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Abstract 

The elastohydrodynamic lubrication (ehl) problem has hitherto been solved 

almost exclusively using a form of the Reynolds equation to describe the 

lubricant flow. This implies a constant pressure across the gap. The present 

investigation takes up the idea that consideration of the full Navier-Stokes 
equations leads to a broader understanding of the ehl regime. Pursuing a 
practical approach, the thesis evaluates the significance of the terms of the 
Navier-Stokes equations previously neglected in Reynolds equation, gives a 
new, Simple but extended set of governing equations, and discusses the 
prospective influence of the extended set on the ehl regime including pressure 
variation across the gap. 

In order to realise a numerical solution for the extended approach, a variety of 

new possible analysis schemes is derived from the established ehl solution 

concepts. Simultaneously, the introduction of computational fluid dynamics 

software (CFD) as a general purpose Navier-Stokes equations solver to the ehl 

problem is considered. Two variants of the derived schemes are selected for 

implementation since they were found to be most suitable. Both are based on 

the established Newton-Raphson technique for the ehl problem and allow the 

application of CFD software. Implementation is realised using CFD software in 
two steps. Initially, pressure is kept constant across the gap in order to detect, 
analyse and solve problems caused by the novel application of CFD software 
and to validate the new method. Later, the implementation is extended to allow 
variable pressure across the gap. 

Results of the extended approach are presented for various velocity, pressure, 
viscosity and sliding ratio values. For sliding conditions, a change of the contact 

shape and the pressure distribution in comparison with established solutions can 

be observed as well as pressure variation across the gap. All results are 

discussed with respect to the established Reynolds equation, the presented 

extended set of equations and the technical relevance of the new approach. 
Finally, the extended approach is looked at in the context of arbitrary pressure­
viscosity dependenCies, thermal and non-Newtonian effects. 
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Zusammenfassung 

Bei der Losung des Problems elastohydrodynamischer (EHD) Schmierung 

wurden zur Beschreibung der Schmiermittelstromung in der Vergangenheit 

beinahe ausschlieBlich unterschiedliche Formen der Reynoldsgleichung 

angewandt. Dies bedeutet auch stets die Annahme eines konstanten Drucks 
uber der Spalthohe. Die vorliegende Arbeit greift den Gedanken auf, dass die 

Berucksichtigung der Navier-Stokes-Gleichungen das Verstandnis des EHD­
Kontaktes noch weiter verbessern kann. Dazu werden - im Bemuhen um ein 

moglichst praktisches Verfahren - die einzelnen, bisher teilweise 
vernachlassigten Terme der Navier-Stokes-Gleichungen hinsichtlich ihrer 
Relevanz fUr das EHD-Problem untersucht und bewertet. Damit wird ein 
neuer, einfacher, aber dennoch erweiterter Satz an Grundgleichungen fUr 
das EHD-Problem erstellt und die daraus zu erwartenden Anderungen der 

typischen EHD-Ergebnisse diskutiert. 

Fur eine numerische Losung des erweiterten Gleichungssatzes werden auf 

der Basis der fUr das EHD-Problem bekannten Berechnungsverfahren 
verschiedene neuartige Berechnungsverfahren fUr den erweiterten 

Gleichungssatz abgeleitet. Dabei wird die Anwendbarkeit verfugbarer 
numerischer Stromungssimulationsprogramme (CFD-Software) zur 
Berechnung der Stromung gepruft. Ais am besten geeignet werden 

schlieBlich zwei Varianten eines Berechnungsverfahrens ausgewahlt, 
welches auf der Newton-Raphson-Technik fUr das EHD-Problem beruht und 
die Anwendung von CFD-Software erlaubt. Die anschlieBende 
Implementierung erfolgt in zwei Schritten: Zunachst wird der Druck uber der 

Spalthohe noch konstant gehalten, um die Probleme, die aus der erstmaligen 

Anwendung der CFD-Software auf das EHD-Problem herruhren, eingrenzen 

und beheben zu konnen, aber auch, um das neue Verfahren zu validieren. In 

einem zweiten Schritt erfolgt dann eine Erweiterung, so dass auch eine 

Druckanderung uber der Spalthohe zulassig ist. 
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Zusammenfassung 

Ergebnisse fOr den neuen, erweiterten Ansatz werden fOr verschiedene 

Druck-, Geschwindigkeits- und ViskosiUitswerte sowie fOr unterschiedliche 

Roll-/Gleitverhaltnisse vorgestellt. FOr den Fall, dass im Kontakt ein relatives 
Gleiten der beiden Oberflachen auftritt, kann - im Vergleich zu bekannten 

Losungen - eine Veranderung des Spalt- und Druckverlaufes im Kontakt 

beobachtet werden. Ebenso stellt sich ein Ober der Spalthohe veranderlicher 

Druck ein. Aile Ergebnisse werden im Hinblick auf die Oblicherweise 
verwendete Reynoldsgleichung, den vorgelegten Gleichungssatz und ihre 

technische Relevanz diskutiert. AbschlieBend erfolgt ein Ausblick auf den 

erweiterten Ansatz im Bezug auf beliebige Druck-Viskositat­

Zusammenhange sowie thermische und nicht-newtonische Aspekte. 
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Nomenclature 

symbol description dimension • 

a coefficient in the pressure-density dependency M-1 .L. T2 
description 

a coefficient in the dimensionless pressure 
definition by Mohrenstein-Ertel 

b coefficient in the pressure-density dependency M-1 .L. T2 
description 

bhz Hertzian width L 
e specific energy L2. T-2 

f x-momentum residual M·L·T-2 

fRe Reynolds equation residual M.L-2. T-2 

fsum sum of x-momentum residuals M·L·T-2 

fx-mom.sum minimum sum of x-momentum residuals M·L·T-2 

h height of the gap L 
ho height of gap at contact centreline, L 

where pressure gradient along the contact is 
zero 

ho.ext height of the gap at contact centreline L 
determined with the extended approach 

hO.Re height of the gap at contact centreline L 
determined with Reynolds equation based 
approach 

hmax I maximum height of the gap between additional L 
and established ehl constriction 

hmin minimum height of the gap at established ehl L 
constriction 

hmin I minimum height of the gap at additional L 
constriction 

L represents length dimension, M mass dimension, T time dimension and T 
temperature dimension. 
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Nomenclature 

symbol description dimension 

hr height of the gap due to curvature of the contact L 
partners 

hr1 height of the gap due to curvature of the lower L 
surface 

hr2 height of the gap due to curvature of the upper L 
surface 

h* height at the position of film rupture at outlet, L 
where the pressure gradient is zero at ambient 
conditions. 
number of an individual finite volume in x-
direction 
number of an individual finite volume in y-
direction 

k thermal conductivity M·L· T-3·T 

k1 coefficient for discretisation error 

k2 coefficient for discretisation error 

kc dimensionless factor 

kp dimensionless sliding influence factor 

kp dimensionless sliding influence factor for 
Roelands' approach 

A 

dimensionless sliding influence factor for thermal kp 
Roelands' approach 

kr dimensionless pressure gradient ratio 

kr dimensionless pressure gradient ratio for 
Roelands' approach 

A 

dimensionless pressure gradient ratio for thermal kr 
Roelands' approach 

k1'\ viscosity ratio 

I number of finite volumes in z-direction 

Ie length of the contact in z-direction L 

m total number of finite volumes in y-direction 

ri1 mass flow M·T-1 

mL mass flow per unit length M. L-1 • T-1 

ml,Re mass flow per unit length determined with 
Reynolds equation based approach 

M.L-1 • T-1 

n total number of finite volumes in x-direction 

nn normal direction 

p pressure M.L-1 • T-2 

Po pressure at ambient conditions M·L-1 ·T-2 
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symbol descripffon 

P1 pressure on the lower surface 

P2 pressure on the upper surface 

Pel pressure at the centreline along the contact 

Pfast pressure on the faster surface 

Phz Hertzian pressure 

Pmean mean pressure 

P 
= P1 + P2 = PSIOW + Ptast 

mean 2 2 

pressure of previous time step or iteration loop 

pressure determined with Reynolds equation 
based approach 

Pslow pressure at the slower surface 

p order of the discretisation error 
A 

P 
q 

q* 

t 

smoothed pressure 

reduced pressure 

reduced pressure 

reduced pressure (alternative definition) 

radius of lower surface 

radius of upper surface 

reduced radius of the contact 
1 1 1 
-=-+­
rred r1 r2 

time 

t1 function in thermal Reynolds equation 

t2 function in thermal Reynolds equation 

Nomenclature 

dimension 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

M.L-1 • T-2 

L 

L 

L 

T 

u velocity component in x-direction (along the gap) L. T-1 

U1 velocity of lower surface L. T-1 

U2 velocity of upper surface L. T-1 

Uh hydrodynamic speed L . T-1 

uh = t· (u1 + u2) 

URe velocity component in x-direction (along the gap) L. T-1 

determined with Reynolds equation based 
solution 

v velocity component in y-direction (across the L. T-1 

gap) 

Vd elastic deflection L 

Vd1 elastic deflection of the lower surface L 
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Nomenclature 

symbol descripUon dimension 

Vd2 elastic deflection of the upper surface 

Vges value of velocity 

v = ~U2 + v2 + w2 
ges 

Vges,Re value of velocity determined with Reynolds 
equation based approach 

Vm reference velocity in y-direction 

Vnormal velocity component perpendicular to a wall in 
CFD software 

Vt tangential velocity 

Vtangential velocity component parallel to the wall in CFD 
software 

w velocity component in z-direction 

w velocity vector 
W =(u v wy 

w' load per unit length in z-direction 

x axis of the Cartesian co-ordinate system along 
the gap 

Xu unknown variable vector 

Xu = (XU11 xu2 ··· xui ··· xunY 

"cross pOSition of agreement of height of extended L 
approach and Reynolds equation based 
approach 
xcross = x(h = ho,Re) 

Xhmax position of maximum height of the gap between L 
additional and established ehl constriction 

Xinlet 

Xoutlet 
Xpfast 

Xpslow 

xpmean 

xhmax = x(h = hmax I ) 

position of additional ehl constriction 

xhmin = x(h = hmin ') 

position of the inlet of the contact 
position of the outlet of the contact 
position of maximum pressure on the faster 
surface 
xpfast = x(Pfast = Pfast,max) 

position of maximum pressure on the slower 
surface 

XpSIOW = x(PS10W = Ps1ow,max) 

position of maximum mean pressure 
xpmean = x(P mean = P mean, max ) 
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L 
L 
L 

L 

L 



Nomenclature 

symbol description dimension 

Xref reference position for determination of the L 
deflection 

X6Pmax position of maximum pressure difference L 
x~Pmax = x(ilP = ilPmax ) 

X6Pmin position of minimum pressure difference L 
x~Pmin = x(ilP = ilPmin ) 

y axis of the Cartesian co-ordinate system L 
perpendicular to the gap 

Yl,max position of the upper surface in y-direction L 

Yl,min position of the lower surface in y-direction L 
z axis of the Cartesian co-ordinate system along L 

the axis of the rolling elements 

A surface area L2 

D factor of dominance for constant pressure across 
gap 

Dext factor of dominance for the extended approach 
and variable pressure across the gap 

E1 Young's modulus of lower solid body M.L-1. r-2 

E2 Young's modulus of upper solid body M.L-1. r-2 

Ecomputational error due to limited resolution of numbers 

Etrunc truncation error 

E' reduced Young's modulus M·L-1·r-2 

J... = .! f + v~ + 1 + v: ) 
E' 2 E1 E2 

F load on contact M·L·T-2 

F vector of functions F = (~, F2 ... F; ... FnY 

Fo function in thermal Reynolds equation 

F2 function in thermal Reynolds equation 

F3 function in thermal Reynolds equation 

Fn normal force per unit width M·r-2 

Ft tangential force per unit width M·r-2 

G dimensionless material parameter G = E' . (l 

G1 function in thermal Reynolds equation 

G2 function in thermal Reynolds equation 

G3 function in thermal Reynolds equation 
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symbol description 

H dimensionless height of the gap in numerical 
results 
H = H = h/ho.Re 

H dimensionless height of the gap in theoretical 
considerations 

H = H = h/ho.Re 

Ho.ext dimensionless height of the gap at contact 
centreline 

Ho = ho.ext '/ho.Re 

Hmax' dimensionless maximum height of the gap 
between additional and established ehl 
constriction 

Hmedian median of height of three configurations 

Hmin dimensionless minimum height of the gap at 
established ehl constriction 

Hmin' dimensionless minimum height of the gap at 
additional constriction 

HRe dimensionless height of the gap determined with 
Reynolds equation based approach 

J 

M 

N 

P 

P 

number of the corner or edge of an individual 
finite volume in x-direction 
number of the corner or edge of an individual 
finite volume in y-direction 
Jacobian matrix 

dimensionless factor for determination of 
Reynolds number 
total number of corners or edges of finite 
volumes in y-direction 
total number of corners or edges of finite 
volumes in x-direction 
dimensionless pressure in numerical results 

P = P = P/PhZ 
dimensionless pressure in theoretical 
considerations 
P = P = P/PhZ 
dimensionless pressure 
Po = Po = p/Po 
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Nomenclature 

dimension 



symbol description 

P1 dimensionless pressure at the lower surface 

P1 = P1/PHZ 
P2 dimensionless pressure at the upper surface 

P1 = P1/PHZ 
Pfast dimensionless pressure at the faster surface 

P'ast = P'ast /PHZ 
P mean dimensionless mean pressure 

Pmedian 

PRe 

PSlow 

p = P1 + P2 = PS10W + P'ast 
mean 2 2 

median of pressure of three configurations 

dimensionless pressure determined with 
Reynolds equation based approach 

dimensionless pressure at the slower surface 
Psiow = PSIOW/PHZ 
flow rate along the gap per unit width 

sliding ratio 
8 _ (U1 -U2 ) _ (U1 -U2 ) 

- (U1 +U2 ) - (U1 +U2 ) 

8N-R accuracy required for Newton-Raphson 
technique 

8 residual ratio of applied and theoretical x-momentum 
residual 

841 
A 

8 

source term in the transport equation 

source term 

U dimensionless velocity parameter 

U = uh ·110 
E'· rred 

U dimensionless velocity in x-direction 
U =u/uh 

V dimensionless velocity in y-direction 
V=y.(v/uh ) 

W dimensionless load parameter 
W' 1 • b . p .7t W= "2 Hz Hz 

E' . rred E' . rred 

Nomenclature 

dimension 

T-1* 

M.L-2 • T-2 

The transport variable is a variable which can take on any dimension. 
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Nomenclature 

symbol descripffon dimension 

X dimensionless variable of length along the gap in 
numerical results 
X= X= x/bhZ 

X dimensionless variable of length along the gap in 
theoretical considerations 
X = X = x/bhZ 

Xc ross dimensionless position of agreement of height of 
extended approach and Reynolds equation 
based approach 

X = xcross = X(H = 1) cross b 
Hz 

Xhmax dimensionless position of maximum height of the 
gap between additional and established ehl 
constriction 

