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I have undertaken a labour, a labour out of love 

for the world and to comfort noble hearts : those 

that I hold dear, and the world to which my heart 

goes out. Not the common world do I mean, of 

those who (as I have heard) cannot bear grief and 

desire to bathe in bliss (May God then let them 

dwell in bliss! ). Their world and manner of life 

my tale does not regard : its life and mine lie 

apart. Another world do I hold in mind, which 
bears together in one heart its bitter sweetness 

and its dear grief, its heart's delight and its pain 

of longing, dear life and sorrowful death, dear 

death and sorrowful life. In this world let me have 

my world, to be damned with it, or to be saved. 

Gottfried Von Strassburg 
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Abstract 

This thesis presents a novel design methodology for the synthesis of hybrid 

mechanisms using Genetic Algorithms. GAs are a search and optimisation method 

which model the mechanics of population genetics to give a truly global search 

method. 

In parallel to the development of a suitable GA, the work also develops novel 

objective function criteria which go some way to providing an approximation to 

dynamic criteria whilst using only kinematic properties during calculations. This has 

considerable effect in reducing the time required to find a feasible solution. 

The thesis presents a set of results which validate the proposed methodology, both in 

terms of speed of convergence and quality of the final solutions obtained. The 

application chosen is the synthesis of a hybrid five bar path generating mechanism. 

A description is given of the development of a practical machine for a given test 

case, so as to illustrate that the solutions produced are feasible in terms of real world 
implementation. Results are presented which show the effectiveness of the machine. 

Finally, a critical analysis of both the methodology and the results is carried out. This 

highlights some areas in which the methodology could be improved by future work. 
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Chapter One 
Introduction 

1.1 Project Background 

This thesis presents a novel methodology for the synthesis of multi-degree of 

freedom mechanisms, with particular emphasis on hybrid machine applications. A 

mechanism is a device that transforms a given input motion to a desired output 

motion. A machine is a device that contains mechanisms, provides complex output 

motions and transmits significant forces and power. 

Traditionally, mechanisms were driven by motors that operate at constant velocity 

and have only possessed a single degree of freedom. Because of this the mechanism 

has driven the load with a fixed output motion. To change the output motion required 

a change in the mechanism itself. These changes involve the manual adjustment of 

machine components and resulted in large down times for production. 

1.1.1 The Need for Flexibility 

The nature of the modem production environment has introduced the demand that 

flexibility must be high and that down time must be low for a manufacturer to remain 

competitive. This has resulted in changing the way in which machinery is designed. 

Conventional design methods consist of inserting cams and linkages into the driving 

mechanisms. Whilst a degree of flexibility is given by having interchangeable parts, 

this results in high down times. However, traditional machines have good 

transmission and the potential for energy regeneration. 

In an attempt to achieve high flexibility and low down time, programmable electric 

motors have been used to drive the output directly, as opposed to through a linkage. 
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Introduction 

Although there are a variety of programmable motors, the basic principles of 

operation are similar. The output motion is generated by varying the potential 

difference across a rotor that is surrounded by a magnetic field. The rotor then 

experiences a torque due to the changes in magnetic flux. Altering the rate at which 

the voltage changes allows the speed, and direction, of the output shaft to be 

regulated to suit the output motion requirements. The constantly changing current in 

the coils of the motor results in the generation of considerable heat. This manifests 

itself in a higher power rating for the motor and can, occasionally, lead to damage 

within the circuitry of the motor. This is particularly true for applications that follow 

non-uniform trajectories and demand high rates of change of torque. 

Generally, a programmable motor used in conjunction with closed loop control is 

referred to as a servo motor. Servo motor systems have high flexibility but may 

suffer from poor energy regeneration. Constant velocity (CV) motors, and traditional 

machines, have good transmission and the potential for good energy regeneration. 
This is often achieved by the inclusion of a flywheel on the drive shaft. An approach 

that combines the desirable characteristics of both systems is the use of a hybrid 

machine. 

1.1.2 Hybrid Machines 

The initial concept of a hybrid machine investigated by Tokuz [1,2], who developed 

a system in which the outputs of a constant velocity motor and a programmable servo 

motor were combined through a differential gearbox to drive a slider-crank 

mechanism. Figure 1.1 shows a schematic diagram of the experimental rig. The aim 

of the work was to consider the efficiency of the hybrid rig with the case where the 

servo motor drives the slider-crank directly. This is an example of a programmable 

machine, as opposed to a hybrid machine. 
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Servo-motor 
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Figure 1.1 : Hybrid Arrangement 

Several different slider motions were investigated, including a Rise-Return (R-R), a 

Rise-Dwell-Return (R-D-R) and a Rise-Return-Dwell (R-R-D). These motions were 

designed using polynomial laws to define segments of the curve and boundary 

conditions were selected to ensure continuity of derivatives across segments. The 

three motions are shown in Figure 1.2. 
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Figure 1.2a: Rise-Return Motion 
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Figure 1.2b : Rise-Dwell-Return Motion 
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Figure 1.2c : Rise-Return-Dwell Motion 

For the R-R motion, the hybrid approach showed considerable power savings over 

the programmable machine. However, for the other motions the hybrid machine 

required more power to produce the output motion. This can be attributed to the 

dwell in both the R-D-R and the R-R-D motions. To obtain a dwell, the servo motor 

must oppose the motion of the constant velocity motor directly. This produces high 

currents in the servo motor and this energy must be dissipated as heat. This leads to 

the high power consumption. Figure 1.3 shows the comparison of power 
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Introduction 

consumption (watts) for both machine configurations in each of the three motion 

cases. 

R-R R-D-R R-R-D 

Hybrid P, �ax 22.02 35.47 33.49 

Hybrid Pmi� -47.97 -40.68 -56.46 
Programmable P,, 82.83 13.64 25.48 

Programmable P,,,;,, -131.77 -19.32 -35.11 

Figure 1.3 : Peak Power Values 

Later work by Greenough [3] and Bradshaw [4] attempted to overcome the 

difficulties of producing complex output motions by replacing the differential 

gearbox with a multi-degree of freedom linkage to act as a non-linear gearbox. In this 

arrangement, the servo motor need not directly oppose the constant velocity motor to 

obtain a dwell. 

This work investigated the case of a hybrid machine designed to have two fully 

rotational angular inputs and one fully rotational angular output. After researching 

several alternatives, a Svoboda type II mechanism was used. A schematic diagram of 
this mechanism is shown in Figure 1.4. In using this as a hybrid mechanism, the 
input e1 is provided by the CV motor, whilst 03 is provided by the programmable 

servo motor. The desired output function is generated as 02. 

03 

Figure 1.4 : Svoboda Type II Mechanism 
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The aim of the research was to investigate issues concerning the design, control and 

applications of hybrid machines of this configuration. One particular application was 

for a cut to length machine. Figure 1.5 shows a diagram of such a machine. 

Ma 

Cutter 
Cylinder 

Figure 1.5 : Cut To Length Machine 

The machine consists of a pair of high inertia cylinders, each of which is driven by a 

programmable servo motor. Each cylinder has a blade attached to it. A shearing 

action is produced when the blades meet which cuts the material. By matching the 

speed of the blade to the linear speed of the web, a high quality cut is produced. 

The programmability of the machine is provided by the motions with which the 

cylinders are driven, as each different cut requires a unique cylinder motion. In this 

case, the programmable servo motors were replaced by a hybrid machine module to 

investigate any potential advantages to the system. The hybrid machine modulates 

the speed, but not the direction, of the cylinders to ensure that the desired speed 

matching occurs. 

Introducing the hybrid machine module reduced the peak power by approximately 
70%. There was also a slight increase in speed of operation. The machine module 
was also tested on a number of intermittent motions, such as the R-D-R and R-R-D 

motions. In these cases the power savings were less significant. 
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Introduction 

Whilst the results obtained were significantly better than previous work, problems 

were encountered in several areas. Firstly, the automatic design method used to 

calculate the link length and motion profile requirements was susceptible to locating 

sub-optimal solutions due to the highly non-linear solution space. Secondly, 

problems were encountered with the control algorithms used in the machine module. 

This was particularly noticeable at high speeds of operation. The final problem 

encountered in this study was the degree of flexibility offered by the machine 

module. The hybrid machine was capable of producing a range of motions with 

similar characteristics. However, it was found that a single mechanism was not able 

to produce a wide variety of motions. 

Hybrid machines are a novel machine design solution currently unique to the 

Mechanisms & Machines Research Group at Liverpool John Moores University. 

Whilst previous work has settled some of the issues concerning hybrid machine 
design and application, there is still not a complete understanding of the benefits of 

the approach. Considerable research is still required if the hybrid concept is to 

become an acceptable industrial solution for the generation of non-uniform motion. 
The current work is intended to provide the next step in the process of turning hybrid 

machines into an industrially viable machine option by investigating a robust design 

methodology. 

1.2 Project Objectives 

The main objective of this research is to tackle the first problem indicated above. The 

development of a robust automatic design method is essential if the hybrid machine 

concept is to be turned into an industrially viable machine design option. 
Greenough [5] suggests some areas in which work could be concentrated, including 

" Improving synthesis results 

" Objective function criteria 

" Machine balancing 
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Introduction 

The aim is to develop a robust design methodology for multi-degree of freedom 

mechanisms with specific applications in the field of hybrid machine design. The 

new methodology is intended to cover the first two of the above suggestions. In 

particular, it is intended that a robust optimisation strategy will be investigated along 

with additional design objectives which complement those already developed in 

previous work. 

It is proposed that using frequency domain information will enable the objective 
function to be simplified so that the effectiveness of the search will be increased and 

the time taken to find a solution is reduced. 

1.2.1 The Design Methodology 

The entire design methodology is based around a simple statement of the desired 

optimal condition for a hybrid machine. This optimal condition is when the bulk of 
the motion is provided by the CV motor. When this occurs the power consumption of 
the servo motor will be much lower than that of the CV motor. This allows for 

considerable energy regeneration potential by including a flywheel on the CV drive 

shaft. The action of the servo motor provides a degree of modulation to the motion 
and hence introduces a degree of flexibility to the system. 

The conditions that are necessary for the servo motor power consumption to be low 

are dependent on the kinematic properties of the mechanism and servo motor motion 

profiles as well as dynamic considerations such as load inertia and link inertias. 
Rather than utilise a computationally expensive dynamic design objective, the 

methodology attempts to approximate dynamic optimality using kinematic properties 

only. 

It is assumed that the dynamic performance of a hybrid mechanism is a function of 
the kinematic properties of the servo motor motion profiles. The methodology is 
based around utilising a Fourier transform in the synthesis routine to ensure that the 
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displacement profiles have a low harmonic content. As the magnitude of high order 

harmonics is diminished, the servo motor motion trends towards simple harmonic 

motion. As this trend continues, acceleration profiles will trend towards being 

smooth and continuous. By combining this with the effect of other design objectives 

a mechanism with low torque requirement is found. 

The actual search technique used in the methodology is a Genetic Algorithm. Genetic 

Algorithms were chosen from a number of alternative Al and heuristic based 

algorithms as they have been shown to provide an effective search of complex and 

discontinuous functions and are ideally suited to mechanism synthesis problems 

which have a highly non-linear search space. The methodology acts as a "black box" 

so that once implemented it can be used by non-specialist machine designers who do 

not have experience of the use of optimisation methods based around Genetic 

Algorithms. This is a very important consideration if the method is to become 

accepted in an industrial environment. 

1.3 Thesis Structure 

This thesis is split into seven Chapters that describe the overall research program and 
the development of the resulting design methodology. Chapter Two contains a 

summary of a comprehensive literature search that was carried out throughout the 

duration of the project. The aim of this Chapter is to highlight existing work and 
illustrate how the new methodology fits into the existing knowledge base. Chapter 

Three gives an introduction to the Al search method used in the design methodology, 

namely Genetic Algorithms. Chapter Four shows how a theoretical analysis of a 

mechanism can be derived and used to implement the methodology as a practical 

search tool. This Chapter also presents results of the method using different design 

objectives and illustrates the effectiveness of the final multi-criteria objective on 

several examples. Chapter Five presents results obtained from a local search method 
which uses the solutions found by the Genetic Algorithm as a seed. This Chapter also 
outlines the construction of the experimental test rig. Chapter Six is a discussion of 
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the results of the project in relation to the project objectives. Finally, Chapter Seven 

concludes the thesis and also includes a number of suggestions for possible future 

research in this field. The Appendices include the references cited in the thesis, 

program code for the Genetic Algorithm and synthesis objective function and copies 

of published papers concerning early work in this area. 
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Chapter Two 
Literature Review 

2.1 Introduction 

This Chapter reviews some of the current literature in the fields of mechanism design 

and novel optimisation techniques. Essentially, the review of this literature can be 

split into two sections. The aim of the first section is to highlight previous work in 

mechanism synthesis and optimisation to show the trend towards more general and 

more robust methods. 

The second section compares optimisation techniques, including novel methods 

which could be applied to mechanism design problems to produce an improvement 

over existing methods. A more detailed review is given for Genetic Algorithms, the 

method selected for use in this study. 

2.2 Mechanism Design, Analysis and Synthesis 

This section is split into several sub-sections, each of which deals with a different 

aspect of mechanism design. Section 2.2.1 deals with the traditional approach to 

mechanism design and defines the objectives of the distinct stages of type synthesis 

and dimensional synthesis. Section 2.2.2 deals exclusively with the automation of 

type synthesis. This has no direct relationship to this study but is a very important 

aspect of machine design. Section 2.2.3 outlines several methodologies for the 

synthesis of single degree of freedom mechanisms. This is not an exhaustive 

selection as a plethora of techniques have been developed, but those reviewed here 

have been chosen to highlight the current trends in mechanism design. Section 2.2.4 

considers several additional objectives in machine design which have been suggested 
for inclusion in the synthesis of mechanisms to improve the overall quality of the 
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final design. Finally, section 2.2.5 deals specifically with multi-degree of freedom 

mechanisms and covers both the analysis and synthesis of this type of mechanism. 

However, it is important to state that very little work has been carried out in this area 

due to the inherent complexities associated with design and control of multi-degree 

of freedom systems. 

2.2.1 Mechanism Design : The Traditional Approach 

In general, mechanisms are designed to fulfil one of three roles, either path, motion 

or function generation. Path generation is defined as the control of a point in a plane 

so that it traces a desired trajectory. Path generation problems are essentially a subset 

of motion generation problems which are defined as the control of a line in a plane so 

that it assumes a desired set of sequential positions. Function generation is defined 

where the motion of an output member of a mechanism corresponds to a desired 

function. 

These definitions are entirely independent of mechanism type and so the first stage to 

the design of a mechanism is known as type synthesis. Type synthesis is the selection 
of a mechanism type and configuration based on the consideration of the defined 

motion requirement. For example, there are a variety of ways in which a linear 

(reciprocating) function may be generated, including the use of straight line linkages, 

slider-crank linkages and cam-follower arrangements. Essentially, the purpose of 

type synthesis is to decide which configuration is best able to generate the desired 

motion. 

Once a mechanism type has been selected it is then necessary to choose the desired 

link lengths so that the actual output motion meets the desired output motion 

requirements. This stage is known as dimensional synthesis. 

The traditional approach to mechanism design utilised the experience of the designer 
to select a mechanism configuration in the type synthesis phase and graphical 
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methods in the dimensional synthesis. These graphical methods typically enabled the 

mechanism link lengths to be found for a motion defined by up to three precision 

points. Once the link lengths were specified, it would be possible to fully analyse the 

motion of the mechanism. If the output of the mechanism did not satisfactorily 

approximate the desired motion then the whole process would be repeated. 

Some graphical synthesis methods have been developed for more than three 

positions, though they are particularly complex. Other techniques for dimensional 

synthesis were developed which include both analytical and numerical synthesis. 

Some systems have also been developed for type synthesis of mechanisms. Each of 

this areas will now be considered in greater depth. 

2.2.2 Automated Type Synthesis of Mechanisms 

Several researchers have investigated the possibility of encapsulating designer 

experience in an expert system approach to automate the type synthesis procedure. 

Examples of this include the TYSES program developed by Thomson et al [6,7] 

where the user interface consists of a series of questions concerning the nature of the 

desired motion. The software then uses graph theory to propose different mechanism 

configurations. 

Several attempts have been made to catalogue mechanism coupler curves and use a 

selection process to choose a mechanism which generates the desired output. One of 

the most recent, and most effective, is the CAMFORD package developed by 

McGarva & Mullineux [8,9,10]. A variety of different mechanism configurations, 

with a variety of different link ratios were analysed and the output motions expressed 

as a set of discrete points. These output motions were then stored in a library as a set 

of Fourier coefficients which take into account differences in scale, rotation etc. The 

user interface consists of a sketch pad editor where the user defines a desired motion 
in terms of a set of points. This is then converted into the Fourier form and the 
library searched for close matches. The program then displays a number of 
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mechanisms which may be used to approximately generate the motion. One of these 

may then be chosen for use in an optimisation routine which uses the gradient based 

method developed by Powell [11]. A similar method has been utilised by Hoeltzel et 

al [12,13] in the Pattern Matching Synthesis approach. In this method a Hopfield 

Neural Network has been used to classify digitised images of complete coupler 

curves (as opposed to a set of distinct points) and once again a selection is made by 

considering the correlation between the desired curve and those in a library. 

There have also been many methods developed for specific applications. Examples 

of hese include a knowledge based system for the design of dwell mechanisms by 

Rosen et al [14] and a method for designing circuit breaker mechanisms by Jobes et 

at [15]. 

Whilst type synthesis is outside the scope of this program of research, it is important 

to note that all of the above techniques have only been successfully applied to single 
degree of freedom mechanisms and that the greater complexity of multi degree of 
freedom systems does not lend itself easily to simple expert systems. This is partly 
due to the lack of in depth knowledge concerning the design and synthesis of multi 
degree of freedom mechanisms. 

2.2.3 Dimensional Synthesis of Mechanisms 

Root & Ragsdell [16] provide a complete survey of optimisation methods applied to 

mechanism design up to the year of publication. This paper provides the basis for 

this literature review, and is essential reading. Some of the more important methods 

are described briefly in this section, along with some of the more recent methods in 

an effort to show the complimentary development of the two fields of optimisation 

and mechanism synthesis. 

Dimensional synthesis can be sub-divided into one of three categories : graphical, 
analytical and numerical. Of these, numerical methods are the most popular as they 
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can easily be carried out using digital computers. Analytical methods can also be 

programmed into software but have too many inherent limitations to be widely used 
for complex systems. Graphical methods are now virtually obsolete. 

In analytical methods, the number of precision points for which the mechanism can 

be synthesised is limited by the number of equations for solution. For example, the 

four bar mechanism can be synthesised for up to five positions for motion or path 

generation, or up to seven points for function generation. Analytical synthesis 

techniques produce a solution which is capable of reaching all the desired positions, 

but do not guarantee that the mechanism will be able to complete a continuous cycle 

through them all. Even if the mechanism is able to complete a cycle, there is no 

guarantee that significant excursions will not occur between the precision points. 
One novel analytical method has been developed by Bogdan & Larionescu [ 17,18] 

which synthesises a mechanism by considering it in terms of the structural groups, or 
dyads, which form the mechanism in terms of a complex Fourier series. The method 

can be applied to both transmission and guidance mechanisms and produces a 

minimum quadratic mean error. Another early method, as used by Soni et al [19], 

was developed to synthesise six bar mechanisms for a variety of output motions. This 

method of synthesis solves the displacement matrices of the mechanism to find the 

required link lengths of the mechanism to produce a motion defined by five precision 

points. 

In contrast to analytical methods, numerical methods have no limit on the number of 

precision points that can be used to define the required output motion, but generally 

only produce an approximation to the desired motion. The majority of numerical 

methods utilise an error function which describes the difference between the desired 

and actual outputs of the mechanism. The synthesis can then be expressed as an 
optimisation problem, where the aim is to minimise the value returned by this error 
function. 

As an example of early numerical synthesis, Fox & Wilmert [20] approach the 
synthesis of a four bar mechanism as a mathematical programming problem. The 

objective is to synthesise a mechanism where the coupler point closely approximates 
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the desired motion. The design variables are constrained to ensure that the result will 
be a four bar linkage with low internal forces and torques. The method utilises a 

simple iterative search process based around the minimisation method developed by 

Fletcher & Powell [21]. 

Many other synthesis methods have been applied to the four bar mechanism, as this 

simple mechanism is also one of the most versatile, having many applications in both 

path generation and function generation. Nolle [22] introduced the concept of a 

multi-dimensional objective function surface which represented the relationship 

between the quality of the solution to a problem and the independent design 

variables, and then developed an algorithm to search for the optimum four bar 

mechanism to act as a function generator for a given problem. Garrett & Hall [23] 

developed an approach where mechanisms were randomly generated for a given 

problem and ranked with respect to their optimality. This could even be viewed as a 

crude precursor of the new methodology, where the random generation has been give 

a degree of direction by modelling population genetics. 

Kwak & Haug [24] introduce the parametric optimal design (POD) technique to 

mechanism design problems. This technique provides an effective method for the 

solution of the Chebyshev mechanism optimisation problem. The precision point 

approach can only give approximate solutions to this problem, since the precision 

points must be selected intuitively and will generally not provide a bound on the 

maximum error. The POD technique, however, determines and adjusts the critical 

points and so it provides a means of directly solving the Chebyshev problem. 

Game theory has been applied to the synthesis of function generating four bar 

mechanisms by Rao & Hati [25]. Another approach to the same problem is given by 

Rao [26] which utilises geometric programming. In both examples, the objective is 

the minimisation of an error function. There have also been a number of approaches 
to the synthesis of path generating mechanisms, including an approach based on 
matrix algebra by Ion & Cezar [27]. Many of these methods have either assumed 
that there are no constraints upon the solution, or transform the constrained problem 
into an unconstrained solution. Paradis & Wilmert [28], however, used the Gauss 
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constrained method for solving mechanism problems where the objective functions 

are the sum of squares quantities with linear constraints. 

Throughout this continuing development, the aim has been to develop more general 

and more effective synthesis techniques. Ma & Angeles [29] developed a general 

technique for the synthesis of path generating linkages which could be applied to 

planar, spherical and spatial four bar linkages and Cleghorn et al [30] developed a 

general synthesis method based on conventional non-linear programming techniques 

for a four bar path generating mechanism. The main advantage of the method is that 

it can easily be applied to practical problems and readily expanded to cover trajectory 

approximation problems. 

The search for more effective synthesis techniques has led to many diverse 

approaches to the problem, and it is impossible to produce an in-depth review of all 

the methodologies that have been investigated. However, several of the more recent 

techniques will be outlined here before moving on to consider other aspects of 

mechanism design and synthesis. Many of the numerical methods available for 

precision point synthesis exhibit many shortcomings. Two of the more important are 

that the convergence of the solution depends on the quality of the initial 

approximations for the solutions and that the methods used tend to converge to just a 

single solution dependant on the initial estimate. The continuation method, as used 
by Subian & Flugrad [31 ], is a procedure that theoretically assures convergence to a 

solution without any initial solution estimates and also produces the complete 

solution set for a given system of non-linear equations. This method has been used 
for up to five precision points and could be used for six or more points, though the 

efficiency of the method reduces significantly. This technique has also been applied 

to five bar mechanisms by Starns & Flugrad [32]. The method is further extended 

to spatial mechanisms and six bar mechanisms by Subian & Flugrad [33,34]. A 

continuation method (or Homotopy method) has also been used by Tsai & Lu [35]. 

Jain & Agogino [36] applied a Simulated Annealing algorithm to three problems in 

the field of mechanism design. These were the synthesis of a four bar function 

generator, the synthesis of a rotary to linear recording mechanism and the multi- 
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objective optimisation of multi-speed gearboxes. For the first two cases the results 

were comparable to those obtained from other methods but in the third case an 
improvement over existing techniques was shown. One other attempt at using novel 

optimisation techniques was the use of a Genetic Algorithm to synthesise a four bar 

path generating mechanism by Connor et al [37,38]. The results of this early work 
indicated that the GA worked well on simple desired motions, but did not perform so 

well on complex motion requirements. 

Another method which attempts to find "global" solutions is that developed by Ogot 

& Alag [39]. The methodology employs an analytical synthesis approach, based on 

complex number theory, to find a mechanism which satisfies a small number of 

prescribed hard precision points. This mechanism is then numerically optimised for 

an arbitrary number of soft precision points to improve the quality of the output 

motion. Hard precision points are defined as design points where the output motion 

passes exactly through the point at a given time. Soft precision points do not have to 

be satisfied so rigorously. By using a stochastic numerical approach, the search is 

guided through the highly non-linear solution space and local minima are often 

avoided allowing the process to be classed as fully automated. 

2.2.4 Additional Objectives for Mechanism Synthesis 

In addition to synthesising mechanisms based purely upon the simple kinematic 

output of the mechanism, many researchers have considered broadening the synthesis 

process to include other factors. Examples of these objectives include the work of 
Malik & Dhande [40], where the optimal kinematic synthesis of mechanisms takes 
into account possible manufacturing tolerances in the joints. This problem is also 
tackled by Yin & Wu [41 ]. 

Another design process which ensures that a planar linkage will be free from 
interference during the cycle of its motion has been developed by Ling [42]. Others, 

such as Kochev [43] and Rao & Kaplan [44] have considered mechanism 
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optimisation in terms of both the balancing and torque requirements within a 

mechanism. 

Dhingra & Rao [45] have suggested that this kinetostatic optimisation should be 

combined with the kinetic synthesis to produce an optimal mechanism in a single 
design stage. They have proposed an integrated approach which does this by utilising 
fuzzy theories. Whilst this approach is suitable for single degree of freedom 

mechanisms, as both the kinematic and kinetostatic properties of the mechanism 
depend upon the single input it is questionable whether it can be applied to multi 
degree of freedom mechanisms as the kinematics and dynamic properties of the 

mechanism are often controlled by different dyads and inputs to the mechanism. 

Lee et al [46,47,48] have extended the concept of applying both kinematic, 

kinetostatic and dynamic criteria to multi degree of freedom mechanisms and have 

discussed the development of performance tools and objectives for the design and 

synthesis of multi degree of freedom systems. 

2.2.5 Multi Degree of Freedom Mechanisms 

The majority of mechanism analysis and synthesis literature currently available tends 

to deal with single degree of freedom mechanisms such as the four bar mechanism. 
In contrast, relatively little work has been published in the area of multi degree of 
freedom mechanisms. 

