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ABSTRACT 

This thesis describes the development and implementation of an on-line optimal 
predictive controller incorporating a neural network model of a non-linear process. 
The scheme is based on a Multi-Layer Perceptron neural net-w9rk as a modelling 
tool for a real non-linear, dual tank, liquid level process. A neural network process 
model is developed and evaluated firstly in simulation studies and then 
subsequently on the real process. During the development of the network model, 
the ability of the network to predict the process output multiple time steps ahead 
was investigated. This led to investigations into a number of important aspects such 
as the network topology, training algoritlinis, period of network training, model 
validation and conditioning of the process data. Once the development of the 
neural network model had been achieved, it was included into a predictive control 
scheme where an on-line comparison with a conventional three term controller was 
undertaken. Improvements in process control performance that can be achieved in 

practice using a neural control scheme are illustrated. Additionally, an insight into 
the dynamics and stability of the neural control'selienie was obtained in a novel 
application of linear system identification tecliniques. The research shows t1lat a 
technique of conditioning the process data, called spread encoding, enabled a 
neural network to accurately emulate the real process using only process input 
information and this facilitated accurate multi-step-ahead predictive control to be 
performed. - 
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CHAPTER1 

INTRODUCTION 

1.1 PROJECT BACKGROUND 

In many present day industries there is a requirement for the optimal control of 

processes for financial, economical and political reasons, which places a very high 

requirement on the availability of models describing the dynamic behaviour of 

processes. Process models play an important pail since the design of efficient 

process controllers relies heavily on the accuracy of the models, and in the majority 

of cases, without an adequate model of the process to be controlled, the synthesis 

of a control algorithm is not possible (FASOL and JORGL, 1980). 

In many industries, such as the aerospace industry, processes are usually well 

defined and lience the construction of accurate process models to enable design of 

controllers is simplified. This research project concentrates on chemical, 

bioteclinological and food manufacturing industries where it is typical to have 

complex processes that exhibit non-li neari ties, time variations, disturbances and 

uncertainties. Under these conditions the development of accurate dynamic process 

models from first principles is a considerably difficult, time consuming and costly 

exercise. The resulting models may also be very complex thus, rendering tile 

subsequent task of controller design all onerous one. 

The following sections, 1.2 and 1.3, give a general review of process modelling 

and different control strategies available to the process engineer. 
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1.2 REVIEW OF PROCESS MODELS 

Mathematical models of processes can be developed in basically three different 

ways, these being either purely theoretical, purely empirical or a combination of 
both theoretical and empirical inethods. When developing a model via the 

theoretical route, the development of the model will be dependent oil natural and 

physical laws governing the process, whereas tile empirical route will be based oil 

experimental studies. 

Both theoretical and empirical modelling methods have their advantages and 

disadvantages and in many cases a process model will be constructed using the 

combination of the two methods. If the process under investigation does not 

already exist, then empirical modelling is not possible and theoretical modelling is 

the only way forward to investigate the performance of a In-iori control structures. 

This is also the only way forward if experiments on an existing process cannot be 

carried out, for various reasons such as safety. A disadvantage of theoretical 

modelling when applied to complex processes, such as those found in the chemical 
industry, is that it usually requires an expert with an in depth knowledge of the 

physical phenomena occurring in the process in order to obtain a realistic model. 

For experimental process investigations, the knowledge is also necessary but not 

that important (FASOL and JORGL, 1980). One of the main disadvantages with 

the empirical approach is that the resulting models are generally in the form of 
input-output equations, and hence this results in a 'black box' model of the process 

which is difficult to relate back to the original process. 

The majority of systems are frequently modelled under the assumption that the 

process can either be assurned linear over the operational region of interest or at 
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least linearised about the operating point, the resulting process models are then 

tenned linear models. However, in certain circumstances it is not realistic to 

assume the process is linear over its entire operating range and it is advantageous to 

obtain a non-linear model description. In this section a review of the most 

commonly encountered linear and non-finear models along with any associated 

problems is given. 

1.2.1 Linear process models 

When theoretical modelling is peiforined on a linear or linearised systern, the 

resulting dynainic equations will be either ordinary or partial differential equations 

which will usually reduce to algebraic and ordinary differential equations when 

only steady state cases are of interest. 

When process modelling is performed by experimentation, the resulting linear 

model or models will be either parametric or nonparametric. The most common 

parametric models considered are step response models and time series analysis 

models, which result in models of the auto-regressive integrated moving average, 

ARIMA, type, and other similar linear model structures, such as the ARX and 

ARMAX. 

For any of the empirical methods there are basically three steps to be taken in order 

to obtain a process inodel: 

i) Apply a suitable test signal to the input of the process and collect the input- 

output response data; 

ii) Decide on a suitable forin of the model in order to represent the process; 

iii) Determine the parameters of the postulated model by fitting the inodel to the 
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input-output data. 

The step response method is a very simple technique but suffers from the problern 

that if the process is non-linear then the size of the step input should be kept as 

sinall as possible so as to maintain an accurate linear model. A disadvantage 

associated with the other techniques is that of model order selection, which for the 

realistic case of the process measurements contaminated with noise, can become 

complex. However, model order selection tecItniques are available to aid in the 

design (SODERSTROM and STOICA, 1989). 

The popular nonparametric process models are described by the process weighting 
finiction or frequency response. As with the step response inethod, obtaining a 

model from the frequency response of a process is largely dependent on the process 
being linear over the range of interest, if this is not the case then this method will 

result in an inaccurate process model. The weighting function of a process can be 

determined if the auto-correlation function of the input signal and the cross- 

correlation function of the input and output signal are known. However, 

considerable problems occur in interpreting th c cross-correlation function in terms 

of a process weighting function when there are non-linearities present (GODFREY, 

1980). 

It is evident froin the above that if the process under investigation contains non- 
linearities then each of the techniques is only capable of modelling the process over 

a small linearised region. In certain cases, however, the process non-linearities are 

only mild and hence, a linear model can adequately characterise the process. The 

advantage of this is that the great wealth of linear systems theory, which is well 

understood, can be used to design a suitable controller. When the process non- 
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linearities are such that a linear model is only accurate over a sinall region of tile 

total operating range, then linear models can still be used to represent the process 

over the whole range by constructing a number of linear models throughout the 

operating conditions. An altemative approach is recursive identification where a 

linear model of the process is estimated at each sample period. This teclinique is 

usually coupled to a self tuning control structure, discussed in section 1.3 
. 

Although many processes are modelled on the above techniques it is, however, a 
fact that non-finear process models are a more suitable alternative when 

constructing models of real processes. 

1.2.2 Non-linear process models 

The main problem with non-linear systems theory is that there are no general 

methods for the analysis and synthesis of non-linear processes. Unlike linear 

processes, the analysis of many non-finear systems results in complex 

mathematical models that bear little or no resemblance to each other and lience, 

this inhibits a widespread methodology for control system design. 

As with linear process models, a theoretical approach can be taken to obtain a non- 
linear model of a process and if this is the case then the experimental approach 

may not be necessary. However, a number of models have been proposed that use 
input-output data froin the process to construct the model. 

The analysis of a wide range of non-linear processes can be based on the use of 
ffinctional series. The Volterra series (VOLTERRA, 193 1) can be used to calculate 

the process output of a non-finear process. The analysis results in a nouparametric 

model and suffers from the problem that the solution is extremely difficult when 
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the input to the process is assumed stochastic (BILLINGS, 1980). A discrete 

Volterra series was developed from the continuous series (ALPER, 1965) and used 

to analyse non-linear sampled data systems. Both the models proposed by Volterra 

and Alper are nonparametric process models and have the disadvantage of a large 

number of kernels to be estimated which in turn require a very large number of 

input-output process data to be collected from the process (BILLINGS, 1980). A 

parametric model has been derived (HABER and KEVICZKY, 1974) which is 

capable of approximating a discrete second order Volterra series. The advantages 

of the model are that it has a finite number of parameters and is'also linear in the 

unknown parameters. From the parametric Volterra model a number of other 

models, suitable for the modelling of nori-finear processes, have been devised, such 

as the generalised Hammerstein and the simple Hammerstein model (ISERMANN 

et al., 1992). The simple Hammerstein model consists of a linear transfer function 

in series with a non-finearity and both Hammerstein models are of the parametric 

type. 

Another class of important non-linear process models is based on lion-linear 

differential equations and results in a model under the name of the non-linear 

differential equation, (NDE), model. This model description is of importance since 

non-linear differential equations often result ftom natural physical laws governing 

the process. Another forin of non-linear model Structure is terined prediction error 

models for non-linear stochastic processes (BILLINGS and LEONARITIS, 1985). 

These models are referred to as non-linear auto-regressive moving average 

exogenous, NARMAX, models and are a generalisation of the ARMAX model 

used in linear system identification. The main problem with these non-linear 

process models is that the order of the model lias to be chosen correctly and this is 

not always an easy task. Also, in the realistic situation of noise disturbing the 
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process measurements, an over pararneterised inodel will not give a better 

description of the process but will give a better fit to the process noise. 

1.3 REVIEW OF PROCESS CONTROLLERS 

The development of linear controllers for linear systems has been established for 

many years and a wide range of designs are available. By far the most widely used 
in practice is the three tenn, PID, controller. Other controllers devised over the 

years include (OGATA, 1970): 

(i) The pole-assignment controller 

(ii) The inodel reference controller 

(iii) The caticellation controller 

(iv) The deadbeat controller 

The main disadvantages with all the above mentioned controllers, when applied to 

real processes, is that they are not optimal, and their accuracy is dependent on the 

process being linear and time invariant. In reality the majority of processes are non- 

linear and the process parameters may vary with time. In an attempt to overcome 

the disadvantages, the area of self tuning control was introduced. The above 

mentioned controllers can be used in a self tUning StRIcture and a number of other 

typical self tuning controllers include (WELLSTEAD and ZARROP, 1991) 

(i) The juinimurn variance controller 

(il) The generalised predictive controller 

(iii) The linear quadratic Gaussian controller 
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In a self tuning control scheine the controller will adapt according to the changes in 

the process and environment in an attempt to produce an optimal or a desired 

control. The majority of self tuning schemes still work on the principle of using a 

linear inodel of the process, since this enables the great wealth of linear systems 

theory to be applied in the design. A hilear model, representing the region in which 

the process is operating, is usually estimated at each sample time and then the 

controller is updated based oil the required control. Disadvantages of the adaptive 

control scheine are that it usually requires a considerable amount of on-line 

computations, the accuracy of the model is also constrained within certain bounds 

of the operating point and if the process is required to be operated at another set 

point a new inodel inust be estimated. Also, if the process returns to all original 

operating point the model at that point must be estimated again. 

A number of non-finear controller designs have been proposed that use the 

information from the non-linear model representing the process in order to select 

the controller parameters. However, most of the designs have been based on a 

specific process and the issue of excessive computations to be perfornied within 

the sample time of the process can cause problems. 

1.4, AIOTINIATION FOR AN ANN APPROACH 

It is evident froin the above that the modelling and control of non-linear processes 
lias proven difficult and, conseque ntly, although the subject of specific research 

projects, the application of non-linear controllers to real plant is rare. It lias been 

shown (NARENDRA and PARTHASARATHY, 1989; ELSELY and SHENG, 

199 1; NGUYEN and WIDROW, 1990) that neural networks inay be used for both 

process modelling and control of non-linear systems. They are naturally suited to 
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describe the behaviour of systems containing non-finearities, and indeed have been 

shown to titilise their own non-linear cliaracteristics to provide robustness against 

noisy data. Since the iuodelliiig of processes is a very important step in the 

understanding of plant opeyation for process operators, plant designers and control 

engineers as well as in the design of controllers, a great deal of interest towards 

artificial neural networks for process modellhig and control has been shown. 

1.4.1 Types of Artificial Neural Networks 

A large number of -artificial neural networks have been proposed over the past few 

years and only a list of the most popular types will be mentioned. Many of the 

networks not mentioned are found to be closely related to these popular types. 

Artificial neural networks can be classed as either supervised or unsupervised 

networks, and this refers to whether the network is presented with target output 

values during training or if the network is self organising respectively. The basic 

difference between the different types of networks is in the architecture and the 

algorithins used for their training. Some of the characteristics of the different 

network architectures are that processing units within a layer can be either fully 

interconnected or not interconnected at all, the networks can have a single layer or 

a multi-layer of processing units and the flow of data can be froin the input to the 

output of the network only or froin a processing unit back to itself, in which case 

the network is tenned recurrent. Of the unsupervised neural networks the most 

popular are: 

(i) Kolionen network (KOHONEN, 1972), 

(ii) Adaptive resonance themy networks ARTI and ART2 (CAIUENTER and 

GROSSBERG, 1985) 
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(iii) Boltzmann machine neural networks (HINTON and SEJNOWSKI, 1983) 

(iv) Bi-directional associative memory (BAM) networks (KOSKO, 1987) 

The Kolionen and ART2 networks are used with continuous valued data whilst the 

ART 1, Boltzmann and BAM networks are used with binary valued data. 

The most widely accepted supervised neural networks are: 

(i) The neocognitron (FUKUSHIMA et al., 1983) 

(ii) Multi-layer perceptron (RUMELHART et al., 1986) 

(iii) Radial basis function (RBF) network (MOODY and DARKEN, 1989) 

(iv) Cerebellar model articulation controller (CMAC) (ALBUS, 1975) 

(v) Discrete and continuous Hopfield networks (HOPFIELD, 1982; HOPFIELD 

and TANK, 1985) 

The Hopfield network differs froin the other supervised networks in that it is an 

auto associative network. 

The most important choice for the. neural network used in this research was the 

ability of the network to represent non-linear functions and this influenced the 

network chosen to be the multi-layer perceptron. It has beeu proven that the inulti- 

layer perceptron can approximate any nou-liuear function (HORNIK et al., 1989; 

FUNAHASHI, 1989; CYBENKO, 1989) and -also, being a supervised network, it is 

ideally suited to the task of modelling froin input-output process data. A thorough 

description of this type of neural network along with its associated training 

algoriflun is presented in Chapter 2. 
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1.5 PROJECT DESCRIPTION 

1.5.1 Problem Statement 

From the review in section 1.2, it is evident that linear process models have their 

limitations when used to model real processes and it is advantageous to use a non- 

linear model. However, the complexity behind the majority of the non-linear 

models and the problems in choosing the correct structure can cause difficulties 

when constructing a process model. Hence, the research project undertaken was to 

investigate an alternative method of obtaining a non-linear process inodel and then 

using the model for control purposes. The project was split into two sections, 

firstly to investigate the ability of artificial neural networks to model a non-linear 

process over a wide operational region, using sampled input-output data obtained 

from exciting the process. The second part was then to implement the resulting 

neural network model into a suitable control strategy and investigate control of the 

non-linear process using the artificial neural network inodel based control 

structure. The neural network approach was taken in order to examine its feasibility 

and benefits when applied to non-linear process modelling and control. 

1.5.2 Ainis 

(i) The overall aim was to develop an on-line artificial neural network model 

based control strategy that could be used to accurately control a non-linear 

process when subjected to set point changes covering a wide operational 

region. The control scheme was to be implemented on a dual tank liquid 

level process which had characteristics similar to inany industrial 

processes. 
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To develop a methodology for obtaining an accurate process model using a 

neural network. This will enable the accurate modelling of other processes 

by following the same procedures for determining the optimum network 

topology, training time, etc. 

To investigate different types of control structures where a neural network 

process model may be used, and ultimately choose a structure that will 

exploit the capabilities of the neural network model. 

1.6, ONIERVIEW OF THESIS 

Ali introduction to the artificial neural network used throughout the research is 

presented in Chapter 2 along with a number of algorithins available for training the 

network. The selection of the network topology and length of training is also 

considered, and finally a novel inethod of conditioning the process data presented 

to the neural network along with a standard data conditioning inethod is discussed. 

Conditioning the process data is investigated in all attempt to achieve all accurate 

process model that could operate independently froin the process -Vvliilst still 

accurately predicting process behaviour. Chapter 3 describes the process used 
during the research and practical aspects of obtaining a neural network process 

model are discussed. The liquid level process was used since it is a practical test 

bed oil which to investigate the proposed techniques before applying them to more 

complex processes. Ali assuined mathematical inodel of the process was 
investigated initially and then a mathematical model of the real laboratoiy process 

was obtained. All the initial process modelling studies were investigated in 

simulation for cases of noise free process data and then for the more realistic case 

of simulated process noise included in the process measurements. The Chapter 
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presents a comparison between the proposed data conditioning method and the 

standard inethod of encoding the process data to ascertain if the proposed 

techuique was a viable alternative. The iusights gained in simulation studies are 

theu applied to model the real laboratory scale dual tank liquid level process ill 

Chapter 4 and a correlation based inethod is used to validate the resulting neural 

network model along with cross-validation on a number of test signals not used 

during network training. 

Once the development of an accurate neural network process model was 

considered to be achieved, investigations in including the model into a control 

strategy were undertaken. Chapter 5 describes a number of control strategies that 

incorporate a process model -as an integral part and the inclusion of a neural 

network model into the control strategies is described. Simulation results of 

controlling the process using one of the neural network based strategies are then 

presented. The investigations of on-line neural network control of the process are 

then presented in Chapter 6. 

Finally, conclusions obtained from the research and suggestions for further work, 

are presented in Chapter 7. 
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CHAPTER2 

THE INILP NEURAL NETWORK AND RELATED TOPICS 

2.1 INTRODUCTION 

The first objective of the research was to investigate and develop tecliniques to 

model a non-linear process over a wide non-linear operating region using a neural 

network. Such a neural network model lias a wide application for simulation 

studies of process performance, and more importantly can be used to improve 

control strategies that utilise models for predicting Riture controlled process 

responses. The Multi-Layered Perceptron was studied throughout this research 
because this network is suitable to model non-linear relationships and is straight 
forward to implement and train. This Chapter describes the structure and the 

parameters associated with this type of network and various algoritlims that can be 

used for training the network. Once the neural network topology has been chosen, 

the next stage in the development of a neural network model is to train the network. 

