to remain within the boundary. Such behaviour is in broad agree-
ment with experimental observations [7,27]. Since shelters are located at the edge of the arena,
agents encounter them as part of their movement. Please see S1 Fig for a video of the simulated
movement of agents, which also shows the arrangement of the arena and shelters.

There are five model parameters which affect agent behaviour, the combination of which
gives the probability of transition between moving and stationary states at each time step, as
shown in Fig 1:

1. The probability p, of moving when not under shelter, neglecting sociality.
2. The probability pj, of moving when under shelter, neglecting sociality.

3. The change in probability of movement f, due to each stationary neighbouring agent (i.e.
sociality).

4. The minimum permitted duration of movement k,.

5. The change in probability of movement f, due to personality.
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The level of activity of woodlice under different environmental conditions is represented by
peand pj, [9]. The exact value of both depends on the size of the time step, but specifically p,
depends on the conditions outside shelter and p,, depends on the quality of shelter. As woodlice
have an individual preference to rest under shelter, it follows that p, > pj,.

Agents are defined as neighbouring if they are within a specified distance of each other.
Parameter f, modifies p, and pj, by a constant multiplicative factor for each stationary neigh-
bouring agent. Setting f, between 0 and 1 therefore promotes aggregation as it reduces the
probability of movement in the presence of stationary neighbours. A multiplicative (rather
than additive) factor is used to ensure that resultant probabilities remain between 0 and 1. As
agents pass freely over one another, each agent may have any number of stationary neighbours.
A previous agent-based model of cockroaches imposed a limit of three neighbours that could
be sensed [26]. No upper limit is used in the present model as stacking of aggregated woodlice
is likely to occur; it is also believed that woodlice are attracted by pheromones in faeces, which
would increase the number of influential neighbours in an aggregate [9].

Parameter k, is introduced in order to allow agents to escape a stable aggregate. It is required
due to the stochasticity of the model: if an agent is in a stable aggregate but starts to move, then
at the next time step it would likely still be under very similar conditions which are not condu-
cive to movement, and hence without k, the agent would likely stop moving. The parameter
therefore allows agents to act out decisions to leave an aggregate.

Personality is introduced to the model by modifying the probability of movement by a con-
stant additive term f, which is different for each agent. This represents the shy-bold continuum,
where bold individuals are more likely to explore the environment and hence have a higher
probability of moving (note the distinction from gregariousness). An additive (rather than
multiplicative) term is used to produce a symmetrical effect on the probability of movement,
which therefore does not alter the average behaviour of the group. Although this theoretically
may generate probabilities less than 0 or greater than 1, in practice only small additive terms
are considered, which would require extremely small or large pre-existing probabilities at each
time step for the range to be exceeded; if this occurs, they are limited appropriately. Assump-
tions about the nature of personality are addressed further in the Discussion, and consideration
of a multiplicative personality factor is addressed in S2 Fig.

By combining the above parameters, the probability p(M) of an agent moving at each time
step is:

p(M) =pf" +f, (1)

where 7 is the number of neighbouring stationary agents and p; is the non-social probability of
moving, which is equal to p, when under shelter and p, when not under shelter. Eq (1) does
not apply if an agent is in the moving state and has been moving for less than time k;, in which
case p(M) = 1, as described above. At each time step, the behaviour of each agent is calculated
in turn; to avoid any bias due to the sequence of calculations, the order is randomised at each
time step.

Planas-Sitja et al. [21] defined the individual resting time (IRT) as a metric for personality
in cockroaches; this is the length of time an individual spends under shelter. Individual (i.e.
non-social) preference would be for high IRT values within the context of the experiment. For
generality, fractional IRT is used in the present studys; it is obtained by dividing the IRT by the
total experimental time.

The shelter which contains the most agents at the end of each experiment is termed the win-
ning shelter; the other is the losing shelter. As the two shelters are identical, both shelters ini-
tially have an equal chance of becoming the winning shelter. The winning proportion (WP) is

PLOS ONE | DOI:10.1371/journal.pone.0165082 October 18,2016 4/13



:q2i',lj:>s;|0NE

Invertebrate Simulation Shows Importance of Stable Personality in Consensus Decisions

defined as the proportion of agents under the winning shelter at the end of each experiment; it
is a measure of the strength of the consensus decision.