Multi-degree of freedom mechanisms of degree "n" require "n" independent 

variables to be specified to fully analyse the output motions. Some examples of 
multi-degree of freedom mechanisms include the five bar mechanism, the adjustable 
crank mechanisms investigated by Cheunchom & Kota [49] and the seven bar 

mechanisms of Svoboda [50]. 
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Early work, such as that by Pollit [51], tends to deal with the analysis of the more 

simple multi degree of freedom mechanisms such as the geared five bar mechanism. 

In this mechanism, two inputs are required to fully analyse the output motion. These 

inputs are supplied by a definition of the position of one of the input cranks, a 

gearing ratio which specifies the relative motions between the rotations of the two 

inputs and a phase angle which describes the relative positions. Later work by 

authors such as Kramer & Sandor[52], Rooney [53] and Erdman & Sandor [54] 

approached the synthesis of this type of mechanism to provide a desired output 

motion. Most of these early synthesis techniques utilised an analytical closed form 

solution where the links of the mechanism were represented in complex number 
form. 

Some early work was also carried out on mechanisms other than the geared five bar. 

Pafelias & Sandor [55] presented a general closed form solution method for the 

synthesis of a path generating linkage with "n" links, whilst Kohli & Soni [56] 

considered several classes of seven bar mechanisms and showed that for some cases 
the synthesis could be approached analytically but in other cases the highly non- 
linear equations had to be solved numerically. 

One important area which has been considered is the mobility of multi degree of 
freedom mechanisms. Freudenstein & Lee [57] developed design charts for crank 

rotatability and optimisation of transmission angles in geared five bar mechanisms. 
Ting & Tsai [58,59] developed an effective and simple mobility criteria, similar to 

the Grashof criteria for the four bar mechanism, which can be applied to classify five 

bar mechanisms into two types of double crank linkages and non double crank 
linkages. This has important applications when considering programmable linkages 

where the input motions are independent. 

Basu & Farang [60] have shown that five bar mechanisms which have relatively 

short input cranks have small output link motions. These motions are approximately 
describable as simple harmonic functions and so the output link velocities and 
accelerations also exhibit an approximation to simple harmonic motion. Therefore 
the inertial forces in the linkage are greatly reduced. A design method was developed 
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to synthesise mechanisms which not only generate a desired motion but also exhibit 

good dynamic behaviour. 

Several other attempts have been made to synthesise multi-degree of freedom 

mechanisms. The methods used are varied and include the continuation method of 

Starns & Flugrad [32] and a penalty function approach by Alizade et al [611. In this 

method, the synthesis is formulated as a mathematical programming problem. The 

penalty function is used to express the difference between the desired output and the 

generated output. 

One particularly novel method, developed by Sugimoto & Hara [62] uses the theory 

of connecting chains. In this method, the synthesis is based on the concepts of mobile 

and quasi mobile workspace of the mechanism. Shiller & Sunder [63,63] have 

proposed a method for the optimisation of multi-degree of freedom mechanisms for 

near time optimal motions and optimal dynamic performance. In this work, dynamic 

performance is considered in terms of time requirements rather than torque or power 

requirements. 

A great deal of the research into multi degree of freedom mechanisms considered the 

use of geared mechanisms, although some researchers had considered purely 

programmable drives. For example, Huissoon & Wang [65] considered the design 

of a direct drive five bar mechanism. Kirecchi [66] also considered the five bar 

mechanism, but concentrated on the classification and application of motion design 

principles to the programmable drive inputs. 

One of the earliest applications of a hybrid machine can be found in the work of 

Tokuz [1,2]. In this work, a hybrid machine has been defined as a constant velocity 

motor acting in combination with a servo motor through a mechanism to produce an 

output motion. The hybrid arrangement developed consisted of a constant velocity 

motor and a servo motor acting through a differential gearbox to produce complex 

output motions. One of the drawbacks of this arrangement is that to produce a dwell 

in the motion, it is necessary for the servo motor to oppose the constant velocity 

motor, which gives rise to large power consumption. 
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Later work on hybrid machines by Greenough [3] and Bradshaw [4] has tried to 

eliminate this drawback in the generation of angular functions by replacing the 

differential gearbox with a two degree of freedom mechanism to act as a non linear 

gearbox. This work has been constrained so that the two inputs to the mechanism 

must be angular and that the output motion must also be angular. The linkage used in 

this study was a Svoboda seven bar linkage and the aim was to use a single linkage to 

generate a number of different output motions. 

In this work, the synthesis of the mechanism was carried out using a combination of 

traditional optimisation techniques, including Powell's method, and the Golden 

Section Search. The use of traditional methods resulted in long computation times 

and the necessity of including complex penalty functions to force the solution 

towards feasible areas of the solution space. 

2.3 Optimisation Techniques 

The purpose of this section is to compare a variety of optimisation techniques. There 

are many different methods available for evaluating solutions to a given problem and 

searching for an optimal solution. These vary from calculus based techniques 

through to modem combinatorial methods. There are four main types of optimisation 

methods. 

2.3.1 Classical Optimisation Theory 

Classical optimisation theory develops the use of differential calculus to determine 

maxima and minima for unconstrained and constrained functions. Classical 

techniques subdivide into two main classes, direct and indirect. Indirect methods 

search for optimum points by solving the equations that are obtained by setting the 
first derivative of the objective function equal to zero. Direct methods search for 
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optima by taking a point on the objective function surface and moving in a direction 

determined by the gradient at that point. 

Neither of these general methods are particularly useful outside of the simple domain 

where the objective function is uni-modal, smooth and continuous. They act mainly 

as a local search and are prone to becoming trapped on sub-optimal peaks. Classical 

techniques are not robust to provide useful solutions to complex problems. 

2.3.2 Linear Programming 

Linear programming is a technique that is applicable for the solution of problems 

where the objective function and constraints are formed as linear functions of the 

independent design variables. Linear programming methods can easily deal with both 

equality and inequality constraints. 

The most general of the linear programming techniques, and the most widely used, is 

the Simplex Method. This method can deal with large numbers of design variables 

and is easily implemented as a numerical computation. For simple, linear 

optimisation problems the simplex method is a powerful tool which finds the 

optimum point in a multi-variate feasible region. Unfortunately, many optimisation 

problems are non-linear and other methods are required to find solutions. 

2.3.3 Non-Linear Programming 

Non-linear programming methods fall into both uni-variate and multi-variate 

categories. Essentially, non-linear programming methods are search techniques 

where an algorithm directs the search towards an optimal solution. Because the 

methods are based on searching, as opposed to calculus, the objective functions do 

not need to be smooth or continuous. Because of this non-linear programming 
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methods have become widely used and many attempts at robust mechanism synthesis 
have been based on these methods. 

Examples of uni-variate methods include the Golden Section Search and 
Rosenbrock's Success/Failure search. These simple searches have been extended 
into the multi-variate domains to give rise to methods such as Powell's Method of 
Conjugate Directions and the Hooke and Jeeves Pattern Search. Using these 

methods, constraints are normally dealt with by the use of penalty functions. 

Non-linear programming methods have many advantages, including ease of 

numerical computation, but also suffer in that they are generally local search 

methods. Without resorting to numerous and complex penalty functions they are not 

robust enough to search extremely convoluted objective function surfaces to any 

degree of accuracy. It is necessary to check that the methods are finding truly 

optimum solutions and this process of reiteration prolongs the time required for an 

analysis. 

2.3.4 Simulation and Heuristic Methods 

Recent research into optimisation techniques has concentrated on the development of 

new methods which are either more robust or computationally more efficient than the 

accepted non-linear programming methods. There are a proliferation of new 

algorithms that have been suggested and some of the more promising techniques are 

outlined below. Most of these techniques are well proven on problems such as the 
Travelling Salesman Problem, and some attempts have been made to apply the 
techniques to more practical problems. 
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2.3.4.1 Simulated Annealing 

Simulated Annealing algorithms model the process of annealing in solids to optimise 

complex functions or systems. A full description of such algorithms is given by 

Kirkpatrick et al [67]. Annealing is accomplished by heating a solid to an elevated 

temperature and then allowing it to cool slowly enough so that the thermal 

equilibrium is maintained. Atoms in the material then assume a globally minimum 

energy state. Simulated Annealing algorithms have been successfully applied to a 

variety of problems including the optimal design of mechanisms by Jain & Agogino 

[36]. 

The operation of the algorithms is fairly simple. The algorithm starts with an initial 

set of design variables. A new design is then generated from the neighbourhood of 
the initial design by changing one or more of the design variables by a small amount. 
The objective function is then evaluated for the new design and if it gives rise to a 
better solution it is retained. If the design is a worse solution, then the probability 
that it is retained is found from the Boltzmann probability function; 

P(DE) = exp(-DE/T) 

where; 

AE = change in energy 

T= temperature 

The change in energy is expressed as the change in objective function value, whilst 
the temperature is merely a control parameter, with the same units as the objective 
function, which sets the probability of selection. The temperature is held constant for 

a prescribed number of iterations, to allow the system to gain "thermal equilibrium" 

and is then decreased in accordance to a cooling curve. As the temperature decreases, 

so does the probability that a poor design will be retained. This forces the algorithm 
to converge to an optimal, or near optimal, solution. Simulated Annealing algorithms 
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are reasonable robust provided that the parameters controlling the cooling curve are 

assigned values that reflect the complexity of the problem. 

2.3.4.2 The Great Deluge Algorithm 

As with most of the modem optimisation algorithms, the Great Deluge Algorithm, as 
described by Sinclair [68], is based on a simple idea. Assuming that the maximum 

of a function is to be found then the objective function is visualised as a land surface. 

As it "starts to rain" the algorithm searches the surface on the available "dry" areas. 
As the water level increases the end point of the algorithm will be forced on to a high 

point or optimal solution. This bears some resemblance to the Simulated Annealing 

algorithm where the temperature has been replaced by the water level. 

2.3.4.3 Flexible Polyhedron Search 

The Flexible Polyhedron Search described by Borup and Parkinson [69], and the 

very similar Polytope Algorithm described by Gill et a! [70], minimises a function of 
"n" independent design variables by selecting a succession of "n+l" vertices of a 

polyhedron, or simplex, in a manner that improves the objective function evaluation. 
The strength of the method lies in that the shape of the polyhedron is allowed to 

change, giving rise to the name of the technique. 

The algorithm begins by evaluating the objective function at each vertex of the 
polyhedron. The evaluation is then successively lowered by replacing the vertex with 
the highest value by better points generated using four operations. These operations 

are reflection, expansion, contraction and reduction. The scaling coefficients 

assigned to each of these operators, and the initial simplex size, defines both the 

search method and the efficiency of the search. 
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2.3.4.4 Tabu Search 

The Tabu Search concept, initially proposed by Glover [71,72], is a heuristic 

procedure designed to guide other methods to avoid local optimality. Tabu Search 

has been shown to be effective on a wide variety of classical optimisation problems, 

such as graph colouring and Travelling Salesman Problems, and has also been 

applied to practical problems such as scheduling and electronic circuit design by 

Bland & Dawson [73]. The method uses constraint conditions, such as aspiration 

levels and tabu restrictions, and a number of flexible memories with different time 

cycles. The flexible memories allow search information to be exploited more 

thoroughly than rigid memory or memoryless systems, and can be used to either 

intensify or diversify the search to force the method to find optimum solutions. 

2.3.4.5 Artificial Neural Networks 

Artificial Neural Networks are composed of many simple elements operating in 

parallel and are modelled on biological nervous systems. The network function is 

determined largely by the connections between the elements. It is possible to train a 

neural network to perform a variety of functions by adjusting the relative weights 

assigned to these connections. 

Neural networks have been trained to perform complex functions in a wide variety of 

fields including systems analysis by Bardou & Sidahmed [74], corrosion prediction 

by Sanyal [75] and the design of control systems by Stylios & Sotomi [76]. Neural 

networks can be applied to optimisation problems and performance can be enhanced 
by changing the learning rules. For example, it is possible to alter the normal back 

propagation training rule to include a "momentum" feature which helps the network 

avoid local minima. 
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2.3.4.6 Genetic Algorithms 

Goldberg [77] describes Genetic Algorithms as a non-derivative based optimisation 

method based on the Darwinian theory of natural selection and survival of the fittest. 

The method starts with a initial population of randomly generated solutions and each 

successive generation is formed by mimicking the genetic operators that occur in 

natural systems. These operators are reproduction, crossover and mutation. As the 

number of generations increases the population "evolves" towards the global 

optimum solution. 

Genetic Algorithms are a broad and effective search method which have been 

applied to a wide range of practical problems. Examples of this include gearbox 

design by Pham & Yang [78], the optimisation of the structure of laminates by Ball 

et al [79] and the design of simple machine elements by Chen & Tsao [79]. 

2.4 Comparison of Novel Optimisation Techniques 

A number of studies, such as those of Sinclair [68], Borup & Parkinson [69], 

Stuckman et al [81] and Bramlette & Cusic [82], have been carried out which 

contrast and compare several of the novel optimisation techniques outlined in the 

previous sections. In general, these show that most of the techniques are equally 

effective in terms of the finding of globally optimum solutions. What differentiates 

the methods is the computational efficiency and ease of implementation. 

Considering the results of these studies, as well as results obtained by Connor et al 
[37,38] in an early investigation, it was decided to continue to use a Genetic 

Algorithm as a synthesis tool. Genetic Algorithms are somewhat more 

computationally expensive, but they have a much more broad approach to the search 

which brings dividends in individual, as opposed to average, results. Also, GAs are 

more robust in terms of control parameters than other novel methods. 
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The following sections contain the results of a further literature review into the 

applications and effectiveness of the chosen method. 

2.5 Applications of Genetic Algorithms 

Early applications, such as the work of Hollstein [83] concentrated on the use of 

Genetic Algorithms as function optimisers. However, as the power of the method 

became clear it has been successfully applied to a wide variety of practical problems. 

Genetic Algorithms are now being applied in situations such as optimal control by 

Krishnakumar & Goldberg [84]. Other applications include maze learning by 

Sychen & Kiichi [85], vibration control by Curtis [86] and container packing 

problems such as presented by Lin et al [87]. Gibson & Byrne [88] have even 

applied Genetic Algorithms, in conjunction with an artificial neural network, in the 

field of musical composition. 

2.6 Improvements to the Simple Genetic Algorithm 

Many of the applications of Genetic Algorithms have only utilised a simple Genetic 

Algorithm which uses just the three main genetic operators of reproduction, 

crossover and mutation. In many cases these algorithms are prone to premature 

convergence or are not sophisticated enough to deal with complex functions. There 

are a variety of advanced techniques for use in Genetic Algorithm based search and 

optimisation which have been proposed to overcome these problems. 

In previous work, Connor et al [37,38] carried out an initial investigation into the 

suitability of Genetic Algorithms in the field of mechanism design and optimisation. 
In general, the results show that the performance of basic Genetic Algorithms are 

adequate on simple problems, but poor on more complex problems. In this case, poor 
performance is attributed to the premature convergence of the population to a sub- 
optimal solution. However, later work by Connor et al [89] has shown a great 
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improvement on complex problems due to the removal of explicit constraints on the 

search. These results are in agreement with the work of Rajeev & Krishnamoorthy 

[90] who also used a penalty function to transfer an unconstrained search into a 

constrained domain and showed that performance was enhanced. 

The techniques used to improve performance can be split into three categories. 

Firstly, there are those which tend to improve performance by preventing, or 

limiting, premature convergence. Secondly, there are those techniques which 
improve performance through the use of advanced genetic operators and 

modifications to the underlying form of the Genetic Algorithm. Finally, there are 

methods which try to reduce the effect of any inherent bias in the Genetic Algorithm 

due to a poor problem representation or selection method. 

2.6.1 Prevention of Premature Convergence in Genetic Algorithms 

Some of the earliest techniques used to prevent premature convergence modelled the 

effects of niche exploitation and speciation that occur in natural evolution. The 

general principle underlying all of these methods is that in natural systems, species 
develop to take advantage of an unused resource. This is niche exploitation. 
However, most natural resources can only support a limited amount of use. When a 

niche becomes overpopulated, the result can be a decline in size of the species, but 

can also lead to a sharing of resources through crowding and conflict. 

Cavicchio [91 ] was one of the first researchers to attempt to induce niche 

exploitation and species behaviour in a Genetic Algorithm. He developed a 

mechanism called preselection. In this scheme, a "child" solution replaces its inferior 

"parent" if it has a fitness greater than that of the parent. Because of this, the 
diversity of the population is maintained because new solutions tend to replace 
solutions that are similar to themselves. Cavicchio claimed that preselection 
maintained a more diverse population over a given number of iterations when the 
population size was small. 
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De Jong [92] generalised preselection into a scheme he called crowding. In this 

method, individual solutions replace existing solutions according to their similarity 

with other solutions in an overlapping population. This is virtually the same 

methodology as preselection, but in practice this method does not restrict the new 

solution to replace one of its parents. Each individual solution is compared to a 

randomly selected sub-population of CF (crowding factor) solutions. The new 

solution replaces the most similar member of the sub-population. The similarity is 

usually calculated on a "bit-by-bit" basis. The effects of crowding are the same as 

with preselection. Diversity is maintained by the replacement of "like by like". 

Schaffer [93] utilised fixed sub-populations in his use of multi-criteria objective 

functions, where each sub-population characterises a single criterion of the objective 
function. In each of the sub-populations, separate reproductive processes are carried 

out and there is no mixing between them. However, Schaffer expressed some 

concern about the nature of the search and to whether the end solutions were truly 

"globally" optimum. It is also unclear how effective this technique would be on the 

more usual single criterion objective functions. 

Perry [94] carried out an investigation into biological niche theory by utilising a 
Genetic Algorithm. One of the key aspects of this work was the use of external 

schemata. These are special similarity templates, defined by the user, to characterise 
different species. This technique is of little practical use in generalised optimisation 

problems due to the necessary intervention and the requirement for problem specific 
knowledge. However, when heuristics are available to guide the search, the use of 

external schemata leads to a much more efficient search. 

Another investigation which had a biological orientation was that of Grosso [95], 

who studied the formation of explicit sub-populations and the migration of 
individuals between them. The results are not directly applicable to generalised 

genetic search methods, but the study did show that limited migration between sub- 

populations was preferable to either homogenous mixing or isolation. 
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One technique exists which utilises the sharing of resources directly, as opposed to 

the implicit sharing found in other techniques. This is the sharing function developed 

by Goldberg [77,96]. The underlying principle of sharing is to force individuals 

located close to one another to share the "local" available resources until an 

equilibrium between different areas is reached. The result of this is the formation of 

several quasi-stable sub-populations distributed around several peaks on the 

objective function surface. The size of each sub-population is roughly determined by 

the size of the objective function peak. 

All of the methods outlined above attempt to prevent premature convergence by the 

modelling of speciation and the associated development of sub-populations. 

However, there are a variety of other methods used to prevent premature 

convergence. Many of these are not modelled on naturally occurring events, but use a 

"common sense" approach to stop the population being dominated by a particular 

solution and as such are population management strategies. 

The first of these methods is the uniqueness operator proposed by Maudlin [97]. 

This operator artificially maintains the diversity of the population by ensuring that 

when a new individual is substituted into a population it is not too similar to any 

existing solution. He also suggested at the start of the search the similarity measure 

should be greater than towards the end of the search. This bears some resemblance to 

Simulated Annealing algorithms. The effect is that the search becomes more 

localised as it progresses. The combination of uniqueness with crowding has been 

shown to greatly enhance the performance of Genetic Algorithms. 

Pham & Yang [78] carried out an investigation where the intention was to discover 

as many feasible solutions to a problem as possible. To enhance the Genetic 

Algorithm they utilised a variety of techniques. The first, sharing, has already been 

discussed. The other three were deflation, identical string elimination and the use of 

heuristics. Deflation is a method of controlling the number of times that an 

individual is chosen for reproduction, thus limiting the chances of any one individual 

dominating the population. Each time an individual reproduces, its fitness is reduced 
by a fixed amount so reducing its chance of further selection. This method can also 
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been used in conjunction with a ranked fitness method. Each time an individual is 

selected, its position in the ranked population is reduced. It is possible that an 

accelerating deflation operator may be of great benefit. 

Identical string elimination bears some resemblance to the uniqueness operator, and 

can be applied in several ways. The first, and most simple, is to subject identical 

strings to additional mutation or other operators. An alternative is to penalise all but 

one of the identical strings by an amount proportional to the number of identical 

strings in the population. The effect of this is, once again, to reduce the chance of any 

one solution dominating the population. 

The use of heuristics can aid a Genetic Algorithm in a variety of ways. Initially, they 

may be used to place the initial population somewhere in the region of the optimal 

solution. Secondly, they may be used to give direct guidance to the search by 

utilising problem specific knowledge. Heuristics are of limited use due to the 

necessity of intervention and can often negatively bias a search causing it to locate a 

sub-optimal solution. 

Whilst these three techniques have not been explicitly used to prevent premature 

convergence, the fact that they have been designed to maximise the total number of 
feasible solutions explored implies that the population will be diverse. 

The final methods utilise a variety of mating schemes to prevent premature 

convergence. Goldberg & Deb [98] have shown that the inclusion of a mating 

scheme can further improve the performance of Genetic Algorithms which already 

utilise speciation. The essence of mating schemes is to prevent the formation of 
"lethal" solutions formed by reproduction between individuals which inhabit 
different peaks of the objective function surface. In natural systems, the mating 

restrictions are implicitly contained in speciation. There are a variety of mating 

schemes which have been used successfully by authors such as Goldberg [77], Deb 
[99] and Booker [ 100,101 ]. 
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One mating strategy has been proposed by Eshelman & Schaffer [102] which 

contradicts the generally held view that "like should mate with like". These authors 

suggest that sharing functions have the effect of inhibiting, rather than promoting, 

within species mating for the dominant species. Instead of preventing diverse 

individuals from mating, similar individuals belonging to the largest species are less 

likely to be selected for reproduction with each other. Incest prevention is a more 

direct method for ensuring that similar individuals will not mate. Individuals are 

selected randomly for mating, but are only mated if their Hamming distance (a 

measure of dissimilarity) is above a given threshold. This threshold level is decreased 

as the number of generations increases. The effect of mating strategies that pair 

diverse individuals is that crossover becomes more disruptive of schemata. This 

contradicts the theory of Genetic Algorithms, but empirical evidence shows that it 

can lead to improved performance. 

2.6.2 Improved Genetic Operators and Search Strategies 

Whilst the randomised nature of Genetic Algorithms is highly desirable for complex 

objective functions, it implies that the convergence to optimum solutions is often 

slow. This may be offset slightly by the correct choice of control parameters but 

many researchers have investigated modifications to the basic Genetic Algorithm 

intended to improve performance. 

Two examples of improved genetic operators are the directed mutation operator of 

Bhandari et al [103] and multi-point crossover, which is described by Goldberg 

[77] and Booker [101]. Multi-point crossover is more disruptive of schemata, which 

contradicts the essential basis of Genetic Algorithms, though there is some empirical 

evidence that it does lead to improved performance. This is because certain schemata 

are more easily formed using this as opposed to traditional crossover. Unfortunately, 

not all functions benefit from multi-point crossover, as these specific schemata are 
dependant on the problem representation. 
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Directed mutation deterministically introduces new solutions in the population 

guided by the information acquired in the previous generations. Essentially, it is a 
form of accelerated search as new points are explored "intuitively" based on 

previously explored regions. Links can be drawn between directed mutation and the 

intermediate memory cycle of the Tabu Search method of Glover [71,72]. Other 

aspects of Tabu Search may have applications in genetic optimisation 

Several researchers have investigated the use of a biased random walk as a mutation 

operator, as opposed to the more widely accepted bit inversion. The use of this 

operator forces the Genetic Algorithm to explore more regions of the search space 

and as such often aids the search to discover the global optimum more quickly. 

Yao [104] carried out an empirical study of the effects of using different genetic 

operators on the performance of a Genetic Algorithm used to optimise a Travelling 

Salesman Problem. Different operators and selection algorithms were investigated 

and the results indicated that "greedy" crossover and "hard" selection, combined with 

a low mutation rate, often led to enhanced performance. This combination of 

operators causes the search to become more aggressive. 

As well as improved operators, there are a variety of search strategies that have been 

implemented to improve Genetic Algorithm performance. Lin & Hajela [105] have 

proposed a multi-stage search where the precision of the search is increased as the 

number of generations is increased. This increase in precision is obtained by either 

reducing the limits of the search space or by increasing the length of the string 

representation of the solutions. The first method has several drawbacks and can 
block the search from exploring promising areas of the objective function surface 
that were not explored in the previous stage. An integral part of the strategy is the 
initialisation of the population for each stage of the search to ensure that solution 

space is explored fully. 

A similar approach is used by Whitley et al [106] in their delta coding approach. 
Delta coding achieves a trade off between fast search and sustaining diversity. 
Diversity is reintroduced by the random generation of new populations as the search 
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progresses. The delta coding approach is more refined than many other re- 

initialisation methods. Examples of these include cataclysmic mutation used by 

Eshelman [107] and the micro-Genetic Algorithms of Krishnakumar [108]. 

2.6.3 Reduction of Bias in Genetic Algorithms 

The probabilistic nature of Genetic Algorithms makes the technique susceptible to 

stochastic sampling errors and biases due to poorly thought out solution 

representation. Goldberg [109] has outlined a broad methodology for the design of 

effective Genetic Algorithms. 

One of the most important aspects of Genetic Algorithm design is the choice of an 

appropriate solution representation. Whilst, to a certain extent, the solution 

representation is determined by the nature of the problem there are a variety of 

techniques available which can be used to reduce the effects of any bias irrespective 

of the actual representation chosen. 

Caruana & Schaffer [110] have shown that the use of Gray, as opposed to binary, 

coding can lead to a more effective search. Gray coding uses a binary alphabet but 

the order of decoding differs from normal binary notation. Their study suggests that 

Gray coding eliminates the "Hamming cliff' problem that makes some transitions 

difficult if a binary notation is used. This problem arises due to the nature of binary 

decoding. The Hamming cliff arises due to the substantial differences between binary 

coding of similar decimal numbers. This is just one instance of hidden bias that 

emerges from an interaction between search control and knowledge representation. 

An alternative technique for reducing coding bias has been suggested by Levenick 

[I I I] by considering the way in which genetic coding occur in natural systems. 

There are sections of DNA called introns, which are non-functional. That is, these 

sections of DNA do not effect the genetic characteristics of an individual. Levenick 

has shown that inserting introns into a Genetic Algorithm solution coding can 
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improve performance by up to a factor of ten. It is suggested that the reason for this 

is that these non-functional sections of the binary string makes crossover less 

disruptive. 