Research lias shown that it is possible for these networks to be 'over trained', hence 

a inethod bas been developed to determine when a network has had an adequate 

amount of training. 

In inany real processes, dynamic relationships exist between process inputs and 

outputs. The MLP neural network is a static network and consequently the 

characteristics of the process dynarnics need to be introduced into the network. 

A novel method of conditioning the data presented to the neural network was 

considered, which involved taking a single data value and inapping it across a 

number of nodes. The coding of the data is described and the accuracy of neural 

14 
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networks trained using this method is compared to neural networks trained using 

the standard method widelY used in the field of neural networks. 

2.2 THE MULTI-LAYER PERCEPTRON VNILP) NEURAL NETWORK 

The MLP neural network has been used for inany years successfidly in the area of 

pattern recognition (GORMAN et al., 1988; SEJNOWSKI and ROSENBERG, 

1987), and recently has been used for the purpose of modelling and controlling 

non-linear processes (NARENDRA and PARTHASARATHY, 1989; ELSELY and 

SHENG, 1991; NGUYEN and WIDROW, 1990). Interest in the MLP network 

developed because the network is well suited to 'learning' non-linear relationships 

when little a pi-im-i knowledge is avail-able. It has been proven that a network with 

just one hidden layer can approximate any non-linear ftinction with arbitrary 

accuracy provided enough hidden processing units are used (HORNIK et al., 1989; 

FUNAHASHI, 1989; CYBENKO, 1989). The basic processing unit of the MLP 

neural network is based on a model proposed by McCulloch and Pitts, 

(McCULLOCH and PITTS, 1943), and is illustrated in Figure 2.1. 

. 11 

xi 

ý2 
x '3 

W, wo 

W2 

T) out ý f(out) 

xn Neuron Body 

Figure 2.1 McCulloch-Pitts neuron model 
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Each input Xi, i=l.. n, to the neuron body is multiplied by -a corresponding 

weighting value Wi, i=1.. n, and the products are stunined: 

Out X-Tv. + IV I10 .. 
(2.1) 

Equation 2.1 has an extra weight WO, and this is the weight associated with the bias 

term in the processing unit, which is used to set the reference level of each 

processing unit, and it has also been shown (WRAY and GREEN, 1991) that the 

MLP network without bias is unable to approximate certain functions. The output 

of the unit, y, is obtained by passing the result of equation 2.1 dirough a non-linear 

activation function, as described by equation 2.2: 

f (0111) (2.2) 

fo can be any differentiable continuous function (CYBENKO, 1989), the most 

commonly used being the siginoid illustrated in Figure 2.2, which also illustrates 

other commonly used functions. 

Signioid 

+1 

4 

Threshold 

Tanli 

+ 

sille 

-1, qr 

Gaussiati 

Figure 2.2 Common activation functions 
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A single processing unit on its own lias limited power, and the real usefulness 

comes when processing units are connected together in certain configurations. The 

configuration of the MLP neural network with one hidden layer is shown in Figure 

2.3. 

xl 

X2 

Xn 

I 

F-1 Input unit 

0 Processing unit 

El Bias unit 

01 

02 

op 

Figure 2.3 Multi-layer perceptron with one hidden layer 

The MLP network consists of at least three layers of nodes, normally referred to as 

an input layer, one or inore hidden layers and -an output layer. The input layer is 

passive in nature and perforins no processing on the data it receives, it serves to 

pass the input data to the first hidden layer via the connection weights. The hidden 

and the output layers are both active, and each processing unit in these layers 

perfonns the operations described by equations 2.1 and 2.2. The outputs of each 

unit in the hidden layers are passed onto the next layer, through to the output layer. 

17 

Input Hidden Output 
Layer Layer Layer 

Al 



The MLP Neural Network And Related Topics 

It is the presence of the hidden layer(s) and the use of non-linear activation 

functions that permits algorithms used to train the MLP neural network (discussed 

in section 2.3) to be able to model highly non-linear finictions. The number of 

input and output units used in a MLP neural network is generally defined by the 

problern being considered. Choices have to be inade on how many hidden layers 

and processing units in these layers should be used. To date there is no established 

theory to detennine these choices, and they are usually deterinined empirically. 

The MLP is also known as a feed forward network since data is presented to the 

network at the input layer, and propagates forward through the hidden layers to the 

output of the network, and no data is fed back from one processing unit to another 

processing unit in the previous layer or to itself Once the network structure has 

been defined, the next objective is to train the MLP network. 

2.3, TRAINING ALGORITHMS 

When training the MLP neural network, the objective of the training algoritlini is to 

adjust the networks weights so as to ininimise a pre-specified cost function. In 

recent years by far the most popular training algoritlim is the 'back propagation', 

which has certain disadvantages associated with it. To overcome these 

disadvantages, modifications to this and other algorithms, for training layered 

networks, have been developed. The back propagation algoritlim was used 

throughout this project due to its proven track record. The back propagation 

algoritlim is discussed in detail below, and modifications to the algoritlini along 

with other training algorithins are discussed in section 2.3.2. 
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The development of back propagation is due to Werbos (1974), Parker (1985), 

Rumelliart et al., (1986). The algoritlun is based on gradient descent and is 

described with reference to Figure 2.3. The network input is a vector X with 

dimension n, the output of the hidden layer is stored in a vector V with dimension 

s, and the network output is a vector 0 with dimension p. The training data is 

represented as follows: 

X' (k) = [x 
1 
(k), x2 (k), x 

3 
(k) 

........ x (k)] ... 
(2.3) 

Y, 
-I (k) = [yi. I (k), YI-2 (k), YI-3 (k) 

........ j, 17)(k)] ... 
(2.4) 

Miere X(k) is the sample input vector at time k, and Yr(k) is the required network 

output associated with X(k), i is used to index which training sample from the total 

training samples is being presented to the network. The algoritlim can be described 

in three stages the first of these is to initialise all the network weights randomly to 

'small' values. The second stage involves passing a training sample through the 

network and producing -a corresponding network output vector 0, this vector is 

computed using equations 2.6, and 2.7, where it is assumed the activation function 

for the hidden and output processing units is a siginoid, equation 2.5 

1 
(x) - I+e 

(2.5) 

v-(k)=f(iZll is,.. xi(k)+ j=1,2,..., s ... 
(2.6) 

. 
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s 
ol(k)=f ý: it, e,. (k)+bl 1=1,2,..., p ... 

(2.7) 
J=l ji 

where wij and Nvjl are the weight connections between the input and bidden layer, 

and the hidden and output layer respectively; b and bl represent the bias weights j 

connected to a constant unit input and associated with the hidden and the output 

layer processing units respectively. The third and final stage of the algorithm 

involves adjusting the weights in the network. This is achieved by comparing the 

network output vector, 0, with the required output vector, Yr, to produce an error. 

This error is back-propagated through the network to determine the adjustments to 

be made to the network weights using the following gradient descent equations 2.8 

and 2.9. These apply to the weight updates between the hidden and the output 

layer, and equations 2.10 and 2.11 to update the weights between the input and the 

hidden layer. 

IIIJI(k + 1) = wJI(k) + 77,5101 ... 
(2.8) 

where 

I ... 
(2.9) 

J=j 
s 

it,.. (k)+ ild o yj/ 

where 

G 
ii, cj+b. iv. 

=1 J) 
7=1 . 5/ 

J/ 

f is the first derivative of the siginoidal function, and is easily shown to be given 

by 
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f (") =f OVP -f 

The bias weights are -also updated in the same manner. q is an adjustable 

parameter, known as the learning rate, which affects the size of the step taken in 

the search direction. The choice of a small step size will result in a network taking 

a long time to train whereas too large a step size may result in oscillations about 

the error surface of a minimum. When the first training example has been passed 

through the network and the network weights have been adjusted, another training 

sample is presented to the network, and the weights adjusted according to the 

output error. This sequence continues for the whole of the training data, at the end 

of which the mean square error (MSE) between the network predictions and the 

required predictions can be computed over the training set. If the resulting MSE is 

acceptable then training of the network can be terminated, otheiwise the complete 

data set is presented to the network again as above. 

It is well known that gradient descent methods are inefficient when the search 

approaches a minimum, since the back propagation algorithin assulues that the 

error stuface around the learning rate is linear. At points of significant curvature 

the algorithin can display divagating behaviour. To prevent this froin happening the 

learning rate should be set to a small value, resulting in the network taking a long 

time to train. In order to overcome this problern an adjustable parameter known as 

inomenturn is added to equations 2.8 and 2.10, resulting in equations 2.13 and 2.14 

11, fl (k + 1) = ii, fl (k) + il(5jol + a(i i,.,, (k) -it, jl 
(k - 1)) ... 

(2.13) 

it,.. (k+l)=it,.. (k)+il(5. o +a(w--(k)-w-. (k-1)) 
li y 
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cc is the momentum tenn, and this lielps to improve the convergence, speed. 

2.3.1 Alternative traininjl alljorithins 

The computations involved in the back propagation algoritlun are simple and the 

algorithin is parallel in structure. The main draw back of the algorithin is its slow 

convergence properties and in some cases it can get trapped in local minima, even 

with the addition of the momentum tenn. Attempts have been inade to speed up the 

back propagation algorithin (FAHLMAN, 1988; SAMAD, 1989), which involved 

modifying the derivative, and adding some proportion of the error to the activation 

value of each processing unit. 

Other algorithms have been developed for training multi-layered networks in order 

to overcome the disadvantages associated with back propagation. Bremermann and 

Anderson (1989) developed an algoritlun referred to as chemotaxis. This algoritlun 

adjusts the weights in the network by adding Gaussian distributed random values to 

the existing weight values. If the error at the output of the network is reduced when 

the random values are added, then the new weights are retained, otherwise, another 

set of random values is generated and added to the original weights and the test 

repeated. The addition of these Gaussian distributed randoin values is continued 

until the network prediction errors over the training data set are at an acceptable 

level. However Breinerinann and Anderson concluded from their studies that 

although the cheinotaxis algoritlun gives much better convergence properties for 

large networks, it performed less favourably than the back propagation algorithin 

for sinall sized networks. Another algoritlun, the directed random search 

(NIATYAS, 1965; BABA, 1977) can also be used for training the standard feed 

forward network. It operates on the saine principles as the chemotaxis algorithm by 
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adding randomly generated values to existing weights and monitoring the new 

overall network error. 

A parallel recursive prediction error algorithin was developed by Chen et al., 

(1990) which updates the weights in the network in a parallel manner, similar to 

the back propagation algorithin. It has been shown to have superior convergence 

properties to that of the back propagation algoritlun although this was at the 

expense of a inore cornputation ally complex algorithin. 

2.4, DYNANIIC STRUCTURES AND TRAINING FOR THE NILP NEURAL 
NE'nVORK 

The MLP network is a static network, which simply performs a non-linear mapping 

from its input layer through to the output layer. Hence, if dynamics are not 

introduced into the network the ability to accurately model a process will be 

impeded. One method of representing the dynamic characteristics suggested by 

Terzuolo et aL, (1969) and implemented by Willis et al., (1991) is that of using a 

first order lowpass filter connected at the output of each processing unit in the 

neural network, in order to change the output of the unit. The change in tile 

processing units output is governed by the filter time constants, of which suitable 

values cannot be chosen prior to network training. The method used by Willis et 

al., is to estimate the time constants in a similar manner to that of the network 

weights as training proceeds. This inethod is 
I an attractive one since it enables 

process knowledge to be incorporated directly into the network structure. However, 

the inclusion of the filter does not allow the networks to be trained using the 

standard back propagation algorithin although alternatives such as the chemotaxis 

algorithrn are suitable. 
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Another inethod of introducing dynamics into the network is to use recurrent 

networks described by Narendra and Partliasarathy (1988). By far the most popular 

method of introducing network dynamics is to use past input and output data from 

a process as the inputs to the neural network. This enables the neural network to be 

trained using the standard back propagation algorithm, and was chosen as the 

ineans of introducing network dynamics. Using past input and output data results in 

a Non-linear AutoRegressive eXogenous (NARX) model configuration for the 

neural network, which is described in section 2.4.1. The choice of how many past 

inputs and past outputs to be used can seriously affect the perforniance of the 

resulting neural network model. In an attempt to ovecorne this a method for 

determining a suitable amount is described in section 2.5.1. 

2.4.1 Non-linear AutoRep-ressive Aounous (NARX) model structure 

The NARX model is a subset of the Non-linear AutoRegressive Moving Average 

eXogenous (NARMAX) model (BILLINGS and LEONARITIS, 1985), which in 

turn is a generalisation of the AutoRegressive Moving Average eXogenous 

(ARMAX) model for linear systems. The NARMAX and the NARX models are 

described mathernatically by equations 2.15 and 2.16 respectively. 

), (/) = F(Y(l - 0, 
-Y(l - "a), "(I -k),.., u(l -k -n,, ), e(t - 1),.., eQ -ne))+ e(t) 

y(l) = F(y(l - -na), u(l -k -n b))+e(l) ..... 
(2.16) 

Where: 

y(t) is the sampled process output data, 

u(t) is the sampled process input data, 
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e(t) is a Gaussian distributed white noise sequence, 

"a, and ub is the number of past output and input data respectively used, 

ne is the number of past noise values, 
k is the process dead time, 

FO is some unknown non-linear finiction. 

The NARX model structure was chosen over the NARMAX structure since it does 

not depend on past values of the noise sequence and is thus easier to implement. 

Equation 2.16 indicates that past process input and output values are used in some 

unknown non-linear function to estimate the process output at the next sample 

time, the objective here being to use the MLP neural network to approximate the 

unknown non-linear function. 

2.4.2 Representation of the MLP network in the NARX structure 

The iniplementatibn of the MLP neural network into the NARX configuration is 

illustrated in Figure 2.4 where "a past outputs and nb past inputs are used as the 

inputs to the neural network and the output of the neural network is the predicted 

process output at the next sample time; z-P is the backward shift operator, where 

for example z-Pu(t) = u(t-p). Figure 2.4 also indicates how the neural network call 

be implemented into two different structures. When the switch is placed in position 

1, then the neural network will be configured as a predictor, and similarly in 

position 2 the neural network is configured as a model. It is possible to develop 

neural network process models in either configuration, and the relative methods of 

each have been investigated for incorporation in an on-line control strategy. The 

two configu ratio us can be defined matheinatically by equations 2.17 and 2.18. 
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y(t) 

Figure 2.4 Multi-layer perceptron in NARX configuration 

Y(I) = F(yQ -- na), u(t - k),..., u(t -k-nb )) ... 
(2.17) 

y(f) = F(Y(l - -na), u(I - k),..., u(l -k -nj))) ... 
(2.18) 

The difference between the two configurations is in the use of feedback froin the 

output of the network to its input for the model, and no feedback for the predictor. 

Both the predictor and model configtirations were investigated by Narendra and 

Parthasarathy (1990) where they were referred to as the series parallel model for 

the case of the predictor structure and the parallel model for the structure 

represented by inodel. In their work they also considered a number of other 
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structures which were combinations of linear and non-linear functions of the input 

and output of the process. Equation 2.17 incorporates all the models suggested by 

Narendra and Parthasarathy. These two different structures lead to two different 

methods for training the neural network to emulate the non-linear process. Tile 

neural network can be trained in a recursive inanner where the switch in Figure 2.4 

is in position 2 and lience the neural networks output is fed back as input during 

training. The approach used for training the neural networks was to train in the 

predictor configuration with one step ahead prediction at each sample time. This 

structure was used since straightforward back propagation can be applied as a 

training algorithm, whereas if training in the recursive mode, new training 

algorithnis are required (WILLIAMS and ZIPSER, 1989; WERBOS, 1988). A 

comparison of four neural network learning inethods for the identification of 

dynamic systems is given in QIN et at., (1992) where the two methods mentioned 

above are considered in what is called batch inode and pattern learning inode. 

Patteni learning mode is the term used in this researeb when the weights in the 

network are updated after each pass of one sample of data from the training set, 

whereas batcli mode refers to updating the weights in the neural network after each 

pass of the whole training data set. 

Once the neural network has been trained to emulate the process, it is bighly 

desirable to be able to use the neural network in the model configuration allowing 

the network to operate recurrently to predict the process output from only the input 

from the process. This is advantageous since the neural network could then be used 

to improve existing control strategies that employ inulti-step-ahead predictions. 

Furthermore, the network can be operated independently from the process as a 

simulation tool to study process performance and characteristics, since it only 
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depends on process input values, and not process output values as in the case of the 

predictor. It has been found that a major factor affecting the model prediction 

accuracy is the method by which the data is presented to the neural network. In the 

model configuration, any error in the predicted output is fed back to the network 

inputs. Thus, -in accumulation of error can occur which significantly degrades the 

inodel performance. To overcome this, a novel method of encoding the data 

presented to a neural network has been developed (section 2.7.2) that enables the 

neural network to be trained in the predictor configuration and once trained it can 

be implemented in a model configuration. 

2.5 NETWORK TOPOLOGY SELECTION 

Choosing the topology of the neural network is an important part in the 

development of a neural network representation of a process. The choices that have 

to be made are: 

(i) The number of network inputs and outputs, 

(ii) The number of hidden layers, 

(iii) The number of processing units in the input, output and hidden layers, 

(iv) What activation function should be incorporated into the processing units. 

The theorem of Kohnogorov (KOLMOGOROV, 1957) which stated that any 

continuous function of N variables can be represented by using linear summations 

and non-linear continuously increasing ftinctions of one variable, was first thought 

to give an indication of how many bidden layers and processing units in these 

layers should be used. However Girosi and Poggio (1989) contended that the 

useftilness of this theorem is nebulous since it would require a different non-finear 
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activation function for each processing unit in the neural network, and the 

ffinctions in the hidden layers have to comply to certain undesirable conditions. 

