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Photoantimicrobials—are we afraid of the light?
Mark Wainwright, Tim Maisch, Santi Nonell, Kristjan Plaetzer, Adelaide Almeida, George P Tegos, Michael R Hamblin

Although conventional antimicrobial drugs have been viewed as miraculous cure-alls for the past 80 years, increasing 
antimicrobial drug resistance requires a major and rapid intervention. However, the development of novel but still 
conventional systemic antimicrobial agents, having only a single mode or site of action, will not alleviate the situation 
because it is probably only a matter of time until any such agents will also become ineffective. To continue to produce 
new agents based on this notion is unacceptable, and there is an increasing need for alternative approaches to the 
problem. By contrast, light-activated molecules called photoantimicrobials act locally via the in-situ production of 
highly reactive oxygen species, which simultaneously attack various biomolecular sites in the pathogenic target and 
therefore offer both multiple and variable sites of action. This non-specificity at the target circumvents conventional 
mechanisms of resistance and inhibits the development of resistance to the agents themselves. Photoantimicrobial 
therapy is safe and easy to implement and, unlike conventional agents, the activity spectrum of photoantimicrobials 
covers bacteria, fungi, viruses, and protozoa. However, clinical trials of these new, truly broad-spectrum, and 
minimally toxic agents have been few, and the funding for research and development is almost non-existent. 
Photoantimicrobials constitute one of the few ways forward through the morass of drug-resistant infectious disease 
and should be fully explored. In this Personal View, we raise awareness of the novel photoantimicrobial technologies 
that offer a viable alternative to conventional drugs in many relevant application fields, and could thus slow the pace 
of resistance development.

Introduction
In the past 4 years, reports and positional statements 
from governments and regional and global health 
authorities have finally acknowledged the seriousness of 
antimicrobial drug resistance.1–4 Similar statements have 
been made and discussions undertaken very regularly—
with plenty of well-reasoned arguments—among the 
scientific community during the past 25 years without 
any apparent acknowledgment from those wielding 
legislative powers. However, WHO, the US Centers 
for Disease Control and Prevention, the European 
Commission, G7 Summit, and national governments 
among industrialised countries have now spoken with 
one voice, calling for changes in clinical practice and the 
rapid development of new approaches for infection 
control, and encouraging basic research.1–4

Unfortunately, this recent agreement does not mean 
that we can look forward to a happy future where 
infectious disease is concerned.2–4 There is a desire 
among the various strata of health-care providers— 
perhaps unstated, but there nonetheless—simply to have 
the failing antimicrobial drugs replaced with a brand 
new set. This desire is understandable given the ease of 
treatment associated with antibiotics when the microbes 
display no resistance, and a common belief remains that, 
in principle, we could return to the glory days of the 
antibiotic era as if nothing had changed.5 However, 
we know that microorganisms can rapidly develop 
resistance against a variety of costly antimicrobial 
agents.6 This problem largely derives from their single 
mode of action which, a large body of evidence suggests, 
is the reason that it is only a matter of time for 
micro-organisms to develop ample resistance.7

An improved approach to avoid future development of 
resistance is to focus on compounds with modes of 
action that interact with multiple targets. The potentially 

new antibiotic teixobactin appears promising in this 
respect because it can attack alternative targets in the 
face of resistance; however, this antibiotic seems to be 
mainly active against only Gram-positive bacteria.8 
Alternative safer and more efficient antimicrobial 
strategies are urgently needed—including those with 
efficacy against Gram-negative bacteria, mycobacteria, 
fungal, viral, and protozoal pathogens.9 In this Personal 
View, we contend that the use of light-activated molecules 
(photoantimicrobials)10 is a viable option that deserves to 
be fully explored. We discuss photoantimicrobials and 
their uses and prospects for adoption as mainstream 
clinical antimicrobials in the fight against conventional 
drug resistance.

