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ABSTRACT 

 

On the 400th anniversary of Harvey’s Lumleian lectures, this review focusses on the impact 

of physical exercise on “hemodynamic” forces associated with the movement of blood 

through arteries in humans and the functional and structural adaptations that result from 

repeated episodic exposure to such stimuli.  The late 20th century discovery that endothelial 

cells modify arterial tone via paracrine transduction, provoked studies exploring the direct 

mechanical effects of blood flow and pressure on vascular function and adaptation in vivo.  In 

this review, we address the impact of distinct hemodynamic signals that occur in response to 

exercise, the inter-relationships between these signals, the nature of the adaptive responses 

that manifest under different physiological conditions and the implications for human health. 

Exercise modifies blood flow, luminal shear stress, arterial pressure and tangential wall 

stress, all of which can transduce changes in arterial function, diameter and wall thickness. 

There are important clinical implications of the adaptation that occurs as a consequence of 

repeated hemodynamic stimulation associated with exercise training in humans, including 

impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance 

vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies 

have demonstrated that direct hemodynamic impacts on the health of the artery wall 

contribute substantially to the well-established decrease in cardiovascular risk attributed to 

physical activity. 
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We in the West are the first generation in human history in which the mass of the population 

has to deliberately exercise to be healthy. 

 – Professor Jeremiah Morris (216) – 

 

I. INTRODUCTION: EXERCISE AND ARTERY HEALTH IN HUMANS 

Recent technological "advances" have fundamentally altered the vocational and lifestyle 

behaviours of humans in the space of a few generations. Profound changes associated with 

ubiquitous exposure to television, mobile communication devices and the internet have 

rapidly accelerated an underlying trend in sedentary behaviour related to urbanisation, 

automation and widespread use of the automobile (272). In global terms, it was recently 

estimated that physical inactivity caused 6–10% of all deaths from the major non-

communicable diseases (coronary disease, type 2 diabetes, breast and colon cancers), or more 

than 5.3 of the 57 million deaths that occurred worldwide. This equates to the number of 

deaths attributable to tobacco (112). 

 

Approximately 1/3rd of the global population do not meet minimum physical activity (PA) 

requirements to sustain health (112). In the West, the impact of technological change on PA 

levels and cardiovascular health is occurring on a background of unprecedented demographic 

shifts associated with population ageing, raising the spectre of individuals experiencing more 

years of frailty and compromised life quality, with associated increases in healthcare costs 

(229). There has never been a more sedentary population of humans than the 21st century 

Western society, prompting some to suggest that the positive historical trend in life 

expectancy may soon be threatened (231).  These observations reinforce the critical 

importance of increasing physical activity levels and primary prevention is now a global 

policy agenda (137). 
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Although exercise programs may be regarded as an effective strategy to “compensate” for 

loss of routine physical activity, better insight is required into the physiological adaptations to 

distinct stimuli associated with exercise.  This review focuses on the impact of exercise on 

the vasculature, in particular, the direct effects mediated by physical, mechanical and/or 

hemodynamic forces on arterial function, structure and adaptation in humans. 

 

A. Impact of exercise and physical activity on cardiovascular risk 

Retrospective studies strongly suggested that regular physical activity is associated with 

lower risk for primary CV mortality and morbidity (197, 241). Subsequent prospective 

studies provided direct evidence that adopting a physically active lifestyle delays all-cause 

mortality, extends longevity (242) and reduces risk for CV mortality by 42-44%, compared to 

persistently unfit men (28, 180). Furthermore, the relationship between physical activity and 

CV risk exhibits a curvilinear dose-response pattern (319) with increasing, but diminishing, 

returns at higher activity levels (210). It is important to acknowledge that, whilst fitness has 

been regarded as a surrogate for habitual physical activity, these factors have independent and 

overlapping roles in the prevention of cardiovascular disease (63). In those with heart disease, 

exercise-based rehabilitation is associated with a reduction in CV mortality and fewer 

hospital admissions (9). These benefits, in the context of both primary and secondary 

prevention of CVD, approximate and may exceed those associated with antihypertensive 

(308) or lipid lowering drugs (47, 203). Indeed, meta-epidemiological evidence (205 

randomized controlled trials, n=339,274) found equal effectiveness of exercise training and 

contemporary drug interventions (220), in terms of mortality reduction.  
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B. The risk factor gap: Traditional risk factors do not fully explain risk reduction 

Until recently, the rationale for the promotion of exercise, and methods of prescribing it, were 

based on the assumption that exercise exerted its benefits by virtue of "secondary" effects. 

That is, exercise benefit was judged by its capacity to modify CV risk factors such as BP, 

lipids, insulin resistance, smoking and obesity (303). Indeed, studies linking exercise to 

changes in CV risk factors report significant improvement in individual CV risk factors (106, 

155), although the magnitude of such change is typically modest compared to 

pharmacological interventions (303). Importantly, the cardioprotective effects of exercise 

training remain after statistical correction for traditional and novel CV risk factors (28, 159). 

Mora et al. (211) assessed the contribution of changes in CV risk factors as a result of 

physical activity to the occurrence of CVD in 27,055 women (10.9 year follow-up) and 

reported that established and novel risk factors explained only part of the beneficial impact of 

exercise on CVD risk. Others have reported that CV risk factors explained only 27-41% of 

the cardioprotective benefits of exercise training (48, 120, 286). The beneficial impacts of 

exercise on CV risk therefore exceed that expected from changes in CV risk factors alone: A 

risk factor gap exists in explaining the benefits of exercise in humans (106, 155). 

 

Exercise exerts direct effects on the vasculature via the impact of repetitive exposure to 

hemodynamic stimuli, such as shear stress and transmural pressure. Consequently, exercise 

transduces functional and structural adaptations in the vascular wall, providing a plausible 

contribution to the risk factor gap described above (106, 155). Improvements in flow-

mediated dilation (FMD), a validated surrogate for CV health and disease risk (103, 145, 252, 

287), can occur as a result of exercise training in the absence of changes in CV risk factors 

(109) reinforcing the notion that (196) exercise exerts some of its benefit by virtue of impacts 

distinct from those on traditional risk factors (104, 296). This proposition is supported by 
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epidemiological evidence, presented above, that ~50% or more of the beneficial impact of 

exercise on CV endpoints cannot be explained by risk factor modification (211). Although 

alternative explanations exist (32) including modulation of autonomic tone (106, 155), there 

is a strong basis to propose that exercise-induced hemodynamic changes induce anti-

atherogenic adaptations in vascular function and structure that contribute to the CV benefits 

of exercise training. 

 

C. Evidence for a role of direct impacts of hemodynamic forces on vascular health 

At the end of the 19th century Thoma noted, in observations of chick embryos, that many 

branches developed in blood vessels in which blood flow was rapid, whilst no branches 

developed in blood vessels where blood flow was slower (301). This early observation 

suggested that hemodynamic forces, broadly defined as mechanical forces associated with 

flowing blood (i.e. shear stress and/or pressure), were important in the adaptation of the 

vasculature. More recently the endothelium has provided a focus for research, given its 

strategic placement between the flowing blood and artery wall and crucial role in the 

progression and development of atherosclerosis (201). It is now understood that vascular 

adaptation is dependent upon an intact, functional endothelium (257, 326) and that 

hemodynamic stimuli induce functional and structural changes in the arterial wall via 

endothelial cell signal transduction. 

 

D. Integrative aspects of vascular adaptation to training 

Clausen (50) noted nearly 4 decades ago in this journal that exercise training improves 

oxygen uptake and cardiac output during maximal exercise (Figure 1), whereas mean arterial 

pressure remains unaffected. These findings infer that the increase in cardiac output as a 

result of exercise training is accommodated by a corresponding rise in vascular conductance, 



Green et al  Exercise, hemodynamics and vascular adaptation 

Page 8 of 108 
 

the latter mediated by functional and/or structural adaptations in conduit, resistance, and 

microvessels. Changes in the vasculature are associated with decreased cardiac afterload at 

rest and during submaximal exercise, which enhances ventricular function and myocardial 

oxygen demand (118). This integrative physiological perspective emphasises the key role 

played by changes in the vasculature in response to exercise training. 
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II. WHAT HEMODYNAMIC FORCES ARE RELEVANT IN THE VASCULATURE? 

A. Pressure effects 

Exercise increases systolic pressure, whilst diastolic pressures remain at resting levels or may 

decrease (127). As the arterial pressure waves propagate, pulse pressure changes due to 

interactions between the segmental arterial compliance and pressure wave harmonics, such 

that systolic and diastolic pressures in peripheral arteries (brachial, femoral) can be 

significantly different from those measured in the aorta(260). 

 

Blood pressure can influence vascular cells in at least two ways. First, cell culture 

experiments have demonstrated that exposure of endothelial cells to pressure affects their 

growth rate; pressures of 20 to 100 mmHg increase growth compared to no pressure (173). 

Second, pressure distends arteries, thereby stretching vascular cells in the wall. Because 

arteries are compliant, changes in pressure consequently produce circumferential stress (i.e. 

strain). Because of the pulsatile nature of arterial blood pressure, this circumferential strain 

results in cyclic circumferential strain (Figure 2).  

 

i. Detection of cyclic circumferential strain by the endothelium 

In response to cyclic circumferential strain, endothelial cells respond morphologically with 

alignment of cells perpendicular to the force vector, subsequently followed by phenotypic 

changes (52). The mechanism by which the endothelium recognizes and transduces 

mechanical stimuli involves various signalling systems (i.e. integrins, ion channels, G 

proteins-coupled receptors and receptor tyrosine kinases). This complex system of 

mechanosensors converts mechanical stimuli into chemical signals that lead to the activation 

of intracellular signalling cascades (Figure 2). The latter can alter transcription factors and 
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activation of genes that regulate the fate of the endothelial cells and smooth muscle cells: i.e. 

proliferation, migration and/or apoptosis. In this process, cyclic circumferential strain 

eventually modifies matrix proteins [i.e. metalloproteinases (MMPs)] that can affect 

components of the extracellular matrix, but also influence non-matrix substrates (e.g. growth 

factors and receptors) (52). 

 

ii. Relevance of the pattern of cyclic circumferential strain 

Increases in arterial pressure that distend arteries and increase transmural pressure also induce 

increased cyclic circumferential strain on endothelial cells (67). Cyclic circumferential strain 

can also increase as a result of relaxation of vascular smooth muscle, which induced 

vasodilation and stretching of the endothelial cells lining (Figure 2). Endothelial cells are 

experience cyclic circumferential strain across the cardiac cycle in vivo. In humans, cyclic 

circumferential strain has been measured in the aorta using MRI, with peak strain occurring 

after peak flow (67). During exercise, the distention in the aorta increases because of 

increases in heart rate and systolic pressure. Increased exposure to cyclic circumferential 

strain has been reported to alter vascular cell gene expression, such as increased 

expression/activity of endothelium-dependent dilator pathways endothelial nitric oxide 

synthase (eNOS) and endothelium-derived hyperpolarizing factor (EDHF) synthase 

(CYP450), as well as increase release of reactive oxygen species (ROS), expression of 

adhesion molecules such as intercellular adhesion molecule (ICAM), selectin, and monocyte 

chemoattractant protein-1 (MCP-1) (173). Consistent with these observations, chronic 

increases in blood pressure are associated with impaired endothelial function and progression 

of atherosclerosis (71) (Figure 2). 
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The effects of cyclic circumferential strain are complex and variable. Because cyclic 

circumferential strain can have direct effects on endothelial cell gene expression, but also 

increases superoxide, other forms of ROS and adhesion molecules (e.g. VCAM-1), the direct 

effects of stretch on gene expression are not easily predicted (173). ROS produced by cyclic 

circumferential strain may indirectly alter vascular cell phenotypes. The major effect of 

increased cyclic circumferential strain on endothelial cells appears to be pro-atherogenic, 

even though the changes in eNOS expression alone would be anti-atherogenic. The pro-

atherogenic effect of increased cyclic circumferential strain is likely explained because the 

increased ROS-production and expression of adhesion molecules override the effects of 

increased eNOS-expression (124). Increased eNOS-expression, although not sufficient to 

preserve function, may compensate for the loss of bioactive NO caused by superoxide and 

other ROS. Whilst exercise bouts are usually <2-h duration, many studies of the effects of 

cyclic circumferential strain on endothelial cell phenotype have used 24 h/day exposure to a 

similar level of pressure.  These data suggest that the pattern of change in cyclic 

circumferential strain is relevant as transient increases in blood pressure and ROS, associated 

with exercise bouts, may increase eNOS-expression and other beneficial effects of exercise, 

whereas chronic increases in blood pressure may chronically elevate ROS, causing mal-

adaptations.  