One hidden layer was used in the neural network since Hornick et al., (1989), 

Funahashi (1989), and Cybenko (1989) proved that one hidden layer is adequate. 

The sigraoidal activation function was used in both the hidden and output layers of 

the neural network. It was chosen due to its current popularity and reliability and it 

was the assumed activation Rinction in the proof by Cybenko (1989). The use of 

the siginoidal function in the output layer of the neural network, requires scaling 

the data presented to the network. This point is discussed in section 2.7, where data 

conditioning techniques are discussed in detail. The chosen number of processing 

units used in the bidden layer was found through experimentation. If too many 

processing units were used in the hidden layer, then training the neural network 

was slow, and its generalisation properties deteriorated due to over 

parameterisation. Furthermore, too few hidden processing units were not able to 

represent the required non-finear inapping between the input and the output data 

froin the process, and the neural network did not converge. 

In order to select a suitable munber of hidden layer processing units, the network 

was successively trained down to a pre-specified suitable MSE for a range of 

processing units. It is seen in Figure 2.5 by using this method, that as the number of 
hidden processing units is increased then the number of iterations required to reach 

the specified MSE reduces, until after (in this case) six hidden units when the 

number of iterations increases. 

One problem with this inethod is that if at the start of training the initial randoin 

network weights are such that the network output error is very close to the desired 
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error then this will result in only a few iterations of the data set, although this 

liappens rarely. 

Number of passes of data set 
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Figure 2.5 Selection of the number of hidden processing units 

To overcome this possibility a number of sample runs with the same number of 
hidden processing units were performed, and the average number of iterations of 

the training data was the value noted. The assignment of the network input nodes is 

not a straight forward decision, and certain tests were used to decide upon the input 

stnicture. 

2.5.1 Selection of input nodes usinil a correlation based techgigtie 

When developing a neural network model the output stnicture is specified by the 

applic, ation being considered. However, the choice of the number of input nodes is 
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not so easy to specify, and the wrong choice can -affect network performance. The 

approach is similar to the NARX model order selection i. e. choosing the values for 

Ila, Ilb and k in equation 2.17. It is suggested here that process knowledge can be 

used to provide an initial starting point, since a process known to exbibit 

predominantly nth order chara cteri s tics can be represented in the NARX structure 

by n past inputs and outputs. As pointed out by (BILLINGS, 1992), the MLP 

neural network does not generate components of higher order lagged process inputs 

and outputs which are not specified in the network input nodes, because the output 

of the neural network is just a static lion-linear expansion of the input nodes. Hence 

if a dynamic model of a system is represented by certain lagged inputs and outputs 

that are not included as input to the neural network then the network will be unable 

to generate the missing dynamic terms and the resulting neural network model will 

be poor. For many industrial processes obtaining a model may be neither cost 

effective or practical and in some cases may not be possible, lience the number of 

lagged inputs and outputs to be used as inputs to a neural network will not be 

straight forward. To overcome this problem correlation based tests devised by 

Billings and Voon (1986) were used. These tests detect if the resulting neural 

network model provides an adequate fit to the process being modelled. If a model 

of a system is adequate then the residuals, equations 2.19,2.20,2.21,2.22,2.23, 

should be un-correlated ftom all linear and non-finear combinations of past inputs 

and outputs. For an adequate model the following tests should hold: 

066(r) = E[c(l -= (5(-r) (2.19) 

Vz- ... 
(2.20) 

01,26 ( r) = E[(112 (i _ I-) _ il-2 (t)) 6(t)] = 0, V -r 
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01,2g2 (-r) E [(112 
1 il 2 (1)) 62 (t)] 0, V 

... 
(2.22) 

0-4671) -cý! o ... 
(2.23) 

The sampled coiTelation function between two sequences is calculated using 

equation 2.24 

, V-r 

Q) Q+ -0 
... 

(2.24) OVIV2 (r) 
=NN 

2 
V/12 t Vr2 

The tests are improved if all the data is nonnalised to zero incan and unit variance. 

For these tests a 95% confidence interval is specified since the correlations will 

never be exactly zero, given by equation 2.25 

1.96 (2.25) 

with nonnalised data eqtiation 2.25 results in ± 1.96/qN. N is the aillount of data 

being used in the test. If the resulting neural network model is a good one then the 

COITelations should be within the 95% confidence limit bands. Tile tests are not 

guaranteed to detect all possible non-linear tenns that may be part of a licural 

network inodel, but simulation and practical results have indicated that the tests 

provide a good indication and are a powerftil tool to use. 
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2.6 DURATION OF NETWORK TRAINING 

When the overall network topology of the neural network has been selected, the 

final stage in development of the non-linear process model is to train and test the 

neural network representation. Training the neural network involves many epoclis 

of the complete training data set through the network. After each epoch the weights 

in the neural network are adjusted in an attempt to inap the given input data to the 

required output data. It has been found that if a neural network is trained for too 

long on the training data set then the final neural network model will be excellent 

at predicting over the range of the training set. However, when required to predict 

over a set of data not used to train the network, predictions can be poor. In many 

control applications, this aspect of network training is not addressed, and it is even 

suggested to continue network training until all the weights have fully converged 

(BHAT et al., 1990). 

Figure 2.6 illustrates the effect on the output MSE of a network if over trained. 

Initially the MSE falls but, with ftirther training, the MSE on the test data set 

increases, while the neural network still continues to predict accurately over the 

training set. The reason for the above phenomena is that if the weights in the 

network carry on being adjusted too long, eventually the weights will be such that 

the network has started to meniorise the input-output data set pairs, instead of 

having weights that describe the overall relationship between the input-output data 

in the training data set. It is of paramount importance that the model of a process, 

be it a neural network or some other form of model, must be able to predict not 

only the data that it has been trained on, but also a wide range of different data. 

The approach that has been taken to overcome this problem is to use two different 

sets of data generated from the non-linear process being modelled. One set of data, 
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is used to train the neural network, and the other set of data is used to evaluate the 

networks generalisation capability at various stages of the training. The MSE of the 

testing data set is noted at each stage, and from this information a suitably trained 

network is selected. 

MSE 

19 set 

Training time 

Figure 2.6 Illustration of generalisation during network training 

2.7 DATA CONDITIONING 

Before the sampled input-output data obtained from the process is presented to the 

neural network it should be cliecked to remove any undesirable features associated 

with real data. Such features include outliers and disturbances caused by random 

fluctuations in process operation. The input-output data is then norinalised between 

tipper and lower specified limits. When using a neural network the limits for the 

encoded data is usually dependent on the type of activation functions that are being 

used. The siginoidal function has an output range of between zero and one, 

consequently the output layer has maximum and minimum outputs of zero and one. 

An obvious choice is to encode the sampled input-output data between these 

values, but doing so reduces the networks ability to learn the relationship between 
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the input and the output data (HOSKfNS and HIMMELBLAU, 1988). This is 

explained by considering equation 2.5, wbich indicates that f(x) only reaches its 

boundaries as x -> ± oo so that if the data presented to a neural network during the 

training stage is encoded between zero and one, then in order to produce a one or a 

zero output the weights between the hidden and output layer inust be increased 

appropriately. The weights between the hidden and output layer are updated by 

equation 2.8 which is dependent on the first derivative of the siginoidal function, 

and since as f(x) -> 0 or 1, P(x) 
-> 0, the updating of the weights stop, and lience 

the learning process is difficult. This problem was overcome by setting the lower 

and tipper limits of data encoding to 0.1 and 0.9 respectively. Another inethod is to 

use a linear activation finiction for each processing unit in the output layer. 

The method of conditioning the data presented to the neural network is also crucial 

when the network is to be used recurrently as a inodel, since errors produced at the 

output of the network will be fed back into the input of the network, and will result 

in poor network performance. In an attempt to obtain an accurate neural network 

inodel representation two data conditioning inethods have been investigated. One 

method of Single Node Data Mapping (SNDM), which is used by the majority of 

workers in the neural network field, was compared to a novel inethod of encoding 

the data which lias been called Spread Encoding Data Mapping (SEDM). 

2.7.1 Shiple node data inal)l)inp_ (SNDINI) 

This inethod of presenting the data to the neural network is widely accepted, and 

consists of applying each input variable to a single neural network input node, as 

illustrated in Figure 2.7. A single node is also used for each network output 

variable. The data is inapped linearly using a straight line relationship as given by 

equation 2.26. 
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(X -0.1)=111(X-X ) ... 
(2.26) 

where 

111-- 
0.9-0.1 

... 
(2.27) 

X -X . max inin 

0. 

Excitatior 
Level, Xs 

0- 

01 
put 

OStii'tpgu"'t lilllo)de 
I 

Data value,, x 

Figure 2.7 Single'node data mapping, SNDM 

x 

combining equations 2.26 and 2.27 results in the overall data mapping equation 

given by 2.28 

X=0.8(X--X min) + 0.1 
sX -X . max min 

(2.28) 
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where Xs is the scaled value of X and, Xinax and Xmin are the maxitnuin and 

iniiiiinuin values of X. 

To obtain the true value froin the encoded value at the output of the neural network 

equation 2.28 is reaffanged to give equation 2.29 

(X 
s 

1)(X 

l,.. 
`ýnin) 

+X 
inin ... (2.29) 

0.8 

2.7.2 Spread encodinji data mappini! (SEDNI) 

This form of coding is illustrated in Figure 2.8 where a variable, X, with a finite 

range 1Xmin, Xmax], is mapped onto a sliding Gaussian activation pattern of N 

network nodes, with additional nodes either side to contain any overspill resulting 

from the use of a mapping function with wide support. 

The level of activation for each node is confined as in the previous SNDM method 

to the range (0.1 to 0.9). The first stage of the coding is the scaling of the original 

data range into a nonnalised data range represented by rc- (0, N-2Na) which is 

achieved using equation 2.30 

N-2Na 
*(X-X 

inin) ... 
(2.30) 

Xmax - Xmin 

where Na is the number of nodes either side of the vaiiable range and X is the data 

value to be coded over the N network nodes. 
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Excitation T 

0.9 

0.1 

Figure 2.8 Spread encoding data mapping, SEDM 

es 

Once the data has been nonnalised the excitation level of each node is then found. 

The excitation of each node is defined by 

q48/2 
ja O(a) cla 

_. 
cj-, 5/2 

ai 

which satisfies the requirement that 

N 
ai Vfi =J ao(a) da (2.32) 
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Each node is assigned a class interval, ai, linearly spaced by a distance 6 and a 

discrete map is created which represents the inean value of a continuous 

probability distribution, ý(x) within each class interval. 

The activation of each node is evaluated from eqtiation 2.31 by the use of 

integration by pails which leads to equation 2.33 

-+ 5/2 
, . +9/2 

ai vfi = 
[a 

(D (a) i (D(a) da ... 
(2.33) 

1, 

- J/2 aj-i512 

where (D(a) is a cumulative Gaussian distribution function with ý(a)=q)(a). The 

cumulative Gaussian function was approximated by the siginoid function. 

Throughout the research investigations the integral tenn in equation 2.33 was 

approximated using the first two tenns in the trapezium rule which resulted in 

(ai + (5 (D(ai -J... (2.34) 
22 

which was found to provide sufficient accuracy. The steps necessary to code a data 

value are now listed 

Step 1: Scale the data value to the nonnalised range using equation 2.30 

Step 2: Code the data to the N network nodes using equation 2.34 

where 
a1 =i-Na-c 

and 

(D(z) =I 
I+e 18(z-l 
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P inversely controls the width of the node excitations and c is an offset tenn 

which shifts the position of the range limits on the nodes. 

Step 3: Scale the excitation of each node to the range (0.1,0.9) using a linear 

relationship such as equation 2.28. 

The method used. to retrieve the original coded value is to first apply the inverse 

scaling procedure used in step 3 above and then to decode the network output back 

to the norinalised range using equation 2.35 

ai Vri 
N (2.35) 

Finally apply the inverse of the scaling relationship given by equation 2.30 to 

obtain the decoded network output. 

In the studies perfonned throughout this research N=6, Na=2, c=0.5,8=1 and 0=2 

were found to provide sufficiently accurate coding and decoding of the process 

data. 

The spread encoding data mapping technique was investigated in order to achieve 

better modelling accuracy. Also, in many areas including measurement and process 

control the physical variables usually span a wide range of values. When the range 

of these values is compressed to a single node, the nodal response to small changes 

in input is limited. The spread encoding method improves the network accuracy by 

representing variations in input data values as changes in the excitation of several 
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input nodes. Also using this inethod, generation of confidence, or error measures 

call be defined by the difference between the width of the activity patterns of tile 

output nodes and that of the original Gaussian function used to inap the target 

values. Noise reduction in the reconstruction of the output signal is also achieved, 

this reduction is by the central limit theorem, in proportion to the reciprocal of the 

square root of the number of active nodes. 

2.8, SUININIARY 

The Multi-Layered Perceptron (MLP) neural network lias been described, and a 

number of algorithins have been considered to train this type of network. The 

standard back propagation algoritlim was used in this research, due to the wide 

applicability and simplicity of the algoritlun. All the neural networks constructed 

consisted of an input an output and one single hidden layer of processing units. The 

number of hidden processing units is deterinined empirically, and each of these 

units as well as the processing units in the output layer lias associated with it a 

siginoidal activation function. Choice of the number of output units is dictated by 

the problein tinder consideration, and the number of input nodes was determined by 

the use of process knowledge and correlation based methods. 

Dynamnics have to be introduced into the structure of the MLP neural network since 

the MLP network is a static network and will not itself learn dynamic relationships 

between process inputs and outputs. Various inethods have been described to 

introduce these dynainics, and the inethod chosen is based on time histories of past 

process input-output data. 
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Two different methods of training and implementing a trained neural network have 

been discussed, namely the model and predictor configuration. The predictor 

configuration was chosen for training the MLP neural network because it leads to 

more stable convergence properties than the model configuration, when. using the 

back propagation algoritlun. 

It is important to ascertain the required degree of training the neural network must 

undergo. It has been shown that over training reduces the generalisation properties 

of the neural network. The optimum degree of training was deten-flined by using a 

testing data set to determine the networks prediction capabilities at various stages 

of the training period. 

Conditioning the data presented to the neural network has been considered in 

detail, and a novel method termed "Spread Encoding Data Mapping", (SEDM) has 

been described, whereby each single data value presented to the neural net-work is 

spread over a fixed number of network input nodes using a Gaussian spreading 

function. This novel method has been considered in an attempt to aebieve better 

network prediction accuracy when using the trained neural network in a recurrent 

model configuration, over the standard method of conditioning the data. The 

standard method of conditioning network data has also been described, and this has 

been terined Single Node Data Mapping, (SNDM). 
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CHAPTER3 

PROCESS MODELLING AND VALIDATION IN SIMULATION 

3.1 INTRODUCTION 

This chapter describes the procedures taken in obtaining an accurate model of a 

non-linear process using a neural network and the techniques used in validating the 

resulting neural network model. The initial modelling studies were carried out in 

simulation, firstly withoia noise and then for a more realistic case of simulated 

noise added to the appropriate variables. The simulations were performed in order 

to speed up development time and obtain indications on the feasibility of the 

teclmiques being used, before attempting to model, using a neural network, a real 

laboratory scale non-linear process. 

The computer package ACSL (Advanced Continuous Simulation Language) was 

used for the simulation studies. ACSL has a range of standard algorithms for 

solving non-linear differential equations, and simulating noise. ACSL is based on 

the Fortran computer language, and user specific subroutines required at run time 

were implemented in this language. The non-linear differential equations are solved 

using ACSL in order to provide data for the neural network package NeuralWorks 

Professional 2, which was used for training and validating the neural networks. 

Neural networks of various sizes can be easily constructed using this software 

package, and many training algorithms, including the back propagation -are built in. 

There is also the facility for writing user specific routines in the C programming 

language which was used in the development of the neural network model. 
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The two methods of conditioning the data (SNDM and SEDM, section 2.7), 

presented to the neural network were implemented and a comparison was made by 

validating neural networks trained using the two different coding methods on 

different test signals to the network training signal. The neural networks were 

validated in both one-step-ahead predictor and recursive model configurations. 

3.2, PROCESS DESCRIPTION AND MATHEMATICAL INIODELS 

Figure 3.1 illustrates a dual tank non-interacting liquid level process. Although the 

process is not particularly complex, it was chosen because it exhibits features that 

are characteristic of many real industrial processes; non-linearity (due to the square 

root relationship between the tank outflows and the height of liquid in each tank), 

and also the height of liquid in tank one, lij, is assumed to be immeasurable, which 
is typical of many industrial processes in which variables are not, or cannot be 

measured. The process provides a good test bed on iýhich to investigate the 

modelling capability of a neural network. The flow rate of the liquid into tank I is 

controlled via the pneumatic input to the process valve, and the output of the 

process is the height of liquid in tank two, 112. The process is easily mathematically 

modelled from first principles and this enabled a thorough comparison of how well 

the trained neural net-work could emulate the process. 

Simulation studies were carried out on two different but related processes. Initial 

investigations were performed on a first principles model obtained from a study by 

Gomm (1991), which will be referred to as first principles model I (FPMODELI). 

A first principles model was then obtained for the actual physical liquid level 

process in order to perform simulation studies on the more realistic model. This 

model will be referred to as first principles model 2 (FPMODEL2). Both first 
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principles models are of similar structure, the differences being in the parameters 

used in the models. 

u 
Kv 

Inflow from 
reservoir 

Tank I 
c. 

R, 

-- ----------- 

h2 Tank 2 
C2 

R2 

ýq 2 

To reservoir 
I 

Figure 3.1 Dual tank liquid level process 

3.2.1 First principles model one (FPMODELI) 

FPMODELI describing the dual tank non-interacting liquid level system (Figure 

3.1) is described by the well established following non-linear differential 

equations: 
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q-=(q0-q1) 
... 

(3.1) 
di 

A C== (qý - q) ... 
(3.2) 2 

tit 

where 

qo = ku ... 
(3.3) 

(3.4) 

(12 
... 

