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Thesis Abstract 

Four experiments were conducted to examine the role of demonstration, and the nature 

of information used to facilitate changes in coordination and movement outcomes. The 

studies examined ecological theories of perception (Runeson & Frykolm, 1981), 

demonstration (Scully & Newell, 1985), and practice (Handford et al., 1997; Newell, 

1985). To do this, kinematic analyses were performed and a new method was designed 

to quantify the data (NoRM-D; Horn et al., in press). Experiments 1 and 2 also assessed 

visual search during the observation of a demonstration of a soccer chip. The combined 

results indicated that visual search, coordination changes, and movement outcomes, 

were dependent on the availability of intrinsic visual knowledge of results (KR). With 

intrinsic KR present, participants learned to become more accurate, but changed 

coordination only at a global level of analysis. This was supported by a broad-to-narrow 

visual search strategy. However, when constrained to use the model in the absence of 

this information, rapid and enduring changes in intra-limb coordination were found at 

the expense of changes in movement outcomes. Experiment 3 examined the rate of 

change in intra-limb coordination in a novel throwing task. Participants observing the 

model immediately adapted their relative motion to resemble the model. This change 

was associated with improvements in the velocity of throws. Participants not observing 

the model made no changes in coordination or ball velocity during practice. The final 

study indicated that a model can also facilitate immediate changes in the 

parameterization of a movement pattern. Participants extracted velocity information at 

the moment of ball release to accurately perceive and replicate the unknown dynamics 

of a task. These studies extend our understanding of the mechanisms, rate, and extent of 

change that may be facilitated by demonstration. 
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Chapter 1 

Observational Motor Learning: Is it Time we Took another Look? 



With the exception of a small repertoire of phylogenetic behaviours, humans are 

born without motor skills. Instead they are acquired through practice, experience, and 

observation (Bandura, 1977). In essence, they are learned. Definitions of learning have 

evolved to reflect concomitant trends in behavioural psychology. To behaviourists, 

learning was the strengthening of stimulus-response bonds. For cognitive psychology, 

the definition changed to incorporate the comparison of overt action with an internal 

representation of the act, and the process of refinement in memory. Finally, more recent 

dynamic views see learning as changes in preferred, stable states of the movement 

system, known as attractors. Common to all theoretical perspectives is the view that 

learning is a relatively permanent change in behaviour. Learning also reflects the 

capacity to represent the cumulative effects of past experience on present behaviour, 

whilst providing an indication of likely future behaviour (Champion, 1969). 

Although the process of learning is not yet fully understood, Blandin, Proteau, 

and Alain (1994) note that the information accessible to the learner before practice 

commences is vital. Thus, critical to facilitating the early stages of learning is the 

transfer of information from the instructor to the learner conveying how to act. The mode 

for delivering this information may take many different forms, but demonstration has 

intuitive appeal - it meets the twofold requirements of conveying an enduring impression 

of how to act with maximal efficiency. 

Not surprisingly, demonstration is estimated to be the most commonly used 

mode of instruction in skill acquisition (Magill, 2001; Rink, 1998), a fact reflected in 

recent physical education texts. The most common teaching technique in physical 

education settings is direct instruction (Graham, Holt-Hale, & Parker, 2001) or 

interactive teaching (Rink, 1998) both of which consider that a demonstration is the first 

and arguably most significant stage of the skill acquisition process. However, the 
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influence of modelled behaviour is not restricted to physical education and sports skills. 

Instead, researchers report applications in far reaching domains such as nursing and 

surgery (e. g., Bahn, 2001), mechanical assembly (Sheffield, 1961), sign language for the 

deaf (Stewart, 1990), and ergonomically correct lifting techniques (Williams & 

Thompson, 1994). 

Concepts of Imitation and Observational Learning 

In theoretical terms, demonstration changes behaviour through processes such as 

observational learning, imitation, emulation, and echokinesis. In the psychology 

literature, imitation is the prevalent term for copying behaviours. According to Miller 

and Dollard (1941), there are two types of behaviour that fall under the process of 

imitation. The first is matched-dependent behaviour, in which the ̀ follower' is dependent 

on the `leader' for action, as only the leader has access to relevant environmental 

information. The second is copying in which the copier must adapt his/her response to be 

more like the model. For motor skill acquisition, the second of these is more appropriate. 

Heyes (2001) defined imitation as the copying by an observer of a component feature of 

the body movement of a model. This definition implies a causal relationship between the 

observation of the component feature of the model's movement, and the execution of the 

feature by the observer. 

In addition to copying the movements of the body, a learner can also reproduce 

the movement of an object. This has been labelled emulation (Tomasello et al., 1993; 

Heyes, 2001). Prinz (1987) presents a similar distinction between the imitation of 

perceived movements as spatio-temporal events, and actions, for which the intention is to 

attain the same goal states as the model, independent of the movement performed. For 

the copying of perceived movements, Prinz (1987) preferred the term echokinesis used 
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by Katz (1960) as a specific type of ideo-motor action in which movement is imitated. 

Because goals can be emulated independently of specific movement patterns, Byrne and 

Russon (1998) ascribe this the lowest level in their hierarchical account of imitation. For 

them, the next level of imitation is program level, in which an observer copies the 

structural organization (including sub-routines) of the action, but specific details are 

added on a trial-and-error basis. This process is assumed to account for the majority of 

imitation occurring on an everyday basis. In the highest, action level of imitation, a 

comprehensive, linear description of the act is acquired from the model. 

What then is the difference, if any, between imitation and observational motor 

learning? Observational motor learning (also known as modelling) should arguably not 

be simply considered as imitation within the specific arena of motor behaviour. 

Williams, Davids, and Williams (1999) define observational learning as the process by 

which observers watch the behaviour of another, and adapt their own behaviour as a 

result of the interaction. Though imitation (or emulation) is clearly the core process, 

observational learning is more relevant for the study of skill acquisition because in 

measuring learning, it accounts for long-term changes in behaviour. Observational 

learning and imitation are also assessed in a different manner. Imitation is typically 

measured using frequency counts as a dichotomous measure of whether or not the 

desired behaviour is present (e. g., Bandura's Bobo Doll experiments: Bandura, Ross, & 

Ross, 1961). In contrast, observational learning is assessed using specific qualitative and 

quantitative measures of performance. Furthermore, in observational learning, changes in 

behaviour are directional. Learning occurs if performance has improved with reference to 

a pre-determined criterion goal. 
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Cognitive Accounts of Observational Learning 

According to Bandura (1971), the earliest accounts of observational learning by 

Morgan (1896) and McDougall (1908) amongst others, described imitation as an innate 

propensity. As such, the empirical testing of observational learning was stifled. 

Following the denouncement of the instinct doctrine, imitation was described in 

connectionist terms. Miller and Dollard's (1941) Social Learning and Imitation theory 

applied behaviourism and reinforcement to the study of imitative behaviours. In their 

experiments, participants displayed matched-dependent behaviour. This describes the 

effect where the rewarding of a model's specific behaviour, coupled with the rewarding 

of the participant for repeating the behaviour, results in powerful imitation that can be 

generalised to other situations and models. 

Behaviourist accounts were deemed inappropriate for observational learning due 

to their failure to recognise the influence of mediating factors that are internal to the 

organism. Moreover, behaviourism fails to explain how a new matching behaviour is 

acquired through observation in the first instance (Bandura, 1971). Finally, behaviourist 

accounts are not applicable to learning from observation where the observer does not 

overtly perform the model's actions in the environment in which they were 

demonstrated, where reinforcements are not administered, and when the acquired 

responses are not displayed until a later time when the model is not present (Bandura, 

1971). 

Sheffield (1961) first broke from traditional behaviourist accounts of stimulus- 

response reinforcement. His Systematic Representational Theory was developed to 

assess the effectiveness of filmed demonstrations in the learning of mechanical 

assembly tasks, and represents a vital step toward a testable theory of learning in 

complex human motor skills. It supposes that when observing a skill, the observer 
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formulates a cognitive-representation of the action through processes of association and 

contiguity. The cognitive representation subsequently acts as a blueprint to guide 

reproduction of the skill. 

Bandura's (1986) Social Cognitive Theory 

Although Sheffield's theory of cognitive symbolic representation preceded the 

work of Bandura, it is Bandura's Social Learning Theory (later revised to Social 

Cognitive Theory in 1986) that has been the foundation of the majority of research on 

observational learning. Bandura (1969,1971,1977,1986a) incorporated Sheffield's 

idea of systematic representation, but expanded its scope to account for the acquisition 

and modification of behaviour and social skills (Williams, Davids, & Williams, 1999). 

Bandura concurred that behaviour is stored in representational form, with this 

representation being used to mediate the action response. However, unlike Sheffield, he 

considered that in many instances a learner observes a model without performing any 

concurrent response. The modelled response is acquired in representational, cognitive 

form before being acted out. Bandura (1965) designated this `no-trial learning', and it 

echoes his rejection of behaviourist accounts of modelling through repeated 

reinforcement. 

According to Bandura (1971), the sub-processes of attention, retention, 

(behaviour) production, and motivation govern the observational learning process. He 

also argued that a good theory of vicarious learning should explain why different 

observers show different levels of response acquisition when exposed to the identical 

stimuli. Figure 1.1 highlights the four sub-processes and internal mediators such as 

cognitive capabilities and past experience. 

Bandura (1977) believed that attention represents the start of the modelling 

process, stating that we cannot learn unless we attend to and accurately perceive the 
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significant features in the display. Attention was considered a selective mechanism that 

determines which information will constitute the cognitive representation of the skill. 

The basis of this selection of information was considered to be both externally and 

internally determined, based on various features of the demonstration (e. g., speed, 

distinctiveness) and the observer (e. g., level of arousal). Also relevant is the extent to 

which the learner can associate the observed behaviour with previous experiences, and 

the functional value of the display. Bandura (1977) hypothesised that observers pay 

closer attention to models that possess symbols reflecting status, are older, and are 

highly skilled. This hypothesis has been the basis of the majority of observational 

learning research. 
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Figure 1.1. The sub-processes of observational learning according to Bandura's (1986) 
Social Cognitive Theory (adapted from Bandura, 19 

The selective mechanisms of attention are redundant unless the observer can 

store the information in representational form. Bandura (1977) assumed two 



representational systems achieve this within the sub-process of retention, namely, the 

imaginal and verbal systems. Similar to Sheffield's (1961) concept of a perceptual 

blueprint, sequences of corresponding sensory experiences become associated or 

integrated in the imaginal system (Bower & Hilgard, 1981), resulting in the formation of 

enduring and retrievable representations. The cognitive processes that regulate 

behaviour are assumed to be verbal and are thus the domain of the verbal system. The 

process of verbal coding allows chunking of information in a format that facilitates 

memory. 

Rehearsal is an additional factor in retention processes. Bandura (1971) argued 

that covert, mental rehearsal facilitates learning not through simple repetition, but 

through active processes. Overt physical practice was given little consideration in 

Bandura's analysis, although he did note that it helps to stabilise and strengthen the 

acquired response. According to Jeffrey (1976), observational learning is optimal when 

the skill is first mentally organised and rehearsed, and then overtly practiced. 

Collectively the sub-functions of attention and retention represent a response- 

acquisition phase, in which the to-be-imitated behaviour is acquired and coded for 

action (Bandura, 1986b). The remaining two sub-functions of motor production and 

motivation were labelled as the response production phase, representing the translation 

of the acquired movement into action. The process of motor (behavioural) production 

refers to the conception-matching mechanisms that convert a cognitive representation of 

behaviour into approximate overt performance, and guide later reproductions of the 

skill. A feedback mechanism is employed to determine discrepancies between the 

symbolic representation and physical enactment of the skill, which in turn provides cues 

for corrective action (Bandura, 1977). Bandurs (1971) indicated that the physical 

capabilities of the learner are a limiting factor in this sub-process. An observer may 
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acquire a representation of the skill, but might not possess the physical attributes to 

replicate the task. Typically, researchers do not assess whether participants possess the 

necessary physical attributes, and assume that deficiencies in performance reflect 

problems in perception rather than action. 

The final sub-process involved in observational learning is motivation. 

According to Bandura (1971), incentives act to regulate the overt expression of the 

matching behaviour, exert a selective control over the cues in the demonstration to 

which the observer attends, and aid selective retention by activating the deliberate 

coding and rehearsal of the response. 

A review of research underpinned by social cognitive theory 

The research work relating to Social Cognitive Theory includes manipulations of 

model type and tests of cognitive involvement in observational learning. 

Model characteristics. The majority of observational learning research has manipulated 

the type of model presented to the participant. Particularly prevalent are tests of 

Bandura's (1977) prediction that observers pay closer attention to models that have a 

higher status, are more skilled and of the same gender as themselves. 

Status. The impact of social status on imitative actions was illustrated in an early 

study by Lefkowitz, Blake, and Mouton (1955). A jaywalking model ̀ planted' on a busy 

street corner was followed by significantly more people when dressed in business attire 

than when dressed in soiled clothes. In a motor learning context, McCullagh (1986) 

found that participants performed significantly better on the Bachman Ladder task in 

response to a high compared with a low status model. The Bachman Ladder task 

involves a six-foot wooden ladder with three uprights. The number of rungs climbed by 

the learner before the ladder falls to the ground is taken as a measure of performance. 
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Skill level. In Bandura's analysis, the cognitive representation formed should 

correspond to a perfect performance of the skill. As such, a highly skilled model is 

recommended (this tenet currently underlies the direct instruction method of teaching; 

Kovar, Combs, Campbell, Napper-Owen & Worell, 2004; in press). In early tests of this 

prediction, Landers and Landers (1973) used the Bachman Ladder with 5th and 6th grade 

children. The model manipulations were skill level (skilled/unskilled) and status 

(teacher/peer). Participants who observed the skilled teacher climbed the most rungs on 

the ladder. However, a main effect for skill level was not observed. Participants who 

viewed the unskilled peer model recorded higher scores than the skilled peer model. 

Lirgg and Feltz (1991) replicated this study with 6t" grade children, combining model 

skill level and status with videotaped rather than live models. Participants performed 

better after observing a skilled model. No model type by skill level interaction was 

reported. These findings lead to the suggestion that peer models are less effective than 

higher status models. 

Several authors have questioned whether expert models are more effective than 

learning models (e. g., see McCullagh & Caird, 1990; Pollock & Lee, 1992). They note 

that information processing based theories such as Adams' (1971) closed loop theory 

and Schmidt's (1975) schema theory, view motor learning as a problem-solving process. 

In this process, feedback is received, and action is adjusted on a trial-and error basis. As 

such, the provision of an expert model may be at odds with the problem-solving process, 

as no error information is provided (Pollock & Lee, 1992). 

Gender. Studies involving non-motor specific tasks suggest that elementary aged 

schoolboys learn more about the behaviour of a same sex model than an opposite sex 

model (e. g., Grusec & Brinker, 1972). Similar results have been found in the motor 

domain for ball-snatch tasks (Feltz & Landers, 1977; Gould, 1978). These results were 

14 



explained in terms of motivation to emulate the model (Gould & Roberts, 1982). Gould 

and Weiss (1981) used a leg extension endurance test to investigate the effects of 

model-observer similarity in athletic ability and gender. Women observing a non- 

athletic, female (similar) model performed better than those watching an athletic, male 

(dissimilar) model. In an attempt to separate these factors, George, Feltz, and Chase 

(1992) found that similarity in athletic ability, and not model gender was responsible for 

the effects. However, Griffin and Meaney (2000) found that gender did influence 

learning in a scarf-juggling task. While no differences occurred in retention or transfer 

of the skill, female participants learned significantly more strategies as a result of 

viewing same sex rather than opposite sex models. Also, the authors replicated the 

finding that participants learned more strategies from a learning rather than a skilled 

model. 

Research evidence for cognitive involvement in observational learning 

Repetition. There is evidence supporting the role of cognitive representations in 

observational learning, based upon the tenet that clearer or stronger cognitive 

representations will yield greater learning. In the last of a series of experiments using 

semaphore-like arm-paddle movements, Carroll and Bandura (1990) compared the 

effects of viewing two or eight demonstrations, with and without verbal coding of the 

pattern. Cognitive representation was assessed using a recognition test to detect correct 

photographs of the movement, and by pictorial arrangement tests to assess memory of 

the appropriate movement sequence. Eight presentations yielded a more accurate 

cognitive representation of the action than did two. Reproductions of the movement 

were also significantly more accurate with the higher number of demonstrations. 

Moreover, learning was facilitated by verbal coding only when the higher number of 
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demonstrations was provided, suggesting that a clear cognitive blueprint of the act is 

required before cognitive processes aiding retention can be effective. 

Several researchers have indicated the benefit of multiple demonstrations with 

adult participants using the Bachman Ladder task, perceptual modeling with the Bassin 

anticipation timer and a wiffle-golf task (Feltz, 1982; Sidaway & Hand, 1993; Weeks, 

1992; Weeks & Choi, 1992). Similar results have been reported with children using a 

sequential movement task and a softball pitch (Weiss & Klint, 1987; Weise-Bjornstal & 

Weiss, 1992). However, the relationship between performance and number of 

demonstrations is not monotonic. For example, Weeks and Choi (1992) found ten pre- 

practice demonstrations facilitated acquisition performance, while one or five 

demonstrations did not provide sufficient time or exposure for the formation of a usable 

cognitive representation. 

Cognitive strategies. Researchers who have examined the effects on performance 

of cognitive strategies such as coding and imagery have also provided support for the 

cognitive nature of observational learning. Gerst (1971) found that imaginal coding, in 

which the learners imagine themselves performing the task, facilitated the acquisition of 

sign language. Similarly, Jeffrey (1976) found imaginal coding to aid learning of 

complex 3-D construction tasks. Assigning symbolic codes to movements (in the form 

of numbers or letters), and symbolic rehearsal have also resulted in significantly greater 

immediate and delayed retention of performance (e. g., Bandura & Jeffrey, 1973; Carroll 

& Bandura, 1990). 

Concurrent monitoring. According to Social Cognitive Theory, concurrent 

monitoring of performance and augmented feedback are presumed to improve 

reproduction via conception-matching processes. In support of this proposal, Carroll and 

Bandura (1985) found that concurrent monitoring of a movement skill facilitated 
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learning, while delayed monitoring (shown after 100 seconds) did not This implies that 

the delay led to deterioration in the conception-matching process. McCullagh (1993) 

proposed that split-screen techniques could be employed to display the model's template 

movements simultaneously with the participant's own imitative attempts. However, 

assessment of this proposal has produced inconclusive results (see Laguna, 1996). 

Variability of demonstration and cognitive load. The cognitive processes 

underlying observational learning have also been addressed with reference to concepts 

of practice variability and contextual interference. According to Lee and Magill's (1985) 

action plan reconstruction hypothesis, high variability in practice leads to greater 

learning because the variability necessitates the reconstruction of action plans from one 

trial to the next. In observational learning, Lee and White (1990) suggested that 

observing a model performing under highly variable conditions mimics this process, 

leading to greater cognitive involvement in the learner. Researchers have provided 

support for this proposal using a barrier knockdown task (Blandin, Proteau, & Alain, 

1994) and a computer key sequencing task (Wright, Li, & Coady, 1997; Wright, Black, 

& Brueckner, 2001). In the studies by Wright and colleagues the contextual interference 

effect was replicated. Participants observing models performing under high variability 

showed better retention than those watching models performing under blocked practice. 

Social Cognitive Theory: Limitations in Theory and Research 

Social Cognitive Theory has undoubtedly advanced our understanding of the 

mechanisms involved in observational learning. Yet, there are some significant 

limitations with the theory and its supporting research. A fundamental concern has been 

that it is based on social rather than motoric learning (e. g., McCullagh et at., 1989; 

Williams, 1993). Horn, Williams, and Scott (2002) have argued that the mechanisms of - 

17 



motoric and social learning are likely to be disparate. Social learning tends to prescribe 

to the aforementioned description of imitation, in that measurement tends to be 

dichotomous (present or not present), somewhat coarse, and non-directional. In contrast, 

motor learning involves a precise directional change in behaviour and in the qualitative 

mechanisms underpinning these changes. 

Central to Social Cognitive Theory is the concept of a cognitive representation. 

Williams et at. (1999) have argued that this concept has never been fully elaborated, 

such that the nature and location of these representations are somewhat nebulous. There 

are also concerns with the use of recognition tests as a valid measure of the existence of 

cognitive representations. In presenting images of the act from which participants must 

choose the one that they observed, this pre-supposes that the cognitive representation is 

some form of reference of correctness, similar to that suggested by Adams (1971). A 

recognition test performed after experimental trials naturally invokes memory of the 

task. Thus, it is a test of the sub-component of retention. Bandura's notion of coding 

would suggest that the imaginal system accounts for matching between an internal 

representation and an external image. Yet, Bandura suggests that most coding occurs in 

verbal form. The conceptual links between the two systems have not been established. 

While sequential tasks such as arm paddle movements lend themselves to 

memorial coding strategies, without which they perhaps could not be performed, an 

important question regards whether such coding can guide the performance of complex 

multi-limb coordinative actions. If cognitive representations of these skills are found to 

be poorly developed, it suggests that the cognitive representations of the skills in Carroll 

and Bandura's studies may not be a kinematic representation of the act that covertly 

guides the skill, but a simple symbolic code. 
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Few studies have used kinematic measures of learning in conjunction with 

inference of cognitive representations by recognition tests. One notable exception by 

Weise-Bjornstal and Weiss (1992) measured kinematic variables and applied a 

recognition test at the end of each trial block during acquisition. The results suggest that 

for children at least, the addition of verbal cues to a pre-existing visual model resulted in 

the greatest increase in the recognition of correct form. No clear relationship between 

recognition and form scores was reported. 

Research related to Social Cognitive Theory has typically measured learning by 

outcome rather than process measures of performance, and this may have contributed to 

some equivocal findings in observational learning. Clearly, the addition of process 

measures increases measurement sensitivity. Moreover, if performance is measured by 

outcomes without reference to the movement pattern employed, then the model can 

become a redundant source of information. The learner may engage in emulative 

processes, or engage an existing movement pattern to maximize outcome performance 

under the guidance of intrinsic or extrinsically derived knowledge of results. 

Byrne and Russon (1998) describe novelty as a `cardinal requirement of 

imitation'. However, in observational learning, several studies have ensured task 

novelty at the expense of ecological validity. Most of the tasks employed have been 

somewhat manufactured and simplistic. Such tasks include ball-rolling (Martens, 

Burwitz, & Zuckerman, 1976), ladder climbing (e. g., Landers & Landers, 1973), 

knocking down barriers (e. g., Blandin & Proteau, 2000), horizontal positioning (e. g., 

Bird & Rickli, 1983), coincident anticipation (e. g., Weeks, 1992), and computer based 

tracking (Pollock & Lee, 1992) and sequencing (Wright et al., 1997). It is also worth 

noting that when teaching sports skills to beginners, such skills are rarely `novel' since 
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it is likely that learners will already have had some exposure to the skill, mainly through 

the vicarious learning opportunities provided by watching others participating. 

The social cognitive approach to observational learning emerged while 

information processing theory prevailed in motor behaviour. However, theoretical shifts 

toward ecological theories of perception and action have occurred in recent years. To 

complement these developments, it has been argued that research should examine 

complex motor skills in settings mimicking their ecology. Outcome scores are 

discouraged in favour of the analysis of changes in coordination in an interdisciplinary 

manner (e. g., Christina, 1987; Williams et al., 1999). 

Shaw and McIntyre (1974) stated that psychology presents three analytical 

concepts of how, what and who. With this in mind, Scully and Newell (1985) provided 

the most significant criticism of cognitive accounts of imitation. They argued that 

Bandura's theory merely focuses on how the process of observational learning occurs, 

and does not address the question of what information is perceived and used in the 

process. For example, even in Bandura's sub-process of attention, where the nature of 

information ought to be significant, concepts such as functional value, salience and 

distinctiveness simply relate to how much attention is allotted. Interest in the nature of 

information taken from the model was the driving force behind Scully and Newell's 

ecological view of modelling, known as the visual perception perspective. 

An Ecological Alternative to Cognitive Accounts: the Visual Perception Perspective 

Direct perception and ̀ what' information 

Scully and Newell's belief that a theory should focus upon what information is used 

rather than how the process works is a concept attributable to James Gibson's theory of 

direct perception (1950,1979). Gibson rejected Helmholtz's notion that since the retina 
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of the eye yields two-dimensional information of a three-dimensional world, 

information processing (epistemic mediation) is required to translate and make sense of 

incoming information. Gibson believed that the visual system has the ability to directly 

`pick up' information in the visual field, via the structure of light in the `optic array'. 

Features such as texture, relative position, and affordances (i. e., what the environment 

offers the perceiver in action-relevant terms; Williams et al., 1999) are directly and 

unambiguously specified without recourse to information processing. Moreover, 

Gibson's notion of mutual interdependency (meaning that information perceived is 

functionally specific for the action that follows) promotes the concept of perception- 

action coupling. 

Scully and Newell also drew upon Gibson's view that motion is essential to 

seeing. When we observe movement, three perceivable types of motion are available. 

Absolute motion describes the motion of a single element in a configuration relative to 

the perceiver. Common motion describes the motion common to all elements in the 

configuration relative to the perceiver. Relative motion is motion of all the elements in 

the configuration relative to each other. Considerable evidence from studies involving 

biological and non-biological motion points towards our preference for relative motion 

information. 