 

It is clear that circumferential strain can influence vascular smooth muscle cell phenotype 

through effects of stretch on vascular smooth muscle cells.  While not the focus of this 

review, Figure 2 illustrates many known effects of exercise on vascular smooth muscle cells.  

The classic pressure-induced myogenic response in smooth muscle is initiated by a stretch-

induced depolarization due to activation of cation channels (167). This depolarization 

activates Ca2+ influx through Cav1.2 and subsequent Ca-induced contraction. In addition, 
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both stretch and Ca2+ activate BK channels, while depolarization activates Kv channels to 

hyperpolarize and limit depolarization in a negative-feedback manner (167).  The net result, 

other than contraction, is a dominant Cav1.2 mediated calcium influx which increases 

expression of smooth muscle-specific genes (a.k.a. differentiation markers) such as smooth 

muscle specific myosin heavy chain (SMMHC) and smooth muscle alpha actin (SMaA) 

(32,167). The transcription factors that drive smooth muscle specific gene expression, 

myocardin and to a lesser extent MEF, are also increased by pressure-induced Ca influx 

(32,167).  Pressure/stretch is known to regulate smooth muscle synthesis of connective tissue 

growth factor (CTGF), collagen and fibronectin indicating that pressure can influence vessel 

wall matrix composition through smooth muscle (30-32, 167)(Figure 2). As highlighted 

elsewhere, the seminal studies of Folkow infer that changes in arterial wall thickness can 

exacerbate effects on arterial pressure in vivo (74, 75).  

 

B. Endothelial shear stress  

In 1933, Schretzenmayr exposed cat femoral arteries to an increase in blood flow via 

stimulation of the hind leg motor nerves and observed a gradual increase in femoral artery 

diameter (268). This may be the first study to demonstrate that conduit arteries are able to 

react to forces exerted by the circulating blood. The role of endothelial cells in the ‘detection’ 

of changes in flow, and their production of vasoactive second messengers, was only 

recognized later.  

 

In 1975, Rodbard published a prescient account of endothelial transducer function (256). He 

proposed four steps (Figure 3), starting with exposure of the endothelium to an increase in 

viscous drag (step 1), or “shear stress”. Any increase in flow that increases this drag (step 2), 

subsequently triggers acute dilation (step 3), a functional change that tends to homeostatically 
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modify the initial increase in shear. When exposed to prolonged periods of change in flow 

and shear, vessel remodelling can occur, whereby local drag is returned toward the norm by 

virtue of structural arterial modification (step 4).  In 1980, Furchgott published his famous 

experiment, which provided elegant evidence for the importance of the endothelium in 

mediating vasodilation in response to acetylcholine through the release of a vasodilator 

substance, EDRF, later described as nitric oxide (NO) (79). This Nature paper was preceded 

by another, which observed that vasodilator prostaglandins were produced by the 

endothelium (208), although the role of shear stress in this transduction process was 

demonstrated somewhat later (160, 263). 

 

Studies in the early 1980s provided experimental evidence for Rodbard’s assumptions that an 

increase in flow induces artery dilation (134), most likely through the release of a dilator 

signal from the endothelium (263). Pohl and colleagues performed a series of experiments 

(246) in which they demonstrated that in vivo infusion of acetylcholine and augmentation of 

arterial flow elicited remarkably similar dilation, whereas mechanical removal of the 

endothelial layer abolished these responses (Figure 4). In the same year, Rubanyi and 

colleagues reinforced the ability of increases in flow to induce an endothelium-dependent 

dilation, and also found that, in addition to prostacyclin, flow triggers the release of another 

relaxing substance to mediate vasodilation (263). Subsequently, Berdeaux et al. (21) (Figure 

4) showed exercise-intensity dependent vasodilation of canine epicardial coronary arteries 

was converted to vasoconstriction after mechanical endothelial denudation. Taken together, 

these studies provided further evidence for the importance of the functional integrity of the 

endothelium in the integrated control of arterial diameter, with the endothelium being 

hypothesized to protect against the vasoconstrictive effects of catecholamines released during 

exercise (21). 
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In 1989, two human-based studies reported that increases in brachial artery flow induced by 

distal blood pressure cuff inflation around the forearm were followed by dose-dependent 

dilation of the artery (8, 275). These observations prompted introduction of the “flow-

mediated dilation (FMD)” approach as an in vivo bioassay of endothelium-dependent 

vascular smooth muscle relaxation in humans. This non-invasive approach uses a 5-minute 

cuff occlusion of the forearm to induce increased shear stress in the brachial artery and 

consequent dilation (44), quantified by non-invasive high resolution ultrasound. Human data 

support the endothelium- and NO-dependence of brachial FMD (98), and radial artery FMD 

is significantly reduced after endothelial denudation in vivo (61) (Figure 4). 

 

The endothelium is also essential in mediating structural arterial adaptation. A decrease in the 

common carotid artery size was observed in response to chronic reductions in blood flow, 

whilst such adaptation was abolished when the endothelium were removed (167) (Figure 4). 

A subsequent study further explored the role of endothelium-derived nitric oxide (NO) in 

adaptive changes in diameter (307) (Figure 4). Blood flow through the carotid artery was 

chronically increased by an arteriovenous fistula, which caused the diameter to increase 

(causing normalisation of shear stress). However, animals in which NO-synthesis was 

pharmacologically blocked showed attenuated adaptation of carotid diameter. These findings 

suggest that the endothelium, through NO-dependent pathways, plays a role in remodelling of 

vessel diameters in response to increases in shear stress. 

 

i.    Detection of shear stress by the endothelium 

Mechanotransduction at the luminal surface of the endothelium is initiated by shear stress 

detection by ion channels (K+, Ca2+, Na+, Cl−), cell membrane receptors (tyrosine kinase 
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receptors), G-proteins, caveolae, and the plasma membrane lipid bilayer (10) (Figure 2). 

Furthermore, the lumen is lined with glycocalyx, a glycoprotein-polysaccharide structure that 

is specifically responsible for shear stress-induced NO production (10). There is evidence for 

primary cilia that are linked to shear stress-mediated production of NO (10) and shear has 

also been proposed to be  detected by the cytoskeleton of the endothelial cells, largely 

through its connection to integrins (VE-cadherin and integrin) and a mechanosensory 

complex (platelet endothelial cell adhesion molecule-1). A possible explanation for the 

involvement of multiple, distinct types of mechanotransduction is that shear stress, in contrast 

with pressure, is a relatively weak force (10). Therefore, highly sensitive mechanisms seem 

necessary to sense shear stress (Figure 2), including the detection of complex patterns of 

shear. 

 

ii.    Relevance of the pattern of shear 

Correlational studies. In 1969, Caro and colleagues studied the incidence of atherosclerosis 

in low versus high shear regions and branch points in the coeliac, mesenteric and renal 

arteries. They found that, relative to areas of higher shear (i.e. inner wall of branch points), 

regions of low shear (i.e. outer wall of daughter vessels) revealed greater burden of 

atherosclerotic lesions. The authors proposed that local hemodynamics play a fundamental 

role in the etiology of atherosclerotic disease (38). Of relevance to the present review, Caro et 

al. were likely the first to articulate that “physical exercise involving increase of cardiac 

output, and hence increased shear rate, might retard the development of atheroma” (38).  

Along these lines, post-mortem human carotid artery specimens exhibit the greatest 

atherosclerotic burden at the outer wall of the vessel, a region subjected to low levels of shear 

stress and substantial flow reversal (325). Studies in large animals also support the idea that 

atherosclerosis preferentially develops in susceptible regions of the vasculature. Indeed, low 
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and oscillatory shear regions occur in porcine coronary and peripheral conduit arteries at 

geometrically irregular sites (i.e. branch points, bifurcations and curvatures), and these 

regions are highly atherosclerosis-prone (49, 57, 110, 139, 165, 245). Furthermore, it was 

recently reported in a pig model of familial hypercholesterolemia (251) that the distal portion 

of the aorta, subjected to disturbed blood flow profiles, presents ~3 fold greater levels of 

atherosclerotic burden relative to the proximal portion of descending aorta, which is exposed 

to more unidirectional flow (236). 

 

In vitro studies. Intricate mechanotransduction and signaling mechanisms operate in concert 

to alter endothelial gene expression and function, and adaptation depends upon the 

characteristics of the shear stress stimulus (148). Initial in vitro studies demonstrated that 

oscillatory shear promotes endothelial inflammation, activation, and abnormal alignment of 

endothelial cells (58), whereas laminar shear reduces inflammation-related events such as 

leukocyte-endothelial adhesion (179). Using sophisticated technology, more recent studies 

showed that expression of pro-atherogenic genes is increased in cultured endothelial cells 

subjected to shear patterns replicating in vivo patterns in atheroprone regions, in contrast to 

cells exposed to patterns characteristic of protected regions (35, 126, 228). Pro-atherogenic 

shear patterns induce production of NADPH oxidase- and mitochondria-derived superoxide 

radicals, augment production of endothelin-1, and upregulate VCAM-1 and ICAM-1 (51, 54, 

142, 143, 228, 284, 318), all critical early events in the development of atherosclerosis. 

 

The role of shear stress patterns in modulating vascular health is also supported by studies in 

isolated and pressurized arteries. For example, isolated rat soleus feed arteries exposed to 

high flow and shear stress for 4 hrs exhibited increased expression of eNOS mRNA and 

enhanced endothelium-dependent dilation (321). Conversely, exposure of rat carotid arteries 
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to low levels of shear stress for 4 hrs promoted the upregulation of adhesion molecules such 

ICAM-1 and VCAM-1 (236). Others have shown that pig carotid arteries subjected to 

oscillatory shear for three days exhibited a marked impairment in endothelium-dependent 

vasorelaxation (80), an effect that was accompanied by reduced eNOS mRNA and protein 

expression. Also, evidence exists indicating that flow reversal significantly reduces NO 

bioavailability in isolated porcine femoral arteries due to increased superoxide production 

(188), a known molecular mediator of atherogenesis (234). NADPH oxidase appears to be the 

principal source of retrograde flow-induced reactive oxygen species generation in isolated 

arteries (89, 188). Taken together, the data from in vitro cell culture and isolated vessel 

preparations firmly support the view that disturbed shear stress patterns stimulate a pro-

atherogenic endothelial cell phenotype. 

 

In vivo studies. Data demonstrating that disturbed shear stress profiles produce detrimental 

vascular effects are also available from in vivo studies in animals. The partial carotid artery 

ligation model has provided a valuable experimental model for the in vivo study of disturbed 

shear stress profiles (162, 221). Due to ligation of all but one of the distal branches, and a 

consequent increase in downstream vascular resistance, the proximal portion of the carotid 

artery is chronically exposed to disturbed blood flow. This model leads to substantial wall 

thickening with leukocyte infiltration and smooth muscle proliferation within 2 weeks in 

normal mice (162) and endothelial dysfunction and advanced atherosclerotic lesions in 

ApoE-/- mice (221). These functional alterations are preceded by rapid molecular phenotypic 

changes. In this regard, expression of more than 500 genes is altered within 2 days following 

ligation (226). This experimental model has provided considerable insights related to the 

mechanisms underlying disturbed shear stress-induced atherosclerosis. Leukocytes have been 

reported to promptly accumulate into the arterial wall during initiation and progression of 
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disturbed flow-induced atherosclerosis (3). In addition, eNOS uncoupling (184), NADPH 

oxidase-derived superoxide radicals (221), fibronectin polymerization (46), IL-17 signaling 

(189), and adhesion molecules such as PECAM-1 (45) all are involved in the development of 

atherosclerosis caused by partial carotid ligation in mice. Of note, studies in which the partial 

ligation model was superimposed onto models of obesity (181) and reno-vascular 

hypertension (147) indicate that the pro-atherogenic effects of disturbed shear stress may be 

more prominent when accompanied by cardiovascular risk factors. 