(3.5) 

qO is the liquid flow rate into tank 1; q I, q2 are the liquid flow rates into and out of 

tank 2 respectively, hl and 112 are the liquid levels in tanks I and 2 respectively, u 

and 112 are the process input and output, kv is the valve gain, C I, C2 are the cross- 

sectional areas of tanks I and 2 respectively and RI, R2 are the outflow pipe 

restrictances of the tanks. The initial conditions fqr the process were lilo and 1120 

for tanks I and 2 respectively, and no for the input. The values of the initial 

conditions were chosen as lilo = 1.0 111,1120 = 5.0 in and no = 0.5. The cross- 

sectional areas of both tanks had equal values of 1.0 jn2, and the restrictances were 

chosen as 5.0 s/i-n5/2 and 1.0 S/jn5/2 for tanks I and 2 respectively and the value of 

the valve gain was set to 10. The values of the restrictances were chosen so that 

tank I would have a faster reaction time than tank 2. These values were 

implemented in the ACSL simulation of the mathematical inodel. 

LIVERPOOL Jr`ýY,, N UNIVERSITV 
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3.2.2 First principles model two (FPAIODEL2) 

The real laboratory scale dual tank liquid level process is illustrated in Figure 4.1. 

First principle methods were performed oil the process, and the resulting 

inathematical model describing the process dynainics was of similar structure as 

FPMODELI described by equations 3.1 and 3.2. It was necessary to 

experimentally determine the values of the parameters RI, R2, CI, C2, and kv of 

the real process, so that a mathematical model of the real process could be obtained 

for simulation studies. Using FPMODELI gave an insight into tile nature of tile 

two tank system, and the capabilities of using neural networks for modelling. 

However having a mathematical model of tile real process gave a more realistic 

situation. 

The cross-sectional areas of tanks I and 2 are equal, and were simply calculated 

from measuring the radius of the tanks, the radius of each tank is 0.0685 m which 

resulted in values for Cl and C2 of 0.01474 m2. Values for the restrictances of 
both tanks RI and R2 were obtained by plotting the square ro'Ots of the heights of 
liquid in each tank against the flow rate for a number of steady states, illustrated in 

Figure 3.2. The restrictances were calculated to be 3671.17 s/In2 for tank I and 

3065.58 s/m2 for tank 2. The equations representing qj (the liquid flow rate into 

tank 2) and q2 (the liquid flow rate out of tank 2) were calculated from the data in 

Figure 3.2 by fitting a polynomial of degree one in a least-squares sense to the 

data, and this resulted in equations 3.6 and 3.7: 

ýII1 +0.4939 
3671.17 

(3.6) 
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F12 +0.1469 
q2 --ý 3065.58 - ... 

(3.7) 

The inflow rate into tank I qO, given by equation 3.3 was obtained in a similar 

manner to above by plotting the inflow rate to tank I against the value of the input 

u. The result of this is illustrated in Figure 3.3. The input 11 to the process valve is a 

digital number that takes on integer values between a minimum of 100 and a 

maximum of 200, for a digital number of 100 the process valve was closed and the 

liquid inflow qO was cut off, and for a digital number of 200 the valve was fully 

open. The choice of the range of the digital numbers and more detail are given in 

section 4.2.1 where the real laboratory process is discussed. The liquid flow rate 

into tank I was calculated in the same manner as for equations 3.6 and 3.7 and is 

described by equation 3.8: 

qo = -0.00599 * 10-6 11 2+3.42483 * 10-6 it - 85.83927 * 10-6 
... 

(3.8) 

A second order polynomial was used to fit the data for qO as this resulted in a 

significant increase in accuracy over a first degree polynomial. Initial conditions 

for the height of liquid in tank 1, li 10, and height of liquid in tank 2,1120, were set 

at 0.34 in and 0.56 in respectively, Which corresponded to an initial digital number 

input, uO, of 150. The parameters for simulating the FPMODEL2 were then 

implemented into an ACSL program. 
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Figure 3.2 Height of liquid in tanks one and two versus liquid flow rate 
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Figure 3.3 Liquid flow rate from pump versus digital number to process valve 
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3.2.2.1 Comparison of the laboratorv process against FPMODEL2 

To test the accuracy of FPMODEL2 the response of the real process to a set of 

input signals was compared to that of the mathematical model for the same inputs. 

If FPMODEL2 is a 'good' representation of the laboratory process then the 

response of the model should be very similar to that of the process. Two signals 

were chosen to evaluate the performance of FPMODEL2, these were a PRBS input 

and a set of step inputs to test the steady state performance of the model. The 

response of the real process to the PRBS input is shown in Figure 3.4 along with 

the response of FPMODEL2. It is clearly seen that the output of the model 

accurately follows the liquid level response (the height of liquid in tank 2, h2 ), 

there are slight but acceptable differences in the accuracy of the model between the 

tipper and lower levels of the PRBS response. The performance of the real process 

together with that of FPMODEL2 for a set of step inputs is illustrated in Figure 

3.5, Again the transient behaviour of the model is in very good agreement with that 

of the process, and the lower steady state is captured very accurately. A slight 

offset occurs at the tipper steady state levels, the maximum offset between the 

process output and the model being 0.021 in, however, considering that the real 

process is subject to time varying dynamics and external disturbances this is a 

sinall acceptable error. 

The peifonnance of the FPMODEL2 compared to that of the laboratory scale dual 

tank liquid level process indicates that an accurate model of the process has been 

obtained. The use of this model will aid considerably in the simulation studies, and 

techniques developed for modelling FPMODEL2 using a neural network should be 

readily applied to the real process without too much difficulty. 
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Figure 3.4 Response of process and calculated model for PRBS input signal 
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Figure 3.5 Response of process and calculated model for step input signal 
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3.3 PRACTICAL ASPECTS OF PROCESS MODELLING 

Before simulation studies were performed with FPMODELI and FPMODEL2 

certain practical aspects were considered, these are now discussed. 

3.3.1 Samplin thne selection 

The frequency at which the input, u, and output, 112, data should be collected froin 

the process is an important factor. Data should be collected at a sufficient rate to 

avoid aliasing at the inaxiinuin frequency of interest. There are a number of 

guidelines for choosing the sampling time, one inethod (ASTROM and 

WITTENMARK, 1984) states: 

T, v ( 0.38*t 
min 

(3.9) 

where Ts is the sampling interval and tinin is the smallest time constant of interest. 

A method suggested by (SEBORG et al., 1986), states that the sampling time 

should be approximately one fifth to one tenth of the dominant time constant. 

Another guideline for Ts is between a fifteenth and one fifth of the ninety five 

percent settling time of the process to a step input (GUSTAVSSON, 1975). 

In all of these guidelines the time constants of the process play an important part in 

selecting an appropriate sampling interval. Since the process being considered is 

non-linear in nature there is no single time constant for each of the tanks as there 

would be in the case of a linear model. The response time and gain of the process 

are dependent upon the operating region of the process. Knowledge about the 
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process indicated that the bottoin tank (tank 2) had a intich slower response time 

than the top tank, and lience tank 2 contains the dominant time constant. 

For a linear first order system the time constant can be obtained by measuring the 

time taken for the measured variable to reach 63.2% of its final value after the 

application of a step input (BURGHES and GRAHAM, 1980). The approach taken 

was to use this fact and sinall step inputs (u) were applied to the process over a 

number of different operating regions. The time taken for the process output 112 to 

reach 63.2% of its final value at the different operating regions was monitored. For 

small step changes in the input, the process can be assumed to be linear around its 

operating point, and the time constant of tank 2 can be estimated. The above was 

performed on FPMODELI and also on the real laboratory scale process resulting 

in a number of time constants for each of the different operating points. From the 

range of time constants obtained the choice for the real process was 3 minutes, and 

for the FPMODELI 5 minutes. The sampling period was taken to be a fifth of the 

dominant tirne constant, resulting in FPMODEL2 having a sampling rate of TS=0.6 

minutes, and for FPMODEL I Ts=1 minute. 

3.3.2 Process excitation 

In order to identify the parameters, represented by the weights in the neural 

network, of a dynamical process model, the training data intist contain sufficient 

information about the process tinder consideration. Also the training data set 

should be representative of the entire class of inputs that the eventual process 

inodel will be subjected to (NARENDRA, 1990). This will ensure that the process 

model will respond in the desired fashion even when an input, not included in the 

training set, is applied to it. In general tenns, the input signal to the process should 

persistently excite the process in all inodes of operation. In linear systems theory a 
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signal that satisfies the above requireinents is a Pseudo Random Binary Sequence 

(PRBS) signal (LJUNG and SODERSTROM, 1983), and this was the signal that 

was initially used to excite the process in simulation. FPMODELI was excited 

around the initial conditions, with small deviations and a neural network was used 

to identify the process around these conditions. The resulting neural network model 

gave excellent process predictions within the bounds of which it had been trained 

on. However as the range over which the process was excited increased the trained 

neural networks prediction perfonnance deteriorated (LISBOA et al., 1991). The 

neural network was able to predict well on the PRBS signal that it had been trained 

on, but when required to predict process performance to other PRBS signals not 

used during training, the net-work failed completely. This was believed to be due to 

an inappropriate range covered by the input excitation signal, since using the 

PRBS, the input is always either Rilly on, or off. Consequently a signal with 

uniforra randoin amplitude (RAS) was used to obtain an input-output data set for 

training purposes. This signal is sufficiently rich in frequency content and excited 

the process over different modes of operation. The RAS is described in section 

3.4.1 where modelling of the process using a neural network is thoroughly 

investigated. 

3.3.3 Amount of traininIz data 

An important aspect that should be considered when obtaining training data from a 

process is how many samples are required in order to train a neural network. This 

point has not been addressed by many workers in the neural network field even 

though it is an important one. For linear system identification using an ARX 

modelling approach, the number of observations, K, taken from the process should 
be much larger than the number ",,, i+"b of parameters to be estimated (STREJC, 

1981). This seems a reasonable approach to take when obtaining data from the 
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process to estimate the weights in the neural network. Another guideline suggested 

by Hall and Smith (1992) is to obtain as much data as possible, the more data, the 

better the solution, and that a reasonable licuristic for many problems is that of 100 

data points for each node in the hidden layer. They also point out though that maify 

acceptable results have been dernonstrated with relatively small training data sets. 

When obtaining data from the simulation of a process model, the amount of data 

available to train and test a neural network is of no problem. However when a real 

process is being investigated the amount of data available may be restricted. These 

points should be considered when constructing a neural network process model. 

Hence, for all the simulation studies conducted 1000 input-output data points were 

obtained for training the neural networks. 

3.3.4 Network validation 

Trained neural networks were validated on a number of test signals in both one- 

step-ahead predictor and recursive inodel configurations. The test excitation signals 

chosen to evaluate network perfonnauce were: 

(a) a different RAS to that used for training; 

(b) a PRBS; 

(c) a set of step inputs. 

The input levels of each of these signals were such as to excite the liquid level 

process over a wide operational region. 

Another inethod used to examine how well the network had learned the process 

dynamics, was to obtain frequency responses around central operating points for 
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both the process simulations and the trained neural networks, using spectral 

analysis techniques (LJUNG, 1987). 

3.4 NOISE FREE SIMULATIONS 

The initial noise free investigations were carried out using FPMODELI and then 

on the calculated mathematical model of the physical process, FPMODEL2. For 

both models, the two forms of conditioning the process data, namely SNDM and 

SEDM (section 2.7), were implemented, and the resulting trained neural networks 

were validated in both the one-step-ahead predictor and model configurations. The 

realisation of the neural network models using the different coding techniques is 

now discussed. 

3.4.1 FPMODELI using SNDM 

FPMODELI was implemented into an ACSL prograin in which the process was 

excited by a RAS applied to the process valve, in order to control the liquid inflow 

rate into tank one, qO. The RAS was produced by adding a randoin value, generated 

using a function available in ACSL, between -0.5 and 0.5 to the steady state value 

of the process input. The chosen values enable the process Output, 112, to be excited 

over the desired non-finear region. 

Two data sets were generated in the simulation, one of thern "data set one" Figure 

3.6 was used for training the neural network, and the second "data set two", Figure 

3.7 was used to test the neural networks generalisation capabilities at various stages 

of the training period. Different random amplitude signals were generated by 
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initialising the random number generator in ACSL to distinct values before the start 

of the simulation. 
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3.4.1.1 Neural network structure 

As described in Chapter 2, the choice of the number of input nodes can severely 

affect the network performance. Since it is known that the process when Iiiiearised 

around an operating point has second order dynamics, two past inputs and two past 

outputs were used as input to the neural network configured in the NARX 

stnicture. The objective was to develop a neural network that could predict the 

height of liquid in the lower tank, 112, and lience this required one processing unit 

in the output layer. The number of processing units in the hidden layer was chosen 

by experimentation. For each case, the neural network was trained on "data set 

one" until the MSE for the complete data set was less than a pre-specified value of 

0.0004 which was deemed to be a suitable choice. The number of complete passes 

of the data set was noted for each of the networks and is illustrated in Figure 3.8. 

It can be seen that the neural network converged to the specified MSE for each of 

the number of hidden processing units specified, tile optinium number chosen was 

eight. The overall network topology was as shown in Table 3.1. 

Number of input nodes Number of hidden nodes Number of output nodes 

4 8 1 

Table 3.1: Neural network topology for FPAIODELI using SNDM 

With this network topology there was a total of 49 network weights to be 

evaluated. 
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Number of passes of data set 

Figure 3.8 Selection of the number of hidden processing units 

3.4.1.2 Traininjz the neural network 

Once the overall topology of the neural network had been decided upon, the next 

stage was to train the neural network on the data obtained from the simulation of 

the process. The two data sets were conditioned using SNDM so that the range of 

the data presented to the neural network was within the bounds of the sigmoidal 

function. 

The weights in the neural network were initialised to random values between -0.1 

and 0.1, and this was the case for every network trained. The initial values of the 

learning rate and momentum ternis in the back propagation algorithni were set to 

values close to 1.0. After a certain amount of training, the values were reduced to 

improve the networks convergence. The initial, near unity values enable faster 

]earning, however, if kept at these values, this will cause oscillations in the network 

output error as the network approaches its inininuun. The values of tile learning 

rate and momentum used are illustrated in Table 3.2. 
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No. of training passes Learning rate q Momentum a 

< 70 0.9 0.6 

> 70 0.4 0.15 

Table 3.2: Values of learning rate and momentum during network training 

Durhig the initial simulation studies it was discovered that when the neural network 

was tested on "data set two" whilst configured in the predictor configuration the 

MSE between the predictions of the network and the required process output kept 

on reducing as the training proceeded, Figure 3.9. 
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Figure 3.9 Termination of network training 

In order to evaluate the networks generalisation it should be tested in the model 

configuration at various stages of the training, the result of this is also shown in 

Figure 3.9, which indicates that there is an optimum stage at which to stop network 
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training after which the MSE starts to increase. The neural network was considered 

to be optimally trained after 700 complete passes of the training data set and 

network traiiiing was ten-ninated. 

3.4.1.3 Validation of the trained neural network 

The trained neural network was validated on the test signals described in section 

3.3.4. Results for the trained network operating in the one-step-ahead predictor 

configuration will firstly be presented. 

The performance of the trained neural networks predictions compared to the output 

of the process, when tested on the training RAS was very accurate as expected. The 

prediction petfonnance when tested on a different RAS is illustrated in Figure 

3.10. Only the first 100 points of the response have been shown in order to 

improve clarity. The response of the network accurately matches that of the 

process, and this is supported by a sinall MSE of 0.0017. - 

Similar accuracy was obtained when the neural network was subjected to a PRBS 

input signal, Figure 3.11. When the input signal applied to the network was a set of 

steps, there were offsets between the neural network and the required process 

output for two of the steady state values although the network had captured the two 

other steady state levels accurately, Figure 3.12. The network follows the response 

of the process to the set of steps very well and this suggests that the network has 

learned the transient behaviour of the process. 

The network was then configured in the recursive inodel configuration and the 

signals used above were reapplied to the neural network to evaluate the 

perfonnance as a rectirsive inodel. 
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Figure 3.13 illustrates the response of the process and the neural network 

predictions for the test RAS. As a inodel, the accuracy of the network has 

deteriorated, and this is shown by large errors in the networks response. 

When tested on the PRBS signal the accuracy was not as good as when the neural 

network was configured as a predictor, as the neural network fails to reach the 

upper limits of the PRBS response and there are slight errors throughout the 

predictions, Figure 3.14. The peiTonnance on the set of steps, Figure 3.15, was 

very poor, with large offsets occurring between the required steady state values of 

the process. 
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Figure 3.10 Response of SNDM network tested as a predictor on a random 
amplitude signal 
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Figure 3.11 Response of SNDAI network tested as a predictor on a PRBS signal 

Lower tank level, metres 

------------ process ------------- 
7- model 

6- 

5- 

q, 
F 

4- 

0 1,00 2bO 3- 00 4,00 5'00 doo ý00 DO 
Sample number 

Figure 3.12 Response of SNDM network tested as a predictor on a set of step 
input signals 
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Figure 3.13 Response of SNDAI network tested as a model on a random 
amplitude signal 
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Figure 3.14 Response of SNDAI network tested as a model on PRBS signal 
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Figure 3.15 Response of SNDM network tested as a model on a set of step 
Signals 

3.4.2 FPAIODELI using SEDM 

The saine 1000 input-output data points introduced in section 3.4.1 were again 

employed, the difference being that the data, to be presented to the neural network, 

was spread over 6 nodes using the SEDM technique. 

3.4.2.1 Neural network structure 

As for FPMODEL I the number of input nodes used was four in order to cater for 

the two previous inputs and outputs froin the process being used. One output node 

was required and since each data value is spread over six nodes the resultant 

network had 24 input nodes and six output nodes. Six nodes were used in the 

hidden- layer of the network. The overall neural network topology is shown in 

Table 3.3. 
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Number of input nodes Number off hidden nodes Number of output nodes 

24 6 6 

Table 3.3: Neural network topology for FPMODEL1 using SEDM 

The network had a total of 192 weights (including bias weights) to be estimated 

and the 1000 input-output data points used for training was adequate. 