Biological motion perception 

To study the perception of human motion, Johansson (1971) revived Marey's 

(1895/1972) point-light technique. This procedure removes structural information, 

presenting only moving dots (point-lights) or strips (patch-lights) of light. Using this 

technique, Johansson (1971,73,75) found that events that were not discernable when 

the points of light were static were immediately salient when motion was introduced. 

When viewing point-light displays humans can identify gender (e. g., Barclay, Cutting, 
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& Kozlowski, 1978; Mather & Murdoch, 1994; Stevenage, Nixon, & Vince, 1999), 

friends (Cutting & Kozlowski, 1977), different animal species (Mather & West, 1993), 

and American sign language (Poizner, Bellugi, & Lutesdriscoll, 1981). Intention and 

emotion may also be perceived from point-light displays. Bassili (1978) showed that 

patches of reflective tape placed on the face facilitated the recognition of expressions of 

emotion. Participants can also recognize emotion portrayed in dance (Brownlow, Dixon, 

Egbert, & Radcliffe, 1997; Dittrich, Troscianko, Lea, & Morgan, 1996), aesthetic 

quality from gymnastics (Scully, 1986), affordances for actions (estimated optimal and 

maximal seat heights; Stoffregen, Gorday, Sheng, & Flynn, 1999), and the perception of 

underlying dynamics (e. g., Runeson & Frykolm, 1981,83). 

In Scully and Newell's (1985) analysis, relative motion has a fundamental role 

in observational learning. When an observer watches a demonstration, they are assumed 

to perceive and minimize the relative motion of the event. In subsequent attempts to re- 

enact the observed movement pattern, the relative motion is believed to constrain the 

emergence of coordination via its informational and instructional properties (see 

Warren, 1990). Scully and Newell's (1985) perspective is best understood in 

conjunction with Newell's (1985) embedded hierarchy of coordination, control, and 

skill. Newell operationalized the concepts first presented by Kugler, Kelso, and Turvey 

(1980). Coordination represents the assembly of a novel movement topology. Control is 

the parameterization, or scaling of the movement pattern. Finally, skill represents the 

optimal, flexible scaling of the movement pattern. As an embedded hierarchy, learners 

do not progress serially through coordination and control stages. Instead, they operate 

synergistically such that coordination is the organization of control. However, in early 

learning of an observed movement pattern, the dominant function appears to be 

coordination. As such Scully and Newell (1985) estimate that the influence of a model's 
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relative motion pattern is greatest at this stage. When a learner approximates the 

model's relative motion pattern within `certain bandwidths', this is considered to 

indicate that the action has been modelled (Scully & Newell, 1985). As learners 

progress, they are assumed to increasingly emphasize the scaling of the movement 

pattern. In this period of skill acquisition the exploration of the dynamics of the task is 

emphasized and demonstration is presumed to be less effective (Scully & Newell, 

1985). 

Research Pertaining to the Visual Perception Perspective 

Research related to the visual perception perspective fits into four broad 

categories: comparison of learning by modelling and discovery methods, and via point- 

light and video models, evidence for coordinative rather than control-based functions in 

learning, and evidence for the role of motion. As a detailed overview of key research 

findings in the visual perception perspective are given in Chapters 2,3, and 4, just a 

brief outline of research is given here. 

Studies comparing kinematic measures of learning by modelling and discovery 

methods have typically indicated superior learning from a model (e. g., Whiting, Bijlard, 

and den Brinker, 1987). More specifically, in support of the visual perception 

perspective, Schoenfelder-Zhodi (1992) and Al-Abood, Davids, and Bennett (2001) 

found participants observing a model illustrated changes in relative motion to become 

more like the model than participants from discovery groups. 

Studies comparing learning from video versus point-light models have examined 

the prediction that the absence of structural information in point-light facilitates the 

perception of motion because the removal of non-essential information leaves relative 

motion salient (Runeson, 1984). Pellechia and Garrett (1997) have presented some 

support for this notion in lumbar stabilization in physical therapy. In learning studies 
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though, a clear pattern of results has not emerged. Romack (1995) found a detrimental 

impact of a point-light model for children learning to dribble a basketball. A follow-up 

study also showed superior outcome scores from the video rather than PLD display 

(Romack & Briggs, 1998). Scully and Carnegie (1998) obtained more favourable results 

for learning of a ballet movement. Participants observing a point-light model 

demonstrated more accurate landing positions, and closer imitation of the model's 

angular displacement and relative timing than those observing a video model. 

In accordance with the predictions of the visual perception perspective, Scully 

and Carnegie (1998) found evidence in support of the role of demonstration in 

conveying coordinative rather than control-based information. Participants observing a 

ballet sequence successfully approximated the model's landing position, angular 

displacement and relative timing. However, they were unable to replicate forces at take- 

off or landing. Further research is required to expand upon these findings. 

Finally, there is evidence in support of the importance of motion in observational 

learning. Gray, Neissser, Shapiro, and Kouns (1991) reported significantly better 

reproduction of ballet sequences from point-light displays than from a series of still 

images. Furthermore, in instances when the original speed of demonstration is reduced, 

but relative timing is intact, the learning of complex multi-limb coordination has not 

typically been affected (e. g., Fehres & Olivier, 1986: gymnastic movements; Scully & 

Carnegie, 1998: ballet routine). In contrast, in tasks where the absolute speed of the 

movement is a critical feature, movement reproduction is impeded by changes in 

demonstration speed (e. g., Al-Abood, Davids, Bennett, Ashford, & Martinez, 2001; 

Williams, 1989b). 

Toward a Program of Research: Aims of the Thesis 
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In the eighteen years since Scully and Newell presented an ecological account of 

observational learning, few researchers have tested its predictions. A credible reason for 

this is that it requires kinematic data for the direct comparison of model and learner 

movement patterns. While measures of movement can be quantified, the typical method 

has been to analyse movement qualitatively or, at best, using subjective measures of 

movement form such as rating scales (e. g., Cadopi, Chatillon & Baldy, 1995; Ille & 

Cadopi, 1995; Magill & Schoenfelder-Zhodi, 1996; McCullagh & Meyer, 1997). 

Although this type of analysis provides a gross estimation of changes in movement 

form, objective and quantitative assessment of movement kinematics is imperative to 

identify specific changes in timing and spatial orientation as a function of observation 

and practice. 

Measuring coordination 

In order to effectively compare kinematic data between groups, and between a 

model and observer, this program of research aims to quantify coordination. Several 

techniques are available to do this. Cross-correlation, for example, summarizes a 

coordination pattern in a single number and has been used to quantify coordination in 

observational learning (e. g., Al. Abood et al., 2001). However, this technique assumes a 

linear relationship between joints and was thus considered inappropriate for the kicking, 

throwing, and bowling movements used in this program. One solution to the linearity 

problem is to first apply the chain-encoding methods of Freeman (1961) and Whiting & 

Zernicke (1987). These techniques lay directionally structured grids over the movement 

patterns and convert ratio data to nominal data. However, in order to normalize unequal 

data lengths to the same number, different sized grid overlays would be required. This 

treats each trial differently, and varies the degree of error introduced. Also, regardless of 

techniques to transform the data, cross-correlation has been criticised for taking a 
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narrow view of coordination since it assumes that joints are co-ordered when they 

illustrate proportionality throughout their range of motion (Sidaway et at., 1995). 

Many alternative techniques were also deemed inappropriate for the task and 

analyses used in this program. For example, continuous relative phase provides a 

tempero-spatial measure of coordination, but is not appropriate for discrete tasks. 

Conversely, discrete relative phase and return maps would be appropriate for the tasks, 

but measure coordination at only one point in a cycle. 

The preferred solution was to use normalized root mean squared error (NoRMS; 

Sidaway et al., 1995). This was developed as a measure of consistency or variability in 

movement patterns over several cycles of a discrete task. Unlike cross-correlation, it 

does not require linear data. Data is first normalized to equal lengths. Then at each 

instant in the cycle, a resultant compares both joint angles to a mean trace. The 

resultants at each instant then contribute to a root mean squared error for each trial, 

which is then summed. The root mean squared error becomes normalised when divided 

by the resultant excursion (based on the range of motion at each joint) multiplied by the 

number of cycles in the analysis. By simple substitution of the mean trace with a 

criterion trace an index of proximity to a criterion (i. e., the model's movement pattern) 

is possible. The result is normalized root mean squared difference, and this technique is 

explained in more detail in Chapters 3 and 4. 

Coordination changes 

The role of relative motion. The primary aim of this thesis is to clarify the 

constraining role of the model's relative motion in observational learning. To do this the 

movement kinematics of both the model (video and point-light) and learner are 

measured and directly compared. Expanding upon previous research, coordination is 

examined at both a local intra-limb level, and a global participant-object level. To 
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further add to the extant literature, the role of the model is substantiated in Experiments 

2 and 3 by the quantification of both movement variability and the proximity of 

coordination between the model and learner. To date only Al-Abood et at. (2001a, b) 

have done this. However, both of these studies are hindered by the lack of a pre- 

observation skill test. Without this, the immediate and long-term impact of the model 

may only be inferred. This thesis aims to redress this problem, outlining the immediate 

impact, longevity, and stability of relative motion changes in response to demonstration. 

The role of relative motion is also assessed in the comparison of imitative 

performance from point-light and video models in Experiments 1,2, and 4. If, as 

predicted by Runeson (1984), the removal of non-essential information leaves relative 

motion salient, we may anticipate superior imitation of coordination in response to 

point-light models. 

Coordination changes with and without intrinsic visual KR. To further expound 

the effect of the model, this thesis aims to compare participant's coordination changes in 

learning environments when the model is the primary, constraining information source 

(Experiment 2) with those in environments in which participants also receive 

information from visual intrinsic knowledge of results (Experiments 1& 3). Using these 

collective methods, this thesis aims to provide the most comprehensive assessment of 

coordination changes in observational learning to date. 

Understanding ̀what information' 

The final aim of this thesis is to elucidate what information is picked up from 

demonstrations. Although this was the driving force behind the visual perception 

perspective, researchers have had only limited success. Two techniques appear to be 

especially appropriate to shed light on this question. These are event occlusion and 

analysis of visual search. 
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Visual search. Researchers have successfully used occlusion in studies of 

biological motion (e. g., Mather, Radford, & West, 1992) and observational learning 

(e. g, Scully & Carnegie, 1998). Despite this, it was decided that visual search analysis 

may offer greater ecological validity since it allows the whole visual display to remain 

intact. In addition, Experiments 1, and 2 compare learning from video and point-light 

models and it was considered difficult to maintain equivalent occlusion across these 

conditions. 

The employment of eye movement analysis to determine what information is 

used in observational learning originates from the assumption that eye movements direct 

our attention to areas from which we extract information. Some credence for this 

argument comes from mounting evidence that eye movements are preceded by a shift in 

attention, and that this coupling between attention and eye movements is inevitable (see 

Hoffman, 1998 for a review). More specifically, the relationship between visual search 

and learning is inferred by a study of Williams (1989c). Participants who were asked to 

observe a demonstration with visual search patterns counter to their naturally occurring 

ones experienced more error in reproducing movements than matched controls. 

At present the only known study to employ eye movement recording to 

determine areas of visual search interest in observational learning, examined finger and 

hand movements (Mataric & Pomplun, 1998). Such fine movements did not necessitate 

movement of the eyes to gather information. This thesis aims to examine the areas of 

information extraction for a gross, inter-limb task. In addition, it aims to examine 

whether visual search shows refinement from early pre-practice observation to later in 

acquisition. 

Dynamic information for movement parameterization. Finally, to address ̀what' 

information is picked up by the display, this program of research aims to examine 
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whether point-light and video models portray information for the control, or 

parameterization of movement. As well as testing predictions in the visual perception 

perspective, this directly examines Runeson and Frykolm's (1981) kinemetic 

specification of dynamics (KSD) principle, which states that a movement's kinematics 

portray its underlying dynamics. Experiment 4 will extend previous research by 

examining whether participants can not only immediately perceive the dynamics of a 

modelled event, but if they can immediately replicate them. More specifically, by a 

systematic analysis, the thesis will examine whether the perception of relative motion 

contributes to the perception and replication of dynamics. 
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Chapter 2 

Learning from Demonstrations: The Role of Visual Search During 

Observational Learning from Video and Point-light Models 

30 



Abstract 

This study examined the visual search strategies employed during observation of video 

and point-light display (PLD) models. Also, the relative effectiveness of video and PLD 

models in facilitating the learning of task outcomes and movement patterns was 

considered. Twenty-one female novice soccer players were divided equally into 

VIDEO, PLD and no-model (CONTROL) groups. Participants chipped a soccer ball 

onto a target area from which radial and variable error scores were taken. Kinematic 

data were also recorded using an opto-electrical system. Both a pre- and post-test were 

performed, interspersed with three periods of acquisition and observation of the model. 

A retention test was completed two days after the post-test. There was a significant main 

effect for test period for outcome accuracy and variability, but observation of a model 

did not facilitate outcome-based learning. Participants observing the models acquired a 

global movement pattern that was closer to that of the model than the controls, although 

they did not acquire the local relations in the movement pattern, evidenced by joint 

range of motion and angle-angle plots. There were no significant differences in learning 

between the PLD and VIDEO groups. The PLD group employed a more selective visual 

search pattern than the VIDEO group, while both groups became more selective with 

successive trials and observation periods. Results are discussed in the context of 

Newell's (1985) hierarchy of coordination and control and Scully and Newell's (1985) 

visual perception perspective. 
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A common assumption is that demonstrations are more favourable than 

verbalisation and trial-and-error methods for acquiring information during skill 

acquisition. Not surprisingly, therefore, there is widespread use of demonstrations 

during the instructional process in sport and other settings. Yet, a review of the research 

on observational learning shows equivocal support for the effectiveness of 

demonstrations. Furthermore, since the majority of previous research has manipulated 

model type (e. g., status, skill level), there is limited knowledge of the specific 

information perceived during the learning process. This paper aims to address this issue 

by assessing learners' visual search strategies during observation of a model. 

Thus far, observational learning research has been underpinned by cognitive- 

mediational theories. Sheffield (1961) proposed that observation of a model allows the 

learner to form a (cognitive) blueprint of the action, against which later attempts to 

reproduce the movement are matched (for a review, see Williams et al., 1999). In 

extending Sheffield's initial ideas, it is Bandura's Social Learning Theory (1969, later 

revised to Social Cognitive Theory in 1986) that has exerted most influence on 

observational learning research. Bandura (1969) proposed that the four inter-related sub- 

processes of attention, retention, motor production and motivation combine to form a 

cognitive representation of the act. Like Sheffield's blueprint, the cognitive 

representation guides subsequent movement production. Research has predominantly 

investigated the sub-process of attention through somewhat obsessive manipulation of 

model type. Many of these studies have tested Bandura's (1977) prediction that 

observers pay closer attention to models that are older, more skilled, and possess 

symbols that reflect status. Research has inferred support for this prediction with regard 

to status (McCullagh, 1987), age (Brody and Stoneman, 1981), and skill level (see 

Landers and Landers, 1973; Lirgg and Feltz, 1991). However, several studies suggest 
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that since learning is problem-solving in nature, a model engaged in learning the task 

may be preferred to an already skilled model (McCullagh and Caird, 1990; Pollock and 

Lee, 1992; McCullagh and Meyer, 1997). 

Although Social Learning Theory has been examined in a motor skills context 

(e. g., Carroll and Bandura, 1990), a fundamental criticism is that Bandura's theory was 

developed as an explanation of social rather than motoric learning (McCullagh et al., 

1989; Williams et al., 1999). The mechanisms of social and motoric learning are likely 

to be very different. For example, social learning involves a gross form of imitation in 

which the measure is a dichotomous split between the behaviour being present or absent 

after exposure to the model. Motoric modelling is entirely more specific in nature, since 

both the precise outcome of the behaviour and the way in which the outcome is 

achieved are of interest. 

Research stimulated by Social Learning Theory has also typically measured 

learning using outcome rather than process measures of performance. The loss of 

measurement sensitivity provided by the use of outcome measures may have contributed 

to the equivocal findings. If learning is measured by outcomes, independent of the 

movement pattern that the learner uses, then the model may become a redundant source 

of information. The learner is likely to ignore the model, engaging an existing 

movement pattern to maximise performance outcomes, guided by knowledge of results. 

Several researchers have criticised observational learning research for using 

contrived, simplistic tasks (e. g., McCullagh et al., 1989; Williams, 1993) such as ball 

rolling (Martens et al, 1976), ladder climbing (Landers & Landers, 1973) and knocking 

down barriers (McCullagh & Caird, 1990). Though these studies have contributed to 

our knowledge of observational learning, the tasks appear akin to nonsense syllables in 

memory studies, in as much as they guarantee task novelty but offer limited ecological 
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validity. The tasks used in testing the effects of coding and cognitive strategies can also 

be questioned, in that they required discrete, serial movements, which could not be 

reproduced without storage in memory. The benefits of such strategies may be less 

apparent in complex, non-serial movements. 

To better complement modem concepts of motor control and learning, several 

authors have called for research to examine complex motor skills in realistic settings. In 

this endeavour learning should not be assessed purely by outcomes, but by changes in 

coordination and form, in an integrated, interdisciplinary manner (Christina, 1987; 

Williams et al., 1999). Furthermore, in an applied motor learning context, emphasis 

should be upon the ability to actually reproduce movement patterns after a period of 

time, rather than the ability to recognise correct from incorrect form (cf. Carroll and 

Bandura, 1990). 

Scully and Newell's (1985) ecologically based visual perception perspective was 

motivated by the aforementioned limitations in theory and research. This approach is 

concerned with what information or cues are picked up from the display, rather than 

how the process occurs. The notion that theory should focus on what is perceived rather 

than how it is perceived is attributed to Gibson's theory of Direct Perception (1950, 

1979). Scully and Newell maintain that motion is an essential ingredient for perception. 

Static displays convey little information about a movement pattern to be learned, 

whereas the movement topology is revealed in motion. This issue is most clearly 

illustrated through the revival of Marey's (1895/1972) point-light display (PLD). These 

minimalist displays show only dots of light at the major joint centres and are useful in 

their omission of structural information. Johansson (1971) showed our ability to rapidly 

distinguish different forms of biological motion (e. g., walking, running, limping, 

cycling, dancing) in these displays. Other research has highlighted the capacity to 
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identify gender (Barclay et al., 1978, Mather and Murdoch, 1994), friends (Cutting and 

Kozlowski, 1977), different species of animals (Mather and West, 1993), American 

Sign Language (Poizner et al., 1981) and a single degree of freedom darts-style throw 

(Williams, 1989a). Moreover, participants have been shown to perceive somewhat less 

superficial characteristics such as aesthetic quality in gymnastics (Scully, 1986), the 

emotion portrayed in dance (Dittrich et al., 1996; Brownlow et al., 1997), dynamic 

properties such as the weight of lifted boxes (Runeson and Frykolm, 1981) and the 

distance of a thrown object (Runeson and Frykolm, 1983). 

An explanation of our ability to perceive these events may be found in 

Johansson's non-biological motion studies. Johansson (1975) found that two lights 

following each other around a rectangular pathway were perceived as lights at the end of 

a rigid stick moving in 3-dimensions. Similarly, a square expanding and shrinking inside 

a fixed square was perceived as a constant sized square advancing and retreating in 3- 

dimensions. The perception formed is the simplest one which maintains a rigid 

connection between the stimuli. The general formula proposed by Johansson is one of 

spatial invariance plus motion. If a point of light is perceived as having an invariant, 

rigid connection to adjacent lights, then despite constant changes in their absolute 

motion, the display is recognised through their relative motion (the motion of individual 

elements in the configuration relative to each other). Although Gestalt psychologists 

explain perception in terms of brain organisation, it appears that the Gestalt principle of 

pragnanz in which perception moves toward simplicity and wholeness, applies to the 

perception of biological motion. Cutting and Profitt (1982) have proposed that a 

minimum principle operates simultaneously to minimise relative and common motion 

(motion common to all elements in a configuration), allowing us to perceive an 

apparently complex pattern. The visual perception perspective suggests that relative 
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motion is perceived and minimised, and later used to constrain reproduction of the 

action. Scully and Newell (1985) suggest that when the learner approximates the 

relative motion pattern within certain bandwidths, then the activity is considered to have 

been modelled. 

If relative motion within a video or PLD is minimised and used to constrain 

action in observational learning, one would expect equivalent or superior learning from 

the minimalist PLD, in comparison to live or videotaped models. Newell and Walter 

(1981) and Runeson (1984) have argued that live and video models contain too much 

(structural) information, making them ineffective in isolating the important parameters 

of the movement. Few studies have tested this prediction. Williams (1989b) found a 

point light and a video model to be equally effective in learning a darts-style throw in 

terms of number of trials to achieve the correct sequence, angular displacement at the 

elbow and timing of elbow flexion. However, since all participants learned the task 

quickly, a single degree of freedom task may be too simple to differentiate between 

groups. Romack (1995) found preference for video rather that PLD modelling in the 

learning of a basketball dribble in 6-year old children. Results indicated that following 

acquisition periods over 6 consecutive days, participants observing the PLD performed 

fewer consecutive bounces of the ball per trial than those in the no-model and video- 

groups. Kinematic analysis was also performed on the model and on one participant per 

group over 7-8 cycles of ball bouncing. The results indicated that the model had a slight 

phasing difference between the ball and hand, whereby the hand slightly led the ball. All 

three participants showed the hand leading the ball by a much larger margin and those 

observing the PLD showed greater disparity with the model than the video and no- 

model groups. 
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In contrast, Scully and Carnegie (1998) found a PLD model of a ballet sequence 

induced superior landing accuracy over a video model (even though the PLD contained 

no reference point). Furthermore, observation of a PLD produced closer replication of 

angular displacement and relative timing than observation of a video model, even when 

the hip, knee, ankle or toes were occluded from the PLD. Further studies are required to 

investigate these discrepancies in findings. In addition, the visual perception perspective 

has inspired limited progress in both identifying what sources of information are used, 

and in establishing perception-action links in observational learning. Toward this end, 

studies may benefit from the measurement of visual search data during observation of 

the model, since as Gray et al. (1991) note, if qualitative aspects of a movement are to 

be imitated, it must be on the basis of optical information structures that specify the 

uniqueness of the movement. 

Traditionally, in motor behaviour research, visual search has been used in the 

expert-novice paradigm. Significant differences have been found in search rate (e. g., 

Bard et al., 1980; Helsen and Pauwels, 1993), although Williams and Davids (1998) 

have recently found that search rate characteristics are task dependent. As a result of 

experience, experts also exhibit superior anticipatory performance, distinguishing 

redundant areas while sampling areas of pertinent future action (e. g., Helsen and 

Pauwels, 1993; Williams et al., 1994). In learning studies, where participants are 

novices, there is little experience on which participants can draw. As a result the 

selectivity shown by experts is unlikely to be present in early observations, with 

participants requiring a somewhat global interpretation of the movement. However, with 

repeated exposure and practice one would anticipate greater selectivity in search 

patterns as participants become attuned to the relative motion information and seek 

more specific information. 
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Only two known studies have assessed visual search during observational 

learning of gross motor skills. The first of these monitored and classified visual search 

strategies during the observation of a throwing action (Williams, 1989c). Participants 

classified as trackers and saccaders were asked to observe the model in the counter- 

preferred manner. In comparison to matched controls, these participants showed a 

significant increase in error. This appears to testify to the existence of powerful links 

between perception and subsequent action in observational learning. In the second study 

by de la Pena, Janelle, Hass and Ellis (2000), visual search was measured during 

observation of video, PLD and stick figure models of a basketball free-throw. 

Differences in search were found for the different conditions and the authors suggested 

that the PLD induced an optimal search pattern. 

No single study has investigated the visual search induced by video and PLD 

models of a complex, motor skill in conjunction with the measurement of movement 

kinematics. The assessment of learning by kinematic analysis is vital if the predictions 

borne out of Scully and Newell's (1985) approach are to be examined. Several 

researchers have used subjective ratings of movement form (e. g., Cadopi et al., 1995; 

Ille and Cadopi, 1995; McCullagh and Meyer, 1997, Magill and Schoenfelder-Zhodi, 

1999, Weeks and Anderson, 2000), yet objective assessment of the movement would 

provide a more valid understanding of the types of changes occurring as a function of 

observational learning. Although a few researchers have measured movement 

kinematics, the findings are limited by the absence of a retention test (Southard and 

Higgins, 1987; Weise-Bjornstal and Weiss, 1992), or by the omission of a comparison 

between the kinematics of the model and the participants (Southard and Higgins, 1987). 

This aim of this study was to add to the literature by comparing the effectiveness 

of video and PLD models in producing correct patterns of coordination at several levels 
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of analysis. Coordination has been defined as relative movements between segments of 

the same limb (intra-limb coordination), of different limbs (inter-limb coordination) and 

between limb segments and an external object (Newell 1985; Turvey, 1990). The task 

chosen was a soccer chip, as it was considered to be less intrinsic in nature than the 

more typically analysed instep kick. This assumption was based on the longitudinal, 

developmental studies of Wickstrom (1975) and Bloomfield et al (1979), which describe 

the phases of development that occur in the natural emergence of mature kicking. These 

descriptions convey a pattern of movement which more closely approximates an instep 

kick, than a controlled chip (for a review of biomechanical analysis of the soccer kick, 

see Lees and Nolan, 1998; Davids et al., 2000). At a global level, coordination will be 

assessed in terms of the step approach to the ball. While at a local level, intra-limb 

coordination will be assessed using angle-angle plots, and relative phase timings of knee 

flexion and extension. 