X = xhmax = X(H = H I) hmax b max 
Hz 

Xhmin dimensionless position of additional ehl 
constriction 

X . = xhmin = X(H = H . I) hmln b min 
Hz 

Xpfast dimensionless position of maximum pressure on -
the faster surface 

Xpfast = X;fast = X(Pfast = Pfast,max) 
Hz 

XpSIOW dimensionless position of maximum pressure on 
the slower surface 

Xpmean 

X~pmax 

X~Pmin 

XpSIOW = X~SIOW = X(Pslow = Ps1ow,max) 
Hz 

dimensionless position of maximum mean 
pressure 

X - Xpmean - X(P - P ) pmean - b - mean - mean,max 
Hz 

dimensionless position of maximum pressure 
difference 

X = X~Pmax = X(~P = ~p ) 
~Pmax b max 

Hz 

dimensionless position of minimum pressure 
difference 

X . = X~Pmln = X(L\P = L\P . ) 
~Pmln b min 

Hz 
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symbol description 

Y dimensionless variable of length perpendicular to 
the gap in numerical results 
y= Y =y/ho 

y dimensionless variable of length perpendicular to 
the gap in theoretical considerations 
Y = Y = y/ho 

Y* dimensionless normalised variable of length 
perpendicular to the gap 

Y*= y = Y 
h H 

Zi dimensionless pressure viscosity index 

a pressure-viscosity coefficient 

a dimensionless pressure-viscosity coefficient 
a = a'PhZ 

Y geometrical ratio 
y = ho/bhz 

DXu solution correction vector 
DXu = (DXU1' DXU2 ... DXUi ... DXunY 

YR temperature coefficient for Roelands pressure-
temperature-viscosity description 

Edisc discretisation error 

EH relative deviation of height from median value 

H -Hmedian 
EH = 

Hmedian 

EH,Re relative deviation of height from Reynolds 
equation based solution 

H-HRe 
EH,Re = HRe 

Em,Re relative deviation of mass flow from Reynolds 
equation based solution 

m~ -m~,Ae 
Em,Re = 

m~,Re 

Ep relative deviation of pressure from median value 

Ep = P-Pmedian 
Pmedian 
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Nomenclature 

dimension 

M-1 .L. T2 

T-1 



symbol description 

Ep,abs absolute deviation of pressure from centreline 
pressure 

Ep,abs = P - Pel 

EPfast,Re relative deviation of pressure on faster surface 
from Reynolds equation based solution 

P fast -PRe 
EPfast,Re = R 

Re 

Epmean,Re relative deviation of mean pressure from 
Reynolds equation based solution 

P mean -PRe 
Epmean,Re = R 

Re 

EPslow,Re relative deviation of pressure on slower surface 
from Reynolds equation based solution 

P SIOW -PRe 
Epslow,Re = R 

Re 

EU,Re relative deviation of velocity component in x 
direction from Reynolds equation based solution 

u-uRe E ----!..!::::.. 
u,Re - U 

h 

EV,Re relative deviation of value of speed from 
Reynolds equation based solution 

V ges - V ges,Re 
E - --=----"'----

V,Re - U 
h 

Nomenclature 

dimension 

M,L-1 , T-2 

Ell ,abs absolute deviation of viscosity from viscosity for M, L-1 , T-1 

Ellfast,Re 

mean pressure 

E1],abS = 11 -l1(P = Pmean ) 

relative deviation of viscosity near the faster 
surface from Reynolds equation based solution 

E - 11fast -l1Re 
1]fast,Re -

11Re 

relative deviation of viscosity near the slower 
surface from Reynolds equation based solution 

E - l1slow -l1Re 
1]slow,Re - 1"1 

'IRe 

relative deviation of viscosity across the height of -
the gap 

E = 11 slow -11 fast 
61] ~ ( ) 

2' 11slow + 11fast 
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symbol descripffon 

relative deviation of traction coefficient from 
Reynolds equation based solution 

E - ~T -~T,Re 
j.1T,Re -

~T,Re 

ETfast,Re relative deviation of shear stress at the faster 
surface from Reynolds equation based solution 

E - Ts10w - TRe,fasl 
Tfasl,Re - To 

Re,fasl 

ETslow,Re relative deviation of shear stress at the faster 
surface from Reynolds equation based solution 

11 

110 

11e 

11 fast 

11hz 

11m 

11 max 

11Re 

11 slow 

E - Ts10w - TRe,SIOW 
Tslow,Re - To 

Re,slow 

dynamic viscosity 

dynamic viscosity at ambient conditions 

effective dynamic viscosity for thermal Reynolds 
equation 
dynamic viscosity near the faster surface 

dynamic viscosity at Hertzian pressure 

mean dynamic viscosity 

maximum dynamic viscosity to obtain realistic 
traction coefficient values 

dynamic viscosity determined with Reynolds 
equation based approach 
dynamic viscosity near the slower surface 

temperature 

second viscosity coefficient 

~T traction coefficient 

~T = J(-Ts,ow)·dX 

P 

Po 

't 

Poisson's ratio of lower solid body 

Poisson's ratio of upper solid body 

pressure function 

oil density 

oil density at ambient conditions 

stress (normal and tangential) 

shear stress 
(}vI au 

't=11'-~11'-
ann By 
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Nomenclature 

dimension 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

M.L-1 • T-1 

T 

M.L-1 • T-1 

M·L-3 

M·L-3 

M.L-1 • T-2 

M.L-1 • T-2 



Nomenclature 

symbol description dimension 

'tfast shear stress on the lubricant at the faster surface M.L-1 • T-2 

'tslow shear stress on the lubricant at the slower M.L-1 • T-2 

surface 

'txy shear stress in x-momentum equation M.L-1 • T-2 

~ transport variable 

~1 transport variable on sample grid 

~2 transport variable on alternative sample grid 

~2h transport variable on a grid of half resolution 

~4h transport variable on a grid of quarter the 
resolution 

~h transport variable on a grid of original resolution 

~q reduced pressure variable 

\I' stream function L·T-1 

0) vorticity T-1 

r diffusion coefficient for transport equation M.L-1 • T-1 

~H dimensionless height difference 
~H = Hmax '-Hmin I 

~P dimensionless pressure difference between 
faster and slower surface 
ilP = PS10W - Pfast 

ilV volume of finite volume L3 

~ dimensional finite volume width in x-direction L 

~X dimensionless finite volume width in x-direction 

~y dimensional finite volume width in y-direction L 
~y dimensionless finite volume width in y-direction 

~z dimensional finite volume width in z-direction L 

~Z dimensionless finite volume width in z-direction 

~T dimensionless shear stress difference 

~T =TSIOw-(-Tfast) 

ilS temperature difference to ambient conditions T 

ilSmax maximum temperature difference to ambient T 
conditions 

The transport variable is a variable which can take on any dimension. 
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Nomenclature 

symbol description dimension 

~3 dimensionless temperature 
- ~3 
~3= 

~3max 

T dimensionless shear stress 

t 
T=-

PHz 

Tfast dimensionless shear stress on the lubricant at 
the faster surface 

TRe dimensionless shear stress determined with 
Reynolds equation based approach 

Tslow dimensionless shear stress on the lubricant at 
the slower surface 

<1> dissipation function T-2 

~=2.[(:)' +(:r +(:r] 
(N 8 r (ow Nr (8 ow)' + ox+~ + fJy+az + 8~+OX 

_2{8u+N+OW)' 
3 ox fJy 8z 

<1>' variable for Reynolds equation modification L~ 
3 

<1>' = q. h2 

<1>* variable for Reynolds equation modification M.Lt. T-2 

3 

<1>* =p·h2 
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Chapter 1 

. Introduction 

1.1 The theory of elastohydrodynamic lubrication 

In many machine elements, contact forces are transmitted across curved 

surfaces of low geometrical conformity which are also in relative motion. 

Such contacts may be highly loaded and occur, for example, in roller 

bearings, gear-tooth systems, and cam-tappet devices. Most of these 

machine elements operate with very low wear as they are lubricated. This 

phenomenon and the detailed conditions in the contact area are explained by 

the theory of elastohydrodynamic lubrication (ehl). 

The two surfaces are separated by a hydrodynamically generated fluid film. 

The principle of hydrodynamic fluid flow is described in the differential 

equation given by Reynolds [1] in 1886. However, the application of 

Reynolds theory to non-conformal contacts shows that the load carrying zone 

is far smaller and the pressure is considerably higher than in conformal 

contacts. It thus becomes necessary to take additional phenomena into 

account. The most essential are: 

• The relatively high pressure leads to an elastic deformation of the 

surfaces. 

• The viscosity of the lubricant varies significantly due to the wide range 

of pressure occurring in the contact. 
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Chapter 1 Introduction 

The first analytical solution to take the above phenomena into account was 

given by both Mohrenstein-Ertel [2] and Grubin and Vinogradova [3] in 1949. 

A decade later a numerical solution was presented by Dowson and 

Higginson [4]. A typical result incorporating these phenomena is given in 

figure 1.1. Essentially, the typical ehl pressure distribution follows the 

pressure distribution occurring in a dry, Hertzian contact without relative 

motion but with two significant differences: In the inlet zone of the contact, 

where the lubricant enters, a smooth transition occurs and, near the outlet of 

the gap, a sudden pressure spike is present. As the Hertzian pressure 

distribution suggests, the shape of the gap is nearly parallel but with a 

sudden constriction at the end corresponding to the pressure spike. 
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Figure 1. 1: Typical shape, pressure distribution and velocity profiles in an 
elastohydrodynamically lubricated line contact (different 
surface velocities). 
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Chapter 1 Introduction 

1.2 Developments in ehl calculations 

Continuing from the early investigations, further phenomena have been 

investigated during the last four decades in order to achieve improved 

results. 

• The lubricant increases in temperature due to shear forces. The 

generation of heat and its transport in the lubricant and through the 

surfaces have been introduced into the calculation. The influence of the 

temperature on the viscosity has also been considered. 

• The lubricant in the gap undergoes severe changes of condition when 

passing through the contact. In particular, the pressure in the lubricant 

changes significantly and this has a marked effect on the viscosity. 

Because of sliding, the shear stress can reach high values. It is widely 

believed that the lubricant loses its Newtonian character under such 

severe conditions. A variety of different approaches have been 

suggested to take these non-Newtonian effects into account. 

• The contact surfaces are not ideally smooth. The influence of the 

roughness of the surfaces has been investigated. 

As a result, the analysis of the elastohydrodynamic contact problem has 

reached a standard [5], such that the results exhibit the quality required for 

the simulation of dynamic systems such as dynamic bearing analysis. 

However, all such analyses are still based on the assumption of a Reynolds 

equation for the lubricant flow with a constant pressure across the gap in the 

contact. Application of the more general full Navier-Stokes equations to ehl 

analysis has hardly been investigated yet, but promises a potential 

contribution to a further understanding of the ehl contact. 
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Chapter 1 Introduction 

1.3 Aim and objectives 

1.3.1 Aim 

The aim of the work presented in this thesis is to achieve improved results for 

ehl calculations by incorporating the Navier-Stokes equations in the solution 

procedure. 

1.3.2 Objectives 

The objectives of this investigation are: 

(i) to investigate the influence of the individual terms in the Navier-Stokes 

equations and to select those terms which are important for the solution 

of the ehl problem, 

(ii) to develop a suitable numerical method to solve the Navier-Stokes 

equations within the ehl regime, and 

(iii) to evaluate the benefit of the new approach by numerical results and to 

compare it with experimental or theoretical data. 

Practical application of elastohydrodynamic lubrication requires a system 

approach taking as many effects into account as possible [6]. However, since 

the Navier-Stokes equations for the ehl problem have hardly been 

investigated, the present investigation tries to reduce the problem to its 

principal effects. Following such a measure the investigation is restricted to 

the line contact problem, i.e. the contact between two infinitely wide rollers. 

This assumption of a line contact problem includes physical phenomena but 

allows a reduction of the problem to two dimensions. However, a further 

consideration is that an extension of the proposed method to three 

dimensions should be possible. In addition, the contact is assumed to be 

ideally smooth. 
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1.4 Scope of the work 

The thesis is structured into three parts. 

The first part comprises chapters 1 to 4 and considers the theoretical 

background of the work. Following the introduction of the present chapter, 

chapter 2 surveys the phenomena modelled in ehl analysis showing that, 

practically always, Reynolds equation has been used to describe fluid flow, 

although questioned occasionally. Consequently, in chapter 3, the relevance 

of the individual terms of the Navier-Stokes equations for the ehl problem is 

determined and the influence of any additional relevant terms on the typical 

ehl result is considered. Chapter 4 closes the part on the theoretical 

background by summarizing the needs for and the requirements of a new 

solution of the ehl problem. 

The second part of the thesis concentrates on the numerical method for the 

solution of the ehl problem using the Navier-Stokes equations and covers 

chapters 5 to 9. Chapter 5 gives an introduction to numerical methods. 

Chapter 6 provides a detailed overview of numerical methods used for the 

ehl problem to date and for the solution' of the Navier-Stokes equations 

including fluid-structure interaction. Chapter 7 considers how the numerical 

methods available can be combined into a new numerical method, including 

the selection of the most suitable method. Chapter 8 shows the 

implementation of the selected method such that an ehl analysis with 

constant pressure across the height of the gap can be undertaken. Chapter 9 

gives details of the implementation of further aspects so that the full Navier­

Stokes equations can be solved. 

The third and last part of the thesis, chapters 10 to 14, considers the results 

of the extended approach. Chapter 10 presents the results of the approach. 

In chapter 11 these results are considered, discussed and evaluated with 

regards to their technical relevance. In chapter 12 the discussion is 

broadened to include further aspects, such as validation and the influence of 

earlier assumptions. 

Finally, chapters 13 and 14 draw conclusions and propose future work. 
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Chapter 2 

Flow description in 
elastohydrodynamic lubrication 

As mentioned in the introduction, the basic solution of the 

elastohydrodynamic lubrication problem requires consideration of three 

phenomena: Firstly the description of the lubricant fluid flow in the gap, 

secondly a description of the pressure-viscosity dependency, and thirdly a 

description of the deflection of the solids. Starting from these considerations, 

a lot of research has been done in this field to date. Various aspects of the 

basic solution have been considered and extended models proposed and 

introduced which improve those aspects regarding lubricant properties and 

flow in the contact. 

The present chapter aims to overview both the aspects covered and the 

range of models proposed concerning the ehl problem. In parallel, an attempt 

is made at understanding the role of the Navier-Stokes equations for these 

models. 

2.1 Basic solutions 

2.1.1 Flow description and derivation 

A first solution of the ehl contact was given by both Mohrenstein-Ertel [2] and 

Grubin and Vinogradova [3]. To describe the flow, they used a one­

dimensional, incompressible Reynolds equation, as obtained from a 
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simplified x-momentum Navier-Stokes equation, and an exponential 

pressure-viscosity dependency. This is briefly described in the following: 

For a line contact such as that of figure 1.1 *, Reynolds' derivation [1] for the 

equation named after him, which was frequently repeated e.g. by Eller [7], or 

Lubrecht [8], is based on two equations. The first is a momentum equation 

along the contact, obtained from the Navier-Stokes equations in the 

corresponding direction with most terms neglected. Also the assumption of 

constant viscosity across the height of the gap is made, so the momentum 

equation is 

where p 
u 
x 

is the pressure, 
is the velocity along a line contact, 
is the coordinate along the contact, 

Y is the coordinate across the contact, and 

" is the viscosity, as stated constant across the gap. 

(2.1), 

Equation 2.1 represents the force equilibrium of pressure forces and shear 

forces along the gap. Hence occasionally [9], the term "force equilibrium 

equation" is used instead of "momentum equation". 