3.4.2.2 Trainiiip_ the neural network 

The learning rate and momentum parameters were set to the saine values used for 

the network trained using SNDM conditioning, Table 3.2. Figure 3.16 indicates 

that the optimum amount of training to give the network was that of 300 complete 

passes of the training data set, and network training was tenninated at this point. 

Figure 3.16 also illustrates that if the network is tested in the predictor 

configuration during lietwork training that the MSE continues to reduce as was 

illustrated for the SNDM network. 
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Figure 3.16 Termination of network training 

3.4.2.3 Validation of the trained neural network 

When tested on the same RAS that the network was trained on, the predictions of 

the neural network were very accurate as expected. 

Figures 3.17 and 3.18 illustrate the accuracy of the neural network when tested on 

a different RAS and a PRBS signal respectively. In both cases the networks 

predictions accurately match the response of the simulated dual tank liquid level 

system, with respective MSE of 0.00 12 for the RAS and 0.00096 for the PRBS. 

The network's output for the set of step inputs is shown in Figure 3.19. The result 
is very similar to the one obtained for the SNDM network. Two steady state values 
have been learned accurately, but at steady state values at tile top and bottom of the 

waveforin there is slight errors between the predicted and actual process steady 

state levels, although these errors are smaller than was observed for the SNDM 
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network. Figure 3.20 indicates that in the model structure and tested on a new RAS 

the predictions are very good. 

Figures 3.21 and 3.22 illustrate that the response of the network in the model 

structure, when tested on the PRBS and set of steps, is virtually the sarne as when 

the network was tested in the predictor structure with a high degree of accuracy 

obtained. The steady state offsets for the set of steps Figure 3.22, are much smaller 

than that which was observed for the SNDM network in the model configuration. 

Lower tank level, metres 
81 

------------ process 
model 7- 

I'o ýo ýo ýo ýo 40 ýo ýo ýo 100 
Sample number 

Figure 3.17 Response of SEDM network tested as a predictor on a random 
amplitude signal 
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Figure 3.18 Response of SEDM network tested as a predictor on PRBS signal 
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Figure 3.19 Response of SEDM network tested as a predictor on a set of step 
input signals 
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Figure 3.20 Response of SEDM network tested as a model on a random 
amplitude signal 
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Figure 3.21 Response of SEDM network tested as a model on a PRBS signal 
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Figure 3.22 Response of SEDM network tested as a model on a set of step 
inputs 

3.4.3 Summary 

The ability of a neural network to accurately capture the dynarnics of the dual tank 

liquid level process has been investigated. Two forms of conditioning the data 

presented to the neural network namely SNDM and SEDM were investigated, and 

the ability of the trained neural networks to predict the process output in both the 

predictor and recursive model configurations were illustrated. It is concluded from 

the above that when the neural networks are configured as a predictor, both the 

SNDM and SEDM techniques result in networks that are accurate at predicting the 

process performance. However, when configured as recursive models the neural 

network trained using the SNDM fails to be able to accurately predict the process 

performance, whereas the network trained using the SEDM technique has 

comparable results to when it was tested in the predictor structure. Since the use of 

71 



Proccss Modelling And Validation In Simulation 

the neural network in the model configuration is highly desirable, then using the 

SEDM technique is advantageous. Although network complexity is increased using 

this inethod of coding, the network required fewer hidden nodes than the SNDM 

network. Also, as shown in Figures 3.9 and 3.16 the network's MSE using the 

SEDM method is much sinaller than that of the SNDM network, and that the 

network had converged in 300 passes compared to 700 passes for the SNDM 

network. In view of the above points all future process identification carried out 

uses the SEDM method. 

The mathernatical model of the real laboratory scale process (FPMODEL2) was 

then simulated in ACSL to obtain training and testing data sets, and the procedures 

described in the above sections to obtain an accurate neural network process model 

using SEDM were applied. 

3.4.4 FPMODEL2 using SEDINI 

FPMODEL2 was implemented into an ACSL program and simulation studies were 

carried out. This model was simulated since it has been demonstrated that it is a 

close match to the real process (section 3.2.2.1), and lience if a neural network is 

capable of modelling FPMODEL2 then transfer to the real process should be 

smooth. The RAS used to excite the process was generated in the same way as in 

the previous simulations, with random values between -50 and +50 added to the 

steady state valve input of 150. This enabled the digital number to the valve to 

range between 100 (fully closed) and 200 (fully open). The period between 

successive updates of the RAS was set at one sample. 
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3.4.4.1 Neural network structure 

The neural network structure used in section 3.4.2.1 was retained, Table 3.3 shows 

the number of processing units used. 

3.4.4.2 Training the nenral network 

Data presented to the neural network was conditioned using the SEDM method and 

the parameters of the back propagation algoritlim were set at 0.9 for the learning 

rate and 0.6 for the momentum, and as training proceeded these values were 

reduced as shown in Table 3.2. The network's generalisation started to deteriorate 

after approximately 350 presentations of 'data set one' and network training was 

terminated at this point. 

3.4.4.3 Validation of the trained neural network 

The neural network was tested as before on the set of test signals listed in section 

3.3.4, and the prediction perfonnance in both the model and one-step-alicad 

predictor configurations was noted. Figures 3.23 to 3.25 illustrate the accuracy of 

the neural network when tested in the predictor configuration. In each of the three 

figures the neural network predictions for the RAS, PRBS and step input are in 

very accurate agreement with the response of the process output. 

Configured in the recursive model structure the neural network's predictions of the 

process output are illustrated in Figures 3.26 and 3.27 for the RAS and PRBS 

respectively and Figure 3.28 for the step input. The accuracy of the predictions is 

not as accurate as when configured in the predictor structure as indicated by the 

MSE of each of the responses, but is significantly higher than would be obtainable 

using a SNDM network. 
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Figure 3.23 Response of SEDM network tested as a predictor on a random 
amplitude signal 
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Figure 3.24 Response of SEDM network tested as a predictor on a PRBS 
signal 
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Figure 3.25 Response of SEDM network tested as a predictor on a set of step 
input signals 
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Figure 3.26 Response of SEDM network tested as a model on a randorn 
amplitude signal 
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Figure 3.27 Response of SEDM network tested as a model on a PRBS signal 
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Figure 3.28 Response of SEDM network tested as a model on a set of step 
input signals 
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3.5 PROCESS SIMULATIONS WITH MEASUREMENT NOISE 

The presence of simulated process noise added to the measurement of the height of 

liquid in tank 2 makes the problem of modelling the process more realistic, since in 

practice the measurements taken froin the laboratory scale liquid level process, and 

in general from most processes will contain noise as an integral pall of the 

measured value. 

The simulated noise added to the process output was Gaussian in nature and was 

generated using a function available in ACSL. The signal to noise ratio (SNR), was 

calculated using equation 3.9 

SNR = 20loglo 
(Th2 

dBs 
(Te 

(3.9) 

where (Th2 and cye are the standard deviations of the process Output 112 and the 

noise. The standard deviation of the noise was chosen so as to obtain a SNR of 

20dBs. The studies were carried out on FPMODELI using SEDM coding of the 

data. 

3.5.1 FPINIODELI usini! SEDM 

The simulation data used in the previous sections was generated again and at each 

sample period the process output was disturbed with noise. The standard deviation 

of the noise in both data sets was the same but the random noise values were made 

different by the initialisation of the seed of the random number generator available 

in ACSL. 
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3.5.1.1 Neural network structure and trainins! 

The topology of the SEDM network used in section 3.4.2.1., Table 3.3, was 

retained. Testing the neural networks generalisation capability at various stages of 

the training resulted in the neural network having the training data passed through 

it 600 times, Figure 3.29. 
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Figure 3.29 Termination of network training for network trained with noisy 
data 

3.5.1.2 Validation of the trained neural network 

The neural network trained with measurement noise superimposed onto the process 

output was evaluated in both the predictor and inodel configurations, on the test 

signals. In addition the frequency response of the neural network around linearised 

operating points was also investigated and compared to the frequency response of 

FPMODELI around the saine operating points. 
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Figures 3.30 to 3.32 show the response of the neural network compared to that of 

the true process output (the process output witliout tllc nOise superimposed), when 

in the predictor structure. The predictions of the neural network are slightly less 

accurate than the neural network trained without noise, (section 3.4.2), but are still 

acceptable. 
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Figure 3.30 Response of SEDM network tested as a predictor on a random 
amplitude signal 
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Figure 3.31 Response of SEDM network tested as a predictor on a PRBS 
signal 
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Figure 3.32 Response of SEDM network tested as a predictor on a set of step 
input signals 
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Figure 3.33 Response of SEDM network tested as a model on a random 
amplitude signal 
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Figure 3.34 Response of SEDM network tested as a model on a PRBS 
signal 
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Figure 3.35 Response of SEDM network tested as a model on a set of step 
input signals 

As a model, the response of the neural network to the saine signals is illustrated in 

Figures 3.33 to 3.35. The maximum error between the predicted and actual output 

for these tests was 4% which is well below the level of noise in the data and 

illustrates the good noise rejection properties of neural networks. 

The frequency responses of FPMODELI and the neural network around two 

operating regions are shown in Figure 3.36. Figure 3.36 illustrates the amplitude 

and phase responses for the liquid level in tank two at 5m and also when the liquid 

level was perturbed around 3.2m. The figure illustrates that both the phase and 

amplitude of the neural network are in good agreement with that of the process, 

and this further supports the ability of neural networks to identify the non-linear 

process. 
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Figure 3.36 Frequency and phase responses about linearised operating points 

3.6 SUMMARY 

Tile ability of a neural network to represent a simulation of a non-linear dual tank 

liquid level system has been denionstrated. It has been shown that SEDM has 

greater accuracy over SNDM. A first principle model of the laboratory process was 

obtained and validated against the laboratory process by subjecting both to a 

number of input test signals and comparing their responses. 

A number of practical aspects have been discussed, involving the sampling time 

and the process excitation signal required in order to successfully identify a process 
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using a neural network. The arnount of training data required to train a neural 

network was also considered, with techniques used in linear systerns identification 

being deliberated. 

The more realistic case of process noise disturbing the reading of the height of 
liquid in tank 2 was investigated, and it was demonstrated that a neural network 

trained with noisy data using the SEDM technique was still capable of inaking 

accurate predictions in both the one-step-ahead predictor and recursive model 

configurations. Frequency responses around linearised operating regions for both 

the trained neural network and FPMODELI were taken, and the results indicated 

that the neural network had learned the process dynamics accurately. 
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CHAPTER 4 

ANN MODELLING OF THE LABORATORY PROCESS 

4.1 INTRODUCTION 

Chapter 3 demonstrated the feasibility of using the MLP neural network, in 

conjunction with the SEDM inethod of conditioning the data to obtain an accurate 

model of the non-linear dual tank liquid level system over a wide operational 

region in simulation. This Chapter applies the techniques used and the insights 

gained in Chapter 3, to obtain a neural network model of the real dual tank liquid 

level system available in the control systems laboratory. 

The dual tank liquid level process rig and necessary equipment used in con unction. j 

is described. Characteristics associated with real processes, including the liquid- 

level process, not present in the simulations are also considered. 

The prediction performance of trained neural networks is evaluated using the three 

test signals used in Chapter 3. The correlation based tests described in section 2.5.1 

are also implemented to fin-ther justify the overall network performance. Tile 

practical problem of outliers in the real process data, and the effects that these can 
have on the correlation based model validity tests are also addressed. 

4.2 THE LABORATORY PROCESS 

The dual tank liquid level system available in the laboratory for on-line 
investigations is illustrated in Figure 4.1. Both of the process tanks are made of 

plexiglass cylinders 1.2 m in height, cross-sectional area 0.01474 m2 and a liquid 
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capacity of 20 litres. All of the pipe work is standard 25.4 inin copper, with manual 

valves inserted at the outlets of each of the tanks (iO+m, l), and also at the outlet of 

the process pump (ml) in order to set liquid flow rate at these points as required. 

The process rig includes industrial standard actuator and sensor equipment which is 

described in the following sub-section. 

Tank 1 

P1 Pneumatic control valve 
I/P Current-to-pressure converter 
P/I Pressure-to -current converter 

Figure 4.1 The laboratory dual tank liquid level process 
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4.2.1 Process equipment 

Only the height of liquid in tank t-wo is measured, the height of liquid in tank one is 

assumed to be immeasurable. A differential pressure (D/P) cell measures the 

pressure at the bottom of tank two, which is linearly related to the height of liquid. 

The pressure reading output from the D/P cell is fed into the input of a pressure to 

current (P/1) converter, and the current is then transformed to a voltage level 

between Ivolt and 5volts before application to the input of the analogue to digital 

converter (ADC) situated in the computer. 

The output froin the computer is a digital number which is converted via the DAC 

into a voltage between I volt and 5 volts. This is then changed into a current in 

order to drive the current to pressure (I/P) converter. The pressure from the I/P 

converter is used to activate the pneumatic control valve, which controls the flow 

of liquid into the top tank. The I/P converter and process valve were calibrated 

such that a digital output number of 100 from the computer closed the process 

valve, and a number of 200 fully opened the process valve. The digital numbers 

output to the process valve were integer values between this range. 

The liquid, contained within a reservoir, is pumped into the system by a 'Stuart' 

pump which can be operated continuously for a maxilnuin of 3 hours within any 24 

lionr time period. This manufacturer's time limit on the use of the purap restricts 

the amount of data acquisition that can be inade in a single process nin, and the 

implications of this are discussed in section 4.2.3. 
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4.2.2 Features of the real process 

The first principle inathematical model obtained of the real process in Chapter 3, 

and used in simulation studies into obtaining a neural network model of the process 

gives a good insight into the capabilities of the MLP, but cannot fully justify the 

ability of the neural network to accurately model a real non-linear process. This is 

because for real processes certain phenomena exist that are rarely included in 

simulation studies, and in some instances it may be very difficult to represent these 

phenomena in a simulation program. The diial tank liquid level process, although 

not complex in nature, exhibits features that are characteristic of many industrial 

processes. These include: 

1) Noisy and quantised measurement of the bottom tank level, 

2) Non-linearities. These are mainly due to a square root relationsIlip between the 

outflow rate and level of liquid in eacli tank, and valve stiction, 

3) Disturbances, e. g. occasional fluctuations in the pump speed, 

4) Time variations on a run-to-run basis, e. g. the same process input can cause 

different steady state levels in the tanks, 

5) Industrial standard actuator aud sensor bardware, 

6) Ali unineasured process state, the level of liquid in the top tank. 

The above features enabled a thorough practical investigation of the ability of the 

MLP neural network to model real processes. 

4.2.3 Data acquisition 

Software for data acquisition was written in the Microsoft Quick BASIC 

prograinining language. Routines were developed to transform the digital number 
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read into the computer to the corresponding liquid level in the bottom tank, and 

also so that the required input test signals could be applied to the process. Tile 

technique used to excite the process over a wide operational region in order to 

obtain training data for a neural network was the saine as used in section 3.4.4. Tile 

steady state level of the liquid in tank 2 was 0.56 in for a digital number of 150 

output to the process valve from the computer, and this value was used for the 

initial start up of the process. The RAS used to excite the process was generated by 

the uniform randoin number generator function available in the Quick BASIC 

language. The range of randoin numbers generated was between -50 and +50, 

which were -added to the steady state digital output number at each sample time. 

The range of numbers generated covered the operating range of the process valve 

(100 to 200) and enabled the process to be thoroughly excited in its operational 

range. 

Selection of the sampling period for measuring the height of liquid in the bottorn 

tank and applying the input test signal was as described in section 3.3.1, and 

resulted in a sampling period of 0.6 minutes. 

The amount of data that the process could provide in order to form both a training 

and a testing data set was restricted by a maximum operational time. Unlike the 

simulation studies where there was no fixed limit on the amount of data obtainable, 

the real dual tank liquid level process could only be operated for a maximum 
duration of 3 hours in the fixed period due to the continuous running time rating of 

the process pump. The implication of this is that the amount of data available from 

the process in a single run is a function of the sampling period. Since the sampling 

period was set at 0.6 minutes, the upper limit on the -amount of data that could be 

collected for any single process run was 300 input-output sampled data points. 
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4.3, DEVELOPiNIENT OF THE NEURAL NETWORK MODEL 

Two sets of data were obtained frorn the process in order to develop a neural 

network inodel of the process. The data sets were obtained by exciting the process 

with two different RAS's on consecutive days. As with the simulation studies one 
data set was used to train a lIeUral network and the other to test the networks 

generalisation capabilities at various stages of the training to determine an optimal 

point to tenninate network training. The overall structure, training and validation of 

the neural network model of the liquid level process is described in this section. 

4.3.1 Neural network structure 

The input-output structure of the neural network was kept the same as that used in 

the simulation studies described in Chapter 3, which was 24 input nodes to 

accommodate two past process inputs -and two past process outputs spread over six 

nodes each, and six processing units in the output layer of the network, the overall 

network topology is shown in Table 4.1. 

Number of input nodes Number of hidden nodes Number of output nodes 
24 6 6 

Table 4.1: Neural network topology 

The structure of the neural network was retained since it was demonstrated in the 

simulation studies that an accurate mathematical model of the process rig had been 

obtained, and the above inentioned structure was the optimum one. Following a 

similar approach to that described in section 3.4.1.1, the 'best' number of 
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processing units used in the hidden layer was found through experinientation. 

When only one processing unit was used in the hidden layer the network failed to 

converge and above fifteen units the networks convergence time increased 

significantly. Six processing units in the hidden layer, which was the same amount 

in the neural network structure used to inodel FPMODELI, when the SEDM 

technique was employed (section 3.4.2), was found to give the best results. 