Photoantimicrobials
The original report11 concerning a photoantimicrobial 
effect was published in 1900, when Raab showed the 
inactivation of Paramecium caudatum when exposed to 
the dyes acridine or eosin and then illuminated with 
sunlight. Raab’s supervisors, von Tappeiner and Jesionek 
applied this approach to tumour cells and reported their 
results in 1905.12 Thus, both the antimicrobial and 
anticancer approaches of photodynamic therapy have 
been known for more than a century. Anticancer 
photodynamic therapy is now a clinical reality in 
hospitals and dermatology clinics worldwide, including 
for the treatment of actinic keratosis and basal cell 
carcinoma for more than 25 years,13 but antimicrobial 
photodynamic therapy is still largely unappreciated by 
clinicians and bodies responsible for health-care 
provision. Figure 1 shows that photoantimicrobial 
discovery has been more extensive than that of 
conventional agents since 1900, with a substantial 
increase since the beginning of the so-called era of 
resistance.
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The basic principle of the photodynamic antimicrobial 
concept is the combination of visible or near infrared 
light, oxygen, and a photoantimicrobial that is able to 
absorb and transfer energy or electrons after light 
absorption to molecular oxygen for the generation of 
reactive oxygen species (figure 2). Reactive oxygen 
species, such as singlet oxygen, superoxide anions, and 
hydroxyl radicals, have a broad spectrum of activity and 
can destroy numerous molecular microbial targets 
(eg, proteins, lipids, and nucleic acids),9,14 which makes 
it very unlikely that the microbes can develop resistance. 
It is worth emphasising that internalisation of the drug 
is not a prerequisite for cell kill, which further prevents 
the onset of resistance15 and has been observed in vitro 
via the repeated sublethal photosensitisation of bacteria. 
This mechanism of action neither selects for 
photoantimicrobial resistance nor does it alter sensitivity 
to conventional antibacterial drugs.16

With respect to efflux, the major classes of anti-
microbial photosensitisers have been tested extensively 
in vitro with an array of knockout and overexpressed 
bacterial efflux mutants. Only phenothiaziniums 
among the photosensitiser classes tested have been 
found to be efflux substrates.17 Despite this finding, the 
use of specific efflux pump inhibitors can reverse 
the reduced phenothiazinium phototoxicity due to 
efflux.18,19

Efflux systems are central components for intrinsic 
antimicrobial resistance, but photoantimicrobial action 
requires three components (ie, drug, light, and oxygen): 
the phototoxic effect of light and subsequent production 
of reactive oxygen species constitute by default the 
mechanism of action, and are thus the primary target for 
resistance development. This mechanism of action 
provides photoantimicrobials with the unique competitive 
microbicidal advantage because the potential pathogen 
target, independently of whether it carries sophisticated 
efflux systems or not, must cope with two alternative 
assaults thus minimising substantially the possibility of 
resistance development.20

Additionally, efflux systems are transmembrane 
proteins, and it is well documented that proteins 
are highly susceptible to the photodynamic effect.21 
Furthermore, potential resistance to the oxidative burst 
resulting from illumination might include enzymes such 
as superoxide dismutase and catalase, but these enzymes 
are ineffective against singlet oxygen and are, indeed, 
inactivated by it.22

Consequently, for example, Staphylococcus aureus or 
meticillin-resistant S aureus [A: Lancet house style is to 
not use the period when contracting the Genus], 
Klebsiella pneumoniae (whether or not carbapenemase-
positive) or Escherichia coli producing extended-spectrum 
β-lactamase and New Delhi metallo-β-lactamase-1 are each 
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Figure 1: Timeline for conventional and photoantimicrobial discovery
RLP068=tetracationic Zn(II) phthalocyanine chloride. XF73=positively charged porphyrin. PEI-ce6=polyethyleneimine chlorin(e6) conjugate. SAPYR=perinapthenone derivative. SACUR=curcumin derivative. 
HpD-Photogem=haematoporphyrin derivative. FLASH=cationic riboflavin derivative. ALA-PPIX=5-aminolevulinic acid-induced protoporphyrin IX. PPA904=tetrabutyl derivative of methylene blue.
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susceptible to cationic photoantimicrobials activated with 
harmless light (figure 2).

In addition to being active against both Gram-positive 
and Gram-negative bacteria, these photoantimicrobials 
are effective against fungal,23 viral,24 and protozoal 
targets,25 and exert their killing effects much more rapidly 
than conventional agents that might take hours or days 
to become effective, even against susceptible strains. 
This broad-spectrum activity would clearly be useful in 
the empirical treatment of emerging or undiagnosed 
infectious diseases.