The second governing equation is a continuity equation, written in a steady­

state, integral form as 

where h 
u,x,y 

OL 

d[Yj~.dY] 
dOL = y=o =0 
dx dx 

the height of the gap, 
are as above, and 
is the flow rate along the contact per unit width. 

(2.2), 

In the present chapter, all derivations and equations will be discussed and shown for 
the infinitely wide line contact problem, even if the underlying literature discussed 
contacts of finite width, Le. point contacts or elliptical contacts. This is because this 
procedure allows a clearer presentation of the issues discussed without a loss of 
information. 
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The momentum equation in the y-direction is assumed to be irrelevant so that 

the pressure gradient across the gap is zero 

(2.3), 

where p,y are as above. 

The momentum equation in the z-direction disappears due to the line contact 

assumption. 

With twofold integration of equation 2.1 with respect to y, incorporation of the 

result in equation 2.2 and determination of the integration constants 

Reynolds equation can be written as 

where 

- -.- =6,(u1 +u2)·-d (h
3 

dP) dh 
dx ~ dx dx 

(2.4), 

h, p, x, ~ are as above and 
U1, U2 are the surface velocities of the two solid contact 

partners. 

This equation 2.4 can be modified to a so-called integral form of Reynolds 

equation, which is preferred in the present section, where possible, 

where 

(2.5), 

are as above and 
is the height of gap at the contact centreline, 
where pressure gradient along the contact is 
zero. 

Because equation 2.5 is that for the basic ehl situation, it will be referred to 

with regard to the underlying assumptions as the isothermal and/or 

incompressible Reynolds equation. 

This Reynolds equation was also used by Dowson and Higginson [4] and 

Archard, Gair and Hirst [10] for their first numerical solutions of the problem. 

However, the pressure-viscosity descriptions which they applied were 

different but of similar, exponential form. 
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All three early authors [2, 4, 10] obtained the Reynolds equation by 

transferring the flow equation developed for (rigid) hydrodynamic load cases 

to the ehl case: Mohrenstein-Ertel refers to his own earlier, hydrodynamic 

work [11]. There he mentions the 'Wavier-Stokes-Gleichung der 

Hydrodynamik", i.e. lithe Navier-Stokes equation of hydrodynamic" *, as the 

basic equation, which is apparently a simplified x-momentum equation like 

equation 2.1. Archard, Gair and Hirst [10] refer to the derivations of 

Mohrenstein-Ertel [2]. Dowson and Higginson [4] derive the equation from a 

two-dimensional, so-called 'tgeneral form of Reynolds equation'~ also 

developed for the hydrodynamic lubrication problem, and hence obtain the 

same Reynolds equation. The equations can be traced back to the 

hydrodynamic problem, hence it is likely that the equations were obtained 

with Reynolds' original simplifications [1] to the Navier-Stokes equations for 

the rigid hydrodynamic problem. 

Later, Dowson [12] gave a new full derivation of Reynolds equation from the 

complete three-dimensional Navier-Stokes equations focusing on the elasto­

hydrodynamic problem, using non-dimensionalisation and order-of­

magnitude considerations. Inertia effects and body forces are considered 

irrelevant with viscous and pressure terms predominant. Using ambient 

viscosity for the non-dimensionalisation, Dowson shows that, due to the small 

magnitude of the height of the gap, in comparison with the length of the 

contact, various terms, including pressure variation across the gap, are 

negligible and that the fluid flow description for the ehl problem is given by 

Reynolds equation 2.5, when constant viscosity across the gap is 

considered.t This derivation is used if justification for application of the 

derived simplified momentum equation 2.5, e.g. by Gohar [9] and Welsch 

[13], is given. However, the non-dimensionalisation using ambient viscosity 

was later questioned by Bair, Winer and Konshari [5]. This is considered in 

some more detail at the end of the present chapter in subsection 2.4.4. 

t 

Indeed the singular form "Navier-Stokes-Gleichuncf - Navier-Stokes equation - is 
used by Mohrenstein-Ertel [2]. 

The aim of the derivation was the development of a thermal Reynolds equation, 
section 2.3.2.2, but the aspects can also be applied to the present isothermal 
consideration. 
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2.1.2 Self-critical remarks on basic solutions 

By the time the above authors [2], [4] and [10] published their results, they 

already understood that the lubricant property and the flow description from 

the set of equations which they used cannot determine correct contact 

traction* coefficients for sliding conditions. While Mohrenstein-Ertel [2] 

defines them rather generally as "still unknown effects'~ Dowson and 

Higginson [4] already give some estimation of the possible temperature rise 

along and across an elastohydrodynamic gap, which is relevant for sliding 

conditions. On the other hand, Archard, Gair and Hirst [10] mention 

compressibility, thermal effects and Iviscosity [ ... J been regarded as 

Newtonian" as possible areas for model improvement, and give estimations 

of the compressibility influence. Together with the implicit fact that there was 

not yet general agreement on pressure-viscosity dependency, 

compressibility, thermal effects and Newtonian versus non-Newtonian flow 

behaviour, already marked the four important fields for future model 

refinements in the context of these first ehl solutions. The use of Reynolds 

equation, however, seems to be uncontested in the context of these works. 

The influence of the above-mentioned areas of model refinement on the flow 

and lubricant property description, also with a view to the full Navier-Stokes 

equations, is discussed in the following sections. 

Notwithstanding these extensions, the above described set of equations is 

still recognized as the minimum set of equations to be solved in order to 

obtain a principal ehl solution as it is used for the implementation and test of 

new numerical methods, e.g. Okamura [14], Lubrecht [8] and Hamrock and 

Jacobson [15]. 

The traction coefficient is defined as the ratio of shear forces along a contact surface 
to the load. 
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2.2 Modifications to the assumption of 
incompressibility 

The relevance of lubricant compressibility to the ehl regime has already been 

mentioned and considered in the work of Mohrenstein-Ertel [2] and first taken 

into account in a numerical solution by Cheng and Sternlicht [16]. The 

consideration of the compressible ehl regime required a twofold change of 

the approach sketched above [4, 10]. The fluid flow description by Reynolds 

equation required modification and a description of the pressure-density 

dependency had to be provided. 

For the latter, Cheng and Sternlicht [16] initially applied an exponential 

pressure-density approach. The widely established approach is now that 

proposed by Dowson and Higginson [17], 

where p 
a,b 

P 

_ .(1 +a. p) 
P - Po b.p 

is as above, 
are constants, 

is the density, and 

po is the density at ambient conditions. 

(2.6), 

This equation is shown to agree with experimental results [9, 17], reducing 

the increase in density at high pressure. The approach is frequently 

presented in literature [9, 13, 18], and used by Hamrock, Pan and Lee [19] 

for their detailed comparative investigation of the compressible with the 

incompressible ehl regime. A further enhanced pressure-density correlation 

is given by Jacobson and Vinet [20], which is later solved by Venner and Bos 

[21]. 

Regarding the fluid flow description, a modified Reynolds equation taking the 

compressibility into account is given by Cheng and Sternlicht [16] as 

(2.7), 
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where h, p, U1, U2, X , 11, p, Po 
h* 

are as above and 

is the height at the position of film "rupture 
at the outlet, where the pressure gradient 
is zero at ambient conditions. 

This equation differs from the previous, incompressible equation with regards 

to the characteristic height of the gap terms, ho and h* respectively, and the 

density ratio (p/po); it is subsequently referred to as the compressible 

Reynolds equation. The derivation of such a Reynolds equation is contained 

in the derivation of a general Reynolds equation by Dowson [12], or in the 

derivations by Welsch [13]: 

Of the two governing equations 2.1 and 2.2 of the basic solution, the 

continuity equation 2.2 must be written as a conservation of mass equation 

and cannot be simplified by the assumption of constant density to a 

volumetric continuity equation. Hence it changes in its integral, steady state 

form to 

where u,x,y,P 

ml 

, d [YJp. U· dY] 
dmL = y=o = 0 
dx dx 

(2.8), 

are as above and 

is the mass flow along the contact per unit width. 

On the other hand, in the derivation of the momentum equation 2.1, the 

assumption of a compressible or an incompressible lubricant neither required 

nor influenced the momentum equation used for the Reynolds equation, at 

least as long as thermal effects are., not considered. Due to that, the 

compressibility effect can be regarded as independent of the Navier-Stokes 

equations, but it relies on the correctness of a momentum equation such as 

equation 2.1. 

2.3 Modifications to the viscosity description 

In contrast to the above-mentioned influence of variable density on the 

Reynolds equation via the mass conservation equation, derivations [12] and 

[13] show that viscosity is that lubricant parameter which is present in the 

momentum equation, such as in equation 2.1. The majority of further 
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modifications of the ehl problem can be considered as modifications of the 

viscosity and viscosity distribution in the ehl regime. Two methods of 

modification to the viscosity can be observed: Firstly improving the originally 

applied pressure-viscosity dependency descriptions and secondly taking into 

consideration further aspects influencing viscosity. Part of the latter is the 

consideration of thermal effects, but also in some sense the effects of non­

Newtonian fluid properties. Although both ways described are not 

independent from each other, they are treated rather independently in the 

following. 

2.3.1 Modification to the pressure-viscosity dependency 

Originally, exponential descriptions for the pressure-viscosity dependency 

were applied to solve the ehl problem [2, 4, 10]. These models can be 

understood as variations of Barus' law [22] 

11 = 110 • eaop (2.9), 

where p, 11 are as above, 
110 is the dynamic viscosity at ambient conditions, and 

a is a pressure-viscosity coeffiCient, 

which many authors referred to as a suitable and convenient pressure­

viscosity description [8, 9, 15, 18]. 

However, when extrapolating results of experiments of modest pressure of 

up to 0.1 GPa to higher pressure values, the Barus' law omits some reduction 

of the pressure-viscosity gradient appearing at pressures much higher than 

0.1 GPa. Hence it is recognized to overestimate viscosity. Since traction 

coefficient is determined by the shear strain rate at the wall and the viscosity, 

overestimation of the viscosity means an overestimated traction coefficient. 

Thus, Barus' law is regarded as inaccurate above 0.5 GPa, particularly when 

traction coefficient is considered [9]. 

Various approaches considering the reduction of the pressure-viscosity 

coefficient at high pressure have been proposed. The most well-known 

probably is that by Roelands [23]. Other descriptions have been presented 

e.g. by Rodermund [24], or Chu and Cameron [25], and a list of further 
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approaches is given by Welsch [13]. Most approaches agree with 8arus' 

approach at ambient pressure but show a smaller value of pressure-viscosity 

gradient at higher pressures. A comparison of various of the mentioned 

approaches by Welsch [13] shows that for a selected reference oil, 8arus' 

approach represents a kind of upper limit and Roelands' approach some kind 

of lower limit. Similarly, Wolff et al. [26] propose a variety of three pressure­

viscosity laws and compare them. 

As long as the pressure-viscosity descriptions exclusively consider an 

influence of the pressure on the viscosity and no other properties, none of the 

conditions assumed when developing the relevant momentum equation will 

change, and hence the momentum equation in the form 2.1 and the 

Reynolds equation 2.5 remain the same, independent of the pressure­

viscosity description. This can be seen in the theory by Houpert and Hamrock 

[27]. 

2.3.2 Viscosity changes due to thermal effects 

Real lubricants change their viscosity not only due to pressure but also due 

to temperature. Hence, as initially proposed by Mohrenstein-Ertel [2], 

Dowson and Higginson [4] or Archard, Gair and Hirst [10], the consideration 

of thermal effects in the ehl problem facilitates viscous heating of the 

lubricant and the resulting viscosity modification can be used to improve 

result quality and realistic traction coefficients can be achieved. For their 

early solution of the thermal ehl problem, Sternlicht, Lewis and Flynn [28] 

proposed that an energy equation and the respective boundary conditions 

must be introduced, a description of the viscosity due to pressure and 

temperature found, and the thermally modified viscosity also applied in the 

fluid flow description. Considering the latter aspect, three groups of 

treatment, discussed in the following three subsections, can be observed. 

Welsch's comparison covered isothermal and thermal descriptions of viscosity. The 
findings are also valid for the thermal case which is discussed below. 
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2.3.2.1 Thermal solutions using isothermal Reynolds equation 

A first solution of the thermal problem by Sternlicht, Lewis and Flynn [28] 

assumed only viscous heating and convective heat transfer along the gap, in 

other words there was no conduction in the lubricant. This applied form of 

energy equation gave a temperature distribution along the gap and implied 

constant temperature across the gap. With an exponential extension of 

8arus' law incorporating the temperature influence, viscosity values were 

obtained which were used in a Reynolds equation of form 2.3. Sternlicht, 

Lewis and Flynn also state that, due to the one-dimensional energy equation, 

Reynolds equation of form 2.5 and the underlying x-momentum equation of 

form 2.1 are valid. 

Cheng and Sternlicht [16] soon realised that beside the convection along the 

gap, conductive heat transport across the gap is also relevant, particularly at 

the slower surface of a sliding contact. Such a solution meant the introduction 

of a two-dimensional energy equation for the lubricant providing a 

temperature variation across and along the contact as well as the 

introduction of a temperature distribution in the conducting solids such as that 

of Carlslaw and Jaeger [29]. They understood that a pressure variation 

across the gap means a variable viscosity across the gap. Hence a 

momentum equation in the form 2.1 

(2.10) 

is not valid, but must be replaced by a form considering variable viscosity 

across the gap: 

(2.11 ). 

However, to be able to use a Reynolds equation of the established form, in 

the presented case equation 2.7, because of the considered compressibility, 

a mean viscosity 

(2.12), 
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where h, y, 11 are as above and 

11m is the mean dynamic viscosity 

had to be determined for the fluid flow description and analysis. 

Although soon Reynolds equations which are consistent with equation 2.11 

were available, Reynolds equations using the mean viscosity approach were 

still applied. Eller [7] proposed a method with a two-dimensional energy 

equation which reduces numerically to a one-dimensional energy equation 

along the gap by incorporating an analytical solution across the gap with the 

assumption of a parabolic temperature profile. Since the model results in a 

mean viscosity, an isothermal Reynolds equation, in the present case 

equation 2.3 because the case is incompressible, can be used. Lee and Hsu 

[30] based their analysis on a similar reduction to a one-dimensional energy 

equation. Lin, Lin and Jang [31] used an energy equation based on a mean 

temperature and hence an isothermal Reynolds equation. 

2.3.2.2 Thermal solutions using thermal Reynolds equation 

. To overcome the limitations of Reynolds equation 2.3 and 2.5 and to fulfil the 

thermal x-momentum equation 2.11, Cheng [32] used a purpose made 

compressible Reynolds equation of the form 

where h, h*, U1, U2, p, Po are as above, 
11e is an effective viscosity, and 
t1, t2 are functions considering the viscosity 

variation across the height of the gap. 

(2.13), 

Determination of the variables 11e, t1 and t2 requires the solution of an integral 

across the height of the gap similar to equation 2.12. 
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An expansion of Reynolds equation was also the intention of Dowson's 

investigation [12]". He provided a Reynolds equation for thermal problems 

with variable viscosity and density across the gap. The admissible 

simplifications of the momentum equation are the same as those mentioned 

above, i.e. irrelevance of inertia and body force effects. Constant pressure 

across the gap is hence the same as for the isothermal analysis. However, 

the derivation requires variable viscosity across the gap so that Dowson's 

governing momentum equation for Reynolds equation is the same as 

equation 2.11 and the applied continuity equation is compressible. With these 

assumptions, a thermal Reynolds equation in the non-integral form is 

where 

(2.14), 

p, x, y, U1, U2, P are as above, 
v is the speed perpendicular to the gap, 
Fo, F2, F3 are functions considering the variable viscosity 

across the gap which require fourfold the 
determination of an integral, 

G1, G2, G3 are functions considering the variable density 
across the gap which require also the 
determination of an integral, and 

1 and 2 are subscripts marking the lower and upper 
surface respectively. 