4.3.2 Training the neural network 

The application of the first RAS to the process valve on the laboratory liquid level 

process excited the liquid level in tank 2 over a range of 35.83 to 81.00 cins, and 

the second RAS applied to the process valve excited the level over the range 35.34 

to 83.72 cins. The input-output data set obtained using the second RAS referred to 

as 'data set two' was*used to train the neural network and the generalisation of the 

network at various stages of the training was evaluated using the input-output data 

set obtained from the introduction of the first RAS to the process, referred to as 
'data set one. Data set two was chosen as the training data set since it spanned a 

wider range than data set one. Both input-output data sets were conditioned to lie 

in the range 0.1 to 0.9 using the Spread Encoding Data Mapping technique before 

presentation to the neural network. 

As in all the previous neural networks used in the simulation studies, the weights 

were all initialised to random values before network training proceeded. The values 

of the gain and momentum tenns in the back propagation algoritlim were set as 

shown in Table 3.2. 

Figure 4.2 illustrates the MSE of the network output predictions when tested in the 

model configuration on data set one at various stages of the network training. The 
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neural network training was tenninated after 400 passes of data set two which was 

considered to be an optimum point. 

Mean squared error 

8 

6 

4 

2 

0 100 200 300 400 500 C)()0 7M 900 

Number of passes of training data 

Figure 4.2 Termination of network training 

4.3.3 Network validation 

Two types of validation of the neural network model were undertaken to fully 

verify the network's ability to emulate the liquid level process dynamics. As was 

conducted in the simulation studies, the model was subjected to. the set of test 

signals discussed in section 3.3.4 and the network predictions in both the one-step- 

ahead predictor and recursive model configurations were compared to the response 

of the actual process. An alternative form of validation was also performed which 

would detect if the resulting neural network model provided an adequate fit to the 

liquid level process. The test, a correlation based one, was fully described in 

section 2.5.1 and is based upon the idea that if the neural network model of the 
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process is an adequate one then the tests performed by equations 2.19 to 2.23 

should hold. 

4.3.3.1 Validation using the test sij! nals 

Figures 4.3 to 4.5 illustrate the predictions of the neural network inodel when 

configured in the onc-step-abead predictor niode and tested on the RAS, PRBS and 

set of step inputs. Only the first 100 points of the total 300 data froin the 

experiment are shown for clarity. In all of the three cases the response of the neural 

network accurately inatclies that of the liquid level process output. 
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Figure 4.3 Response of network tested as a predictor on a random amplitude 
signal 
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Figure 4.4 Response of network tested as a predictot- on a PRBS signal 
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Figure 4.5 Response of network tested as a predictor on a set of step input 
signals 
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Configured in the recursive model inode the response of the neural network to the 

RAS input is shown in Figure 4.6. The prediction accuracy was slightly less than 

that of Figure 4.3 but was still acceptable. 

Figure 4.7 shows the responses of the process and the neural network inodel when 

subjected to the PRBS signal, it can be seen that the model response is quite 

accurate. The results of the step response test are illustrated in Figure 4.8, and 

again it is demonstrated that accurate network predictions have been achieved. 
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Figure 4.6 Response of network tested as a model on a random amplitude 
signal 
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Figure 4.7 Response of network tested as a model on a PRBS signal 
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Figure 4.8 Response of network tested as a model on a set of step input 
signals 
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Figures 4.7 and 4.8 also serve to illustrate the time varying dynamics of the liquid 

level process. These figures show that for both test signals the licight of liquid in 

t-ank 2 reaches different levels for the same signal level input, and is particularly 

apparent at the extreme levels attained by the process. In contrast the neural 

network model consistently reaches the same level for the test inputs which is as 

expected from a static process model. 

4.3.3.2 Validation usiniz correlation based technioues 

These tests indicate if the neural network model is an adequate representation of 

the underlying process. The tests can also indicate if the network model structure 

contains the correct input node assignments, i. e. that no past process input or 

output samples have been disregarded from the model that should have been 

included (BILLINGS et al., 1992). It was found in this study that the tests are 

sensitive to data anomalies that occur in practice due to process disturbances. 

These data anomalies, commonly known as outliers, are characterised by large 

spikes in the prediction error sequence. If the tests are performed without taking 

outliers into consideration then misleading results may be obtained as demonstrated 

below. 

The first test, ý.. 
, 
(u) described by equation 2.19, was performed on the prediction 

errors obtained by testing the neural network in the one-step-ahead predictor mode 

on the training RAS. Figure 4.9 illustrates the result of this test where it is clearly 

seen that the correlation is outside the 95% confidence limits at lags r=-2, -1,1,2 
indicating that the resulting model fit is inadequate. On examination, the prediction 

errors were found to have several points where it was considered that an outlier had 

occurred. The method used to remove outliers was to set a threshold error level, 
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with any errors above the threshold being set to zero. The threshold level used was 

3 times the standard deviation of the prediction error sequence and this removed 

five outliers from the 300 points in the data set. Figure 4.10 illustrates the result of 
the first test ý.. 

, 
(u) after the outliers had been removed which clearly shows that 

the test is now satisfied. 
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Figure 4.9 Second order model test result for 
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Figure 4.10 Second order model test result for after removal of outliers 

98 



ANN Modelling Of The Laboraton, Proccss 

The remaining four tests, equations 2.20 to 2.23, were carried out with the outliers 

removed from the prediction error sequence and the results of the tests are shown 

in Figures 4.11 to 4.14. In each case, the trained neural network satisfied the 

requirements of the test further supporting that the neural network model structure 

chosen was adequate for representing the input-output dynamical structure of the 

dual tank liquid level process. 

ýUJ, I) 
JL 
0.6 
0.4 
0.2 

0 ---------------------- -- ------------ 

-0.2 -31- 
ý- 

--------- 
-0.4 
-0.6 
-0.8 

Ar 
-30 -20 -to 0 110 20 30 

Lag 

Figure 4.11 Second order model test result for ýuju) 

2 
r(O 

O. d 
0.6 
0.4 
0.2 

0 

-0.2 
-0.4 
-0.6 
-0.8 

-1 
Lag T 

Figure 4.12 Second order model test result for ýt, 2 
. 
(, E) 

ti 
2 
r- 
2(r) 

OR 
0.6- 
0.4- 
0.2- 

0- 

-0.2- 
-0.4- 
-0.6- 
-0.8- 

-1 
-30 -20 -10 Lag 

0T to 20 30 

Figure 4.13 Second order model test result for ýt, 2 
F 
2(, [) 

99 



ANN Modelling Of The Liboratorv Process 

k(cll)(T) 

0 
Lag -C 

Figure 4.14 Second order model test result for 

In order to fully justify the use of two past process inputs and outputs as the choice 

of inputs to the neural network, two other structures were trained and tested on 

"data set two" obtained from the process. The number of inputs to the neural 

networks were chosen on the basis of a first order model and a third order model. 

The remaining network topology was retained, which was six processing units in 

the hidden layer and six processing units in the output layer. The networks training 

was terminated when both networks gave acceptable MSE's when tested on "data 

set one". The prediction errors and process input data for each model were then 

formed in order to perform the correlation based tests. Both of the data sets were 

normalised and any outliers in the prediction error sequence were removed. 

The model structure of the neural network configured as a tbird order model was 
firstly evaluated. Figures 4.15 to 4.19 illustrate the results for the third order model 

when the five correlation based tests were performed, it can be seen that all the 

tests were satisfied, indicating that the resulting neural network model is an 

-adequate representation of the liquid level process. The network was also tested on 

the set of test signals discussed in section 3.3.4 and accurate network predictions 

were obtained. 
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When the neural network configured as a first order model was subject to the 

correlation based tests the indication was that the model was all inadequate 

representation of tile process. The results of the tests are shown it) Figures 4.20 to 

4.24. Although three of the tests are within the 95% confidence limits, Figures 4.21 

and 4.23 are well outside of these limits. When the neural network was tested oil 

the set of test signals, the prediction accuracy of the network was very poor in the 

one-step-ahead prediction configuration which also confirmed tile results of all 

inadequate model fit. 
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Figure 4.24 First order model test result for 

When the correlation tests were performed on these two networks it was expected 

that the neural network configured as a third order input model would pass the 

tests. This was because the correlation tests detect if any lagged inputs are missing 
from the model and it had already been shown that a network configured as a 

second order input model was adequate for modelling the process, and these inputs 

were present in the third order model. 
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The results of these tests serve to demonstrate that any initial knowledge about the 

process under investigation should be used to formulate the input structure of a 

neural network model, as this will lead to the faster development of a neural 

network inodel capable of predicting accurate process performance. 

4.4 SUINIINIARY 

The feasibility of using a neural network to model a real laboratory scale process 

has been demonstrated. The data was obtained from the process and then used to 

train a neural network off-line. The non-finear process considered contained 

industrial standard sensor and actuator equipment inaking the process an ideal test 

bed on which to investigate the application of a neural network. 

Although only 300 input-output data points were obtainable from the process in 

any one experimental nin, compared to the 1000 used in the simulation studies, 

this did not cause any problems in the training of the neural network. 

The neural network model of the process was thoroughly evaluated against the 

laboratory process using a set of test signals in both one-step-ahead predictor and 

recursive model configurations and it has been shown that, for both modes of 

operation, acceptable prediction accuracy was achieved. The process model input 

structure was also shown to contain the correct number of lagged process inputs 

and outputs using a correlation based technique. When using this method it is 

important to consider any outliers present in the prediction error sequence as these 

can have adverse affects on the results as was demonstrated. 
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The results presented in this chapter are very encouraging and demonstrate the 

ability of the MLP neural network to model a physical process. The use of this 

non-linear model should aid considerably in improving the control of the process 

and this is investigated in Chapters 5 and 6. 
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CHAPTER 5 

CONTROL STRATEGIES AND CONTROL SIMULATION STUDY 

5.1 INTRODUCTION 

This chapter describes the inclusion of the neural net-work process model, 

developed in the previous chapters, into a control scherne. Several strategies exist 

that utilise a process model as an integral part and a choice has to be made as to 

which is most suited. The first section of this chapter reviews the main control 

scheines available to the designer and reported applications of the illethods. In. a 

number of the control strategies an inverse model of the process plays an finportant 

role. Hence, a brief section oil obtaining inverse models via a lieural network 

approach is presented along with a discussion oil the viability of an inverse model. 

A detailed discussion of the control strategy that was implemented in this research 

is then presented along with results obtained in the process control simulation 

studies. Finally comparisons between a conventional three terni (PID) controller 

and the chosen neural network based control strategy are investigated. 

5.2 CONTROL STRATEGIES 

Many control strategies exist wbere a parametric model of a process is included as 

a main part of the overall control structure. RecentlY a number of control strategies 

have been proposed where, in place of the standard parametric models (e. g. ARX 

and NARX), a neural network is used. The parameters then to be estimated are the 

weiglits within the neural network. It has also been suggested and demonstrated 

diat, as well as replacing the process model with a neural network, the controller 
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can also be represented with a neural network (PSALTIS et al., 1990; CHEN and 

PAO, 1989; UNGAR et al., 1990; NARENDRA, 1990; BARTO, 1990). 

In a number of control strategies the neural network model of the process is used 

to obtain the parameters (weights) of the neural network controller. When this 

method of obtaining the controller is used, the requirement of obtaining an accurate 

neural network process model is of paramount importance since if a poor process 

model is used in the chosen control strategy then an inadequate controller can be 

expected, resulting in overall poor control performance. In this work only the main 

control structures using neural networks that have been proposed were considered. 

5.2.1 Model reference control 

This control structure has been studied extensively by Narendra and Parthasarathy 

(1989) and is illustrated in Figure 5.1. 

effor c 

eiTor cI 

Figure 5.1 Model reference control structure 
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The objective is to train the neural network controller so that the control signal 

presented to the process causes the process output, y(t), to inatch the output of a 

pre-specified reference inodel. 

The first step in implementing the control scheme is to obtain a neural network 

model of the process. This iTiodel is then used to find the controller error during 

training which in turn is used to update the controllers weights. This method of 

obtaining a neural network controller is known as indirect control and is required 

since there are no methods at the present time of updating the controllers weights 

based solely on the output error between the process and the reference model. The 

overall approach involved will attempt to force the neural network controller to be 

an inverse model of the process modified by the choice of reference model. This 

leads directly to the reliability of obtaining an inverse process model which is 

considered in section 5.3. The research by Narendra and Parthasarathy was 

conducted on a number of assumed single input, single output discrete time models 

of processes. The process models used were taken from general models which have 

been used for the identification of linear systems and were generalised to non- 

linear systems. 

Sartori and Antsaklis (1992) also used a model reference control strategy on a 

number of simulated control problems. The method used to obtain the neural 

network controller was specialised inverse modelling described in section 5.3.2. 

5.2.2 Direct Inverse control 

Figure 5.2 illustrates the basic idea behind direct inverse control. The objective is 

to train a neural network to be the inverse of -a non-linear process and then use this 

network in place of a standard controller as illustrated. If the neural network is a 
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true inverse of the process then an identity mapping will exist between the input 

and output of the overall control sclierne. 

Set_., process 
point inverse 

U 
process 

k-Y 

Figure 5.2 Direct inverse control structure, 

When obtaining the neural network inverse model of the process either the process 

itself can be used or if a neural network model of the process has already been 

obtained then this can be used in place of the actual process. Direct inverse control 

relies on an inverse model being obtainable and, since the scheme does not include 

any feedback this leads to questions about the overall robustness of the control 

structure. 

Direct inverse control was investigated in simulations by Psaltis et al. (1988) and 

Elsley and Lan (1988), the foriner applying it to a robot in order to convert polar 

co-ordinates to Cartesian and the latter to problems of controlling a robot ann. The 

technique has also been applied on-line to a temperature control systein (KHALID 

et al., 1992). Klialid et al. investigated the response of the control scheme to set 

point changes in temperature and also when load disturbances were artificially 
introduced to the process. Overall good set point tracking was obtained along with 

good load rejection properties when the range of the disturbance was ± 30C. 
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5.2.3. Internal model control 

This control structure relies on both a model of the process, sometimes called a 

forward model, and also an inverse process model. The control structure has been 

studied extensively for single input, single output linear discrete time systerns 

(GARCIA and MORARI, 1982) and the ANN structure is illustrated in Figure 5.3. 

The approach of applying Internal Model Control, IMC, to the control of non- 

linear processes by replacing the standard linear models with neural networks has 

been investigated by Ungar (1990) who applied IMC to a simulation of a 

continuous flow stirred tank reactor. 

Hunt and Sbarbaro (1991 and 1992) investigated IMC applied to the control of a 

pH process, and also to a discrete time process model proposed by Narendra and 

Parthasarathy (1990), the process model chosen was monotonic with respect to the 

process input and lience was invertible. Both of these investigations were 

perfonned in simulation. 
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Figure 5.3 Internal inodel control structure 
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Two steps are usually involved in the method, the first step involves obtaining a 

neural network model of the non-linear process and the second step is to train a 

network to be the inverse of the process. The inverse model is then used as the 

controller. Either the process or the neural network inodel of the process obtained 

in the first step can be used to obtain the inverse inodel. In some situations it is 

advantageous to use the neural network model, as discussed in section 5.3. 

In general the model of the process will not be an exact replica and process model 

mismatch will occur, this is accoim-nodated for by the use of a filter in the control 

scheme, -as shown in Figure 5.3, which makes the system robust to the mismatch 

(MORARI and ZAFIRIOU, 1989). 

5.2.4 Predictive control 

A neural network predictive control scheme is illustrated in Figure 5.4 and is seen 

to consist of a neural network process model, a non-linear optimiser, delay and 

filter blocks. The objective is to use an algoritlim in the non-linear optimiser that 

computes future controller outputs which ininimise deviations between the process 

output and the required set point. The structure of the control scheme enables 

multi-step-ahead predictions to be performed which has the advantage of 

anticipating where the process output is 'heading'. Thus the scheme enables early 

corrective action to process disturbances and good set point tracking to be 

achieved. 

Bliat et al., (1989) investigated the technique in order to find process inputs that 

would minimise the error between required and predicted pH values in a simulated 
CSTR. The predictive control scheme was also used to obtain a controller capable 

of backing a simulated trailer truck to a loading dock (NGUYEN and WIDROW, 
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1990). Willis et al., (199 1) used a neural network model of a non-linear exothennic 

CSTR studied by Econornou and Morari (1986), to investigate the control scheme. 

The control of an inverted pendulum via a neural network model approach was 

examined using the predictive control scheme by Fong and Loh (1991). Multi-step- 

ahead predictions were performed with a prediction horizon of 100. The simulation 

studies revealed slight offsets in the required upright position but overall good 

control perfonnance was obtained. 
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Figure 5.4 Neural predictive control structure 

y 

The main advantages of this control scheine are that an inverse model of the 

process does not have to be found and inultiple-step-ahead predictions can be 

perfornied. Process constraints can also be included in the scherne by appropriate 

modifications of the optimisation cost function. 
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5.3 INVERSE MODEL IDENTIFICATION 

From the control scheines described in section 5.2 it is evident that tile majority of 

the schemes are dependent upon all inverse model of the process being obtainable. 

In order to obtain an inverse model two inethods have been proposed and these 

methods are now discussed. 

5.3.1 Direct inverse modellin 

This approach to obtaining an inverse process model using a neural network is the 

simplest approach and is illustrated in Figure 5.5. 

Figure 5.5 Direct inverse modelling 

An input is applied to the process and a corresponding output is produced, this 

output is then fed to the input of a neural network together with lagged input- 

output data and the output of the network is compared to the process input to 

produce an error signal. This error signal is then used to update the weights of the 

neural network. The scheme will clearly attempt to force the neural network to be 

the inverse of the process. The disadvantage of this method is that the scherne is 

not goal directed (JORDAN and RUMELHART, 1991), thatis to say that the 
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training input data for the network does not correspond to the actual required 

response. 