One other source of bias in Genetic Algorithms is the presence of sampling errors in 

the selection algorithm. Baker [112,113] has investigated the effects of different 

selection algorithms on the performance of Genetic Algorithms. These algorithms 

include standard selection, ranked selection and stochastic sampling methods. The 

results of this study show that the choice of an appropriate selection algorithm not 

only reduces the bias inherent in selection but also inhibits premature convergence. 

The final consideration to the improvement of Genetic Algorithm performance is the 

correct choice of control parameters. Grefenstette [114], Goldberg [115] and 

Schaffer et al [116] have carried out investigations to identify the optimal control 

parameter set. However, it is unclear to what extent the results of these studies are 

applicable to other optimisation tasks, as the definition of a new objective function 

will effect how the Genetic Algorithm will perform. 

2.7 Summary 

This Chapter has covered some of the recent literature that is relevant to this 

research. It has shown that the trends in mechanism design and synthesis requires 
tools that are even more robust and effective. 

This requirement is being met by the development of optimisation methods based on 

simulation and heuristics which exhibit less deficiencies than methods based on 

gradient search or non linear programming techniques. 
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Chapter Three 
The Fundamentals of Genetic Algorithms 

3.1 Introduction 

The purpose of this Chapter is to provide an introduction to Genetic Algorithms the 

search technique chosen for use in the proposed design methodology. In the 

following sections the mechanics of GAs are explained and an attempt is made to 

describe not only how they work, but also to answer the questions of "why do they 

work? " and "why are they so effective? ". 

3.2 Genetic Algorithms 

This section will describe the differences between GAs and other search techniques 

and explain both how, and why, GAs operate. Goldberg [77] introduces GAs as; 

"Genetic Algorithms are search algorithms based on the 

mechanics of natural selection and population genetics. They 

combine survival of the fittest among string structures with a 

structured, yet randomised information exchange to form a 

search algorithm with some of the innovative flair of human 

search. " 

This is a succinct description of what has grown to be a powerful technique with 

many applications in search, optimisation and machine learning. Much of the work 
carried out today would not have been possible if it had not been for the pioneering 

work of Holland [117] at the University of Michigan into adaptive systems. His aim 

38 



The Fundamentals of Genetic Algorithms 

was to develop the theory and procedures necessary for the creation of general 

programs and machines with unlimited capability to adapt to arbitrary environments. 

Before explaining the exact mechanics of how GAs work, it is important to build up 

a conceptual image of the technique. In essence, as with all search techniques, an 

objective function is defined which encapsulates the desirable characteristics of a 
design solution. This objective function can be viewed as defining an environment in 

which a population of solutions exists. By breeding solutions to form new 

populations the method can be encouraged to evolve optimal solutions. 

3.2.1 The Differences Between Genetic Algorithms and Other 

Search Methods 

GAs differ from most other search methods in many ways and it is these differences 

which make them as robust and applicable as they are. Several main differences are 

given below; 

1. GAs work with a coding of the parameter set, not the parameters 
themselves. 

2. GAs search from a population of points, not a single point 

3. GAs use payoff (objective function) data directly, and do not rely on 

secondary information such as gradients. 

4. GAs use probabilistic transition rule, not deterministic rules. 

These differences give rise to a variety of advantages to genetic searching, other than 

robustness, and these will be explored in the appropriate sections. However, these 
advantages will be briefly outlined here. 
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The schema theorem of Holland [117] will be explored fully in section 3.4. 

However, this theorem explains the efficiency of the GA search techniques in terms 

of similarity templates or schemata. Each schema represents a hyperplane of 

solutions, and testing a single schema may be representative of testing the entire 
hyperplane. This implies that a large solution space can be efficiently searched by 

testing only a relatively small number of solutions. For complex optimisation 

problems, such as mechanism synthesis, this provides a very efficient search 

technique as it reduces the number of computations required to search the solution 

space. 

GAs do not rely on secondary information, such as derivatives, to guide the search 

through a given solution space. Because the search is guided by an "intuitive" 

mechanism which utilises objective function information directly, it is possible to 

search complex and multi-modal functions without becoming trapped in local 

optima. 

Another reason that GAs avoid local optima is the fact that they utilise a population 

of solutions. The solutions can be encouraged to populate all of the optima on an 

objective function surface, where the number of solutions on each peak is 

approximately related to the magnitude of the peak. This ensures that the global 

optimum solution is found. 

It should be noted that, due to their probabilistic nature, GAs do not necessarily 

converge to a specific point or solution, but will normlly continue to generate 

solutions which populate the near optimal regions. 

3.2.2 Solution Coding, Schemata, Genetic Operators and Fitness 

When discussing the mechanics of GAs it is necessary to understand several 
concepts simultaneously. These concepts are solution coding, schemata, genetic 
operators and fitness. The purpose of this section is to briefly describe these concepts 
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and how they are applied to GAs. Later sections will discuss the concepts in greater 

depth and discuss the implications with respect to genetic based searching. 

3.2.2.1 Solution Coding 

GAs are based on the mechanics of natural selection and survival of the fittest. 

Essentially, GA terminology has been derived from the field of natural genetics. 
Solutions are coded as chromosomes. These chromosomes are composed of genes, 

which describe characteristics of the solution, and can take on one of several 
different values called alleles. The position of a gene in a chromosome is known as 
its locus. 

This terminology is best explained in terms of an analogy to a typical natural system. 
Consider a genotype which represents the characteristics of a human being. The 

genotype consists of a set of forty six chromosomes. Each chromosome contains 

several genes and it possible to isolate a specific gene by its locus. For example, 

assume that the gene with locus, or position, x represents the eye colour of an 
individual. The alleles of this gene may be green, grey, blue or brown. The table in 

Figure 3.1 compares both the natural genetic terminology and adaptations for GA 

work. These terms are often intermixed. 

Natural Terminology GA Terminology 

Chromosome String 

Gene Feature, character or detector 

Allele Feature value 
Locus String position 

Genotype Structure 
Phenotype Parameter set or complete solution 

Figure 3.1 : Comparison of Terminology 
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Most implementations of GAs utilise a binary notation for the solution strings. The 

reasons for this will be explained in section 3.4. 

3.2.2.2 Genetic Operators 

Genetic operators are the mechanisms by which GAs simulate evolution and the 

processes of natural selection. There are three main operators which are used in 

simple GAs which are analogous to those found in natural systems. These are 

reproduction, crossover and mutation. There are many other operators that have been 

developed for specific tasks which will be covered in later sections. 

Reproduction is a method for selecting individuals, or strings, from a given 

population to act as parents for the successive generation. Therare many different 

selection schemes but the most common is "roulette wheel" selection, where a 

probability of selection is assigned to a string that is porportional to its fitness, or 

quality. This method of selection implicitly contains the natural selection mechanism 

as only strings with above average fitness are selected and the genes of these strings 

are propagated from generation to generation. Once two parent strings have been 

selected they may be subjected to both crossover and mutation depending on the 

respective probabilities of each occurring. If no crossover or mutation occurs, the 

parent strings are resubstituted into the new population. This is a simple form of 

genetic preservation. 

Crossover is the method by which parental genes are passed on to child solutions. 

Many crossover mechanisms have been developed for different types of problem, 

however the most commonly used is single point crossover. If crossover occurs, the 

genes of the two parent strings are intermixed to form two new children that are 

substituted into the new population. Crossover occurs between two strings around a 

randomly selected crossover point. The exact mechanism of crossover can be 

illustrated by the use of an example. Consider two parent strings in binary notation; 
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543210 Position 

I11111 Parent 1 

000000 Parent2 

Given that the crossover site is position 3, the two children formed are; 

543210 Position 

I11000 Child 1 

000111 Child 2 

As has already been stated, crossover allows the exchange of information between 

different strings and propagates genetic information from generation to generation. 
However, a GA that utilises crossover alone will rarely converge to a globally 

optimum solution as it very difficult to expand the search beyond the portion of the 

solution space represented by the initial population. 

Mutation maintains the global nature of the search by introducing new information 

into the population and hence expanding the region of the solution space that can be 

explored. In a binary GA, mutation can easily be implemented as a Boolean bit 

inversion. Each bit in a child solution is tested against the probability of mutation 

occurring. If mutation occurs the value of the bit changes. In binary notation, a one 

becomes a zero or a zero becomes a one. 

3.2.2.3 An Introduction to Schemata 

A schema (pl. schemata) or similarity template is used to describe a subset of 

solutions with similarities at certain positions. Consider a five bit binary coding of a 
solution. One schema for this string could be (100# 1) where the # symbol 
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represents a "don't care" so that the position can be either a one or a zero. The exact 

value is deemed irrelevant. 

This schema represents a subset of two strings which are instances of the schema. 
These two strings are; 

(10001,1001 

Schemata give a powerful and compact method for analysing similarities between 

different solution structures as well as an insight into the reasons why GAs work. For 

strings of length L, formed with an alphabet of cardinality M there are (M+1)L 

schemata. As an example, consider the five bit binary string which has 25 = 32 

combinations of strings and 35 = 243 schemata. A given binary string will contain 
ML schemata, as each position can be represented as a# or as its defined value. A 

population of N strings will contain between ML and N. ML schemata depending on 

the diversity of the population. 

Reproduction ensures that strings with high fitness have a higher probability of 

survival. In terms of schemata, this can be expressed by saying that strings which 

contain effective schemata are more likely to reproduce. 

Crossover allows for the combination of strings that exhibit different schemata. 
However, crossover may affect the structure of a given schema. For example, the 

schema {10##I} is much more likely to be disrupted by crossover than the 

schema {11###}. 

Normally, mutation rates are very low. De Jong [92] suggested that the mutation rate 
should vary inversely with the population size. Mutation does not readily affect the 
integrity of a given schema. 

As a result of reproduction and crossover, highly fit schemata with a short defining 
length, known as building blocks, are propagated from one generation to the next. 
Also, these schemata are combined with other building blocks to form more highly 
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fit solutions. This handling of multiple schemata is known as Implicit Parallelism 

and is a vital concept in understanding how Genetic Algorithms work. This will be 

discussed in greater depth in section 3.4.3.3, but for now it is sufficient to realise that 

the efficiency of genetic search is based on the number of schemata that are 

processed. Goldberg [77] indicates that for a population of N strings, approximately 

N3 schemata are usefully processed in each generation. 

3.2.2.3 Fitness Function 

Fitness is an important concept both in natural genetics and in Genetic Algorithms. Put 

simply, fitness is a measure of how good an individual is. Individuals with high fitness 

are more adapted for survival in their given environment and are more likely to 

reproduce. 

The fitness function is used to determine the fitness of an individual string. In general, 

the fitness function should always supply a positive numerical answer, where the 

higher the number the greater the fitness. Because the nature of many problems leads to 

an objective function that results in negative values, it is often necessary to map the 

fitness function to the objective function. There are a variety of ways in which fitness 

values are assigned to an individual., including standard fitness, rank method and rank 

space method. 

3.3 A Basic Genetic Algorithm 

The three operators of reproduction, crossover and mutation form the basis of a basic 

Genetic Algorithm. When combined with fitness and decoding functions they allow 

subsequent generations of string populations to be created. Section 3.3.1 shows how a 
Genetic Algorithm works by "hand working" a solution to a simple problem. 
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The operation of the Genetic Algorithm can be written as a'pseudocode' algorithm; 

generation=0; 

create initial population; 

repeat 

evaluate fitness; 

test termination criteria; 

reproduce, crossover & mutate; 

generation=generation+ 1; 

end 

3.3.1 A Hand Worked Genetic Algorithm Solution 

The aim of this section is to illustrate the workings of a basic Genetic Algorithm in an 

optimisation problem. The grid in Figure 3.2 shows the fitness values for all 

combinations of the two variables X and Y. The optima occurs when X=5 and Y=3. 

712345654 

623456765 

534 567876 

445 678987 

Y356789 (i9 8 

245 678987 

134 567876 

023 456765 

01 234567 

X 

Figure 3.2 : Values of Fitness for Two Variable Function 
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The variables are coded as binary integers between the range of 0 and 7. The structure 

of a typical solution is given below. 

3 011010 7 

The first digit is the number of the solution in the population. For this problem the size 

of the population is six. The first three digits of the string form the X chromosome and 

the second three digits form the Y chromosome. The final integer value is the fitness of 

the decoded parameters. In this specific case, X=3 and Y=2. An initial population of 

six strings are randomly generated by tossing a coin. The size of the population is 

maintained at six throughout the optimisation process, with each pair of parents 

creating one pair of children. The initial strings are shown below; 

1 011000 5 

2 101110 7 

3 001011 6 

4 111101 6 

5 010111 3 

6 100100 8 

The next generation is created from the initial strings. Reproduction is based on 

roulette wheel selection, so strings with high fitness are more likely to be selected. 
The second and third generations are shown below, along with the number of the 

parent strings from the previous generation. Mutated values are shown in bold and 

the crossover points are shown by the : symbol. 

1 100100 8 Parents 6,4 No crossover 
2 111101 6 Parents 6,4 No crossover 
3 101 1 1: 1 6 Parents 2,3 

4 00111: 0 7 Parents 2,3 

5 10 0: 1 10 6 Parents 2,6 

6 10 1: 1 00 9 Parents 2,6 
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1 101100 9 Parents 6,2 

2 111101 6 Parents 6,2 

3 1 0: 1 1 10 7 Parents 1,4 

4 0 0: 0 10 0 4 Parents 1,4 

5 10101 1 10 Parents 3,4 

6 001 110 3 Parents 3,4 

No crossover 
No crossover 

No crossover 

No crossover 

The optimum value is reached in the third generation, although it should be realised 

that in a real optimisation problem the optimal solution would not be known and the 

termination criteria would be based on a combination of the number of generations and 

some form of performance evaluation criteria. 

One of the advantages of Genetic Algorithms is that if the process is allowed to 

continue, the average fitness of the population will increase although the optimum 

value may not be replicated in each subsequent generation. To illustrate this, consider 

an additional generation. 

1 1011: 0 0 9 Parents 1,3 

2 1011: 1 0 7 Parents 1,3 

3 111011 10 Parents 2,5 No crossover 
4 101 101 8 Parents 2,5 No crossover 
5 111: 10 0 7 Parents 3,2 

6 10 1: 10 1 8 Parents 3,2 

In this case, the optimal string is reintroduced into the population because crossover did 

not occur. Because of some lucky mutations, the other strings are also converging 

towards this value. This is because of the propagation of effective schemata through the 

generations. 
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3.4 The Schema Theorem 

The previous section illustrated how Genetic Algorithms work. To describe why they 

work demands a more rigorous approach. This is presented as the schema theorem. 

Whilst it is not necessary to fully understand the schema theorem to utilise Genetic 

Algorithms, it provides a mathematical foundation which cannot be ignored. 

The schema theorem was described generally in section 3.2.2.3, where it was suggested 

that highly fit schema are propagated through the populations of each generation. This 

statement may be substantiated by using basic probability theory and equations 

developed which can be used to calculate the rate of growth of a given schema. 

3.4.1 Schema Order And Defining Length 

The concept of schemata was introduced in section 3.2.2.3. A schema, or similarity 

template represents a subset of solutions. However, some schemata are more specific 

than others. For example, the schema {011#1} is a more specific instance of the 

schema {0####}. Similarly, some schema span more of the string length than 

others. For example, the schema {1###0} spans a larger portion of the string than 

the schema {11###}. To quantify this, two properties of schemata have to be 

defined. 

The order of a schema H, denoted by o(H), is simply the number of fixed positions in a 

schema. The defining length of a schema, denoted by S(H), is the distance between the 

first and last specified positions. Consider the schema H ={ 1##01#} which can 

now be seen to have order, o(H) =3 and defining length, S(H) = 4. 
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3.4.2 Mathematical Formulation Of The Schema Theorem 

The reproductive schema growth equation can be formally stated as; 

m(H, t + 1) = m(H, t) f 

... (3.1) 

where; 
m(H, t)= number of examples of the schema H at time t. 
f(H)= average fitness of strings representing schema H at time t. 

f= average fitness of the entire population. 

This equation shows that a particular schema grows as the ratio of the average fitness 

of the schema to the average fitness of the population. This implies that schemata with 

fitness values higher than the population average will receive an increasing number of 

samples in the next generation. The opposite applies to schemata with fitness below the 

population average. 

Suppose a schema H remains above average by an amount cf where c is a constant. 
The schema growth equation can be rewritten as; 

m(H, t + 1) = m(H, t) 
(f +-cf) 

_ (1 + c)m(H, t) f 
... (3.2) 

Now, starting at t=0 and assuming that c has a stationary value; 

m(H, t) = m(H, O)(I + c)' 

... (3.3) 

This equation describes a geometric progression. The effect of reproduction is now 
clear. It allocates exponentially increasing numbers of trials to above average 

50 



The Fundamentals of Genetic AI orithms 

schemata. The opposite holds true for below average schemata. Crossover and 

mutation will effect this allocation of trials, but the growth equation is easily 

adjusted to take these effects into consideration. 

During crossover, the probability that a schema will survive, ps, is given as; 

8(H) 
Ps. =1-(L-1) 

. (3.4) 

where; 
L is the length of the string. 

If crossover occurs with a probability p, then the chance of survival can be written 

as; 

8(H) 
ps>_1-pc 

(L-1) 

(3.5) 

It can be seen that eqn. 3.5 reduces to eqn. 3.4 when pc = 1. 

The combined effect of reproduction and crossover can now be considered by 

multiplying the expected number of schemata for reproduction alone by the survival 

probability. The number of a particular schema H in the next generation can be 

calculated using eqn. 3.6. 

m(H, t+1)Zm(H, t)f(H) 1- p, 
8(H) 

7 (L-1) 

(3.6) 

The schema H will grow (or decline) according to some multiplication factor. With 
both reproduction and crossover the factor depends on whether the schema has above 
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or below average fitness and whether the schema has relatively short defining length. 

Those schemata with above average fitness and short defining lengths are going to be 

sampled at exponentially increasing rates. 

Mutation occurs in a large population relatively frequently, but even so its effect on the 

sampling of schemata cannot be ignored. A schema will survive mutation if all the 

specified positions in the schema are not mutated. If mutation occurs at a position with 

probability pm, the probability that any given allele will survive is (1-pm). The 

probability that a schema of order o(H) will survive is given by; 

PS =(0-P. )O(1-º) 

(3.7) 

For small values of pn, this may be approximated by a simpler expression; 

ps =1-o(H)pm 

... (3.8) 

The mutation operator can then be included in the growth equation. 

m(H, t+1)? m(H, t)f 
(H) 

1-p, 
s(H) 

-o(H)pm f (L-1) 

... (3.9) 

Eqn. 3.9 is only an approximation, as some cross product terms have been ignored. 

However it is accurate enough to substantiate the claim given in section 3.2.2.3 that 

low order schema with short defining length and above average fitness will be rapidly 

propagated throughout the population. This is the schema theorem developed by 

Holland [117] which is also known as the fundamental theorem of Genetic 

Algorithms. 
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3.4.3 Implications Of The Schema Theorem 

The implications of the schema theorem are wide ranging and consideration should 

always be given to the design of a Genetic Algorithm and the solution representation 

used. A full analysis is given by Holland [117] and Goldberg [77]. Three specific 

cases will be dealt with briefly here. 

3.4.3.1 The Building Block Hypothesis 

Schema processing, or the efficiency of GAs is related to the coding of a solution. In 

order to maximise the rate of growth of highly fit schema, there are two principles 

which should be adhered to. These are the principle of meaningful building blocks and 

the principle of minimal alphabets. 

The principle of meaningful building blocks states; 

"The user should select a coding so that short, low order 

schemata are relevant to the underlying problem and relatively 

unrelated to schemata over other fixed positions. " 

After considering the nature of schemata, and schema processing, the logic behind this 

statement is easily understood. An optimal solution consists of several schemata with 
high fitness. The role of the schemata is to subdivide the solution space and hence force 

the search towards the optimal solution. This is the building block hypothesis which is 

covered by Goldberg [77], but in greater depth by Bethke [118]. 

The principle of minimal alphabets states; 

"The user should select the smallest alphabet that permits a 

natural expression of the problem. " 
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The smaller the cardinality of the alphabet, the easier it is to 'spot' similarities in strings 

with high fitness. That is, it is easier to construct relevant schema for a given problem. 

It is easy to show that a binary alphabet offers the maximum number of schemata per 

bit of information of any alternative coding system. 

Despite the fact that a binary alphabet is the most useful in a Genetic Algorithm 

coding, there are still subdivisions of coding using this scheme. It has been suggested 

by Caruana & Schaffer [110] that Gray coded numbers offer improved performance 

than standard binary coded numbers. Gray coding uses a binary alphabet, but a 

different coding sequence which leads to a reduced Hamming distance, which is a 

measure of how the change of a single binary digit effects the decoded decimal result. 
In binary coding the Hamming distance varies, and as Hamming distance increases, 

schemata similarity decreases. With Gray coding, the Hamming distance is constant. 

3.4.3.2 Schemata As Hyperplanes 

To illustrate how schemata act as hyperplanes, consider the strings and schemata of 

three bit length. The search space is easily visualised in three dimensions as a cube. 
Points on the cube are represented as schemata of order three, lines in space are 

represented by schemata of order two and planes in the solution space are represented 

by schemata of order one. The entire solution space is represented by the schemata of 

order zero (ie {# # #}). 

This generalises to longer strings, and higher dimensional search spaces. Points, lines 

and planes described in three dimensional space generalise to hyperplanes of varying 
dimensionality. Searching a given schema may be thought of as searching the entire 
hyperplane to which the schema is representative. A Genetic Algorithm can be thought 

of as cutting across different hyperplanes to search for an improved performance. 
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3.4.3.3 Implicit Parallelism 

Implicit parallelism was first introduced in section 3.2.2.3, and is essentially a 

description of how Genetic Algorithm based searches are effective. It has been 

described by Grefenstette & Baker [ 119] in the following manner; 

"The power of a Genetic Algorithm derives largely from it's 

implicit parallelism, i. e., the simultaneous allocation of search 

effort to many regions of the search space... " 

Implicit parallelism is inseparable from the schema theorem. The searching of regions 

of the solution space simultaneously is due to the propagation of highly fit schemata 

through out the population. Therefore, implicit parallelism describes the action of both 

the building block hypothesis and the expression of schemata as hyperplanes. 

3.5 Advanced Genetic Techniques 

The previous sections have outlined the necessary operators, techniques and theory 

required to implement a basic Genetic Algorithm as an optimisation tool. However, 

there are a variety of advanced techniques and operators which have been developed to 

either deal with specific problems or to improve the efficiency of the basic Genetic 

Algorithm. 

3.5.1 Diploidy And Dominance 

In nature there are two types of genotype, haploid and diploid. Haploid chromosomes 

contain only one set of data and are the only type considered so far. However, diploid 

chromosomes are much more common in nature and have several advantages over 
haploid structures. In diploid chromosomes, two datasets are carried in parallel. These 
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contain different data for the same characteristics. This representation introduces 

redundancy, and a decision must be made as to what data is to be used. 

Dominance is the method used to choose between the datasets. Dominance occurs at 

the gene level, not at the chromosome level. This means that the chromosome used is a 

combination of the two datasets carried. Consider the diploid chromosome below, 

where capital letters indicate a dominant gene, and different letter represents a different 

allele or value; 

01234 Position 

Ab CDe 

aBcde 

The dominant genes are 'carried forward' and form the dominant chromosome or 
dataset. In this case, the dominant coding is {A BCD e}. 

Diplold chromosome structures have an advantage over simple haplold structures in 

that they retain the recessive genes as a form of memory. Should the external 

conditions change significantly then the recessive gene may become dominant. In 

nature this leads to an adaptable species. An example of how nature uses diploid 

chromosomes to increase adaptability is given by Goldberg [77], who describes the 

change of colouring of the peppered moth during the industrial revolution. 

Diplold chromosomes may be used in Genetic Algorithms to carry additional data 

throughout the optimisation. The selection of the dominant gene is based on schemata 
fitness. Diploid GAs lead to a more flexible search and improved convergence, 

particular for time dependent problems where the second set of genes allows for quick 

adaptation. 
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3.5.2 Alternative Genetic Operators 

Section 3.2.2.2 introduced the three most basic genetic operators, reproduction, 

crossover and mutation. Reproduction is a selection method which determines which 

solutions are allowed to breed. Crossover allows the transfer of data between different 

solutions. Mutation preserves the global nature of the search by introducing random 

changes in a solution. 

There are many other possible genetic operators which may be included into a Genetic 

Algorithm, some of which will be considered below. 

3.5.2.1 Elitism 

Elitism is a form of preservation, where highly fit strings from one generation are 

reintroduced into a new generation directly, as well as through reproduction. 

Introducing elitism into genetic searching has a dramatic effect. In general, elitism will 

improve the local searching of a Genetic Algorithm, but will have a detrimental effect 

on global searching power. This is due to the bias incurred by the propagation of a 

given individual into the next generation which may lead to premature convergence. 

3.5.2.2 Inversion 

Inversion is the primary operator that allows for the recoding of a particular string 
representation. Two inversion sites are chosen at random and the middle section 

reordered. Consider the string below, where the symbol : marks the inversion sites; 

01234567 Position 

1 1: 0 111: 0 1 

1 1: 1110: 01 Inverted string 
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There are several methods which combine the inversion, or reordering, operator with 

the crossover operator. These include partially matched crossover, order crossover and 

cycle crossover. 

3.5.2.3 Partially Matched Crossover 

Partially matched crossover was created to solve the traveling salesman problem, 

which involves minimising the distance traveled between a number of cities. Two 

strings are aligned and then two cross sites are chosen. Data is transferred between the 

strings on a bitwise exchange. For example; 

01234567 Position 

9: 7 3572: 8 8 

1: 4 6491: 3 1 

The resulting two strings are given below. The data is transferred directly between the 

strings, into the same locus it occupied in the parent string; 

01234567 Position 

94649188 

17357231 

Order crossover and cycle crossover have also been created to help solve the traveling 

salesman problem, and are both also "artificial'" operators. That is, there is no 

equivalent operator found in natural systems. Both order and cycle crossover are 

similar to partially matched crossover in application, but have different effects. 
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3.5.2.4 Duplication And Deletion 

Duplication and deletion are two similar micro operators that can be used in Genetic 

Algorithms. Duplication copies a given gene and puts it alongside its progenitor on the 

chromosome. Deletion removes duplicate genes. In essence, duplication increases the 

effective mutation rate, whilst deletion reduces the effective mutation rate. 

3.5.3 Breeding Schemes 

A variety of breeding schemes are available which restrict reproduction between 

certain chromosomes. The most simple are based on gender, where a certain 

characteristic of a solution causes it to be either male or female. Reproduction then 

occurs between chromosomes of different gender. 