 

C.    Importance of interaction between hemodynamic forces 

Exercise has complex effects on hemodynamics that result in increased blood flow and shear 

stress, increased frequency of pulsatile changes in pressures and flows, and increased arterial 

systolic and pulse pressures. These complex hemodynamic effects of exercise can contribute 

to the expression of pro-atherogenic vascular phenotypes, especially when the hemodynamics 

are asynchronous. Dancu et al. showed that synchronous pulsatile changes in diameter, flow 

and blood pressure have different effects on silicon tubes lined by endothelium, compared to 

the effects of asynchronous changes (55). Synchronous hemodynamics exist when flow, heart 

rate and pressures have the same time courses, i.e. peak pressure, peak flow, and peak 

diameter occur at nearly the same time.  Synchronous hemodynamics are often seen in the 

aorta, whereas asynchronous hemodynamics are common in the coronary arteries. Indeed, 

peak coronary flow is observed in early diastole, when pressure and coronary artery diameter 

are low. Therefore, asynchronous hemodynamics are normal for coronary arteries (56).  

When synchronous and asynchronous changes in pressure, tube diameter, and gene 

expression in endothelial cells cultured in silicon tubes are examined in more detail, results 

demonstrate that asynchronous pulsations in shear stress and circumferential strain result in 

decreased eNOS expression, but increased ET-1 expression in endothelial cells (55, 56).  The 
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fact that coronary arteries are exposed to asynchronous hemodynamics may therefore explain, 

in part, the propensity of these arteries to develop atherosclerosis. During exercise, however, 

coronary blood flow becomes pulsatile with positive flow in both systole and diastole. The 

relatively greater exercise-induced increase in shear stress and blood flow (4-6 fold increase), 

combined with small increase in systolic pressures and non-oscillatory coronary blood flow 

during exercise, results in net anti-atherogenic signals (171, 173). 
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III. HEMODYNAMIC STIMULI DURING ACUTE EXERCISE 

A. Effects of exercise on hemodynamic forces 

i. Shear stress in vascular territories perfusing active areas 

At the onset of exercise, blood flow and shear stress markedly increases in the active regions 

in an exercise intensity-dependent manner, to meet the increased metabolic demand (95, 270, 

290). For example, handgrip exercise, which causes minor changes in blood pressure and 

cardiac output, induces large hyperemic responses, suggesting that vasodilation in 

downstream resistance vessels is the major cause of increased blood flow during handgrip 

exercise (95). Lower limb exercise, which engages a larger muscle volume and consequently 

increases blood pressure and cardiac output, is associated with increases in femoral artery 

blood flow that result from changes in downstream resistance vessel dilation in concert with 

the increases in central driving pressure. Studies that have examined local vasodilator 

mechanisms contributing to exercise-hyperemia have generally found a redundancy of 

vasodilator mechanisms (153), which means that blocking single pathways does not 

importantly impair exercise-hyperemia. This redundancy ensures that blood flow to 

exercising muscle is highly protected, even in the absence, or attenuated presence, of key 

vasodilator pathways. Therefore, local vasodilator mechanisms along with increases in 

arterial pressure and cardiac output contribute to exercise hyperemia, leading to significant 

increases in shear stress in the active areas during exercise. 

 

Whilst a large number of studies have explored exercise hyperemic mechanisms, little 

attention has been paid to the impact of exercise on the pattern of blood flow and shear stress. 

This likely relates to the technical difficulty and limitations associated with contemporary 

techniques to validly assess shear stress patterns in physically active limbs, such as in the 

lower limbs during cycling or running exercise. However, some studies have examined 
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brachial artery shear stress pattern during local handgrip exercise. In agreement with studies 

adopting techniques to assess bulk blood flow, Green et al. found that brachial artery blood 

flow and shear rate increased with incremental levels of handgrip exercise in healthy subjects 

(95). An intensity-dependent increase in antegrade shear, with negligible levels of retrograde 

shear rate, was observed during handgrip exercise (95). This study also explored the role of 

NO during incremental handgrip exercise. Largely in agreement with observations regarding 

redundancy and blockade effects during exercise-hyperemia (153), blood flow and shear rate 

patterns of the brachial artery during incremental handgrip exercise were modestly altered in 

the presence of a NO synthase blocker (95). These data demonstrate that increases in mean 

shear rate to an active limb are largely mediated through increases in antegrade shear rate, 

with negligible changes in retrograde shear rate, whilst NO is not obligatory to mediate these 

changes in shear patterns. 

 

The increase in antegrade shear induced by handgrip exercise is not stable, but consists of a 

highly fluctuating pattern of antegrade shear, at least partly induced by muscle contractions 

(Figure 5). Previous work examined whether such fluctuating pattern of shear stress (due to 

handgrip exercise), compared to gradual elevation in shear stress, affects the ability of 

arteries to dilate (248). It was demonstrated that, when matched for mean shear, comparable 

conduit artery dilation was achieved during handgrip exercise and heating. This indicates that 

muscle contractions per se, are not obligatory for the impact of shear on conduit artery 

dilation.  

 

Despite a significant amount of work exploring exercise hyperemia and its underlying 

mechanisms, surprisingly little is known about the relative impact of distinct changes in shear 

stress pattern during different forms of exercise in the active limbs. This knowledge may 
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importantly contribute to our understanding of adaptations in vascular function and structure 

in the physically active regions. It is also important to consider that distinct forms of exercise 

have impacts on vascular compression and the transduction of forces related to transmural 

pressure (14). Given evidence that these factors have impacts of arterial adaptation, the 

differential impact of exercise involving sustained (e.g. rowing) versus cyclical (e.g. rhythmic 

handgrip) muscular contraction warrants further investigation (261, 262).   

 

ii. Shear stress in vascular territories perfusing inactive areas: start of exercise 

Early studies indicating that predominant lower limb exercise training induced adaptation in 

upper limb vascular function (186, 193, 194) (previously reviewed (104)) stimulated interest 

in the patterns of shear stress occurring in vascular territories other than those feeding active 

musculature.  

 

Historical evidence suggests that blood flow to the inactive upper limbs decreases during the 

initial stages of lower limb cycle exercise, and is subsequently restored as exercise continues 

(25). This study, involving indirect quantification of blood flow using oxygen saturation 

levels of axillary venous blood, reported a biphasic response in total arm blood flow during 

the lower limb exercise, characterised by initial decreases from resting values, with 

subsequent increase in flow. More recently, novel imaging technologies have confirmed this 

pattern. Small increases in antegrade flow are accompanied by substantial increases in 

retrograde flow (92, 93) through the brachial artery during the initial stages of cycle 

ergometer exercise. The increase in retrograde flow may relate to activation of the 

sympathetic nervous system and an increase in downstream vascular resistance (43, 240). 

Alternatively, the immediate increase in retrograde shear at the onset of exercise may be 

caused by an immediate increase in microvascular critical closing pressure (113). This 
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immediate increase in brachial artery retrograde shear at the start of cycle exercise remains 

relatively stable as exercise workloads increase. In contrast, higher cycle exercise intensities 

are associated with larger increases in antegrade shear, likely due to increases in cardiac 

output. Consequently, brachial artery mean blood flow shows a biphasic pattern, with a 

decrease at lower exercise intensities and an increase in blood flow at higher exercise 

intensity levels (92, 93). 

 

The pattern of shear stress described above depends on the type of exercise performed (290). 

Cycling and walking, both representing rhythmic lower limb exercise, result in the typical 

oscillatory shear rate pattern. Blood flow patterns were markedly different during leg kicking, 

which was linked to a systolic blood pressure-driven increase in antegrade shear rate, without 

changes in retrograde shear. The different shear patterns suggest that distinct stimuli are 

responsible for the resulting change in shear stress during exercise. It should be 

acknowledged that pulsatile pressure and heart rate (and therefore cyclic circumferential 

strain) also differ markedly between these types of exercise. Whilst leg kicking exercise is 

associated with small changes in heart rate and is typically sustained for 5-10 minutes, 

rhythmic exercise can be sustained for prolonged periods at relatively high heart rates and 

significant elevation in blood pressure. These differences likely contribute to the distinct 

shear stress patterns between different types of exercise, which have implications for vascular 

cell signal transduction and consequent arterial adaptation in humans. 

 

iii. What are the mechanisms for changes in shear stress at the start of exercise? 

Blocking NO-synthase causes a significant drop in brachial artery mean blood flow during 

cycling, especially at higher workloads (93, 95). These observations suggest that upper limb 

blood flow during lower limb cycle exercise is, at least partly, mediated through 
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endothelium-mediated release of NO. To better understand the hemodynamic stimuli 

responsible for NO-production under these circumstances, the role of increases in heart rate 

was explored in the absence of exercise-induced changes in pulse pressure (92). Heart rate 

was increased in patients with implanted pacemakers to levels similar to those observed 

during lower limb exercise. In the absence of increases in pulse pressure, isolated increases in 

pulsatility induced no change in brachial artery blood flow or the contribution of NO to the 

blood flow response. This suggests that pulse pressure, rather than pulse frequency, may be 

important for NO-production in the upper limb during lower limb cycle exercise in vivo (92).  

 

iv. Shear stress in vascular territories perfusing inactive areas: continuation of exercise 

During prolonged lower limb exercise, brachial artery blood flow and shear stress patterns in 

the inactive upper limbs undergo marked changes. In addition to central factors (i.e. cardiac 

output, arterial pressure, sympathetic nervous system), marked dilation of resistance arteries 

and skin microcirculation occur during prolonged exercise, mainly as a thermoregulatory 

response to facilitate heat exchange. This thermoregulatory dilation leads to marked 

decreases in peripheral vascular resistance, which subsequently affect the upstream conduit 

artery blood flow and shear stress patterns.  

 

Simmons et al. examined the time-course of changes in skin perfusion and brachial artery 

shear stress patterns during prolonged cycle exercise (274). At the start of cycle exercise, the 

increase in brachial artery retrograde shear rate was accompanied with a modest decrease in 

cutaneous vascular resistance. This suggests that forearm cutaneous resistance does not 

mediate the initial changes in brachial artery blood flow patterns during lower limb exercise. 

More likely, these changes in shear pattern are mediated through increases in downstream 

skeletal muscle vascular resistance. Continuation of moderate-intensity cycle exercise 
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decreased vascular resistance, as the cutaneous microcirculation dilated to subserve 

thermoregulation. Hence, initial retrograde flow patterns, observed at the onset of exercise 

due to peripheral vasoconstriction under the effects of the SNS, eventually resolve as vascular 

resistance diminishes as a consequence of thermoregulatory dilation (239, 274). Indeed, 

forearm cooling at the end of the exercise bout significantly increased forearm and skin 

vascular resistance and, subsequently, increased retrograde shear (274). These data indicate 

the importance of integrative changes in human physiological responses to exercise.  Changes 

in blood flow response to exercise per se, along with thermoregulatory modification of 

systemic blood flow distribution and hemodynamics, both contribute to the ultimate pattern 

of blood flow and shear stress through human arteries in vivo. 

 

Another relevant question is whether exercise per se is essential to the modulation of arterial 

diameter in response to changes in shear stress. Carter and colleagues reported a dose-

dependent dilation of the brachial artery in response to step-wise increases in shear stress 

which were exercise-independent (39). The hypothesis tested was that, if artery dilation 

during exercise is a consequence of changes in arterial shear stress, then similar changes in 

shear stress in the absence of exercise should induce a similar magnitude of dilation. It was 

observed that heating of the forearm (39, 239) or legs (41) at rest caused comparable arterial 

dilation in response to increases in brachial artery shear stress. More importantly, some of 

these studies have performed bilateral assessment of the brachial artery, with unilateral cuff 

inflation to effectively attenuate the heat- or exercise-induced increase in blood flow and 

shear in one arm, leaving the contra-lateral arm unaffected. Abolishing the exercise- or heat-

induced increase in blood flow and shear stress prevented brachial artery dilation under these 

experimental conditions. Such within-subject designs involving simultaneously derived 

measurements, controls for systemic factors and subject variability, strongly imply that shear 
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stress is an important stimulus to acutely dilate conduit arteries in humans. These studies 

provide insight into the observation that repeated whole body heating (e.g. sauna) may confer 

clinical benefits in terms of vascular function and health (37, 178). 