A sensitivity analysis is performed in order to investigate the performance of the model and
identify appropriate parameter values in the absence of different agent personalities (i.e. f, = 0).
Multiple random samples of values for the different model parameters are obtained in order to
investigate a large parameter space [28], and a separate simulation is run for each combination
of parameter values. The mean fractional IRT of agents is obtained for each simulation and is
plotted against the corresponding value of each of the parameters. This shows the sensitivity of
model results to changes in each of the parameters, concurrently accounting for the effects of
all other parameters.

Using appropriate parameter values identified from the sensitivity analysis, results are
obtained for aggregation dynamics with the assumption of no difference in personality between
agents (i.e. f, = 0). In order to evaluate the model, results are compared against equivalent
experimental studies by Devigne et al. [7] and Broly et al. [5]. Given that previous models of
invertebrate aggregation have accurately described aggregation dynamics in the absence of dis-
tinct personalities (including for cockroaches, in which personality has been observed), it is
expected that these results should compare favourably with experimental values.

The potential role of personality in the aggregation process is subsequently investigated by
measuring the effect of different values of f, on IRT and WP values. This enables consideration
of the costs and benefits associated with different personalities, both to individuals and the
group. In light of the potential costs of certain personalities to individuals, and since previous
studies have identified the importance of diversity to many forms of collective decision-mak-
ing, the present study considers the effect of changeable behaviours (herein termed unstable
diversity, which is obtained by non-constant values of f, for each agent; this is also termed per-
sonality-related plasticity), both on the group and individuals. As opposed to the constancy of
personality, this would provide diversity while potentially sharing the burden of behaviours
which may ostensibly be individually undesirable but beneficial to the group (and vice versa).
The consequences of this are evaluated, which provides information on the role of stable
personality.

The model is programmed in Python. A time step of 1s is used in all simulations. In the
moving state, agents move with speed 10mm/s, in approximate agreement with a video of woo-
dlouse movement presented by Devigne et al. [7]; however, since movement is relative to the
size of the time step, and parameter values are estimated in accordance with the size of the time
step, precision of the speed value is relatively unimportant to the findings. Please see the simu-
lation video in S1 Fig for comparison with the experimental video of Devigne et al. [7]. Woo-
dlice are able to detect stationary neighbours within a centre-to-centre distance of 5mm. The
arena radius is 100mm. Each shelter is 17.5mm in radius and touches the arena boundary, as
shown in S1 Fig. For the purpose of counting the number of agents under each shelter to obtain
WP (as opposed to determining whether an agent is under shelter to calculate its movement
probability and IRT), an agent is included if it is within 25mm of the shelter boundary, which
allows for possible spreading of aggregates beyond the shelter, as described by Devigne et al.
[7]. Experiments are 45 minutes in simulated duration and 40 agents are present in each exper-
iment. Except for the sensitivity analysis, 50 repetitions of each experiment are simulated.
Parameter values are reported with results.

Results

Sensitivity analysis results are shown in Fig 2 for 1000 random combinations of parameter val-
ues. It is evident that a wide range of parameter values may produce a high IRT, with certain
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Fig 2. Sensitivity analysis of agent parameters with f,= 0. Mean fractional IRT is the mean fraction of time agents spend
under shelter in a single simulation. Each dot represents the result of a single simulation with randomised parameter values;
black dots represent combinations of parameters that produce a mean fractional IRT greater than 0.6. IRT results are plotted
against: (a) probability of moving when not under shelter, neglecting sociality; (b) probability p, of moving when under shelter,
neglecting sociality; (c) change in probability of movement £, due to each stationary neighbouring agent (i.e. sociality); (d)
minimum permitted duration of movement k;, in seconds.

doi:10.1371/journal.pone.0165082.9002

ranges more conducive to this. In particular, a low value of pj, is most likely to produce a high
IRT, as this makes movement from shelter less likely. A medium value of f, is also more likely
to produce a high IRT; if this value is too high, woodlice are prone to aggregate outside shelter,
and if too low they are prone not to aggregate at all. A similar explanation holds for the two
bands of low IRT values: for the one at around IRT = 0, a small f, value (in combination with
other parameters) tends to hold agents in stable aggregates before they arrive at shelter, and for
the other at around IRT = 0.1, a large f, value (in combination with other parameters) means
agents do not form stable aggregates and therefore only pass through shelter as part of their
movement.