In practice, the major selectivity criterion of the 
photodynamic approach is the short incubation period of 
the photosensitiser before illumination (typically a 
few minutes), which favours localisation in or on 
microorganisms and minimises penetration into host 
tissue (observed only after several hours), in addition to 
physical control allowed by the local application of light.26 
Rapid uptake by target cells relative to the host, combined 
with physically targeted illumination, provides distinct 
and selective therapeutic advantage to photoantimicrobials 
compared with conventional drugs for topical or local 
applications. This statement does not entirely apply to 
systemic infections that will be the next and more 
challenging research frontier for photoantimicrobials.

Photoantimicrobial action furthermore affects the 
expression of virulence factors (eg, protein toxins, 
proteases, α-haemolysin, sphingomyelinase, and 
lipopolysaccharide), causing their degradation by 
chemical oxidation.27,28 The effects of photoantimicrobials 
in destroying virulence factors is of extreme importance 
because they might be present during the infection 
process, secreted by the microorganism, but they can 
also be present in the absence of active infection, as in 
the case of endotoxins that can cause severe damage to 
the host.

Photoantimicrobials also disrupt many sophisticated 
phenotypic processes of multidrug resistance related 
to biofilm formation (extracellular slime, stationary 
bacterial growth, and architecture and viability of early 
and mature biofilms).29,30 Additionally, photoantimicrobial 
action has been associated with upregulation of the key 
oxidative stress enzyme superoxide dismutase, and the 
induction of the bacterial heat shock proteins GroEL and 
Dnak, which cause refolding of denatured proteins and 
stabilise lipid membranes during stress.31

At the concentrations applied—typically in the 
micromolar range—photoantimicrobials are harmless to 
host tissue without light activation, and with light 
activation only in the millimolar range and at a longer 
time interval. Because of their chemical nature—a 
majority of the compounds are phenothiazinium salts, 
porphyrins, or phthalocyanines—the biocompatibility is 
high. This chemical property is also the case for natural 
product photosensitisers such as curcumin (approved 
as the food additive E100),32,33 riboflavin (vitamin B2),34 
and hypericin.10

Activation of photoantimicrobials is simple, with use 
of low-powered lasers, light-emitting diodes, or 
conventional (halogen) lamps. With fibre-optic 
technology, most regions of the anatomy are accessible. 
In many cases, loci of infection (ear nose and throat, 
gastrointestinal tract, lungs, urinary tract, or bowel) 
could be managed endoscopically, allowing local 
application both of the photoantimicrobial agent and 
light. Even for deep-seated infections a transcutaneous 
needle could deliver both photoantimicrobial agent 
and light via a fibre. Additionally, the integration of 
plastic optical fibres into textile structures enables 
uniform light distribution to complex geometries of 
the human anatomy.35 Development of light-emitting 
bandages and wearable light-emitting garments is also 
underway.35

It is worth remembering that the therapeutic use of 
light-activated pharmaceuticals was, until relatively 
recently, ubiquitous in dermatology departments for the 
treatment of psoriasis using psoralen ultraviolet A 
irradiation therapy. Ironically, this combination therapy 
is also photoantimicrobial.36

Toxicity
Photoantimicrobials are not generally toxic molecules 
and should not be confused with biocides. Because of the 
photocatalytic mode of action (a single photosensitiser 
molecule can generate as many as 10 000 molecules of 
singlet oxygen before it is destroyed), they kill microbes 
more rapidly and at much lower concentrations than 
biocides, and clinical management is simply achieved by 
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Figure 2: Mechanism of photoantimicrobial action
The generation of reactive oxygen species (ROS) can follow two alternative pathways after light activation by 
a given photosensitiser (PS). The PS can absorb a photon in the ground state, forming the excited singlet state. 
This state can undergo intersystem crossing to a longer-lived triplet state that might interact with oxygen by 
two mechanisms: in type 1, the generation of O2·-, ·OH, and (H2O2 by electron transfer from the excited PS; in 
type 2, the triplet state of the PS can directly undergo energy exchange with triplet ground state oxygen, leading to 
the formation of excited 1O2. The generated ROS rapidly react with their environment depending on the 
localisation of the excited PS—eg, microorganism cell walls, lipid membranes, peptides, and nucleic acids. The PS 
returns to its initial state after this cycle, ready to absorb a new photon and generate additional ROS species. 
ROS=reactive oxygen species. PS=photosensitiser. O2·-=superoxide anions. ·OH=hydroxyl radical. H2O2=hydrogen 
peroxide. 1O2=singlet oxygen. e-=electron.
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controlling the dose of light administered. Furthermore, 
photoantimicrobials fulfil the general criteria for new 
interventions to address the antibiotic resistance crisis—
namely, preventing infection and resistance, preserving 
available antibiotics, slowing resistance, and developing 
microbe-attacking treatments with diminished potential 
to drive resistance.7