 

v. Non-shear stress hemodynamic stimuli mediating artery vasomotion during exercise 

Exercise causes marked increases in transmural pressure, a stimulus that reduces arterial 

diameter in studies using isolated preparations and animals (59, 151). Examining the impact 

of transmural pressure in humans in vivo is challenging due to the confounding influence of 

concurrent changes in shear stress which typically accompany alterations in pressure. In a 

recent study, Atkinson and co-workers utilized 30-min unilateral handgrip exercise to induce 

systemic elevation in blood pressure (14). This approach was not associated with changes in 

shear rate in the contra-lateral arm, or changes in sympathetic nervous system activation, 

providing a model to isolate the impact of transmural pressure from that of shear rate in vivo. 

Unilateral handgrip exercise caused a step-wise decrease in contra-lateral brachial artery 

diameter in the resting limb, whereas these decreases in diameter were mitigated in the active 

limb by exercise-induced elevation in shear stress (14). This work supports the role of 

transmural pressure in the regulation of vascular tone and suggests active competition in 

distinct vascular beds between the effects of transmural wall pressure changes and changes in 

localized shear stress. 

 

Taken together, the local hemodynamic stimulus, involving shear stress and transmural 

pressure, markedly differ between vessels supplying active versus non-active areas, but also 

differ between various types of exercise. Functional and structural characteristics of the 

cardiovascular system also affect the hemodynamic responses to exercise (20). The various 

factors influencing shear stress patterns in conduit arteries during exercise are summarized 
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(Figure 5), highlighting the complex, integrative nature of the exercise stimulus. Insight into 

the different hemodynamic stimuli may improve our understanding of the impact of exercise 

training on adaptations in vascular function and structure and the consequent implications for 

vascular health (107). 

 

B. Impact of different shear stress patterns on artery function 

Studies have demonstrated that acute exercise can lead to an immediate increase in 

endothelium-mediated dilation (60). To examine the relative importance of shear stress in 

these functional changes, Tinken et al. examined brachial artery vasodilator function, using 

the FMD test, before and after 30-minutes handgrip exercise (i.e. metabolically driven), cycle 

exercise (i.e. thermoregulatory-driven), and forearm heating (i.e. non-exercise driven) (305). 

After successfully increasing shear stress levels, FMD significantly improved. Given the 

marked differences between the 3 interventions in pulse pressure and pulse frequency, these 

results highlight the importance of shear stress in mediating acute changes in endothelium-

mediated dilation. Indeed, unilaterally attenuating the shear stress stimulus, with preservation 

of the pulse pressure and frequency, abolished the improvement in FMD (305). This suggests 

that elevation in shear stress, independent of exercise, directly impacts vascular function in 

humans. 

 

Given the intensity-dependent relationship between exercise and hyperemia, higher intensity 

exercise (and therefore larger shear stress) may lead to incremental increases in post-exercise 

vascular function. However, most studies that have explored this relationship have reported a 

decrease in vascular function immediately after high-intensity cycle exercise (60), that may 

be followed by a rebound recovery of function one or more hours after the cessation of the 

bout. For example, cycle exercise at 70-85% impaired FMD post exercise, a response not 
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observed following exercise at 50% of maximal heart rate (22). In addition to increases in 

shear stress, strenuous exercise also mediates other effects such as the production of ROS and 

activation of the sympathetic nervous system (90). These potentially detrimental effects may 

mitigate beneficial shear stress effects of exercise (60). To address these competing impacts, 

Atkinson et al. (13) examined the effect of incremental levels of handgrip exercise on 

brachial artery vascular function. Such exercise increases shear stress in the brachial artery, 

without producing the same degree of reflex sympathetic activation or hormonal change 

associated with exercise using a larger muscle group, such as lower limb exercise. The dose-

dependent increase in brachial artery blood flow and shear stress in response to hand gripping 

was associated with post-exercise improvement in vascular function following 1 hour of 

recovery from the bout, at the highest exercise only. These data provide further evidence that 

increases in shear stress, per se, can improve vascular function, possibly in a dose-dependent 

manner. 

 

To explore the relevance of the pattern of shear stress, one study compared the effects of 30-

minute forearm heating, handgrip exercise and leg cycle exercise (305). Mean shear levels 

under each condition were matched by manipulating the exercise intensities. Comparable 

improvements in vascular function were observed under each condition. Unilateral forearm 

cuff inflation reduced mean blood flows in the contra-lateral arm under each of the 

experimental conditions, causing distinct shear patterns. Vascular function did not change 

after heating or handgrip exercise in the cuffed arm, whereas FMD decreased after cycle 

exercise in the cuffed arm, a condition associated with much greater retrograde flow and 

shear stress. This study therefore suggested that decreases in FMD occur particularly after 

exercise that induces a retrograde shear component, such as is evident in the upper limbs 

during leg cycling.  A subsequent study utilized sub-diastolic cuff inflation (25, 50 and 75 

mmHg) in resting subjects to explore the impact of 30-minute exposures to incremental levels 
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of retrograde shear rate, with matched levels of antegrade shear rate (291). Manipulation of 

the magnitude of retrograde shear in a dose-dependent manner leads to a step-wise decrease 

in FMD. Taken together, these data are largely in agreement with previous work in animals 

(see section IIBii), and support a role for shear stress in the alteration of endothelial function, 

with distinct shear patterns potentially leading to different changes (Figure 6).  

 

If the pattern of shear stress is important, as these studies suggest, the return of brachial artery 

retrograde shear to baseline values and increase in antegrade shear during prolonged exercise 

may be advantageous. These changes reflect conversion from a potentially pro-atherogenic 

stimulus (patterns dominated by a retrograde component) to an anti-atherogenic stimulus. 

This likely represents the predominant stimulus to which arteries are exposed during 

prolonged exercise. The differential impacts of exercise intensity on shear patterns may also 

be a relevant consideration, with lower intensities potentially inducing less detrimental 

patterns. The protective effects of shear in this regard should be considered in the context of 

the epidemiological evidence, which indicates that the greatest impact on cardiovascular 

events occurs from adoption of lower levels of physical activity and that the benefits trail off 

as the volume of PA increases. The relevance of the pattern of shear stress for adaptation in 

vascular function and structure to exercise training is further discussed below. 
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IV. VASCULAR ADAPTATIONS TO EXERCISE TRAINING: ROLE OF 

HEMODYNAMIC FACTORS 

A.    Adaptations in vascular function 

i.    Conduit arteries 

Studies in subjects who exhibit impaired endothelial function, such as those possessing CV 

risk factors (e.g. hypertension, hypercholesterolemia, type 2 diabetes mellitus, obesity) or 

with established CVD (e.g. heart failure, peripheral artery disease), have typically revealed 

improvement in conduit artery function (measured as the FMD) following exercise training 

(85, 104, 244, 296). Indeed, a recent meta-analysis of randomized controlled trials (12) 

confirmed earlier proposals (104, 196), that exercise training improves FMD, with larger 

improvements in populations with cardiometabolic disorders. These findings also confirm 

observations from our group, in which data on 182 subjects who underwent supervised 

centre-based exercise training were pooled. The strong inverse relation between pre-training 

FMD and improvement in FMD (100) suggested that conduit artery endothelial function is 

highly amenable to improvement, especially in subjects with the presence of CV disease 

and/or risk. Similarly, exercise training is able to improve coronary artery diameter, coronary 

blood flow responses to intra-coronary administration of acetylcholine and coronary blood 

flow reserve to adenosine infusion (119, 170).  

 

To understand the role of hemodynamic stimuli on vascular adaptation to training, 

Hambrecht et al. studied the impact of 4 weeks of cycle exercise training on the internal 

mammary artery of CAD patients (114) (Figure 7). Data from the harvested arteries indicated 

a 2-fold increase in endothelial nitric oxide synthase (eNOS) expression and 4-fold higher 

eNOS Ser1177 phosphorylation after 4-weeks training (114). The upregulation of eNOS Ser1177 

is of particular relevance, since phosphorylation of eNOS at position Ser1177 is linked to shear 
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stress transduction. Moreover, a correlation was present between improvement in endothelial 

function in vivo and shear-dependent eNOS phosphorylation. These data suggest that exercise 

causes activation of eNOS, through a shear stress-induced/Akt-dependent increase in eNOS 

phosphorylation on Ser1177, ultimately leading to improvement in endothelial function.  These 

results are supported by reports that exercise training improved endothelium-dependent 

dilation in peripheral and coronary arteries in humans (114, 115, 117) and a porcine model of 

early stage atherosclerotic disease (302, 322, 323). 

 

A crucial role for shear stress in mediating vascular adaptation was described in a subsequent 

series of human in vivo studies, which adopted the model of unilateral, sub-diastolic cuff 

inflation to attenuate shear stress during exercise. By performing simultaneous bilateral 

assessments of vascular function and structure, this approach provided a within-subject model 

to explore the importance of shear stress, especially since both arteries were exposed to 

similar levels of circulating stimuli, reflex activation and pressure-related hemodynamics. 

Adopting this design, 8 weeks of bilateral handgrip exercise training (306) and cycle exercise 

training (22) resulted in significant, time-dependent changes in vasodilator function and 

structure of the brachial artery in the non-cuffed arm. In marked contrast, these exercise 

training-related adaptations across 8 weeks of exercise training were non-existent in the arm 

devoid of shear stress due to cuff inflation. 

 

To further evaluate the importance of shear stress, subsequent studies induced repeated 

episodic increases in brachial artery shear stress using an exercise-independent heating 

stimulus (39, 222). Exposure to forearm heating increases brachial artery shear stress, 

whereas inflating a blood pressure cuff around the forearm abolishes such changes (39, 222). 

Eight weeks of exposure to forearm heating caused a time-dependent improvement in 
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brachial artery vasodilator function and structure, whilst no adaptation was apparent in the 

cuffed arm (222). Both arms were directly exposed to heat, which may impact the findings. 

Therefore, experiments were repeated using 8-weeks episodic submersion of the lower limbs 

in warm water, leading to forearm hyperemia subserving thermoregulation (40). In keeping 

with previous studies, adaptations in brachial artery function occurred in the uncuffed arm, 

but not in the cuffed arm in which shear stress was not elevated. These observations support 

the idea that increases in shear, independent of the method, induce vascular adaptations. 

 

It is important to emphasise that the relative contribution of different vasodilator and 

constrictor pathways to the improvement in conduit artery function following training 

remains largely unknown. Specifically, whilst some previous work has indicated that 

training-induced improvements in FMD are largely mediated through NO (98), other less 

well studied mechanisms are nonetheless likely to contribute (136). In addition, whilst many 

studies have reported no change in endothelium-independent smooth muscle-mediated 

dilation following training, most of these adopted a near maximal dose of NO donor, and it is 

possible that changes in smooth muscle function as a result of training have been overlooked.  

Indeed, animal studies have often observed changes in artery function that are endothelium-

independent as a result of training (170). These research questions require further 

investigation to fully address the pathways underlying generalized improvement in conduit 

artery function in response to exercise training in humans. 

 

Another biophysical property of large arteries, arterial wall stiffness, can be reliably 

measured via pulse wave velocity (PWV), which strongly relates to atherosclerotic disease 

(313). Measurement of PWV compliments measures of FMD in that PWV captures structural 

along with functional health of the arterial wall. The increase in risk for CV events is 30% for 
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every 1SD change in PWV (17) a 1 m/sec increase in PWV leads to a 7% increase of the 

hazard for CV events (314) and PWV improves 10-yr risk classification by 13%.  PWV is 

therefore a commonly adopted tool to examine conduit artery stiffness, with studies 

distinguishing ‘central’ (femoral-carotid PWV) or ‘peripheral’ stiffness (brachial-ankle 

PWV). Recent work analysed all randomized controlled studies of the impact of exercise 

training on both measures of PWV (11). Whilst a generalized effect of exercise training was 

observed, a somewhat larger effect size was related to longer duration of training and in those 

with lower a priori levels of arterial stiffness. Furthermore, a larger reduction in PWV after 

exercise training was observed for brachial-ankle PWV compared to carotid-femoral PWV. 

This suggests that exercise has a larger effect on ‘peripheral’ conduit artery stiffness 

compared to aortic stiffness (11). Possibly, more muscular, stiffer peripheral arteries allow 

for larger adaptations of arterial wall properties in response to exercise training, compared to 

central, more elastic arteries. In agreement with this hypothesis, one study reported that 

exercise training improves peripheral artery stiffness (i.e. popliteal artery), in the absence of 

changes in a central (carotid) artery (249). Few studies have directly examined the 

importance of distinct hemodynamic factors in mediating changes in the stiffness of arteries 

in humans. 