Based on Scully and Newell's (1985) position that relative motion is perceived, 

minimised and used to constrain reproduction of movements in observational learning, it 

was predicted that participants observing a PLD would perform better (in terms of 

movement outcomes and coordination) than those viewing a video model. Also, 

following the preceding comments of Newell and Walter (1981) and Runeson (1984), it 

was hypothesised that in the absence of structural information, participants observing 

the PLD would show more selective search strategies, characterised by fewer fixations 

to less disparate areas of the display. Finally, it was predicted that both model groups 

would show more stable and selective search patterns with repeated viewing and 

practice as they became more attuned to relative motion information. 
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Method 

Participants 

Twenty-one female students (M age = 22.2 years; SD = 4.7) volunteered to take 

part in the study. None of the participants had played soccer on a regular basis, or had 

received formal instruction. All had normal or corrected to normal vision and were 

right-side dominant for everyday activities. All participants gave their informed consent 

prior to taking part. 

Task and production of test films 

A female, national standard soccer player (age = 18.6 years) acted as the model. 

The task was to chip a soccer ball a distance of 5.0 m, over a barrier 0.35 m in height. 

The barrier was located 2.5 m from the target. A 2.4 m2 target area was constructed and 

covered with a 5cm depth of wet sand to facilitate the collection of error scores. A cross 

hair marked the target centre. During the performance of a successful chip, the model 

was filmed in a sagittal plane using a video camera (Panasonic M-40). Simultaneously, 

6 infrared cameras (Pro-Reflex, Qualisys) relayed the tempo-spatial positions of 18 

retro-reflective markers, placed at the conventional anatomical landmarks of the 

model's major joint centres. The PLD was generated using the Q-Trac View Motion 

Viewer (Beta 2.54; Qualisys). This was then manipulated in the programme to match 

the video presentation and converted to VHS format. Films were edited using the Media 

100 system (i-Finish software), such that in both conditions 3.24 s of action was 

presented. A5s warning was added before the first trial. 

Procedure and design 

In order to examine changes in visual search behaviour with ongoing practice, 

the design highlighted in Figure 2.1 was employed. Participants were matched on pre- 

test radial error scores and assigned to one of three equal ability groups: video model 
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(VIDEO); point light display model (PLD), or no demonstration (control). Following 

the pre-test, participants in the VIDEO and PLD groups engaged in three cycles of 

observing the model followed by practice. Participants then performed an immediate 

post-test, and a retention test to measure learning was administered two days later (see 

Figure 2.1). The CONTROL group followed the same design, without observation of 

the model. 

Time 
Day 1 

_1 
2 days post 

Phase I Pre-test Obs 1 Acq 1 Obs 2 Acq 2 Obs 3 Acq 3 Post-test I Retention test 

4........... 
i.. .......................... 1.......... 
i 

---------- --------- 

Procedure Eye Movement Registration 
FOutcome 

Scores Kinematics and Outcome Scores 

Figure 2.1. Summary of the experimental design and procedure 
(obs = observation, Acq = acquisition). 

Before the pre-test, participants were given standardised instructions, presented 

via a tape recorder (Sony M-425). The instructions informed participants to approach 

the ball in a straight line, kick with their right foot, and to keep their hands above the 

height of their hips. Retro-reflective markers were placed on the ball (size 5,10psi) and 

on the participant's right side at the distal head of the 5U' metatarsal (toe), the lateral 

malleolus (ankle), the lateral condyle of the femur (knee), the greater trochanter (hip) 

and the acromion process (shoulder). Each acquisition and test period comprised 10 

trials. On trials 1,5 and 10 of the pre-, post- and retention tests, kinematic data were 
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collected using 3 infrared cameras (Pro-Reflex; Qualisys) at 240 Hz. The system was 

calibrated using a Qualisys Wandkit (750.9 mm) wand prior to each test session. 

The participants received further standardized instruction before the first 

observation period. The instructions explained that the demonstration they were about to 

observe resulted in a perfect kick (radial error =0 cm). The instructions placed equal 

emphasis on the replication of performance outcomes and form/style. The video and 



placed 5m from the participants, such that the model subtended a realistic visual angle 

of 18°. Each observation period presented 5 repetitions of the model's action. Visual 

search behaviours were recorded using an Applied Science Technologies (ASL) 

4000SU eye-movement registration system and a magnetic head tracker (Ascension 

Technologies, Flock of Birds 6DFOB). This system uses a headband mounted eye 

camera (50 Hz, PAL) to measure line of gaze based on the positions of pupil and cornea 

relative to a 9-point calibration frame superimposed over the projection screen. The 

system was accurate to within ±1° of visual angle. Calibrations were performed before 

each observation period, and checked at the end of each presentation block. 

Dependent measures and data analysis 

Outcome scores. On each trial, the x and y coordinates of the ball's landing 

position were measured in centimetres from the centre of the mark left by the ball in the 

sand to the horizontal and vertical lines of the cross-hair respectively. The scores were 

recorded to produce radial (calculated as the hypotenuse of the triangle made from 

distances x and y) and variable error scores. 

Visual search. Each frame of the test films was converted to a bitmap image and 

analysed using Fixplot 1.1 (ASL; 1998). This program generates a time-scaled scan path 

that is integrated with the calibration frame used in the collection of eye data. When 
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superimposed over the bitmap images, the scan-path indicates duration and location of 

fixations. Fixations were parameterised within Fixplot as stable periods of no eye 

movement lasting 100 ms or more. This value equates with the definition of fixations in 

video-based eye movement analysis, that has typically classified fixations as periods in 

which the cursor is stationary for 3 or more frames with NTSC (99.99 ms; e. g., Vickers, 

1996) or PAL (120 ms; e. g., Singer et al, 1998) systems. 

The following three measures were assessed: 

Search rate. This measure included the mean number of fixations and the mean fixation 

duration per trial. 

Relative fixation time per location. This measure reflected the amount of time spent 

fixating the upper body (including head/neck, shoulder, chest, trunk, arms, wrist/hand), 

lower body (hip, thigh, knee, calf ankle/foot) and non-bodily areas (ahead of the body, 

lagging the body, the ball/ball's trajectory). 

Number of areas of the model sampled. The mean number of areas fixated across trials 

was assessed. This variable was obtained by dividing the display into the following 

regions: head/face; shoulder; chest/trunk; arm (mid-segment); elbow; wrist/hand; hip; 

thigh; knee; calf/shin; right foot/ankle; left foot/ankle. 

Kinematics. Three assessments of coordination were made. The first was a 

measure of limb coordination relative to the ball. In this analysis, the number of steps in 

the approach to the ball was documented for all participants on all test trials. A more 

detailed analysis of all trials was then conducted for a single participant for each group. 

Each participant selected was considered to be representative of their group. This was 

based on a qualitative analysis of angle-angle plots for a single trial in pre-, post- and 

retention tests for all participants. Intra-limb coordination was assessed using angle- 

angle plots for the knee-hip and knee-ankle. This assessment required the start and end 
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points of the analysis of the kick to be normalised due to large variation in approach to 

the ball. Analysis commenced at the initiation of right knee flexion in preparation for 

the back swing of the kick and ended at the moment of maximal right knee extension 

following contact with the ball. In addition to this analysis, joint range of motion was 

assessed over the same period of time. Finally, the relative temporal phases of knee 

flexion and extension were examined from the initiation of the back swing of the kick 

through to maximal post-contact knee extension. Data were smoothed with a 4`" order 

Butterworth filter with a cut-off frequency of 7 Hz. The filter was applied twice (the 

second pass in the reverse direction) to negate phase lag (Winter, 1990). 

Statistical analysis 

Visual search data were analysed using separate factorial analyses of variance 

(ANOVA) in which viewing condition (VIDEO; PLD ) was the between-groups factor 

and observation period and trials the within-groups factors. Outcome data were analysed 

using separate repeated measures ANOVA in which group (VIDEO; PLD; control) was 

a between-groups factor and test period a within-groups factor. Significant effects were 

followed up where appropriate using the Tukey HSD (alpha = <. 05). Where violations 

of the assumption of sphericity for repeated measures ANOVA were observed, data 

were adjusted with a Greenhouse-Geisser epsilon factor. 

Results 

Outcome scores 

ANOVA revealed main effects for test session in radial error, F (2,36) = 21.74, 

p< . 01, and variable error across the x- ,F (2,36) = 11.53, p< . 01, and y- axis F (2,36) 

= 7.76, p< . 01. Post hoc Newman-Keuls analysis indicated a significant increase in 

accuracy and reduction in variability from pre- to post-test. These differences were 
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maintained on the delayed retention test. A main effect for viewing condition was not 

observed. Radial and variable error scores are presented in Figure 2.2. 
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Figure 2.2. Mean Radial (A) and Variable Error (B) for all Groups Across Test and 
Acquisition Conditions 

Visual search data 

Search rate. No significant differences were noted between the video and point- 

light display groups for mean number of fixations per trial or mean fixation duration (p 
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> . 05). Similarly, main effects for observation period and trials were not observed. The 

search rate data are shown in Table 2.1. 

Relative fixation time per location. ANOVA indicated a significant main effect 

for fixation location, F (2,24) = 63.01, p< . 01). The participants spent more time 

fixating on the lower body than the upper body. A Viewing Condition x Fixation 

Location interaction was also present, F (2,24), = 6.63, p< . 01). Post hoc analysis 

showed that the PLD participants exhibited a more even distribution of fixations over 

the lower body (M = 48.98%) and non-bodily areas (M = 42.27%). Furthermore, they 

fixated for relatively less time on the upper body than the VIDEO group (M = 8.75% 

versus 17.8%). The VIDEO group spent more time fixating the lower body (M = 

53.96%) compared with the upper body (mean = 17.79%) and non-bodily areas (M = 

28.30%). Relative fixation time per location data are shown in Figure 2.3. 

70 1 
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Figure 2.3. Percentage of viewing time allocated to the model's upper body, lower body 
and to non-bodily areas. 

46 

VIDEO PLD 



I 

3 
aý 

O 
0 

M ý 

O 
k 

ý w > 
F. 

: : : : 

N 

. ID 
O 

L 

. . 
w 

O 

b 
O O M O 

r- 

N ý 
C 
O 

ý 
ý 

ý w 

O C 
O 

cis 
k 

Lzr 
ý 
lý 

n v 
O 
00 

ý 

rr 

O 
O 

w 
cý 

r_ M 
O 
M 

clý 

Ö ý 

ý w 

i 

O `A 
0 

all N 
N 

Lt. ý tý i Oö i 

p A 

N ýt 



Number of areas sampled. A main effect for observation period was observed, E (2,24) 

= 3.90, p< . 05. Post hoc analysis indicated that participants fixated on fewer areas of 

the body across each of the observation periods from 1 (h L7- 3.57, SD = . 99) to 2 (M = 

3.06, SD = . 64) to 3 (M = 2.97, SD = . 72). ANOVA also revealed a significant main 

effect for trial, F (4,48) = 4.21, p< . 05. Post hoc analysis indicated that participants 

fixated on fewer areas of the display in trial 5 (M = 2.67, SD = 1.20) than trial 1 (M = 

3.56, SD = 1.47), trial 2 (M = 3.38, SD = 1.23) or trial 4 (M = 3.17, SD = 1.45). There 

was no main effect for viewing condition (VID M=3.50, SD = 1.45; PLD M=2,90, 

SD = 1.13 ;E (1,12) = 4.16, p< . 06) . However, given the marginal significance level 

and small sample, an effect size statistic was calculated for the viewing condition main 

effect. The analysis revealed a moderate effect size of . 45. 

Kinematics 

Approach to the ball. An assessment of the number of steps in approach to the ball 

indicated significant main effects for group, E (2,18) = 6.88, p< . 01. A significant 

main effect for test period was found, F (1.27,22.85) = 4.48, p< . 05. A Group x Test 

Period interaction was also present, F (2.54,22.85) = 6.81, p< . 01. As a whole, the 

participants increased the number of steps in their approach to the ball, becoming more 

like the model (the model employed a three step approach, where contact with the ball 

occurred at step three). Although all three groups were closely matched on pre-test 

scores, in retention the VIDEO and PLD groups increased their steps beyond that of the 

control group to become more like the model. The control participants decreased the 

number of steps used to become less like the model. These results are shown in Table 

2.2. 
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Table 2.2. Mean (± SD) number of steps in approach to the ball for all groups 
across test conditions. 

Group Pre-test Post-test Retention test 

VIDEO 2.2 2.8 2.9 

(. 8) (. 4) (. 4) 

PLD 2.0 2.5 2.6 

(. 1) (5) (5) 

CONTROL 2.2 1.9 1.7 

(. s) (. 4) (. s) 

Phasing of knee flexion and extension. Figure 2.4 illustrates the relative phasing of knee 

flexion and extension in the soccer chipping motion. The CONTROL group participant 

increased her ratio over test conditions to become less like the model. In addition, her 

variability in retention (as indicated in standard deviations) remained similar to pre-test 

levels. Conversely, the VIDEO group participant decreased her ratio in post-test and 

retention-test conditions by shortening the period of knee flexion so as to be nearly 

identical to the model. Furthermore, the VIDEO participant greatly reduced the 

variability in her flexion-extension phasing in the post- and retention-tests. The PLD 

participant also became more like the model, but maintained a moderate degree of 

variability in retention. 
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Figure 2.4. The ratio of time for knee flexion to time for knee extension during the 
soccer chip across test conditions. 

Intra-limb coordination. The joint range of motion results are presented in Figure 2.5. 

The model chipped the ball using a large knee range of motion, while keeping hip range 

of motion low and the ankle almost locked (6° of motion). The VIDEO participant 

learned to decrease her ankle and hip range of motion, but could not increase knee range 

of motion be more like the model. The PLD participant showed very little change in all 

range of motion pre- to retention tests. Finally, through practice, the CONTROL 

participant increased range of motion at the knee, and decreased range of motion at the 

hip to perform more similarly to the model, but also increased ankle range of motion. 

The angle-angle plots presented in Figures 2.6 - 2.11 provide an appropriate 

indication of relative motion and intra-limb coordination, as they illustrate the 

movement independent of control variables such as velocity and acceleration. The 

problems encountered in acquiring the model's range of motion are reflected in the 
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knee-hip angle-angle plots (see Figures 2.6,2.7 and 2.8) and knee-ankle angle-angle 

plots (see Figures 2.9,2.10, and 2.11). The model's relative motion pattern of minimal 

hip and ankle motion (i. e., width across the x-axis on the plot) coupled with large range 

of motion at the knee (i. e., depth on the y-axis), are indicated by narrow, deep wells. 

These are not closely approximated due to the aforementioned errors in replicating 

range of motion. 

The model's movement appears to proceed in three phases (see Figure 2.6). 

Moving clockwise, there is initially extensive knee flexion coupled with hip stability 

(back-swing). This is followed by hip flexion with moderate knee extension. Finally, 

there is considerable knee extension with the return of stability in the hip angle as a 

result of no follow-through. For the VIDEO participant the knee-hip coordination is 

not learned. The first phase of movement is attenuated by minimal knee flexion (see 

Figure 2.6), the second phase is exaggerated by over-extension of the hip in the follow 

through. As a result, phase three does not occur. The only qualitative improvement for 

the VIDEO participant appears to be in the symmetry of the movement in retention. 

Figures 2.7 and 2.8 show that the three phases of movement are more pronounced for 

the PLD and control participant respectively. The PLD participant shows greatest 

improvement from the pre-test to the retention test. However, in retention, her patterns 

are not closer to the model than those of the CONTROL participant, who also illustrates 

greater stability. 

For knee-ankle coordination, the model again shows the two distinct periods of 

knee flexion and extension, with extension preceded by only slight ankle flexion. None 

of the participants were able to approximate this pattern as a result of excessive ankle 

motion. The CONTROL participant again shows greatest stability in her movement 

pattern (see Figure 2.11). 
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Discussion 

The aims of this study were to compare visual search strategies in response to 

video and point-light models and to examine the effectiveness of each mode of 

demonstration in facilitating task outcomes and correct movement form. It was 

hypothesised that participants observing the point-light model would learn outcomes 

and coordination better than those observing the video model. It was also hypothesised 

that participants observing the point-light display would illustrate more selective search 

than would those observing the video model. Furthermore, it was anticipated that search 

strategies would become more refined within and between successive periods of 

observation, regardless of viewing condition. 

The results indicated an overall learning effect across all groups for outcome 

assessment. All three groups developed greater accuracy on the task, coupled with 

decreased outcome variability. However, observation of a model did not appear to 

facilitate the learning of task outcomes over and beyond those participants who 

practised the task with knowledge of results. This supports the findings of Romack 

(1995), while contradicting those of Landers and Landers (1973). Newell's (1985) 

classification of coordination, control and skill as an embedded hierarchy in stages of 

learning may explain the results. For the participants observing the models, the task was 

one of acquiring a specific and new movement topology and of scaling the new relative 

motion pattern in order to hit the target area. The group not using a model could explore 

their own, intrinsic movement patterns and scale them appropriately. It is important to 

note that Newell (1985) does not suggest that coordination (the assembly of a new 

movement topology) precedes control (the parameterisation of the movement pattern), 

but rather that coordination is the organisation of control. As such it would be inaccurate 

to suggest that the modelling groups were in a coordination phase of learning while the 
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control group were in a control phase of learning. It would appear that since the 

CONTROL group participants were adjusting their own naturally occurring kicking 

motions, the assembly of an appropriate topology was simpler, facilitating the 

organisation of control. In contrast, the participants in modelling groups tried to acquire 

an unnatural topology, experiencing more complex assembly of the relative motion 

pattern. This would result in diminished organisation of control and arguably less 

intrinsic links with the control of the movement. The implication for past and future 

research is that for tasks in which the goal for participants observing a model is to 

achieve a prescribed outcome and replicate a movement pattern, the benefits of the 

model may be offset by heightened task complexity. As such, in comparison to control 

groups, outcome scores for modelling groups may be similar, or worse (e. g., Romack, 

1995). 

No support was found for the prediction that viewing a point-light display model 

would be more effective in learning than observation of a video model. The fact that 

these groups did not differ supports the finding of Williams (1989b) with darts-style 

throwing. This finding suggests that neither the additional structural information 

afforded by video, nor the greater accessibility of relative motion in a point-light display 

led to superior learning. 

In terms of movement kinematics, the observation of a model facilitated the 

acquisition of the model's global pattern of coordination. Participants who practised the 

task without reference to the model gradually decreased their approach to the ball, 

becoming less like the model, whereas those observing the video and point-light models 

increased their steps to match the model's three-step approach. 

At a local level of analysis, the benefits of observing the model are limited to 

temporal factors. Participants observing the models developed closer replication of the 
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temporal phasing of knee flexion and extension, while the control participant became 

more disparate to the model. The participant observing the video model also developed 

a marked reduction in variability of the temporal phasing from pre-test to the retention 

test, whereas the PLD and CONTROL participants maintained somewhat equivocal 

variability. 

Joint range of motion analysis provides no evidence for the benefit of observing 

a model. For the knee joint, range of motion increased for the control participant 

through practice alone. For the hip joint, again in retention, the CONTROL participant 

was most like the model. However, the VIDEO participant showed a distinct decrease in 

joint angle and variability from pre-test to retention. Finally, in retention, all participants 

showed similar ankle range of motion, but in achieving this the control participant 

became less like the model, the PLD participant maintained pre-test range of motion and 

the VIDEO participant decreased her range. 

The angle-angle plots used in the experiment to illustrate intra-limb coordination 

did not show any advantage as a result of observing a model when learning a movement 

pattern. This finding supports that of Southard and Higgins (1987), who found 

participants exposed to a model performing a raquetball forehand shot did not show 

superior adjustment of limb configuration when compared to the control group. Figures 

2.6 to 2.11 show greater stability in the joint couplings of the CONTROL participant. 

For example, Figure 2.8 indicates that knee-hip relative motion was adjusted in the first 

five kicks of the pre-test (measurements taken at trials 1 and 5). By the third pre-test 

kick on trial 10, a movement pattern emerged which remained stable thereafter. This 

observation supports the notion that the control participant experienced less complex 

coordination of the movement pattern, facilitating the parameterisation or control of the 

movement. 
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The VIDEO participant shows little improvement in her pattern after observation 

of the model. Shallow wells indicated low knee range of motion, with excessive motion 

at the hip and ankle. The PLD participant showed somewhat more improvement. She 

achieved deep wells through better knee range of motion, but showed larger patterns due 

to high ankle and hip range of motion. Although coordination improved in the retention 

test, the patterns were not superior to the CONTROL participant. 

The evidence presented in this experiment suggests that the model was 

beneficial only in gaining global representation and temporal phasing of the movement. 

Some research evidence supports the notion of preference for these features. Bertenthal 

(1993) found some subjective reports by observers viewing biological motion 

suggesting that they perceived an emergent human form rather than individual features 

or local relations. Following up on this, Bertenthal and Pinto (1994) found that 

participants could detect human locomotion (even when common motion was subtracted 

by walking on a treadmill) from many other moving lights during presentation for just 

one second. However, on inverting the display, recognition was not greater than chance. 

It is unlikely that absolute or local relations were extracted in the short presentation 

time, but instead an orientation-specific global form was perceived. It is logical that, if 

the visual system is tuned to global representation of form, then the global, gross pattern 

of coordination is more likely to be perceived and imitated. In the current experiment, 

the participants may have acquired the global movement pattern and then focused on 

task outcomes. Also, the experiment used a relatively short acquisition period. As such, 

the participants may not have been able to acquire the local relations or intra-limb 

coordination in this time. Bertenthal and Pinto (1994) also found that perturbations of 

the temporal features of the point-light display was more detrimental to recognising 

human movement than perturbation of the spatial positions. If the perceptual system is 
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found to be more tuned to temporal features in biological motion, it follows that these 

are more easily - or at least more rapidly - learned. Williams (1989d) found that when 

the speed of the demonstration was manipulated, participants rapidly adjusted their 

cadence to the display, and this did not change with practice. The participants were also 

most accurate at the naturally occurring speed. 

The visual search analysis elicited fewer differences between the VIDEO and 

PLD groups than anticipated. If, as Just and Carpenter (1976) imply, fixation duration 

is taken as an indicator of the processing demands upon the observer, the results 

suggests that no greater demand was placed on the VIDEO participants with the 

inclusion of structural information. Fixation duration was fairly consistent at around 

300-350ms. These values fall between those found in response to very familiar practice 

situations in golf (100 ms; Vickers, 1992) and those found in complex team sports (850- 

1500 ms; Williams and Davids, 1994). Some support was found for the hypothesis that 

observers of the point-light display would show more refined search than those 

observing a VIDEO model. The VIDEO model contained distracting structural 

information, inducing a relatively greater amount of viewing time to less informative 

areas of the display, such as the head and face. In an applied context, the results of this 

experiment suggest that using video models in teaching may induce greater levels of 

distraction than PLD models, but the learning process is not necessarily hindered. This 

finding, however, may be a function of the number of observations given. If the 

participants received 3-5 presentations rather than a total of 15, then perhaps the effect 

of sampling non-informative areas in the VIDEO group may have manifested itself in 

poorer learning. 

The visual search data suggest the preferential perception of a global representation 

of movement on two counts. First, when compared to the VIDEO group, the PLD group 
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employed a more synthetic search strategy. That is, the participants directed their gaze 

to positions in the display from which the greatest amount of the action can be seen and 

grouped from a single fixation (see Ripoll, 1991). Many fixations were located behind 

and ahead of the model's body. Due to the abundance of rods in the periphery of the 

retina, the perception of both movement and light are more effective if the stimulus is 

located in the periphery. In this manner, the global pattern of movement can be 

perceived, but lower visual acuity means that the specifics of the movement are not 

readily picked up. Second, the fixation data illustrated in Figure 2.3 shows the marked 

preference for fixations to the lower body for the PLD group. These were specifically 

oriented toward the ankles and knees. However, the participants did not learn the correct 

angles or the local relations at these centres. It is likely that participants fixated these 

areas as a reference point to pick up information in the periphery (Rockwell, 1972). This 

`visual anchor' or `pivot' would then facilitate pick up a global representation of the 

movement. 

The prediction that visual search would become more refined over time was 

partially supported. Although search rates did not change, participants fixated on 

successively fewer areas of the display across observation periods. This pattern of less- 

to-more selectivity was also evident within observation periods. Participants fixated on 

significantly fewer areas of the display in the last trial than in the first, second, or fourth. 

These results point once again to the global representation of the relative motion pattern 

being sought and acquired before localised, intra-limb information. 

Finally some reference should be made to the role of knowledge of results. In 

using a shallow sand-pit to clearly mark the ball's landing position, powerful visual 

intrinsic feedback was available to all participants. As Swinnen (1996) noted, this 

intrinsic knowledge of results promotes self-initiated, error-detection and correction. In 
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the absence of knowledge of performance, participants lacked a clear understanding of 

the way in which their coordination was changing in response to the model. Therefore, 

knowledge of results is likely to be the motivating and constraining source of 

information, diminishing the impact and reliance upon the model. Future work is 

planned to eliminate visual intrinsic knowledge of results and it is anticipated that 

greater differences will be found in visual search strategies in response to VIDEO and 

PLD models, and that more marked changes in coordination will emerge during 

acquisition and retention. 