Fowles [33] proposed slightly different functions for the thermal Reynolds 

equation in order to reduce the numerical effort for solution. He developed his 

form directly from Dowson's thermal equation. This equation was frequently 

used for thermal analysis of the ehl regime, e.g. by Sui and Sadeghi [34], 

Sadeghi and Dow [35] and Welsch [13]. Due to the history of development, 

all these equations are based on an x-momentum equation of the form 2.11 

and a negligible pressure variation across the gap, equation 2.3. 

Dowson's fundamental derivation was cited earlier in the discussion of the isothermal 
Reynolds equation in section 2.1. 
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2.3.2.3 Thermal solutions without Reynolds equation 

Occasionally, solutions of the ehl problem were proposed which are 

characterised by a renunciation of any Reynolds equation. Liesegang [36] 

and BrOggemann and Kollmann [37] followed the frequently reported opinion 

that viscous heating and heat transport in the gap lead to variable viscosity 

across the height of the gap. They concluded, like e.g. Dowson [12], that the 

momentum equation of the form 2.1 must not be applied, and the traditional 

way of developing Reynolds equation, such as sketched in section 2.1, 

cannot be followed. Despite that, a full set of momentum equations - and 

continuity equation - must be solved, including discretisation of the equations 

across the gap. BrOggemann and Kollmann [37] even state that the 'Wavier­

Stokes equations" are to be solved. However, Liesegang [36] as well as 

BrOggemann and Kollmann propose and introduce simplifications to the 

Navier-Stokes equations which reduce them exactly to the form of 

momentum equation 2.11 which is used for the derivation of the thermal 

Reynolds equations. The derivation also excludes a pressure variation 

across the gap by assuming the pressure gradient in the y-momentum 

equation to be zero. Hence their approach is rather more a different 

numerical method than a different description of fluid flow. 

2.4 Non-Newtonian effects 

2.4.1 Available non-Newtonian models 

Thermal effects were also insufficient to obtain realistic traction coefficient 

values and lubricant was hence assumed to exhibit non-Newtonian 

behaviour, i.e. Newton's approach that the local shear stress 't is linear to the 

shear strain rate Y5 is invalid, but the shear stress depends on further 

parameters [32, 38]. Various models were proposed to describe the non­

Newtonian behaviour: 

• Pseudoplastic: 

The lubricant is assumed to show a purely viscous behaviour, but the 

higher the shear strain rate rises, the smaller is the correlated rise of the 

shear stress. In other words, the absolute viscosity appears to be 
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smaller the higher the shear strain rate rises. For infinite shear strain 

rate the shear stress rises also to infinity, i.e. the absolute viscosity 

never reaches a zero value. Eyring' hyperbolic sine model [39] 

represents such a behaviour and Houpert and Hamrock [40] applied the 

model to the ehl problem. 

Also a so-called power law model, where the shear stress is 

proportional to the shear strain rate raised to the power of a constant, 

represents a pseudoplastic behaviour when the exponent is less then 

unity. Such a model found application and solution for the ehl problem 

by Wang, Hua and Zhang [41]. Lin and Lin [42] show pseudoplastic 

behaviour results when their exponent of the power law falls below 

unity. 

• Limiting shear stress 

Similar to the above Eyring model, the limiting shear stress assumes a 

reduced rise of the shear stress with an increasing shear strain rate. 

However, for high shear strain rates, the shear stress does not continue 

to rise, but approaches a finite asymptotic limiting shear stress value. 

Correspondingly, absolute viscosity asymptotically approaches zero 

with increasing shear strain rate. 

For the mathematical description a variety of shear strain rate-shear 

stress dependencies have been proposed, such as a logarithmic, a 

hyperbolic tangent, an exponential and, as special case of the 

exponential, the circular. An overview and comparison of the above 

descriptions is given by Elsharkawy and Hamrock [43]. 

• Vlsco-elastlc 

The visco-elastic model means that a fluid does not behave exclusively 

as viscous, but as a mixture of viscous and elastic behaviour, whereas 

the influence of the two effects depends on the time the lubricant stays 

in the contact. 

This model was proposed by Johnson and Tevaarwerk [44] for the ehl 

regime, assuming an Eyring-type viscous behaviour. Bair and Winer 

[45] proposed a model combining the elastic behaviour with a viscous 

limiting shear stress model. 
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• Visco-plastic 

Uke the limiting shear stress model, the visco-plastic model assumes a 

shear stress which does not exceed a limiting shear stress value 

independent of the shear strain rate. However, in contrast to the limiting 

shear stress models, it is assumed that this shear stress can be 

reached, and that the liquid is showing a plastic behaviour once the 

value is reached. 

livonen and Hamrock [46] proposed and solved a model for such a 

behaviour in which they assumed a Newtonian fluid behaviour for shear 

strain rates leading to a shear stress below the limiting value. 

2.4.2 Flow description for non-Newtonian models 

To solve the ehl regime for a non-Newtonian lubricant, a revised equation to 

describe the flow is required. The procedure is similar for the various non­

Newtonian models, such as the Eyring model by Conry, Wang and Cusano 

[47] or Houpert and Hamrock [40], the circular by Lee and Hamrock [48], the 

power law by Wang, Hua and Zhang [41], the visco-plastic by livonen and 

Hamrock [46] or a generally valid model by Hughes and Bush [49]. Since the 

x-momentum equation 2.5 and 2.11 respectively incorporates Newton's law, 

it is written in the generally valid manner as 

Op OtJ:f 
-=-ox Cy 

(2.15), 

where p, x ,yare as above and 

Txy is the shear stress component directed along the gap. 

Hence at the start of the development of a non-Newtonian flow equation with 

equation 2.15, the validity of the assumptions applied to obtain the respective 

equation for the Newtonian Reynolds equation is implied. Using the above 

momentum equation 2.15, a respective description of shear strain-shear 

stress dependency, continuity equation, assumptions regarding the shear 

rate distribution across the gap and of the constant pressure across the gap, 

and a procedure as that for a Newtonian Reynolds equation, non-Newtonian 

Reynolds equations are obtained, which differ from the Newtonian Reynolds 
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equation 2.7 by some additional terms taking the described additional effects 

into account. 

2.4.3 Combination of non-Newtonian and thermal analysis 

As Crook [38] concluded from thermal results, that there is a need to 

consider non-Newtonian lubricant properties, Hamrock [18] recognizes from 

his non-Newtonain results vice versa that there is a need for consideration of 

thermal effects in order to obtain realistic results. 

The two approaches observed for Newtonian, thermal ehl analysis, i.e. a 

solution using average viscosity across the gap and another using a thermal 

equation with numerical integration across the gap, are also observed for the 

non-Newtonian problem. 

For the first method Salehizadeh and Saka [50] start the development of a 

suitable flow equation from an x-momentum equation not representing the full 

Navier-Stokes equation, but a more extensive form than equation 2.15. 

However, like Dowson [12] they conclude that the pressure variation across 

the gap is negligible and that the momentum equation can be reduced to the 

form of 2.15. Others, like Wang, Cusano and Conry [51], start directly from 

the x-momentum equation 2.15. Due to the mean viscosity, both [50] and [51] 

obtain Reynolds equations with the structure of an isothermal, non­

Newtonian Reynolds equation. 

Peiran and Shizhu [52] developed a generalized Reynolds equation for non­

Newtonian thermal and compressible elastohydrodynamic lubrication. 

Formally, the Reynolds equation looks like the thermal Newtonian Reynolds 

equation of Dowson [12] and Fowles [33], equation 2.14. However, the 

contained factors are not based on the viscosity, but on an equivalent 

viscosity, which itself must be determined numerically for each position 

across the gap. The derivation of the equation follows the procedure of 

Dowson [12] and is hence again based on the x-momentum equation 2.15. 

Thus, from the basic solutions of section 2.1 to the most advanced models of 

the ehl regime with compressible, thermal and non-Newtonian effects, all 

solutions are based on a simplified x-momentum equation and a negligible y-
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momentum equation, meaning that there is no pressure variation across the 

gap. 

2.4.4 Overcoming constant pressure across the gap and 
simplified x-momentum equation 

The above observation of exclusive application of Reynolds equation and 

assumption of constant pressure across the gap is confirmed by Bair, 

Khonsari and Winer [5], who quote the determination of the pressure in the 

ehl regime is "almost exclusively performed with a form of the classical 

Reynolds equatiorf'. 

However, when performing experiments and considering Navier-Stokes 

equations to understand non-Newtonian behaviour, Bair, Khonsari and Winer 

show that pressure variation across the gap has some relevance. Hence 

Navier-Stokes equations should be used instead of Reynolds equation. They 

further show that for pressure dependent viscosity such as in the 

elastohydrodynamic contact problem, the Navier-Stokes equations can 

develop a singularity, where the characteristic of the Navier-Stokes equations 

will change. They link this singularity with the appearance of shear bands and 

the reaching of limiting shear stress. Bair, Khonsari and Winer conclude that 

for a full understanding of the ehl contact there is need for a numerical 

solution of the Navier-Stokes equations, not just for the reason mentioned, 

but also for consideration of rough surfaces. 

A solution of an approach using the full Navier-Stokes equations was given 

by Almqvist and Larsson for isothermal [53J and thermal contacts [54]. Their 

analysis parameters were limited so that the singularity of the Navier-Stokes 

equations was approached but not exceeded. Their results show no 

qualitative and minor quantitative differences in comparison to Reynolds 

equation based solutions. 

2.5 Summary and conclusion 

Since the first solution of the elastohydrodynamic contact problem by 

Mohrenstein-Ertel [2], Reynolds equation has been used as the usual 

description for the lubricant flow. This fluid flow description allows variable 
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density. viscosity and various shear rate-shear stress dependencies. but 

remains an equation based on a simplified x-momentum equation 

Cp Ur'lft/ 
-=-ex Cy 

(2.16) 

and the assumption of a constant pressure across the gap 

(2.17) 

for the elastohydrodynamic contact problem. Although widely accepted. this 

assumption of a constant pressure across the gap is now questioned. 

proposing the application of Navier-Stokes equations instead of Reynolds 

equation. However. this proposal has hardly been investigated numerically 

and hence requires further exploration. 
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Chapter 3 

Significance of the individual terms 
in the Navier-Stokes equations 

As shown in the previous chapter. almost all existing solutions of the ehl line 

contact problem use various forms of the Reynolds equation to describe the 

lubricant flow. Almost all available solutions agree with respect to some 

fundamental assumptions. e.g. the neglect of inertia forces and the 

assumption of a constant pressure across the gap. On the other hand, 

recommendations to apply the full Navier-Stokes equations are made. 

In this chapter. the basic derivation of the relevant equations for the fluid flow 

description is repeated with the aim of understanding the significance of the 

individual terms of the Navier-Stokes equations. For this, simplifications will 

be introduced during the derivation. which are discussed and evaluated in 

detail. A need for the consideration of additional terms of the Navier-Stokes 

equations is confirmed and sets of equations restricted to the relevant terms 

are given. These sets of equations reduce the complexity of the Navier­

Stokes equations and allow a practical understanding and handling of the 

extended approach. 

3.1 Governing equations 

3.1.1 Fluid flow equations 

The basis for the derivation of the momentum equation is the application of 

Newton's second law to an infinitesimal fluid element as shown. e.g. in 
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Schlichting [551, [561. The inertia forces on a fluid element are balanced by 

pressure, viscous, and body forces, figure 3.1: 

d 

z 

y 

• • • • • .... ~ 1.·· ~~ ••.••• 
~. . ~ .. 

(3.1). 

(a + Oa n .dZ).dA 
ZIl (}z I 

· .-... 
~~""'""V.--I···~···'" 1+:.;' dxHaa+ta·dx)}dA. 
" .... _ .... 

", 'V j;:: dy 
• 

dx 

x 

Figure 3. 1: Equilibrium of forces on a fluid element by inertia, body, 
pressure, and viscous components. 

Fulfilling the requirement of equilibrium of momentum for all surfaces of the 

fluid element leads to the result of symmetry for the tangential stress 

components: 

(3.2). 
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There still remain six independent terms describing the stress. Further 

simplification of the momentum equation requires that these stress terms are 

rewritten in terms of other dependent variables. The approach used for this 

investigation is Stokes' approach, the three-dimensional extension of 

Newton's approach that shear stress and velocity gradient are proportional. 

In the x-direction the stresses can be written as: 

(3.3). 

The stress components in the y- and z-directions can be obtained by cyclic 

transposition. 

In the set of equations 3.3 the first equation represents normal stress except 

for the pressure while the second and third represent shear stress in the 

respective directions. The variable 11 is the dynamic viscosity and A is a 

second viscosity coefficient. For gases, a good working approximation for the 

second viscosity coefficient can be obtained by using Stokes' hypothesis [55, 

56], where 

2 
A = --·11 

3 
(3.4). 

In the case of liquids, the same hypothesiS is used for the value of the 

second viscosity coefficient A. However, the variable is increasingly irrelevant 

for weakly compressible and fully irrelevant for incompressible liquids. This is 

because the term (OU/ Ox + Ov / Cy + iW / Oz) represents the mass continuity for 

an incompressible flow as shown below [57]. 

IntroduCing equations 3.3 into 3.1 results in the Navier-Stokes equations: 
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(3.5). 

As discussed in section 2.4, many authors suggest that the lubricant does not 

exhibit Newtonian behaviour under the severe conditions of the contact. 

However, the Navier-Stokes equations assume a Newtonian fluid. Therefore, 

the use of the Navier-Stokes equations as a basis for the following 

investigation is a major assumption. It is clear that any results obtained using 

the assumption of a Newtonian fluid must be considered with respect to 

possible non-Newtonian influences. These will be discussed in section 12.4. 

All body force terms are set to zero. These could be, for example, electrical, 

magnetic, or gravitational forces·. Electrical and magnetic forces do not affect 

the lubricant. Gravitational effects might be non-zero in certain applications 

but they are usually relatively small in fully flooded situations and always 

dependent on the position and orientation of the application. Body force 

terms are often used to introduce appropriate models for effects beyond the 

assumption of a continuum, e.g. intermolecular forces at the interface to 

other fluids such as surface tension and capillarity. These phenomena might 

Occasionally, centrifugal and Coriolis forces are considered as body forces, but this Is 
only the case when the reference system is moving or rotating. When conSidering a 
stationary system, any centrifugal or Coriolis effects are represented by the 
momentum terms. 
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have an influence on the contact because the height of the gap at the outlet, 

where the film ruptures, is very small. In the following investigations only fully 

flooded areas of the contact are considered allowing surface tension effects 

to be neglected. 

If the fluid properties, i.e. density, viscosity, and the second viscosity 

parameter, are known, four unknown variables, i.e. pressure and three 

velocity components, remain in the three Navier-Stokes equations. A fourth 

equation is necessary to allow the system of equations to be solved. This 

equation is the continuity equation describing the conservation of mass: 

op + o(p. u) + o(p. v) + o(p. w) = 0 
at ex By Oz 

(3.6). 