Toxicity to the human host would—quite correctly—be 
a concern for any new antimicrobial agent, conventional 
or otherwise, but there are highly effective photo 
antimicrobials, such as gentian violet or methylene blue, 
that have been in clinical systemic use in people for more 
than a century with excellent safety records. For example, 
the systemic use of methylene blue has been extensively 
examined during its testing as a conventional antimalarial 
agent in sub-Saharan Africa. Systemic single human 
doses of methylene blue (10 mg kg-¹) have been used in 
conventional antimalarial trials.37 This dose converts to a 
maximum concentration of 2000 μM, whereas, for 
example, the minimum photobactericidal concentration 
for this photoantimicrobial against in-vitro S aureus or 
E coli is in the region of 20 μM.

It should also be noted that local, rather than systemic, 
administration is proposed. Moreover, healing of the 
tissue is known to be good after photodynamic therapy,38 
making photoantimicrobials a suitable choice for wounds 
or other traumatic infections (ie, acute bacterial skin and 
skin structure infections). An additional consideration is 
that in the treatment of many localised infections 
by photoantimicrobials, the photosensitiser is locally 
administered to the infected area but the red light that is 
then delivered diffuses and scatters well beyond the 
actual area of the infection. This red light can have a 
substantial beneficial effect in stimulating healing and 
repair in the surrounding tissue by the process known as 
photobiomodulation or low-level laser therapy.39

Other areas
The photodynamic approach is also applicable in 
veterinary medicine—a required addition to the 
activity spectrum to enable future conservation of 
conventional antimicrobials.40 For example, treatment 
of caseous lymphadenitis abscesses in sheep with 
photoantimicrobials was effective, and healing time 
was much shorter than the described conventional 
approaches.41 Similarly, photoantimicrobials are suitable 
for the removal of (typically bacterial or fungal) 
contaminants during food production42 including use on 
production surfaces,43 which is important given that 
foodborne and waterborne diarrhoeal diseases kill about 
2·2 million people worldwide per year.44 Environmental 
applications of the photodynamic antimicrobial 
procedure range from management of plant pathogens,45 
control of aquatic pathogens in fish farming,46 to 
inactivation of multidrug-resistant bacteria in hospital 
wastewaters.47 Furthermore, the use of photoantimicrobial 
materials can furnish light-activated surfaces that might 

be used to strengthen environmental infection control in 
the health-care setting, or be used in devices such as 
indwelling catheters or prostheses.48,49

Although many instrumentation platforms and 
detection methods have been developed and 
commissioned as countermeasures to biological warfare 
agents, the threat and use of biological agents in 
bioterrorist attacks still remains a leading cause of global 
concern.50 Bacillus spp spores are susceptible to 
photoinactivation by phenothiazinium dyes (methylene 
blue or toluidine blue O) and low doses of red light, 
indicating applicability in anthrax spore decon-
tamination.51 Nevertheless, the majority of biological 
warfare agents are selected for their respiratory mode 
of transmission such as melioidosis (Burkholderia 
pseudomallei), glanders (Burkholderia mallei), tularaemia 
(Francisella tularensis), or pneumonic plague (Yersinia 
pestis). Airborne pathogens constitute a challenge to 
photoactive drug and light delivery that is an active field 
of investigation.52