The results of this study suggest that in learning a complex motor skill, a model 

may provide the basis for primarily gross, holistic imitation in the absence of verbal 

guidance or augmented feedback. The search for information on which to base this 

imitation also appears to proceed from wide to narrow, perhaps indicating the need to 

develop this holistic impression before seeking information at a localised level. The 

search patterns by which participants ̀ pick-up' this information are more refined in 

response to point-light models, however the structural information of video does not 

appear to impede the learning of relative motion patterns, when compared with point- 

light displays. The similarity in visual search data between PLD and VIDEO 

participants and the correspondence in their outcome and process measures suggests that 

the information picked up from video is the same relative motion that is readily 

available in point-light displays, as suggested by Scully and Newell (1985). 
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Chapter 3 

Visual Search and Coordination Changes in Response to Video and Point-Light 

Demonstrations in the Absence of Intrinsic Knowledge of Results 
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Abstract 

This study examined the predictions of the visual perception perspective (Scully & 

Newell, 1985) in conditions in which participants were constrained to use the model as 

their primary source of information, through the absence of intrinsic visual KR. The task 

for 24 novice females was to chip a soccer ball 5m to a target. Participants were 

matched and assigned to video (VID), point-light (PL), and no model (CON) groups. 

During testing, participants wore earplugs and vision was occluded at contact with the 

ball. Pre- and post-tests were performed, interspersed with 2 alternating periods of 

observation of the model and acquisition. Retention tests were performed without and 

then with KR 2-3 days later. Visual search behaviour was assessed during observation 

of the model and kinematic and outcome data were collected in all test and acquisition 

periods. The results showed that in the absence of intrinsic KR, participants did not 

learn to reduce radial error. However, participants observing the PL and VID models 

became immediately more like the model in terms of intra-limb relative motion and the 

number of steps used to approach the ball. These changes remained through retention, 

and were not observed for the CON group. Participants observing the PL model 

illustrated more selective visual search than those seeing the VID model, but this was 

not reflected in differences in coordination between the 2 groups. In support of the 

visual perception perspective, the coordination data showed that VID and PL models do 

convey relative motion information. However, in the absence of intrinsic KR, the 

saliency of relative motion resulted in more rapid changes than previously reported. 
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Variety in the type of task and practice conditions used in observational learning 

research has resulted in considerable uncertainty regarding the efficacy of 

demonstrations. In particular, the precise nature of information picked up and used by 

the learner remains unclear. Contributing to this situation has been the tendency to 

measure learning by outcome scores, such that it has been difficult to establish links 

between the precise nature of information seen, and the way in which that information 

mediates the movement response. The aim in the current study was to examine the 

observational learning of a motor skill in which changes in relative motion, or 

coordination, was the primary dependent measure. To facilitate our understanding of the 

information used, eye movements were recorded during observation of the model. 

An appropriate theoretical framework within which to study the motoric changes 

that occur in skill acquisition is Newell's (1985) embedded hierarchy of coordination, 

control, and skill. In this hierarchy, Newell operationalized the concepts introduced by 

Kugler, Kelso, and Turvey (1980). From this perspective, coordination represents the 

assembly of a new movement topology, while control denotes the parameterization or 

scaling of the coordination function. There has been a tendency in the literature to refer 

to this assembly and parameterization in terms of `coordination' and `control' stages 

(e. g., Handford, Davids, Bennett, & Button, 1997). However, an embedded hierarchy 

does not imply serialization of processes, but rather uses Bernstein's (1967) view that 

coordination is the organization of control. Skill, in turn, refers to the optimization of 

the coordination and control synergy. 

In early skill acquisition, the dominant factor in this synergy is considered to be 

coordination. Therein, the topological properties of relative motion (motion of limbs, 

segments or points in a configuration relative to each other) are deemed essential 
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information in assembling this coordination function (Newell, Morris, & Scully, 1985). 

Several authors have suggested that visual demonstrations can provide this essential 

motion information to the learner (e. g., Cutting & Profitt, 1982; Scully & Newell, 

1985). As such, demonstrations are expected to be more effective early in the skill 

acquisition process, rather than later, when parameterization of an existing movement 

pattern is predominant. 

The prevailing theoretical backdrop to observational learning research is 

Bandura's (1977) social learning theory. According to this theory, when observing a 

model, the learner forms a cognitive representation of the act via the component sub- 

processes of attention, retention, motor production, and motivation. This representation 

then guides subsequent re-enactment. Bandura's theory does not readily compliment a 

hierarchy of coordination, control, and skill for several reasons. First, much of the 

research it has inspired has utilized tasks that do not require participants to learn a new 

coordination pattern. The prototypical task has been one in which the goal has been to 

achieve an outcome irrespective of the movement pattern employed (e. g., barrier knock- 

down, McCullagh & Caird, 1990; computer tracking, Pollock & Lee, 1992). Heyes 

(2001) has criticized researchers for failing to distinguish between the processes of 

imitation (copying of model's bodily movements) and emulation (copying the 

movements of the employed object). In the aforementioned studies, the task outcomes 

may have been achieved by emulation, without demands on participants to replicate any 

component of human motion. It is particularly difficult to distinguish between these two 

processes when learning has only been measured by outcome or error scores. To 

effectively assess how demonstrations have affected learning, and specifically how they 

have influenced coordination and control, some measure of movement form, such as 

subjective ratings or kinematic analyses is needed. 
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An ecological alternative to Bandura's social cognitive theory, which 

encompasses notions of coordination, control, and skill, is Scully and Newell's (1985) 

visual perception perspective. This approach emphasizes what information is taken from 

the display, rather than how the process of imitation occurs. It has been heavily 

influenced by Gibson's (1950,1979) theory of direct perception, and Johansson's (1971, 

1976) biological motion studies. Johansson showed that humans are capable of rapid 

and accurate discrimination of different types of locomotion from point-light displays, 

in which only points of light are visible at joint centers. Static displays, in contrast 

reveal little information to the observer. More recently, researchers using point-light 

stimuli have found that participants are able to perceive properties such as gender from 

gait (e. g., Mather & Murdoch, 1994), emotion in dance (e. g., Brownlow, Dixon, Egbert, 

& Radcliffe, 1997), affordances for action (Stoffregen, Gorday, Sheng, & Flynn, 1999), 

and hidden dynamic properties such as the mass of lifted objects (e. g., Runeson & 

Frykolm, 1981; Shim & Carlton, 1997). 

When perceiving moving point-light displays, or events, the visual system 

appears capable of `automatic visual processing' (Johansson, 1973). Cutting and Profitt 

(1982) showed in a series of experiments that the visual system can minimize common 

motion (the motion of all elements in a configuration relative to the observer) or relative 

motion (the motion of elements in a configuration relative to each other; for a review, 

see Bruce, Green, & Georgeson, 1996). Scully and Newell (1985) suggested that when 

observing a moving demonstration, the visual system perceives and automatically 

minimizes relative motion. When the learner attempts to re-enact the observed 

movement, this relative motion pattern acts to constrain the emergence of coordination 

through its informational or instructional properties (see Warren, 1990). Al-Abood, 
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Davids, and Bennett (2001) suggest that these constraints guide the search for motor 

solutions in the ̀ perceptual -motor workspace'. 

Scully and Newell's (1985) predictions that learners perceive, minimize, and 

become constrained by relative motion have rarely been directly tested. Some indirect 

evidence in support of the visual perception perspective has been provided by 

researchers who have compared groups that observe a model with no model (discovery 

learning) control groups. Schoenfelder-Zhodi (1992) found that participants who 

observed a model more closely matched the model's relative motion and outcomes 

(amplitude) in a ski simulator task than those left to discover the dynamics of the task 

without viewing a model. Similarly, Al-Abood et al. (2001) found that a model 

conveyed the relative motion pattern of an underarm dart throw more effectively than 

verbal guidance and discovery methods. Finally, Horn, Williams, and Scott (2002; 

Experiment 1) found that participants who observed a model perform a soccer chip 

showed more similarity to the model than a no-model control group. These effects were 

in terms of global movement parameters such as the number of approach steps, rather 

than the local relative motions within limbs. 

Runeson (1984) has suggested that the removal of structural information via 

point-light facilitates the perception and recognition of motion since it removes non- 

essential information, leaving relative motion salient. As such, one might anticipate 

superior perceptual performance in response to point-light rather than video stimuli. In 

support of this argument, Pellechia and Garrett (1997) found that physical therapists 

made more reliable assessment of lumbar stabilization from point-light rather than video 

displays. However, in learning studies, the point-light versus video comparison has 

yielded largely equivocal results. For example, Romack (1995) found that participants 

who observed a point-light model dribbling a basketball were less accurate in their 
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movement outcomes (number of consecutive bounces) and form (phasing between the 

ball and the hand) than a no-model control group or those participants viewing a video 

model. In this study, the participants were young children and the kinematic measure 

was phasing between the hand and ball. It is questionable whether the surface 

information of the ball afforded by video was matched in the point-light condition. 

Contrasting findings were obtained by Scully and Carnegie (1998) in the learning of a 

ballet sequence. Participants who observed a point-light model perform the sequence 

were more accurate in outcome measures such as landing position. The point-light 

group also more closely imitated the model's angular displacement and relative timing 

than participants watching a video model. 

Most recently, Horn et al. (2002) compared the effect of point-light and video 

demonstrations on learning a soccer chip. In this study, the way in which point-light and 

video models influenced the learning of a movement task that had both a complex form 

component and an objective target goal was examined. To determine what information 

in the demonstration was attended to, participants' eye movements were recorded during 

each observation. Three periods of acquisition were interspersed with three periods of 

observation. Learning was assessed in terms of outcome scores (absolute and variable 

error), and coordination at a local, intra-limb level (knee-hip and knee-ankle relative 

motion) and a global, participant-object level (number of steps in approach to the ball) 

levels. No differences were found between the video and point-light groups in outcomes 

or coordination. 

Based on the apparent equivalence in learning between video and point-light 

models, it could be argued that the relative motion, which is salient in point-light 

displays, is readily abstracted from structured video displays. However, some important 

factors that may potentially contribute to the equivocal findings between video and 
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point-light should first be given consideration. The foremost of these factors is the 

presence of intrinsic knowledge of results (KR) in most of these studies. The importance 

of intrinsic KR is widely recognized in the motor learning literature. For example, 

Swinnen (1996) noted that it promotes self-initiated error detection and correction, 

which according to Schmidt and Lee (1999), operates relative to a reference of 

correctness. 

Such a rich source of information may be the constraining source of information 

in a learning environment. In many experiments the task is to achieve an outcome while 

replicating the model's form (e. g., Al-Abood et al., 2001; Horn et al., 2002). In these 

experiments, participants may attempt to replicate the model's form immediately after 

viewing the demonstration. However, following the first trial intrinsic visual KR may 

become the primary information constraining subsequent attempts at the task (Horn et 

at., 2002). If the model is not the primary source of information, or it is not being used 

at all, then the comparison of point-light and video is undermined. The first aim of the 

following experiment was therefore to extend the Horn et al. (2002) study, by removing 

intrinsic visual and auditory feedback about the outcomes of the action. 

In order to understand the interaction between intrinsic visual KR and changes in 

movement patterns, it is necessary to quantify coordination. Furthermore, to assess the 

effects of observing a model, it is important to assess similarity in the relative motion 

patterns of the model and the learner. Al-Abood et al. (2001) have recognized that this 

requirement has often been overlooked in previous research (e. g., Magill & 

Schoenfelder-Zhodi, 1990; Southard & Higgins, 1987). If, as suggested by Scully and 

Newell (1985), it is relative motion that we are attuned to, then changes in relative 

motion to become more like the model should be observed. Furthermore, some 

researchers in observational learning have also neglected to measure variability in 
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movement patterns (e. g., Magill & Schoenfelder-Zhodi, 1996). If early learning 

predominantly involves the assembly of a new movement topology, we would also 

expect greater variability in movement patterns early in learning rather than later, when 

parameterizing the movement is prioritized. Consequently, in this study, we aimed to 

quantify coordination in terms of both variability and similarity to the model. 

Previous comparisons between point-light and video models have typically 

measured effectiveness by way of learning (i. e., long term retention). However, if point- 

light displays contain only salient topological information, we might anticipate that not 

only would they be more effective than video models, but also more efficient, as 

measured by a rate of acquisition or immediate effects. Since learning studies require 

many acquisition trials, differences in rate of acquisition, or immediate effects of 

viewing the model, are likely to be diluted. Such measures have not featured often in 

observational learning research. Two studies which have given some indication of the 

rate of changes are Williams (1989a) who used the number of trials to achieve a correct 

sequence, and Al-Abood et al., (2001) who examined relative motion patterns at the end 

of the first period of acquisition in an underarm dart throwing study. Therefore, in 

addition to measuring learning effects, this study aimed to examine the immediate 

impact of observing a model on relative motion by comparing changes in coordination 

from the pre-test to the first three trials of acquisition. 

The final aim of this study was to facilitate understanding of what information 

learners pick up from a demonstration by examining visual search behaviours. It was 

assumed that visual search provides a reliable index of the information used to guide 

action. For example, the visual search of experienced and inexperienced soccer players 

yields different scan paths in response to the same in-game video sequences. The 

experience of the experts is assumed to allow them to differentiate redundant areas from 
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those pertinent to upcoming events (e. g., Williams, Davids, & Burwitz, 1994). In 

observational learning specifically, the involvement of visual search is implied by 

evidence that errors in modeling arm movements increased when learners observed a 

demonstration using eye movements unlike their typical scan paths (Williams, 1989c). 

Given that visual search represents the shifting of attention to informative areas 

of the display, it follows that if intrinsic visual KR is the primary source of information 

for action, then the search for meaningful information from the model may be 

diminished. This may explain the findings of Horn et al. (2001) that only small 

differences existed in participants' visual search while observing video and point-light 

models. Those watching the point-light model were more selective only in terms of the 

number of areas of the model's body sampled, while both groups became more selective 

in their gaze orientation with successive trials and observation periods. In the present 

study, by limiting the participants' sources of information through the removal of 

intrinsic visual KR, differences in visual search between point-light and video groups 

should be accentuated. 

It was predicted that the salience of relative motion in point-light displays would 

lead participants observing the point-light model to learn the model's relative motion 

pattern more effectively than those observing the video model. It was further predicted 

that the point-light model would induce greater immediate changes in coordination than 

the video model. These differences were expected to be facilitated by more selective 

visual search patterns in response to the point-light rather than the video the model, as 

evidenced by lower search rate, fixations on fewer areas of the model's body and higher 

relative fixation times on lower body fixations. Finally, a control group was also 

examined. This group did not receive any demonstration, and was included to ensure 

that immediate and long-term changes in relative motion were not the result of 
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adaptations to a new skill, rather than as a result of watching the model. Both model 

groups were anticipated to show greater learning and immediate changes in coordination 

than the control group. 

Method 

Participants 

Twenty-four female students (M age = 22.5, SD = 4.7 years) provided informed 

consent prior to taking part in the study. The participants were matched on pre-test 

radial error scores and allocated to one of the point-light model, video model, or no 

model control groups (n = 8). All were considered novice at the task since they had 

never played soccer on a regular basis, and had not received formal instruction in the 

sport. Female participants were included to maximize task novelty as girls in the UK 

have, until recent years, had limited opportunity for involvement in soccer. All 

participants were right-side dominant. 

Task and Test Films 

The task was to chip a soccer ball over a barrier 0.35 m in height a distance of 

5.0 m. This movement was selected as the chip is not considered an intrinsic form of 

kicking, but rather is a soccer-specific action. A target area was constructed of 64 x 50 

cm2 squares; a red cross indicated the target center. The model was a collegiate level 

female soccer player (age = 18.6 yr). After a period of practice, the model was filmed in 

a sagittal plane using a video camera (Panasonic M-40) during the performance of a 

successful chip. The spatio-temporal positions of 18 retro-reflective markers were 

registered by four infrared cameras (Pro-Reflex, Qualisys) sampling at 240 Hz. These 

were positioned at the conventional anatomical landmarks of the model's major joint 

centers. These data formed a point-light display via the Q-Trac View Motion Viewer 
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(Beta 2.54; Qualisys). This image was then transformed in the program to match the 

video presentation and converted to VHS format. Since the same model and trial was 

employed to create both groups' test films, the kinematic data facilitated the production 

of a coordination or relative motion profile for both models. This profile served as the 

basis for comparison with participants' kinematic profiles across groups. 

Procedure and Design 

A summary of the experimental design employed is provided in Figure 3.1. 

Participants were matched on pre-test radial error scores and assigned to one of three 

equal ability groups: video model (VID); point light display model (PL); no 

demonstration (CON). 

The ball was placed on a switch embedded in the laboratory floor. As the 

participants made contact with the ball, the switch triggered a head mounted, polymer 

dispersed liquid crystal screen (Plato S-2,1987) so that vision of the ball's flight path 

and landing position was immediately occluded (< 3 ms). Participants received five 

acclimatization trials in which they kicked the ball to an experimenter located 2-3 m 

away. The participants wore earplugs to minimize auditory cues from the ball. 

Prior to the pre-test, retro-reflective markers were placed on the ball (size 5; 5 

psi) and on the participants' right side at the distal head of the 5th metatarsal (toe), the 

lateral malleolus (ankle), the lateral condyle of the femur (knee), the greater trochanter 

(hip), and the acromion process (shoulder). Finally, participants received standardized 

instructions informing them to approach the ball in a straight line, kick with their right 

foot, and keep their hands above the height of their hips. 

Five trials were performed in the pre-, post-, and retention tests, and 20 trials 

were performed in each acquisition period. Kinematic data were collected on each trial 

77 



rA 

ö^ 
O 

>I, 
cu 

Z 
r_ vi 

. ýG 

Ö Ici 

C) O 

(A 
w 

L. 
8. -O N vi 

ä ° 
on 

ä 
, 

r_ 
z o 

ý N 
o U .ý ö 

u 
" N 

0 9 ä 
O N [ 

" 
H 

Q 
U 

ihr 
ý 
Cý . 

Ü 
0 

C CE 

b - O 

O 
ý 
'L7 N v1 N C) 

A O C) C c Ö 
4) N 

"ý 

o 
ö M O 

< 10 t: O y 

O 3 

y 
'n vl 0 

Ö 
0 
an 

°ý `.. Z- C °v' y C 

ö 
,ý 

r_ 

rý 

vi 

ö 

o" 

ö 

r. Ici 

N. w 8. b N "° -º 
on , z ý N r_ o o U .ý ö 

" 
u 
" N 

0 9 ä 
ý N ý [ 

" 
H 

Q 
U 
2 ý 
i r Cý . f' 

Ü 

V 
CE 

b - O 

° N 
N N N 

ý p ý 

RS C 

V of 

"I ö M O 
o 

< 10 t: O y 

O 3 

N 

U) 0 

Ö 
0 
an 

C 5 
. -f 9. 

aý 

00 N 



of pre-, post- and retention tests, and on the first three trials of acquisition using four 

infrared cameras (Pro-Reflex; Qualisys) sampling at 240 Hz. 

Participants in the PL and VID groups were given standardized instructions prior 

to observing the model. These informed participants that after observing the model, they 

should continue to try to hit the target, by exactly replicating the model's form or style. 

All demonstrations were back-projected onto a screen (Cinefold; 3.0 mx3.5 m) 

placed 5m from the participants, such that the model subtended a realistic visual angle 

of 18°. In each observation period, participants were presented with five repetitions of 

the same trial of the model's action. Visual search behaviours were recorded using an 

Applied Science Technologies (ASL) 4000SU eye-movement registration system and a 

magnetic head tracker (Ascension Technologies, Flock of Birds 6DFOB). This 

combined system produced accuracy of ±1° of visual angle (for details of this system, 

see Horn et at., 2002; Williams & Davids, 1998). 

Participants in the demonstration groups also observed one repetition of the 

model following each of the first five trials of acquisition. This image was presented via 

a Sanyo Monitor. For participants in the CON group, an unrelated computer activity was 

performed for five minutes at times corresponding to the observation periods. 

Dependent measures and data analysis 

Outcome scores. On each trial, the x and y coordinates of the ball's landing 

position were measured from the center of the target (in centimeters). The scores were 

recorded to produce radial error (calculated as the hypotenuse of the triangle made from 

distances x and y). Means and standard deviations for radial error were then calculated 

for each test period. 
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Coordination. The data for five randomly selected participants in each group 

were used in kinematic analysis. The effects of viewing the models were assessed via 

changes in coordination in terms of immediate effects (from pre-test to the first three 

trials of acquisition) and learning effects (from pre-test to retention). These changes in 

coordination were further assessed at two levels of analysis. At a local level, intra-limb 

coordination was assessed in the kicking leg. This process required the start and end 

points of the analysis of the kick to be normalized due to large variation in approach to 

the ball. Analysis commenced at the initiation of knee flexion in preparation for the 

back swing of the kick and ended at the moment of maximal knee extension following 

contact with the ball. Data were smoothed with a recursive 4th order Butterworth filter 

with a cut-off frequency of 7 Hz. A linear interpolation was performed to normalize this 

period to 100 data points. 

Variability in intra-limb coordination was quantified using a modified version of 

Sidaway, Heise, and Schoenflder-Zhodi's (1995) normalized root mean squared error 

(NoRMS). The root mean squared error was calculated based on disparity of each trial 

from the mean trace. The score was normalized for number of trials and excursion. 

Since a larger movement pattern may exhibit more variability than a similar, smaller 

pattern, Sidaway et al. (1995) normalized for scale using total distance. However, we 

used an interpretation presented by Mullineux, Bartlett, and Bennett (2001), in which 

excursion reflects range of motion for the angles in the angle-angle plot. This is a more 

appropriate measure of excursion because in an angle-angle plot that has been 

normalized to 100 points, size is governed by range of motion. 

Since our data were not linear, cross-correlation was deemed inappropriate for 

comparing relative motion between the model and participants. Instead, we adapted the 

NoRMS technique to provide an index of similarity to the model. For each test period, 
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the participant's average trace was replaced by the model's trace. The resulting measure 

was termed normalized root mean squared difference (NORM-D). 

At a global, participant-object level, the number of steps in approach to the ball 

was recorded. Error scores were calculated based on the difference between the number 

of steps taken by the model, and those taken by the participant. 

Visual Search. The frames from each test film were converted to a bitmap image 

and analyzed using Fixplot 1.1 (ASL, 1998). This program superimposes a time-scaled 

scan path over the bitmap images. The scan path is integrated with the calibration frame 

used in the collection of eye data and indicates fixation locations and durations. 

Fixations were parameterized within Fixplot as stable periods of no eye movement 

lasting 100 ms or more. 

Three measures of visual search were assessed. Search Rate included the mean 

number of fixations and the mean fixation duration (in ms) per trial. Fixation Location 

reflected the relative amount of time spent fixating upon the upper body (including 

head/neck, shoulder, chest, trunk, arms, wrist/hand), lower body (hip, thigh, knee, calf 

ankle/foot), and non-bodily areas (ahead of the body, lagging the body, the ball/ball's 

trajectory). Finally, the Number of Areas of the Model Sampled assessed the mean 

number of areas fixated across trials. This variable was obtained by dividing the display 

into the following regions: head/face/shoulder; chest/trunk; arm (mid-segment); elbow; 

wrist/hand; hip; thigh; knee; calf/shin; right foot/ankle; left foot/ankle. 

Statistical Analysis 

All outcome and coordination variables were analyzed using separate factorial 

analyses of variance (ANOVA) in which viewing condition (VID, PL, CON) was the 

between-participants factor and experimental period (pre-test, acquisition 1, acquisition 

2, post-test, retention test with no KR, retention test with KR) was the within- 
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participants factor. For the visual search measures, both the observation period 

(observation 1 and 2) and trials (1 to 5) were within-participants factors. The Tukey 

HSD test was used to follow up significant effects as appropriate (alpha =p<. 05). 

Where violations of the assumption of sphericity for repeated measures ANOVA were 

observed, data were adjusted with a Greenhouse-Geisser epsilon factor. Meaningfulness 

was calculated using omega squared (Tolson, 1980). 

Results 

Outcome scores 

For radial error ANOVA revealed a main effect for test period, F(2.64,55.34) = 

3.96, p< . 05, W= . 44. Post hoc analysis showed that participants exhibited significantly 

lower error in the post-test (M = 126.69, SD = 54.40 cm) and retention test with KR (M 

= 133.24, SD = 57.63 cm), compared with the pre-test (M = 174.52, SD = 70.22 cm). 

However, in equivalent conditions when intrinsic KR was not present, participants did 

not learn to reduce error from the pre-test to the retention test. No main effects for group 

or Group x Test Period interactions were observed. Radial error scores are illustrated in 

Figure 3.2. 

300 

250 

200 
ö 
U 150 
ýa 
m 100 

501 

0- 

f\AD 

-o- PL 

Test Period 

Figure 3.2. mean radial error scores across test and acquisition periods 
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ANOVA also revealed a main effect for test period in the standard deviations of radial 

error, E (3.67,77.07) = 2.71, p< . 05, «2 = . 33. Participants exhibited less variability in 

the post-test (M_7- 61.66, SD = 30.23 cm) and retention test without KR (_M= 60.89, 

SD= 39.69 cm) than in the first acquisition period (M = 83.30, SD = 19.74 cm; see 

Figure 3.3). No long-term learning changes were present between the pre-test and 

retention test without KR, and no group or Group x Test Period interactions were 

indicated. 