The specialisation permitted by sexual differentiation is carried further in nature 

through speciation and niche exploitation. A species is a class of organisms with 

common characteristics, whilst a niche is an organisms role. The introduction of 

species and niche exploitation into Genetic Algorithms can be used to direct a search 

towards either sub-optimal peaks or multiple peaks in a multi modal function. 

In problems of this nature, it is essential that the Genetic Algorithm maintains the 

diversity amongst the population. This is achieved by changing the reproduction rules, 

allowing the reproduction of individuals in particular sub-populations to take place. 

3.5.3.1 Crowding 

Crowding is a technique that was developed by De Jong [92] to promote the 
development of sub-populations and hence maintain population diversity. De Jong 

reasoned that in natural systems, as similar individuals begin to dominate a niche, 
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increased competition for limited resources decreases life expectancy and birth rates. 

Less crowded niches exhibit life expectancies nearer to their potential. 

The method of applying crowding to GAs is as follows. One of the most important 

differences is that in each iteration the generation of solutions is not entirely replaced. 

The proportion of the population that is replaced is governed by the generation gap. 

Another new parameter must also be defined. The crowding factor (CF) is essentially 

the size of the sub-population of solutions. 

When an individual is born, one individual from the existing population is chosen to 

die. The dying individual is chosen from a subset of CF members chosen from the full 

population at random. The exact individual to die is chosen from the subset on the 

basis of similarity, where the member of the subset which most resembles the new 

individual, on a bit-by-bit count, is replaced. Essentially, crowding is a more general 

form of the preselection technique developed by Cavicchio [91]. 

3.5.3.2 Sharing 

In practice, neither preselection or crowding explicitly utilise the concept of niche 

generation due to the exploitation of environmental resources. Sharing is one method, 

proposed by Goldberg [77], which does do this. In this method, a sharing function is 

defined to determine the neighbourhood and degree of sharing for each string in the 

population. For a given individual, the degree of sharing is determined by summing the 

sharing function values contributed by all other strings in the population. Strings close 

to an individual require a high degree of sharing and vice versa. After accumulating the 

total nature of shares, an individuals actual fitness is calculated by taking the potential 
fitness and dividing through by the total number of shares. In this way environmental 

resources are shared between individuals and sub-populations, or niches, are formed. 

In addition to crowding and sharing, there are many methods that can be used to 

artificially maintain the diversity of a population. These include fitness reduction, 
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identical string elimination and the use of heuristics as outlined by Pham & Yang [78]. 

Another method is the uniqueness operators of Maudlin [97]. 

3.5.4 Fitness Evaluation 

Up until now fitness has been assumed to be a positive number which describes how 

good a solution is. Whilst this is true, there are several methods which may be used to 

calculate fitness. These are standard fitness, rank fitness and rank-space fitness. 

Scaling, or normalisation, methods can also be used to ensure that selection 

probabilities are such that there are no biases in the selection algorithm. 

3.5.4.1 Standard Fitness 

The standard method of evaluating the fitness of an individual is to divide the 'quality' 

(objective function value) of that individual and by the sum of the populations quality. 

f_ 4j 
ýqj 

... (3.10) 

The standard fitness computes the fitness values relative to the population and returns a 

value between zero and one. 

3.5.4.2 Rank Method 

Standard fitness has several disadvantages. One of these is the inability to influence the 

selection of individuals from the population. Rank fitness controls the bias towards the 
best performing individuals and also counteracts against the implicit bias following a 
poor choice of measuring scale. The rank method only uses the quality of an individual 
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to rank it in order within the population. Once the population has been ranked, a 

selection probability is assigned to each individual according to it's position in the 

ranked population. 

3.5.4.3 Rank Space Method 

Neither of the two previous methods have explicitly considered maintaining the 

diversity of the population. The rank space method achieves this by linking fitness to 

diversity and quality rank. When selecting an individual for inclusion into the 

reproduction scheme, the diversity can be measured by calculating the inverse squared 

distance between the individual and the previously selected members. The diversity 

rank of an individual is determined by the inverse squared distance sum. 

3.5.4.3 Fitness Scaling 

Essentially, fitness scaling is a technique that ensures that all fitness values are positive 

and that the probabilities of selection of the individuals in the population are such that 

there are no biases in the selection algorithm. This prevents any "super fit" individuals 

from dominating the population and causing the method to locate a sub-optimal 

solution. 

The method is fairly simple. The range of fitness is calculated and these values are 

shifted into the positive region. Scaling can then occur by using either linear or 
logarithmic rules so that the range is increased or decreased to reduce any bias in 

selection. 
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3.6 Genetic Algorithm Used in This Study 

The GA used in previous work utilised a simple GA based on the three main operators 

of selection, crossover and mutation and operated under an elitist strategy. The 

effectiveness of the GA was assessed by testing it on several standard numerical 

objective functions, such as Rosenbrock's Banana function as well as on several 

problems involving the generation of a desired coupler curve of a four bar mechanism. 

Initially, a ranked fitness method was used but this was shown to bias the GA due to a 

poor method of dealing with constraints. Changing the fitness evaluation to a standard 
fitness methods and introducing penalty functions for various constraints improved the 

performance dramatically, even though the GA was being applied to more complex 

problems. 

The GA used in this study is a refined version of that used in early work. It is based 

upon the three main operators and also runs under an elitist strategy. An inversion 

operator is included in an effort to eliminate identical strings from the population. As 

each new child string is created, it is tested against all strings currently in the new 

population. If an identical string is found, the new child string is inverted. 

In addition to this enhancement, the method of fitness evaluation has been changed to 

include a simple fitness scaling routine. In this routine, the fitness of each individual is 

scaled with respect to the sum of the fitnesses for the current generation. As the number 

of generations increases the average fitness of the population improves. Therefore, as 

the population becomes more fit, the difference between similar solutions becomes 

more pronounced. At the start of a solution run this has great effect in preventing the 

GA from becoming dominated from super individuals and converging to a sub-optimal 

solution. Towards the end of a solution run, the differences between individuals 

becomes more pronounced, so improving the local search power of the method. 

In section 2.6, a wide variety of improvements for Genetic Algorithms were outlined. 
Some of these are more relevant to mechanism synthesis than others. The following 

methods should be considered to be included into the method in future work. The 

63 



The Fundamentals of Genetic Algorithms 

sharing function of Goldberg [77] or the crowding method developed by De Jong [92] 

could be included to promote speciation with in the GA population. This would 

improve the robustness of the method as a varied population tends to occupy all local 

optima with in the search space. Including the use of introns in conjunction with 

crowding, as proposed by Levenick [111], has been shown to vastly improve search 

power. One other possibility that should be considered for future work would be the 

development of mutation operators either based upon localised hill climbing algorithm 

or the inclusion of a degree of intelligence in the form of heuristic rules. 

3.7 Summary 

This Chapter has introduced some concepts behind the working of GAs. During early 

work by Connor et al [37,38,89], a GA was developed and tested on a number of 

standard test functions such as Rosenbrock's banana function. The performance of this 

GA was analysed and improved by eliminating biases in the coding and solution 

representation. The GA was then tested on a number of mechanism synthesis 

problems, and further refined until performance on complex problems was acceptable. 

GAs can be summarised by the following points; 

" GAs are a randomised, but not random, search method based on the mechanics of 

natural selection and survival of the fittest. 

9 GAs optimise the trade off between exploring new points in the search space and 

exploiting the information discovered thus far. 

" GAs exhibit the property of implicit parallelism. This means that an extensive 

search of the hyperplanes of the solution space can be carried out without having to 

search all the hyperplane values. This is an implication of the schema theorem, 

where each schema represents a hyperplane. 

64 



The Fundamentals of Genetic Algorithms 

" GAs are a randomised, but not random, procedure. They utilise operators that are 

governed by probabilistic rules, not deterministic rules. 

" GAs operate on a population of solutions, not a single solution. The use of multiple 

solutions makes the search less susceptible to becoming trapped in local optima. 
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Chapter Four 
Hybrid Five Bar Mechanism Analysis and Synthesis 

4.1 Introduction 

The purpose of this Chapter is to outline the techniques used in the analysis of hybrid 

five bar mechanisms and show how such analysis routines can be use in conjunction 

with a Genetic Algorithm to provide an effective synthesis tool. This Chapter 

describes the kinematic analysis of five bar mechanisms based upon the vector loop 

equations and also outlines the dynamic analysis using the Lagrangian method. This 

analysis is customised to the requirements of the synthesis method. 

4.2 Five Bar Mechanism Notation 

Figure 4.1 shows the notation now in use for the analysis of the five bar mechanism. 
Each ̀stick' in the diagram represents a link between revolute joints. The link t is the 

ground link, and so all motions in the mechanism are relative to this fixed datum. 

The link p is the CV input and so rotates fully around it's ground point. The link s is 

the servo motor input and has a programmable motion. 

As the five bar is a two degree of freedom mechanism, it requires two inputs to be 

defined if the mechanism is to be fully analysed. In the following analysis, these two 

inputs are 62 and 03.02 is the input angle associated with the CV motor position. 93 

can be calculated for each position of the CV motor. This is done by referring to the 

desired output motion of the end effector as described in section 4.7.1. The analysis 

is then based around calculating the other angles of the mechanism, 04 and 05. 
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Figure 4.1 : Five Bar Notation 

4.3 Vector Loop Displacement Analysis 

Figure 4.2 shows a five bar mechanism represented as a set of vectors. The addition 

of the vectors leads to the vector loop equation; 

p+g-r-s-t=0 

... (4.1) 

P 

Figure 4.2 : Vector Loop Representation 
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The lengths of the vectors are defined by the link lengths of the mechanism, and the 

angles are shown in Figure 4.1. Of these angles, all but 04 and 05 are known. By 

expanding the loop equation it is possible to solve for these angles. 

Expressing the equation in complex polar form; 

p&02 + q&03 - r& -s 
'05 

- te*e i=0 

. (4.2) 

Substituting the Euler equivalent form and separating into real and imaginary parts; 

P COS02 +q cose3 -r cose4 -s cose5 -t cose, =0 {real} 

(4.3) 

p sin02 +q sin03 -r sin04 -s sin05 -t sin0l =0 {imaginary} 

.. (4.4) 

This set of two equations in two unknowns may be solved for the unknown terms 05 

and 04. It is first necessary to calculate the servo motor angle, 95 for use in the 

closure tracking algorithm to determine the mechanism closure for each step. 

Therefore, 04 is isolated. 

r cos04 =p COSO2 +q cos03 -s cos95 -t cosOI 

... (4.5) 

r sin04 =p sin02 +q sin03 -s sinO5 -t sinA1 

.. (4.6) 

04 can be eliminated by squaring and adding each equation. This action yields the 

following equation. 
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r2 = p2 + q2 + s2 + t2 + 2(p cosO2 q cosO3) + 2(p sin02 q sin93) 

- 2(p COS02 s cos65) + 2(p sin02 s sinO5) - 2(p cos62 t cos61) 

- 2(psinO2 t sin9i) - 2(q cos93 s cosO5) + 2(q sin03 s sin65) 

- 2(q cos93 t cosO1) - 2(q sin03 t sinO1) 

+ 2(s cosO5 t cosOI) + 2(s sin65 t sinOi) 

... 
(4.7) 

By collecting terms together and substituting the trigonometric identity; 

(cosO cos4) + (sing sin4) - cos(6 - 4) 

this can be simplified to; 

r2 = p2 + q2 + s2 + t2 + 2pq cos(02 - 93) - 2pt cos(62 - 6i) - 2qt COS(03 - ()0 

- 2ps{(cos92 cosO5) + (sinO2 sinOs)) - 2qs{(cos93 cosO5) 

+ (sin0 3 sinO5)} +2st {(cos65 cos9i) + (sinO5 sin6i)} 

... (4.8) 

The known terms in this equation can be collected into a single term. 

Z=r2-p2-q2-s2-t2 -2pgcos(02-03)-2ptcos(02-01)+2gtcos(93-91) 

.. (4.9) 

So eqn. 4.8 can be expressed as; 

Z=- 2ps{(cos92 cos65) + (sin82 sin95)) - 2qs{(cos93 cos85) + (sin03 sin95)) 

+2st {(cos95 cos9i) + (sin65 sin81)) 

.. (4.10) 

By substituting appropriate half angle formulae, eqn. 4.10 can be rearranged and 

solved as a quadratic equation. 
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The following half angle formulae are used; 

sinO5 = 2x5/(1+x52) 

cos05 =(I-X5 2)/(l +X52) 

where; 

x5=tan 
05 
2. 

The quadratic equation is then; 

(2ps cos02 + 2qs cos03 -2st cos6I - Z) x52 

+ (4st sinO i- 4ps sin02 -4qs sin03) X5 

2ps COS02 - 2qs cos03 + 2st cosOI -Z =0 

.. 
(4.11) 

Eqn. 4.11 can be solved using the standard formula and then the value for 05 

calculated from the half angle formulae. Similarly, 04 can be calculated from the 

following equation. 

x4 =1- {(p COSO2 +q cos93 -s cosO5 -t cos9i)/r} 

{(p sin02 +q sin03 -s sin95 -t sin9i)/r} 

.. (4.12) 

where; 

x4=tan 
9, 

. 2 

Once all angles are known, for each position, it is possible to calculate the angular 

velocities and accelerations of each link by using the derivatives of the vector loop 

equations. 

70 



Hybrid Five Bar Analysis & Synthesis 

4.4 Velocity Analysis 

The position loop equation for the five bar mechanism was expressed in polar form 

in eqn. 4.7. Differentiating this with respect to time, noting that Al is constant, leads 

to the velocity loop equation, where w� is the angular velocity of link n. 

p O)zj&02 +q w3jd03 -r (04 j&°4 -s w5 j&°5 =0 
(4.13) 

Substituting the Euler equivalent form and separating into real and imaginary parts; 

-p w2 sin02 -q c03 sin03 +r (04 sin 04 +s c)5 sines =0 {real} 

... (4.14) 

p w2 cos02 +q w3 cos93 -r w4 cos94 -s w5 cosA5 =0 {imaginary} 

. (4.15) 

For the hybrid configuration, 0)2 is the angular velocity of the CV motor and as such 

is known. ws is the velocity of the programmable servo motor, and because the 

discrete displacements of the motor are known it is possible to calculate the velocity 

at each step by using a central difference formula. Therefore, the only unknowns are 

(03 and (04. As there are two equations in terms of two unknowns it is possible to 

calculate w3 and w4. 

co3= 2 sin93 {p (02 sin(92 - 04) +s w5 sin(04 - 05)} 

Cl {COS(03 - 
204) 

- COS03} 

... (4.16) 

and 

(04 =P (02 sin92 +q w3 sin93 -s 0)5 sin95 

r sin0 4 

. (4.17) 
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4.5 Acceleration Analysis 

The velocity vector loop equation (eqn. 4.13) is given as; 

pw2jd02 + gw3jd03 - r(04j&°4 - sc)5 j&°5 =0 

Differentiating this equation with respect to time leads to the acceleration vector loop 

equation where a,, is the angular acceleration of link n. 

(p (X2jde2 -P O)22de2) + (q a3jde3 - q(03 2 ejA3) - (r a4 jd04 -r (042 &04) 

-(sa5j&°5 -sw52e°5) =0 

... (4.18) 

Note that the angular acceleration a2, associated with link p, is zero, as this link has 

constant angular velocity. It is the input to the mechanism provided by the CV motor. 

Substituting the Euler equivalents and separating into real and imaginary parts; 

p 0)22 cos62 -q a3 sin03 -q w32 cos93 +r (X4 sin94 +r (J)42 cosO4 

+s a5 sin05 +s w52 cos95 =0 {real) 

... 
(4.19) 

P 0)22 sin02 +q a3 cos03 -q 0)32 sinO3 -r a4 cos94 +r ()42 sin04 

-S a5 cos05 +S w52 sinO5 =0 {imaginary} 

(4.20) 

The only two unknowns are (X3 and a4. a3 can be found by direct substitution. 

a3 = [-p 0)22 cos(92-04) -q 0)32 cos(03 - e4) +s w52 cos(05 - 94) 
+s a5 sin(05 - 04) +r (04 

2 ] 

q sin(03 - 04) 

... (4.21) 

a4 can now be calculated directly. 
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a4 = [-p w22 sin02 +q a3 cos03 -q (032 sin03 +r 0)42 sin04 

-S (X5 cos65 +S 0)52 sinO5 ] 

r cos64 
(4.22) 

Once all the displacements, angular velocities and angular accelerations of the 

mechanism are known for all stages of the cycle, it is possible to start analysing the 

dynamic performance of the mechanism. 

4.6 Dynamic Analysis of Five Bar Mechanisms 

The dynamic analysis of mechanisms can be carried out using a variety of different 

techniques. The Newtonian kinetostatic method involves the inversion of large 

matrices but gives the values of joint forces. However, as only the values for motor 

torque are required a Lagrangian approach has been used. The Lagrange formulation 

equation is given as eqn. 4.23. 

d lud a(K-U) 
-Q di o7q dq 

... (4.23) 

where; 
Q is the generalised force associated with q 
K is the total kinetic energy of the system 

U is the total potential energy of the system 

q; is an independent generalised co-ordinate 

For each link there is a value of K and U, each of which may be summed together to 

produce the systems total kinetic and potential energy. Hence, for a link of mass m;, 
having an inertia I;, a joint rotation 9; and displacements x; and y; at its centre of 
mass, the following is true; 
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IiO; Z+-m1(z1+y? ) 
22 

.. (4.24) 

Differentiating eqn. 4.24 with respect to q; gives; 

=1i Bi-+mi xi-+yi 
- 

ýi C4i ii 

... (4.25) 

By cancelling the dot terms a simpler equation is produced; 

= IB. +m x1 . +, j 
l,, 

64l 1 ý1; '; 

.. (4.26) 

Further differentiation of eqn. 4.26 with respect to time yields; 

d cýC; c; d c&; 4,, d 4, j e, d ol9, 
dt 

=m; dt - +y'di +I` B`-+B` 
dt cll äl; ä1; cýj; a1, il, c31, 

. (4.27) 

Also, assuming that the linkage is in the vertical plane; 

U; =m, gyi 

.. (4.28) 

Then the following equation can be derived; 

ö(K - U); d cäc; d cý; d 
=m x. - - +y; - -m, g- 

di' , dt di, dt c; cý; dt ä1; 

... (4.29) 
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By combining eqn. 4.29 with eqn. 4.27 according to the relationship given in eqn. 

4.23 the contribution that each link makes to the generalised force Q; can be written 

as 4;, where; 

of = Jai 
ýi 

+ mi XI i+ yi "J', 
+ m. g 

V! '; 

c71; al; 6211 al; 

.. (4.30) 

At this point in the analysis, the rotational displacements of the motor driven input 

links, 92 and 65, will be considered as the independent variables, since the torque 

requirements of these two positions are required. 

Before eqn. 4.30 can be solved, the following terms must be calculated; 

0"19 cär ý 
and 

a1; a1; a1; Iy 

The rate at which each joint rotation varies with the independent variables can be 

found by differentiating the vector loop equations with respect to 05, the servo input; 

60 60 60 
pcos92 ý-2 + gcosB3 ý3 -r cos B4 

ý4 -s cos 05 =0 
555 

... (4.31) 

-psin02 -gsin03 
3 

+rsin04 +ssine5=0 
605 60S 

5 

... (4.32) 

These are two equations with two unknowns, and can be solved to find OV' and OV '. 
°5s °Vs 

In addition to these values, it is necessary to calculate the partial linear derivatives 

and the linear accelerations. All links of the mechanism are assumed to be 

symmetrical and the centre of mass is located at the midpoint. Given that the co- 
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ordinates of the CV motor are (e, f) and the co-ordinates of the servo motor are (g, h), 

the co-ordinates of the centre of masses for each link are found by; 

X2 =e+ (0.5 p cos02) 

Y2 =f+ (0.5 p sin02) 

X3 =e+ 2X2 + (0.5 q cos03) 

y3 =f+ 2Y2 + (0.5 q sin03) 

x5 =g+ (0.5 s cos05) 

y5 =h+ (0.5 s sin65) 

x4 =g+ 2x5 + (0.5 rcosO5) 

y4 =h+ 2y5 + (0.5 rsin04) 

Differentiating these equations twice with respect to time; 

z2 =-OSp{92 sin °2 +°2 cos92} 

yZ = 03p{92 cos62 - O2 sin02} 

X3 = 22-O. 5q{e3sin03+G3 cos93} 

ý3 =2Y2+O. Sq{83cos83-03 sin 03} 

(4.33) 

(4.34) 

... (4.35) 

... (4.36) 

(4.37) 

(4.38) 

... (4.39) 

... (4.40) 

.. 
(4.41) 

... (4.42) 

... (4.43) 

. (4.44) 
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. z5 = -03s{ 95 sin 65 + BS cos 95 } 

(4.45) 

y5 = 0.5s{ 85 cos 0, - 
Ö5 sin 65 } 

.. (4.46) 

x4 =215-0.5r{B, sin 04+84 cos94} 

(4.47) 

Y4 = 2. Y5 + 0.5r{B4 cosO4 - 042 sin 84 } 

(4.48) 

This set of equations give a comprehensive set of values for the linear accelerations 

in the mechanism. Differentiating eqns. 4.33 to 4.40 with respect to the rotational 

displacement of the servo motor, 65, gives; 

Z*Z 
=-0.5psin02 

CV2 

605 OVs 

... (4.49) 

?=0.5pcos02 0'l92 
M5 CV5 

(4.50) 
6C3 

=2 
t*2 

- O. 5q sin 03 
603 

c5 605 605 

... (4.51) 

3=22 
+O. SgCOS03 

cV3 

CV5 t95 M5 

... (4.52) 

= -0.5s sin 9S 
CV5 

. (4.53) 
ýs 

= 0.5scos05 

.. (4.54) 
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as 
=2 

dc 5_0.5r sin B4 
Ia 

CV5 °V5 °05 

(4.55) 

a=2 65 
+ 0.5r cos B4 cWa 

M5 M5 M5 

... 
(4.56) 

As all of the partial angular derivatives for 05 are known each of the previous 

equations can be evaluated. As each unknown system variable can now be evaluated 

for each link it is now possible to calculate the total torque required at the servo 

motor input by summing all the values of 4; as calculated using eqn. 4.30. 

Using this approach it is possible to calculate the total torque requirement for the 

servo motor around the cycle of the mechanism. It is also possible to calculate the 

CV motor torque requirements using a similar method. 

The rest of this Chapter illustrates how kinematic objective functions can be 

developed and synthesis using a GA can be carried out. Dynamic verification of 

some results are included. 

4.7 The Synthesis of Five Bar Mechanisms 

The five bar mechanism is a two degree of freedom mechanism which requires two 

inputs to fully define the output motion. Such a mechanism was shown in Figure 4.1, 

where the two inputs to the mechanism were provided by links p and s with reference 

to the fixed link t. 

For the sake of the synthesis it is assumed that the motion of the servo motor is not 
known. Therefore, to fully analyse the mechanism it is necessary to define an 

alternative input. To do this it is possible to use the desired position of the end 

effector. The synthesis problem can then be expressed as a search for the mechanism 
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link lengths and the servo motor input displacements which provide the desired end 

effector motion. 

The actual parameters which have been selected for use as variables are the lengths 

of the links p, q, r and s. During the search, the lengths of these links are constrained 

between 10 and 266 units. The length of the ground link t is not an explicit variable. 

This length is defined by the ground positions of the inputs. Each of these is defined 

by x, y co-ordinates constrained within a 16 by 16 unit constraint envelope. The 

global position of each constraint envelope is defined by the user. 

When a solution consisting of eight variables (four link lengths, two pairs of x, y co- 

ordinates) is represented in a binary string so that the variables are constrained as 

outlined above the length of the binary string is 48 bits. This relates to a solution 

space of 248-1 possible solutions. 

Once the problem has been expressed in these terms, it is possible to describe how an 

objective function may be constructed so that an appropriate mechanism may be 

synthesised. the following sections outline several criteria that can be used in the 

objective function. In section 4.9, a number of experiments are presented that show 

which criteria are most effective. 

4.7.1 Coupler Curve Error 

For the sake of the analysis and synthesis of the five bar mechanism, it is assumed 

that the end effector is the revolute joint between links q and r. The input motion for 

link p is known, and so by defining the actual position of the end effector it is 

possible to fully describe the motions in the mechanism. Figure 4.3 illustrates how 

the positions of links p and q can be used to define the required angles of the 

mechanism so that it may be analysed fully and also calculate an error score. 
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Figure 4.3 : Calculation of Error 

A vector is defined from the end of link p to the desired position of the end effector 

for the given value of 02. The actual position of this point is then calculated, given 

the length of link q, and the error between the two points found. This error is 

summed around the cycle for the input as described in eqn. 4.57, where the subscripts 

d and a correspond to desired and actual coordinate positions and n is the number of 

precision points. 

n 
`Z 

error = 
f(Xd_ 

02+(yd yaJ 

(4.57) 

Once the position of the end effector is known, it is possible to calculate the value of 

03 and then calculate the other angles of the mechanism. 

Once the error score around the cycle has been calculated, it can be used to calculate 

the objective function in many ways. Experimentation has shown that both speed of 

convergence and quality of solution are improved by raising the error score to a 

given power. However, if too high a power is used, then in a multiple objective 

search the function is dominated by the error score. All results in this thesis have 

been obtained using the objective function criterion given in eqn. 4.58. 

obje� = error2 

(4.58) 
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4.7.2 Mechanism Mobility 

In section 4.7.1 it was shown how the two links, p and q, form a dyad which can be 

used to evaluate the error at a given point for a given input angle. Similarly, the 

remaining two mobile links, r and s, form another dyad which is used to calculate a 

penalty function criteria of the overall objective function. 

This penalty function is based on the mobility of the mechanism. For a truly mobile 

mechanism, the dyad formed by the links r and s should be able to `close' for all 

given positions of the CV input crank. This means that the position of the common 

revolute joint, when considered as part of the dyad formed by r and s, should be able 

to reach the actual position defined by the dyad formed by the links p and q. 

For each position that this dyad cannot close, the mobility counter is increased. It is 

important to realise that for each position of the input link, there are two possible 

closures of the dyad. This is illustrated in Figure 4.4. 

Figure 4.4 : Multiple Closures of the Mechanism 

The implication of this, at this stage, is that for each position of the CV input link the 

mobility score may increase by two. The mobility penalty score is summed 

throughout the cycle and, for twenty four precision points, may range between zero 

and forty eight. As with the error score value, it has been found that raising the 

mobility penalty to a power acts so that the search is directed more towards feasible 

solutions. 
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The following expression is used to calculate the contribution of the mobility penalty 

function to the overall objective function. 

objmab = mobility; 

.. (4.59) 

4.7.3 Servo Motor Displacements 

Once two inputs to the mechanism are known, in this case 02 and 03, it is possible to 

calculate any other angle in the mechanism. In this case, 65 is calculated using the 

equations derived in section 4.3. 