5.3.2, Specialised inverse inodellin2 

Specialised inverse modelling (PSALTIS et al., 1988) overcomes the disadvantage 

associated with direct inverse modelling by placing the neural network inverse 

model ahead of the process and using the error between the process output and the 

required output to update the weights. Using the method proposed by Psaltis et al., 

requires a knowledge of the plant Jacobian in order to adjust the network weights. 

A scherne proposed by Jordan (1988) incorporates a neural network model of the 

process into the learning scherne and is illustrated in Figure 5.6. 

set 

Figure 5.6 Specialised inverse modelling 

The method then used to obtain the error in order to update the controller weights 

is to back-propagate the overall -process output error back through the' forward 

neural network process model. This then results in the error at the output of the 

controller which in turn is used to update the controllers weights. This method is 

the same as that proposed by Werbos (1974) which was called 'back propagation 
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through the model'. This observation leads to another advantage of specialised 

inverse modelling over the direct inverse approach in that it can be used on-line to 

train a controller. This scheme is very similar to the model reference control 

structure (compare Figures 5.6 and 5.1) and in fact is identical if the reference 

model in Figure 5.1 is the identity inapping. 

5.3.3 Viability of an inverse inodel 

When obtaining an inverse process model it is very important to consider the 

process being modelled. Since the overall performance of the control scheme will 

be a function of the accuracy of the inverse model the ability of obtaining the 

process inverse has to be considered. If the process under investigation does not 

have a one to one inapping then an incorrect inverse model will result leading to 

incorrect control. 

5.4 CHOICE OF ANN CONTROL STRATEGY 

As described in section 5.2 there are a number of control strategies within which a 

neural network model of a process can be used. In this research the control 

structure to be investigated was neural predictive control. There were a number of 

reasons for this choice which are now described. 

The neural predictive control strategy only requires a neural network model of the 

process which had already been obtained. It has also been illustrated that using the 

SEDM method of conditioning the process data, when training the neural network 

model of the process, that accurate process predictions were obtained when the 
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network was used recursively. Hence, the network will be ideally suited in the 

control structure when multi-step-ahead predictions are performed. 

The reqnirenient of not having to obtain in inverse process inodel also suits the 

control structure to control highly non-linear processes as occurs, for example, in 

the chemical industries. The use of feedback in the predictive control strategy 

accommodates for plant-model mismatch which makes the scheme inore robust 

than other schemes without feedback stich as direct inverse control. 

A possible disadvantage of the neural predictive control scheme is that a non-linear 

optimisation algorithin is required to solve the required input to the process, and 

this possibly makes the scheme more computationally demanding over the other 

methods described. However, there are a number of algorithms available for 

solving the optimisation problem and with the computing power available today 

this should cause little inconvenience. 

5.5 THE ANN PREDICTIVE CONTROL STRUCTURE 

The predictive control scherne investigated in this research is illustrated in Figure 

5.4. The optimiser functions as the controller in the scheme and produces the 

control signal to manipulate the process input. The optimisation algoritlun was 

used to ininimise the following conventional cost function: 

t+N2 2 t+IVU 2 

. I(IVI, IV2, Mu)= E[y, (i)-y. (i)] 
... (5.1) 

i=t+Nl i=t 
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where Yr is the required process output or set point, yu, is the neural network 

model predicted output, u is the process input, NI and N2 define the prediction 

horizon, Nu is the control horizon and X is a sequence of control weighting factors. 

The process data used within the cost finiction is firstly nori-nalised so that both 

terms have equal weighting in the evaluation of JO. Without this step problems will 

occur when the input and output data span a different range. A suitable choice for 

NI is to make it equal to the process delay between input and output, since for a 

process with a delay of k samples between input and output there will be no 

corresponding change in the output for this duration and these computations are 

unnecessary (CLARKE et al., 1987). The parameter N2 is then set to define the 

prediction horizon beyond this point. The optimisation algoritlun is considerably 

simplified if the control borizon Nu is set equal to zero and this was the case 

throughout these investigations. The control weighting factor X is used to penalise 

large changes in the control input and is usually set at a constant in the range [0,1]. 

The feedback loop in the control scheine accommodates for any differences 

between the process output and the model that will occur in practice. The filter 

used in the feedback loop was a unity gain, low pass digital filter as described by: 

ef 1-ß 

1-Ic - 1-ßz-1 
(5.2) 

where ec is the process-inodel inisinatch error, ef is the filtered error signal, 0 is a 

constant parameter ranging between zero and one which affects the tinie constant 

of the filter, and z-1 is the unit delay operator. Equation 5.2 was implemented by 

the difference equation: 
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ef [/]=(I -, 8)ec[t]+pec[f - 1] ... 
(5.3) 

It is seen froin equation 5.3 that as P-> 0 the filtering action is attenuated. As well 

as improving the robustness of the scheine to noise and other disturbances, the 

filtered error is also used to Correct the predictions froin the neural network model, 

for use in the cost function, to achieve zero stead), state offset in the control as 

described by Willis et al., (1992). The value of P was chosen empirically from 

simulation studies to achieve a stable closed loop response without unduly slowing 

down the process response to set point changes. This resulted in a suitable value 

for P==0.8 which corresponded to a filter time constant of approximately 1/(I-D) or 

five sample periods. 

The operation of the neural predictive control strategy is as follows. At each time 

step the process output is sampled and the error and filtered error between the 

process output and the neural network process model is computed. The neural 

network inputs are initialised to current and previous values of the process output 

and input and a chosen value of u(t). The next N2 outputs of the neural network 

model are obtained and the cost function JO is computed. Network initialisation 

and calculation of JO are repeated with different values of u(t), obtained by the 

optimisation algorithin, and the value of tt(t) that minimises the cost function is 

selected and applied to the process input. The sequence of actions is suminarised 
below 

Step 1: Use the neural network inodel of the process to generate the next N2 

predicted process output values. 
Step 2: Obtain the required set point values for the next N2 sample times. 

Step 3: Calculate the predicted deviations from the required set point using the 
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values obtained in steps I and 2 

Step 4: Find the optimal control input u(t) by minimising the cost function J. 

Step 5: Apply u(t) to the process and go back to step I at the next sampling instant. 

The neural predictive control strategy is an extension of the gcneralised predictive 

control algoritinn, GPC, (CLARKE et al., 1987), which in turn is an extension of 

the generalised inininium variance algorithm, GMV, (CLARKE and GAWTHROP, 

1975,1979). GMV and GPC are used in self tuning control systems where 'a linear 

model of the process is estimated at each sample time. The extension of GPC to 

non-linear systerns is implemented by replacing the linear model estimated at each 

sample time with the neural network model of the process. 

The non-finear optimisation algorithin employed to find the value of control input 

that ininimises the cost function was an interval halving one. The algorithin used is 

simple and easy to implement and it is also very stable (LUYBEN, 1973). Other 

non-linear optimisation algorithins exist which are suitable for this task such as the 

Fibonacci search, golden section search and Nelder-Mead (ADBY and 

DEMPSTER, 1974) however the interval halving technique was found to be 

adequate. 

As mentioned in Chapter 3, the range of the digital signals from the computer to 

the process valve are froin 100 to 200. If an exhaustive search were performed to 

ininimise the cost function then this would require the 101 different values of it to 

be implemented in the cost finiction and the cost function evaluated for each. value. 

Using the interval lialving algoritlim results in a maximum of eight values of u 

before the inininnun is found for an initial step size of sixteen which obviously 

speeds tip the computations involved considerably. 
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5.6 NEURAL PREDICTIVE CONTROL SIMULATION STUDIES 

The neural predictive control scheme was firstly implemented in an ACSL program, 

for FPMODEL2 where investigations into the control performance for changes in 

the set point were perfonned. The set point changes in liquid height were such as to 

force the process over a wide region of operation within the range of the identified 

neural network model. The performance of a tuned PID controller was also 

investigated and the ability of the PID algorithin to control the liquid level process 

is presented in section 5.7. 

Initial simulations were perforined for one-step-ahead prediction, resulting in the 

value of N2 in the cost function being set to one, and the effect of changes in the 

weighting factor A. on the process response was observed. Figures 5.7 and 5.8 show 

the results of the simulation of the process, and the control input, when the height 

of liquid in tank two was required to follow a set of step inputs, with A. equal to 

zero and one respectively. With the value of X set equal to one the ability of the 

process to track the set point becomes more sluggish compared to the response of 

the process when X was set equal to zero. The reason for this can be seen when the 

control input to the process valve is observed for both cases. With X equal to zero 

there is no constraint on the control input between its tipper limit (200) and its 

lower limit (100), Figure 5.7. However, with X set at one, large movements of the 

control input a re penalised in the cost function resulting in a high cost value, Figure 

5.8. The resulting control input to the process valve is nevertheless a inore 

desirable one compared to the control input with X equal to zero where it is 

observed that movement in the valve is erratic. A range of different values for 2, 

between zero and one were investigated and the process response and control effort 

were monitored with N2 equal to one. 
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Figure 5.7 Process response and control input, ?, =O and N2=1 
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It was found that as the value of ý. was increased frorn zero to one the process 

response time deteriorated and the control signal to the process valve became 

smoother. Table 5.1 shows the value of X used and the coiTesPonding movement in 

the control input. A measure of the movement in the control input was taken to be 

the control effort (CE) calculated by: 

CE JU(I) - UQ - I)l 
1=2 

where n is the number of samples in the simulation experiment The simulations 

were each of 140 samples duration. 

x control 
e ffo rt, CE 

0.0 1788 

0.2 670 

0.4 392 

0.6 333 

0.8 239 

1.0 187 

Table 5.1 Control effort versus weighting factor, X, for N2 equal to one 

Control of the liquid level process was then investigated with the neural network 

model of the process used to predict multiple time steps ahead. The value of ?, was 

kept at zero and the prediction horizon N2 was set at values of 2,3,4 and 7 sample 

periods corresponding to 1.2 minutes, 1.8 minutes, 2.4 minutes and 4.2 ininutes 

respectively. The required set point was the sarne set of steps as used previously 
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for the one-step-ahead prediction results. Figures 5.9 to 5.12 illustrate the required 

set point for the height of liquid in tank 2,112, and the corresponding response of 

the process for the different prediction horizons as well as the control signal for 

each test. In each case it can be seen that very accurate set point tracking is 

achieved in the steady states and that the process rise time for prediction horizons 

of 2,3 and 4 sample times are all very similar. With N2 equal to 7 the response of 

the process is more sluggish and similar in nature to when one-step-ahead 

prediction was performed with X equal to one. From Figures 5.9 to 5.12 it is seen 

that as the prediction horizon increases the control input beconies smoother in 

nature and that, even with N2 equal to two, the control effort is greatly reduced 

compared to when N2 was set at one, whilst still maintaining an accurate response 

to set point changes. 

When X was set equal to one and the same prediction horizons of 2,3,4 and 7 

were used the ability of the process to follow the set point is illustrated in Figures 

5.13 to 5.16 where the couesponding control input signal is also shown. Table 5.2 

shows the control effort, calculated using equation 5.4, for each of the prediction 

horizons with X set equal to one and zero respectively. 

N2 

Control effort 

A, =0 

Control effort 

X=j 

2 529 316 

3 375 338 

4 295 315 

7 205 207 

Table 5.2 Control effort versus X for various prediction horizons 
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Figure 5.9 Process response and control input, ?, =O and N2=2 
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Figure 5.10 Process response and control input, X=O and N2=3 
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Figure 5.12 Process response and control input, 2%, =O and N2=7 
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Figure 5.14 Process response and control input, A. =l and N2=3 
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Figure 5.16 Process response and control input, X=l and N2=7 
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With X set equal to zero a reduction in the control effort is seen as the prediction 

horizon is increased, however with X set equal to one there is only a very small 

reduction in the control effort for prediction horizons 2 to 4 and with the prediction 

horizon set at 3 the control effort increases. It is also observed from Table 5.2 that, 

for prediction horizons 3,4 and 7, the control effort is similar for both X set at zero 

and one. This can be explained by examination of the cost function in equation 5.1. 

As N2 is increased the set point term in the cost function becomes larger than the 

control weighting term with Nu set equal to zero. Hence, the cost function is 

ininimised mainly to achieve the required control. The reductions in the control 

effort with X equal to zero occur as a result of equipping the scheme with long 

range prediction enabling anticipation of the process direction. However, the 

process response for X set equal to zero is more desirable than when X was set at 

one and lience, when using multi-step-ahead prediction the value to set k at is 

recommended as zero. 

The control scheme was then tested with small set point changes around the steady 

state operating point of 56 cins. The reason for this was so that a comparison with a 

well tuned PID controller described in the next section could be made. Figure 5.17 

shows the result for N2=2 and X equal to zero, it is seen that very good set point 

tracking is obtained and that the control signal required (Figure 5.17) is also 

desirable. 
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5.7 CONTROL USING A STANDARD PID CONTROLLER 

A PID algorithin was implemented into a standard feedback control stratqW, and 

the ability of the control scheme to track the sarne set point changes as were used 
in the neural predictive control strategy was investigated. 

PID control has been used in many industrial control systems with success for over 

the past fifty years and -any new teclmiques for process control should be compared 

with standard proven methods in order to gauge their relative perforniance. Section 

5.7.1 presents the PID algoritlim used and the method used to obtain the parameters 

of the algoritlu-n. Results using the standard controller are presented in section 

5.7.2. 

5.7.1 The PID ali! orithin 

Equation 5.5 illustrates the PID algoritiu-n used to calculate the control signal to the 

process valve: 

7' T 
u(n) = kc e(n) + Xe(n)+ d(e(n)-e(n-1)) +iý,. ... 

(5.5) 
1 

li 7' 

1 

where T is the sampling time, e(n) is the input to the PID controller and represents 

the error between the required process set point and the process output (the height 

of liquid in tank 2,112), Kc is the proportional gain, Ti is the integral action time 

and Td is the derivative time. us is the controller bias signal which, in this study, 

was 150 corresponding to a steady state operating point of 56 cnis for the height of 
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liquid in tank 2. u(n) is the output of the controller that operates on the process 

valve and can range between 100 and 200, as described previously in section 4.2.1. 

When using the PID algorithm the values of the parameters Kc, Ti and Td have to 

be chosen. Many techniques have been proposed for calculating these parameters. 

One inethod is to use simple process peifonnance criteria such as the one-quarter 

decay ratio, inininimn settling time, etc. Another method that has been proposed is 

to use time integral performance criteria such as integral of absolute error (IAE) or 

integral of the square error (ISE). Both of these methods are adequate but result in 

multiple solutions or can be time consurning. The tuning method adopted in this 

study was to use empirical tuning methods such as those proposed by Ziegler and 

Nichols (1942) and Colien and Coon (1953) since these inethods give adequate 

solutions and are easier to perfonn. 

The empirical method chosen was the Colien and Coon reaction curve method. 

This method involves breaking the feedback loop between the process output and 

the controller input and applying a step cliange to the input of the open loop 

process. From the resulting process response to the step input an approximate first 

order process model can be estimated of the fqnn 

k e- 
TdS 

G(s) = (5.6) 

where kp represents the static gain, Id the process dead time and T the process time 

constant. The size of the step chuge around the steady state operating point is 

important and it should not be so large that the process is driven into non-linear 

regions which would then invalidate the linear inodel fit. 
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Using the values of kp, 'Ed and -i calculated for equation 5.6 from the observed 

process step response the parameters for the PID algorithm can then be calculated 

using expressions derived by Cohen -and Coon (1953). The parameters calculated 

-ire not optimal but give a good starting point after which, fine tuning can be 

pefformed manually on the process if required. Initially a proportional controller 

was used and hence only the value of Kp was determined, however this resulted in 

unreasonable offset between the process output and set point, as expected, hence 

for a fairer comparison to be achieved a PI controller was considered. The PI 

controller removed the process offset as was expected, but the overshoot was now 

considered unacceptable. Finally a PID controller was investigated and a 

reasonable process response was obtained when the parameters in the algorithrn 

were fine tuned manually. The resulting values for the PID controller were Kp =5, 

Ti=30 seconds and Td =80 seconds. 

5.7.2 PID controller results 

The well tuned controller was then used to control the process when subjected to a 

set of sinall step changes around the operating point. The set point changes were 

the saine as those presented to the neural predictive control strategy shown in 

figure 5.17. The response of the process when controlled using the finely tuned 

PID controller is illustrated in figure 5.18 along with the corresponding control 

signal. For the small set point changes the PID controller compared favourably 

with the neural predictive control strategy in terms of the process response, 

however it did require a larger control effort as illustrated by the brief saturation of 

the input signal in Figure 5.18. 

When subjected to the large set point demands, which required process operation 

over a wide non-linear region the PID control performance deteriorated, (Figure 
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5.19), and the neural predictive control strategy provided a inore accurate control 

together with a much lower control effort (Figure 5.17). 
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5.8 SUMMARY 

A number of control strategies that contain neural networks as either process 

models, controllers or both have been described and advantages and disadvantages 

of each have been presented. One of the major factors, in several of the control 

schemes, is that an inverse model of the process is required. Tbis led to 

investigations into the neural predictive control strategy since an inverse process 

inodel is not a requirement of the scheine and also inulti-step-ahead predictions can 

be perfornied which can result in an improved control performance. 

The neural predictive control strategy is based around minimising: a suitable cost 
function to produce an optimum process input that causes the response of the 

process to follow a predetermined set point. Simulations of both one-step-ahead. 

'and multi-step-ahead predictions were performed and the effect of different 

weighting factors, X, on changes in the control input signal were investigated. 

When using one-step-ahead prediction, the closer X became to unity the smoother 

the control signal became but this was at the expense of a sluggish process 

response. Using inulti-step-ahead predictive control overcame this disadvantage 

with X set at either zero or one, but as the prediction horizon increased it was found 

that X set equal to zero gave the best results. 