Intra-limb. Figure 3.4 shows knee-hip angle-angle plots across each 

experimental condition for a single participant from the PL group. The bold trace 

represents the model's criterion movement pattern. Also presented with these qualitative 

data are the corresponding quantified values for similarity to the model (NoRM-D) and 

variability (NoRMS) across conditions. A sizeable improvement in similarity to the 

model's relative motion is apparent from the pre-test to first acquisition (lower NoRM- 
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Figure 3.3. Standard deviations of radial error scores across test and 
acquisition periods 
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D represents greater similarity). The participant showed greatest proximity to the model 

in the second acquisition period, and this improved proximity remained throughout the 

conditions. Variability also decreased from the pre-test to a minimum in the second 

acquisition period. 

Figure 3.5 shows angle-angle data across each condition for a participant from 

the VID group for knee-ankle relative motion. Once more a marked qualitative change 

in relative motion is shown from the pre-test to the first three trials of acquisition. This 

is reflected in a large change in NoRM-D for this period. Following this, the pattern 

became more stable for the remaining periods. 

The NoRM-D data were also analyzed for between and within group differences, 

as shown in Figure 3.6. A main effect for test period was present for knee-hip relative 

motion, F (5,60) = 8.22, p< . 00 1, W= . 41. Participants changed their relative motion to 

be more like the model from the pre-test to the first three trials of acquisition. This 

difference was maintained in all subsequent conditions. 

A Group x Test Period interaction was also observed, F(10,60) = 3.89, p< . 001, 

w' = . 33. Figure 3.6 suggests that changes between the pre-test and first three trials of 

acquisition primarily accounts for the interaction. The CON group increased NoRM-D 

scores to become less like the model (from M= 34.70, SD = 10.48% to M= 37.14, SD 

= 11.00%), the PL group moderately decreased their scores (from M= 44.82, SD = 

9.21% to M= 35.78, SD = 13.34%) , and the VID group substantially decreased their 

scores to more closely approximate the model's pattern (from N[ = 45.65, SD = 7.41 to 

M= 24.40, SD = 10.93%). 
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Figure 3.6. NoRM-D scores for knee-hip relative motion across test conditions 

A very similar pattern was observed for knee-ankle relative motion. There was a 

main effect for test period, F(2.22,26.58) = 8.49, p< . 001, w2 = . 43. Participants 

improved their proximity to the model from the pre-test to the first three trials of 

acquisition. This difference was maintained in all other test periods. A Group x Test 

Period interaction was also present, E(4.43,26.58) = 3.61, p< . 05, x2= . 30. As with 

knee-hip relative motion, the interaction was derived from different responses between 

the pre-test and first acquisition. Participants in the CON group did not change their 

NoRM-D scores (from M= 35.00, SD = 8.94% to M= 36.16, SD = 9.99%), the PL 

group moderately decreased their scores (from M= 45.55, SD = 9.34% to M= 36.94, 

SD = 12.38%), and the VID group substantially decreased their scores (from M= 46.30, 

SD = 8.23% to M= 26.59, SD=10.41%). 

For knee-hip and knee-ankle variability (measured by NoRMS), participants did 

not alter the variability in their movement patterns across test periods. There were also 

no group main effects or interactions. 
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Participant-object coordination. For error in steps taken in approach to the ball, 

ANOVA indicated a main effect for test period, F(2.85,34.14) = 3.63, p< . 05, co- = . 20. 

Participants reduced this error from the pre-test to the first acquisition period. This 

improvement was maintained in all periods except the retention test without KR. No 

differences were found between the other test periods. There was also a Group x Test 

Period interaction, F(5.69,34.14) = 2.51,12 < . 05, w2 = . 22. Figure 3.7 shows that 

participants in the CON group did not change the number of steps in their approach 
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Figure 3.7. Error in steps in approach to the ball across test conditions 

across test periods. Conversely, the PL (from M= . 76, SD = . 43 to M= . 48, SD = . 50) 

and VID (from M= . 84, SD = . 26 to M= . 28, SD = . 44) participants reduced their error 

by the first three trials of acquisition, and maintained this improvement across test 

periods. 

Visual Search 

Search Rate. A main effect for group was observed for mean number of fixations 

per trial, F (1,14) = 6.24,12 < . 05, w2 = . 43. The PL group had less fixations per trial (M 
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= 8.19, SD = 1.86) than the VID group (M = 9.29, SD = 1.81). For fixation duration, 

there was a Group x Observation Period interaction F(1,14) = 6.12,12 < . 05, w2 _ . 27. 

The participants viewing the PL model increased the mean duration of their fixations 

from the first observation period to the second. Conversely, those observing the video 

model decreased their fixation duration in the second observation period. The search 

rate data are summarized in Table 3.1. 

Table 3.1. The mean (± SD) number of fixations and fixation duration for the video and 
point-light model groups across observation periods 

Observation 1 Observation 2 

Group Number of Fixation Number of Fixation 
Fixations Duration (ms) Fixations Duration (ms) 

VID 9.0 278 9.6 260 
(1.8) (56.4) (1.8) (65.8) 

PL 8.4 289 8.0 338 
(1.9) (68.7) (1.9) (100.9) 

Number of areas sampled. A main effect for group was observed, F(1,14) = 6.90, 

p< . 05, w2 = . 42. The VID group sampled a greater number of areas of the model's 

body per trial (M = 4.46, SD = 1.40 areas) than the PL group (M = 3.78, SD = 1.19 

areas). Differences in the breadth of the search between participants observing the point- 

light and video models are illustrated graphically in Figure 3.8. Scan paths of a 

representative participant from the VIDEO group (A) and the PL group (B) are 

presented. The lines represent saccades between fixations, and the fixations in turn are 

indicated by circles. Duration of fixation is indicated by size of circle, where larger 
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circles indicate longer fixations. In response to the video model, Figure 3.8 clearly 

indicates a broad search originating at the hips (corresponding to previous bitmap 

images), moving to the head, returning to the hips and ending around the ankles. In 

response to the point-light model, search is confined to the area of the ankles 

throughout. 

(A) 

ý'ýý 
_ 

(B) 

Figure 3.8. Scan paths to indicate breadth of visual search for representative participants 
in the VIDEO (A) and PL (B) groups. 

Relative fixation time per location. No between or within group effects were 

observed for the relative temporal distribution of fixations per location, p> . 05. 

Discussion 

This study tested predictions arising from Scully and Newell's (1985) visual 

perception perspective, under conditions in which the model was the participants' 

constraining source of information. We predicted that participants observing video and 

point-light models would show immediate and permanent changes in relative motion to 
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closely imitate the model, while the control group would show no improved proximity. 

Also, we anticipated that the salience of relative motion in a point-light model would 

facilitate greater immediate and learning effects than observing a video model. This 

saliency was further expected to be portrayed in more selective visual search patterns in 

response to the point-light compared with the video model. 

As predicted, participants observing the point-light and video models changed 

their knee-hip and knee-ankle relative motion to become more like the model. The 

control group, which was included in the experiment to ensure that such changes in 

relative motion toward the model's patterns did not occur merely by practice, did not 

become more like the model from the pre-test to the retention test. These results support 

the findings of Al-Abood et al. (2001) who showed that participants observing a model 

learned the relative motion patterns more effectively than those in a no-model discovery 

learning group. It appears, as proposed by Cutting and Profitt (1982) and Scully and 

Newell (1985), that demonstrations convey the topological properties of relative motion 

to the learner. Given the limited alternative sources of information present with the 

removal of intrinsic KR, the learners appear to have adapted their relative motion to be 

more like the model, through the informational constraints it imposed. 

The salience of relative motion information in the demonstrations was such that 

the aforementioned changes appear to have occurred immediately after watching the 

model. From the pre-test to the first three trials of acquisition, participants observing the 

point-light and video models showed an improvement in relative motion toward the 

model's pattern. These changes were not present for the control group. Previous studies 

have measured rate of acquisition of relative motion by, for example, number of trials to 

achieve a correct movement sequence (Williams, 1989a), or by comparing pre-test 

scores with scores at the end of acquisition periods (e. g., Al-Abood et al., 2001; 
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Schoenfelder-Zhodi, 1992). Whilst our results support these studies, they also provide a 

clearer indication of how rapidly changes in relative motion occur. According to Scully 

and Newell (1985), learners may perceive information in the demonstration that cannot 

necessarily be realized immediately in attempts at re-enactment. In contrast, our results 

suggest that under constrained conditions, the learner can acquire the relative motion 

pattern within three trials. Since we used three trials rather than one, this precludes us 

from concluding that relative motion information can be acquired pre practice. 

However, this evidence provides some support for Bandura's (1969) concept of 

observational learning as ̀ no-trial learning'. 

Although our findings require corroboration, the implication that demonstrations 

convey relative motion with minimal requirement on practice may be considerable. 

Typically, ecological accounts of early learning emphasize the concepts of `search' and 

`assembly' of coordination (e. g., Newell , Kugler, van Emmerik, & Mcdonald, 1989; 

Handford, et al., 1997). In observational learning specifically, Al-Abood et al. (2001) 

describe the informational or instructional constraints imparted by the model's relative 

motion pattern, guiding the learner's `search for task-optimal solutions in the 

perceptual-motor workspace'. However, data from this study leads to the suggestion that 

when learning from a model, the process may be less transitory than suggested by Al- 

Abood and colleagues. If learners are capable of pre-assembling, or at least rapidly 

assembling the relative motion, early practice may concern refining an existing solution 

rather than broadly ̀ searching' for one per se. It could be that demonstration constrained 

the search to a localized, appropriate region of the perceptual-motor workspace. 

In ecological terms, the rapid changes from the pre-test to the first three trials of 

acquisition found in this study may be seen as ̀ soft assembly' of body segments. This 

infers that the changes are temporary and representative of an approximate solution to 
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the problem, which needs to be refined (Handford et al., 1997). However, since the 

participants viewing the models maintained their proximity to the model after the first 

trials of acquisition, whilst showing no significant fluctuation in the variability of their 

movement patterns across experimental periods, this does not support a concept of `soft 

assembly'. The comparison of results obtained when intrinsic visual KR was present 

(Horn et al., 2002; Experiment 1) with the results of this experiment also sheds light on 

the synergistic nature of coordination and control. In both these experiments, the task 

for participants observing a model was to achieve an outcome whilst employing a novel 

movement pattern. Therefore, there were demands on the learner in regard to both the 

organization of the movement topology (coordination) and its parameterization 

(control). 

Using Newell's (1985) concept of an embedded hierarchy, coordination and 

control are implicitly linked. Changes to one may therefore impact the other. With 

intrinsic visual KR present in Experiment 1, the demands on scaling the movement 

pattern appear to have been at the cost of imitating the movement pattern. That is, an 

improvement in performance outcomes was observed whilst movement form remained 

stable. In the present study, without intrinsic KR, there was a paucity of information that 

the learners could use to parameterize the movement. As a result, though participants 

showed some improvement during practice, they did not learn to reduce error in 

outcomes. However, as the demands on coordination were less ̀ shared' with control, 

greater changes in relative motion resulted. 

The immediate effects of observing the model were also present at a more global 

level of analysis. The participants in the control group did not alter the number of steps 

in their approach to the ball from the pre-test to the first period of acquisition. However, 

participants viewing the models altered the number of steps to more closely match the 
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model. There is some existing evidence for the perception of global properties of human 

form rather than local relations when biological motion is embedded in point-light 

displays (Bertenthal, 1993). Experiment 1 found that participants only learned to 

imitate global properties of the model's movements when visual intrinsic KR was 

present. It was concluded that participants may first form a global concept of the 

movement, whilst the refining of local relations in movement required extended 

acquisition. The present study, however, demonstrates that in the absence of other 

constraining sources of information (i. e., intrinsic KR) these local relations can be 

acquired without extended practice. The fact that improvements in the approach to the 

ball were not maintained in retention perhaps suggests that the acquisition of the 

model's global pattern occurs early, and diminishes with acquisition. 

The prediction that point-light demonstration would facilitate greater immediate 

and prolonged learning effects than video was not supported. There were no differences 

between these groups in any aspect of locally or globally defined relative motion, 

similar to the findings of Williams (1989a) and Experiment 1. Given the constraint to 

use the model as the primary source of information, these results allow us to more 

confidently suggest that the relative motion salient in point-light displays is easily 

abstracted from video. If video does indeed contain distracting structure as suggested by 

Runeson (1984), it does not appear to be reflected in action responses. 

The visual search patterns observed in this study imply somewhat more refined 

search in response to the point light model than the video model, supporting the 

evidence of Experiment 1. Participants observing a point-light model sampled fewer 

areas of the model's body than those who observed video. In addition, the participants 

observing the point-light model sampled these areas at a lower search rate. However, 

this study did not replicate two findings of Experiment 1. First, the two model groups 
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did not differ in the distribution of fixation time allotted to the upper and lower body. 

Second, participants did not refine their search from the first observation period to the 

second. The latter contrast may reflect the impact of removing KR. In the first 

experiment, the participants appeared to become increasingly dependent on visual 

intrinsic KR to guide their performance. Therefore, in later observations of the model, 

the search for information may have diminished. In the present study, without KR, the 

model remained the only relevant source of information to guide participants, and 

similar search patterns ensued. Overall, the differences in visual search between the 

groups were less than anticipated, considering the constraint imposed on participants to 

use the model. Furthermore, similarity between groups in both visual search and 

coordination changes precludes attributing any relative motion differences between 

these groups to variations in the manner in which participants sought information. 

In summary, this study indicates that video and point-light demonstrations can 

convey relative motion information that is rapidly adopted and learned by the observer. 

Moreover, it points to the impact of the learning environment on observational learning 

and the synergy of coordination and control. The decision to remove visual intrinsic KR 

was based on the findings of a previous study where it was proposed that KR 

constrained the choice of movement and diminished the influence of the model. The 

results of this experiment support this claim. In comparison to the findings of the first 

experiment, without intrinsic KR, participants did not learn to reduce error, but did learn 

the model's relative motion pattern. The presence of KR appears to encourage the 

parameterization of the movement. If coordination and control exist as a functional 

synergy, these changes in control from trial to trial brought about by KR may impact on 

changes in relative motion. This process may be perceived as the transitory ̀ search' for 

an optimal coordination function. However, in contrast, the immediate changes in 
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relative motion induced by the demonstration remained stable throughout the remaining 

test periods when intrinsic visual KR was not available. 
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Chapter 4 

Demonstration as a Scaler: 

On the Facilitative Role of Demonstration in Early Skill Acquisition 
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Abstract 

Previous research has failed to clarify the rate of changes in coordination in response to 

a model. This study examined trial-by-trial changes in intra-limb coordination in 

participants who observed a video model (MODEL), or practiced a task based only on 

initial verbal guidance (CONTROL). The task for 16 male novices (n = 8) was a back- 

handed throw that mimicked a reversed baseball pitch. Participants aimed at a large 

target, and threw for maximal velocity. Participants in the MODEL group were 

instructed to exactly replicate the model's movement pattern. It was predicted that 

participants in the MODEL group would demonstrate immediate changes in relative 

motion to more closely resemble the model's relative motion pattern. In opposition to 

the predictions of proponents of discovery learning, the MODEL group were anticipated 

to maintain this movement pattern throughout the 18 acquisition trials. In support of 

Scully and Newell (1985), after seeing the demonstration the MODEL group showed 

significant changes in knee-hip and elbow-shoulder relative motion in the first trials of 

acquisition. This change in proximity to the model (as measured by NoRM-D; Horn et 

al., 2003) was maintained across the acquisition period, and mirrored significant 

changes in ball velocity. These findings suggest that participants were not using an 

inappropriate and temporary movement solution as suggested by Handford et al. (1997). 

The CONTROL group showed no changes in coordination or velocity across 

acquisition. This study clarifies the role of demonstration as a rate scaler in early 

acquisition. 
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A review of observational learning literature suggests that demonstrations vary 

considerably in their effectiveness in facilitating skill acquisition. Traditional 

explanations for this incongruence centre around the type and novelty of the tasks 

employed (e. g., Gould & Roberts, 1982; Southard & Higgins, 1987), and the 

informational content of the demonstration, in terms of the conveyance of a strategy for 

action (e. g., Burwitz, 1975), the extent of redundancy (e. g., Newell, 1981), and load 

(Gould & Roberts, 1982). 

More recently, Horn and Williams (2003) have presented an alternative 

interpretation of the inconsistency of demonstration effects. They suggested that the use 

of traditional research designs coupled with our concept of the role of demonstration 

may have limited understanding of its benefits. The efficacy of demonstrations has 

typically been gauged in research designs by employing retention measures after long 

periods of acquisition. These designs may have two effects. First, they typically ignore 

the changes in motor performance that occur early in the skill acquisition process. 

Therefore, if demonstration proffers any advantage in early learning over discovery 

learning, or verbal guidance, this may go undetected. Second, this potential advantage 

may be lost or diminished over prolonged practice. For example, Martens, Burwitz, and 

Zuckerman (1976) found that observation of a model facilitated performance on a ball- 

roll-up task only in the early stages of learning 
, and that the task relevant information 

presented by a model in early learning could be also be acquired by a period of physical 

practice. 

Horn and Williams (2003) raised an important question in the skill acquisition 

process: is it significant that demonstration may act as rate enhancer, imparting 

immediate effects in acquisition if long-term benefits are not apparent? Horn and 

Williams (2003) state that although it could be argued that long-term changes are the 
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benchmark for skill acquisition, there are important implications for accelerated early 

acquisition. Practice sessions rarely mimic learning experiments. Coaches and teachers 

of motor skills use feedback, verbal guidance, and many different types of practice (see 

Borrie & Knowles, 2003; Williams, Horn, & Hodges, 2003). In realistic learning 

environments, the efficiency of demonstration may put learners in a position to receive 

further augmented information or coaching to guide skill acquisition earlier than those 

not receiving demonstration (Horn & Williams, 2003). Moreover, in realistic learning 

environments, the learner may have only a limited time to practice a new skill before its 

context is changed or advanced. Those whose skill acquisition is more efficient in this 

short time may be better prepared for such changes. 

In theoretical terms, the role of demonstration in accelerating the rate of skill 

acquisition is certainly not a novel concept. Cognitive accounts of observational 

learning have emphasized the formation of a blueprint (Sheffield, 1961) or cognitive 

representation (Bandura, 1969) to guide action. In the absence of higher cognitive 

processes, Bandura (1965) considered that in early development, modelling is confined 

to instantaneous imitation. This process has been shown to be present by the twelfth day 

of human life (e. g., Meltzoff & Moore, 1977), and suggests that the ability to 

immediately organize new behaviour in response to the actions of others is a 

fundamental human ability. 

In older humans with more advanced cognitive development, it has been 

proposed that demonstration accelerates acquisition by conveying structure and the 

underlying rules of behaviour (Carroll & Bandura, 1985). This approach is consistent 

with Fitts and Posner's (1967) stages of skill learning, which views early learning as the 

cognitive stage. At this time, the learner is preoccupied with understanding the 

characteristics and requirements of the task (Williams, Horn, & Hodges, 2003). Bandura 
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(1965) considered that demonstration held such potency that behaviour could be 

observed on one occasion, and re-enacted later, in the absence of a model. Bandura's 

(1965) concept of `no-trial learning' suggests that observation of a demonstration may 

essentially replace physical practice. 

Ecological and dynamic accounts of early learning perhaps view the role of 

demonstration as a rate enhancer in early acquisition less optimistically. Scully and 

Newell's (1985) visual perception perspective suggests that observers pick up the 

model's relative motion, and in later re-enactment, become constrained by the 

informational or instructional constraints it imparts (see Warren, 1990; Newell & 

McDonald, 1992). Scully and Newell (1985) do not directly suggest that demonstration 

acts to increase the rate of skill acquisition. Instead they predict that the model's effects 

are greatest in early learning, evoking Newell's (1985) hierarchical view of 

coordination, control, and skill. In Newell's account, early learning emphasizes the 

assembly of a new movement topology (i. e., coordination). 

Scully and Newell (1985) suggest that in early learning the perception of the 

model facilitates the pick up of relative motion between body parts. Later in the learning 

process, when the parameterization of the movement pattern dominates (i. e., control), 

the influence of the model is assumed to subside. Scully and Newell's (1985) limited 

confidence in demonstration as an immediate impact on coordination is reflected in a 

caveat stating that the information picked up from a model may not be immediately 

realized in attempts to imitate the movement. 

Dynamic accounts of early learning have promoted the idea of searching for task 

solutions in the perceptual-motor workspace. First used by Thelen (1995), this is a 

metaphorical depiction of the emergence of coordination as a dynamical system flows 

through the potential range of degrees of freedom by which it can be configured 
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(Williams, Davids, & Williams, 1999). Al-Abood, Davids, and Bennett (2001) suggest 

that observation of a demonstration guides the learner's search for optimal task- 

solutions in the workspace. The dynamic accounts of early learning have emphasized 

collapse and rebuilding of unstable regions of behaviour, and although abrupt changes 

in behaviour do occur (i. e., switches from one attractor state to another), this represents 

`soft assembly' of movement patterns. These are considered to be temporary and 

inaccurate solutions to the movement problem (Handford, Davids, Bennett, & Button, 

1997). 

Research evidence for accelerated changes in motor performance after 

observation of a model has not been forthcoming, due to the experimental designs used. 

To ascertain the coordinative effect of a model in early acquisition, a design has four 

requirements. First, it must measure changes on a trial-by-trial basis. It should also 

measure movement kinematics to appropriately compare the kinematics of the model 

and learner. Third, it requires a comparison between pre-test (pre-observation) and 

acquisition (post-observation) data. Finally, it requires a comparison with a no 

demonstration control group. 

Considering the first requirement, many studies provide a single mean score to 

represent the first block of acquisition (e. g., Blandin, Proteau, & Alain, 1994; Herbert & 

Landin, 1994, Weeks & Anderson, 2000; Wuyts & Buekers, 1995). This allows little 

inference of either the immediate effect of the model, the rate of acquisition, or 

variability in early acquisition. 

It has been argued that the preference for measuring outcome data has led to 

indifference to the trial-by-trial changes in performance that reflect the search for 

solutions in learning (Newell & McDonald, 1991). Of the studies showing trial-by-trial 

changes in performance, most have measured outcome data or ratings of form. For 
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example, Pollock and Lee (1992) observed changes in performance on a computer 

tracking task over 15 trials. Similarly, Doody, Bird, and Ross (1985) tracked trial-by- 

trial changes in a barrier knock-down task. 

McCullagh and Meyer (1997) assessed trial-by-trial changes in a free-weight 

squat lift using outcome and perceived form scores. Participants' observing a learning 

model with and without feedback, a correct model with feedback, and those just 

practicing with feedback all showed improvement across trials 1-4 in acquisition. The 

performance of participants watching a model was not superior to those just practicing. 

Gray, Neisser, Shapiro, and Kouns (1991) also assessed learning of a ballet 

sequence using ratings of form over five acquisition trials. Participants observing a 

static or moving model improved across acquisition in local measures such as arm and 

leg position and global measures such as coordination, balance, and movement flow. 

The authors also assessed immediate effects of viewing condition. Analysis of the first 

acquisition trial showed significantly higher ratings for movement flow and hesitation 

for those observing a dynamic video model compared with those observing static 

images. Importantly, however, neither Gray et al. (1991) nor McCullagh and Meyer 

(1997) used pre-observation tests to allow comparison with post-observation early 

acquisition trials. 

It is difficult to assess the predictions of the visual perception perspective 

without directly measuring kinematics. However, few studies have indicated rate of 

acquisition or immediate effects of the model on measured movement kinematics. 

Williams (1989) used the number of trials to reach the correct sequence of a dart- 

throwing movement. Williams and Thompson (1994) found immediate changes in joint 

angles in performance of a leg lift after observation of a model. The model group were 

also found to maintain the new coordination in a delayed retention test. In contrast, 

103 



participants in a no-model control group did not change in acquisition or retention. 

Scully and Carnegie (1998) found that for a ballet sequence, little change in measures 

such as relative timing and movement form occurred over ten acquisition trials. The 

authors concluded that observers pick up and reproduce the movement pattern almost 

instantaneously, and presumably maintain those changes. However, pre-test to early 

acquisition trial changes are not reported to corroborate this stance. 

Three recent studies have attempted to quantify participants' coordination 

relative to the model. Al-Abood, Davids, Bennett, Ashford, and Martinez Marin (2001) 

examined changes in relative motion of the upper and lower arm segments in an 

underarm dart throw. Data were assessed in acquisition over ten blocks of ten trials. No 

trial period effect was found, and with no pre-observation measures of coordination, the 

immediacy of model effects on coordination were not shown. The same applies to a 

further study employing the same task by Al-Abood, Davids, and Bennett (2001). 

However, this study did reveal that participants became more like the model across 

acquisition. 

Horn, Williams, Scott, and Hodges (2003; Experiment 2) assessed changes in 

knee-hip and knee-ankle coordination relative to a model in a soccer-chipping task. 

Kinematic data were collected in batches of three trials in a pre-test, in the first three 

trials of acquisition (immediately after observation of the model), at the start of a second 

acquisition period, and in post- and retention-tests. Coordination was quantified for 

variability using normalized root mean squared error (NoRMS; Sidaway, Heise, & 

Schoenfelder-Zhodi, 1995) and for proximity to the model using an adapted version of 

NoRMS (NoRM-D; Horn et al., 2003). Participants observing a point-light or video 

model changed their relative motion to become more like the model from the pre-test to 

the first three acquisition trials, and then showed little change thereafter, with lower 
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variability. In contrast, a no-model control group showed less proximity throughout 

acquisition, and did not change across test periods. 