3.1.2 Fluid properties 

To solve the Navier-Stokes equations, the fluid properties must be 

prescribed. 

3.1.2.1 Density 

The influence of variable density was assumed to be negligible for the main 

part of the present investigation. As mentioned in chapter 2.1, the principal 

solutions and typical phenomena of an ehl contact can be shown without 

variable density and the influence of variable density is relatively small. On 

the other hand, variable density spoils the parallel shape of the gap, which 

results in a more difficult understanding of further phenomena such as 

thermal or Non-Newtonian effects. 

The assumption of incompressibility can be written as 

which reduces the continuity equation to 

ou ov ew 
-+-+-=0 ex By Oz 
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A combination of the incompressible continuity equation with the Navier­

Stokes equations leads to the disappearance of those terms of the Navier­

Stokes equations which contain the second viscosity coefficient A.. It is 

obvious that. for exact solutions. a detailed investigation of compressible 

influences is necessary. 

3.1.2.2 Viscosity 

The lubricant was assumed to follow Barus' pressure-viscosity dependency 

[22] 

(3.9). 

where 110 is the viscosity at ambient conditions. 

a is a pressure-viscosity coefficient. and 
p is the relative pressure. 

Although Barus' approach leads to traction coefficients which are much 

higher than reality. subsection 2.3.1 and [9]. the principal behaviour of the ehl 

contact can still be modelled with the advantage that the equation is easy to 

handle. In case a more exact description is required. Roelands' approach 

[23] is used in its isothermal form: 

,,= 110' exp [(In (110)+ 9.67). ~ 1 + (1 + 5.1.10-11 
• p)z]) (3.10) 

with 

a 
Z = (). 5.1.10-11 

• (In 110 + 9.67) 

The restriction to an isothermal case is chosen in order to restrict the scope 

of the principal investigation of the individual terms. It was realised that the 

reduction to the isothermal case causes the elimination of some important 

effects. These effects have already been discussed in detail as reviewed in 

subsection 2.3.2. Care is taken that any new findings for the isothermal case 

will be discussed with respect to thermal effects. e.g. in section 12.5. 
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3.1.3 Description of the elastic behaviour 

For the description of the contact deformation, Boussinesq's approach is 

used as described in Szabo [58]. The approach assumes an infinitely wide 

half-space. Due to this assumption, the deflections can only be calculated 

relative to another point. Details can be seen from figure 3.2, where the 

deformation at a location x is given by 

() 2 · (1- v
2

) -'s ( ) x - s 
V d X =. p s ·In . ds 

1t. E -G) xref - S 
(3.11 ). 

s 
x 

Xref 

X, S 

Figure 3.2: Deflection of an infinitely wide half-space due to local 
pressure p. Definition of the variables for the Boussinesq 
equation. 

3.1.4 Reduction to two-dimensional, steady-state 
conditions 

The premise, made in section 1.3, that a steady state line contact problem 

should be conSidered, reduces the number of independent variables. Using 

the axis orientation as defined in figure 3.3, an infinitely wide line contact has 

the consequence that 

a 
-= 0 and w = 0 
Oz. 

(3.12a). 

- 31 -



Chapter 3 Significance of the individual terms in the Navier-Stokes equations 

The above condition, together with the steady state condition, 

leads to the simplified form of the Navier-Stokes equations 

p( u.: +v.:) ~-: +2· ! [~. :]+ ~[~(: + :)] 

p{u.: +v· ~) ~ -: +2· ~[~. ~]+ ![~(: + :)] 
and the continuity equation reduces to 

au fJv 
-+-= 0 ox Oy 

(3.12b), 

(3.13) 

(3.14). 

The Boussinesq equation and the fluid property descriptions remain 

unchanged. 

Figure 3.3: Orientation of the system of co-ordinates for the ehl line 
contact. 
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3.1.5 Final set of equations 

The set of equations developed above and used in the rest of the present 

study is summarised below: 

• Two-dimensional. incompressible Navier-Stokes equations: 

• Two-dimensional. incompressible continuity equation: 

au Cv 
-+-=0 ex Oy 

• Boussinesq's equation describing the elastic deformation: 

() 2.(1-V2) +OOf ( ) ~-s v CI x = - . p s ·1 . ds 
7[·E x f-S 

-... 18 

(3.15). 

(3.16). 

(3.17). 

• Barus' and Roelands' equations describing the pressure-viscosity 

dependency: 

Barus' equation 

(3.18a). 

Roelands' equation 

11 = 1')0' exp [(In (1')0) + 9.67). ~ 1 + (1 + 5.1.10-Q 
• p)z]] (3.18b) 

with 

a 
Z = (). 5.1·1 O-Q . (In 110 + 9.67) 

3.2 Inertia effects 

In the following. the relative importance of the inertia terms in comparison 

with the viscous terms in the ehl regime is considered. Inertia effects are 

expected to appear in regions of significant geometry change and also in 

-33-



Chapter 3 Significance of the individual terms in the Navier-Stokes equations 

areas of low viscosity. Both these conditions are fulfilled in the inlet zone of 

the ehl contact. The present section thus concentrates on this inlet zone. 

3.2.1 Non-dimensional form of the Navier-Stokes 
equations 

In order to investigate the influence of inertia forces, the Navier-Stokes 

equations are written in non-dimensional form. All variables are normalised 

by relating each variable to a characteristic value so that the dimensionless 

variables range approximately between zero and unity. The characteristic 

values are specific constants for any ehl line contact configuration and 

illustrated in figure 3.4. 

slope 
h<fbhz = Y 

atan y 

height of the gap vs. length of the gap 
100 times magnified 

Figure 3.4: Characteristic values in the ehl contact as reference values for 
normalising the Navier-Stokes equations for the investigation 

of inertia effects. 

The distance along the gap x is non-dimensionalised with respect to the 

Hertzian width bhz: 
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- x x=­
bhZ 

(3.19a). 

The distance across the gap y is non-dimensionalised with respect to the 

height of the para"el section of the gap ho, although, particularly for heavy 

loaded cases such as illustrated in figure 3.4, the height of the gap at the 

start of the inlet zone might be up to one order of magnitude higher, 

- y y=-
ho 

(3.19b). 

The velocity component para"el to the gap u is non-dimensionalised with 

respect to the mean of the two contact surface speeds, the hydrodynamic 

speed Uh, 

(3.19c). 

The velocity component across the gap v is non-dimensionalised with respect 

to an assumed mean perpendicular speed vm
e

• Since there is no obvious 

predefined characteristic speed across the gap, such a component has to be 

defined by a characteristic speed along the contact, i.e. the hydrodynamic 

speed, and a characteristic geometrical ratio comparing the dimensions 

along and across the gap, i.e. a characteristic slope. With Hertzian width ~z 

and the centreline height ho defining such a characteristic slopet , the 

definition of dimensionless speed across the gap is 

(3.19d). 

Similar to the dimensionless height of the gap, the dimensionless velocity V 

might exceed unity by up to one order of magnitude. 

Contrary to the practice of introducing only a single dimensionless speed, e.g. 
Schlichting [55, 56], in the present study a dimensionless speed value is introduced for 
each direction to obtain unity dimensionless speeds in both co-ordinate directions. 

t An alternative definition could be the slope of the curved surface near the edge of a 
dry Hertzian contact. Such a method might represent a better approximation of the 
contact situation but would be independent of the characteristic length across the gap. 
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The characteristic pressure was taken as ambient Po rather than the Hertzian 

pressure Phz because any inertia effects were expected in the inlet zone, 

where viscosity and pressure will be approximately ambient. This definition 

tends to emphasize the influence of the inertia terms in comparison with the 

pressure and viscous terms of the Navier-Stokes equations. Thus 

- p. 
Po=-

Po 
(3.1ge). 

For approximately ambient conditions, Barus' approach delivers very small 

changes to the viscosity so that for the viscosity 11 

11 = 110 = constant (3.19f). 

Incompressible fluid behaviour was assumed as discussed in section 3.1 

P = Po = constant (3.19g). 

Introducing the above definitions, the Navier-Stokes equations in 

dimensionless form are obtained: 

(3.20). 

Introducing the geometry ratio y 

h y=_o 
bllz 

(3.21), 

replacing the Hertzian width bnz. in the velocity gradient terms, and re­

ordering the terms, equations 3.20 become: 

Po was used rather than P as symbol for the dimensionless pressure related to 

ambient pressure because the latter symbol will be required for an alternative 
definition of the dimensionless pressure in section 3.3. 
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(3.22). 

3.2.2 Determining Reynolds number 

The geometry ratio 'Y is obviously very small, hence the sum of the viscous 

terms in the brackets terms remain in the normalised range. Reynolds 

number is the ratio of inertia forces to viscous forces and therefore can be 

calculated by dividing the multiplying factors outside the brackets. The 

Navier-Stokes equations written with Reynolds number become: 

(3.23a, b), 

where Re is Reynolds number 

(3.23c), 

which is identical for both the Navier-Stokes equations: 

The presented definition of the Reynolds number differs from the form used for most 
applications by the geometrical ratio y. 
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To calculate values of Reynolds number, the Hertzian width bhz, the height of 

the gap at the contact centreline ho, the hydrodynamic speed Uh, as well as 

viscosity 110 and density Po at ambient conditions must be known. However, 

for normal ehl contacts only the viscosity, density, and hydrodynamic velocity 

are specifically known. The Hertzian width and the central height of the gap 

must be evaluated from other parameters normally available for the contact 

such as the Hertzian pressure or distributed load, the radii of both contact 

partners and the material properties. 

The Hertzian width can be easily determined by re-arranging Hertz's basic 

formula as given in [59]. For a particular Hertzian pressure, the Hertzian 

width of the contact is 

where 

b = 4. P . rred 
hZ hZ E:' (3.24a), 

is the Hertzian pressure, 
is the reduced radius, calculated from both the surface 
radii, 

r: =[~ + r:l 
and 

E:' is the reduced Young's modulus, calculated from Young's 

modulus and Poisson's ratio for each surface 

For a particular distributed load FIle' the Hertzian width of the contact is 

obtained from 

(3.24b), 

as 

b 8.!..rred 
til = 

1t I E:' e 
(3.24C), 

where parameters are as above. 
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The height of the gap can be obtained from empirical formulae. A number of 

film thickness formulae are available as summarised by Wilson [60]. Many of 

the formulae are based on three dimensionless parameters and the 

dimensional reduced radius. The minimum film thickness hmin according to 

Dowson and Higginson [17] is 

where 

h
min 

= 1.6. Go.e . UO.7 • W-<J·13 • rred 

W is the dimensionless load parameter, 

W= F =2.1t.(PhZ)2 
Ie . E' • r red E" 

U is the dimensionless speed parameter, 

U - 110 ,uh 

- E' , • rred 
G is the dimensionless material parameter, 

G = E'·a, 
and 

E', rred are as above. 

(3.25), 

For the present consideration, the minimum film thickness was assumed to 

be about 80 per cent of the centreline film thickness ho which is an 

approximate value, for example given by Gohar [9], 

ho = 1.9· Go.e . UO·7 • W-<J·13 • rred (3.26). 

The above formula for the film thickness is only reasonably valid for the 

elastohydrodynamic lubrication regime and not for hydrodynamic lubrication 

with rigid surfaces. A limiting condition ensuring that the formula is 

reasonably valid can be determined from the map of film thickness as given 

in Dowson and Higginson [17] by 

W ~ 0.017 ·UO.325 (3.27) 

for 

G=5000. 

Introducing the above formulations 3.21, 3.24c, and 3.26 and definitions of 

the dimensionless ehl parameters 3.25 into the definition of Reynolds 

number, equation 3.23, 
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(3.28a), 

the Reynolds number can be written, as shown in detail in appendix A, as 

Re = 0.56· p;;;.S2 • r';:'" . u~·" . E,1.32 • a 1.2 .110°.4 
• Po (3.28b). 

Using the dimensionless parameters defined in equation 3.25, Reynolds 

number can be written in various forms, but an additional dimensionless 

variable f<Ae is always required, e.g. 

Re = 2.26· KRe . G1.2 . W-o·78 
• UO.4 

with the dimensionless constant 

2 

K - Po ·uh 

Re - E' • 

3.2.3 Values of Reynolds number 

(3.28c) 

Altogether, Reynolds number depends on seven variables. Typical 

parameters appearing in practical line contact applications are given in table 

3.1. For the present consideration, a fixed value was assumed for the 

reduced Young's modulus, the pressure-viscosity coefficient and the density 

of the lubricant. 

Hertzian pressure PhZ = 0.1 .. .4.0 GPa 

reduced radius rAId = 0.0002 ... 0.1 m 

hydrodynamic speed uh = (0.0) ... 0.2 ... 20 m·s-1 

reduced Young's modulus E' = 2.27 ·1 OS N·mm-2 

pressure-viscosity coefficient a = 2.18·10-8 Pa-1 

viscosity 110 = 0.002 ... 0.5 Pa·s 

density p=870 kg·m-3 

Table 3.1: Range of parameters appearing in practical ehl line contact 
applications for the determination of Reynolds number. 
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Figure 3.5 shows results for Reynolds number as a function of the 

dimensionless parameters U and W with G = 5000. For the additional 

parameter l<Re the maximum possible value is chosen by assuming a 

maximum hydrodynamic speed of 20 mls. This choice maximises the 

Reynolds number. Results are shown in figure 3.5 within a limited range of 

parameters only. The borders are defined by maximum and minimum values 

for the dimensionless parameters U and Wand by the transition to the rigid 

hydrodynamic lubrication regime. The maximum Reynolds number is 

Re = 0.2 approximately. This number can be confirmed analytically as shown 

in appendix B. 
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Figure 3.5: Reynolds number for the ehl line contact problem assuming 
maximum hydrodynamic speed Uh = 20 rn/s; G = 5000. 
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3.2.4 Discussion and conclusions 

The results show generally very low Reynolds numbers ranging from about 

0.2 to less than 10-4. These values were obtained for the maximum value of 

f<Ae assuming maximum hydrodynamic speed. For practically more common 

values of the parameters, e.g. the radius, the Reynolds number is at least 

two orders of magnitude smaller. It thus may be concluded that inertia effects 

do not have to be taken into account for ehl calculations. The result confirms 

the findings by Dowson [12] and justifies the respective assumptions made 

by Dowson and Higginson [4, 17], Archard, Gair and Hirst [10] and others to 

date. 

When non-dimensionalising the variables, it was mentioned that the 

dimensionless height of the gap at the start of the inlet zone might be 

considerably higher than unity. Consequently, that would mean an 

underestimation of Reynolds number. However, for the case of maximum 

Reynolds number, the Hertzian width is small and the height of the gap is 

large. In consequence, the geometry ratio y is relatively large and this tends 

to compensate for any underestimation of Reynolds number. 

A consideration of the general simplifying assumptions made earlier in the 

investigation of the governing equations and Reynolds number retains the 

conclusion that inertia terms need not be taken into account: Because non­

Newtonian effects are rather significant in the heavily loaded zone, Non­

Newtonian effects do not influence Reynolds number in the inlet zone. 

Consideration of thermal effects in the inlet zone results in a reduced height 

of the gap, as shown by Greenwood and Kauzlarich [61] or Murch and 

Wilson [62], which reduces Reynolds number, and a slight decrease of the 

viscosity, which causes an increased Reynolds number. However, 

considerable temperature rises would be required to reduce the viscosity to a 

value which provides significant Reynolds number values. 