A standard PID controller was implemented to control the liquid level process and 

a comparison was made with the neural predictive control scheme. The PID 

parameters were initially determined using well established empirical methods and 

were then finely tuned manually. It was observed that the PID controller compared 
in performance with the neural predictive control scheme for small excursions 

about the operating point. However, as the set point demands became larger, the 
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perfonnance of the PID controller deteriorated and was significantly worse than the 

neural predictive control both in terms of set point tracking and control effort. 
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CHAPTER 6 

ON-LINE ANN CONTROL 

6.1 INTRODUCTION 

Chapter five demonstrated through simulation studies the feasibility of using a 

neural network process model in a predictive control strategy to facilitate control of 

the dual tank liquid level process. Simulation plays a very important part in the 

development and investigation of process models and control strategies and can 

give a valuable insight into potential problem areas. However, simulation studies 

are usually performed with an assumed or calculated mathematical model of the 

process and simulated under ideal conditions. In many cases this simulation 

environment does not accurately represent the behaviour of the real process in 

practice. This chapter investigates the on-line application of the neural network 

control scheme to the control of the dual tank liquid level process, available in the 

laboratory, under what can be assumed as practical conditions. 

As in the previous chapter, the perfonnance of the neural network control scherne 
is compared with that of a standard conventional control algoritlim. Also in this 

chapter, an investigation into the stability of the predictive control scheme is 

presented using techniques taken froin linear system identification. 

6.2, CONTROL SCHEME IMPLEMENTATION 

To investigate the on-line peifonnance of the neural predictive control strategy and 

to make comparisons with a standard conventional controller, a computer program 

was written that contained the required control algorithms and the neural network 
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model of the liquid level process. The program was written using the Microsoft C 

language which has many built in functions that can be used to set accurate sample 

times and produce graphical output on the computer VDU if required. As with the 

simulation studies, the initial digital output number frorn the computer was 150 and 

this corresponded to a steady state height of liquid in tank 2 of 59 cins. 

The values used for the PID control algoritlim were taken from tlios. e used in the 

simulation studies, but initial investigations resulted in the derivative action being 

removed completely and the integral action Ti being increased from 30 to 38 

seconds in order to obtain accurate set point fQllowing over small excursions 

around the process steady state. 

6.3 TESTS CARRIED OUT ON THE PROCESS 

Three different tests were carried out on the liquid level process in order to 

investigate the perfonnance of the neural predictive control strategy. 

The first test involved applying a set of step input signals as the required set point 

and monitoring the ability of the process to track the set point when different 

constraints were imposed on the cost function, equation 5.1. 

The second test involved applying a step change to the set point (required height of 
liquid in tank 2) and monitoring the process rise time, maximum overshoot, integral 

square error (ISE) between the required set point and the measured process output, 

and the control effort (equation 5.4) for four different conditions -as listed below 

CojiditionA: N2=1,, It(t)=O. OVt 
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Condition B: N2=1, X(t)=I. O Vt 

Condition C: N2=2, X(t)=O. O Vt 

Condition D: N2=2, X(t)=I. O Vt 

The final test investigated the process disturbance rejection property wben. the 

process was operating under regulatory control and subjected to large disturbances 

in the height of liquid in tank 2. 

6.4 NEURAL PREDICTIVE CONTROL RESULTS 

Figure 6.1 shows the response of the predictive controller when operated on-line 

and subjected to a set of large step input signals as the required set point with X set 

equal to zero and the prediction horizon, N2, equal to one. It can be seen that 

accurate set point tracking is achieved with the corresponding control signal to the 

process valve shown in Figure 6.1. The on-line neural predictive control scheme 

was then implemented with the prediction horizon set at three whilst the weighting 

function ý. was maintained at zero. Figure 6.2 illustrates the time response of the 

liquid level process and the control signal under these conditions. Again it is 

observed that overall good control perfonnance is obtained. The corresponding 

control signal to the process valve illustrates an improvement over the control 

signal for one-step-alicad prediction with X set at zero, Figure 6.1. 

The control strategy was then tested using the same prediction horizons -as above, 

namely one and three, but with the weighting factor X set at one, lience applying 

full weighting constraint on the process valve movement. Figure 6.3 shows the 

response of the process to the set point changes and the control signal with the 

prediction horizon set at one. The control signal to the process is clearly much 
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smoother when compared to tests with X set equal to zero, (Figure 6.1), whilst the 

ability of the process to track the set point changes is maintained. The set point and 

process response along with the control signal input for the prediction horizon set 

at three is illustrated in figure 6.4 where an acceptable control signal and process 

response is again observable. 
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Figure 6.1 Process response and control input, X=O and N2=1 
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Figure 6.2 Process response and control input, 2L=O and N2=3 
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Figure 6.3 Process response and control input, X=1 and N2=1 
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Figure 6.4 Process response and control input, X=1 and N2=3 
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When the second test was conducted, in order to investigate the process 

characteri s tics, such as the rise time, under neural predictive control the results that 

were obtained for each of the conditions A, B, C and D are shown in Table 6.1 

together with the performance of a conventional PI controller subjected to the saine 

set point changes. 

Condition Condition Condition Condition PI control 
A B C D 

Rise Time 2.4 7.19 2.4 3.6 2.4 
(Mill) 

Maximuni 
Overshoot 1.74 0.0 4.23 5.96 4.14 

(clus) 
ISE 1.466 3.446 1.347 1.816 3.709 

Control 842 55 335 92 420 
Effort 

Table 6.1: Test results for the neural predictive controller and PI controller 

The test results in Table 6.1 illustrate that with one-step-alicad prediction and ?, 

=0.0 (Condition A), good perfonnance is obtained but this is at the expense of 
large movements in the control input. These large changes in the control signal are 

significantly attenuated with X=1.0 (Condition B) , resulting in no overshoot. 

However, it can be seen in the table that the rise time is inuch greater and this 

results in a larger integral square error. Increasing the prediction horizon to 2 also 

has the effect of reducing the control effort, even with X=0.0, at the inain expense 

of a larger overshoot (Conditions C and D). The control movement is again 

significantly reduced with X, =1.0 (Condition D). The results for Condition C in 

particular show an improved performance over the PI controller, with a similar rise 

time and maxiinuin overshoot but, intich lower ISE and control movement. 
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In order to test the disturbance rejection property of the neural predictive control 

scheme the process was operated under regulatory control at a set point of 59 cins, 

and disturbances were simulated in the bottom tank. The disturbances involved 

adding more liquid to the bottom tank to simulate an increase in the liquid inflow 

rate and also decreasing the amount of liquid in the bottom tank simulating a 

decrease in the liquid inflow rate. The rejection properties were examined with the 

prediction horizon set at one and X at zero. Figure 6.5 shows the required set point 

and the response of the process for both the disturbances mentioned. Both 

disturbances were of a significant magnitude and the predictive control stratey is 

seen to be able to cope very well, and brings the height of liquid in tank 2 back to 

the required set point in approximately five sample periods. The control signal 

required to perform this disturbance rejection is also illustrated in Figure 6.5. 
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Figure 6.5 Process disturbance rejection, X=O and N2=1 
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Figure 6.5 Control signal, X=O and N2=1 

6.5 STABILITY ANALYSIS OF THE PREDICTIVE CONTROL SCHEME 

An important consideration during and after the design of a process control system 

is that of the overall stability of the control structure. By stability, it is implied that 

the process signals remain bounded and converge so that the desired behaviour of 

the process is reached asymptotically. For the case of the liquid level process it is 

required that the height of liquid in the bottom tank follows the desired set point 

whilst the control input signal and height of liquid in the top tank remain within 

acceptable and realistic levels. 

The condition for, stability of closed loop controllers for linear systems is well 

documented and requires that tile position of the roots of the closed loop 

characteristic polynomial lie in the left half plane of the imaginary axis in the 

Laplacian domain or within the unit circle in the discrete z-domain. Many inethods 
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exist for determining the position of the poles for linear time-ilivari alit systems 

such as the Routli-Hurwitz criterion and the July criterion. However, for lion-linear 

systems, the stability analysis is and time varying closed loop not as 

straightforward. 

The direct inethod of. stability analysis proposed by Liapunov can be used as a tool 

in the analysis of overall system stability for non-linear and time-varying systems. 

Two methods for stability analysis were proposed by Liapunov, indirect and direct, 

of which the direct method is the most useful since it does not require the solution 

of the differential or difference equations that describe the overall system and it 

can also be applied to non-linear time-varying systems (OGATA, 1987). The main 

disadvantage of the direct inethod is that obtaining successful results is not an easy 

task and experience and imagination is often required. 

When a neural network is included in a control sclienle the analysis of the overall 

closed loop stability becomes even more of -a difficult task since the neural network 

structure bears no resemblance to that of physical systems. It could be argued that 

the equations representing the neural network could be written down and an overall 

closed loop system equation obtained, but even with a neural network containing a 

small number of processing elements the resulting equation would be extremely 

complex and difficult to work with. 

To overcome the difficulties involved in using any of the above inentioned methods 

another inctliod is proposed whereby an insight into the stability of the neural 

predictive control structure can be examined. 
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6.5.1 Proposed stability analysis method 

The proposed inethod is based on the fact that when the neural network model of 

the process is introduced into the control structure it compensates for the non- 

linearity of the process, thus making the process behave in a pre-specified manner. 

It is therefore reasonable to assume that in many cases a closed loop neural 

network control system can be reasonably approximated by a linear model between 

set point, yr(t), and process response, y(t). Determination of a linear model 

describing this response would then be useftil for investigating the control systems 

dynamics and lience, its stability. 

A linear process inodel was obtained from data records of past process responses to 

set point changes and the subsequent application of sYstern identification 

techniques to estimate an optimal linear model fit to the data was applied as 

follows. 

The response of the closed loop neural predictive control strategy was assurned to 

be represented by the linear ARX inodel 

), (/) = 6ý(D(I) + e(l) 

Where 

ff 
= 

[a, 
a 
HP 

bl,..., b 
1111 

(6.2) 

qjT (1) = [_. Y(I _ 1)'.., _J, (, _ 11 1 
), ý, /. 

(, -11 k- yl. (I - 11 k -11 1 )] ... 
(6.3) 
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III -and Ilk are the order and the dead time of the linear model respectively and e(t) 

is a discrete wbite noise sequence. Using the data record an estimate of the 

parameter vector ý call be obtained using the least squares method as was the case 

in this work. The order of the model and dead time were calculated by applying 

linear model order selection tecliniques (LJUNG, 1987). 

The above technique was applied to the on-line neural predictive control response 

shown in Figure 6.1 where the prediction horizon N2 was set at one and ;ý was set 

equal to zero. Using linear model order selection tecliniques, the best inodel fit to 

the data was achieved with the dead time Ilk=---O and model order nl=2. The response 

of the estimated linear model output and that of the actual process output is shown 
in Figure 6.6 which clearly illustrates the ability of the linear model to represent 

the closed loop dynamics accurately. 

An insight into the stability of the closed loop process was then obtained by 

examining the poles of the identified linear model, since the transfer function 

denominator of the model is an estimate of the closed loop characteristic 

polynomial. The poles of the identified linear model were found to be positioned at 

0.3783 ±jO. 2275, Figure 6.7, which are well within the unit circle of the z-plane 

indicating closed loop controller stability. Zero steady state offset in the Control 

action was also confirmed by the identified linear model exhibiting unity steady 

state gain. 

The response of the process when the prediction horizon N2 was set at three and X 

was equal to zero, Figure 6.2, was also used to illustrate the above method. As 

before a model order of nj =2 and dead time "k=O was found to give the best linear 

model fit. Figures 6.8 and 6.9 show the response of the actual process versus the 
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linear model fit and the position of the closed loop poles of the model respectively. 

Again, as in the previous example, the position of the poles, 0.4464 ± jO. 1869, 

indicates that the closed loop system is stable. It was also observed that the 

identified linear model exhibited unity steady state gain as before. 
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6.6, SUI%IMARY 

The application of a neural predictive control strategy has been demonstrated on- 

line to the control of a non-linear dual tank liquid level process. The insights 

gained in the simulation studies in Chapter five were applied and this resulted in a 

sinooth transfer to the real process. The technique was shown to be a viable one 

and comparisons made with a conventional PI controller illustrated an 

improvement in the tracking capabilities of the controller when subjected to a set of 

step inputs covering a wide non-linear operating region. Other corm-nonly specified 

criteria for assessing control performance, such as process rise time, overshoot and 

control effort, were also investigated to assess the neural predictive control scheme 

when the prediction horizon was set at one-step-ahead and multi-step-ahead. 

Investigations showed that increasing the prediction horizon, N2, had a number of 

desirable effects. Good set point tracking was maintained whilst the control effort 

was considerably reduced. Results also showed an improved performance over the 

PI controller when multi-step-ahead prediction was performed. 

An insight into the stability of the neural network control structure has been 

presented using techniques taken from linear systern identification and this 

approach confinned that, for both one-step-ahead and multi-step-ahead prediction, 

the control structure was input-output stable for step changes in the set point. 
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CONCLUSIONS 

An artificial neural network model based control strategy was investigated and 

developed firstly in simulation studies, using a mathematical model of the process 

obtained through theoretical modelling, and then applied on-line to a real non- 

linear, dual tank, liquid level laboratory scale process. The research aims of 

developing a neural predictive control scheme capable of controlling the process in 

real-time were achieved. 

The research demonstrated that the inulti-layer perceptron neural network can be 

used as a general tool for modelling non-linear dynamical processes, and in 

particular it was found that conditioning the process data, using a technique called 

spread encoding, (Chapter 2), greatly increased the network's prediction accuracy 

when operating recursively as a model when compared to the standard method 

adopted for conditioning the process data. 

Efficient procedures for training an MLP neural network and to optimise its 

performance as a dynamic modelling technique were described (Chapter 3). The 

importance of choosing the correct network input structure was addressed and a 

correlation based technique was used to give indications on the suitability of a 

chosen network input structure. If an incorrect network input structure is used then 

this can seriously affect the ability of the neural network to accurately predict 

process behaviour. 

Practical aspects were addressed in Chapter 3 such as the need for a correct 

sampling period when collecting the input-output data from the process and the 

type of excitation signal required to excite the process over its operational region. 
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When obtaining process data, in order to train the neural network, it is important 

that the excitation signal is spread over the whole range of the input space. Initial 

studies using a PRBS excitation signal, commonly used in linear system 

identification, revealed that good identification of the process was not possible. 

Consequently a signal with a uniform random amplitude was used to excite the 

process. When using the RAS, care should be taken to ensure that the clock period 

of the excitation signal is adequately matched with the bandwidth of the process 

dynamics so that the process has sufficient time to respond to each change in input. 

A number of control strategies that could be used with a neural network model as 

an integral part were described in Chapter 5, and the final choice of control 

structure implemented was neural predictive control. The reasons for this choice 

were that the neural network model of the process could be fully exploited to 

predict the process output multiple time steps ahead and that the neural predictive 

control strategy does not require an inverse process model, as in the case of a 

number of the other strategies. For both the simulation studies and the on-line 

control studies, the neural network model based control structure was compared to 

a conventional PID controller. For small set point -changes, around the operating 

point that the conventional controller had been tuned, the PID control perfonnance 

was very similar to the predictive control results. However, as the set point signal 

was extended over a wider non-linear region of process operation the peifon-nance 

of the conventional controller deteriorated. 

When using the neural predictive control strategy to control the process, good set 

point tracking was achieved with the control weighting factor, X, set at zero and the 

prediction horizon, N2, equal to one but this was at the expense of a large control 

effort. Increasing the value of k to unity resulted in a inuch sinoother and more 
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desirable control input signal but at the expense of a slower process response time. 

Results indicated that the use of inulti-step-ahead predictions enabled both good set 

point tracking and a low control effort for both ?, set at zero and one. 

When an artificial neural network model of a process is included into a control 

strategy the main disadvantage of the approach is that the analysis of the overall 

closed loop stability is difficult since neural network models bear no resemblance 

to physical systems. A method has been proposed to overcome this difficulty using 

techniques taken from linear system identification. The technique was 

demonstrated and shown to provide an insight into the stability of the control 

sclienie by monitoring the position of the poles of an estimated linear model 

between the process set point and output. 

7.1 RECOMMENDATIONS FOR FURTHER WORK 

7.1.1 On-Line Neural Network LearninE 

Throughout the investigations into modelling the process using a neural network 

(Chapters 3 and 4) the input-output data used for training the network was 

collected from the process and the neural network was trained off-line. An area that 

should be investigated is training the neural network on-line. This would require 

some soil of recursive training algorithm, as used in the present adaptive 

identification systems, in order to update the network weights. The neural network 

used in this work, namely the MLP, would not be suitable for this task since the 

learning process is globally oriented, therefore an alternative network structure 

would have to be investigated. A possibility for on-line adaptation could be the 

radial basis finiction network as this consists of local processing units in the hidden 
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layer and is thus more appropriate to on-line learning. Another advantage of the 

radial basis function network is that the training algorithin is standard recursive 
least squares which is guaranteed to converge. However, on-line learning is by no 

ineans an easy task and would require considerable investigation. 

7.1.2 Aimlication To Other Processes 

The research investigated was limited to the modelling and control of a single 

input-single output dual tank liquid level process. However, the methods 

investigated and techniques developed were intended to be applicable to a wide 

range of processes. The techniques developed should be applied to a range of 

other processes with a range of non-linearities in order to fully justify how 

generally applicable the techniques are. In particular, the application of neural 

networks to modelling non-linear multivariable processes is a challenging area that 

needs investigating. One of the inain points would be how to excite a multivariable 

process in order to capture all the non-linearities that are present in the process, 

which may be difficult due to the interactions within the process. 

7.1.3 Comparisons with other control structures 

During this research project neural predictive control was investigated although, as 

inentioned in Chapter 5, a number of other control strategies are available for 

inclusion of a neural network process model. A comparison should be inade with 

these other control strategies to thoroughly evaluate the use of the chosen control 

structure. This would also involve the use of inverse process models which would 

be obtained via a neural network approach. 
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