 

ii.    Resistance arteries 

Traditionally, the impact of exercise training in resistance arteries has been studied using 

forearm strain-gauge plethysmography (154). When combined with intra-brachial infusion of 

agonists or antagonists, this allows for detailed insight into the mechanisms underlying 

changes with training (154). Adopting a cross-sectional design, Green et al. explored the 

impact of regular exercise on resistance artery endothelial function, and found no differences 

in endothelial function (infusion of acetylcholine), or contribution of NO to basal resting tone 
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(L-NMMA), between the dominant and non-dominant arms of elite tennis players (101). 

Similarly, there was no impact on NO-mediated vasodilation as a result of 4 weeks on 

unilateral handgrip exercise training (96). Kingwell et al. observed that 4 weeks cycle 

training did not change forearm resistance artery endothelial function, whereas an 

improvement in basal NO function was observed (158). Subsequent studies performed in 

healthy subjects have reported conflicting results regarding the impact of exercise training on 

resistance artery endothelial function, with some showing improvement (16, 209), but many 

reporting no change (195, 233). The majority of longitudinal studies in healthy subjects 

suggest that exercise training does not “supra-normalise” resistance vessel endothelial 

function (104). 

 

Studies performed in subjects with a prior impaired resistance artery endothelial function 

have been more consistent. Exercise training in middle-aged subjects improved forearm 

resistance vessel endothelial function (65) and NO bioavailability (281). Exercise training 

also improves endothelial function and/or increases the contribution of NO to basal tone in 

subjects with cardiovascular risk including hypertension (131), T2DM (193, 223), obesity 

(202) and hypercholesterolemia (183, 316) and in subjects with coronary artery disease (114, 

315) and heart failure (115, 116, 192, 194). Nonetheless, not all studies uniformly 

demonstrate improvement in resistance artery endothelial function (5, 16), and this may relate 

to the short duration and/or insufficient exercise intensity used in some studies. There are also 

well established impacts of sex hormones on the function of arteries (102, 213) and some 

preliminary evidence that the impact of training may differ (26, 108, 214), although 

interactions between hormones and shear stress in terms of arterial adaptation have not been 

directly addressed in humans.  Taken together, these findings strongly support the notion that 
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exercise training improves resistance artery vascular function in subjects with CV risk or 

disease, in whom endothelial function is initially impaired (104).  

Recent studies have focused on the potential impact of exercise training on the vasodilator 

prostacyclin (PGI2). Hellsten and colleagues found that 8 weeks of exercise training in 

hypertensive participants increased the formation of interstitial adenosine and PGI2, which 

may contribute to improved vascular responses after exercise training (129). Work from the 

same group demonstrated that exercise training increased PGI2 muscle protein levels and 

muscle interstitial concentrations in older men (88), whilst training-induced increases in PGI2 

plasma levels were found in postmenopausal women (227) and hypertensive subjects (123). 

Others found that exercise training can improve the PGI2-pathway in humans (330), further 

supporting a role for upregulation of the prostanoid system to improve endothelial function 

after exercise training. 

 

Vasoconstrictors ET-1 and Ang II do not importantly contribute to the regulation of baseline 

vascular tone in healthy volunteers (111, 294, 312) and aerobic exercise training does not 

alter these vasoconstrictor pathways in healthy volunteers. In contrast, vasoconstrictor 

pathways are upregulated in subjects with cardiovascular disease or risk, and aerobic training 

is able to partly reverse the contribution of ET-1 to baseline vascular tone in older humans 

(297, 310). Exercise training is also associated with decreased plasma and muscle levels of 

ET-1 (191, 227). Regarding Ang II, training in CAD patients caused a 49% reduction in Ang 

II-induced vasoconstriction (2). Taken together, exercise training improves vasoconstrictor 

pathways in individuals who, a priori, demonstrate an increased contribution of 

vasoconstrictors to vascular tone. 
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The sympathetic nervous system (SNS) is a highly relevant vasoactive pathway, particularly 

in the context of exercise and training. Heart rate variability, a measure of autonomic balance, 

improves as a result of exercise training (219, 243), especially in those with autonomic 

disorders (243). Others have found that plasma noradrenaline decreases following training in 

heart failure patients. This effect may differ between healthy subjects and those with elevated 

noradrenaline (34). Consistent with these findings, training decreases age-related impairment 

in baroreflex function (207). Furthermore, muscle sympathetic nerve activity decreases after 

a period of exercise training, especially in subjects with elevated SNS activity (42, 232, 258). 

Finally, exercise training induces cyclic activation of brainstem centres, including the rostral 

ventrolateral medulla, which may modify central sympathetic output and vasoconstriction 

(217). Generally, these studies support the notion that exercise training decreases SNS 

activity level and SNS-mediated vasoconstriction. In contrast, some studies performed in 

healthy volunteers provide compelling evidence that exercise training does not lower SNS 

activity (258, 259). In fact, Sugawara and colleagues demonstrated that aerobic training in 

healthy volunteers increased basal SNS vasoconstrictor tone (using ∝-adrenoceptor blockade) 

(281). This observation concurs with some evidence for elevated sympathetic tone following 

training in healthy subjects (6). Despite this apparent increase in resting tone, basal blood 

flows were similar after training, probably as a consequence of compensatory increases in 

NO-mediated vasodilator function (281). In keeping with this, exercise training can increase 

NO-mediated vascular tone, despite preserved resting blood flow (158). These lines of 

evidence support the contention that increased training-induced increases in vasodilator 

function or arterial remodelling may be counteracted by increased sympathetic tone, with no 

resultant change in resting blood flow or arterial diameter despite enhanced vasodilator 

capacity. 
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iii.    Microcirculation 

Coronary arterioles from exercise trained pigs exhibit enhanced myogenic constriction 

compared to arterioles from sedentary pigs (218) and similar results were found in exercise 

trained rats (121).  This enhanced tone may be due to altered calcium-dependent PKC-

signalling in the coronary smooth muscle cells (163) and increased voltage-gated calcium 

currents in smooth muscle of large arterioles through L-type calcium channels (31) (Figure 

2). The increased constriction in response to stretch (myogenic reactivity) is not accompanied 

by changes in receptor-mediated vasoconstriction (ET-1, acetylcholine) or to direct 

stimulation of voltage-gated calcium channel activation with the L-type calcium channel 

agonist Bay K8644 or by K+ (172).  Exercise training may increase activity of Kv and KCa 

channels of coronary vascular smooth muscles and/or alter calcium control by sarcoplasmic 

reticulum (33, 128, 169). 

 

Exercise training increases the maximal adenosine-induced increase in coronary blood flow 

per gram of myocardium in both dogs and miniature swine in vivo.  Although these results 

demonstrate that coronary blood flow capacity is increased by exercise training, resting blood 

flow and blood flow during submaximal exercise (same absolute intensities) is equal or 

slightly lower after exercise training.  At similar levels of cardiac work, coronary blood flow 

is not changed by exercise training, suggesting a minimal effect on the coupling between 

myocardial metabolism and coronary blood flow (170).   

 

Exercise training has also been reported to increase endothelium-dependent dilation in 

response to intra-coronary serotonin (30) and bradykinin in coronary arterioles (64-157 μm in 

diameter) isolated from exercise trained swine (218). The increased bradykinin-induced 

dilation appeared to be the result of increased NO release from eNOS, because L-NMMA 
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inhibited dilation to a greater extent in arterioles from exercise trained pigs and eliminated the 

difference between trained and sedentary groups suggesting exercise training enhances NO 

production by NOS (218). Consistent with this interpretation, subsequent work revealed 

increased endothelial NOS expression in coronary arterioles of exercise trained swine (176). 

The observation that cytosolic copper/zinc superoxide dismutase (SOD-1) was upregulated in 

coronary arterioles of trained pigs (265) suggests that the increased endothelium-dependent 

vasodilator responses were, at least in part, the result of decreased quenching of NO by 

superoxide.  In both exercise trained and control arterioles, indomethacin decreased 

vasodilator responses without altering the exercise effect.  Importantly, the sodium 

nitroprusside response did not differ between sedentary and trained swine (218), implying 

that exercise increased NO production in the endothelium. Indeed, Laughlin et al. (176) 

demonstrated increases NO synthase content in the coronary endothelium of exercise trained 

normal pigs. 

 

In coronary arterioles isolated from animal models of vascular disease, exercise training is 

reported to increase basal myogenic tone and endothelium-dependent dilation (73, 130).  

Fogarty et al. (73) vascular endothelial growth factor (VEGF165) mediated vasodilation was 

enhanced by exercise training via elevated NO bioavailability. So, available evidence 

indicates that in animal models of coronary artery disease and in patients with coronary 

disease, exercise training increases endothelium-dependent dilation in coronary arterioles (86, 

185, 253). 

 

iv.    Cutaneous microcirculation: an active vessel bed during exercise 

During exercise in humans, when a given threshold is reached, cutaneous vasodilation 

increases linearly with increases in core temperature until a plateau is achieved. Exercise 
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training modifies this response, causing a leftward shift of the relation between cutaneous 

vasodilation and core temperature (i.e. vasodilation at a lower threshold) and a higher plateau 

(i.e. larger blood volume to the skin for heat dissipation) (254). In understanding these 

adaptations, a previous study linked responses to changes in blood volume (144). Ikegawa 

and colleagues trained healthy men for 5 days and reinforced the presence of a leftward shift 

for the temperature threshold for skin vasodilation, increased plateau and expansion in 

plasma volume (~10%). When these tests were repeated after removal of the increase in 

plasma volume, the leftward shift in temperature threshold for cutaneous vasodilation and 

increase in plateau were eliminated. These results suggest that initial training-induced 

adaptations in cutaneous blood flow importantly depend on expansion of circulating blood or 

plasma volume (144). Whilst these adaptations seem essential for systemic thermoregulatory 

purposes, exercise training may also affect intrinsic microvascular function. These intrinsic 

adaptations may be particularly relevant to the prevention of microvascular disease and its 

manifestations. 

 

Studies investigating intrinsic cutaneous microvascular function have utilized skin laser-

Doppler to assess local skin flux responses to substances such as acetylcholine (administered 

using iontophoresis or microdialysis), local heating and/or reactive hyperemia. Local heating 

is often applied, especially since the plateau phase after sustained local heating is largely NO-

mediated (204) and can provide an index of NO-mediated microvascular function. A cross-

sectional study found that the heating plateau phase was significantly larger in exercise 

trained individuals compared to their sedentary peers (255), suggesting that exercise training 

is associated with improved NO-availability in the skin, a finding that supports observations 

in the studies that adopted iontophoresis or microdialysis (164, 317). Studies have also 

explored the effects of exercise training on cutaneous reactive hyperemia. Although the 
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technique and data analysis differ between studies, cross-sectional comparisons report larger 

skin hyperemia responses in favour of the trained participants (76, 182, 311). Since these skin 

responses are correlated with nitrite/nitrate concentration (76) and plasma antioxidant 

capacity (77), larger skin microcirculatory responses to heat or ischemia observed with 

training may be related to the NO-pathway and/or oxidative capacity. 

 

Studies adopting longitudinal, prospective designs confirm these cross-sectional observations, 

in that regular exercise training improves cutaneous vascular function. These studies 

indicated that cutaneous responsiveness to both local heating stimuli and acetylcholine 

microdialysis were enhanced in response to exercise training in young (164, 317) and older 

humans (27, 132). Black and colleagues also explored the role of the NO-pathway in these 

adaptations by blocking NO-production before and after training. They found that 

improvement in cutaneous microvascular responsiveness to exercise training was, in large 

part, due to improvements of the NO-pathway (27). 