Current situation
A major factor in any 21st century anti-infectious disease 
programme is the influence of globalisation—ie, the ease 
of transcontinental movement and increasing numbers 
of population migration. Resistance development in an 
established population can be modelled and resources 
duly planned, but the problem of mobile populations 
disseminating infectious diseases previously unseen 
or with novel resistance patterns is potentially 
disastrous.6 Examples include the outbreak of severe 
acute respiratory syndrome (SARS) caused by a 
coronavirus in the early 2000s,53 or the global spread of 
Acinetobacter baumannii infections in civilian hospitals 
dealing with wounded military personnel.54,55 Concerns 
also exist that drug-resistant tuberculosis could easily 
spread from its enclaves in the former Soviet Union and 
Africa to become a global problem.56

The control of emerging infectious diseases is often 
complicated by the fact that antibiotics are used 
indiscriminately, and are often self-administered by the 
affected population.5 Consequently, microbial strains 
might easily acquire resistance or have lowered 
susceptibility to approved prescribed drugs. Additionally, 
there is the potential for transmission of resistant 
phenotypes to other species among the indigenous 
microbiota.57 However, since photoantimicrobials are 
truly antimicrobial, they are expected to be effective 
against emerging or unknown pathogens, or those with 
new resistant traits, as well as established, conventionally 
susceptible or conventionally resistant species.

Because systemic microbial diseases are the most 
severe in terms of morbidity and mortality, the search for 
systemically administered therapies must be continued. 
However, in many situations, an effective alternative 
local approach could be advantageous—eg, in patient 
decolonisation, or the treatment of burn wounds or 
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diabetic foot ulcers, thus avoiding the use of valuable 
systemic drugs that could then be conserved for 
critical care. Also, a rapidly acting photoantimicrobial 
intervention might help to prevent a localised infection 
becoming systemic. Localised infections are important 
in the clinic because a substantial percentage of 
health-care-associated infections originate from surgical 
wounds, many of which are located in the skin and soft 
tissues and can eventually cause systemic infections by 
invasion of the bloodstream. These considerations point 
to an urgent need for antimicrobials that work on 
multiple targets and on a local basis. The use of 
photoantimicrobials meets such requirements.

Clinical photoantimicrobials
If the pharmaceutical industry had produced a 
conventional agent with a broad range of activity similar 
to that exhibited by cationic photoantimicrobials, this 
agent would have been lauded as a game-changing 
breakthrough, particularly at the time when large 
pharmaceutical companies are substantially reducing 
their presence in the field of antimicrobials.58 However, 
the impressive performance of this light-activated 
technology is being widely ignored, despite around a 
quarter of a century of encouraging experimental and 
clinical studies, and countless attempts at bringing the 

new approach to the attention of health-care providers. No 
other reported antimicrobial approach has the potential to 
produce a similar change in concept in the way in which 
we address diseases caused by microbial infections.

Such an approach is clearly more appropriate when 
there is a shortage of conventional clinical agents and a 
worsening of antimicrobial resistance, as is the case with 
tuberculosis. In addition to presentations for which there 
is resistance to one of the standard drugs (usually 
isoniazid), there are increasing cases of multiple and 
extensively drug resistance, often associated with HIV 
comorbidity. Both multidrug resistant and extensively 
drug resistant mycobacteria have been shown to be 
susceptible to photoantimicrobials in vitro.59

Thus, despite overwhelming evidence, clinical trials 
have been few (table). Only three photoantimicrobial 
agents (methylene blue, toluidine blue O, and indocyanine 
green) have so far received clinical approval, but only in 
dentistry as an adjuvant approach.70 Unsurprisingly, the 
combinatorial use of photoantimicrobials with con-
ventional drugs has received considerable attention.71–73

Path forward
In terms of infection control, the photodynamic 
community has, so far, consisted of mainly various 
academic groups working towards the introduction of 

Chemical class Wavelength Spectrum of 
activity

Pathogen or type of infection 
treated

Clinical trial registration 
(used to treat, last updated)

Methylene blue Phenothiazinium Red 660 nm Broad MRSA surgical site, chronic sinusitis, 
periodontitis, halitosis,60 oral 
candidiasis, oral mucositis (phase 3), 
severe sepsis and septic shock 
(phase 3), and onychomycosis61