The values for 05 around the cycle of the mechanism can be used to calculate a 

number of figures of merit which describe the quality of the motion profile. 

However, the situation is complicated by the presence of multiple closures in the 

mechanism. For each input position, two values for 05 can be calculated and the 

question which arises is "which value should be chosen? ". 

4.7.3.1 Closure Tracking Algorithm 

An algorithm has been developed to choose the set of servo motor displacements for 

a given mechanism. The algorithm is based on the fact that it is desirable to have 

smooth velocity profiles for the servo motor input. 

The algorithm optimises the displacement profile for a given mechanism by choosing 

between the two available closures for each defined position around the cycle. The 

algorithm acts as follows. It is assumed that the mechanism starts in the "open" 

closure. As the input crank angle is incremented a decision is made between the two 

available closures based on the previous positions selected. 
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The first decision is based purely on magnitude of displacement. That is, the closure 

where the change in displacement is smallest is selected. Subsequent decisions are 

based on changes in velocity and trends in direction. If the two possible closures are 

such that the trend in displacement is continued, then the closure with the smallest 

change in velocity is chosen. The trend in displacement is only broken if the change 

in velocity of the alternative closure is very much larger than for that which involves 

a change of direction. 

The action of this algorithm may be explained in a more simple manner by referring 

to Figure 4.5. 

C 

ýb 

a 

14 t� J 

®f 

d 

be 

14 t3 J 
Figure 4.5a : Initial Tracking Step Figure 4.5b : Change of Direction 

In Figure 4.5a, point a is chosen as the initial point as it has the smallest 

displacement from the starting position. Point b is chosen over point c at the second 
time step as change in velocity is smaller. 

Figure 4.5b illustrates a change in direction. From point d, point e is chosen over 

point f, even though the algorithm is forced to maintain the same direction if 

possible. This rule has been over ridden as the change in velocity from d to f is too 

great. 
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Given that the servo motor displacement is now known, it is possible to calculate a 

figure of merit which describes the quality of the motion profile. Early work by 

Connor et al [89] utilised the RMS value of the displacements so that the magnitude 

of the servo actuation was minimised. However, the results obtained were not 

satisfactory due to oscillatory motions. Several alternatives have been investigated, 

including the area swept by link s and also the harmonic content of the motion 

profile. 

4.7.3.2 Motion Swept Area 

The concept of motion swept area was inspired by early work of Connor et al [89], 

where minimising the RMS of the motor displacements forced the search to locate 

mechanisms where the links in the closing dyad were very much longer than those in 

the input dyad. A mechanism with such link length ratios is unlikely to produce even 

an approximation to good dynamic performance due to the large torque requirements 

of the servo motor. In calculating the swept area term, the RMS value of the 

displacements is multiplied by the length of link s. By doing this, an implicit 

compromise is achieved between the magnitude of the displacements and the length 

of link s. The definition of the objective function component is given in eqn. 4.60. 

n 
2 

Obf 
swept 

=S 951 

i=1 

(4.60) 

4.7.3.2 Motion Harmonic Content 

In addition to investigating the use of a swept area term in the objective function, it 

was also decided to experiment using a term based on the harmonic content of the 

motion profile. This decision was also based on previous work by Connor et al [89], 

where minimising the RMS of the motion produced a displacement profile which 
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oscillated considerably. This effect was worsened by the use of a closure tracking 

algorithm which did not take into account direction of travel, but only differences in 

magnitude of velocity. 

It is desirable to have smooth motion profiles, as oscillatory displacement profiles 

tend to produce sharp or discontinuous acceleration profiles and hence large torque 

and power requirements. Penalising profiles with high magnitudes in high order 

harmonics should direct the search towards a solution where the servo displacement 

profile is trending towards simple harmonic motion. 

Calculating the harmonic content of a motion profile can be achieved by utilising a 
Fourier transform. Only a statement of numerical harmonic analysis will be given 

here but it is important to understand the relationship between analytical and 

numerical Fourier transforms as the discrete Fourier transform (DFT) is derived from 

such an analytical base. Essentially, the only difference between the DFT and 

analytical techniques is that the coefficients relating to the Fourier series are 

calculated by numerical integration. The required series is denoted by; 

1 00 Ox) 
= ao + 

E{an 
cosnx+bn sinnx) 2 

n=l 

.. (4.61) 

The individual coefficients are calculated using the following expressions. 

1 
ao 

2=- Jf(x)dx 

'T 0 

... (4.62) 

2 
an =1- 

Jf(x)cosnxdx 

Iro 

... (4.63) 
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2 
b� =1 

Jf(x) 
sin nxdx 

'ý 0 

(4.64) 

Examination of the Fourier coefficients allows a considerable amount of information 

concerning the function waveform to be ascertained. In this instance the function 

waveform is defined as the servo motor displacement profile. For example, a simple 

sinusoidal waveform contains only a single (fundamental) harmonic whilst more 

complex waveforms contain higher order harmonics. Essentially, each harmonic of a 

waveform represents a sinusoid of a set frequency so that when the resulting 

sinusoids for a series are added by the principle of superposition the initial waveform 

results. 

Bearing this information in mind, it is easy to visualise an objective function criteria 

based on harmonic content. Minimising the magnitude of the higher order harmonics 

will trend towards solutions with smoother servo motor profiles whilst minimising 

the magnitude of the fundamental harmonic will trend towards solutions where the 

magnitude of the servo motor displacements are small. A proposed objective 

function based on harmonic content is given in eqn. 4.64; 

J(VFa' 
+ bn2 

n+1 

n /I 
i=1 

... (4.65) 

In this function the magnitude of the harmonic of order "n" is raised to the power 

"n+1 ". This penalises solutions that have both large servo displacements and motions 

that are not smooth. To reduce the amount of calculations required, only the first five 

harmonics are calculated. This provides a sufficiently accurate approximation to the 

motion. 
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4.8 Motion Design 

Before presenting results pertaining to the analysis of the design objectives outlined 

above, it is important to outline the motion design principles utilised in the 

development of mechanism models and associated calculations. 

The output from the developed synthesis software consists of a set of mechanism 

dimensions and the corresponding servo motor input angles for the twenty four 

prescribed positions in the motion. Using only twenty four precision points ensures 

that the synthesis process is not impeded by excessive calculations of, for example, 

Fourier coefficients. However, twenty four points is insufficient to define the servo 

motor profile in such a way that it can easily be transferred to a practical machine. 

In general, motion design can be viewed as the process by which a profile defined by 

a number of finite points can be transferred into terms where the position is 

calculable at all points of the machine cycle. This is normally achieved by the use of 

curve fitting techniques such as polynomial interpolation or the use of cubic splines. 

The motion design principles used here are similar to those used by Tokuz [1], in 

that a given curve is split into several segments and these segments joined at 

boundaries by defining velocity and acceleration conditions. The curves used in this 

study are polynomials of degree eleven. These polynomials are of the general form; 

y= a0 + a, x + 02x2 +... +a�x" 

... (4.66) 

By using a polynomial of this degree, up to twelve coefficients are determined by the 

specified boundary conditions. The maximum number of boundary coefficients that 

can be specified is equal to the order of the polynomial, so allows not only velocity 

and acceleration conditions specified, but also the jerk condition. However, the more 

conditions specified, the higher the order of the polynomial used. In general, the 
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lowest order of polynomial is used for each segment which matches the boundary 

conditions. 

The twenty four prescribed positions are transferred into a segmented polynomial 

approximation in the following way. Initially, a cubic spline interpolation is carried 

out to calculate 360 data points. This enables an approximation to the velocity, 

acceleration and jerk profiles to be calculated. However, the cubic spline does not 

take into account "wrap around" at the end of the machine cycle so often a velocity 
discontinuity occurs. The velocity and acceleration profiles are used to estimate the 

boundary conditions for the segmented profiles used in this work. The table in Figure 

4.6 illustrates a typical set of boundary conditions for a seven segment 

approximation. 

Segment no. Input Change Motion Constraint Start End 

1 0° - 30° Position 0.00 -8.35 
Velocity -2.44 -0.76 
Acceleration 33.95 30.94 

2 30° - 120° Position -8.35 7.95 
Velocity -0.76 1.87 
Acceleration 30.94 -0.28 

3 120° - 2700 Position 7.95 40.15 
Velocity 1.87 0.61 

Acceleration -0.28 -2.23 
4 270° - 285° Position 40.15 41.56 

Velocity 0.61 0.63 
Acceleration -2.23 5.31 

5 285° - 318° Position 41.56 35.02 

Velocity 0.63 -5.71 
Acceleration 5.31 134.02 

6 318° - 333° Position 35.02 19.05 

Velocity -5.71 -6.54 
Acceleration 134.02 40.77 

7 3330 - 360° Position 19.05 0.00 
Velocity -6.54 -2.44 
Acceleration 40.77 33.95 

Figure 4-6: Segmented Polynomial Motion Profile 
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This is the motion calculated for the results presented in section 4.9.1.1. In this table, 

position data is given in degrees and velocity and acceleration data in radians per 

second and radians per second2. 

4.9 Computational Experiments for Objective Function Evaluation 

In order to compare the effectiveness of the different objective function criteria, a 

simple computational experiment has been carried out. A motion curve has been 

defined which is required to be traced by the end effector of the mechanism. For each 

objective function, the GA based search was run a fixed number of generations. The 

search was repeated ten times for each function and the best solution from the total 

number of runs selected. This process of experimentation was selected because of the 

randomised nature of GA based search. Selecting the best solution from a number of 

search runs ensures that each objective function receives a fair trial and is not 

penalised by a single poor run. 

A fairly demanding curve was defined which contained two cusps, or points of zero 

velocity, such as may be generated by a pick and place mechanism The following 

objective functions were tested on the desired curve. 

1. Error and mobility 

2. Error, mobility and swept area 

3. Error, mobility and harmonic content 

4. Error, mobility, swept area and harmonic content 

The first objective function produces a benchmark result, where no criteria are used 

to assess the quality of servo motor profile. The other functions all use some manner 

of quality assessment. 
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The following sections presented the results for each objective function, where the 

method and objective functions are constant. Similarly, the tests are all carried out 

for the same desired output curve. 

4.9.1 Results 

As the purpose of the experiment was simply to assess the quality of final solution 

that each objective function produced, full convergence trends will not be shown. 

Suffice to say, that in all cases the search followed a typical GA trend with rapid 

initial improvement followed by gradual, but definite, improvement until the search 

was terminated by reaching the maximum number of generations. 

The results will first be presented as a set of mechanism dimensions. These results 

will then be assessed by considering the error between the desired and actual curves 

and the torque requirements and distribution between CV and servo motor. The 

results and assessment will be shown for each individual mechanism then 

comparisons drawn in section 4.9.2. 

4.9.1.1 Objective Function No. 1 

As has been previously stated, this is the most simple objective function and no 

method was used to assess servo motor motion quality. The following mechanism 

dimensions were obtained; 

(X, Y)cv _ -1,0 p= 12 

(X, Y)servo = 32,1 q= 27 

r= 236 

s=248 
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Figure 4.7 shows the servo motor displacement profile required for this mechanism 

to approximate the desired output curve. 

140 
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40 

20 

0 

Figure 4.7 : Servo Motor Input Requirement 

The end effector motion is shown in Figure 4.8. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 

Whilst the generated curve bears a slight resemblance to the desired curve, and is 

within the same region of workspace, it can be deduced that this objective function 

has not generated a sufficiently directed search to produce a high quality output. 
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Figure 4.8 : End Effector Motion 

Despite the fact that the search has produced a poor approximation to the desired 

motion, the torque requirements of this mechanism have been calculated. This is so 
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that any benefit in dynamic performance offered by alternative functions can be 

assessed. Figure 4.9 shows the torque requirement for both the CV and servo motors. 

200 Torque (CV) 

1_---- Torque (Servo) 
100 

Torque 
(Nm) 50 

0 

-50 

-100 
0 30 60 90 120 150 180 210 240 270 300 330 360 

CV Input (degrees) 

Figure 4.9 : Torque Requirements 

It can be seen that this mechanism does not exhibit desirable torque characteristics. 

The servo motor requirement is very much larger than that of the CV motor. The 

torque requirement of the servo is beyond the range normally associated with servo 

motors, and so this is an unfeasible mechanism. This conclusion is logical, when 

viewed in light of the mechanism dimensions. The links in the closing dyad are very 
long. Therefore, whilst the servo motor displacements are quite small, a large torque 

is required. In addition to this, it is worth mentioning that due to the link length 

ratios, this mechanism is unlikely to exhibit desirable transmission characteristics. 

4.9.1.2 Objective Function No. 2 

In this objective function an attempt is made to reduce the length of the links in the 

closing dyad by incorporating the swept area of link s into the objective function, and 

so improve the dynamic characteristics of the mechanism. The following mechanism 
dimensions were obtained; 
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-2, -2 p= 13 

(X, Y)servo = 32,8 q=27 

r=45 

5=27 

Figure 4.10 shows the servo motor displacement profile required for this mechanism 

to approximate the desired output curve. 
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Figure 4.10: Servo Motor Input Requirement 

This mechanism requires much greater servo motor displacements to produce the 

output motion, as should be expected due to the shorter links in the closing dyad. The 

end effector motion is shown in Figure 4.11. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 

The generated curve is a much better approximation to the desired motion. 
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Figure 4.11 : End Effector Motion 
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Figure 4.12 shows the torque requirement for both the CV and servo motors. For this 

mechanism, the torque requirements are much lower and the distribution of torque 

between CV and servo motors is more desirable as the servo motor requirement is 

slightly smaller than that of the CV motor. 

I. 2 Torque (CV) 

0.8 ...... Torque (Servo) 
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(Nm) 0.2 

0- 

-0,2 
-0.4 
-0.6 
-0.8 

0 30 60 90 120 150 180 210 240 270 300 330 360 

CV Input (degrees) 

Figure 4.12: Torque requirements 

4.9.1.3 Objective Function No. 3 

In this objective function an attempt is made to produce a more compact mechanism 

with a servo motor displacement profile with low harmonic content, and so improve 

the dynamic characteristics of the mechanism. The following mechanism dimensions 

were obtained; 

-2, -2 p= 14 

(X, Y)serro = 30, -7 q= 26 

r=30 

s=40 

Figure 4.13 shows the servo motor displacement profile required for this mechanism 

to approximate the desired output curve. 
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Figure 4.13 : Servo Motor Input Requirement 

This motion profile is more compact than that generated using the previous objective 

function. The effect of raising the harmonic value to the power of the order plus one 

is forcing the motion profile to become both smooth and have smaller magnitude of 

displacements. However, the cost is that the links in the closing dyad are slightly 

longer The end effector motion is shown in Figure 4.14. The continuous line shows 

the path generated by the mechanism, whilst the points are those used to define the 

motion. 
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Figure 4.14: End Effector Motion 

Figure 4.15 shows the torque requirement for both the CV and servo motors. For this 

mechanism, the torque requirement of the servo motor is higher than that required by 
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the mechanism in section 4.9.1.2. This is probably due to the increase in link lengths. 

However, the torque distribution between CV and servo motors is still reasonable. 

Torque (CV) 

------ Torque (Servo) 
0.5 
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Figure 4.15 : Torque Requirements 

4.9.1.4 Objective Function No. 4 

In this objective function an attempt is made to combine the benefits of both 

minimising the harmonic content of the motion profile, as well as the swept area of 

the link aas. By doing this, the aim is to find a compact mechanism with acceptable 

motion profiles and dynamic characteristics. The following dimensions were 

obtained; 

(X, Y)cv = 0,1 p= 16 

(X, Y)serro = 27, -2 q= 24 

r=30 

s=16 

Figure 4.16 shows the servo motor displacement profile required for this mechanism. 
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Figure 4.16: Servo Motor Input Requirement 

The end effector motion is shown in Figure 4.17. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 
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Figure 4.17: End Effector Motion 

Figure 4.18 shows the torque requirement for both the CV and servo motors. For this 

mechanism, the torque requirement of the servo motor is much lower than that 

required by the CV motor. 
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Figure 4.18 : Torque Requirements 

4.9.2 Comparison of Results 

These initial results can be used to assess the effectiveness of each of the objective 
functions by comparing the quality of the solutions obtained. In section 1.2.1 an 

assumption for dynamic optimality was stated. This is where the CV motor torque 

requirement is much larger than the servo motor torque requirement. The table in 

Figure 4.19 shows the minimum, maximum and RMS torque requirements. 

Function 1 Function 2 Function 3 Function 4 

Error 67.49 39.37 34.69 16.78 

CV Tmin -6.9011 -0.7559 -1.0869 -0.6247 
CV Tm. 15.4815 1.1128 0.9962 0.6402 

CV TRMS 6.3901 0.8016 0.9811 0.6491 

Servo Tmi� -73.0237 -0.5428 -0.4474 -0.0786 
Servo Tm. 153.243 0.4285 0.7106 0.0834 

Servo Tgs 65.5106 0.2775 0.3429 0.0449 

Figure 4.19: Motor Torque Requirements 
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These results show that the solution found using the final objective function exhibits 
both the lowest servo motor torque requirement and also the best torque distribution. 

4.10 Further Experimentation 

In addition to the results highlighted above, several other computational experiments 

have been carried out. Not all results will be presented here, though the implications 

of some of the early experiments will be explained. 

Initial experiments were carried out to try and find the optimum weightings for the 

different components in the selected objective function. These experiments consisted 

of a trial and error approach, where the method was run several times on different 

problems utilising the same weighting parameters and the results analysed. It was 

observed that the GA was quite robust in terms of variations in the weighting 

parameters, and also the internal control parameters. The following weightings and 

parameter settings were found to usually give rise to feasible solutions. 

GA Control Parameters 

Population size : 40 

Crossover rate : 0.85 

Mutation rate : 0.03 

Objective Function Weightings 

Error : 1.0 

Mobility : 1.0 

Swept Area : 0.75 

Harmonic content : 0.5 

Results will now be presented for the method using these parameter settings on two 

different problems. The method used is slightly different from that used in section 

4.9. In these results, the GA was not run for a fixed number of generations, but 

termination criteria were introduced so that the search finished after finding the first 

feasible solution. This enables the speed of the search method to be realised, though 

of course leaving the search to continue may, and often will, locate even better 

solutions. The effect of this may be seen by comparing the results found in section 
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4.9.1.4 with those given in section 4.10.1, as this the method is being run on the 

same problem in each section. The termination condition used consists of a logical 

statement that the error between the desired and actual coupler curves must be below 

a given threshold and that the link length ratios within the mechanism must be such 

that no link is more than five times longer than the CV input crank. 

4.10.1 Experiment 1 

The desired curve used in this experiment is the same as was used in evaluating the 

different objective function in section 4.9. The graph in Figure 4.20 shows the 

convergence of five solution runs for this problem. 
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Figure 4.20: Convergence 
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All of these solution runs exhibit the typical characteristics of GA based searches, 

that is, a very fast initial reduction in objective function value, followed by a slow 
but progressive reduction as the search continues. The table in Figure 4.21 compares 

the final solutions for each of these sample runs. 

This comparison highlights many important points concerning the nature of GA 

based search and also the complexity of the objective function. The first point to note 

is that whilst the method has been used on the same problem, the solution obtained in 

each run is different. This is due to the probabilistic nature of the GA. The second 

point to note is that the solutions obtained, particularly in the first and third tests, 

have similar fitness function values but quite different parameter sets. This is often 

encountered in multi-objective search and is known as pareto-optimality. By using a 

Genetic Algorithm, problems associated with pareto-optimality are often aggravated 

by the parallel nature of the search. 

Test 1 Test 2 Test 3 Test 4 Test 5 

No. Trials 4480 4040 4440 4280 960 

CV Co-ords -5, -5 0,5 0,1 -1,0 2,4 

Servo Co-ords 19, -6 19,3 32, -1 32,3 24, -8 

p 16 16 16 16 16 

q 31 21 24 25 21 

r 27 54 39 23 35 

s 10 56 28 30 54 

Fitness Value 13491.86 30386.93 13557.56 10169.35 28641.97 

Figure 4.21: Comparison of Solutions 

This table shows the value of the scaled fitness function used in the GA for selecting 
between solutions. This scaled fitness differs from the actual objective function value 
due to the fitness scaling embedded into the GA. However, in this case, the values 
for fitness function provide a direct maping to dynamic performance. The best 

solution obtained in these experiments was found in the fourth test after 107 
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generations (4280 trials). Figure 4.22 shows the servo motor requirement for this 

mechanism. 
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Figure 4.22: Servo Motor Input Requirement 

The end effector motion is shown in Figure 4.23. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 
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Figure 4.23 : End Effector Motion 

Figure 4.24 shows the torque requirement for both motors. For this mechanism, the 

torque requirement of the servo motor is much lower than that of the CV motor. 
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Figure 4.24: Torque Requirements 

The torque requirements are expressed numerically in the table shown in Figure 4.25. 

CV Motor Servo Motor 

Maximum Torque 1.8568 0.2973 

Minimum Torque -3.3906 -0.2782 
RMS Torque 1.7160 0.1520 

Figure 4.25 : Torque Requirements 

This mechanism does not exhibit as desirable torque characteristics as that located in 

section 4.9.1.4, and indeed suffers from a higher position error around the machine 

cycle which can be seen by comparing Figure 4.23 with Figure 4.17. Again it is 

important to state that this is due to the probabilistic nature of GA search. However, 

one other factor must be taken into account. By introducing termination criteria, the 

search is finished as soon as a feasible solution is located. This feasible solution is 

not necessarily the best solution. By continuing to run the GA for further generations 

then better solutions may be found. 
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4.10.2 Experiment 2 

For the second experiment it was decided to define a complex output curve which 

contains a double point. This often leads to a lack of search resolution. In addition to 

this, a complex curve should require a complex servo motor input profile. The 

purpose of this is to test how well the method works on less than simple problems. 

The graph in Figure 4.26 shows the convergence of five solution runs for this 

problem. All of these solution runs exhibit the typical characteristics of GA based 

searches, that is, a very fast initial reduction in objective function value, followed by 

a slow but definite reduction as the search continues. One of the trial runs was 

terminated before a feasible solution had been found as it appeared to have become 

trapped within a local optima. 
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The table in Figure 4.27 compares the final solutions for each of these sample runs. 

Test 1 Test 2 Test 3 Test 4 Test 5 

No. Trials 680 1840 2480 4560 4520 

CV Co-ords 3, -3 8,9 4, -1 5, -1 5, -3 
Servo Co-ords 32,13 40,10 27,10 36,10 26,10 

p 19 18 19 19 19 

q 53 41 51 51 53 

r 63 45 71 61 53 

s 56 21 74 59 48 

Fitness Value 3593.17 4586.98 3405.44 2638.66 2217.74 

Figure 4.27: Comparison of Solutions 

The results presented here also suffer from pareto-optimality as well as a lack of 

objective function resolution. That is, the scaled fitness function values do not 

directly correspond to dynamic performance. This may be due to the fitness scaling 

routin embedded into the GA. To illustrate this, torque requirements have been 

calculated for the best and the worst solutions from these results. 

4.10.2.1 Analysis of Test 5 

The best solution obtained in these experiments was found in the fifth test after 113 

generations. Figure 4.28 shows the servo motor requirement for this mechanism. 
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Figure 4.28 : Servo Motor Input Requirement 

The end effector motion is shown in Figure 4.29. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 
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Figure 4.29: End Effector Motion 

Figure 4.30 shows the torque requirement for both the CV and servo motors. For this 

mechanism, the torque requirement of the servo motor is much lower than that 

required by the CV motor. 
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Figure 4.30: Torque Requirements 

The torque requirements are expressed numerically in the table shown in Figure 4.30. 

CV Motor Servo Motor 

Maximum Torque 1.6351 0.8369 

Minimum Torque -2.0237 -0.8063 
RMS Torque 1.9168 0.5077 

Figure 4.31: Torque Requirements 

4.10.2.2 Analysis of Test 2 

The worst solution obtained in these experiments was found in the second test after 

only 46 generations. Figure 4.32 shows the servo motor requirement for this 

mechanism. 
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Figure 4.32 : Servo Motor Input Requirement 

The end effector motion is shown in Figure 4.33. The continuous line shows the path 

generated by the mechanism, whilst the points are those used to define the motion. 
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Figure 4.33 : End Effector Motion 

Figure 4.34 shows the torque requirement for both the CV and servo motors. For this 

mechanism, the torque requirement of the servo motor is much lower than that 

required by the CV motor. 
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Figure 4.34: Torque Requirements 

The torque requirements are expressed numerically in the table shown in Figure 4.34. 

CV Motor Servo Motor 

Maximum Torque 1.5242 0.1120 

Minimum Torque -1.3431 -0.1163 
RMS Torque 1.4290 0.0893 

Figure 4.35: Torque Requirements 

Comparing these results with those in Figure 4.31 suggest that this mechanism, 

whilst having a higher objective function value exhibits more desirable torque 

characteristics. The implication of this is that the objective lacks resolution between 

different design objectives. The table in Figure 4.36 compares the values for the 

design objectives. 

Error Harmonic Content Swept Area 

Test 2 14.236 10410531.72 28344.59 

Test 5 2.967 1726988.74 40840.66 

Figure 4.36: Design Objective Values 
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It is important to state that the objective function value calculated from these values 

cannot be compared directly to the fitness function values given in Figure 4.27. The 

fitness of any given solution is dependant on both th objective function value of that 

individual solution and the objective function solutions of all the other solutions in 

the current population. 

By considering these values, it can be seen that the solution in test 5 is trading off a 

high swept area value for a low error. In contrast the solution in test 2 is trading off a 

high harmonic content for a low swept area value. The implication is that of the 

design objectives used in this study, the swept area term is the most important in 

producing low servo motor torque requirement for complex motions. This conclusion 

is in conflict with the results presented in section 4.9, where a combination of 

harmonic content and swept area produced the best results. However, this result may 

have been due to the effects of reducing the magnitude of the fundamental harmonic 

on the magnitude of the actual displacements. 

Some discrepancies also arise due to the fitness scaling routine embedded in the GA. 

Eliminating this routine may lead to better definition between objective funtion 

components, but is also likely to lead to premature convergence. 