 

The stimulus responsible for the intrinsic cutaneous vascular function adaptations to exercise 

training may relate to the hemodynamic impact of repeated exposure to increases in skin 

blood flow. To test this hypothesis, the impact of repeated episodic elevation in cutaneous 

blood flow, achieved by directly heating both forearms, was examined (42 °C, 8 wks, 3 

session/wk), whilst unilateral manipulation using cuff inflation attenuated cutaneous dilation 

in one arm (97). After 8 weeks of this conditioning, cutaneous vasodilator responses to local 

heating were enhanced in the uncuffed arm, whereas this adaptation was not observed in the 

cuffed arm. A similar study found that abolishing forearm cutaneous vasodilation in response 

to 8 weeks of repeated lower limb heating also prevented adaptation in the skin microvascular 

observed in the arm exposed to repeated increases in flow (40). In these studies, cutaneous 
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vasodilation was accompanied by increases in forearm skin temperature during lower limb 

heating (40) and direct forearm heating (97). Therefore, heat application per se may represent 

a stimulus for adaptation, possibly by virtue of interactions between NO and heat shock 

proteins (81). Indeed, when the increase in skin temperature in response to lower limb heating 

were “clamped” by submersion of one forearm in thermoneutral water, skin microvascular 

adaptations differed from those observed in the “unclamped” limb, in which both temperature 

and blood flow increased (40). These results support an evolving hypothesis that repeated 

increases in skin blood flow induce intrinsic skin microvascular function, whilst changes in 

skin temperature may contribute to the nature of the adaptation. The relationship between 

these findings and recent elegant observations by Alexander and colleagues that impaired 

skin blood flow responses in subjects with cardiovascular risk factors may be dependent upon 

tetrahydrobiopterin coupling of NOS, remains to be determined (4). 

B.   Adaptation in vascular structure 

i.    Conduit arteries 

An early observation of enlargement of vessels in response to intense exercise training dates 

to 1961 and relates to the autopsy of Clarence DeMar who ran 34 marathons (including 7 

wins of the Boston Marathon) (53) and in whom ‘unusually large coronary arteries’ were 

described post-mortem. More recently, ultrasound- and MR-based techniques have confirmed 

the idea that regular exercise training is associated with enlarged coronary artery size (125, 

225) and dilator capacity. This type of remodelling is analogous to the concept, originally 

introduced by Morganroth and colleagues, that regular (endurance) exercise training involves 

repeated hemodynamic stimuli that remodel the heart (215). Larger coronary arteries are 

found after exercise training and may facilitate the increased oxygen demand associated with 

cardiac hypertrophy and increased cardiac workloads during exercise (170). 
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Athletes also exhibit increased diameter in large peripheral arteries (i.e. aorta, carotid, 

subclavian arteries), relative to matched sedentary controls (327) and exercise training studies 

have revealed remodelling of conduit arteries (66, 224, 280, 293), providing direct evidence 

that regular exercise increases conduit artery lumen diameter. To better understand the 

process of remodelling, studies have explored whether remodelling occurs regionally (i.e. 

related to local processes) or consistently across vascular beds (i.e. related to systemic 

processes). Huonker et al. found that wheelchair athletes (engaged with upper body exercise) 

possess enhanced dimensions in the aortic arch and subclavian artery, but smaller diameters 

of the femoral artery, compared to able-bodied controls (140, 141). In line with these 

observations, Rowley and co-workers found largest brachial artery diameters in canoeists and 

kayakers, whilst within-subject differences were present between the dominant and non-

dominant brachial arteries of elite squash players (261, 262). Longitudinal studies involving 

unilateral leg cycle (206) or unilateral upper arm exercise (329), combined with bilateral 

assessment of diameter, provided further evidence that exercise training leads to localized 

adaptation in conduit artery diameter. Taken together, these studies strongly suggest that 

exercise training induces localized adaptation of conduit artery diameter, typically supplying 

the physically active limb. 

 

Studies performed in animals demonstrate that experimentally increasing blood flow leads to 

significant outward remodelling. Inhibition of NO synthesis, either by administration of NO-

synthesis inhibitors (307) or in eNOS knockout mice (264), results in no changes in conduit 

artery diameter in response to chronic increases in shear stress (Figure 4). The importance 

for the NO-pathway was confirmed in subsequent work, in which changes in eNOS gene-

expression strongly correlated with the magnitude of change in shear stress levels (309). 

Studies in humans also suggest that repeated exposure to shear stress, associated with 
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exercise training, represents a key stimulus for remodelling. When exploring bilateral 

brachial artery adaptations to handgrip (306) or cycle (23) exercise training, unilateral shear 

manipulation with sub-diastolic cuff inflation prevented increases in peak brachial artery 

diameter observed in the arm exposed to episodic increases in shear. Hence, data from 

animals and humans support an important role for shear stress in the mediation of structural 

outward remodelling of conduit arteries. 

 

A widely adopted hypothesis to explain remodelling of conduit arteries is that changes in 

diameter represent an attempt to normalise shear stress (156). Unfortunately, most previous 

studies in humans have not documented shear stress, limiting insight into the concept that 

shear stress is ‘regulated’ by structural arterial adaptation. In a cross-sectional study, larger 

femoral artery diameter and blood flow in endurance trained athletes were reported, 

compared to controls, whilst mean and peak shear stress levels were comparable (266). 

Furthermore, 8 weeks cycle exercise training resulted in an increase in the diameter and 

blood flow of the ascending and abdominal aorta, whilst blood velocity and shear stress were 

preserved (205). Whilst studies are not conclusive, this work provides some support for the 

notion that shear stress is regulated via remodelling, (66, 140). It is important to emphasise 

that most of the interventional exercise training studies have been undertaken over relatively 

brief time periods (4-12 weeks), whereas many of the classic structural adaptation findings 

relate to cross-sectional comparison of controls to athletes who have trained for decades.  

Nonetheless, those studies that have involved longer training interventions have generally 

produced results consistent with the cross-sectional findings (280).   

 

To understand the requirement for artery remodelling, it is important to appreciate the 

relationship between blood flow and oxygen consumption. For example, one-legged exercise 
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training caused a significant increase in femoral artery diameter that was strongly related to 

the increase in the one-legged maximal oxygen uptake (r=0.86) (206). These findings support 

observations in healthy volunteers that conduit artery diameter is related to lean mass (135, 

329). Indeed, the marked differences in femoral artery diameter between subjects with 

paraplegia and controls disappeared after correcting for differences in thigh lean mass (230). 

In agreement with these findings, a similar time-course of changes in femoral artery diameter 

and leg muscle volume is reported following a spinal cord injury (62) or during a period of 

functional electrical stimulation-assisted exercise training in spinal cord-injured individuals 

(295). Therefore, regional increases in blood flow, tightly coupled with the metabolic demand 

of the distal muscle, are associated with training-induced arterial remodelling and facilitate 

the ability to perform aerobic work. 

 

Conduit arteries (wall thickness). When directly comparing endurance-trained and sedentary 

populations, most studies found no significant differences in carotid wall thickness between 

trained and untrained cohorts (288). In contrast, Rowley et al. found a smaller carotid artery 

wall thickness in elite athletes compared to sedentary controls (261, 262). One explanation 

for these differences in findings is that elite athletes are exposed to a larger volume, duration 

and intensity of exercise than recreationally active subjects (212, 247, 285). A recent study 

reported a significant decrease in carotid artery wall thickness after 6 months of endurance or 

resistance exercise training (279). This longitudinal work provides further evidence that 

carotid artery wall thickness is modifiable and another recent study showed that 8-weeks of 

exercise training induced comparable changes in wall thickness in the popliteal (i.e. 

supplying the active lower limbs) and the carotid (i.e. supplying a non-active area) arteries 

(108). Therefore, cross-sectional and longitudinal training studies both suggest potent effects 
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of training that can mediate reductions in conduit artery wall thickness supplying the active 

and non-active areas (289). 

 

To address the hemodynamic stimuli contributing to adaptation in wall thickness, Rowley et 

al. compared brachial artery wall thickness between the dominant and non-dominant arm of 

squash players (261). This model was based on the assumption that the brachial artery in the 

dominant arm is exposed to higher levels of shear stress, whereas systemic hemodynamic 

stimuli are similarly present in both arms. No differences in brachial artery wall thickness 

were found between the arms. In a follow-up study, brachial and femoral artery wall 

thickness were compared between elite athletes engaged in lower limb versus upper limb 

exercise, healthy controls, wheelchair controls and athletes (262). All athletes (able-bodied 

and wheelchair-bound) showed a smaller brachial and femoral artery wall thickness 

compared to their physically inactive peers. These findings suggest that shear stress is not the 

sole or key stimulus responsible for arterial wall remodelling in humans. A further study 

provided more direct evidence for this hypothesis by performing bilateral handgrip exercise, 

with unilateral cuff manipulation to manipulate the shear stress stimulus (292). Despite 

successfully manipulating the shear stress response between the limbs, brachial artery wall 

thickness showed a small, but significant gradual decline in both arms as a result of training. 

These findings suggest that adaptations in wall thickness in response to exercise training may 

occur largely independently of localized elevations in shear stress.  

 

In interpreting studies that address the impact of exercise training on arterial wall thickness, it 

should be acknowledged that the arteries are constantly modifying their vasomotor tone. 

Thijssen et al. demonstrated that reducing vascular tone through sublingual administration of 

glyceryl trinitrate leads to a generalized and marked acute decrease in wall thickness in both 
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young and older humans (298). Changes in arterial wall thickness may therefore be mediated, 

at least in part, by changes in functional tone, along with structural remodelling in the vessel 

wall. This is particularly relevant in the case of exercise training, since training impacts 

vascular tone and function.   

 

According to Laplace’s Law, an increase in diameter leads to an increase of the 

circumferential wall stress, typically followed by an increased wall thickness to lower wall 

stress (given the inverse relation between wall thickness and wall stress). Indeed, such 

adaptations have been described in the process of atherosclerosis. Regular exercise training 

also leads to an increase in diameter and, therefore, will lead to an increase in circumferential 

wall stress. However, as described above, exercise training has been associated with a 

decrease in wall thickness. Accordingly, one hypothesis is that exercise training leads to 

remodelling of the arterial wall and tissue organisation that result in the ability to sustain 

higher wall tension in the presence of decreased thickness.  

 

The ability of exercise training to alter arterial wall characteristics may be relevant for 

atherosclerotic plaque development. Recent animal studies suggest that exercise training is 

associated with stabilisation of atherosclerotic plaque and increased content of collagen and 

elastin (273). In a retrospective analysis in humans, higher physical fitness levels were 

associated with high fibrous volume and thick fibrous cap thickness of coronary plaques 

(324). Recently, 12-weeks of exercise training in patients with CAD decreased the necrotic 

plaque core (190). These effects of exercise training on conduit artery wall characteristics 

may have important clinical implications in terms of both plaque stabilisation, the evolution 

of plaque volume and rupture.  
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ii.    Resistance arteries 

A traditional approach to assess resistance artery “structure” involves creating a stimulus that 

leads to peak blood flow, often through prolonged ischemia (>15 minutes) or ischemia 

combined with exercise. An inability to further increase flow suggests that peak blood flow 

reflects a “structural ceiling” or capacity measure of the vascular bed. Using this technique, 

Sinoway et al. compared the dominant and non-dominant forearms of recreational tennis 

players to assess the impact of prolonged intensive exercise. They found that the preferred 

limb exhibited higher peak vasodilator responses than the non-preferred limbs, whilst no 

bilateral differences in forearm peak blood flows were observed in controls (276). 

Comparable findings were later observed when comparing vascular responses between both 

arms in elite tennis players (101) and elite squash players (261), but also when comparing leg 

peak blood flow between elite athletes and controls (277). The presence of a higher peak 

blood flow after exercise training, either adopting between- or within-subject comparisons, 

supports the ability of exercise training to cause remodelling of resistance arteries. 

 

Resistance artery remodelling is a localized adaptation. Studies involving cycle exercise 

training found no changes in forearm peak blood flow (23, 261, 262). These observations 

suggest that dominant local hemodynamic factors, such as shear stress, contribute to 

remodelling of resistance arteries (as is the case in conduit arteries, described above). Some 

support for this was provided by Tinken et al., who found that the increase in brachial artery 

peak blood flow after 8-weeks handgrip exercise training was abolished when exercise-

induced increases in blood flow were clamped using a unilateral cuff manipulation (306). 

Interestingly, 8-week repeated elevation in brachial shear stress through cycle exercise 

training (23) or heat exposure (222) did not alter brachial artery peak blood flow. Therefore, 

resistance artery remodelling in response to exercise training is tightly coupled to metabolic 
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work performed by the muscle area perfused by the vascular bed. Indeed, lower limb peak 

blood flow, but not forearm peak blood flow, is coupled with whole body peak oxygen 

consumption (152, 278). These data suggest that repeated increases in shear stress represent 

an important stimulus for enlargement of resistance arteries. That is, structural enlargement of 

skeletal muscle resistance vessels seems to require an increase in metabolic work which leads 

to the increased skeletal muscle blood flow and shear stress stimulus.   