Since the inertia terms are indeed negligible, further investigations 

concentrate on the viscous terms of the Navier-Stokes equations and their 

importance in relation to the pressure terms. 
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3.3 Viscous effects 

3.3.1 Non-dimensional form of the Navier-Stokes 
equations 

For an investigation of the significance of the individual viscous terms of the 

Navier-Stokes equations, an analysis of the normalised form of those 

equations is performed, similar to that of the previous section. In contrast to 

the inertia effects, viscous effects appear in both the inlet and the heavily 

loaded zone of the contact. This requires a revision of the non­

dimensionalising procedure previously discussed, which is illustrated in figure 

3.6. 

Distances and velocities are non-dimensionalised in the same manner as for 

the investigation of inertia effects, equations 3.19a-d. It should be noted that 

the normalised velocity V is much smaller than unity when the gap is parallel 

in the heavily loaded zone of the contact. This is because the parallel shape 

does not induce a perpendicular velocity component due to the 

hydrodynamic speed as assumed in the definition of V . 

The Hertzian pressure of a dry contact is selected as the characteristic 

pressure 

- p 
p=-

PhZ 
(3.29a). 

The viscosity is normalised by introdUCing Barus' exponential pressure­

viscosity dependency of equation 3.18a and using the non-dimensional 

description of the pressure, equation 3.29a: 

(3.29b). 

As shown in detail in appendix C. neglecting all inertia terms, performing 

differentiation of the products. introdUCing the above conventions 3.19a-d 

and 3.29a-b, and using the geometry ratio 'Y leads to the following non­

dimensionalised form of the Navier-Stokes equations: 
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ho 

height of the gap vs. length of the gap 
100 times magnified 

x 

Figure 3.6: Characteristic values in the ehl contact as reference values for 
normalising the Navier-Stokes equations for the investigation 
of the significance of the various viscous terms. 
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with 

a = a'PIll (3.31a), 

h 1=_0 (3.31 b), 
bill 

and 

" . e
iioP 

• u K= 0 h (3.31c). 
h 2 0 

The conversion of the Navier-Stokes equations leads to the circumstance 

that the original meaning of the individual terms of the equation 3.30 is no 

longer obvious. The first term of each equation 3.30 represents the pressure 

term, the second and third the normal stress and the last four the shear 

stress on an infinitesimal small volume. In order to make the further steps of 

the derivation straightforward, the meanings of individual terms will be moved 

into the background and recalled again in subsection 3.3.4.7. 

3.3.2 Simplifying the equations 

The normalised equations are re-arranged. Employing the continuity equation 

in its dimensionless form, 

(3.32), 

the Navier-Stokes equations become 

0= oP . [_ Pill + 2'K . 12 . a . OU] + 
oX bill oX 

oP . [K' a .(~ + 12. OV)] + [K '(12. a2~ + a2~)] 
ay aY ax ax ay 

(3.33). 
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Due to the selected method of non-dimensionalisation. the differentials have 

principally a similar order of magnitude. On the other hand. y is very small. 

and hence -I is negligible when compared with unity. This allows the 

neglecting of the terms multiplied by -I in the second and third term of each 

equation of set 3.33. However. neglection in the first term is not permitted. 

because the term containing -I is multiplied by further terms different from 

unity and compared with terms also different from unity. Omitting the 

negligible terms. equation 3.33 reduces to 

(3.34). 

3.3.3 Zone of maximum Influence of viscous forces 

The influence of the viscous forces is dependent on the strength of the factor 

1C in comparison with the factor accompanying the pressure terms PhZ/bhZ 

and PhZ/ho respectively. Since 1C contains the dimensionless pressure as an 

exponential index. 1C varies along a contact. while PhZ /bhZ and PhZ /ho remain 

constant. Figure 3.7 shows the variation of a normalised 1C with 

dimensionless pressure. For a modest pressure of Phz = 0.5 GPa. the value of 

1C is seen to have fallen by an order of magnitude if the pressure reduces to 

80 per cent of the Hertzian pressure. The maximum influence of the viscous 

forces in comparison with pressure forces is obtained for high pressure 

values and is therefore in the heavily loaded zone of the contact. In the inlet 

zone. pressure is smaller. and the factor 1C decreases rapidly. Consequently. 

it was decided to concentrate on the heavily loaded zone of the contact. 
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Figure 3.7: Normalised variation of factor Ie with dimensionless pressure 

P. 

3.3.4 Consideration of a parallel gap for the contact 

3.3.4.1 Introduction 

For isothermal and incompressible conditions, the gap between the solid 

surfaces is practically parallel in the heavily loaded zone of the contact. This 

implies that in this zone the dimensionless velocity V is zero at both 

surfaces and considerably smaller than unity in the area between both the 

solid surfaces. For further simplification, the dimensionless velocity V was 

assumed to be zero everywhere in the contact: 

(3.35). 

Incorporating the above assumption and employing the continuity equation, 

which is also explained in detail in appendix C, section C.3, the Navier­

Stokes equations simplify to 
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PhZ oP _ oU oP 02U 
0= --'-=-+lC'(l '-='-=-+lC'-=--

bhZ oX oY oY oy2 

(3.36). 

O=_PhZ .op +lC''Y'(l'OU .op 
ho OY oY oX 

Substituting each equation into the other in order to obtain equations 

containing only a single pressure gradient, either along or across the contact, 

gives 

(3.37). 

In the above sets of equations, 3.36 and 3.37, most of the dimensional 

factors are constant but, as shown above, factors lC varies considerably with 

dimensionless pressure P. In order to make an order of magnitude 

comparison, the dimensionless pressure P was assumed unity in this term. 

Due to the exponential form of the term, this assumption tends to 

overestimate the factor lC. 

For a better understanding and presentation of the results, the dimensionless 

parameters for speed, load and material, U, W, and G, equation 3.25, were 

introduced. The procedure was similar to that used for determination of the 

Reynolds number and is given in detail in appendix D. The second equation 

of set 3.36 and the first of set 3.37 become 

oP/oP k OU 
oY oX = ,. oY 

with kr as a pressure gradient ratio 

k, = 0.63· U. G. W-O·5 • eO.4.aWo.S 

and 
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(3.39) 

with kp subsequently called sliding influence factor 

and 

respectively. Details of the determination of the factors ke, kp, and I<, in their 

dimensionless form are given in appendix D. If the factors I<, and kp are small, 

the pressure variation across the gap in equation 3.38 is negligible. i.e. the 

assumption of a constant pressure across the gap, equation 2.3, is correct. 

Correspondingly, equation 3.39 reduces to the x-momentum equation 2.1 

widely used to derive Reynolds equation. 

3.3.4.2 Results for the significance of terms 

All results are shown for the same range of speed and load parameters for 

which the ASME map of film thickness [17] is available, and which covers a 

wide field of engineering problems. For all results a material parameter of 

G = 5000 was assumed. Results for the pressure gradient ratio 1<" according . 

to equation 3.38. are given in figure 3.8. Figure 3.9 shows values for the 

sliding influence factor kp of equation 3.39. Figure 3.10 summarises the major 

result of figure 3.8 and 3.9 and plots load cases analysed in the literature 

against kp and 1<,. 
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Figure 3.B: Dimensionless pressure gradient ratio k, for various speed and 
load parameter values at constant material parameter 
G=5000. 
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Figure 3. 10: Dimensionless pressure gradient ratio k, and dimensionless 
siding influence factor kp at a material parameter G = 5000 in 
comparison with published results for G = 5000 (for results by 
Lubrecht G =4000). 

3.3.4.3 Limited validity of Reynolds equation 

Over the investigated range of parameters, both factors kp and kr have small 

values corresponding to low velocity and load parameters but range up to 

almost infinity. Both factors vary particularly with the load parameter but little 

with velocity parameter, principally due to the appearance of the load 

parameter in the exponent. 

As previously stated, the governing equations to determine Reynolds 

equation are obtained when the terms including the factors kp and kr are 

neglected. This is justified for low values of kp or kr. However, it can be seen 

from figures 3.8 and 3.9 that kp or kr can take quite considerable values for a 

wide range of parameters. The conclusion is that, instead of Reynolds 

equation, an extended set of equations of equation 3.38 and 3.39 with 

additional terms must be solved. A more detailed discussion of the values of 

factors kp and kr which require consideration of the full set of equations is in 

the subsections below. 
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The significance of the additional terms as shown on the maps, figures 3.8 to 

3.10, is based on the assumption that the velocity gradient au/ay is unity. 

Approximating the velocity gradient by a difference quotient 

au ~u 
--=-=~ 
ay ~y 

(3.40), 

where ~ Y is the dimensionless height of the gap which is according to 
its definition, equation 3.19b, unity in a parallel gap, and 

~u is the dimensionless difference of the two surfaces 

velocities ~u = (U1 -U2)/Uh , 

the range of values for the velocity gradient can be discussed: 

• When both surfaces have identical speed, i.e. pure rolling, the surface 

velocity difference and hence the velocity gradient becomes zero: 

• When one surface is stationary and the other is in motion, which means 

pure sliding, the velocity gradient takes on the value of two.t 

• When the motion between the two surfaces is a mixture of pure rolling 

and pure sliding, and one surface has triple the speed of the other, then 

the velocity gradient takes on the assumed unity.* 

Hence. the relevance of the extended set of equations is dependent on the 

degree of sliding between the contact partners, which is defined as 

(3.41 ), 

so that it ranges from zero to unity for pure rolling to pure sliding and 

becomes 0.5 for the conditions causing unity velocity gradient. 

W· h d U + U f II - U - U it U1 = U2 an .:::L.:...:1. = UII 0 ows ~u = 1 1 = O. 
2 j,{u1 +U1) 

t With u
2

=0 and U1 +U2 =u follows ~U= u1 -0 =2. 
2" j,(u1 +0) 

With u
1 
= 3,u

2 
and u1 +u2 = utI follows ~u = u1 - ,u1 = 1. 

2 i' u1 +!,u1 
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Hence, with sliding ratios S falling below 0.5, the influence of the terms 

containing the factors kp and I<,. decreases accordingly. Consequently, the 

range of parameters where Reynolds equation is valid increases. For the 

pure rolling case, where the velocity gradient au/ ay is zero in the parallel 

gap, Reynolds equation is basically valid for all parameters. Effects due to 

the additional viscous terms can only appear near the pressure spike. On the 

other hand, with sliding/rolling ratios S above 0.5 and up to unity, the 

influence of terms containing the factors kp and I<,. increases and the range of 

parameters, for which the extended approach has to be used, increases 

accordingly. 

The above results are based on the assumption that the dimensionless 

pressure in the exponential function always equals unity, resulting in an 

overestimation of the factors kp and 1<,.. Hence, the zone where Reynolds 

equation can be used might be slightly wider. As discussed in section 3.3.3 

and illustrated in figure 3.7, the overestimation appears for all load 

parameters but is more significant at higher loads. However, here the 

dominance of kp and I<,. is so significant that even strong overestimation of kp 

and I<,. does not reduce the influence of the additional viscous terms. 

Plotting the curves showing the values of factors kp and I<,. against published 

analyses, as presented in figure 3.10, makes it obvious that factors kp and I<,. 

would take on very high values for analyses previously undertaken with 

Reynolds equation. Hence, the application of additional terms is not only of 

theoretical but also of practical relevance. 

3.3.4.4 Extended x-momentum equation 

In comparison with the governing equation leading to Reynolds equation, the 

extended equation 3.39 contains the additional term (kp .au/ay). 

If this term is small, e.g. Ikp ' au/ aYj s 0.1, its influence can generally be 

neglected. 
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For 0.1 < /kp • au/ aYj < 1.0 the characteristic of the equation remains much 

the same as for Reynolds equation. In comparison with Reynolds equation, 

the dominance of the second derivative of speed a2u/ ay2 increases. 

However, since kc is already dominant itself, it was concluded that the further 

increase in dominance hardly influences the qualitative shape of the gap and 

pressure distribution. 

When the value of the term kp ' au/ ay is unity, the sum the pressure 

gradient is multiplied with becomes zero and equation 3.39 seems to develop 

a singularity. This singularity correlates with the same phenomena described 

by Bair, Winer and Khonsari [5J, for the general Navier-Stokes equations. 

The authors conclude the development of infinitely high pressure. Since this 

is unrealistic, non-Newtonian fluid properties must be occurring. However, 

equation 3.30 can be solved when the second derivative of velocity, which 

represents the presence and direction of the Poiseuille part of the lubricant 

flow, becomes zero and changes sign. This means an identical height of the 

gap at the position of any singularity to that at the position of zero pressure 

gradient along the gap. This is possible due to the fact that the shape of the 

gap is not rigid and fixed but a result of elastic deformation of the solid 

surfaces. However, an analysis with a fixed geometry would not allow the 

fulfilment of the required condition and hence lead to infinitely high pressure. 

As the Poiseuille contribution is negative in the inlet zone, it must be positive 

in the region between the point of singularity and the centreline. Since the 

lubricant was assumed to be incompressible, the height of the gap must 

converge at the point where the singularity appears. The same 

considerations made for the zone of decreasing pressure lead to 

corresponding results. Figure 3.11 illustrates the expected deformation of the 

gap due to the singularity. 

For higher speed and load parameters, the value of the term kp ' au/ ay 
becomes increasingly dominant (» 1). The Poiseuille contribution to the flow 

is more and more important and therefore the velocity gradient no longer 

remains constant across the gap. Then the above considerations based on a 
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one-dimensional solution are no longer valid and a numerical solution is 

necessary. 

The effect of the velocity profile across the gap will also affect the tangential 

stress acting on the surface and hence the traction coefficient. However with 

the above assumption, the considerable contribution to the traction produced 

at the centreline of the contact will be unaffected as pure Couette flow is still 

present at this location. 

Hertzian 
pressure 

Phz 

conditions for 
singularity 

location of 
singularity 

velocity fast 
surface 

I --+ 
velocity slow 
surface 

Figure 3. 11: Expected shape of the gap considering additional viscous 
effects. 

3.3.4.5 Pressure variation across the height of the gap 

Along the lines previously discussed for equation 3.39, it should be expected 

that a limit could also be determined when the pressure variation across the 

gap Op/Oy, equation 3.38, can be neglected. However, a much smaller 

value, for which the additional term can be neglected, should be selected 

than for kp, e.g. k, < 0.01 or 10-3• This is due to two reasons. Firstly, the term 

is not used in its squared form and secondly, the variation of pressure implies 
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also a variation of viscosity which is more significant due to the exponential 

nature of the pressure-viscosity dependency. 

The effects of a pressure variation across the gap are now to be considered, 

which is also illustrated in figure 3.11. Again the elliptic pressure distribution 

was assumed to be a good approximation and the following conclusions were 

drawn: 

If the pressure along the gap is rising, the viscosity near the slow surface is 

lower than that near the fast surface. Consequently the velocity gradient at 

the slow surface is higher than at the fast surface. Thus the flow must have a 

Poiseuille-like contribution in the same direction as the Couette contribution 

of the flow. To maintain continuity of mass, the height of the gap must be 

smaller than for a pure Couette flow. 

For the second half of the contact, where the pressure gradient is negative, 

the situation reverses: 

The viscosity near the fast surface is lower and the velocity gradient is higher 

than at the slow surface. The Poiseuille contribution has the opposite 

direction to the Couette component, implying that the gap height must be 

greater than for pure Couette flow. 