NCT02555501 (mucositis, 2015), 
NCT01854619 (sinusitis, 2013 
ongoing), NCT02007993 (halitosis, 
2014 ongoing), NCT02407379 and 
NCT01535690 (periodontitis, 2015 and 
2012), and NCT01981460 (skin 
pathogens and blood infections, 2013)

Toluidine blue O Phenothiazinium Red 660 nm Broad Wounds, burns, diabetic ulcers,62 
periodontitis63 (phase 2), and carious 
dentin lesion (phase 1)

NCT02479958 (carious dentin, 2015) 
and NCT01330082 (periodontitis, 2011 
ongoing)

PPA904 Phenothiazinium Red 660 nm Broad MRSA, Pseudomonas aeruginosa, 
chronically non-healing streptococcal 
wounds,64,65 and periodontitis

NCT00825760 (leg ulcers, 2013)

RLP068 Phthalocyanine Far red 
670–780 nm

Broad MRSA skin abrasion, and diabetic 
foot ulcers

EudraCT Number: 2010-019598-13

ALA-PPIX Porphyrin Red 630 nm Narrow Propionibacterium acne and acne 
vulgaris,66 chronic skin ulcers, and 
Pseudomonas aeruginosa

NCT00706433 and NCT01689935 
(acne, 2011 and 2013)

Indocyanine 
green

Indocyanine Near infrared 
810 nm

Narrow Propionibacterium acne, 
acne vulgaris,67 and periodontitis

NCT02043340 (periodontitis, 2014)

Curcumin Curcuminoid Blue 420 nm Narrow Oral disinfection (phase 1), and 
oral mucositis (phase 1 or 2)

NCT02152475 (oral disinfection, 2014) 
and NCT02337192 
(oral decontamination agent and 
mucositis infections, 2015 ongoing)

Riboflavin Flavin Blue 360 nm N/A Infectious keratitis68 NCT01739673 (keratitis, 2015)

PEI-ce6 Chlorin Red 660 nm Broad Endodontic infection69 IRB approved trial in São Paulo, Brazil

All clinical trial phases are completed unless otherwise stated as ongoing. MRSA=meticillin-resistant Staphylococcus aureus. PPA904=tetrabutyl derviative of methylene blue. 
RLP068=tetracationic Zn(II) phthalocyanine chloride. ALA-PPIX=5-aminolevulinic acid-induced protoporphyrin IX. N/A=not applicable. PEI-ce6=polyethyleneimine 
chlorin(e6) conjugate. IRB=institutional review board.

Table: Photoantimicrobials in clinical trials
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28 Tubby S, Wilson M, Nair SP. Inactivation of staphylococcal 
virulence factors using a light-activated antimicrobial agent. 
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29 de Melo W, Avci P, de Oliveira MN, et al. Photodynamic inactivation 
of biofilm: taking a lightly colored approach to stubborn infection. 
Expert Rev Anti Infect Ther 2013; 11: 669–93.
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photodynamic therapy for inactivation of biofilms formed by oral 
key pathogens. Front Microbiol 2014; 12: 405.
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clinical photoantimicrobials without a consensus 
regarding the microbial target or the disease indication. 
With the continuing shortage of support and scarcity 
of grant funding—certainly in comparison with 
conventional anti-infective research—we provide a 
consensus and a statement of intent in this Personal 
View. We firmly believe that the photodynamic 
antimicrobial approach offers enormous potential 
savings, both in terms of the conservation of essential 
conventional drugs and for the rapid treatment of initial 
localised infection, thus requiring less exposure of the 
microbiome to the selective pressure exerted by 
conventional antimicrobials.

US$2 billion [A: correct that this is US$?] of forward 
funding for antimicrobial resistance programmes has 
been suggested by the 2014 UK O’Neill Report,74 whereas 
the 2016 US figure is $1·2 billion.75 It would be tragic if all 
that happens, should such funding be forthcoming, is that 
the current situation is maintained and funding goes 
solely to conventional antimicrobial development. The 
key worldwide health organisations have spoken of the 
requirement for novel alternative approaches: now they 
should be brave enough to use them.
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