All parameters in Fig 2 are uniformly sampled across the presented ranges except for p;,
which has the condition that p;, < p, (i.e. agents individually prefer shelter) in each simulation,
hence the distribution of sampled pj, values is skewed towards the lower end of the full range.
Note that high IRT does not necessarily mean that all woodlice form a single aggregate; for
this, k; is important, as it allows woodlice to escape stable aggregates, thereby diminishing
smaller aggregates at a greater rate than larger aggregates (since sociality makes movement
from larger aggregates less likely).

PLOS ONE | DOI:10.1371/journal.pone.0165082 October 18,2016
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woodlice locations. Shaded areas show the standard error of the mean from 50 repetitions of the experiment. (b) Distribution
of IRT values. Error bars show the standard error of the mean for each interval. The vertical dashed line shows the mean IRT
and the dotted vertical lines show the standard error.

doi:10.1371/journal.pone.0165082.9003

In light of the sensitivity analysis, appropriate but arbitrary parameter values are used in all
subsequent simulations: p, = 0.8, p, = 0.1, f; = 0.5 and k; = 5s. The resultant dynamics of woo-
dlouse aggregation are shown in Fig 3, along with the distribution of IRT values. A video of
part of a single simulation is included in S1 Fig.

It is evident from Fig 3a that almost all agents are under shelter at the end of each experi-
ment: a large majority are under the winning shelter (WP = 0.9) and almost all others are
under the losing shelter. It should be noted that the preference to aggregate under a single shel-
ter (i.e. the consensus decision) is an emergent behaviour of the group, arising only from the
local rules and interactions of agents. Aggregation predominantly occurs within the first 15
minutes of the experiment, with relatively stable subsequent dynamics. Results are in good
agreement with experimental studies by Broly et al. [5] and Devigne et al. [7] in terms of
the rate, distribution and variability of aggregation. Further details are considered in the
Discussion.

As shown in Fig 3b, the mean fractional IRT for the group is high, at around 0.7 of the
experimental time, with a standard error (across simulations) of around 0.15. Despite no per-
sonality differences between agents, there is a wide distribution of fractional IRT values, with
most agents spending nearly the entire experiment under shelter, a small number spending
minimal time under shelter, and very few between the two extremes. This is due to the exis-
tence of two relatively stable equilibria for each agent: aggregation under shelter, resulting in
high IRT, or aggregation outside shelter, resulting in low IRT. Aggregation outside shelter rep-
resents a trade-off between individual and social preference, which was observed by Devigne
etal. [7], although Broly et al. [5] found it less significant.

In order to investigate the possible role of personality in the aggregation process, the same
simulations are run as for Fig 3, but each agent is now given a constant personality value f,
which is assigned randomly for each agent at the start of each simulation. Two sets of simula-
tions are run using a uniform distribution of f, values, firstly between +0.001 (termed small
range) and secondly between +0.1 (termed large range); results are shown in Fig 4. As the dis-
tributions are symmetrical, the mean value of f, across all agents is 0 for both personality
ranges. A value of f, > 0 or f, < 0 makes agent movement more or less likely respectively; please
see S3 Fig for consideration of the effects at the group level of uniform (rather than distributed)
non-zero f, values.