Horn et al. (2003) questioned ecological explanations of early skill acquisition. 

They argued that if a demonstration constrains learners to rapidly assemble a new 

relative motion pattern which in turn stays consistent in its proximity to the model, then 

early learning may not be about a broad search for task solutions as suggested by 

Newell et al. (1989) and Handford et al. (1999). Instead, the constraints of the model 

appear to act as a rate enhancer or scaler (see Haywood & Getchell, 2001), allowing the 

learner to refine rather than broadly search. 

The study of Horn et al. (2003) is currently the closest to meeting the 

aforementioned requirements for expounding the role of demonstration in early skill 

acquisition. This study aims to extend upon their research in two key ways. First, their 

study constrained participants to use the model as a dominant source of information by 

removing intrinsic visual knowledge of results at contact with the ball. Based on 

comparison with a previous study that did allow intrinsic visual KR and saw relatively 

small coordination changes, removing intrinsic KR may have afforded participants with 

faster and larger coordinative changes. This study aims to measure early acquisition 

changes in a task that allows intrinsic KR, but has low accuracy constraints. Second, 

Horn et al. (2003) used intermittent clusters of kinematic trials, rather than assessing 

coordination on all trials. This meant that they were able to measure immediate changes 

in coordination after viewing a model, but were unable to gain a complete representation 

of the stability in movements. In this study this limitation is overcome by collecting and 

quantifying kinematic data on all trials. 

It was predicted that the demonstration group would show a significant change 

to more closely approximate the model's relative motion patterns from the pre-test to 
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the first three trials of acquisition. After this immediate change, it was predicted that the 

participants in the demonstration group would not change their proximity to the model 

for remainder of acquisition trials. The participants in the model group were also 

predicted to show this pattern for variability. In contrast, the no-model control group 

was predicted to show no change in proximity between the pre-test and first three trials 

of acquisition, but were expected to show an overall effect of practice, resulting in a 

difference between coordination from the pre-test to the last trials of acquisition. 

Variability was anticipated to remain higher in acquisition for the control group than the 

model group, reflecting the participants' search for an optimal movement solution. 

Finally, for movement outcomes it was predicted that since the model demonstrated the 

optimal movement pattern, the model group would show a significant change from pre- 

test to early acquisition, and significantly higher velocity in acquisition than the no- 

model control group. 

Method 

Participants 

Sixteen male participants (M age = 31.93, SD = 10.20 yrs. ) provided informed 

consent to take part in the experiment. Participants were randomly allocated to a 

MODEL or CONTROL group (n = 8). All participants were considered novice at the 

task and were right-side dominant. 

Task and Test Films 

The task was to throw a ball to a 1.7 m2 vertical target placed 5.0 m away. The 

target was unmarked. The model was a 28-year-old male. After several days of practice, 

a throw was conceived that would be novel to the participants. The throw was 

considered a reversed, backhand baseball pitch. In baseball, for a right-handed thrower, 
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the left knee and hip flex to bring the left leg across the body and the left shoulder points 

to the target. In this task, for a right-handed thrower, the ipsilateral foot crosses the body 

with hip and knee flexion, pointing the right shoulder to the target. This puts the thrower 

in position to throw backhand. The arm is then pulled through with the elbow leading 

toward the target. As the right arm comes through, the back of the hand faces the target 

until release. 

Several other factors indicate that this technique mimics a reversed mature 

baseball pitch. As with a baseball pitch, the thrower takes a long forward step to 

increase the distance over which force can be applied. In the current task the long step 

was with the ipsilateral foot. The thrower also utilises the open kinetic chain. The 

forearm segment lags to reach peak velocity after the upper arm segment, when the 

trunk has rotated forward. The trunk in turn shows differentiated rotation, with the lower 

portion rotating forward before the upper trunk. This combination of differentiated 

rotation and arm lag allows high velocity to be imparted on the ball, and after comparing 

with other techniques (e. g., backhand darts-throw) this technique was found to be 

optimal. 

During a successful throw, the model was filmed in a sagittal plane using a video 

camera (Panasonic M-40). The spatio-temporal positions of retro-reflective markers 

were simultaneously registered using 4-infra-red cameras (Pro-Reflex, Qualisys) 

sampling at 240 Hz. The video of the model's throw was edited and repeated on tape 

eight times. 

Procedure and Design 

On arrival for testing participants were assigned to the MODEL or CONTROL 

group. The difference between the treatments was that participants in the CONTROL 

group performed all trials without observing a demonstration. Participants in the 
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MODEL group observed five demonstrations of the model immediately after the pre- 

test, and one demonstration after each of the first five trials of acquisition. The video of 

the model was projected as a life-size image onto a 3.5 in x 3.0 m screen (Cinefold). 

Both groups performed all trials without augmented feedback. 

Before the pre-test, retro-reflective markers were placed on each participant's 

right side at the acromion process (shoulder), lateral epicondyle (elbow), ulnar process 

(wrist), greater trochanter (hip), lateral condyle of the femur (knee), and the lateral 

malleolus (ankle). Two markers were also placed on the ball to provide a reference point 

for ball release. 

Prior to the pre-test the participants were also given standardized instructions 

and were positioned with their feet on two floor markings, 35 cm apart. They were told 

that the task was to throw the ball for maximum velocity, ensuring that the ball hit the 

target. They were then given additional task constraints. First, to ensure that an intrinsic 

throwing pattern could not be used, they were told that the back of the hand should face 

the target until ball release. Second, they were told that they were free to move how they 

wanted as long as they did not step over the line placed 1m in front of them. Third, to 

prevent underarm throwing, the participants were told that the ball should be released 

from a position in which the wrist was located above the height of the elbow. 

After three pre-test trials, the MODEL group observed five repetitions of the 

demonstration. Prior to this they were informed that after seeing the model, they should 

continue to throw at the target for maximal velocity, while trying to exactly replicate the 

model's form in all subsequent trials. Participants in both groups performed 18 

acquisition trials. This number was selected to mimic typical practice ecologies. Normal 

practice environments for maximal tasks are unlikely to exceed this number in a single 

session. Also, a greater number of trials may produce changes in technique as a result of 
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fatigue, which could inappropriately be charged to instability in movement form. 

Outcome and kinematic data were collected on all trials. 

Dependent Measures and Data Analysis 

Outcome scores. Ball velocity was assessed with a JUGS Doppler radar gun 

(Decatur Electronics). This measured ball velocities from 32 to 320 kph via a 

microwave transmitter. Accuracy was tested on each day of testing using a calibration 

fork, vibrating at 110.6 kph. Across all test days, maximum error did not exceed 0.4 

kph. This was within the acceptable range of 1.5 kph of error. During each trial, an 

experimenter stood with the radar gun next to the target to minimize the angle between 

ball approach and radar direction. This minimized radar error and allowed the gun to 

pick up the ball throughout its flight until just before contact with the target. The 

experimenter also kept track of the number of times the thrower missed the target. 

Coordination. The data from 5 randomly selected participants in each group 

were used for a kinematic analysis. The effect of viewing a model on the immediacy and 

stability of changes in coordination was assessed at a local, intra-limb level of analysis. 

At a local, intra-limb level, coordination was assessed as relative motion between the 

right shoulder and elbow, and the right knee and hip. For the elbow-shoulder relative 

motion, the start and end points of the analysis were normalized to start at the initiation 

of shoulder flexion, and end after ball release at maximal elbow extension. For knee-hip 

relative motion, normalization also ended at maximal elbow extension, since this 

represented the end of the meaningful portion of movement. However, to account for 

differences in movement technique, knee-hip motion was normalized to start at the 

initiation of knee flexion. Data were smoothed with a recursive 4`h order Butterworth 

filter with a cut-off frequency of 7 Hz. A linear interpolation was then performed on the 

qualitatively normalized, filtered data, to quantitatively normalize this period to 100 

109 



data points. This process did not alter the relative motion pattern as indicated in angle- 

angle plots. 

Intra-limb coordination was quantified in two ways. First, variability was 

assessed using a modified version of Sidaway, Heise, and Schoenfelder-Zhodi's (1995) 

normalized root mean square error (NoRMS). In the original version of this technique, 

root mean squared error is calculated based on disparity of each trial with the mean trace 

pattern. Then, the data is normalized for number of trials and the excursion of the 

pattern. The reason for this is that a larger movement pattern may exhibit greater 

variability than an equivalent, smaller plot. An interpretation of the NoRMS technique 

presented by Mullineux, Bartlett, and Bennett (2001) used range of motion as the 

measure of excursion. Horn et al. (2003) considered this to be a more appropriate 

measure of excursion, since for a plot normalized to 100 data points, its size is a product 

of its range of motion. 

For proximity to the model's relative motion pattern, we used an adapted version 

of NoRMS in which the participant's mean trace is replaced by the model's trace. The 

resulting measure was termed normalized root mean squared difference (NORM-D) by 

Horn et al. (2003). 

Statistical Analysis 

All outcome and coordination variables were analyzed using separate factorial 

analyses of variance (ANOVA) in which group (MODEL; CONTROL) was the 

between-participants factor and experimental test period was the within-participants 

factor (pre-test, Al-3, A4-6, A7-9, A10-12, A13-15, A16-18 or post-test). Trials were 

not used as the within-participants factor since NoRM-D and NoRMS data require a 

cluster of trials for the analysis. Therefore, each trial represented by these measures 
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would contain data from two other trials (this is similar in principle to a moving 

average) and is best illustrated graphically. 

Significant effects were followed up where appropriate using the Tukey HSD 

(alpha =p< . 05). Where violations of the assumption of sphericity for repeated 

measures ANOVA were observed, data were adjusted with a Greenhouse-Geisser 

epsilon factor. Meaningfulness was calculated using omega squared (Tolson, 1980). 

Results 

Velocity/outcomes 

For velocity, ANOVA revealed a main effect for test period, E (2.86,39.98) _ 

5.95, p< . 05, o)-= . 47. Post hoc analysis indicated that participants showed a significant 

increase in velocity from the pre-test N[ = 37.17, SD = 5.04 kph) to all subsequent 

acquisition periods (A 1-3: M= 40.71, SD = 5.33; A4-6: M= 41.35, SD = 6.01; A7-9: 

M=42.02, SD= 4.61; A10-12: M=42.09, SD= 4.61; A13-15: M=42.75, SD= 4.59; 

A16-18: M= 42.38, SD = 5.16 kph). A significant group effect was also present, F (1, 

14) = 7.23, p< . 05, «2 = . 10. The model group illustrated higher velocity (_M = 43.51, 

SD = 4.87 kph) than the CONTROL group (M = 38.90, SD = 4.69 kph). ANOVA also 

presented a Group x Test Period interaction, F (2.85,39.98) = 2.95, p< . 05, W= . 18. 

Figure 4.1 illustrates that differential changes in velocity from the pre-test to the first 

three trials of acquisition primarily account for this effect. The CONTROL group shows 

minimal change in velocity over this period, followed by a trend for a slight overall 

increase in velocity across remaining test periods. The MODEL group shows a large 

increase in velocity from the pre-test to first three acquisition trials and little change in 

velocity thereafter. 
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Figure 4.1. Ball velocity values for both groups across acquisition 

Proximity to Model's Relative Motion - NoRM-D. 

Elbow-shoulder relative motion. Figures 4.2 and 4.3 show elbow-shoulder 

relative motion plots across all test conditions for a single participant from the MODEL 

group and CONTROL group respectively. In Figure 4.2, the participant's three trials per 

period are shown against the model's movement pattern (dark trace). It shows a clear 

change in elbow-shoulder relative motion to more closely resemble the model's pattern 

from the pre-test to first period of acquisition. This pattern then remains stable 

throughout the remaining practice trials. For the CONTROL group participant in Figure 

4.3, there is little change across trials and no apparent increase in proximity to the 

model's preferred relative motion pattern. 

For proximity to the model's elbow-shoulder relative motion, ANOVA revealed 

a significant main effect for group, F (1,8) = 11.66, p< . 05, W= . 22. The MODEL 

group illustrated elbow-shoulder relative motion that was closer to the model's relative 

motion pattern, as indicated by lower NoRM-D scores (M = 27.10 , SD = 6.49 %) than 

the CONTROL group (M = 39.59, SD = 8.33 %). Figure 4.4 suggests that observation 
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of the model accounts for this effect. Pre-test scores for both groups are shown to be 

close in value (MODEL M= 36.74, SD = 8.58; CONTROL M= 40.58, SD = 7.88 %), 

but become markedly different in the first three trials of acquisition (MODEL M= 

25.61, SD = 6.50; CONTROL M= 41.57, SD = 10.49 %). A test period effect was also 

present for elbow-shoulder NoRM-D, F (6,48) = 4.37, p< . 05, w= =. 42. Participants as 

a whole decreased their NoRM-D scores from the pre-test (M = 38.66, SD = 8.03 %) to 

more closely approximate the model's RM pattern in acquisition periods A7-9 (M = 

32.20, SD = 9.46 %), A12-15 (M = 29.75, SD = 8.00), and A16-18 (M = 29.97, SD = 

8.37%). 

Knee-hip relative motion. Figures 4.5 and 4.6 show the knee-hip relative motion 

patterns of one member of the MODEL and CONTROL groups respectively across each 

period. Once again the participant observing the model (Figure 4.5) shows a substantial 

change in relative motion from pre-test to the first three trials of acquisition. This 

pattern is then refined in subsequent periods, but changes relatively little. The 

participant performing the throws without observation of the model appears to change 

neither range of motion (indicated by the size of the plots) nor relative motion (indicated 

by shape) across acquisition (Figure 4.6). 

ANOVA for proximity to the model's knee-hip relative motion, as measured by 

NoRM- D, indicated a main effect for Group observed, F (1,8) = 37.15, E < . 05, &_ 

. 18. The MODEL group showed greater proximity to the model's knee-hip relative 

motion pattern (M = 35.41, SD= 12.69 %) than the CONTROL group (M= 55.55, SD = 

5.50 %). A main effect for test period was also present, F (2.86,22.85), = 14.25, E < . 05, 

w2 = . 40. Participants lowered their NoRM-D scores to more closely imitate the model 

from the pre-test (M = 57.17, SD = 9.87 %) to all subsequent acquisition periods (A1-3: 

M= 41.00, SD = 13.53; A4-6: M= 40.02, SD = 12.00; A7-9: M= 41.24, SD = 11.04; 
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A10-12: M= 42.78, SD = 12.33; A13-15: M= 40.32, SD = 11.40; A16-18: M= 41.84, 

SD = 12.33 %). 

A Group x Test Period interaction was also present, E (2.86,22.85), = 12.93, P< 

. 05, w2 = . 36. Figure 4.7 shows group data for knee-hip NoRM-D across test periods. It 

suggests that the response of the MODEL group to the demonstration accounts for both 

the group effect and the interaction. The CONTROL group showed almost no change 

across test periods, and almost identical scores in the pre-test (M = 52.13, SD = 4.43 

%) and the last period of acquisition (M = 54.00, SD = 5.20 %). The MODEL group 

shows a large change from the pre-test (M = 62.21, SD = 11.66 %) to the first three 

trials of acquisition (M = 30.29, SD = 8.75 %), and then maintains a similar level of 

proximity until the end of acquisition (M = 30.93, SD = 4.07 %). 

Variability in Relative Motion - NoRMS 

Elbow-shoulder. For elbow-shoulder relative motion, there were no main effects or 

interactions. 

Knee-hip. ANOVA revealed a significant main effect for time, F (1.88,15.02) = 6.28,12 

< . 05, W= . 72. Post-hoc analysis indicated that participants reduced variability in all 

periods after the pre-test. This pattern is illustrated in Figure 4.8. No main effect for 

group or Group x Test Period interaction was present. Figure 4.8 however indicates that 

variability fell substantially for the MODEL group from the pre-test to first acquisition 

period. Throughout acquisition, variability appears slightly lower for the MODEL group 

than the CONTROL group. Interestingly, the standard deviations of NoRMS (i. e., the 

extent of variability in variability) are markedly lower for the MODEL group than 

CONTROL group throughout acquisition. 
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Figure 4.7. Knee-hip NoRM-D (%) scores for the MODEL group (A). CONTROL 
group (B) and group averages (C) across acquisition 
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Figure 4.8. Knee-hip NoRMS across the acquisition period 

Discussion 

The adage ̀a picture paints a thousand words' has oftentimes been applied to 

observational learning to illustrate the efficiency with which demonstration conveys 

information for action. Yet paradoxically, research designs have not thoroughly 

investigated the coordinative changes that occur in response to demonstration in early 

acquisition. This paper aimed to address this limitation by comparing the changes in 

relative motion in the first 18 trials of acquisition in participants observing a 

demonstration and those learning through unguided discovery. 

It was predicted that those observing a model would show immediate changes in 

relative motion to more closely imitate the model's coordination. These changes were 

predicted to remain throughout acquisition, with only small refinements ensuing. The 

adoption of the model's movement pattern was also anticipated to facilitate faster ball 

velocity for the MODEL than the CONTROL group. The CONTROL group was 
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predicted to show greater variability in acquisition, lower ball velocity, and only small 

changes in coordination relative to the model between the pre-test and the end of 

practice. 

Support was found for the first hypothesis. For both knee-hip and elbow- 

shoulder relative motion, the MODEL group became more like the model from the pre- 

test to the first three trials of acquisition. The CONTROL group showed no change 

across this time. Given that the participants in the MODEL group were not superior in 

their coordination in the pre-test, this finding directly indicates the role of the model in 

changing coordination. 

The results corroborate the findings of previous studies that report immediate 

coordination changes from kinematic measures (e. g., Horn et al., 2003; Scully & 

Carnegie, 1998; Williams 1989; Williams & Thompson, 1994). However, the data 

provide a more detailed picture through trial-to-trial measures. In particular, the data 

advances the findings of Horn et al. (2003; Experiment 2). Their study also found 

immediate changes in coordination for those observing a soccer chipping task, but data 

were not collected on all trials. Also, their participants were constrained to use the 

model in the absence of intrinsic visual KR. As such they it remained unclear whether 

such immediate changes were possible when intrinsic visual KR was available. The 

present study clearly illustrates that even with intrinsic information available, 

coordination changes can be immediate. 

The changes in relative motion present in the MODEL group supports the 

ecological view that observers of a demonstration perceive, minimize, and become 

constrained by the topology of the model's relative motion (Scully & Newell, 1985). 

The data add to previous evidence for relative motion changes in observational learning 

(Al-Abood et al., 2001a, b; Horn et al., 2003; Schoenfelder-Zhodi, 1992). The specific 
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role of those constraints has received only modest research attention, and it is suggested 

to influence behaviour through informational (Warren, 1990) and instructional (Newell 

& McDonald, 1992) properties. The current data suggest that it specifically acts to as a 

rate enhancer or scaler. In motor behaviour, rate controllers have typically been 

confined to developmental changes in, for example, the onset of walking (e. g., Thelen, 

1986). It appears to be an equally appropriate concept for skill acquisition. 

This role of demonstration as a scaler in early acquisition has theoretical and 

practical implications. Using Newell's (1985) embedded hierarchy of coordination, 

control, and skill, the dominant function in the synergy between coordination and 

control in early learning is assumed to be coordination. Control in turn is assumed to 

become dominant once the topological relations between body parts are assembled. It 

appears logical that by accelerating the acquisition of the new topology through 

demonstration, the learner is able to explore the dynamics of the task earlier than those 

acquiring skill by discovery or guided discovery methods (e. g., Mosston & Ashworth, 

1986). This process facilitates the parameterization of a technically appropriate 

movement pattern with less practice trials. In the current experiment the relative motion 

at the knee-hip and elbow-shoulder shown by the CONTROL group after 18 acquisition 

trials was not close to the levels achieved on the first three acquisition trials for the 

MODEL group. 

Support was also found for the second hypothesis. In addition to rapidly 

acquiring the model's relative motion, participants in the MODEL group sustained that 

improvement over the entire acquisition period. This finding suggests that the 

constraints imposed by the model were enduring. Although only 18 acquisition trials 

were employed to minimize the effects of fatigue on relative motion, the data is 

supported by the research of Horn et at. (2003) with soccer chipping. Their study found 
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that proximity to the model did not change from the first three trials to the end of 40 

acquisition trials, and remained stable after a 48-hour retention period. 

Collectively, these studies provide evidence against advocates of discovery 

learning, who propose that interventions in early learning produce only temporary, 

emergency solutions to the movement problem (e. g., Handford et at., 1997). They 

further argued that since the `soft assembled' coordinative structures acquired may be 

inappropriate, they may delay the parameterisation of the movement. This argument is 

refuted on two grounds. First, the data suggest that the changes were not temporary but 

long-term adaptations to the task constraints. Second, if the model portrays the 

appropriate movement topology, parameterization is attained earlier, not later. The 

current data suggest that the model's coordination was both optimal and directly linked 

to successful outcomes. In support of this hypothesis, the MODEL group demonstrated 

faster ball velocity than the CONTROL group, and demonstrated velocity changes in 

tandem with coordination changes: large changes in relative motion from the pre-test to 

the first trials of acquisition were accompanied by greatest increases in velocity. Stable 

relative motion patterns were associated with only small variations in velocity. 

In opposition to discovery methods of learning, over the course of acquisition 

the participants in the discovery group neither increased ball velocity nor changed their 

relative motion in reference to the model's pattern. This corroborates the findings of Al- 

Abood et al. (2001a) for an underarm dart throw, and Horn et al. (2003) for a soccer 

chip. Conversely, Schoenfelder-Zhodi (1992) found that discovery learners' relative 

motion did become more like the model after five days of practice (albeit at a slower 

rate than the model group). However, this finding has been explained in terms of the 

high level of constraint imposed by the apparatus (Al-Abood et al., 2001 a). 
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Finally, Horn et at. (2003) alleged that if observing a model immediately 

changes a learner's relative motion, then early acquisition becomes a time of refinement, 

rather than the broad search for movement solutions as suggested by Newell and 

McDonald (1991). Although the proximity data for the MODEL group supports the 

concept of refinement, variability should also be considered. The predictions regarding 

variability were only partially supported. Most significantly, the MODEL group 

decreased knee-hip variability from the pre-test to the first trials of acquisition, and then 

maintained this level throughout acquisition. This supports the concept of refinement, as 

broader search for movement solutions would have been indicated by prolonged, high 

variability. For elbow-shoulder variability, both groups showed an overall trend for 

reducing variability but this did not reach significance. There were no differences 

between groups in variability as measured by NoRMS. However, the MODEL group 

showed less variability in knee-hip NoRMS in each period of acquisition. 

In conclusion, this study clarifies the role of demonstration as a rate scaler in 

early acquisition. The trial-by-trial analysis extends previous research, and supports the 

findings of Horn et at. (2003) that observation of a model affords learners with 

constraining information to facilitate immediate and enduring changes in relative 

motion. This effect was not present in the absence of a model. The coordinative changes 

resulting from demonstration were associated with improved ball velocity. These results 

negate discovery learning as a preferred method of skill acquisition, and imply that 

learning from a model may not be a soft-assembled emergency solution, but an efficient 

and stable behavioural change. 
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Chapter 5 

The contribution of relative motion to the perception and replication of dynamics 
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Abstract 

The kinematic specification of dynamics (KSD) principle states that optical information 

revealed in movements specifies the causal factors in events. Although research 

evidence supports this principle, the contribution of relative motion to the perception of 

dynamics is unknown. This experiment addressed this issue, examining participants' 

perception and replication of the unseen distance traveled by a projected ball. Video and 

kinematic data were simultaneously collected as a trained model bowled a medicine ball 

to four approximately equally spaced points. The model's kinematics were then 

examined to elucidate which variables illustrated systematic variation upon which the 

perception of dynamics could be based. Forty male participants comprised groups 

observing the model in normal speed video (VN), normal speed point-light (PLN), half- 

speed point light (PLHS), or as static point-light images (PLst). The results showed that 

participants' perceived and re-enacted distances were highly correlated with the model's 

projected distances. However, the results imply that relative motion does not contribute 

to the perception of dynamics on 2 counts: first, the model's angle-angle plots showed 

no systematic variation across distances. Second, participants' performance was 

significantly poorer for the PLHS group than the PLN group, despite the fact that 

relative motion remains intact with reduced velocity. 

127 



When people watch demonstrations of skills such as throwing or kicking a ball 

to a target they face a complex problem. In order to quickly and successfully imitate the 

movement pattern, they must `pick up' the relative motion that describes the 

movement's topology (Scully & Newell, 1985). Furthermore, to parameterize their 

movement response and achieve accurate outcomes with the ball, they must perceive the 

underlying dynamics of the task. Recent evidence suggests that observers can pick up a 

model's intra-limb relative motion, resulting in significant changes in coordination by 

the end of the first period of practice (Al-Abood, Davids & Bennett, 2001), and even 

within three trials (Horn, Williams, Scott, & Hodges, 2002). Although the nature of the 

information used in the perception of dynamics has been examined (e. g., Bingham, 

1987; Shim & Carlton, 1997), the specific role of the model's relative motion pattern to 

the perception and replication of dynamics has not been explored. 