4.11 Summary 

This Chapter has developed a design methodology based on the analysis of the five 

bar mechanism which has produced results that exhibit good dynamic characteristics 

without the necessity of computationally expensive dynamic objective functions. The 

results are promising, but more work is required to investigate the conflict that 

occurs between different criteria within a multi-criteria objective function. It will 

then be possible to propose methods which deal effectively with complex motions. In 

addition, it may be neccesary to remove the fitness scaling routine from the GA in 

order to obtain a more consistent mapping between fitness function value and true 
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dynamic performance. The performance of the GA may then have to be enhanced bu 

utilising other methods such as sharing. 
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Chapter Five 
Experimental Verification 

5.1 Introduction 

In order to illustrate that the method outlined in Chapter Four produces feasible 

mechanisms, a certain amount of experimental work has been carried out. By 

developing a prototype machine system, real life issues can be addressed which are 

not otherwise immediately apparent. In this Chapter, some results are presented for a 

practical machine based around one of the linkages developed in Chapter Four. 

5.2 Local Search Strategy and Theoretical Results 

The mechanisms located in section 4.1.9.4 and in section 4.10.1 were used as seed 

mechanisms in a local search strategy based on gradient methods. In general, a GA 

will quickly locate solutions in the region near to the globally optimum solution. 
However, even if running under an elitist selection strategy, GAs often lack local 

search power. In this work, a novel double pass synthesis strategy has been used. By 

combining both GA based search and traditional techniques, a true globally optimum 

solution is found without excessive numerical calculations. 

The local search method used in this study was an algorithm based on a steepest 
descent method. These methods are somewhat more computationally expensive than 

algorithms such as Powell's method. However, steepest descent algorithms are 
logically more simple. As the aim was not to compare methods, but to simply search 

the region around the solutions located by the GA for slight improvements then this 

method can be deemed to be suitable. 
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The mechanism located after the search was carried out has the following 

dimensions; 

p= 15 

q=25 

r=30 

s=15 

The ground point co-ordinates are fixed at; 

CV = (0,0) 

Servo = (25,0) 

This compares to the seed mechanism, which had the following link lengths and 

motor location co-ordinates. 

p= 16 

q=24 

r=30 

s=16 

The ground point co-ordinates are fixed at; 

CV = (0,1) 

Servo = (27, -2) 

By comparing the two sets of parameters, it can be seen that the GA has located a 

solution near the optimal region and that only small improvements have been found 

by the local search engine. 

The servo motor input motion displacement profile of the test mechanism is shown 

in Figure 5.1. 
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Figure 5.1 : Servo Motor Displacement 

The velocity and acceleration profiles are shown in Figure 5.2 and Figure 5.3 

respectively. 
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Figure 5.2 : Servo Motor Velocity 

114 

0 30 60 90 120 150 180 210 240 270 300 330 360 
CV Input 

0 30 60 90 120 150 180 210 240 270 300 330 360 
CV Input 



Experimental Verification 

400 

300 

200 

100 
Servo 0 
Input 

-100 

-200 

-300 

-400 

Figure 5.3 : Servo Motor Acceleration 

The motion of the end effector is shown in Figure 5.4. By examining this motion, it 

can be seen that the use of a local search engine has reduced the error between the 

desired curve and the actual curve significantly. This is due to the re-weighting of the 

objective function criteria to make the error the most significant criterion. 

7A 

Figure 5.4 : End Effector Motion 

The torque requirements of the motors are shown in the graph in Figure 5.5. There is 

a slight difference in torque requirement over the results presented in Chapter Four. 
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Figure 5.5 : Torque Requirements 

The minimum, maximum and RMS values for the torque requirement of each motor 

are given in the table in Figure 5.6. 

Tmin Tmax TR is 

CV Motor -0.5739 0.6107 0.6043 

Servo Motor -0.0859 0.0862 0.0461 

Figure 5.6 : Motor Torque Values 

5.3 Experimental Apparatus 

The experimental apparatus consists of two servo motors fixed in position. These 

two motors are joined together by a five bar linkage of dimensions given in section 

5.2. One of these motors is forced to act as a CV motor whilst the other is 

programmed to follow a given motion profile. The output of the end effector is 

traced using a camera. An LED is located on the end effector and a long exposure 

time used to ensures that the trajectory is recorded on film. 

The sketch in Figure 5.7 shows the arrangement of the motors, housing, 

misalignment coupling and bearings. 
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Figure 5.7 : Schematic Arrangement 

The linkage mechanism is attached to the output shafts. A sketch of the linkage is 

given in Figure 5.8. 
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Figure 5.8 : Five Bar Linkage 

An in depth description of each of the components in the system will now be given. 
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5.3.1 Servodrives 

Essentially, a servodrive consists of a motor with low rotor inertia and an amplifier 

which is used to modulate the potential difference across the motor coils so as to 

produce a variable speed output. A controller is used to interpret feedback 

information and provide command signals to modulate the potential difference as 

required. 

5.3.1.1 Servo Motors 

The motors used in the experimental apparatus are 3 phase AC servo motors with 

electronic commutation and resolver feedback. The motors are brushless and require 

a3 phase power supply. 

By varying the voltage across the motor coils, the servo amplifiers induce a torque in 

the rotor of the motor by means of electromagnetic induction. The level of torque 

produced is a characteristic of the motor that is termed mechanical torque constant. 

In producing this torque the motor experiences an opposing voltage across its coils 

that is proportional to the rate of the rotor movement. The motor therefore has 

another important characteristic known as the back emf constant. 

Other properties of the motor such as armature resistance, inductance and inertia all 

contribute to the response that the motor is capable of producing under excitation. 

External constraints such as friction and load inertia also effect the response. 

5.3.1.2 Choosing Motors 

The choice of a motor for a particular application depends on several factors. 

Typically, these include the following; 
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" Maximum torque required 

" Continuous torque required 

" Maximum motor shaft speed 

" Maximum acceleration rate 

The torque is the turning effort required from the motor in order to accelerate the 

mechanical load or system at the desired rate. In order to calculate the torque 

required from the system, it is necessary to find out the following; 

" The reflected total inertia of the load at the motor shaft 

" The reflected total friction of the load 

" The maximum motor inertia and friction 

" The maximum acceleration rate of the motor 

" Any gear or pulley ratios in the system 

For example, consider a motor driving a load via a belt and pulley. The total torque 

requirement of the motor is given by eqn. 5.1. 

[[D1]21 
d20 D' 

T= ý+I ý dt2 
+D Ft"+FM 

22 

... (5.1) 

where; 
T= Total motor torque required 

Di = Diameter of motor pulley 

D2 = Diameter of load pulley 

IL = Inertia of load 

IM = Inertia of motor 

d29 
dtZ = Acceleration at motor shaft 

FL = Friction torque of load 

FM = Friction of motor 
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In most cases, the motor inertia and friction can be assumed constant, unless the 

system has a changing load. The required velocity profile of the motor should be 

determined to allow the acceleration to be calculated. The maximum acceleration is 

found where the gradient of the velocity profile is maximum. 

This can be repeated for all points so as to find the RMS continuous torque 

requirement. Servo motors are generally specified with both a peak torque and 

continuous torque rating and they should be chosen that the torque requirement is 

within the range of the motor. 

If too large a motor is selected then the motor inertia is higher than for a smaller 

motor. This affects the maximum acceleration that the motor can produce. It is not 

always the largest or most powerful motor that accelerates the load at the quickest 

rate. This gives rise to the concept of inertia matching. Whenever possible, the motor 
inertia should be similar to the load inertia. The maximum power transfer from the 

motor to the load is obtained if the motor inertia and the reflected load inertia are 

similar. 

In section 5.2, the torque requirements for a typical hybrid five bar mechanism were 

calculated using the equations derived in Chapter Four. The motors used in the 

experimental apparatus are both 6.8NM continuous stalling torque motors. This is 

somewhat larger than necessary for the experiments outlined in this Chapter as the 

experiments use a rather slow CV input speed of 60 rpm and there is no external load 

inertia other than the linkage itself. The choice was made on the basis that the 

apparatus may in future be used for testing different linkages and motion profiles at 

different speeds, or with varying masses located at the point of the end effector. This 

is particularly relevant as the five bar mechanism is suited to tasks such as pick and 

place. The greater motor capacity allows such flexibility at a slight compromise of 

current performance. 
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5.3.1.3 Servo Amplifiers 

The servo amplifiers used in the experimental apparatus are Q-Drives, developed by 

Quin Systems. The use of Q-Drives entails a seamless compatibility with the 

MiniPTS controller. Essentially, the Q-Drive utilises a 16 bit Digital Signal 

Processor to emulate an incremental encoder from the resolver feedback information 

from the motor. An incremental encoder allows not only speed information to be 

ascertained, but also direction information that is essential to the operation of non- 

uniform motion generating servodrives. 

Information from the resolver is therefore transferred into an output of an 

incremental encoder. This information is passed through a serial link to the MiniPTS 

controller where it is interpreted and command signals returned to the Q-Drive. 

These command signals are determined from the motion requirements downloaded to 

the controller and are returned to the Q-Drive. The Q-Drive then modulates the servo 

motor voltages as required. 

The use of DSP technology allows faster conversion times than more conventional 

ADC and DAC technology. This enables the system to operate at high speeds 

without loss of resolution. 

In addition to modulating the servo voltages, the Q-Drive has setup parameters which 

are initialised for each system. These include limits on the maximum current, the 

nominal current and the resolver resolution. These parameters effect the performance 

of the system and must be correctly setup. Details of this process are available in the 

Q-Drive Installation Manual. 

5.3.1.4 Controller 

The controller used in the experimental apparatus is a MiniPTS system, also 

designed by Quin Systems. The system comprises hardware and software to control 
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up to four servo motors in conjunction with suitable high power drive systems. The 

hardware is highly modular, allowing the system to be easily expanded or upgraded. 

The software provides full control over all aspects of the system but has a simple 

high-level user interface. The advantages of the MiniPTS is its ease of installation 

and use. All communications between the software/PC and the MiniPTS are via a 

standard RS232 serial communications link. The front end software allows motion 

profiles to be easily defined using a number of methods and provides means to slave 

different axes of control together. This is perfect for the hybrid concept, where the 

servo motor motion profile must be executed in relation to the CV input position. 

5.3.1.5 Control Algorithm 

The MiniPTS control system operates by sampling the position of the motor at 

regular intervals and calculating a motor demand signal according to the control 

algorithm. The algorithm used is of the following form; 

vout = KPe; +KI e; +K�(e; -e, -, 
)-Kv(P; -PI-I)+KF(d, -d, -ý) 

... ýs. 2ý 

where; 
Kp = Proportional gain 

KI = Integral gain 

KD = Differential gain 

Kv = Velocity feedback gain 

KF = Velocity feedforward gain 

e; = position error 

d; = demand position 

p; - measured position 

The actual scaling between error and output voltage, for proportional gain only, is 

shown below. The other gain terms have similar scaling factors. 
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Kp 10 
V', - e' X 256 2048 x 

(5.3) 

Previous work by Bradshaw et al [4,120] has shown that the use of a PID controller 

with a velocity feedforward component based on an inverse model provides the best 

response for hybrid systems to date. Whilst this type of controller is not as robust as 

Hoo controllers, the predictable nature of the system implies that the feedforward 

component will produce low steady state errors and system stability. 

5.3.1.6 Monitoring System Performance 

The MiniPTS controller comes complete with a full range of system software. 

Within this software there are a variety of ways in which the performance of the 

system can be accurately monitored. 

The first of these methods is the continuous display mode offered through the serial 

communications link. This mode is initiated through the terminal and the desired 

parameters are displayed on the screen numerically. 

The most useful method, however, uses the PTS Scope software. Essentially, this is a 

software oscilloscope which allows the desired parameters to be displayed 

graphically as the machine runs through its cycle. In addition to this, there is an 

option which allows the scope to act in a data logging mode so that data can be 

stored and displayed at a later date. 
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5.4 Controller Tuning 

This section presents two methods for tuning single motors, as well as a simple 

algorithm for the tuning of a hybrid machine. All of these methods assume that the 

transfer function of the system is unknown. If the transfer function is known, then 

there are a number of analytical methods that can be used to determine the gains of 

the controller so that the system is both stable and exhibits a satisfactory response. 

5.4.1 Zeigler-Nichols Tuning Rules 

A simple set of tuning rules were initially developed by Zeigler & Nichols [ 121 ] and 
have since been further refined so that they can be applied to modern control 

systems. The method essentially revolves around observing the response of a system 

to a step input. The proportional gain is slowly increased until the system exhibits a 

response that is a non-decaying oscillation. This value for the proportional gain is 

known as the critical value, Kp c. The period of the oscillation is Tp. 

Depending upon the type of controller used, the proportional gain (Kp) and time 

constants (Ti & TO are calculated as shown in the table in Figure 5.7. 

Controller Type K Ti TD 

P 0.5Kpc 00 0 

PI 0.45 Kpc Tp/1.2 0 

PID 0.6 Kpc Tp/2 Tp 

Figure 5.9 : Zeigler-Nichols Tuning Rules 

Recent work by De Paor [122] has shown that these tuning rules are not as empirical 

as they first seem, and their validity can be assessed by using frequency domain 

techniques. 
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5.4.2 Oscilloscope Methods 

Osilloscope methods are a common approach to the practical tuning of many types of 

controller. In general, the rely on forcing the controlled system into a given motion 

and observing the error between the actual and desired outputs as the tuning gains are 

altered. A method for use with the Quin controller is described in Appendix B and 

provides the basis for the hybrid machine tuning method described in the next 

section. 

5.4.3 Hybrid Machine Tuning 

The tuning of a single motor is a relatively simple process when compared to the 

tuning of a multi-axis machine, where the inputs are mechanically coupled. In this 

case, the output from one motor effects the position of other motors in the machine 

and incorrect tuning can lead to ineffective machines with poor stability. Tuning a 

multi-axis machine, such as the hybrid five bar developed in this study, is often done 

during the normal running operation. This is because the system does not often 

respond well to step inputs and can often be damaged by severe oscillations. 

The flowchart in Figure 5.10 shows the tuning process used for the machine 

developed in this study and is based around a two axis machine, where axis I is 

acting as a CV motor and axis 2 carries out a given motion profile slaved to the 

position of axis 1. 
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Figure 5.10: Tuning Flowchart 

Essentially, this method is a refinement of the method described in section 5.4.2, 

where the normal running operation of the machine is used. During the practical 

tuning of the machine, it is important to realise the logical deficiencies of this 

flowchart. For example, if the error on the CV axis is deemed acceptable, but the 
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error on the servo axis is not, and the chart leads back to the start it is obviously 

unnecessary to increase the proportional gain of the CV axis unless significant errors 

are reintroduced by changing the tuning parameters of the servo axis. 

It is also important to realise that the tuning process must be repeated whenever the 

operating conditions are changed. However, in general, a set of control parameters 

tuned for a high speed will generally produce good performance at lower speeds. 

For the results presented in section 5.5, the tuning process was halted as soon as the 

end effector motion appeared to approximate the desired motion and very little 

oscillation was observed on either axis at an input speed of 60 rpm. By tightening the 

termination criteria of the tuning process, improved performance could be produced. 

5.4.4 Tuning Summary 

Tuning any control system is not an easy process, and whilst the above procedure can 

be used as a guideline it is important to realise the effects of each of the gain 

constants so that a good tuning setup is achieved. 

Proportional gain is used to decrease steady state error, as the controller ouput signal 

is directly proportional to the error. Unfortunately, high proportional gains lead to 

oscillatory motions and unstable systems. When Integral control is used, the system 

integrates the position error by adding the current error to a running total. Integral 

gain is useful to remove a constant position error, due to a steady load or friction, and 

so have a zero steady state error without overly high proportional gains. Derivative 

gain uses the differential of the position error which represents the velocity error of 

the system. This is useful where the position error is changing rapidly, as increasing 

the derivative gain improves the speed of response of the system. Derivative control 

uses the rate of change of error, whilst Velocity Feedback uses the rate of change of 

absolute position. Adding Velocity Feedback is similar to the effect of an externally 

connected tachogenerator and results in increased damping in the system. Finally, 
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Velocity Feedforward uses the demand velocity as opposed to the measured velocity 

and is particularly useful when following a defined profile. If the system is using 
Proportional gain only, then there will be a steady positioning error, known as 

velocity lag, when running at constant velocity. The feedforward gain has the effect 

of reducing the velocity lag by adding a component dependant on the demand 

velocity into the controller output. 

5.5 Experimental Results 

This section presents results for the purpose of evaluating the performance of the 

hybrid machine. The experiments consist of running the mechanism through a 

number of cycles and logging position, and velocity data for both the CV and servo 

motors as well as observing the trajectory of the end effector with the LED and 

camera combination. 

Figure 5.11 shows the actual end effector motion of the real machine in comparison 

to the precision points used to define the desired motion. This plot was obtained 
from long exposure photographs, where the trajectory of the end effector was traced 

by an LED. The trace obtained was copied onto acetate, and then projected and 

traced onto graph paper so that the precision points could be plotted. The desired 

start position of the mechanism is shown, as is the direction of rotation. 
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Figure 5.11: End Effector Motion 
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In addition to this, the following images were obtained by the use of a video camera. 

The mechanism was filmed around the cycle, and the images grabbed frone the 

appropriate frames. The purpose of these images is to show the actual end effector 

position for a given CV motor input angle and so compare this to the desired 

position. This differs from the information shown in Figure 5.11, where the timing of 

the input is not shown. Three images are given here which correspond to different 

CV motor input angles. 

Figure 5.12 : End Effector Position (2I7°) 
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Figure 5.13 : End Effector Position (102°) 

Figure 5.14 : End Effector Position (4°) 

The table in Figure 5.15 compares the actual co-ordinates of the end et, fectur with the 
desired co-ordinates. The co-ordinates are expressed in millimetres relative to the ('V 

motor position. 
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CV Motor Input Actual Co-ordinates Desired Co-ordinates 

217° -52,147 -46,148 

102° 194,262 186,270 

4° 242,246 230,247 

Figure 5.15: Comparison of End Effector Positions 

The graph in Figure 5.16 shows the data logged from the experimental machine for 

demand position, actual position and position error for the servo axis in units of 

resolver counts. The servo amplifiers are set to a resolution of 4096 counts per cycle. 

By examining this data it can be seen that for nearly all of the machine cycle, the 

actual position lags the demand position. This explains the position of the actual 

coupler curve with relation to the desired coupler curve observed in Figure 5.11. 

The maximum position error occurs at the start of the return period of the motion. 

The value at this point is approximately -115 resolver counts, or approximately 10°. 

1200 

1000 

800 

Ü 600 

400 

200 

-200 

Figure 5.16 : Servo Motor Position Data 
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The maximum actual position of the servo motor is 1135 resolver counts. This is 

equivalent to 99.76°. This compares to the theoretical prediction of 99.78°. 

The graph in Figure 5.17 shows the demand and actual velocity of the servo axis, in 

units of resolver counts per second. There is a certain amount of "noise" on the 

demand signal, which is caused by the controller trying to correct position error. This 

casues the actual velocity signal to be quite oscillatory in nature. 
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Figure 5.17 : Servo Motor Velocity Data 

The maximum actual velocity is 3072 resolver counts per second. This is equivalent 

to 4.71 radians per second. This compares to the theoretical prediction of 4.48 

radians per second. Similarly, the minimum actual velocity is -12288 resolver counts 

per second. This is equivalent to -18.85 radians per second. This compares to the 

theoretical prediction of -18.96 radians per second. 
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Due to the uniform motion on the CV axis, the differences between demand and 

actual position are less significant. The graph in Figure 5.18 shows the position error 

only for this axis. The maximum value occurs at the beginning of the cycle and has a 

value of approximately 19 resolver counts, or 1.7°. 

20 

15 
ii 

10 

Ui ,L IS, ý, Ii 
1 

O 
-5 

i II 

-10 
II If 

-15 

-20 

J� 
Il 

VJ\ 

Figure 5.18 : Position Error on CV Axis 

The graph in Figure 5.19 shows the constant demand and the actual velocity for the 

CV axis. Again, the units are in resolver counts per second, where the demand 

velocity of 4096 cps is equal to 60 rpm. 
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Figure 5.19 : Demand and Actual Velocity for CV 

In addition to logging kinematic data concerning the mechanism to validate that the 

output motions are similar to the desired motions, some simple power measurements 

were carried out to show the power distribution between CV and servo motor. These 

power measurements were taken using a simple hand held power meter adjusted ihr 

use on a three phase supply by the inclusion of a reference voltage. 

Readings of RMS power were taken from a single phase of each motor supply, and 

averaged for several cycles of the mechanism. A three phase compensation was 

included which calculated the total power by referencing this phase to the remaining 

phases. The power drawn by the CV motor is 3.3429 kW, whilst the power drawn by 

the servo motor is 1.5696 kW. These figures can only be viewed as being 

approximations to the motor power consumption, as they are actually measurements 

of the power drawn by the servo amplifier on each axis. However, they do indicate 

that the CV axis is contributing more to the overall motion than the servo axis. The 

inclusion of torque transducers into the mechanism would allow for more accurate 

assessment to be carried out. 
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5.6 Discussion of Results 

The results presented in section 5.5 illustrate that the developed design methodology 

does produce results that can be turned into practical machines. However, several 

factors need to be highlighted. The most important of these is that the tuning of the 

controller is critical to producing the desired motions. 

The experimental tuning process 5.4.3 was halted as soon as the end effector of the 

mechanism appeared to generate the desired output motion, and there was no 

observable oscillation on either axis as the machine completed one cycle. The 

process was halted due to the tedious nature of finding optimal gain settings. The 

search for optimal gain settings is complex due to effect changing one gain term has 

on possible values for the other gain terms. 

There is one example of this which can be used to illustrate this effect. Setting a high 

proportional gain will often cause excessive oscillation at the end of a move. 

However, increasing the velocity feedback gain adds damping to the system and so 

allows the proportional gain to be further increased. If an experimental tuning 

approach is chosen for future work, then it is recommended that a more rigorous 

understanding of the effects of changing gains terms is obtained through careful 

experimentation. 

For the sake of this study, where control issues do not hold prime importance, the 

tuning algorithm developed in section 5.4.3 produces acceptable results even if the 

termination criteria on position error are not overly rigorous. Continuing to tune the 

controller on tighter termination criteria should produce better results, though the 

time taken to tune the controller for excellent performance may be excessive. 

Considering that the controller must be retuned if the servo motor motion profile is 

changed, then an experimental tuning approach is not recommended. 

However, by examining the graphs in Figure 5.18 and Figure 5.19, it can be seen that 

the position error is essentially cyclic. This implies that better control could be 
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achieved by developing models of the hybrid machine. These models could be used 
to replace the current feedforward component in the controller with an inverse model 
feedforward component, as used by Bradshaw [4,120]. 

As an alternative to this, it should be possible to determine the transfer function of 
the mechanism by comparing the response of the machine to a set of standard inputs. 

This is achieved by plotting an experimental Bode diagram, and hence determining 

the transfer function. This approach has several merits, including the possibility of 
de-coupling the mechanism by finding the inverse transfer function. This is achieved 
by considering the effect on one input when a standard input is applied to the other 

machine input. 

It is important to realise that any improvements to the control algorithms, such as 

those outlined above, can only be guaranteed to improve the response of the motors. 
It is entirely different to ensure that the end effector is accurately placed at all stages 

of the cycle. By examining the data in Figure 5.11 to Figure 5.15 it can be seen that 

this does not always occur. By using sophisticated image processing equipment, it 

may be possible to include the actual position of the end effector into the control 

algorithm governing the operation of the machine. Such a development would 
involve considerable computing power and would be a completely novel approach to 

the control of path generating mechanisms. 

An alternative to the use of image processing equipment would be to attach wires to 

the end effector. These cables could then be passed through fixed linear encoders, so 

as the mechanism completes a cycle, the position of end effector could be calculated 
by the amount of wire drawn through the encoder. To include this information into 

the control algorithm would require less computing power than the image processing 

approach but lacks elegance. In addition, it may not be a practical solution for an 
industrially viable machine. 
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5.7 Summary 

This Chapter has described the experimental apparatus developed to test that the 

developed design methodology produces solutions that can be turned into practical 

machines. Results have been presented which show that the real machine produces 

an adequate approximation to the desired motion. Errors between the desired and 

actual motion can be attributed to a set of non-optimal controller gains and the 

effects of a cross coupled system. The real machine shows a power distribution 

between CV and servo motors of approximately 2: 1. This indicates that the bulk of 

the motion is being provided by the CV motor, whilst the servo motor is providing 

the flexibility to ensure that the desired coupler curve is being produced. This proves 

that the machine is acting as a hybrid device. 
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Chapter Six 
Discussion 

6.1 Introduction 

The aim of this Chapter is to discuss the results presented in Chapter Four and 

Chapter Five, and hence assess the merit of the methodology. Essentially, this 

Chapter consists of two sections. In the first section, the results presented in Chapter 

Four will be analysed. The aim is to assess the merits of the methodology in terms of 

a theoretical base. In the second section, the result of Chapter Five will be discussed, 

so assessing the manner in which theoretical results can be turned into practical 

machines. Both of these sections contain various recommendations for future work 

which will be reconsidered in the appropriate section of Chapter Seven. 

6.2 Theoretical Results 

In order to discuss the results presented in Chapter Four in a rational manner, it is 

first important to restate the main objectives of this work. The aim was to develop a 

novel design and synthesis methodology for hybrid machine design. The purpose for 

this new methodology was to enable a more robust approach to automatic design. As 

a secondary objective, the methodology was intended to encapsulate novel design 

objectives which can be used to augment or replace previously used design 

objectives which were considered to be computationally expensive and inelegant. 

A large amount of effort has been put into the development of a suitable Genetic 

Algorithm for use in the synthesis method. To ensure that the performance of the GA 

is acceptable, it is necessary to understand how certain implementations introduce 

bias into the method which results in poor performance. These biases, which were 

present in early work involving the synthesis of four bar mechanisms, have been 
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eliminated by the inclusion of penalty functions to replace explicit heuristic 

constraint filters and the inclusion of a fitness scaling to help differentiate between 

similarly fit individuals. Other biases, including those which relate to poor random 

number generation have also been eliminated. 

By analysing the results in Chapter Four, it can be seen that the proposed 

methodology is considerably more robust than previous methods based on 

conventional search algorithms. In terms of GA based searching, it is also reasonably 

efficient. When coded into a binary string, each solution representation consists of a 
48 bit binary string. This results in a search space of 248-1 possible solutions. Yet the 

method is locating feasible solutions after approximately 4000 trials. 

In all cases the method located a solution that was feasible in terms of the objective 
function in use. However, the results presented in section 4.10.2 show that the 

objective function used to approximate dynamic performance does not correlate 
directly to true dynamic performance. This may be due to not including the effects of 

the intermediate links into the function approximation. 