 

iii.    Microcirculation 

The enhanced intrinsic vasodilator capacity of the muscle microvasculature following 

training may conceivably result from the increase in capillary density that occurs with 

training (7). Histochemical analyses of muscle biopsies, often taken from the quadriceps 

muscle, assess capillary density and the capillary-to-fibre ratio. The majority of studies 

examining the impact of exercise training, either adopting cross-sectional (athletes vs 

controls) or longitudinal design, demonstrate significant and marked increases in the total 

number of capillaries, capillary-to-fibre ratio and capillary density in response to different 

training regimes (mode, intensity and duration) and across various age groups (133). These 

structural changes in skeletal muscle microvasculature have been strongly linked to 

improvements in local and whole body peak oxygen uptake. For example, a previous study 

found that increases in capillary density represent an early adaptation during exercise training 

that precedes the improvement in peak oxygen uptake (70). Therefore, growth of capillaries 

represents an important adaptation to regular exercise training that enables sufficient 

diffusion capacity, even under highly demanding conditions during which muscle blood flow 

is profound. However, studies have suggested that an increase in capillary density may not 

necessarily affect muscle blood flow supplying the skeletal muscle (198). More likely, the 

increase in capillary density may prolong transit time of red blood cells through the muscle 
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capillaries, leading to an increased time frame for gas exchange within the muscle capillaries 

(36, 69, 177). These beneficial adaptations are hypothesized to contribute to an improved 

microvascular milieu that allows for more efficient diffusion of oxygen from the capillaries to 

(muscle) cells (87), whereas the locus of control of muscle blood flow lies further upstream 

from these small vessels, in feed arterioles and resistance vessels (271). 

 

Few studies have explored the importance of hemodynamic stimuli in mediating 

microvascular adaptation, mainly because these hemodynamic stimuli are extremely difficult 

to quantify and manipulate, particularly in humans. Some studies, however, have provided 

indirect insight into factors that may contribute to microvascular adaptation to training. 

Esbjornsson et al. examined whether skeletal muscle capillarization in response to 4-week 

one-legged cycle training is different when performed under local ischemia (72). By 

performing leg cycle exercise in a sealed, +50 mmHg pressure chamber, local blood flow to 

the exercising limb was impaired. Consequently, the limb exposed to the impaired blood flow 

(and ischemia) during exercise showed a larger increase in capillary-to-fibre ratio after 

training compared to the contra-lateral limb that underwent the same amount of work under 

normoxic conditions (72). In agreement with this study, exercise training performed under 

hypoxia showed a larger improvement in capillary density (83) or capillary-to-fibre ratio 

(161) compared to exercise training under normoxia. These findings suggest that (localized) 

hypoxia, possibly mediated by exercise, represents an important modulator for structural 

adaptation in the skeletal microvasculature (36, 133).  

 

In addition to hypoxia, mechanical forces that are present during muscle activity, such as 

shear stress and passive stretch, contribute to adaptation in muscle capillary growth. 

Angiogenic factors involved in mediating these adaptations include vascular endothelial 
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growth factor (VEGF). During muscle contractions, VEGF increases in the muscle and binds 

to VEGF-receptors on the capillary endothelium. As a direct consequence, VEGF triggers an 

angiogenic process that contributes to remodelling of the capillary vascular bed. Furthermore, 

exercise-induced release of VEGF-containing vesicles in the circulation leads to rapid 

replenishment of the VEGF stores. Consequently, this allows for VEGF secretion upon 

exposure of a subsequent bout of exercise (133). To reiterate, growth in capillaries, whilst 

important for gas exchange, may not be a significant determinant of blood pressure regulation 

in vivo (271).  

 

iv.    Cutaneous microcirculation: an active vessel bed during exercise 

Atkinson et al. recently reported a significant decrease in peak cutaneous flux-responses to 

local heating after training (15). Although the lower peak flux to local heating seems 

somewhat counterintuitive, these observations may support the presence of enlargement of 

the capillary bed. As a result of a larger capillary bed, peak blood velocity (or flux; measured 

using laser-Doppler) will decrease for the same volume of blood to pass through the 

capillaries. This may lead to prolongation of red cell transit time through the skin 

microcirculation, akin to the prolongation of transit time as a result of exercise training in 

skeletal muscle (133). 

 

C. Changes in vascular cell gene expression induced by exercise training 

A recent series of studies evaluated the effects of regular exercise on the vascular 

transcriptome in pigs (238) and rats (174, 175, 235). A common finding is that the effects of 

exercise are heterogeneous across vascular beds. In a recent and comprehensive study (174), 

next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology was used to 

assess the effects of exercise training on transcriptional profiles in skeletal muscle arterioles 
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isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty 

(OLETF) rats, a model of obesity and type 2 diabetes. In this study rats underwent a 12-week 

endurance exercise training program, interval sprint training program, or remained sedentary. 

Endurance exercise caused the greatest number of changes in gene expression in the soleus 

and white gastrocnemius 2a arterioles, with little to no changes in the feed arteries. In 

contrast, interval sprint training produced considerable changes in gene expression in the feed 

arteries. Ingenuity-pathway analysis revealed 18 pathways with significant changes in gene 

expression when analyzed across vessels (174). From this comprehensive analysis it was 

concluded that training-induced changes in arteriolar gene expression patterns differ by 

muscle fiber type composition and along the arteriolar tree. It should also be noted that the 

effects of exercise on gene expression may manifest to a greater extent in the arteries 

perfusing the working muscles; however, effects of exercise beyond the active muscle beds 

are also apparent (238), providing evidence that the effects of vascular exercise are systemic 

but not homogenous.  Studies in humans introduced the notion of a systemic impact of 

training on vascular adaptation and follow-up studies investigated the potential contribution 

of hemodynamic stimuli to this adaptation (93-95, 290, 305).  In addition, reviews 

summarized the mechanisms related to vascular adaptations beyond active muscle beds (104, 

196, 237).  

 

In addition, using RNA-sequencing, the extent to which the effects of obesity (i.e. differences 

between obese OLETF rats and lean-counterparts rats) on aortic endothelial gene expression 

could be reversed by endurance exercise was recently reported (146, 235). Exercise altered 

expression of 324 endothelial genes but only partially or totally restored expression of 8.6% 

of 396 genes affected by obesity (146, 235). This finding, that only a small fraction of 

endothelial transcriptional changes produced by obesity can be offset by regular exercise, 
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further supports the notion that exercise exerts direct effects on the artery wall, independent 

of reductions in obesity and other related co-morbidities. 

 

Finally, it is important to emphasize that studies of the myriad factors that impact vasomotor 

function in humans have emphasized the notion of compensatory redundancy in control 

(267). Conclusions based on gene expression data should be informed by functional 

assessment of the relative importance of different pathways to the integrated adaptive 

response to training, particularly given that few pathways appear to be obligatory in the acute 

functional response to exercise (187).   
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V.    WHICH FACTORS MODERATE THE ADAPTATION TO TRAINING? 

A. Distinct adaptations to different forms of exercise training 

Type of exercise. Most studies focused on the differential impact of distinct types (modalities) 

of exercise have compared athletes and controls or fit and unfit individuals, but subject 

differences introduce significant bias in terms of the true impact of exercise training, limiting 

the validity of implications regarding the impacts of exercise per se (279). Spence et al. 

directly compared the impact of endurance versus resistance exercise training within-subjects 

on conduit artery vascular adaptation (279). Six months upper limb-dominant resistance 

training improved brachial, but not femoral, artery resting and peak diameter (indicative of 

structural remodelling) and vascular function. In contrast, lower limb endurance exercise 

training increased resting and peak femoral, but not brachial, artery diameter and vascular 

function (279). These observations of distinct adaptations between resistance and endurance 

exercise may be linked to site specific elevation in blood flow (and shear stress) in the active 

limbs during exercise (i.e. the hemodynamic stimulus), rather than the type of exercise per se. 

Future studies, adopting direct comparison between different types of exercise within 

subjects, are required to understand the differences between exercise types, but also the 

importance of the magnitude of exercise-induced elevation in blood flow and shear rate. 

 

Exercise intensity. Few studies have performed direct comparisons between the same mode of 

exercise training, performed at different intensity levels, on vascular function and structure. 

Goto et al. performed an elegant study which randomized subjects to perform 12-week cycle 

exercise training at mild, moderate or high intensity (90). Only moderate-intensity exercise 

was associated with improvement in NO-mediated endothelial function and a decrease in 

markers of oxidative stress. The absence of adaptation after high-intensity exercise training 

was hypothesized to be the result of the induction of significant oxidative stress during each 
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bout of intense exercise, potentially mitigating the effects of exercise on the endothelium. 

Some evidence for this hypothesis was provided in a follow-up study, where these authors 

demonstrated that high-intensity, but not mild- or moderate-intensity exercise, caused 

increases in markers for oxidative stress (91). These observations are largely in line with 

studies examining the acute effects of exercise on vascular function. Whilst low-to-moderate 

exercise intensity shows somewhat conflicting results (24, 305), an increase in exercise 

intensity is typically associated with a (larger) decrease in vascular function (60) immediately 

post-exercise. Taken together, these studies support the notion that a dose-response 

relationship exists in terms of functional responses the vasculature to exercise and training, 

and that higher intensities of exercise may truncate benefits of training via impacts on 

inflammation and oxidative stress. It is important to reiterate that the epidemiological 

evidence suggests that the largest impact on vascular risk occurs from the adoption of lower 

volumes and intensities of physical activity. 

 

Somewhat in contrast to this paradigm, studies on the effects of high-intensity interval 

training (HIIT), which is characterized by repeated exposure to short bouts of exercise (1-4 

minutes) performed at near or supra-maximal level (84, 320), suggest potentially superior 

effects compared to traditional endurance exercise. Some studies have compared the impact 

of HIIT to more conventional endurance training on various outcome measures, including 

vascular function and structure. Recent work suggested that HIIT leads to superior 

improvements in vascular function compared to endurance training (250), although selection 

bias and inconsistencies in the FMD protocol may contribute to these findings. Little work 

has explored the potential (superior) effects of HIIT on resistance arteries and/or 

microvessels, whilst concerns about the potential health risks of HIIT have not yet been ruled 

out (157). Taken together, this relatively new field on HIIT requires further work to better 
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understand the potential benefits, if any, over more traditional and graduated approaches to 

intensity prescription, particularly in higher risk populations. 

 

B. Distinct time-course in adaptation in different vascular properties 

Animal and human data support the existence of different time-course effects of adaptation in 

artery function and structure as a consequence of exercise training (104). In healthy animals, 

1-4 weeks of exercise training improved vasodilator function in conduit arteries (200), 

muscle arterioles (282) and the aorta (64) and was associated with increased eNOS 

expression in pulmonary arteries (150). In marked contrast, studies adopting 16-20 weeks 

exercise training have not consistently shown augmented endothelial function (199) or 

changes in eNOS expression (149). Nonetheless, longer training duration is associated with 

enlargement of arterial diameters. Based on these cross-sectional observations, Laughlin 

proposed that initial improvements in vascular dilatory function contribute to normalise shear 

stress during exercise bouts, whereas continuing exercise will result in a more “permanent” 

normalisation of shear stress (168). As a consequence of structural enlargement, initial 

improvement in vascular function returns towards baseline (Figure 8). 

 

A human study designed to test this proposal utilized repeated assessments of the time-course 

of adaptation of vascular function and structure in response to exercise training. Tinken et al. 

examined both brachial and popliteal artery function and structure across 8-weeks of exercise 

training in healthy volunteers (304). The results confirm the hypothesis that exercise training 

leads to an initial improvement in vasodilator function, which returns toward baseline once 

structural remodelling occurs. Comparable findings of time-dependent adaptation in 

vasodilator function and structure have been reported in subsequent studies involving cycle 

exercise (23), handgrip exercise (306), resistance training with blood flow restriction (138), 
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but also local (222) and systemic (41) heating in the absence of an exercise stimulus. Taken 

together, these data in humans provide strong evidence for time-dependent adaptations in 

vascular dilatory function and structure across a period of exercise training, although the 

impacts of cardiovascular ageing and/or the presence of endothelial dysfunction may 

modulate the relative time course (65).  