The nature of the information used to guide action is of considerable interest in 

the process of skill acquisition. In this regard, ecological and dynamic theories of motor 

behaviour are indebted to J. J. Gibson (1950,1979) for introducing the concepts of direct 

perception of motion, invariants, and affordances in the visual array. Gibson's work has 

encouraged the concept of perception-action coupling through the notion of mutual 

interdependency, in which the information we perceive is functionally specific for 

ensuing action. These ideas suggest that when we see a demonstration of a skill, the 

topological properties of the motion, and the relationship between the dynamic 

properties of the action and the way they relate to our intrinsic dynamics are directly 

perceived. 

Gibson's influence is apparent in more recent accounts of observational learning. 

Scully and Newell's (1985) visual perception perspective provides an alternative to 

Bandura's (1969) Social Learning Theory, based on ecological principles. According to 
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Scully and Newell (1985) when observing a demonstration the learner perceives and 

minimizes relative motion (the motion of components in the display relative to other 

components), which later constrains the reproduction of the model's coordination. 

Scully and Newell's (1985) approach refers specifically to the acquisition of the 

topological properties of movement. That is, the spatial and geometric invariant 

properties which describe coordination. However, Runeson, Juslin, and Olsson (2000) 

suggest that it is arguably more meaningful to perceive the underlying dynamic rather 

than the kinematic properties of movement. The basis of their argument is that the 

causal dynamics contain action-relevant information that is more enduring in nature. For 

example, when a learner observes a demonstration of a kick or throw, the specific 

coordination presented by the model is evanescent. When the model is no longer 

present, the kinematic reproductions of the task are influenced by the learner's 

cognitive, physical, and emotional constraints (Newell, 1986). Yet, our understanding of 

the force production properties and the mass of the object to be used is withstanding. In 

Gibsonian terms, affordances in the environment, which specify what can be done with, 

or expected from objects (i. e., the ball in this example), are primarily dynamic rather 

than kinematic in nature (Runeson & Frykolm, 1983). 

If dynamic properties are of great importance to the learner, then a key question 

is exactly what causal information can be perceived directly from kinematic events? 

Specifically, does relative motion at a global (whole body) or local (intra-limb) level 

contribute to the perception of dynamics as well as to the imitation of movement 

patterns? The science of mechanics illustrates that kinematics (concomitants of 

displacement in time; Gilden, 1991) are derived from dynamic conditions. If mechanical 

properties shape movements, then this relationship may be perceivable. Runeson (1977) 

showed that hidden, causal properties of inanimate objects become apparent when they 
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are involved in events. When objects of unknown mass were involved in linear 

collisions, their relative weight and the damping effect of their material composition 

were specified. These studies influenced the formation of the kinematic specification of 

dynamics (KSD) principle (Runeson & Frykolm, 1983), which simply states that the 

optical information revealed in movements specify the causal factors in events. This 

principle follows Gibsonian theory in that the ambient information within the 

environment is revealed with changes in the optic array (Gilden, 1991). According to 

Runeson and Frykolm (1983), the process does not require inference or the solving of 

equations on the part of the observer (Gilden & Proffitt, 1989). 

Runeson and Frykolm (1981) first extended the study of inanimate objects to 

human behaviour. In the first manipulation, a model presented in point-light format 

lifted a box from the floor, carried it a few steps and placed in on a table. The dynamics 

of the task were manipulated by varying the weight of the sandbags concealed within 

the box. The results showed that participants' estimates of the weight were highly 

correlated with the actual weights. Shim and Carlton (1997) later replicated this finding 

when only the lift phase of movement was available. 

An alternative explanation for the perception of dynamics has been presented by 

Gilden and Proffitt (e. g., 1989; Proffitt and Gilden, 1989; Gilden, (1991). These authors 

suggested that humans are not sensitive to dynamic invariants, but instead use 

commonsense notions concerning the way in which objects operate in the environment. 

These notions are believed to form the basis for heuristic judgments of dynamics. For 

example, in their studies of planar collisions Gilden and Proffitt (1989) found that the 

basis for the perception of relative mass were heuristics that faster moving objects are 

less massive than slower moving objects, and an object ricocheting backward at impact 

with another object is less massive than the object it hit. 
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The points of departure between the KSD and heuristic camps, though 

conceptually clear, may not be easily tested. Hecht (1996) has suggested that the 

argument may be moot since the approaches cannot be empirically distinguished and are 

immune to falsification. Indeed, even if judgments of dynamics are based on heuristics 

rather than direct specification per se, the kinematics of the event still forms the basis of 

the decision. Thus they differ primarily in terms of the necessity for inference. 

Given the arguments of Hecht (1996), the present study follows the lead of Shim 

and Carlton (1997) by not attempting to empirically test these theories, but to elucidate 

the nature of information that may specify dynamics. To do this, two methods appear 

appropriate for this task. One is to manipulate the type of information available and 

examine effects on performance. The other is to profile the kinematics of the model as 

dependent measures at the different experimental weights or distances of the 

independent variable. 

The former technique has typically been used to examine the relationship 

between the advance cues proffered by the actor's movement and the observer's ability 

to perceive a component in the outcomes of the movement such as direction of a 

badminton shot (Abernethy and Russell, 1987), a squash shot (Abernethy, 1990) or a 

soccer penalty kick (Williams & Burwitz, 1993). The latter approach was initially 

employed by Bingham (1987) to profile the differences in the kinematic patterns of two 

actors performing bicep curls with dumbbells of five different weights. Phase plane 

portraits at the elbow revealed very similar patterns for each weight. Only a drop in peak 

angular velocity at an angle of around 90 degrees for the heavy weight differentiated the 

patterns. For angular acceleration versus displacement, the data also showed great 

similarity across weights. Peak angular velocity showed little difference between lighter 

weights, but fell considerably for the heaviest weight. Bingham concluded that velocity 
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was critical in the perception of lifted weight, though as Shim and Carlton (1997) noted, 

there was limited evidence on which to base this interpretation. More convincing 

evidence was provided by Shim and Carlton (1997) who examined the kinematics of 

four models lifting boxes of five different weights. They found that phase planes (for the 

shoulder) revealed little difference between weights. Instead the results indicated that 

lift velocity, hip angle, and dwell time (time spent in position ready to lift) were key 

variables. When manipulating these variables, participants were found to be most 

effected by changes in lift velocity. This finding supports the position of Runeson and 

Frykolm (1983) and Bingham (1987) that in lifting, velocity rather than position is the 

key source of information. 

The data reported by Bingham (1987) highlighted differences between the 

kinematic variables at various weights. However, in searching for a variable that could 

contribute to the perception of dynamics, the variable should illustrate not only 

difference, but systematic order and pattern. Clearly, it is not sufficient for the angle- 

angle or phase plane portraits of the highest weight to appear different from the lightest 

weight, if the patterns for the intermediate weights do not maintain the pattern. Shim 

and Carlton (1997) improved upon Bingham's approach, plotting different patterns 

together to illustrate systematic variation. However, many of their variables showed 

only limited order (i. e., the data was not in perfect systematic order from lowest to 

highest weight, or was in order for just part of the movement pattern). It is logical that 

the kinematic variables illustrating clearest order and pattern between the levels of the 

independent variable are more likely to contribute to the perception of dynamics. 

Also contributing to the lack of systematic pattern in the data of Bingham (1987) 

and to a lesser extent, Shim and Carlton (1997) was that they assessed kinematic 

patterns across the whole movement. Given the argument of Hecht (1996) that the 
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heuristic versus KSD argument is moot, rather than attempt to distinguish between 

simple optical cues or heuristic judgments, a more appropriate analysis is to ascertain 

whether the kinematic properties contributing to the perception of dynamics are derived 

from entire movement patterns (such as relative motion throughout the movement) or 

cues abstracted from the whole pattern at key moments in the movement (in our 

example, at ball release). Consequently, the first aim of this experiment was to profile 

the kinematics of a bowler projecting a medicine ball to one of four unknown distances. 

Data were examined for order and pattern across the whole movement, and in detail at 

ball release. It was predicted that the kinematic profile would isolate variables most 

likely to contribute to the perception of dynamics, and that relative motion (indicated by 

angle-angle pots) would be among the systematic variables. 

In addition to profiling the intra-limb kinematics at each projected distance, we 

aimed to assess the role of globally defined relative motion in the perception of 

dynamics by manipulating the visual information available to the observer. This 

technique is the basis of, for example, the occlusion paradigm which has been used to 

assess the types of advance cues used by experts and novices to anticipate future events 

(e. g., Williams and Davids, 1998). We used two manipulations. The first was to 

compare the perception of dynamics from video and point-light (in which only lights at 

the major joint centers are visible). Examinations of the KSD principle typically 

employ point-light displays, such that results cannot be explained by the presence of 

additional structurally based cues. Originally attributed to Marey (1895/1972), 

Johansson (1973) popularized their use in studies of biological motion. While static 

images in point-light form offer little information to the perceiver, in motion 

participants could rapidly identify different types of locomotion. Runeson (1985) argued 

that the geometric and mechanical proportions of, for example a walker's body, are 
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dynamical properties that shape movement. When participants observe point-light 

displays, this accounts for their ability to recognize various types of whole body motion 

(e. g., Johansson, 1973; Dittrich, 1993). 

Researchers examining the KSD principle have not compared the perception of 

dynamics from video and point-light models. However, this has become a common 

manipulation in the observational learning literature. Based on Scully and Newell's 

(1985) predictions, if it is relative motion that we perceive and use, then observation of 

a point-light model should be at least as effective as learning from video, since this also 

contains distracting structural information (Runeson, 1986). As an example, some recent 

evidence suggests that the perception of lumbar stabilization by physical therapists was 

facilitated by the removal of structural information (Pellechia & Garrett, 1997). In 

learning studies, the results are largely equivocal (see Horn, Williams, & Scott, 2002; 

Romack, 1995; Scully & Carnegie 1998; Williams, 1989). If the addition of structure in 

video also adds distracting information, this may result in diminished perception of 

dynamics. Therefore, it was predicted that perception of dynamics would be more 

accurate in response to a relative motion only (point-light) model than a video model. 

The second way in which this experiment aimed to assess the involvement of 

relative motion in the perception of dynamics was by comparing performance in 

response to normal point-light, half-speed point-light, and static point- light images. If 

the spatial organization of the relative motion pattern provides KSD information, 

changes in original speed should not effect the perception or replication of force. 

Clearly, the relative motion pattern illustrated in angle-angle plots is unaffected by a 

change in movement speed. However, the disruption of relative motion in static images 

should be detrimental. This manipulation also allowed us to examine Runeson and 

Frykolm (1983) and Bingham's (1987) prediction that velocity information is 

134 



fundamental to the perception of dynamics. If the perception of the dynamics in an 

event is velocity-dependent, changing the original speed should be detrimental to 

perception. 

Finally, this paper extended upon previous tests of the KSD principle by 

advancing into the action domain. Curiously, previous KSD studies have only measured 

perceptual responses. This is at odds with the Gibsonian theory on which it was based. 

In Gibsonian terms, perception is about information for action. The nature of 

affordances implies that we perceive action in `action-relevant' terms, based upon what 

it allows or demands the performer to do (Williams, Davids, & Williams, 1999). As 

such the more ecological measure is an action response. Although previous studies do 

show a remarkable propensity for the perception of causal properties, is this information 

readily available for action? Furthermore, by measuring action responses, the data may 

forge links between the perception of dynamics and the learning process. Shim and 

Carlton (1997) have recognized this shortcoming, highlighting the need for greater 

understanding of the link between perception and action with reference to KSD. More 

specifically Runeson et al. (2000) recognized that a major limitation has been the failure 

of researchers to apply the KSD principle to skill acquisition. 

The significance of extending KSD research into the action domain is 

considerable. Gibson (1979) and Runeson (1988) predicted that information picked up 

in the array becomes more advanced and accurate with practice. If so, awareness to and 

use of dynamic information should be trainable and should distinguish groups based on 

experience or expertise. In support of this argument, Scully (1986) found that the ability 

to perceive the aesthetic quality of biological motion was different in expert and novice 

gymnastic judges. Similarly, Ille and Cadopi (1995) found expert dancers significantly 

better than novices at extracting and repeating the relative motion, fluency, and rhythm 
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of choreographed walks. As evidence for trainability, Michaels and de Vries (1998) 

found that participants learning to judge the pulling force exerted by stick figures 

became progressively more reliant on higher order variables with training and feedback. 

Likewise, Jacobs, Runeson, and Michaels (2001) found that participants' changed the 

variables employed to judge relative mass in collisions and improved their estimations 

with practice and feedback. 

Considering the above, our final aim was to examine not only the perception of 

force production, but the ability to reproduce that force. In order to examine this 

question, the conventional study of lifted weight is inappropriate as there is no obvious 

action response. Instead we used the perception of the distance of a projected object (as 

employed by Runeson and Frykolm, 1983). The task chosen was an underarm bowling 

action involving a medicine ball. It was hypothesized that the information in the model's 

action was readily available for action, as evidenced by significant correlation between 

the model's actual bowled distances and the participants' re-enacted distances 

Method 

Participants 

Forty male participants (aged 20-32 years) were recruited and gave informed 

consent to participate in the study. All were right-side dominant for everyday activities 

and were naive to the purpose of the study. Participants were randomly assigned to one 

of four viewing conditions: Video Normal Speed (VN); Point-light Normal Speed 

(PLN); Point-light half-speed (PLHS); and, Point-light Static (PLSt). 

The Model and Test Films 

The dynamic task selected was to bowl a medicine ball of 2-kg weight to four 

specific distances. This was similar to the throwing task of Runeson and Frykolm 
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(1983). However, the movement pattern was considered to be more novel. The task was 

also selected on the basis of it being a closed, whole body movement. The model was a 

21 year old male student. He practiced the task until he reported that they felt his form 

had become consistent. The model fixated on a mark on the floor to encourage a 

constant head position throughout practice and testing. The resulting movement pattern 

was a one step approach with the left foot and ball release from the right hand. 

In order to compare force production from video and point-light demonstrations, 

video and kinematic data were recorded simultaneously. Consequently, retro-reflective 

markers (18 mm) were placed at the following locations: the left and right lateral 

malleolus (ankle); the left and right 5th metatarsal (toe); the left and right lateral condyle 

of the femur (knee); the left and right greater trochanter (hip); the left and right 

acromion process (shoulder); the left and right styloid process (wrist); the 1st thoracic 

vertebrae (base of the neck); and, the occipital bone (base of the skull). Five retro- 

reflective circles were placed on the ball to enable detection of the moment at which the 

ball was released from the hand. Test films were generated for bowls representing short 

(2.86 m), medium short (4.54 m), medium long (6.49 m), and long (8.55 m) distances. 

During each of these movements, the model was filmed with a Panasonic M-40 camera 

from a sagittal plane to show the model's right side. In the video condition a screen was 

placed behind the model to minimize distracting information. Kinematic data were 

simultaneously recorded with 6 infra-red cameras (Pro-reflex; Qualisys) at 240 Hz. The 

test films were edited with the Media 100 system (i-finish software). The video 

presentation film was edited to occlude at the moment the ball left the model's hand. 

The point-light test film was temporally and spatially matched to the video test film 

using Q-Trac View (Beta 2.4; Qualisys). The resulting point-light display showed white 

points on a uniform black background. The video condition also used the uniform 
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background of a curtain. The PLHS presentation condition was created in Q-Trac View 

by playing the demonstration at 120 frames/second. The PLst condition comprised of 10 

frames of the model's movements. Frames 1 and 240 represented the first and last, with 

the remaining 8 taken at equidistant intervals in-between. Rather than presenting these 

in picture form, the images were presented in video form to match the other conditions. 

Each frame was presented with a 1-second gap between frames. Finally, the size of the 

model was kept constant at approximately 70% of the screen in each condition. 

Profiling the Model's Intra-limb Kinematics 

The model's data were smoothed using a 4th order Butterworth Filter with a cut 

off frequency of 7 Hz. The filter was passed recursively to avoid phase lag, as 

recommended by Winter (1990). The data were then normalized to a period beginning 

with the initiation of the foreswing and ending at maximal shoulder flexion in the 

throwing arm. The moment of ball release was also marked. From this normalized 

period, three broad categories of variables were examined. First, for variables that 

describe the angular pattern of movement, angular displacement at the shoulder of the 

right (throwing) arm, angle-angle plots at the right shoulder and elbow, and phase 

portraits (velocity versus displacement) at the right shoulder were examined. Phase 

portraits add to the angle-angle plots used in studies 1,2, and 3 in that they illustrate 

coordination with respect to both position and speed of movement. This provides a 

geometrical representation of the actor's state space (Clark, 1995). Second, for variables 

describing speed of movement, angular velocity at the right shoulder, and linear velocity 

at the right wrist were examined. Finally, for variables describing temporal control of 

the movement, time to peak shoulder angular velocity, time to peak wrist linear velocity, 

and time from the initiation of the foreswing to ball release were examined. 
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Procedure 

The laboratory floor was first marked with tape. A line marked the point from 

which participants would bowl the ball. A second line was placed parallel to the 

throwing line at a distance of 10 m. This represented the end line. A2 m-wide channel 

connecting the throwing line and end line was also marked with tape. Participants were 

informed that in all the demonstrations the ball would stop somewhere within this 

marked channel, between the two parallel lines. 

On arrival in the laboratory, participants were given a standardized information 

sheet and provided informed consent. Participants were told that they would be 

observing demonstrations of a person bowling a ball. Those observing a point-light 

model were informed that they would see only white circles representing the model's 

joint centers. They were also informed that the demonstrations would end the moment 

the ball left the model's hand, such that they would not see the resulting movement of 

the ball. Participants were informed that they had to reproduce the action of the model, 

bowling the ball to make it stop at the point at which they believed the model's delivery 

had stopped. They were also required to place a marker on the floor at the point they 

perceived the model's ball would have stopped. 

Participants were randomly assigned to one of the VN, PLN, PLHS or PLst 

groups. Two familiarization trials were presented in the appropriate form on a 22" 

Sanyo CE32 monitor. The familiarization trials represented a mid-scale standard (5.5 m) 

and their inclusion was consistent with the procedure employed in previous KSD studies 

(e. g., Runeson & Frykolm, 1983) These trials helped to verify that participants 

observing a point-light model had recognized the movements they had seen. After 

viewing the demonstration, participants were shown a mark on the floor to represent 

where the ball had ended on the demonstration trial. The participants then had three 
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attempts to bowl the ball to the reference marker, thereby providing a uniform amount 

of familiarization with both the task and weight of the ball. 

Before commencing data collection, participants were informed that they would 

be observing bowls to four separate distances, and that these would be presented in a 

random order. They were told that the demonstration to each distance would be shown 

four times and that they would immediately attempt to reproduce what they had seen 

before observing the next distance. They were reminded that they should focus on the 

model's movements and try to gain as many cues as to how far the ball was being rolled. 

Also, in repeating the actions, they were asked to attempt to replicate the model's 

movement form. 

Participants observed the demonstration from a standardized seated position. 

After the four demonstrations, the participant was given the ball and stood behind the 

throwing line. Following each of the participant's throws, the distance travelled by the 

ball (from the throwing line) was measured with a 10 m tape. When each participant had 

completed their three throws and the ball had been removed, they then placed the 

marker at the point at which they estimated the model's ball had stopped. This distance 

was then measured and recorded and the process repeated for the remaining three 

distances. 

Dependent Measures and Data Analysis 

Action. The first of the two dependent measures employed was absolute error 

scores for the action response. This measure was calculated as the absolute difference 

between the distance the model projected the ball and the mean distance of the 

participants' reproduced distance. 

Perception. The second measure was absolute error scores for perception 

responses. This measure was calculated as the absolute difference between the distance 
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the model projected the ball, and the distance the participant estimated the ball to have 

travelled. 

Absolute error scores were analyzed with 4x4 Analysis of Variance (ANOVA), 

where viewing condition (VN, PLN, PLHS, PLst) was the between-participants factor 

and distance (2.86,4.54,6.49, and 8.55 m) was the within-participant factor. Where 

violations of the assumption of sphericity occurred, adjusted degrees of freedom and 

Greenhouse-Geisser epsilon factors are presented. Significant differences were followed 

up with the Tukey HSD post hoc test, and meaningfulness was assessed using omega 

squared (Tolson, 1980). Finally, the degree of relationship between the distance of the 

model's actual projections of the ball, and those perceived and re-enacted by the 

participants were assessed by a separate Pearson Product Moment correlation (1-tailed) 

for each group. 

Results 

Absolute Error 

Action. ANOVA produced a significant main effect for Group, F (3,36) = 

14.16, p <. 01 , w2 =. 33. The VN and PLN groups produced significantly less error than 

PLHS and PLst groups, while no differences were found between the VN and PLN 

conditions, p> . 05. These findings are presented in Figure 5.1. 
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Figure 5.1. Mean absolute error with standard deviations for the action response across groups 
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A significant main effect for Distance was revealed, F (2.38,85.75) = 6.21, p< 

. 01, la 2= 
. 13. Absolute error was higher for the longest distance (8.55 m) than the 

medium-short (4.54 m) or medium-long (6.49 m) distances. A Group x Distance 

interaction was also found, F (7.14,85.75) = 3.93, V< . 01, G) 2 =0.22. The VN and PLN 

groups showed uniform levels of error across the four distances, while the PLHS and 

PLst groups showed increased error for the short and long distances. 

Perception. ANOVA yielded a significant main effect for Group, E (3,36) = 

18.30,12 <. O1. Co 2 =. 37. The VN and PLN groups exhibited significantly less error than 

the PLHS and PLst groups, p< . 05. No differences were found between the VN and 

PLN conditions. These findings are presented in Figure 5.2. A significant effect for 

Distance was also observed, F (3,108) = 7.67, p <. O1,6)2 = . 14. The error produced at 
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Figure 5.2. Mean absolute error with standard deviations for the perception response 
across groups 

both the shortest and the longest distance were significantly higher than for the two 

middle distances, 12 <. 05. A significant Group x Distance interaction was also present, F 

(9,108) = 4.23, p< . 01, CO 2= 
. 21. Like the action scores, error remained somewhat 
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constant across all distances for the VN and PLN groups. In contrast, absolute error was 

greater in the shortest and longest distances for the PLHS and PLst groups, p< . 05. 

Correlation between Actual and Estimated Distances 

Pearson product moment correlations are shown in Table 5.1. The perceived and 

re-enacted distances of the VN and PLN groups were significantly correlated with the 

actual distances the model projected the ball. No relationship was found between the 

model's actual distances and the action and perception based estimates of the PLHS and 

PLst groups. These data are presented in Figure 5.3. Participants were more accurate in 

perceiving and re-enacting the model's behaviour for the deliveries made to the middle 

two distances. 

Table 5.1. Correlations and coefficients of determination (in parentheses) between 
participants' perception and action estimates and the model's actual distances 

(Note: * denotes significant findings at p< . 01). 

Group Perception Action 

VN . 89 * . 90 * 
(. 79) (. 81) 

PLN . 77 * . 81 * 
(. 59) (. 66) 

PLHS . 06 
. 17 

(. 00) (. 03) 

PLst . 16 -. 01 
(. 03) (. 00) 
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The Model's Intra-limb Kinematic Profile 

Figure 5.4 shows the model's angular displacement at the shoulder, across each 

bowled distance. It can be seen that across the entire foreswing, there is great similarity 

between the four patterns. However, when normalized to the time of ball release, the 

two shorter distances are differentiated from the longer distances. There is greater 

flexion in the shoulder for the shorter distances, suggesting later release in the foreswing 

of the movement. 
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Figure 5.4. The model's angular displacement at the shoulder from the initiation of the 
foreswing to the end of shoulder flexion (inset are 20 frames normalized around ball 

release, which is marked by larger data points) 
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Intra-limb relative motion is shown in Figure 5.5. Considering the whole movement, the 

figure illustrates that while the relative motion demonstrated for the shortest distance is 

clearly different than at the longer distances, there is no systematic order to the four 

patterns shown. At ball release, the relative motion pattern shows order across the short, 

medium short, and medium long distances, but this is not maintained at the longest 

distance. 
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Figure 5.5. The model's elbow-shoulder relative motion for each bowled distance from 
the initiation of the foreswing to the end of shoulder flexion 

The phase plane portrait presented in Figure 5.6 shows shoulder velocity against 

position. These diagrams are typically used for cyclical data (the patterns shown here 

are not cyclical as the model does not return to the start position). They are included 

here to illustrate that when velocity data is introduced clear order is present. This 

systematic pattern is most apparent in the frames immediately preceding, and including, 

ball release. Angular velocity at the shoulder is also shown in Figure 5.7. A clear pattern 

between the four distances is not present when the whole foreswing of the movement is 

shown, but emerges when the normalized frames around ball release are studied. Of all 
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variables studied, this data shows the most distinct order and pattern among the four 

distances bowled. 
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Figure 5.6. The model's shoulder phase plane portraits for each bowled distance from 
the initiation of the foreswing to the end of shoulder flexion. 

For linear velocity at the distal end of the throwing arm, Figure 5.8 shows that 

the distance bowled was not simply a product of peak wrist velocity. While the longest 

distance also showed highest peak velocity, this pattern was not maintained across the 

distances. Higher peak velocity was found at the shortest distance than at the medium 

short distance, but the peak for the short distance was considerably before release. 