In comparison with a Reynolds equation based solution, velocity gradients 

and viscosities are different at the solid surfaces. This also implies 

differences in tangential forces and friction coefficients on the two surfaces. 

3.3.4.6 Interaction of perpendicular and longitudinal effects 

The consideration of both equations 3.38 and 3.39 leads to qualitatively 

identical results. This must be expected, since both the equations describe 

the same physical effect, are derived from the same governing equations and 

are not independent. 

Consideration of figure 3.11 describing the expected development of the flow 

profiles and of the shape of the gap show, however, an inconsistency 

between the shape of the gap and the Hertzian pressure profile, which is still 

unchanged. To balance this inconsistency, a pressure reduction in the first 
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half of the contact causing less deflection and a pressure increase in the 

second half of the contact with increased deflection is required, such as 

sketched in figure 3.12. This change of the original assumption will affect the 

above ideas which will have to be determined numerically. 

Hertzian 
pressure 

Phz 

conditions for 
singularity 

location of 
singularity 

velocity fast 
surface 

~ 

I --+ 
velocity slow 
surface 

Hertzian 

Figure 3. 12: Expected shape of the gap and required pressure distribution 
for respective deformation considering additional viscous 
effects. 

A consideration of both equations also shows that many terms, i.e. pressure, 

viscosity and velocity gradients vary across the gap. Therefore the above 

analysis, where the whole system was assumed to remain basically one­

dimensional, is only valid for modest values of the factors kp and kr. For the 

range of parameters where these factors are large, the expected variation 

across the gap will also require a fully two-dimensional solution for the ehl 

line contact problem. 

Equations 3.38 and 3.39 also suggest a variation of the height of the gap so 

that the assumed condition that there is no velocity component in the 

perpendicular direction is not fulfilled. The required revision of this 

assumption is undertaken in section 3.3.5. 
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3.3.4.7 Physical interpretation of the extended set of equations 

The derivations of the present section 3.3 concentrated mainly on the 

mathematical treatment of the governing equations. Tracking the physical 

meaning of the individual terms was arduous and moved to the background. 

Reverse tracking of the remaining relevant terms back to the governing 

equations proved to be an easier way. This procedure leads to figure 3.13, 

showing the significant forces on an infinitely small fluid volume for the highly 

loaded line contact. 

(p+:.dy }dX 

(~.: + ~(~. :}dy }dX 
dy 

(P). dy~---I • 
(~. :}dy 

y 

dx 

(P)·dx 

L..-------i. X 

Figure 3. 13: Relevant forces on an infinitely small fluid volume in the highly 
loaded zone of an ehlline contact. 

Viscosity variation along the gap due to the strong pressure variation along 

the contact and the strong pressure-viscosity dependency leads to a shear 

force component of the magnitude Or). au . dx . dy across the gap, which is 
oxOy 
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neglected in Reynolds equation. This component must be balanced by a 

pressure variation across the gap, i.e. a pressure force variation of 

ill . dx . dy. The pressure variation across the gap influences due to the 
Oy 

pressure-viscosity dependency the viscosity variation across the gap, which 

finally means that the shear force variation along the gap must consider 

variable viscosity ~ ( '1. :). dx . dy even for an isothermal contact. 

3.3.4.8 Prospect for the extended approach 

The extended approach is expected to lead to changes in the shape of the 

gap and the flow profile and consequently a variation of the traction 

coefficient might be expected. These effects are expected to be stronger the 

higher the sliding ratio S and the dimensionless speed and load parameters 

U and W rise, i.e. the effects are significant for those conditions, for which 

non-Newtonian fluid behaviour is important to obtain realistic conditions for a 

Reynolds equation based approach, cf. section 2.4. 

The described correlation between the significance of the extended approach 

terms and the need for non-Newtonian behaviour hence raises the question 

whether some of the lubricant behaviour, understood as non-Newtonian 

behaviour in Reynolds equation based solutions, can be explained by the 

extended approach in its current form based on the assumption of a 

Newtonian fluid behaviour. 

3.3.5 Arbitrary shape of the gap 

3.3.5.1 Governing equations 

As discussed, the extended approach leads to a non-parallel gap, at least for 

the isothermal case with heavy loading. The perpendicular velocity V can no 

longer be assumed zero. The governing equations are as previously given 

equation 3.34: 

-59-



Chapter 3 Significance of the individual terms in the Navier-Stokes equations 

0= :~ -[ - :: + 2· q' . a . :~] + ~ -[ K· a . :~ ] +. :~~ ] 
0= :~ -[-~ +2·q·u· ~J+ :~ Fy·a. ~]+.y. :~~J (3.42). 

Substituting each equation into the other and neglecting terms in summands 

multiplied by I. equations with only one pressure gradient were obtained, 

which is shown in detail in the last section of appendix C: 

(3.43) 

Since it might be of some use in later sections, the equations are also given 

with the abbreviating terms 1(, "( and a. equation 3.31, resolved to the original 

characteristic values; equations 3.43 become 

(3.44) . 
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3.3.5.2 Discussion 

Rejection of the assumption of a parallel gap leads to a more complex set of 

equations. 

Consideration of the first equation of set 3.43 shows that those velocity 

gradients, which were previously neglected due to the assumption of zero 

perpendicular velocity, i.e. lC·-l·a . (au/ay .a2v/ay2 -2.aV/ay .a2u/ay2), 
are multiplied by parameters which are the factor y smaller than the 

parameters of the pressure term (lC.a.y.aU/ayj. However, the dominance 

of this term against the other summand phz/bhz is represented by the factor 

kp in equation 3.39. As explained in appendix E, the geometrical ratio y 

cannot fall below 10-5• Since kp took on values much higher than 105 in figure 

3.9, the term lC· y2. a can well exceed phz/bhz' Hence, other terms than 

those discussed for a parallel gap might become predominant. 

In concluSion, the predictions of subsection 3.3.3 regarding the development 

of the shape of the gap due to the extended approach might be combined 

with effects due to the variation of the perpendicular velocity across the gap. 

However, due to the complex form of equations, qualitative prediction of the 

development of the further modifications of the shape of the gap was not 

attempted for the governing equations 3.43 and 3.44. 

As for the set of equations obtained for a parallel gap, the set of equations 

3.43 and 3.44 contain singularities, which occur simultaneously for the 

equations describing the pressure gradient along and across the gap. For the 

equations obtained with the assumption of a parallel gap, a condition was 

described for which the singularity will not lead to infinite pressure gradients. 

It is assumed that also for the extended set of equations 3.43 and 3.44 such 

a condition can be found and that the singularities will not spoil the solution if 

the gap is allowed to vary its height. 
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3.3.5.3 Wall forces 

Finally, the force terms on the wall are considered in order to see whether the 

extended approach influences the forces on the wall. The derivation for the 

forces acting on a solid surface element is given in appendix F. For an 

infinitely small fluid volume, tangential force is 

dF. (
110 .• uh a·p ... ·P au) d = ·e·-=- . x 

t h av o 
(3.45a), 

and the normal force is 

( 
- 110 • uh <111hz" av) dF. = -p . P +2· ·e .-= ·dA 

n lIZ b av Y 
lIZ 

(3.45b). 

The forces by the wall on the fluid are of the same absolute value but of 

opposite sign. 

The tangential force is defined in the same way as e.g. Dowson and 

Higginson [17]. The normal force component contains an additional tensile 

stress component. Appendix F shows that this term can have, in comparison 

to the pressure term, some significance if the gap is non-parallel, and it 

should be incorporated in a solution of the extended approach of the ehl 

problem. 

3.3.6 Summary 

The investigation of the Navier-Stokes equation for the ehl problem showed, 

that in addition to the terms used for Reynolds equation, additional viscous 

terms are relevant for the ehl problem. These represent additional shear 

forces due to the strong viscosity variation along the contact resulting from 

the pressure variation along an ehl contact. The additional shear forces 

appear in the y-direction, and mean that, for the y-momentum equation 

across the gap, pressure varies rather than being constant. This varying 

pressure across the gap, however, means a viscosity variation across the 

gap to be considered in the x-momentum equation. 

For the developed set of two equations, a singularity appears in the 

governing equations, as it does in the Navier-Stokes equations. The 
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singularity can disappear when the flow profile takes on a particular 

distribution. Because the boundaries for the ehl problem are elastic, it is 

believed that a solution of the Navier-Stokes equations rectifying the 

singularity can be found. Such a solution is expected to differ from the 

parallel shape of the gap and the Hertzian pressure distribution. 
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Chapter 4 

Methodology for further treatment 
of the extended approach 

4.1 The need for using the extended approach 

In the previous chapters it was shown that many refinements of the original 

model to describe the behaviour of elastohydrodynamic contacts have been 

undertaken and that all were based on the assumption of a constant pressure 

across the gap and modelled with one or other forms of a Reynolds equation. 

However, it was also shown that, due to additional viscous forces for 

isothermal conditions and the assumption of Newtonian fluid behaviour, an 

extended approach, with a set of equations allowing pressure variation 

across the height of the gap, has to be taken into account. The proposed 

extended approach is increasingly relevant as soon as both load and 

hydrodynamic speed increase and sliding appears in the contact. It is hence 

relevant for those conditions for which non-Newtonian fluid behaviour is 

considered in established, Reynolds equation based solutions. For the 

extended approach some qualitative considerations have been proposed for 

the development of the ehl contact results, but neither evidence nor 

numerical values are available at this stage of the study. 

4.2 Proposed method of development 

Implementation, discussion and evaluation of a full numerical solution using 

the extended approach would offer some advantages. A full numerical 

method could give evidence for the theoretical predictions. In addition, the 
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influence of the facts that the gap will not remain parallel and that the 

theoretical predictions were made with considerations based on the one­

dimensional solution of Reynolds equation, could be considered. Numerical 

results could be compared to results based on the Reynolds equation, and 

contributions of the extended approach to effects modelled in Reynolds 

equation based solutions with a non-Newtonian fluid description could be 

discussed. In summary, a much broader understanding of the contact could 

be achieved. 

On the other hand, contributions would also be provided by further theoretical 

work on correlations between the extended approach and other phenomena 

such as thermal or non-Newtonian effects. These are effects which have 

been assumed negligible in the development of the extended approach 

theory so far and have yet to be discussed in more detail. However, further 

theoretical work would rely on the predictions and assumptions of section 

3.3, which are limited and not yet proven. Additionally the question whether a 

non-Newtonian fluid behaviour can be explained by the extended, Newtonian 

approach has not yet been answered. 

Hence, it was decided at this stage to concentrate on the numerical solution 

with the development of a suitable method before undertaking further 

theoretical conside rations. 

4.3 Specification for the numerical method and its 
implementation 

A speCification for the numerical method and its implementation is now to be 

defined. It was generally considered that not only the current project should 

be able to be handled, but also extensions in order to accommodate future 

industrial research. 

Principal Influences 

The basic influence of the pressure variation across the height of the gap can 

be investigated ignoring, for example, thermal and compressible effects. In 

order to achieve more preCise results, these effects would have to be 

considered. However, for the present investigation it was decided to 
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concentrate initially on the basic influence, keeping further solution 

refinement in mind. 

Flexibility 

The method implemented should obviously be able to cope with the present 

configuration of the problem. However, it was also considered desirable that 

the method could be easily and quickly adapted to include any additional 

effects. 

Implementation effort 

It was desired that the effort required to implement the method of solution 

into a computational program should be as small as possible. The 

implementation was therefore expected to comprise the discretisation of the 

governing equations, the generation of an appropriate grid and the solution of 

the resulting system of linear equations. It was anticipated that the 

requirement could be fulfilled by the employment of commercially available 

software packages and software components. 

Performance 

The above requirements for a flexible and easily implementable 

computational code are estimated to lead to programs consuming more time 

and system resources than special purpose programs optimised for one 

particular problem. It was decided that throughout the present research 

programme, high priority would be given to flexibility, efficient 

implementation, a wide range of practical application and robust performance 

of the program. Less priority was given to solution speed, ultimate accuracy, 

and optimisation over a limited range of parameters. 
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Numerical method 
for the extended 
set of equations 
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Chapter 5 

Introduction to the development of 
the new numerical method 

5.1 Methods to solve the ehl problem 

The solution of the ehl problem basically means the solution of Reynolds 

equation, a pressure-viscosity relationship and an equation describing the 

deformation of the elastic surfaces. Various methods were applied 

throughout the development from the outset such as Grubin's [2, 3], utilising 

so-called direct, indirect and hybrid methods, leading to Newton-Raphson 

based and multi-grid techniques. Thereby, the development was driven by a 

desire to understand more of the ehl contact and the availability of increased 

computer power, both resulting in model refinements. However, despite a" 

these developments, the fluid flow description used in these methods is still a 

Reynolds equation. 

5.2 Solution of the Navier-Stokes equations 

On the other hand, the Navier-Stokes equations together with the continuity 

equation are the generally valid description for any flow problem. 

Correspondingly, the number of solution approaches and techniques to solve 

the equations for particular flow problems is very high, among them, solution 

techniques which can solve the Navier-Stokes equations as required for the 

extended approach. Available as general purpose software, such solution 

techniques can be applied without having a deep knowledge of the details; 
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moreover, even some form of realisation of fluid-structure interaction is 

possible. 

Available Navier-Stokes solvers and established solution techniques for the 

ehl problem form two groups of approaches. The solution of the ehl problem 

with the extended equations is likely to be a combination of both. Possible 

strategies of combination will either be the application of general purpose 

Navier-Stokes solver software with its coupling capability to the ehl problem 

or the incorporation of Navier-Stokes solving approaches into existing ehl 

solution techniques. Both strategies will deliver the desired numerical data for 

the extended approach. 

5.3 Aim of the method development 

Consequently, the aim of the present part" is to define and test a method, 

which is able to solve the ehl problem using the Navier-Stokes equations. 

This should be achieved while applying general purpose software as much 

as possible. In order to achieve this aim, the following objectives were 

defined: 

5.4 Objectives and scope of the method 
development 

In its first section 6.1, the subsequent chapter 6 provides a survey of 

numerical techniques applied to solve the ehl problem as well as their 

features and behaviour. Section 6.2 then repeats the process for the 

numerical techniques available to solve the Navier-Stokes equations. In both 

sections, these techniques are considered independently. A systematic 

definition of possible methods combining both ehl and Navier-Stokes 

techniques to obtain a solution method for the ehl problem while using the 

extended approach is given in chapter 7. An evaluation of the various 

methods used is provided and finally the most suitable method is selected. 

Chapter 8 considers the implementation of the selected method to the degree 

that pressure variation across the gap is not yet allowed, but validation of the 

new method in comparison with existing methods is permitted. Finally, 

chapter 9 presents the extension of the implementation towards the extended 

approach. 
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Established numerical techniques 

6.1 Numerical methods for the ehl problem 

6.1.1 Introductory remarks 

Beginning with the first analysis of the ehl problem by Mohrenstein-Ertel [2], 

several analysis methods have been proposed for the ehl problem. Their 

development was (and is) driven by the permanent interest in further 

explanation of the ehl problem and by the increasing computational options 

provided by the development of hardware as well as general numerical 

techniques. 

As a result of that, a variety of numerical techniques is now available, and 

various authors, such as Hamrock and Tripp [65], Lubrecht [8] or Welsch 

(13), have surveyed and categorized them. The present section also reviews 

the numerical techniques available, however, with some focus on those 

features, which will be of relevance for the development of a numerical 

method for the solution of the ehl problem using the Navier-Stokes equations. 