PLOS ONE | DOI:10.1371/journal.pone.0165082 October 18,2016
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doi:10.1371/journal.pone.0165082.9004

The small personality range in Fig 4a, 4c and 4e has little effect on mean IRT or WP com-
pared to Fig 3, but reduces the standard error of IRT from around 0.15 to around 0.1 (note that
this measures deviation of the mean value across experiments, rather than the spread of values
within experiments). Therefore, although the overall behaviour is similar, it is clearly a more
reliable outcome in terms of mean resting time, which may be important for survival. Extremes
in behaviour are slightly reduced, with a corresponding increase in intermediate IRT values.
Speed of aggregation appears unaffected compared to results for f, = 0. In contrast, the large
personality range in Fig 4 has a far greater effect on group behaviour. Mean IRT, and particu-
larly WP, are both reduced. For WP this is due to the personality of individuals diminishing
the social component of behavioural decisions. The reduction in mean IRT is partly due to
bold individuals spending more time moving outside shelter (evident in the lower right-hand
side of Fig 4f), but also some shy individuals spending more time in aggregates outside shelter
(evident in the lower left-hand side of Fig 4f). Importantly, the personality of individuals
broadly determines their IRT (as shown by the distinct trend in Fig 4f), rather than random cir-
cumstances for uniform personality.

The consequence of unstable diversity is investigated in order to determine whether the
burden of certain behaviours can be shared to provide diversity while minimising costs to indi-
viduals. To achieve this, values of f, are randomly changed at regular time intervals of either
10s or 100s over the entire experimental time of 45 minutes; these changes are randomly stag-
gered between agents. The effect of different f, ranges on mean IRT and WP are shown in Fig
5, both for stable personality and unstable diversity.

It is evident that both IRT and WP are reduced by the presence of larger magnitudes of f, val-
ues in Fig 5, both for stable personality and unstable diversity. However, unstable diversity has a
particularly detrimental effect as it means agents regularly change their propensity to move,
thus reducing the stability of aggregates; the unfavourable effect is increased further by shorter
time periods between changes. Due to the regular and symmetrically distributed changes of £,

PLOS ONE | DOI:10.1371/journal.pone.0165082 October 18,2016 8/13
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each agent has a mean personality close to f, = 0 within each experiment. However, the resultant
behaviour is very different to the constant value of f, = 0 in Fig 3: agents with unstable diversity
spend far less time under shelter and the consensus decision is much weaker. The variation in
IRT is particularly small for unstable personality as this reduces aggregation, which is the main
source of diversity in IRT (as aggregation may either be under or outside shelter).

Discussion and Conclusion

Small differences in personality appear to provide a slight improvement in the consistency of
resting time for the group, as shown by comparison of Fig 4c with Fig 3b; the standard error
in IRT is reduced from around 0.15 to 0.1 by the presence of personality, without affecting
the mean value. However, Fig 4d shows that extremes in personality (with unchanged mean
individual behaviour) are detrimental to IRT, due to diminishing the social component of
decision making; it is particularly noteworthy that opposing personalities do not balance out
at the group level. While the type and magnitude of different personalities are somewhat arbi-
trary in the present study, results show the importance of all group members responding
appropriately to social cues, with important consequences both for the strength of consensus
decisions and the ability of individuals to satisty their own preferences. Results in S3 Fig
show the effect of using a multiplicative rather than additive personality factor; this does not
diminish the social component of decisions in the same way, but the effect on WP and IRT
remains detrimental.

As evident by the pronounced trend in Fig 4f, the personality of an individual is likely to
have a large effect on its IRT. Thus, the presence of different personalities is likely to produce a
range of behaviours within the group. However, the range of IRT values in Fig 3b shows that
even without distinct personalities, diversity of behaviour arises due to the individual circum-
stances of each agent, which could give a misleading appearance of stable personality; it is
therefore important to note that the IRT of an individual in a single experiment is an insuffi-
cient measure of personality. In fact, comparison of Figs 3 and 4 shows that diverse individuals
may show less variation in behaviour than individuals without differences in personality.

It is clear from Fig 5 that highly diverse personalities are detrimental to consensus decisions
(WP) and, to a lesser extent, average resting times (IRT). However, the effect of this is far
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worse if the diversity is unstable. This demonstrates the importance of stable behaviour both to
individuals and the group, which is further to existing understanding of the benefits of person-
ality [23]. Thus stable personality is in itself highly important to promote group stability; this is
particularly noteworthy as aggregation is likely to be a pre-requisite for more advanced forms
of social behaviour.