Around ball release, linear velocity differentiated the two longest from the two shortest 

distances. The short and medium short distances show similar values. This finding 

implies that release of the ball at lower shoulder angular velocity (Figure 5.5) and 

greater shoulder flexion (Figure 5.4) for the short distance in Figure 5.4 accounts for a 

different release angle and less distance travelled. 
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Finally, for temporal variables, time from the initiation of foreswing to ball 

release shows most systematic variation across distances (Figure 5.9). With increasing 

distance bowled, the time for the foreswing is progressively less. Table 5.2 indicates that 

no systematic patterns were present for time to peak angular velocity at the shoulder, or 

time to peak linear velocity at the wrist. 
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Figure 5.7. The model's angular velocity at the shoulder for each bowled distance from 
the initiation of the foreswing to the end of shoulder flexion (inset are20 frames 

normalized around ball release, which is marked by larger data points) 
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Figure 5.8. The model's linear velocity at the wrist for each bowled distance from the 
initiation of the foreswing to the end of shoulder flexion (inset are 20 frames normalized 
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Figure 5.9. Time from the initiation of the foreswina until ball release across the 
four distances. 

Table 5.2. Time (seconds) to (A) peak angular velocity at the shoulder and (13) peak 
linear velocity at the wrist 

Distance 

Short Medium Short Medium Long Long 

(A) . 54 . 52 
. 60 . 48 

(B) . 53 . 51 . 54 . 52 
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Discussion 

The aim in this experiment was to examine the contribution of the model's 

relative motion pattern to the perception and replication of the causal properties of an 

underarm bowling task. A profile of the model's kinematics was created for each 

distance bowled, and the data were examined for systematic patterns. It was predicted 

that relative motion would be among the variables showing a systematic trend on which 

the perception of dynamics could be based. The role of whole body relative motion was 

also examined in the comparison of performance from real-time video and point-light 

displays, and half-speed and static point-light images. High correlations were 

anticipated between the perceived and replicated distances of those participants 

observing real-time displays and the model's actual distances. Participants were 

predicted to perform better in response to point-light models than video displays, as the 

pertinent kinematic information is more readily accessible. It was also anticipated that 

the manipulation of relative motion in static images would be more detrimental to 

perception and action than in half-speed images, as these maintained the spatial 

description of relative motion. 

As predicted, participants observing the point-light and video models in real-time 

displayed highly accurate perception and replication of the model's action. This finding 

corroborates previous research for the perception of lifted weight by point-light (e. g., 

Runeson & Frykolm, 1981; Shim & Carlton, 1997) and video models (Valenti & 

Costall, 1997), and for distance thrown by point-light models (Runeson & Frykolm, 

1983). Support was therefore found for the specification of dynamics from kinematic 

sources. Moreover, the results extend previous work, as it appears that the dynamic 

information in the kinematic display of underarm bowling is not only perceivable but 

also readily available for emulation through action. This finding lends support to the 
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ecological perspective presented by Gibson (1950,1979), suggesting that information in 

the environment is specific for the action it affords. By taking the study of the KSD into 

the action domain, the measures have greater ecological validity, and progress toward 

examining the role of perceived and replicated dynamics in skill acquisition. 

No differences were observed between the abilities to perceive or reproduce 

force from the real-time point-light and video models. It appears that both formats 

present the pertinent information for perception and action. In essence the kinematic 

information in point-light appears to be that used in video even when additional 

structural information is present. Since the absolute motion of points in the display is 

rarely perceived in human movement (Scully & Newell, 1985), the relative motion 

available in point-light accounts for the perception of the bowler in point-light form. 

The added structure of video neither provides additional cues nor distracting sources of 

information to effect performance. This finding reflects mounting evidence in similar 

comparisons between point-light and video models in observational learning (e. g., Horn, 

Williams, & Scott., 2002: Experiment 1; Horn, Williams, Scott, & Hodges, 2002: 

Experiment 2; Williams, 1989). 

When the point-light model was presented at half-speed or as still images, no 

relationship was found between participants' estimations or replications of force and the 

model's actual performance. Poor performance in response to static images was 

predicted and supports previous work on the preparation and early phase of lifting by 

Valenti and Costall (1997). However, against expectations, no difference was found 

between the participants' responses to these stimuli. This result clearly implies that the 

spatial organization of the model's global relative motion pattern does not account for 

the perception of dynamics. The relationship between joints and segments in the 

movement was unaltered by reducing the speed of the display, yet the detriment in 
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performance was similar to that in response to static images. This finding suggests that 

velocity was the key source of information contributing to the perception of dynamics, 

as suggested by Runeson and Frykolm (1983) and Bingham (1987). The profile of the 

model's kinematics at each bowled distance also implies the importance of velocity 

information, but only at the most pertinent period of the movement. Angular and linear 

velocity data across the whole foreswing revealed little systematic pattern on which the 

perception of dynamics could be based. However, for the 20 data points around ball 

release, wrist linear velocity differentiated the two shortest from the two longest 

deliveries, and shoulder angular velocity differentiated all four into a systematic, 

ordered pattern. Directly related to this velocity data was time from initiation of the 

foreswing to ball release, where a systematic pattern was also observed. 

A dependence upon velocity information for accurate performance is also 

predicted in the skill acquisition literature. Newell's (1985) embedded hierarchy of 

coordination, control, and skill predicts that while the coordination of a movement 

pattern is unhindered by slow motion demonstrations, parameters for control of a 

movement pattern are affected. Several researchers have supported this concept. For 

example, Scully and Carnegie (1998) found that slow motion marred the reproduction of 

peak landing force and total movement time. Similarly, Al-Abood, Davids, Bennett, 

Ashford, and Martinez (2001) found participants observing a slow motion 

demonstration of an underarm dart throw were less accurate in reproducing elbow 

velocity at release and movement time. 

As reported for velocity data, the angle at the shoulder was found to be similar 

across distances when the whole foreswing was considered. However, around ball 

release it differentiated the two shortest from the two longest deliveries. Variations in 

the model's intra-limb relative motion at the elbow and shoulder did not appear to 
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contribute to the perception of dynamics. No pattern emerged across distances 

throughout the foreswing or around release. In addition to our findings for the spatial 

organization of whole body relative motion, intra-limb relative motion appears an 

improbable source of causal information. Contrary to the KSD principle, the data 

presented here could be seen as providing simple heuristics for the perception of 

dynamics (such as faster angular rotation of the shoulder at release specifies greater 

distance, and shorter time from initiation of foreswing to release specifies greater 

distance). However, following Hecht's (1996) contention that the KSD and heuristic 

explanations may not be empirically differentiated, this argument indeed appears 

somewhat moot. Whether participants used heuristics based on experience and 

inference, or used direct optically specified cues, the basis for the perception of 

dynamics was kinematic changes with movement. More significant is that most 

variables which could not differentiate the distances through the whole forward 

movement of the arm, showed greater systematism at the key moment of ball release. 

The perception and replication of dynamics was therefore likely to have been the result 

of picking up significant information at a brief moment, embedded in the whole 

movement. 

In summary, in this study we have provided further evidence for the availability 

of dynamic information in kinematic displays. More significantly, our findings extend 

previous KSD research by illustrating that dynamic information is action-relevant and 

readily imitated. Scully and Newell's (1985) prediction that relative motion is crucial to 

the observational learning of movement patterns, does not appear to apply to the 

perception of dynamics in the model's display. Though participants could perceive 

dynamics equally effectively from point-light as from structured video, variations in 

relative motion patterns were not sufficiently systematic to account for the perception of 
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dynamics. Instead the information for the perception and replication of dynamics was 

abstracted from the whole movement at the key moment of ball release. 
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Chapter 6 

Epilogue 
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Since Bandurs presented his Social Learning Theory in 1969, a host of research 

has examined the way in which models' characteristics influence observers' learning. 

Considerable evidence has also been presented to imply cognitive involvement in 

observational learning. Increased repetition of the modelled act, the use of memory 

tools, and increased cognitive load in environments mimicking high contextual 

interference have all been shown to facilitate learning. Nonetheless, research borne out 

of Social Learning Theory has often utilised cognitively based, contrived tasks which 

provide limited understanding of the process of learning complex coordinative actions. 

As such, this research has offered minimal guidance to coaches and teachers on the use 

of demonstration to facilitate the acquisition of movement technique and form. 

In addition, the cognitive perspective on observational learning has not 

addressed the nature of information picked up by the observer during the demonstration 

(Scully & Newell, 1985). In redressing this shortcoming, Scully and Newell (1985) 

proposed that observers perceive the model's relative motion, which in turn constrains 

later attempts to imitate the movement. To date Scully and Newell's predictions have 

been met by a paucity of research studies, perhaps due to the necessity to examine 

movement behaviour by kinematic analysis. Some evidence indicates that those 

watching a model change their relative motion patterns to become more like the model 

over practice (e. g., Al-Abood et at., 2001 a, b; Schoenfelder-Zhodi, 1992). However, of 

critical importance is that since these studies did not measure coordination prior to 

observation of the model, a true representation of the immediate and long-term impact 

of the model is not possible. This thesis aimed to provide the most comprehensive test 

of the predictions and questions raised by the visual perception perspective thus far. 

Four experiments were conducted and the key research papers they examine, their key 

findings and their flow are summarized in Figure 6.1. 
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The Impact of Demonstration on Globally and Locally Defined Coordination: 

Key Findings and Implications 

Global changes in coordination 

Several authors have suggested that imitation of action primarily operates in a 

manner described variously as holistic (e. g., Scully & Carnegie, 1998), global (e. g. 

Bertenthal & Pinto, 1994; Horn et at., 2002) or program level (Russon & Byrne, 1998). 

For Russon & Byrne, in program level imitation, the observer copies the structural 

organization of the action, but specific details are added on a trial-and-error basis. This 

process is assumed to account for the majority of imitation occurring on an everyday 

basis. Surprisingly, few research studies have pursued this concept. In these 

experiments, approach to the ball was an ideal index for global imitation, because in 

kicking, it represents the organization of how many steps to take, which foot to start 

with, and to an extent, the appropriate start position. Experiments I and 2 provide 

evidence for imitation of a model at this global level of analysis. In both experiments, 

participants changed their approach to the ball to become more like the model by the 

post-test (Experiment 1) or by the first three trials of acquisition (Experiment 2). Those 

participants not seeing a model showed no change, or became less like the model with 

practice. 

Our data supports preferential modelling at a global level, but with a proviso: the 

effect occurred only when visual intrinsic knowledge of results (KR) is present. When 

participants were constrained to use the model in the absence of visual intrinsic KR, 

they changed their coordination at both global and local level. These findings imply that 

perception of relative motion in a localized sense may either be less developed than 

global perception, or is more susceptible to the distraction of outcome information. In 

corroboration with the former point, Oram and Perett (1994) found cells in the anterior 
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temporal lobe that were sensitive only to whole body motion and not localized motion in 

single arm articulation. The authors suggested that sensitivity to biological motion is not 

readily accounted for in terms of isolated patterns of relative motion. 

Local changes in coordination 

Experiments 1,2, and 3 examined local changes in relative motion at an intra- 

limb level. This allowed direct assessment of the predictions of the visual perception 

perspective. If learners perceive and become constrained by the model's relative 

motion, then their coordination should change to become more like the model. 

Experiment 1 did not find support for this position. Although those participants 

observing the point-light and video models showed positive changes in temporal 

phasing of joint flexion and extension, they did not change their knee-hip or knee-ankle 

relative motion to become more like the model. This contradicts the findings of 

Schoenfelder-Zhodi (1992) and Al-Abood et al. (2001) for relative motion, but supports 

the recent comment of Hodges and Franks (2002) that there exists little evidence that 

pre-practice information via demonstration facilitates the acquisition of complex 

movement tasks. However, in contrast, we found stark evidence for the facilitative 

effects of demonstration when the model was the participants' constraining source of 

information. 

The interaction of demonstration and intrinsic visual KR: a reflection of the 

synergy of coordination and control. KR is considered to be a powerful source of 

information for skill acquisition, and in its intrinsic form it is typically available. As 

such it may compete with the model as the constraining source of information guiding 

learning. Therefore, to effectively test Scully & Newell's (1985) prediction that 

observers pick-up and become constrained by the model's relative motion, it was 

considered necessary to ensure that the model was acting as the constraining source of 
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information. This was achieved through visual occlusion at ball contact, and the results 

were pronounced. In the first study, with KR available, participants decreased error in 

their outcomes, at the expense of failing to change their movement pattern relative to the 

model. In the follow-up study, with intrinsic visual KR occluded, the exact opposite 

occurred. Participants learned to more closely match the model's coordination, but 

failed to learn to decrease error on their outcomes. As an illustration, the angle-angle 

plots (i. e., inter-limb coordination) for one participant from each of the studies are 

shown in Figure 6.2. Graphs (A) and (B) show the participant's closest attempts at 

reproducing the model's knee (vertical) - ankle (horizontal) relative motion (represented 

by the dark plot) in the pre-test and retention test. Note that there is little change in 

relative motion for the participant with KR available in (A), whilst in (B) considerable 

improvement occurs without KR. 
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Figure 6.2. Pre-test to retention test changes in knee-ankle relative motion to match a 
model from in the presence (A) and absence (B) intrinsic visual knowledge of results 

(for each test period, the vertical axis = knee angle, horizontal axis = ankle ange). 

By adapting a measurement tool used to quantify variability in movements, these 

experiments employed a new measurement system (NORM-D; Horn et al., 2003) to 
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directly quantify the proximity of learner's relative motion to the model's motion. This 

facilitated the most direct assessment of Scully and Newell's (1985) predictions to date. 

NoRM-D values indicated that both the point-light model and the video model 

facilitated immediate and long-term changes in relative motion. Those in the 

CONTROL group showed no change in relative motion. 

Although the combined findings of Experiments 1 and 2 support Scully and 

Newell's predictions for relative motion, they are best explained in the context of 

Newell's (1985) hierarchy of coordination, control, and skill. Contrary to recent 

interpretations of this hierarchy, Newell adopted Bernstein's (1967) view that 

coordination (the assembly of a new movement topology) is the organisation of control 

(the parameterisation of the pattern). As such the two are synergistically linked, and 

constraints imposed on one will also affect the other. When a learner has to simply learn 

a movement outcome regardless of technique (or vice-versa), this synergy is maintained. 

However, in learning environments where learners must achieve an accurate outcome 

with a specific technique, there are demands placed on both coordination and control. 

This may be seen as competition replacing synergy. If intrinsic visual KR is the 

constraining source of information, the parameterisation of movement (control) 

dominates at the expense of the appropriate movement pattern (coordination). 

Conversely, if the model is the constraining source of information, coordination is 

emphasized at the expense of control. In Experiment 3, when visual information was 

naturally available to the learner (i. e., they could see where the ball went), but was not 

usable as a source of outcome information (i. e., velocity), the assembly of the 

movement pattern was again facilitated by the model's demonstration. 

These results may also have far reaching practical implications. They imply that 

in order to facilitate immediate and lasting changes in technique, the instructor needs to 
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assess the presence of intrinsic visual KR. If the movement task has a definitive 

technique and powerful, usable information is present (e. g., soccer and American 

Football kicking, basketball shooting, cricket bowling, baseball pitching, bowling), the 

instructor may need to minimize that information to constrain the learner to use the 

model. Hodges & Franks (2002) state that when a movement response is not part of the 

learner's repertoire, movement demonstrations portraying an optimal technique proffer 

little benefit to learning. The results of Experiments I and 2 suggest that this conclusion 

is somewhat premature. Instead the results indicate that movement novelty is in fact, 

less significant than the presence of other constraining information for learning. 

The evidence presented for an interaction between demonstration and intrinsic 

visual KR may also contribute to current understanding on equivocality in observational 

learning. A review of observational learning literature suggests that demonstrations are 

not always effective in facilitating skill acquisition. Previously posited accounts for this 

include variations in task type and novelty used (e. g., Gould & Roberts, 1982) and the 

learning of pre-existing movement patterns (Southard & Higgins, 1987). Also, the 

nature of information has been proposed to account for equivocal findings. The extent to 

which the demonstration conveys a strategy for action (Burwitz, 1975), the degree of 

redundancy in information provided (Newell, 1981), and informational load (Gould & 

Roberts, 1982) have all been proposed as factors contributing to the degree of efficacy 

of a demonstration. In light of the results of Experiments I and 2, the availability of 

powerful KR, and the potential for interaction between demonstration and feedback 

should also be considered. 

Immediacy and stability of coordinative changes in response to model 

One of the most salient results obtained in the absence of intrinsic visual KR was 

the rate of change in relative motion for those observing a model. Experiments 2 and 3 
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provided the clearest indication to date of the rate of changes in intra-limb coordination 

that may occur in the absence of usable KR. This makes a substantial contribution to the 

literature because until now, researchers have employed designs that largely ignore early 

acquisition trials in favour of long term assessments. Those researchers assessing 

changes in early acquisition have not provided clear data on the rate of change because 

they did not compare coordination before and after observation of the model (e. g., Al- 

Abood et al., 2001 a, b; Gray et al., 1991), or they used a single measurement to 

represent a whole acquisition period (e. g., Wuyts & Beukers, 1995). 

In Experiments 2 and 3, those observing a model showed large, immediate 

changes in relative motion in the first three trials of acquisition. This new level of 

proximity is then maintained throughout the remaining trials. These results oppose both 

the theory and the purported benefits of learning by discovery methods. Several authors 

have recommended that allowing learners to explore the intrinsic dynamics of the task 

may be superior to learning from a model (e. g., Handford et al., 1997; Hodges & 

Franks, 2002). This discovery learning method may guide the learner's search to 

optimal areas of the perceptual-motor workspace, while the use of demonstration and 

coach interventions are assumed to provide `soft assembly' of a temporary, inaccurate 

solution as an emergency (Handford et al., 1997). The combined data from Experiments 

2 and 3 clearly indicate that the ̀ solution' provided by the model was neither temporary 

nor inaccurate. This thesis proposed that in the absence of usable KR, the model 

immediately allows the learner to refine rather than broadly search for movement 

solutions. In Experiment 3, discovery learners in the CONTROL group showed no signs 

of changing their relative motion to facilitate increased ball velocity across the 21 trials. 

The practical implications of these findings relate to efficiency in typical 

learning environments. Here, learners often receive a limited number of trials before the 
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context, or regulatory conditions (Gentile, 1972) of a skill are changed. The results of 

Experiments 2 and 3 suggest that using demonstration would support this type of 

coaching environment, while discovery learning is unlikely to be effective within these 

time constraints. Further research is planned to examine whether participants using 

models in early learning are better equipped (or equipped sooner) to adapt to coaching 

changes and the addition of augmented information. 

Point-light versus video models 

In all three experiments comparing coordination responses to point-light and 

video models, the differences between the groups were minimal. This supports the work 

of Williams (1989b) for a dart-like throwing action. In Experiment 1, with intrinsic 

visual KR, no differences were found between groups for globally or locally defined 

coordination. In Experiment 2, the removal of intrinsic visual KR was anticipated to 

accentuate any differences between groups, as participants were more dependent on the 

model for information. However, no differences were found. These results were taken to 

indicate that if video does add distracting structure, as suggested by Newell and Walter 

(1981) and Runeson (1984), this does not effect perception and replication of the event. 

It appears that relative motion, which is salient and readily picked up from point-light 

models is easily extracted from an embedded video display. At present, these studies 

suggest that there is no benefit to using point-light images as a demonstration tool. 

`What" Information, Visual Search Strategy, Perception of Motion and Dynamics: 

Key Findings and Implications 

Visual search strategy 

Three key results were obtained for visual search analysis. First, search 

strategies support theories of the perception of a global representation of the movement. 
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Second, there is evidence for refinement of search over time. Finally, visual search 

strategy appears to be influenced by presence or absence of visual intrinsic KR. 

Evidence for the predominance of global perception of movement. Analyses of 

visual search strategies in Experiments 1 and 2 indicated that the joint centres of the 

lower limb (hip, knee, ankle) were the primary areas of interest for participants 

observing both the video model and the point-light model. However, local coordination 

analyses indicated that observers were not improving their coordination around these 

sites. Therefore, this suggests that these fixation points were a reference point, or visual 

anchor around which to pick up peripheral information (Rockwell, 1972). Since acuity 

is low in the periphery, but movement perception is potent, this supports the perception 

of an overall, global concept of the movement, at the expense of detail. This `synthetic' 

search strategy was especially evident in response to the point-light model. 

In the only comparable study of visual search in observational learning, Mataric 

and Pomplun (1998) found that participants fixated primarily on the end"point of the 

moving segment (hand and fingers). This was reported as evidence that participants gain 

information for performing the task by tracking the trajectory of the end-point, as 

outlined in theories of end point control (e. g., Latash, 1990). However, Experiments I 

and 2 found little evidence to support fixation upon the cnd-point of the kicking leg. 

Evidence for refinement in visual search. Experiment I showed that the breadth 

of visual search narrows over successive observation periods. This was taken as 

evidence for the priority of acquiring a global representation of the movement first, 

before refining later in learning. As indicated by the coordination data, the acquisition of 

global properties of movement was attained, but the refinement of search later in 

acquisition did not facilitate local coordination changes. Initially, this was attributed to 

an insufficient period of acquisition. However, the marked local coordination changes in 
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Experiment 2 negate this idea. Instead they point to further effects of intrinsic visual KR 

on visual and coordinative search. 

The influence of intrinsic visual KR on search strategy. Experiment 2 did not 

substantiate the refinement of visual search over time. Nevertheless, this data fits well 

with the position that without intrinsic visual KR, a model facilitates the immediate 

refinement of movement rather than broad search for movement solutions. It is theorized 

that participants did not progressively narrow their visual search during acquisition in 

Experiment 2 because their search was immediately narrow to support the early 

refinement of movements. 

The perception and replication of dynamics 

Experiment 4 investigated two aspects of the visual perception perspective. First, 

it examined Scully and Newell's (1985) prediction that since early learning emphasizes 

the assembly of movement patterns, a model is likely to facilitate coordination rather 

than the parameterization of movement. Second, it examined whether relative motion, 

which appears to be central to imitating coordination, also contributes to the perception 

of dynamic properties. 

In support of Scully and Newell's (1985) position, Scully and Carnegie (1998) 

found learners could replicate angular properties but not landing and take-off forces in a 

dance routine. The results of Experiment 4, however, indicate that observers of point- 

light and video demonstrations were able to accurately perceive and replicate the 

unknown distances of a ball bowled by a model. This extends past research on three 

fronts. First, previous research into the kinematic specification of dynamics (KSD) has 

only measured perceptual responses (e. g., Runeson & Frykolm, 1981,1983). By 

measuring action responses, this experiment more closely follows Gibson's (1950) 

position that perception is for action. It also bridges the gap between KSD and 
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observational learning literature. Finally, it indicates that similar to the results for 

coordination in Experiments 2 and 3, the model afforded learners with the opportunity 

to immediately perceive and parameterize the movement response. 

The results of Experiment 4 found no evidence for the contribution of relative 

motion to the perception and replication of dynamics. When the modelled act was 

presented in slow motion, observers showed much greater error in parameterizing the 

movements even though relative motion was intact. A systematic analysis was also 

conducted to elucidate patterns in the model's movement patterns when bowling to four 

equally spaced distances. Building on the techniques of Bingham (1987) and Shim and 

Carlton (1997), the data revealed that relative motion plots provide no systematic 

pattern on which the perception of dynamics could be based. Instead, observers 

appeared to grasp velocity data from just a small window of time around ball release. 

Considerations for Future Research 

The studies presented in this thesis provide a strong foundation for future 

research down several avenues. For example, the visual search analyses presented here 

require further elaboration. An analysis of visual search on a trial-by-trial basis in 

acquisition in tandem with coordination changes (NoRh1-D and NoRMS) would clarify 

the nature of refinement in search over time, and provide stronger links between 

perception and action responses in observational learning. 

The strong interaction between demonstration and intrinsic visual KR on 

coordination and outcome changes also merits further attention. Research designs using 

ecologically valid interventions (e. g., regular changes in practice context rather than 

countless identical acquisition trials) are encouraged to explore this issue. Further 
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research is required to establish the ideal use of demonstration to encourage the 

adoption of the optimal movement technique, while maintaining successful outcomes. 

Of considerable theoretical interest is Scully and Newell's (1985) concept that 

observational learning occurs if the learner's relative motion matches the model's 

pattern within certain `bandwidths'. The experiments reported in this thesis measured 

and quantified imitation based on locally defined coordination in angle-angle plots. 

Currently, we do not know the sensitivity of human perception to subtle variations in 

relative motion. Is this the appropriate level of analysis? We clearly cannot imitate what 

we cannot perceive. If we do predominantly imitate at a holistic or program level, as 

suggested by Byrne and Russon (1998) and others, then measures that reflect the global 

organisation of the task (e. g., number of steps taken in approaching a ball) may be more 

likely to be sensitive to demonstration than measures reflecting higher, localized levels 

(e. g., intra-limb relative motion during the kick). A threshold-based analysis of 

sensitivity of the system to localised relative motion using the techniques of 

psychophysics is encouraged. 

Finally, the measurement tool devised and used to quantify coordination 

(NORM-D) appears an excellent vehicle to apply to special groups. For example, the 

condition developmental coordination disorder is currently receiving research interest 

centred around postural control and proprioception (e. g., Smyth & Masson, 1998). Some 

researchers have even investigated methods of intervention (e. g., Sigmundsson, 

Pedereson, Whiting, & Ingvaldsen, 1998). Yet the patterns of coordination (stability and 

proximity to criteria) shown by these children in gross inter-limb tasks remains have not 

been quantified. This seems a necessary precondition for understanding the nature of 

deficits, and the extent of progress in intervention programs. 
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