 

C. Interaction between changes in function and structure  

Seminal work on the impact of structural characteristics on the function of arteries was 

performed by Folkow in the mid-1950s (75). His work focused on the arterial structural 

adjustments observed in hypertension, and explored the impact of a thickened arteriolar wall 

on vascular resistance and BP. Based on calculations, Folkow revealed that an increased 

wall-to-lumen ratio would produce exaggerated luminal changes to any vasoactive stimulus 

(74, 75). Contraction of smooth muscle also causes increased wall tissue mass that has impact 

on lumenal dimensions. Thickening of the arterial wall, therefore, is accompanied by vascular 

hyper-reactivity, even in the absence of changes in vasoactive signal transduction. Recently, 

this hypothesis regarding interaction between structural and functional characteristics was 

supported in conduit arteries in humans in vivo (300). Shear-dependent and –independent 

vasodilation was strongly and positively related to wall-to-lumen ratio, with a larger dilation 

observed in conduit arteries that exhibit a larger wall-to-lumen ratio. Therefore, structural 

changes of the arterial wall likely impact functional responses and adaptation.  

 

D. Impact of cardiovascular disease on hemodynamic stimuli and vascular adaptation to 

exercise 

Hemodynamic stimuli during exercise. CV risk and disease may alter blood flow responses to 

exercise. Early studies performed in the 1940s revealed (1, 25) differences between healthy 
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and diseased populations in terms of changes in blood flow to the hands. In agreement with 

these observations, others reported impaired ability to lower vascular resistance during 

exercise in subjects with CV disease or risk (29). These distinct vascular responses between 

healthy subjects and subjects with CV disease potentially contribute to altered shear stress 

patterns during exercise. 

 

HF patients exhibit impaired vasodilator responses to passive heat exposure, the mechanism 

for which was at least partly due to impaired NO-mediated dilator function (105). During 

exposure to 38 °C in a heat chamber, HF patients demonstrated attenuated heating-induced 

vasodilation of the skin and controls exhibited elevated NO dilator function. Also during 

cycle exercise, HF is associated with attenuated skin temperature responses compared to 

healthy controls (18). Interestingly, a recent study compared cycle exercise-induced brachial 

artery shear stress between HF patients and healthy age-matched controls (19). It was 

observed that HF was associated with an exaggerated exercise-induced increase in retrograde 

shear stress and attenuated increase in antegrade shear stress, which both remained present 

throughout the 30-minute cycle bout. Previous work has linked cutaneous vasodilation to 

attenuation of retrograde shear during prolonged cycle exercise in healthy volunteers (274). 

Accordingly, attenuated cutaneous vasodilatory responses to passive heat and exercise in HF 

patients may contribute to the distinct antegrade and retrograde shear stress patterns during 

exercise in HF.  Understanding these interactions is very important as these observations 

suggest that exercise may have untoward effects in HF patients because it these 

hemodynamic effects would be expected to blunt the beneficial effects of exercise on 

vascular structure and function. 
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Exercise in subjects with CV disease/risk is also associated with exaggerated exercise-

induced blood pressure responses (29) which may relate to the presence of endothelial 

dysfunction, oxidative stress and/or impaired neuro-hormonal activation. Subjects with 

exaggerated exercise-induced blood pressure responses also exhibit transient post-exercise 

hypertension, rather than the hypotension; normally present in healthy volunteers after 

exercise (82). Therefore, subjects with CV disease and/or risk may be exposed to higher 

pressure responses during and after exercise, potentially impacting subsequent vascular 

adaptation.  

 

Adaptation to exercise. Studies in animals have provided some evidence that CV risk factors 

impair shear stress mechanotransduction (328) and attenuate NO-release upon elevation in 

shear stress (283). The presence of impaired ability to detect and respond to hemodynamic 

stimuli, in combination with altered hemodynamics during exercise (see above), may affect 

vascular adaptation to exercise training. In contrast to this hypothesis, studies in humans have 

typically found improvement in vascular function after exercise training in populations with 

CV disease or risk (104). Moreover, a recent study found larger improvement in vascular 

function in those with a priori impaired function (99). Therefore, despite exposure to 

unfavourable hemodynamic stimuli, there is sufficient evidence for improvement of vascular 

function as a result of exercise training in subjects with CV risk or disease. 

 

Some studies suggest that CV risk factors may impair vascular structural adaptation to 

training. For example, studies in animals have demonstrated that expansion of resistance 

arteries occurred in young animals after 1-2 weeks exposure to high flow, whilst such 

adaptation was absent in older animals (68, 78). Interestingly, the capacity for arterial 

expansion in older animals was restored under co-infusion of drugs directly impacting 
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vasodilator function of these arteries (68, 78). In young and older humans, our laboratories 

explored vascular changes in response to increases in brachial artery retrograde shear stress 

(269, 299). We found that 30-minute and 2-week elevation in retrograde shear stress caused a 

decrease in endothelial function and smaller diameter in young subjects, whilst such 

adaptations were not observed in older individuals (299). Furthermore, Hansen et al. found 

that hypertension is associated with an attenuated exercise-induced release of VEGF, an 

important angiogenic factor that is linked to capillarisation (see above) (122). The attenuated 

release of VEGF after exercise was also associated with a limited effect on capillary density 

after training. In another exercise training study, 6-week exercise training caused a significant 

increase in the capillary-to-fiber ratio in healthy controls, whilst such adaptation were absent 

in heart transplant recipients (166).  

 

Summarizing this work, subjects with CV disease or risk may demonstrate less favourable 

hemodynamic stimuli during exercise and/or impaired angiogenic or adaptive stimuli in 

response to training. Despite these unfavourable hemodynamic stimuli in subjects with CV 

risk and/or disease, arteries remain highly adaptive for improvement in vascular function. 

Nonetheless, some evidence suggests that structural adaptations are less likely to occur in 

those with CV risk and/or disease. These data highlight the complexity of the integrative 

stimuli evoked by exercise and their ultimate impacts on vascular adaptation. 
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SUMMARY AND IMPLICATIONS FOR EXERCISE SCIENCE AND HEALTH 

Exercise is anti-atherogenic and increasing physical activity has a profound impact on 

cardiovascular risk.  Whilst some of this is due to exercise-mediated modification of 

traditional cardiovascular risk factors, exercise is a relatively weak poly-pill for changes in 

CV risk factors compared to the impacts of pharmacological agents (303). In contrast, the 

beneficial impacts of exercise on CV risk exceed that expected from changes in CV risk 

factors alone and this risk factor gap (106, 155) may be filled, at least in part, by the direct 

impacts of exercise on the artery wall.  On the evidence presented in this review, it is clear 

that the hemodynamic impacts of exercise on blood flow and pressure transduce acute 

changes in vascular function and that repeated exercise leads to arterial adaptation in humans.  

Exercise can therefore be considered an evolutionary stimulus to maintaining human vascular 

health (106, 155). In the same way that exercise is accepted as a stimulus to the maintenance 

of musculoskeletal function in the face of ageing, frailty and disease, exercise and associated 

hemodynamic forces are a direct form of vascular medicine in humans. 

 

Finally, it is timely, on the 400th anniversary of the lectures which revolutionized science by 

revealing the importance of the movement of the heart and blood in livings beings, to reflect 

that the introduction to Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus 

states “Very many maintain that all we know is still infinitely less than all that still remains 

unknown….”, a statement that remains as true in the age of high resolution non-invasive 

imaging, as it was in the time of Harvey’s anatomical exercises. 
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FIGURE LEGENDS 

FIGURE 1. Using data from a series of exercise training studies Clausen demonstrated, in 

his Physiological Review (redrawn from (50), that oxygen uptake improved with 

training (by 0.34 L/min on average), whilst cardiac output also significantly 

increased (by 2.1 L/min), yet blood pressure did not change, or slightly decreases. 

This insight highlights the relevance of the peripheral vasculature in 

accomodating the increase in cardiac output that accomanies training. Vascular 

adaptations encompass both functional and sturctural changes, which may occur 

along distinct timecourses (see Figure 8). 

 

FIGURE 2. Illustration showing the interactions of hemodynamic signals (Top) (hydrostatic 

pressure, shear stress and circumferential stretch) that modulate vascular 

adaptation to exercise. The effects of pressure and/or stretch on the endothelial 

cells is shown in the middle as described in the text.  At the bottom the figure 

illustrates exercise-induced adaptations of smooth muscle cells (modified from 

32,167).  The left-center of the smooth muscle figure shows calcium transients 

with decreased intracellular calcium ([Ca2+]i) response to selective agonists (e.g. 

endothelin) in exercise trained cells in red (which produces a reduced Ca2+-

dependent activation of contraction).  This decreased Cai occurs despite an 

increased Ca2+-influx through L-type Ca2+ channels (Cav1.2).   Nuclear Ca2+ 

responses ([Ca2+]n) are also reduced by exercise training, which may affect Ca2+-

dependent transcription factors (CaTF, e.g. CREB, NFAT) and target gene 

expression.  Also illustrated is the increased spontaneous, slow-Ca2+ release from 

the SR into the subscarolemmal space ([Ca2+]ss) which may contribute to the 

increased activation of large conductance, Ca2+-activated (BK) potassium 

channels caused by exercise.  Voltage-gated (Kv) potassium channels are also 

activated by exercise training.   
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FIGURE 3. Rendering of Rodbard’s prediction of ‘flow-dependent, endothelium-mediated 

dilation’ and remodelling. Exposure of the endothelium to an increase in viscous 

drag or “shear stress” (step 2), triggers dilation (step 3); a functional change that 

tends to homeostatically modify the initial increase in shear (see also Figure 8). 

When exposed to prolonged periods of change in flow and shear, vessel 

remodelling can occur, whereby drag forces are “structurally” normalised (step 

4).  These predictions were ultimately verified in both animals (and humans). 

 

FIGURE 4. Summary of the outcomes of studies that explored the impact of endothelial 

denudation on conduit artery functional and structural responses. Endothelial 

removal has typically been achieved using intra-arterial balloon inflation. In 

endothelium intact arteries, increases in flow and shear induce dilation in the dog 

hind limb (246), coronary arteries (21) and the human radial artery (61). All 

functional and structural adaptive responses are abolished or attenuated in the 

absence of an intact endothelial layer.  Remodelling of rabbit carotid arteries in 

response to chronic decreases in flow and shear induced using unilateral ligation 

is also endothelium-dependent (167). These studies highlight the importance of 

the endothelium to mediate (acute and chronic) changes in diameter. 

 

FIGURE 5. Brachial artery Doppler trace during leg cycle exercise (A; brachial artery 

representing an inactive region) and during handgrip exercise (B: brachial artery 

representing an active region) at rest, at the start of exercise and during 

continuation of exercise. The (time-dependent) changes in Doppler patterns are 

influenced by subject, central and peripheral factors, summarised in the lower 

panel. 
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FIGURE 6. Doppler trace (A), blood flow patterns (B) and consequent acute changes in 

vascular function (measured as the flow-mediated dilation FMD, C). Distinct 

patterns of blood flow and shear in the brachial artery induced by forearm 

heating, handgrip exercise, cycle exercise and cuff manipulation have different 

impacts of the function of the artery, assessed immediately before versus after 

each intervention. Data are derived from (305) and (291). Taken together, these 

data are largely in agreement with previous work in animals (see section IIBii), 

and support a role for shear stress in the alteration of endothelial function, with 

distinct shear patterns leading to different changes in function.  

 

 

FIGURE 7. Impact of exercise training in humans with coronary disease. Relative to a non-

trained control group (CON), four weeks of exercise training (EX) increased in 

vivo acetylcholine-induced vasodilation of the left internal mammary artery 

(LIMA) (A),  increased endothelial nitric oxide synthase (eNOS) mRNA and 

protein expression in LIMA (B),  as well as increased phosphorylation of Akt at 

Ser473 and eNOS at Ser1177 (C), an effect likely mediated by shear stress. Figures 

redrawn from Hambrecht et al. 2003 (114). Data are mean ± SD. *denotes 

statistical significance between groups. 

 

 

FIGURE 8. Time-dependent changes in vascular dilatory function (blue line) and structure 

(red line) across a period of exercise training in healthy volunteers. Laughlin 

proposed that initial improvements in vascular dilatory function contribute to 

normalise shear stress during exercise bouts, whereas continuing exercise will 

results in more “permanent” normalisation of shear stress (168). Human studies 

designed to test this proposal confirmed that both brachial and popliteal artery 

function and structure adapt according to distinct time course across 8-weeks of 

exercise training in healthy volunteers (304) and that such adaptation is shear 

dependent (23) (306). 