The model deliberately uses only a small number of parameters to model aggregation,
which are sufficient for the present purposes, but its limitations and potential for further devel-
opment should be noted. From Fig 3 it is evident that both shelters gain woodlice at a similar
rate for a short initial period, but in real life experiments the winning shelter dominates from
the outset [5,7], which suggests some form of long-range attraction, herding or initial align-
ment of woodlice; this requires further investigation. Due to the aims of the study, detailed cali-
bration of the model has not been performed, but this would be necessary in order to simulate
particular environmental conditions. For simplicity, the model uses simple movement rules
where woodlice effectively follow the arena edge, and dispersal of aggregates is not considered.
These details would require development in order to model exploration of different environ-
ments, saturation of shelters, and detailed mechanisms to maintain aggregates. Further devel-
opment of the model would also be required to simulate the spatial distribution of woodlice in
nature, including attraction to food sources [29], life-cycle and gender [30], and interactions
with other species and the environment [31]. This could be of broad interest, as the study of
woodlice aggregation is relevant to a number of areas, including soil dynamics [32], bioindica-
tion [33], terrestrialisation and social adaptation [9,34]

Czaczkes et al. [35] recently developed an agent-based model of ant foraging in which individ-
uals specialise in exploiting different resource sites based on their experience of the environment
and memory. Given their finding of a tendency of otherwise equal individuals to diversify and
specialise, it is possible that some behaviours relating to personality may at least partly reflect the
unique experience of each individual (similarly to the results in Fig 3), and could be adaptive. If
this is the case, the results in Fig 5 show the imperative for any behavioural changes to be slow.

Different aspects of personality, rather than a simplified representation of shy-bold varia-
tion, require further investigation in consensus decisions, as does the effect of learning. Further
work is also required to consider the effects of personality on conflicts of interest within the
group, as although aggregation may have many benefits, it also has drawbacks [1].

By using an agent-based model of invertebrate aggregation, the effects of personality in con-
sensus decision-making have been investigated. Diverse personalities have only limited benefit
within the context of the study, producing a small increase the reliability of consensus deci-
sions, but may have a more valuable role in natural settings. Importantly, while both shy and
bold personalities ostensibly have potential downsides at the individual level —resting in the
wrong place if shy, not resting enough if bold—all individuals are likely to benefit from main-
taining a constant personality in order to promote group stability.

Supporting Information

S1 Fig. Animation of single experiment with f, = 0 over a simulated time of 5 minutes. Each
agent is represented by a circle of radius 2.5mm, distinguished by a random colour; its radial
line shows the forward direction. Animation is approximately 5 times faster than simulated
time. Shelters are shown in grey. The choice of winning shelter emerges from local interactions
between agents. Note that aggregation permits unrealistic overlap between agents since physi-
cal dispersal is not modelled, although stacking does occur in real life, as discussed further in
the main article.

(MPG)
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S2 Fig. Effect of a multiplicative personality factor on aggregation and IRT. Rather than
adding f, in Eq 1, here it is instead used as a multiplicative factor. Values for f, are assigned
from a uniform random distribution between +0.5, and added to 1 to produce the multiplica-
tive factor. (a) Aggregation dynamics; (b) corresponding distribution of IRT; (c) corresponding
fractional IRT versus f,,. In comparison with Fig 3 in the main article, both WP and IRT are
slightly reduced, but since the social component of decisions is not diminished by this form of
personality, behaviour is similar overall.

(PNG)

S3 Fig. Effects on IRT of non-zero uniform f, values. (a) f, = -0.001, (b) f, = +0.001, (c) f, =
-0.1, (d) f, = +0.1. The horizontal line and shaded bar labelled WP show the mean proportion
of agents in the winning shelter at the end of the simulation and the standard error. If f, < 0,
movement of agents is decreased, hence aggregation is more likely, which increases the likeli-
hood of extreme IRT values (either small or large depending whether aggregation is outside or
under shelter respectively). Conversely, if f, > 0, movement is increased, hence aggregates are
less likely to form, which results in more uniform exploratory behaviour. WP is reduced by
non-zero f, values, as the social component of behavioural decisions is diminished by the
increased effect of personal preference. The effect is greater for f, < 0, where any form of aggre-
gation is less likely. These effects are greater for larger magnitudes of f,, as evident in (c)-(d).
(PNG)
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