However, in many respects, this lack of direct correlation is not a major issue. In 

both cases analysed the results show a desirable torque distribution between CV and 

servo motors. However, if a truly dynamic solution is required then the novel 

methodology could be used to generate a seed mechanism for use in a search using 

an objective function based on either torque or power calculations. This double pass 

methodology has considerable merit as it is likely to produce solutions that are 

dynamically optimal without long computation times. 

One other point which needs to be discussed with respect to the lack of correlation 

between approximate dynamic conditions and truly dynamic conditions is that this 

lack of correlation only occurs in the second trial case. This second experimental 

curve was defined expressly so that the servo motor displacement profile was likely 

to be very complex. This was intended to test parts of the design methodology such 

as the closure tracking algorithm. With the limited data that is available the 

following conclusions may be drawn. 

139 



Discussion 

In the objective function used, the harmonic content of the servo displacement 

profile is weighted so that it is more important than the swept area term. When the 

harmonic content of the servo motor displacement profile is low, this produces 

solutions that are very good approximations to dynamically optimum solutions and a 

direct correlation between objective function value and dynamic performance. 

However, when the desired output curve necessitates a servo motor displacement 

profile with high harmonic content then this correlation is not as exact, though high 

quality solutions are still produced. 

Conclusions of early work by Connor et al [37,38] suggested that poor performance 

on certain coupler curves was due to the fact that the coupler curve defined the 

objective function surface and this conclusion can be paralleled here. In the second 

case, when harmonic content must be high, then it is the swept area term which has 

the most significance on determining the dynamic performance. 

Whilst further research must be carried out to verify this proposition, it is possible to 

suggest a method for producing a general objective function which could be applied 

to all problems. In this method, the objective function weightings for the swept area 

and harmonic content terms would be calculated automatically after considering the 

nature of the desired curve. 

The simplest way of achieving this would be to consider the harmonic content of the 

closed curve, in a similar manner to McGarva & Mullineux [8], and utilising this in 

terms of a transfer function between output curve and servo motor displacement 

profile. This transfer function is based upon a simple assumption that the higher the 

harmonic content of the desired coupler curve, then the servo motor displacement 

profile must have a higher harmonic content in order to produce that curve. The 

higher the harmonic content of the servo motor displacement curve, then the more 

the swept area term becomes significant. This simple assumption does not take into 

account the effect of varying the link lengths of the mechanism but should still 

provide sufficient approximation to select the objective function weightings. 
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The development of such transfer function may also provide an insight into other 

areas in which it could be applied. By examining the servo motor displacement 

profiles for the first test motion in Chapter Four, it can be seen that these profiles 

exhibit similar natures despite differing link lengths and motor positions. 

Given sufficient information, it may be possible to develop a knowledge based 

system which utilises the relationship between the desired motion and the family of 

curves which are required to produce the motion for different link lengths. This could 

be used to either guide the GA towards high quality solutions, or aid the designer 

during other stages of the design process. 

6.2.1 The Genetic Algorithm 

Whilst the most important aspect of the method is the quality of the solutions 

produced, it is also relevant to discuss the effectiveness of the GA used. In this study, 

the GA was based around the three main operators of reproduction, crossover and 

mutation. The GA used an elitist strategy and a secondary inversion operator called 

to eliminate identical strings from the population. Analysis of the GA performance 

can be split into two areas. These are the nature of the convergence and the quality of 

the solution. 

In this case, the nature of the convergence was studied briefly by examining the 

population of solutions for a number of test runs as it changed from generation to 

generation. It is not necessary to reproduce a full population set for the number of 

generations for which the solution was run, as a number of generalised conclusions 

can be drawn from the observations. 

In all cases the method did not fall foul of the two main reasons which cause genetic 
based searches to fail. The first of these is domination of early generations by "super 

individuals", leading to premature convergence. In GA terms, premature 

convergence is defined as when the population consists of a significant number of 
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identical solutions which are not located on the globally optimum peak of the 

objective function. This avoidance of premature convergence can be attributed to two 

factors. These are the use of identical string elimination and a simple fitness scaling 

routine. 

The second cause of failure in genetic search is the lack of definition between 

similarly fit solutions towards the end of a solution run. This has been partially 

avoided by the use of the fitness scaling routine. However the results presented suffer 

from pareto-optimality caused by trade off between different design objectives. 

Pareto-optimality is when solutions have similar objective function values but 

considerably different parameter sets. 

6.2.2 Pareto-Optimality 

Analysing the results presented in section 4.10 show that in most cases different 

solutions have similar objective function values but considerably different parameter 

sets. This state is known as pareto-optimality and is generally found in multi- 

objective searches where different objectives contribute different amounts to the 

overall objective function value. 

The problem caused by pareto-optimal solutions is simply to choose which parameter 

set is truly the best. In the case of the problems presented in this study, this can be 

answered by simply calculating the torque requirements of the resulting mechanism. 

However, for this to be introduced into the search means a return to computationally 

expensive objective functions. 

There are several other methods which could be applied in this case to help the 

search decide the relative merits of otherwise pareto-optimal solutions during the 

search. The simplest of these is to introduce a degree of intelligence into the 

objective function based around simple knowledge based rules. One such rule has 

already been proposed in section 6.2. 
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This rule can be expressed as a heuristic; 

IF (desired curve harmonic content) is high. 

THEN (swept area) is more significant 

If this direction is chosen for future work, then it is obvious that more knowledge 

needs to be acquired about hybrid machines in order to generate sufficient heuristics 

to allow a suitable objective function to be formed. 

One other method for dealing with pareto-optimality is the definition of major and 

minor functions as used by Donne et al [123]. As an example, the objectives defined 

in this study could be defined as major functions. Minor functions can then be used 

to further differentiate between pareto-optimal solutions. One possible approach 

would be to calculate the transmission angles within the mechanism as it completes 

the cycle, then select between two mechanisms based on this secondary 

consideration. 

Perhaps the most common manner of dealing with pareto-optimal solutions is to not 

use a weighted objective function but to store all solutions that match feasibility 

criteria based on objective function component values. These solutions are then 

presented to the designer to select the best solution. 

This approach has some merit in that by storing different solution parameter sets it is 

possible to predict the pareto-optimal boundary front and hence predict other 

possible solutions by examination. However, it is not really a viable option for 

complex functions as the pareto-optimal boundary front is often so large that the time 

taken to store all pareto-optimal solutions becomes more significant than the search 

time itself. 
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6.3 Practical Implementation of a Real Machine 

In Chapter Five, a local search method based upon a steepest descent method is used 

to improve upon solutions obtained in Chapter Four. This combination of search 

methods produces a high quality theoretical solution. This double pass methodology 

is a new approach to mechanism synthesis. 

However, it is very important to consider the effectiveness of the method by 

producing a real machine so that practical issues can be assessed. These practical 

issues can be divided into two areas. These are problems associated with the 

implementation and commissioning of the machine and also problems associated 

with the control of the machine. 

6.3.1 Commissioning 

During the commissioning of the machine several problems were encountered. These 

problems arose due to a number of reasons, mainly an inexperience of 

commissioning servo driven systems as well as errors and inconsistencies in the 

installation manuals provided by the servo drive manufacturer. 

These problems highlighted several important factors. The first of these was that it is 

essential to ensure that no local earthing loops are present in the power circuitry. 

Such earthing loops give rise to differences in electrical potential which can cause 

the motors to randomly shudder about the demand position. Such motor shudder can 

also be due to improper shielding of power, resolver and encoder simulation cables. 

Whatever the cause, motor shudder cannot be tolerated in a servo system. This is 

particularly true in a system such as the hybrid machine where two inputs are 

mechanically coupled together. When a motor shudders away from the desired 

position, the other motor is pulled from it's desired position due to the linkage 
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between them. This effect is known as cross coupling and is essentially a control 

problem. 

6.3.2 Control 

One of the major problems associated with the control of hybrid machines is the 

effects due to cross coupling. If a noisy signal causes one motor to shudder about its 

desired position the mechanical coupling causes the other motor to be pulled from its 

desired position. The control algorithm will then try to correct both positions, often 

causing a higher position error. This normally results in an increasing oscillation that 

ultimately leads to an unstable system. 

The effects of cross coupling can be reduced by correct system implementation to 

reduce any shudder on each axis. It is also essential to have a correctly tuned control 

algorithm. In this respect, the control algorithm should be considered in both the 

speed loop and the position loop. 

This highlights one of the most important aspects of hybrid machine implementation. 

Previous work by Bradshaw et al [120] has shown that a PID controller with an 

IMFF (Inverse Model Feed Forward) component provides adequate control. 

However, it does not deal with how best to assign control parameters. Tuning rules, 

such as those outlined in Chapter Five, may not always provide a sufficiently 

rigorous approach to selecting optimal control gains. 

This is particularly true if a very accurate output motion is required. Experimental 

tuning methods suffer from the disadvantage that as each tuning parameter is altered, 

then the bandwidth for acceptable settings of other parameters changes. For example, 

if the proportional gain is set to the critical value then increasing the velocity 

feedback gain will allow even higher values for the proportional gain to be used. The 

implication of this is that experimental tuning processes require an increasing degree 
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of effort to implement as the tolerance on the output motion precision is made 

tighter. 

A full consideration of control issues was always beyond the scope of this study. 

However, it is important to stress the importance of having a robust controller. In 

addition to establishing methods for tuning PID controllers, more work is required to 

investigate other robust control techniques and could concentrate on the use of 

adaptive or state space methods. One other possibility is to design a control 

scheduling system. In control scheduling, the gains of the controller are adjusted as 

the mechanism completes each cycle. This could be very simple to achieve as the 

results in Chapter Five indicate that the errors associated with the inputs to the 

mechanism are generally cyclic in nature. This is similar to the Inverse Model Feed 

Forward approach, in that system specific information is used to improve the control 

system. 

Another alternative is to introduce into the control algorithm information concerning 

the actual position of the end effector. This could possibly be achieved by tracking 

the trajectory of the end effector using image processing hardware then using this to 

predict the position of the end effector. Comparing this predicted position with the 

desired position should allow the velocities in the machine to be adjusted 

accordingly. A simpler alternative could be developed where tensioned wires are 

attached to the end effector. Linear encoders on these wires allow the end effector 

position to be calculated. This method may not be applicable in an industrial 

implementation and lacks some of the elegance of using image processing 

technology. However, it requires less computing power and so may be the most 

feasible option. 

6.3.3 Machine Evaluation 

Whilst the output of the machine has no doubt been affected by the non-optimal gain 

settings used in the position controller it is still reasonably accurate. The desired 
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coupler curve is approximated, despite significant errors on the inputs to the 

machine. However, more work is required to understand how an error on the motor 

inputs affects the position of the end effector. This could include further use of video 
imaging equipment which operates at speeds higher than currently used. 

Alternatively, models could be developed which show not only the affects of a 

fluctuating input, but also predict the response of the control algorithm. 

Despite the limitations of the current control implementation, the machine can be 

said to be practically implemented. The implication of this is that the design 

methodology developed produces results that can be turned into real machines. These 

machine solutions also exhibit desirable characteristics, both theoretically and 

practically 

The power distribution between CV and servo motors is such that the CV motor 

provides the bulk of the motion whilst the servo motor provides a degree of 

modulation which allows the desired output coupler curve to be generated. When this 

occurs, there is more potential for energy regeneration by utilising a flywheel on the 

CV motor axis. 

In addition to running the machine at the test speed of 60 rpm, some experimentation 

has been carried out to observe the effects of increasing the speed of operation. At 90 

rpm, without altering the controller tuning gains, the response of the mechanism is 

poor. The end effector still traces a crude approximation to the desired coupler curve, 

but the oscillations on the servo motor at the end of each cycle are so large so as to 

produce significant error on the CV axis. However, it is possible to retune the 

controller so that performance is improved. As the speed of operation is further 

increased, it becomes increasingly difficult to tune the controller so that adequate 

performance is maintained. This may be due to the increase in magnitude of the out 

of balance forces and the severity of the servo motor motion profile. It is suggested 

that future work considers the balancing of the mechanism to enable higher speeds to 

be reached. As the speed of operation is increased, it also becomes increasingly more 
important to change tuning gains by fine steps, as severe oscillations can occur when 

gains are adjust by large amounts. These large oscillations often flick the mechanism 
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into its other closure which leads to the possibility of damage to the machine due to 

the interference of the links. 

The implication is that more research is required before the level of understanding of 
hybrid machines is sufficiently understood so that they could become industrially 

viable machine design solutions. This must include work concerned with the safety 

aspects of hybrid machines and in particular methods which inhibit the possibility of 

closure changes. Controlling the mechanism so that good performance is achieved, 

but changes of closure do not occur, presents a particularly difficult problem. 

6.4 Summary 

This Chapter has discussed the results presented in earlier Chapters. By examining 

these results it has been shown that the novel design methodology developed during 

this study has gone some way to providing a robust synthesis tool for hybrid 

mechanisms. 

The practical results indicate that the solutions obtained can be turned into real 

machines which approximate the desired motions with desirable power and torque 

characteristics. What errors that have occurred have been attributed to the tuning of 

the controller. 
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Chapter Seven 
Conclusions 

7.1 Introduction 

The purpose of this Chapter is to summarise the development of the novel design 

methodology based on Genetic Algorithms, briefly state the importance of the results 

achieved and draw conclusions concerning the merit of the methodology based on 

the discussion in Chapter Six. 

Whilst this Chapter concludes this thesis, it is important to realise that this thesis 

does not cover all possible avenues for research in this area. 

7.2 Summary of Design Methodology 

In Chapter One, it was stated that the aim of this research was to develop a robust 

design methodology for multi-degree of freedom mechanisms with specific 

applications in the field of hybrid machine design. Initial investigations showed that 

Genetic Algorithms could prove to be a suitable automatic design optimisation 

method for use in this area. 

Chapter Three provides an introduction to the mechanics of Genetic Algorithms. In 

essence, GAs are a method based upon the principles of Darwinian evolution and 

natural selection. By defining a problem as an environment in terms of an objective 

function, the method seeks to "evolve" good solutions by modelling the main 

processes by which genetic information is passed from parents to children in natural 

systems. These processes, or operators, are reproduction, crossover and mutation. In 

addition to these, the GA used in this study utilises an unnatural operator known as 
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inversion. This has been included so as to remove identical solutions from the 

population so as to maximise the search potential of each generation. 

The objective function used in obtaining the results presented in Chapter Four was a 

multi-objective function based around the following criteria; 

1. Least squares error 

2. Mobility penalty function 

3. Servo link swept area 
4. Harmonic content of servo displacement 

Each of these criteria was proposed for inclusion for different reasons, though all 

were intended to force the method towards high quality solutions. The least squares 

error between the curve generated by the trial mechanism and the desired curve 

should be viewed as the most important component for applications where precision 

location of the end effector is required. In addition to this, it is also important to 

ensure that the mechanism is feasible in terms of mobility. This is achieved by 

including an accelerating penalty function based on the number of mechanism 

positions around the cycle that cannot be reached. 

The final two components of the objective function were included so as to try and 

approximate a dynamic objective function. Designing mechanisms where the bulk of 

the motion is provided by the CV motor has many implications. For example, it 

allows the use of a flywheel on the CV motor axis to maximise the energy 

regeneration potential of the system and reduces the size of the servo motor. This 

results in a reduced installation cost and implies that higher speeds of operation may 

be possible or that savings in power consumption can be made. 

However, using such dynamic criteria in a parallel search method, such as a Genetic 

Algorithm, would be computationally expensive. The swept area term in the 

kinematic approximation function is included because the motor torque requirement 

is a function of the motor displacement profile and the link lengths of the 

mechanism. The swept area term is calculated by multiplying the RMS of the servo 
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displacement profile by the length of the link attached to the servo motor. This is not 

a true approximation of dynamic conditions as the effects of the other links and the 
CV motor are not accounted for. 

The harmonic content of the servo displacement is included for similar reasons to the 

swept area term. The torque requirement of the motor is dependent on the 

acceleration profile of the servo motor and so a smooth displacement profile should 

produce lower torques. The importance of the harmonic content of the displacement 

profile can be seen by considering an abstract example. Simple harmonic motion is 

infinitely differentiable without introducing discontinuities in high order derivatives. 

Therefore, lowering the. magnitude of high order harmonics trends the displacement 

profile towards simple harmonic motion. This leads to an improvement in torque 

requirement. 

7.3 Critical Analysis of Results 

The results presented in Chapter Four indicate that some success has been achieved 
in developing the novel methodology. The considerable time spent developing a 

robust GA has resulted in an effective synthesis method. In all cases, the method has 

produced high quality mechanisms with desirable torque distributions. However, by 

analysing the objective function values for different mechanisms and comparing each 

mechanisms torque characteristics it can be seen that the objective function used 

does not provide a direct mapping between kinematic approximation and truly 

dynamic optimality. This may be partly due to the exclusion of the effects of the 

intermediate links of the mechanism on the criteria used to assess the quality of the 

servo motor input and also partly due to the weightings used in the objective 

function. Whilst this direct mapping does not exist, the method does locate 

acceptable solutions in most cases. 

In Chapter Five, results are presented for a real machine designed around one of the 

solution sets presented in Chapter Four. These results show that not only does the 
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methodology locate feasible solutions but that these solutions can be turned into 

working machines. However, a greater understanding of the control of hybrid 

machines is required before such machine modules can be classed as industrially 

robust design solutions. 

7.4 Suggestions for Future Work 

The work described in this thesis should be viewed as an inital exploration of the 

application of an Al search method to the synthesis of hybrid mechanisms. Whilst a 

degree of sucess has been acheived in developing the method, including some novel 

design objectives, there is still a large amount of potential research in this field. 

7.4.1 Design Methodology 

The ideas behind the design methodology presented in this work are essentially valid, 

but there is still scope for improvements to be made to the methodology. In terms of 

the Genetic Algorithm, there are several ways in which the performance could be 

improved. This includes the development of a parallel algorithm as well as the 

inclusion of a sharing scheme. 

In a parallel GA, separate sub-populations are maintained and each gene pool 

produces local solutions. Poor individuals in one sub-population are often replaced 

by good individuals from another. Such migration ensures that all sub-populations 

contain highly fit solutions. It may be appropriate to utilise a similar approach to 

Schaffer [93], where each sub-population was used to represent each objective 

function criteria. 

A parallel GA may be of benefit to the methodology as they have been shown to 

contain a more diverse set of solutions than a serial GA. This effect can also be 
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achieved by using sharing in a serial GA, though the development of sub-populations 

is in a much more implicit manner and it is more difficult to control any migration. 

Increased diversity within the population, no matter how it is achieved, implies that 

the method will locate more pareto-optimal solutions. Therefore, along with this 

development, work should be carried out into dealing with complex multi-criteria 

objective functions and the pareto-optimality condition. This may be best achieved 

by introducing a degree of intelligence into the objective function to replace the static 

weightings currently used. This degree of intelligence could be in the form of 

heuristics such as suggested in section 6.2.2. 

In addition to developments within the workings of the method, the scope of the 

method should also be expanded. By applying the method to a Svoboda seven bar 

function generator the effectiveness of the dynamic approximate objectives can be 

assessed by comparing results to those achieved by Greenough [3,5]. 

Should the results lack the quality of previous work, the method can then be altered 

to a double pass methodology where the output from the GA search is used in a local 

search based around the dynamic objectives already developed. Should this prove 

necessary, then it may be best to utilise a Tabu search algorithm as the local search 

engine. Such a double pass methodology is likely to produce very high quality 

solutions without the high computation time associated with previous work. 

In addition to considering the current design objectives, work should also be carried 

out to develop yet more novel objectives. These could include objectives which 

minimise the out of balance forces for a given mechanism. One possibility, other 

than simple balancing, is to use simple stress analysis techniques to consider the 

stresses in each link caused by the joint forces. Once the stresses are known, it would 

be possible to redesign the shape of each link so that the mass is minimised. This 

would then reduce the out of balance forces. 

Future work should also consider the degree of modulation that is available to a 

given linkage by changing the servo motor motion profile. An understanding of how 
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much this profile can be changed, without causing interference in the linkage, and 
how much these changes effect the output coupler curve will enable a design 

approach to be developed which maximises the flexibility of a given mechanism. 

Finally, the method could be generalised so that the designer can select the type of 

output required and so select a desired mechanism type as well as design objectives. 

To achieve this, the nature of the GA code must be changed to eliminate the use of 

symbolic constants to define chromosome lengths and parameter definitions. The 

most difficult area of this generalisation would be to allow the user to specify the 

objective function. One possible approach is to compile the GA as object code or a 

. DLL file and allow the user to write their own objective function to link to the GA. 

An alternative approach is to provide the user with a library of pre-written functions. 

Future work should also consider how the current methodology can be extended into 

a comprehensive automated machine design toolbox. Generalising the GA, and 

providing the user with options concerning the mechanism type and output motion 

required, as well as options concerning the design objectives, goes some way towards 

such a toolbox. However, it may be applicable to provide a knowledge based user 
interface which interprets the designers motion requirements using a natural 

language parser so providing an automated type synthesis method. 

7.4.2 Control Techniques 

This study has shown that the experimental tuning of hybrid machines can produce 

adequate performance, though the setting of the gain parameters can be tedious and 

time consuming. It is recommended that further research into the control of hybrid 

machines should be carried out to develop methods which do not require such 

tedious tuning approaches. Possible avenues include the use of adaptive control and 

state space methods. 
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There are several other techniques which could also be investigated. The first of 
these is to implement control scheduling into the machine so that improved 

performance is achieved. An alternative method for improving performance would 
be to introduce the actual position of the end effector into the control algorithm. 

Finally, it may be possible to develop complex models of the mechanism and 

controller. These models could be used in a variety of ways. Firstly, they could be 

used to gain a better understanding of the effects of cross coupling in the system. 

They could also be embedded into the control system user interface and be used to 

judge the effects of changing controller gains or motion profiles before they are 

physically changed, This would be of great use in terms of the safety aspects of 
introducing hybrid machines into an industrial environment. 

7.5 Conclusions 

In this thesis, a totally novel approach to mechanism design has been formulated for 

use in the synthesis of hybrid mechanisms. The methodology utilises multi-criteria 
design objectives to approximate a dynamically optimum hybrid mechanism. The 

results presented in this thesis show that the novel methodology produces acceptable 

results, though more research is required in a number of areas if the hybrid machine 

approach is to become an industrially viable option for non uniform motion 

generation. 
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Appendix B 
Quin Systems Tuning Method 

The following method is based upon recommendations of Quin Systems for the 

tuning of a single motor. It is important to realise that this procedure involves trying 

to set the system into oscillation in order to find an upper limit on the gain 

parameters. If this is likely to cause any problems, or damage to the system, then this 

procedure should not be used. 

1. Set the proportional gain to a low value, for example 50, and set all other gain 

terms to zero. The default settings for Kp is 256 and for all other values it is zero. Set 

the velocity and acceleration with the SV and SA commands to a suitable low value. 

These values depend upon the resolution of the encoder/resolver. 

2. Enable the position control action with the PC command. If the motor immediately 

runs at high speed in one direction and then stops, giving a "motor position error" 

message, then the sense of the encoder is reversed. This can be corrected by 

swapping one pair of encoder signal wires. The exact method for doing this is 

dependant on the type of amplifier and encoder/resolver fitted. The following stages 

assume that the system has been correctly set up and is able to control the motor 

position. 

3. Try executing some simple move commands, such as MR 1000. The motor should 

move as instructed. If at any time the motor starts to vibrate or oscillate beyond the 

desired move then the gain is already too high. Reduce it by halves until the 

vibrations stop. The monitor output should show something approximating a 

trapezoidal or triangular velocity profile for the move. 
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4. When the motor is following some simple slow move commands correctly, the 

next stage is to try some cyclic moves. An example command string is; 

MR 1000/WT 128/MR-1000/WT 128/RP 

This command string sets up a loop where the motor moves 1000 counts positive, 

pauses for half a second, moves back 1000 counts negative to its start position and 

then waits a further half a second before repeating the move. 

Velocity 

+ 

Figure B. 1 : Response to a Slow Cyclic Move for a Detuned System 

5. Increase the acceleration to a larger value. Set the system to repeatedly execute 

sudden cyclic moves, with a pause between each move to allow the system to settle. 

Velocity 

+ 
Measured wbeNy 

Figure B. 2 : Response to a Fast Cyclic Move for a Detuned Systen, 
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6. While the system is executing this move sequence, slowly increase the 

proportional gain with the KP command until the actual velocity begins to overshoot 

the desired velocity at the end of a move. This indicates that the system is beginning 

to become unstable. It is possible to continue increasing the gain to the point where 

the oscillation is sustained indefinitely. This is the highest useable value of K1 

without making the system totally unstable, although it is of no practical use because 

of the oscillations. 

Velocity 

+ 

Figure B. 3 : Response of an Overtuned Proportional Controller 

7. Now increase the velocity feedback gain with the Kv command. Velocity feedback 

adds damping to the system and should begin to reduce the amplitude of the 

oscillations. This should be visible on the output display. Continue to increase the Kv 

value until the oscillation stops and there is little or no ringing at the end of each 

move. The Kv term can usually be increased to a much higher value than the Kp 

term. In many systems it is possible to increase Kv to the point where the system is 

critically damped and the time taken to reach the target position is at a minimum. 

On some low load inertia systems, the Kv term may prove ineffective in damping the 

oscillations and may even make them worse. When this occurs, it is necessary to 

include an external source of damping such as a tachogenerator. This provides 
instant velocity feedback to the motor drive and is not subject to the sample time 

constraints of a digital system. 
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8. Stop the move sequence with either the AX or ER commands. If it is possible to 

run the machine at constant speed in one direction, then the KF feed forward gain 

may be set up as well. If not, it will have to be set up during normal operation of the 

machine system. Set the speed to the desired operating speed of the motor. Increase 

the value of KF and note that the position error should decrease. KF may be increased 

until the position error is approximately zero, at which point the feedforward gain is 

compensating for the velocity lag present in the system with proportional gain only. 

The KF value may be increased further to the point where the motor position is ahead 

of the demand position if required. 

This procedure, although it only describes setting some of the gain terms, is 

sufficient in many cases to give acceptable performance. However, an acceptable 

setup for any particular operation may not be ideal for a different operation, so it is 

useful to experiment with many different moves and profiles to find the best 

compromise. Clearly, the most important operation for the purpose of tuning motors 
is the normal operation cycle of the machine. It is possible, however, by using the 

command sequence facilities on the system to change gain settings automatically, in 

response to an input signal or according to a set program. This would be used for 

example, on a robot arm, where the ideal setup depends on the load carried by the 

arm. This could have great benefit in the hybrid configuration where control 

parameters could be modulated throughout the machine cycle to obtain truly 

optimum performance. 
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.C 

Program Code 

C. 1 Introduction 

This appendix contains the prgram code for the Genetic Algorithm developed in this 

program of research as well as the code for the mechanism synthesis objective 

function. The code was deveoped using Microsft C/C++ v7.00 and contains several 
Microsoft (non ANSI) extensions. The code is contained in six files; 

1.5bar_ga. c 

2. const. c 

3. operator. c 

4. util. c 

5. userio. c 

6. objectives 

C. 2 5barga. c 

/* Five-Bar Mechanism Synthesis Software 
/* Genetic Algorithm Developed By 
/* A. M. Connor 7th June 1996 
/* Mechanisms & Machines Research Group 
/* Liverpool John Moores University 

/* Preprocessor directives */ 

#include <stdio. h> 
#include <math. h> 
#include <graph. h> 
#include <conio. h> 
#include <stdlib. h> 
#include <time. h> 

#include "const. c" 
#include "userio. c" 
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#include "util. c" 
#include "operator. c" 
#include "objectiv. c" 

void main(void) 
{ 

int z=0; 

srand((unsigned)time(NULL)); 

initialise(); 
printf("\a\n\nEnter 
scanf("%s", &save); 
generatepop(; 
update(); 

; decode o; 
report(); 
while(z! =1) 
{ 

filename for results output : "); 

Z=O; 
if (kbhit () ) 

break; 
generation(); 
update(); 
decode(); 
report(; 
maxfit=0.0; /* Reset generation max fitness 
++gen; 
z=termination(&newpop[O]. param5, &newpop[O]. param6, 

&newpop[0]. param7, &newpop[0] 
} 
printf("\nz=%d\nok", z); 
final_report(); 

C. 3 const. c 

/* File CONST. C */ 
/* Containing the definitions of symbolic constants, 
/* global variables and function prototypes for 
/* 5bar_ga. 
/* A. M. Connor 7th March 1996 */ 

/* Symbolic constants */ 

#define CHROM LENGTH 48 
#define POP SIZE 41 
#define CROSS RATE 0.85 
#define MUTATE RATE 0.05 
#define NO PRECISION POINTS 24 
#define CYCLE 360.0 
#define PI 3.141592654 
#define STEP 15 
#define NO HARMONICS 5 

/* Structure definitions */ 

struct phenotype{ 
int ident; 
int b[CHROM LENGTH]; 

param8); 
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double paraml; 
double param2; 
double param3; 
double param4; 
double param5; 
double param6; 
double param7; 
double param8; 
double fitness; 
double error; 
double harmonics; 
double area; 
int mobility; 

typedef struct phenotype solution; 

/* Function prototypes */ 

void initialise(void); 
void read_file(void); 
void weighting(void); 
void generatepop(void); 
void update(void); 
void decode(void); 
void report(void); 
double random(void); 
int test(double); 
void crossover(int, int, int); 
void mutation(int, int); 
int selection(void); 
void generation(void); 
void sort(void); 
void final_report(void); 
double error(double *, double 

double anglel(double *, double 

double angle2(double *, double 

void tracking(double [], doubl 

*, double *, double *, double *, 
double *, double *, double 

*, double *, double *, double *, 
double *, double *, double 

*, double *, double *, double *, 
double *, double *, double 

e [], double [] ); 
void identicai(int string); 
void invert(int j); 
double fourier(double []); 
double area(double [], double *); 
int termination(double *, double *, double *, double *); 

/* Global variables */ 

*, int *); 

*, int *) ; 

*, int *) ; 

solution oldpop[POP SIZE], newpop[POP SIZE]; 
double g_p_l_x, g_p_l_y, g_p_5_x, g_p_5_y; /* Ground point constraint 
origin 
double 
x_desired[NO_PRECISION_POINTS], y_desired[NO_PRECISION POINTS]; /* 
Desired curve */ - 
int gen; /* No. generations 
double sumfit, maxfit, tol, wl, w2, w3, w4; 
char save[20]; 
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C. 4 userio. c 

/*****************************************************/ 
/* File USERIO. C 
/* Contains the input/output functions for 5bar_ga 
/* A. M. Connor 7th March 1996 

void initialise(void) 
{ 

/* Sets up the global variables by prompting the user for the 
position of the ground point constraint envelopes, the file name 
of the motion data file and calls the function weighting()to 
find the objective function weights */ 

_clearscreen(_GCLEARSCREEN); printf("\nGenetic Synthesis of FiveBar Mechanisms"); 
printf("\n --------------------------------------- 11); 
printf("\n\nDeveloped by A. M. Connor"); 
printf("\nLiverpool John Moores University, 1996"); 
printf("\n\nPress any key to start. \n"); 
getch(; 
printf("\n\nEnter location of local origin for CV crank 

constraint envelope"); 
printf("\a\nx co-ord . "); 
scanf("%lf", &g_p_l_x); 
printf("\ay co-ord : "); 
scanf("elf", &g_p_l_y); 
printf("\n\nEnter location 

printf("\a\nx co-ord . "); 
scanf("%lf", &g_p_5_x); 
printf("\ay co-ord . 

"); 
scanf("%lf", &g_p_5_y); 
read-file(); 
weighting 0; 

void read_file(void) 
{ 

of local origin for servo crank 
constraint envelope"); 

/* Inputs a data file of known length containing the (x, y) 
coordinates which define the desired motion */ 

int i; 
char file[20]; 
FILE *stream; 

printf("\a\n\nEnter motion data file name (include drive 
specifier) 

scanf("%s", &file); 
stream=fopen(file, "r"); 
fseek(stream, OL, SEEK_SET); 
if(stream==NULL) 
{ 

printf("File does not exist! \nProgram terminated\n"); 
exit (0); 

} 
printf("Reading file ..... \n"); 
for(i=0; i<=N0_PRECISION_POINTS-1; ++i) 
{ 

fscanf(stream, "%lf", &x_desired[i]); 
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fscanf(stream, "%lf", &y_desired(i]); 
} 
printf("\nData input complete. "); 

void weighting(void) 
{ 

/* Prompts the user for the weights used in the calculation of 
the objective function value of a solution */ 

printf("\nSelect weightings to be used in objective function. "); 

printf("\nType '0' to exclude component. "); 

printf("\a\nError 
scanf("%lf", &wl); 
printf("\aMobility 
scanf("%lf", &w2); 
printf("\aHarmonics 
scanf("%lf", &w3); 
printf("\aSwept area 
scanf("%lf", &w4); 
printf("\a\nEnter search termination level on curve error 
scanf("%lf", &tol); 

void report(void) 
{ 

/* Reports on screen the progress of the synthesis and outputs 
the population data (fitness) to a named file for analysis in 
MATLAB */ 

FILE *stream; 
int i; 
double test=O; 

printf("\n\nBest solution for generation %d", gen); 
printf("\n---------------------------------- ") 
printf("\n\nCV ground point co-ords : 

(%. 2f, %. 2f)", newpop[O]. paraml, newpop[O]. param2); 
printf("\nServo ground point co-ords : 

(%. 2f, %. 2f)", newpop[0]. param3, newpop(0]. param4); 
printf("\nal2 : %. 2f", newpop[O]. param5); 
printf("\ta23 : %. 2f", newpop[O]. param6); 
printf("\na34 : %. 2f", newpop[O]. param7); 
printf("\ta45 : %. 2f", newpop[O). param8); 
printf("\nObjective function value %f", newpop(O). fitness); 
printf("\nError : %lf\t\tMobility 

%d", newpop[0]. error, newpop(O]. mobility); 
printf("\nHarmonic content : %lf\tSwept area : 

%lf", newpop[0]. harmonics, newpop[0]. area); 
printf("\nmaxfit : %f\tsumfit : %lf", maxfit, sumfit); 

stream=fopen(save, "a"); 
fprintf(stream, "\n%f", newpop[O]. fitness); 
fclose(stream); 

void final_report(void) 
{ 

FILE *stream; 

printf("\n\n\nSaving mechanism dimensions. "); 
stream=fopen(save, "a"); 
fprintf(stream, "\n%lf", newpop[O]. paraml); 
fprintf(stream, "\n%lf", newpop[0]. param2); 
fprintf(stream, "\n%lf", newpop[O]. param3); 
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fprintf(stream, "\n%lf", newpop[O]. param4); 
fprintf(stream, "\n%lf", newpop[O]. param5); 
fprintf(stream, "\n%lf", newpop[0]. param6); 
fprintf(stream, "\n%lf", newpop[O]. param7); 
fprintf(stream, "\n%lf", newpop[O]. param8); 

C. 5 operator. c 

/* File OPERATOR. C 
/* Source code for genetic operators for use in 
/* 5barga synthesis software 
/* A. M. Connor 7th March 1996 

void generation(void) 
{ 

/* The generation function coordinates the action of the 
genetic operators to form a new population. The main 
operators are selection (reproduction), crossover and 
mutation. An inversion operator is called if a child 
solution string is identical to an existing string */ 

int matel, mate2, j; 

oldpop[0]=newpop[O]; /* Elitism */ 
for(j=l; j<=POP_SIZE-l; j+=2) 
{ 

matel=selection(; 
mate2=selection(; 
crossover(matel, mate2, j); 
identical(j); 
identical(j+l); 

int selection(void) 
{ 

/* The selection operator is analgous to reproduction in natural 
systems. Two parents are choosen from the population by a 
roulette wheel selection method. This ensures that the most 
fit solutions are selected. Individual fitnesses are 
normalised wrt the sum of the generation fitnesses to act as 
a simple scaling routine */ 

double part sum, randcheck; 
int j; 

partsum=0.0; 
randcheck=random(; 
randcheck*=(POP_SIZE-1)/2.0; 
for(j=0; j<=POP_SIZE-1; ++j) 
{ 

partsum+=1.0-(newpop[j]. fitness/sumfit); 
if(partsum>=randcheck) 

break; 

return j; 
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void crossover(int matel, int mate2, int j) 
{ 

/* Once two parents have been choosen, two child strings are 
formed by crossover and mutation. The mutation operator is 

embedded in the crossover function. During crossover, a cross 
site is randomly selected and the children formed by a 
bitwise exchange of data from the parent strings. 

int i, cross site, cross; 

cross=test(CROSS_RATE); 
if(cross==0) 
{ 

for(i=O; i<=CHROM_LENGTH-1; ++i) 
{ 

oldpop[j]. b[i]=newpop[matel]. b[i]; 
mutation(j, i); 
oldpop[j+1]. b[i]=newpop[mate2]. b[i]; 
mutation(j+1, i); 

} 
else 
{ 

cross_site=rand()%CHROM LENGTH; 
for(i=0; i<=cross_site-l; ++i) 
{ 

oldpop[j]. b[i]=newpop[matel]. b[i]; 
mutation(j, i); 
oldpop[j+1]. b[i]=newpop[mate2]. b[i]; 
mutation(j+l, i); 

} 
for(i=cross_site; i<=CHROM_LENGTH-1; ++i) 
{ 

oldpop[j]. b[i]=newpop[mate2]. b[i]; 
mutation (j, i) ; 
oldpop[j+l]. b[i]=newpop[matel]. b[i]; 
mutation(j+l, i); 

} 
} 

void mutation(int j, int i) 
{ 

/* The mutation function is called each time data is transferred 
between two strings during crossover. If the probabilty event 
is true, then mutation occurs. In the binary notation 
adopted, mutation is a simple boolean NOT function (ie, a1 
becomes a0 or a0 becomes a 1). Mutation prevents stagnation 
in genetic search */ 

int mutate; 

mutate=test(MUTATE_RATE); 
if(mutate==1) 

oldpop[jJ. b[i]=! oldpop[j]. b[i]; 

void invert(int j) 
{ 

/* The inversion operator is 
created that is identical 
the population. Inversion 
reorders a section of the 
There is nocheck for muta 

called when ever a string is 
to a string that already exists in 
acts on a single string and 
string between two inversion sites. 

Lion during the operation. */ 
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int min, max, i, inv_sitel, inv_site2; 
solution temp; 

inv_sitel=rand()%CHROMLENGTH; 
inv site2=rand()%CHROM LENGTH; 
if(inv_site2==inv_sitel) 

return; 
if(inv_sitel>inv_site2) 
{ 

max=inv_sitel; 
min=inv_site2; 

} 
else 
{ 

max=inv_site2; 
min=inv_sitel; 

} 
temp=oldpop[j]; 
for(i=min; i<=max; ++i) 
{ 

oldpop[j]. b[i]=temp. b[max-i]; 
1 

C. 6 util. c 

**************************************************ýý 
/* File UTIL. C 
/* Contains a variety of random number based 
/* functions, population functions and test 
/* functions for 5bar_ga. 
/* A. M. Connor 7th March 1996 

void generatepop(void) 
{ 

/* Generates a set of random binary strings which form the 
initial population of solutions. */ 

int i, j, k; 

for(i=0; i<=POP_SIZE-1; ++i) 
{ 

for(j=0; j<=CHROM_LENGTH-1; ++j) 
I 

k=test(0.5); 
oldpop[i]. b[j]=k; 
mutation(i, j); 

} 
oldpop[i]. ident=i; 
oldpop[i]. fitness=0.0; 

void update(void) 
{ 

/* Update a newly generated population as working population */ 

int i; 

for(i=0; i<=POP SIZE-l; ++i) 
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( 
newpop[i]=oldpop[i]; 

} 
} 

void sort(void) 
{ 

/* The sort function uses a bubble sort algorithm to sort a 
newly generated population by increasing fitness value. */ 

int i, j; 
solution temp; 

for(i=0; i<=POP_SIZE-1; ++i) 
I 

for(j=POP_SIZE-l; j>=i; --j) 
{ 

if(newpop[j-1]. fitness>newpop[j]. fitness) 
I 

temp=newpop[j-1]; 
newpop[j-1]=newpop[j]; 
newpop[j]=temp; 

} 
} 

} 
for(i=0; i<=POPSIZE-l; ++i) 
I 

newpop[i]. ident=i; 
} 

double random(void) 
{ 

/* The random function fills a vector with a set of random 
numbers and returns a randomly selected member that is 
normalised with respect to RAND MAX so that it's value is a 
real number between 0 and 1. */ 

double j; 

j=rand(); 
j/=RAND MAX; 
return j; 

int test(double x) 
{ 

/* The test function is used to test whether a probability event 
occurs and works by comparing a random number from the random 
function against the probability of an event occuring. */ 

int testval; 
double y; 

if(x==1.0) 
return 1; 

y=random(); 
if (y>x) 

testval=0; 
else 

testval=l; 
return testval; 
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void identical(int string) 
{ 

/* The identical function is called from the generation function 

and tests to see if an identical string already exists in the 
new population. If an identical string exists then it is 
inverted to forcibly maintain the diversity of the 
population. */ 

int i, k, score=0, tempscore; 

for(i=0; i<=string-l; ++i) 
{ 

tempscore=O; 
for(k=0; k<=CHROM_LENGTH-1; ++k) 
{ 

if(oldpop[i]. b[k]==oldpop[string]. b[k]) 
++tempscore; 

} 
if(tempscore>score) 

score=temps core; 
} 
if(score>=CHROMLENGTH) 

invert (string); 

int termination(double *p, double *q, double *r, double *s) 
{ 

if(((*p/(*q))>0.25)&&((*p/(*q))<2.0)) 
{ 

if(((*p/(*r))>0.25)&&((*p/(*r))<2.0)) 
{ 

if(((*p/(*s))>0.25)&&((*p/(*s))<2.0)) 
{ 

if(newpop[O]. mobility==0) 
{ 

if(newpop[0]. error<tol) 
{ 

return 1; 
} 

} 
} 

} 
} 
return 0; 

C. 7 objectiv. c 

/* File OBJECTIV. C 
/* Contains the decoding and evaluation functions 
/* for 5bar_ga 
/* A. M. Connor 7th June 1996 

void decode(void) 
{ 

/* The decode function decodes a population of binary strings 
into the actual parameter values. The link lengths are 
constrained to values between 10 and 286 units and the ground 
point positions are expressed as local (x, y) co-ordinates in 
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a constraint envelope 16 by 16 units. The global co-ordinates 
of origin are specified by the user. The decoded values are 
stored in the solution structure. Once all the solutions have 
been decoded and the fitnesses evaluated, the population is 
sorted by fitness value in the sort() function. */ 

int i, j, power; 
double suml, sum2, sum3, sum4, sum5, sum6, sum7, sum8; 

sumfit=0.0; 

for(i=0; i<=POP_SIZE-1; ++i) 
{ 

power=l; 
sum1=0.0; 
for(j=O; j<=3; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sums+=power; 

power*=2; 
} 
suml+=g p_1_x; 
power=l; 
sum2=0.0; 
for(j=4; j<=7; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum2+=power; 

power*=2; 
} 
sum2+=g_p_l_y; 
power=l; 
sum3=0.0; 
for(j=8; j<=11; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum3+=power; 

power*=2; 
} 
sum3+=g p_5_x; 
power=l; 
sum4=0.0; 
for(j=12; j<=15; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum4+=power; 

power*=2; 
} 
sum4+=g_p_5_y; 
power=l; 
sum5=10.0; /* link length minimum constraint 
for(j=16; j<=23; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum5+=power; 

power*=2; 
} 
power=l; 
sum6=10.0; 
for(j=24; j<=31; ++j) 
{ 

if(newpop[i]. b(j)==1) 
sum6+=power; 

power*=2; 
} 
power=l; 
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sum7=10.0; 
for(j=32; j<=39; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum7+=power; 

power*=2; 
} 
power=l; 
sum8=10.0; 
for(j=40; j<=47; ++j) 
{ 

if(newpop[i]. b[j]==1) 
sum8+=power; 

power*=2; 
} 
/*printf("\nFinished decode"); */ 
newpop[i]. paraml=suml; 
newpop[i]. param2=sum2; 
newpop[i]. param3=sum3; 
newpop[i]. param4=sum4; 
newpop[i]. param5=sum5; 
newpop[i]. param6=sum6; 
newpop[i]. param7=sum7; 
newpop[i]. param8=sum8; 
newpop[i]. fitness=error(&suml, &sum2, &sum3, &sum4, &sum5, &sum6, 

&sum7, &sum8, &i); 
if(newpop[i]. fitness>maxfit) 

maxfit=newpop[i]. fitness; 
sumfit+=newpop[i]. fitness; 

} 
; sort o; 

double error(double *xl, double *yl, double *x5, double *y5, 
double *p, double *q, double *r, double *s, int *z) 

/* The error() function calculates the objective function based on 
the weightings selected by the user */ 

double thetal, theta2, theta3; 
double t, input, x_actual, y_actual; 
double x_coord, y_coord; 
double err, total error=0; 
int i=(-1), mobility=0; 
double servol(NO PRECISION POINTS]=10), 
servo2[NO_PRECIS_ION POINTS]={O}, servo3[NO_PRECISION_POINTS]={0}; 
double harmonics, obj, swept; 

t=sgrt(pow((*x5-*xl), 2)+pow((*y5-*yl), 2)); 
if(t==0.0) 

thetal=0.0; 
else 

thetal=asin((*y5-*yl)/t); 

for(i=0; i<=NO_PRECISION_POINTS-1; ++i) 
{ 

input=i*15.0; 
theta2=(input*2.0*PI)/CYCLE; 
x coord=*p*cos(theta2); 
y_coord=*p*sin(theta2); 
theta3=atan2((y_desired[i]-(y_coord+*yl)), 

(x_desired[i]-(x coord+*xl))); 
y_actual=*q*sin(theta3)+y_coord+*yl; 
xactual=*q*cos(theta3)+x_coord+*xl; 
err=sqrt(pow((x_actual-x_desired[i]), 2) 
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+pow((y_actual-y_desired[i]), 2)); 
total error+=err; 
servol(i]=anglel(&thetal, &theta2, &theta3, &*p, &*q, &*r, &*s, &t, 

&mobility); 

servo2[i]=angle2(&thetal, &theta2, &theta3, &*p, &*q, &*r, &*s, &t, 
&mobility); 

} 
tracking(servol, servo2, servo3); 
harmonics=fourier(servo3); 
swept=area(servo3, &*s); 
newpop[*z]. harmonics=harmonics; 
newpop[*z]. area=swept; 
newpop[*z]. error=total_error; 
newpop[*z]. mobility=mobility; 
obj=((wl*pow(total error, 3))+(w2*pow(mobility, 5))) 

+(w3*pow(harmonics, 0.3))+(w4*pow(swept, 0.75)); 

return obj; 

double anglel(double *thetal, double *theta2, double *theta3, 
double *p, double *q, double *r, double *s, double *t, int *mobility) 

{ 
/* Calculates one closure angle for servo motor based upon actual 

position of end effector. Function angle2() caluates second */ 

double k, acoeff, bcoeff, ccoeff; 
double servol; 
k=(*r**r)-(*p**p)-(*q**q)-(*s**s)-(*t**t) 

-(2**p**q*cos(*theta2-*theta3)) 
+(2**p**t*cos(*theta2-*thetal)) 

+(2**q**t*cos(*theta3-*thetal)); 
acoeff=(2**p**s*cos(*theta2))+(2**q**s*cos(*theta3)) 

-(2**s**t*cos(*thetal))-k; 
bcoeff=((4**s**t*sin(*thetal))-(4**p**s*sin(*theta2)) 

-(4**q**s*sin(*theta3))); 
ccoeff=(2**s**t*cos(*thetal))-(2**p**s*cos(*theta2)) 

-(2**q**s*cos(*theta3))-k; 

if((bcoeff*bcoeff)-(4*acoeff*ccoeff)>0.0) 
{ 

servol=2.0*atan(((bcoeff*-1.0)-sgrt((bcoeff*bcoeff) 
-(4*acoeff*ccoeff)))/(2.0*acoeff)); 

if(fabs(servol)<0.000001) 
servol=0.0; 

return servol; 
) 
else 
( 

*mobility+=1; 
return 0; 

double angle2(double *thetal, double *theta2, double *theta3, 
double *p, double *q, double *r, double *s, double *t, int *mobility) 

{ 
double k, acoeff, bcoeff, ccoeff; 
double servo2; 

k=(*r**r)-(*p**p)-(*q**q)-(*s**s)-(*t**t) 
-(2**p**q*cos(*theta2-*theta3)) 

+(2**p**t*cos(*theta2-*thetal)) 
+(2**q**t*cos(*theta3-*thetal)); 

acoeff=(2**p**s*cos(*theta2))+(2**q**s*cos(*theta3)) 
-(2**s**t*cos(*thetal))-k; 
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bcoeff=((4**s**t*sin(*thetal))-(4**p**s*sin(*theta2)) 
-(4**q**s*sin(*theta3))); 

ccoeff=(2**s**t*cos(*thetal))-(2**p**s*cos(*theta2)) 
-(2**q**s*cos(*theta3))-k; 

if((bcoeff*bcoeff)-(4*acoeff*ccoeff)>O. 0) 
{ 

servo2=2.0*atan(((bcoeff*-1.0)+sgrt((bcoeff*bcoeff) 
-(4*acoeff*ccoeff)))/(2.0*acoeff)); 

if(fabs(servo2)<0.000001) 
servo2=0.0; 

return servo2; 

else 
{ 

*mobility+=1; 
return 0; 

void tracking(double sl[NO PRECISION POINTS], 
double s2 [NO PRECISION POINTS]_, double s3[NO PRECISION POINTS]) 

/* Closure tracking algorithm chooses between two closures 
and updates array s3 {servo3} as selected closure for 
each step as relative increments */ 

double last 
_vel, 

next_vel_l, next_vel_2, rel=0.0; 
int i, alpha, beta, gamma; 

s3[0]=s1[0]-s1[0]; 
if((fabs(s2[l]-rel))<(fabs(sl[l]-rel))) 

s3[1]=s2[1]-sl[0]; /* choose first point on mag. of disp. 
else 

s3[1]=sl[1]-s1[0]; 
for(i=2; i<=NO_PRECISION_POINTS-1; ++i) 
{ 

last 
_vel=atan((s3[i-l]-s3[i-2])/(1.0*STEP)); if(last_vel<0.0) 
alpha=l; 

else 
alpha=0; 

next vel1=atan((sl[i]-s3[i-1])/(1.0*STEP)); 
if(next_vel_1<0.0) 

beta=l; 
else 

beta=0; 
next vel_2=atan((s2[i]-s3[i-1])/(1.0*STEP)); 
if(next_vel 2<0.0) 

gamma=l; 
else 

gamma=0; 
getch(); */ 
if (beta==gamma) 
{ 
if(fabs(next vel 2-last vel)<fabs(next_vel_1-last vel)) 

s3[i]=s2[i]-sl[0]; 
else 

s3[i]=s1[i]-sl[O]; 
} 
if (beta! =gamma) 
{ 

if((gamma==alpha)&&(fabs(next vel_2)<2.0*fabs(next vel 1))) 
s3[i]=s2[i]-sl[0]; -- 

else 
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s3[i]=sl[i]-sl[O]; 

double fourier(double angles[NO_PRECISION_POINTS]) 
{ 

/* Calculates harmonics of servo motor displacement for use in 
objective function calculation */ 

double a[NOHARMONICS]={O . 
O}, b[NOHARMONICS]={0.0}; 

double data[NO PRECISION POINTS]; 
double obj=O; 
int i, j, k; 
for(i=0; i<=N0_PRECISION POINTS-1; ++i) 
{ 

data[i]=(CYCLE/2.0*PI)*angles[i]; 
a[0]+=data[i]; 

a[0]=a[0]/(NO_PRECISION POINTS/2.0); 

for(j=1; j<=NO_HARMONICS-1; ++j) 
{ 

for(k=0; k<=NO_PRECISION_POINTS-1; ++k) 
{ 

a[j]+=data[k]*(cos(STEP*k*j*2.0*PI/CYCLE)); 
b[j]+=data[k]*(sin(STEP*k*j*2.0*PI/CYCLE)); 

} 
a[jl=a(jl/(NC) PRECISION POINTS/2.0); 
b[j]=b[j]/(NO_PRECISION_POINTS/2.0); 

} 
for(j=0; j<=NO_HARMONICS-1; ++j) 
I 

obj+=pow(sgrt((a[j]*a[j])+(b[j]*b[j])), j+l); 
} 
return obj; 

double area(double angles[NO_PRECISION POINTS], double *link) 
{ 

/* Calcluales swept area term 

int i; 
double data[NO_PRECISION_POINTS], sum=0.0, rms, value; 

for(i=0; i<=N0_PRECISION POINTS-1; ++i) 

data[i]=(CYCLE/2.0*PI)*angles[i]; 
sum+=pow(data[i], 2); 

} 
rms=sgrt(sum); 
value=rms**link; 
return value; 
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