Hence, the survey follows mainly the categories established [8, 13, 65), but 

shows in detail sometimes an unconventional link, sequence or accentuation. 

In addition, in the course of the survey, some aspects of the solution of 

contacts showing features previously defined as irrelevant or unimportant for 

the present study, such as elliptical contacts or thermal problems, are 

occasionally referred to. They are nevertheless shown when they are of 

relevance for the development and discussion of the solution. 
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6.1.2 Grubin style methods 

6.1.2.1 Mohrenstein-Ertel's principal approach 

The first analytical method successfully solving the ehl problem for highly 

loaded contacts, taking the deflection and the variable viscosity into account, 

is that given by Mohrenstein-Ertel [2], also published by Grubin and 

Vinogradova [3]. A key feature of Mohrenstein-Ertel's approach is the split of 

the whole contact and hence the ehl problem into several sections. Each 

section allows or at least undergoes some simplifications such that the 

problem can be solved. Mohrenstein-Ertel splits the total system into three 

zones, the inlet zone, the highly loaded zone, and the outlet zone. 

The Inlet zone ranges from infinity before the contact to the beginning of the 

Hertzian contact. The pressure is assumed to be rather small in this zone. 

Hence an influence of the pressure onto the deflection of the solids is hardly 

expected and consequently neglected. On the other hand, Reynolds equation 

is rewritten using a normalised pressure TI considering the pressure-viscosity 

dependency 

1-a-P 

TI= In(a) (6.1 ). 

This flow equation is solved with a boundary condition which means that an 

infinite pressure boundary appears for the transition to the heavily loaded 

zone. With the condition of a pure Couette flow at this boundary, the analysis 

also returns the height of the ehl gap at the transition to the heavily loaded 

zone. 

For the heavily loaded zone, it has been discussed, using the normalised 

Reynolds equation, that the shape of the gap must be very similar to that for 

the dry contact, i.e. the gap remains parallel with the height as determined at 

the end of the inlet zone. The pressure distribution follows that of Hertz. 

Reynolds equation is not solved for this zone, consequently, correction of the 

pressure distribution due to the flow, as opposed to that causing the 

deformation, is not carried out. 
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For the outlet zone, it is assumed that, as for the inlet zone, the pressure 

has no influence on the deflection. It is further shown that there must be a 

constriction to the gap, i.e. that the transition from the heavily loaded zone is 

earlier than the end of a Hertzian pressure zone. Such a shape of the gap 

can be obtained if an elastic curved surface is loaded with a rigid stamp 

which has a segment cut off at the outlet. This is another key element of 

Mohrenstein-Ertel's considerations. With the modified Reynolds equation as 

used for the inlet, assuming infinite pressure and Couette flow at the 

transition from the heavily loaded zone, the location of the edge of the stamp 

and the pressure distribution in the outlet zone is obtained. 

The above solution with the infinite pressure at the end of the inlet zone and 

the start of a Hertzian pressure distribution at the beginning of the heavily 

loaded zone still delivers a discontinuous pressure distribution. 

Consequently, as for the beginning of the outlet zone, the location of the 

transition from the inlet to the heavily loaded zone must be corrected by 

shifting the transition so that a continuous pressure distribution is obtained. 

With the above procedure, Mohrenstein-Ertel is able to get a solution for the 

ehl problem which is mainly analytical and with rather few numerical 

operations. 

6.1.2.2 Evaluation of Mohrenstein-Ertel's method 

Mohrenstein-Ertel [2] judges his method to be best for highly loaded contacts, 

where the assumption for the highly loaded zone fits best, with increasing 

inaccuracy the higher the contact speed rises and the lower the load falls. 

Christensen [66] specifies that the approach "is excellent" for the shape of 

the pressure distribution and the central film thickness of the contact. Hence 

Mohrenstein-Ertel's method is very suitable for film thickness determinations 

such as those of Greenwood and Kauzlarich [61] or Murch and Wilson [62]. 

On the other hand Christensen claims that features such as the pressure 

spike, the constriction of the film at the exit and the inlet zone are "not so well 

represented". 
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In addition, Christensen [66] and particularly Wallinger [67] outline the 

simplicity of Mohrenstein-Ertel's approach in comparison to other methods. 

The authors claim that the computational effort of such a style of solution is 

much lower than that of the other methods below. This reduced effort is a 

particular advantage for the solution of complex ehl problems, such as 

thermal, transient, or rough contacts. However, the solution of the complex 

problem of a point contact remains unmentioned. 

6.1.2.3 Modification of Mohrenstein-Ertel's approach 

Christensen [66] presents a more detailed procedure for the treatment of the 

idea that the deformation can be represented by a rigid stamp with a cut-off 

segment deforming an elastic cylinder. This method was further developed 

by Wallinger [67]. The author presents a method with multiple refinements 

using Mohrenstein-Ertel's ideas but overcoming many of the assumptions. 

Wallinger takes the deflection due to the pressure in the inlet and outlet zone 

into account, ensures exact continuity of the pressure distribution at the 

transition between the three sections, and takes thermal effects accurately 

into account. In order to achieve this, many more iterative procedures have to 

be introduced: Iterative solution of Reynolds equation with adaptation of the 

shape of the gap, as discussed in detail for the direct methods in subsection 

6.1.3, are introduced to the inlet and outlet zone, the transitions between 

inlet, outlet and the heavily loaded zone are iterated and also the thermal 

effects. However, the method concentrates on the assumption of a perfectly 

parallel gap in the heavily loaded zone, which is extended with a quantitative 

determination of the error of this assumption. This error is found to be 

approximately one per cent on average and is not corrected. 

Other authors' attempts to eliminate this error, which mean an elimination of 

the assumption of a perfectly parallel gap and perfect Hertzian pressure 

distribution in the heavily loaded zone, yet stay with the split into three 

sections, result in the hybrid methods discussed in subsection 6.1.5. 
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6.1.2.4 Summarizing definition of Grubin style methods 

All the above authors of subsection 6.1.2 define their methods as Grubin 

style methods. However, they give different reasons. Greenwood and 

Kauzlarich [61] and Murch and Wilson [62] name their analysis "Grubin style" 

in the context of the assumption that the pressure in the inlet zone does not 

influence the deflection. Christensen [66] and Wallinger [67] state it because 

of the application of the idea that the deflection in the highly loaded zone can 

be modelled by a stamp with a cut-off segment. For the present work, all 

methods applying the split of the contact into three sections and assuming 

the cut-off stamp model for the highly loaded zone are considered as Grubin 

style methods. 

6.1.3 Direct methods 

6.1.3.1 The pure form 

Generally speaking, a direct method means that Reynolds equation, as for 

example presented in equation 2.4·, 

d (h
3 

dP) dh - -.- =6·(u1 +u2)·-
dx ~ dx dx 

(6.2), 

is solved for the pressure p with a given height distribution h. The obtained 

pressure distribution is then used to modify the shape of the gap [8]. This 

procedure is repeated until convergence is reached. In other words, 

Reynolds equation is understood as a second order differential equation of 

pressure p, with height and viscosity given and subsequently corrected. This 

type of method is also considered by Lubrecht as the "'natural' way" [8] or for 

example by Potthoff as the "naheliegend", which means obvious, method 

[68], and hence frequently attempted. 

Possibly the purest form of this solution procedure is that presented in the 

work of Weber and Saalfeld [69] and by Potthoff [68]. Both solve Reynolds 

For the explanation of the numerical methods the dimensional form of Reynolds 
equation for the isothermal line contact problem was used throughout the present 
section. even if the original form is different. 
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equation for the pressure p as visible in equation 6.2. Weber and Saalfeld 

used the method in the 1950s, where the iterations were manually performed 

using characteristic graphs. Potthoff attempts the computational solution with 

strong under-relaxation because of the fact that tri-diagonal algorithms can 

be used for the fast solution of Reynolds equation. However both methods 

have been judged to be unsuitable for intermediately and highly loaded 

contacts since they fail to converge. 

6.1.3.2 Modified forms 

Hamrock and Dowson [70] modified the direct method for point contact 

problems by introducing a new variable 

(6.3) 

into the (dimensional) Reynolds equation considering pressure and height of 

the gap. Reynolds equation changes to 

(6.4). 

In the solution, Reynolds equation is understood as linear and solved with 

respect to <1>* • Once a solution is obtained fQr the variable <1>: , viscosity (and 

density) are corrected and later also the shape of the gap and the total load 

balance in superimposed loops. The arrangement and control of these loops 

was later modified, e.g. by Chittenden et al. [71]. The modified method shows 

also convergence problems for highly loaded contacts. However, its 

convergence behaviour is better than that of the above described pure form. 

This is because the new variable <1>* contains at least some of the height 

information in the variable <1>*, which is assumed to be known in the pure 

form. 

A similar effect can be observed when a reduced pressure, such as 

described by Lubrecht [8], derived with Barus' approach 

(6.5), 

is introduced to Reynolds equation, which can then be re-written in the form 
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~.J..(h3. dq)=6.(U +u ). dh 
adx dx 12dx 

(6.6). 

Evans and Snidle [72] present a more general reduced pressure definition, 

which is applicable for any pressure-viscosity description, 

• p 1 
q = Tlo • I=-p <fit 

o Tl\itJ (6.7). 

This definition leads also to a Reynolds equation with the structure of 

equation 6.6*, This Reynolds equation is then solved for the reduced 

pressure q or q. respectively, The convergence behaviour is again better 

than that of the pure form because the reduced pressure contains the 

information of the pressure-viscosity dependency which is assumed to be 

known in the pure form. 

A combination of the two pressure modification methods discussed above is 

used, for example, by Hamrock and Jacobson [15] or Seabra and Berthe 

[73]. They modify the definition of the variable <1>. in the way that they 

introduce a reduced pressure q rather than the pressure p, so that the 

definition is now 

(6.8), 

leading to a Reynolds equation of the form 

h ._-_.<1>. - h·- =a.6.(u +u2)·-
t ~<1>' 3 , [ d ( i dh)] dh 
~ 2 ~ ~ 1 ~ 

(6.9). 

The combination of the two pressure modification methods means that 

information of the height of the gap and also of the pressure-viscosity 

Applying Barus' pressure-viscosity description leads to a reduced pressure definition 
of 

• 1 I ---II 1) q =--·\e -, 
a 

which slightly differs from that by Lubrecht, equation 6.5, I.e. 

• q-1 
q =--. 

a 

but is very similar to that by Mohrenstein-Ertel, equation 6.1. 
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dependency is contained. This means a further extension of the range of 

converged solutions towards highly loaded contacts, however without the 

ability to solve heavily loaded contacts. 

All the above approaches assume the more or less modified Reynolds 

equations to be linear with respect to the unknown variable p, q, q., <1>. or 

<1>' at the moment of solution. All non-linearity is introduced in subsequent 

iteration loops; therefore the methods are also categorized as "iterative" 

direct methods [8]. 

In contrast to the above, there are also approaches where Reynolds equation 

is understood as a non-linear differential equation but still solved for the 

pressure. Then Newton's method is used to Iinearise Reynolds equation. 

These methods can still be categorized as "direcr because they still solve 

Reynolds equation for the pressure and later the elasticity equation for the 

height of the gap. Various forms of these direct methods are discussed 

below, in subsections 6.1.6 and 6.1.7. 

6.1.4 Inverse methods 

6.1.4.1 Fields of application 

The inverse method was used as part of the first full numerical solutions 

using the hybrid method, which is discussed in the below subsection 6.1.5, 

e.g. by Dowson and Higginson [17], and Archard, Gair and Hirst [10]. 

However, it was also used in its pure form, for example by Potthoff [68] and 

Eller [7], and the present subsection concentrates, for the moment, on this 

pure form. 

6.1.4.2 Principal approach 

The inverse approach understands Reynolds equation 2.4, 

(6.10), 

not as a second order differential equation in the pressure p but as a first 

order differential equation in the height of the gap h, for which the pressure 
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distribution and consequently the viscosity is given. Applying the integrated 

form 2.5, 

(6.11 ), 

the differential equation reduces to an algebraic cubic equation 

(6.12). 

With the Cardanian formulae, equation 6.12 can be solved for the height of 

the gap h if the central height of the gap ho is known. This value ho can be 

derived from conditions that the solution must deliver a continuous gap with 

some convergence at the beginning and divergence at the end. 

In parallel, the "elastic" shape of the gap is obtained from the Boussinesq 

equation. For an initial guess of the pressure, the hydraulic shape differs from 

the elastic, and hence requires a correction of the pressure distribution. 

For this correction, different methods are proposed. 

Archard, Gair and Hirst [10] developed the Boussinesq equation in a manner 

that a correlation between the difference between the two gaps and the 

change of the deforming pressure necessary to close this difference at each 

discretised point along the contact is described. The solution of this set of 

equations returns the pressure correction at all locations along the contact. 

Eller [7] uses two methods; one for the inlet zone which is based on the 

assumption that the inlet pressure hardly influences the deflection and is thus 

very similar to a direct method. For the heavily loaded zone, the deformation 

equation, as by Archard, Gair and Hirst [10] and the flow equation are written 

in such a manner that a set of equations is obtained describing a correlation 

between the current differences in the height of the gaps and a pressure 

correction necessary so that the gap difference diminishes. This set of 

equations is solved numerically for the pressure corrections. 

Once pressure corrections are obtained with one or the other method, they 

are applied and the procedure is repeated until convergence is reached. 
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Potthoff [68] uses two different methods which do not require the 

simultaneous solution of a set of equations. The first method expands or 

compresses the pressure distribution along an initially long, later shorter 

portion of the contact until the quadratic deviations of the two gaps reach a 

minimum. Since this procedure cannot create pressure spikes, the second 

method increases and decreases single pressure values also to minimise the 

quadratic deviation of the two shapes. Both methods are used alternately 

until a sufficient overall agreement of the two shapes is reached. 

6.1.4.3 Evaluation 

The extended approach is evaluated to show good convergence for highly 

loaded contacts [7], but is reported to become inaccurate in the inlet zone, 

which Eller overcomes by his description of the pressure corrections for this 

zone, and others, as Dowson and Higginson [4] or Archard, Gair and Hirst 

[10] by applying the below hybrid method. The suitability for high loads is 

confirmed by Lubrecht [8], but the author also states bad convergence for 

intermediately loaded contacts. 

6.1.4.4 Modifications 

As a further drawback of the inverse method, it is mentioned that a 

straightforward application of the inverse method to pOint contacts is not 

possible [70]. 

Evans and Snidle [74] overcome this problem. As can be seen from the work 

of these authors, an integrated fonn of Reynolds equation, such as equation 

6.11, is not available for two-dimensional regimes but one of second order 

fonn 6.10·. The authors show that with rewriting and discretisation of the 

equation along and perpendicular to the contact, the two-dimensional 

Reynolds equation can also be reduced to a cubic equation in h, which 

however requires some infonnation of the height h in the neighbourhood. 

The two-dimensional, isothermal, incompressible Reynolds equation is 

~(h3 . Cp)+~(h3 . Op) = 6.(u, +u
2
). Oh. 

ex "ex ex" az Ox 
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Since this information is not exactly known at the outset, some iterative loops 

are required for the determination of the correct height h. Complementary to 

the determination of the central height ho for the line contact problem the 

point contact problem requires boundary conditions or locations of known 

height. At the centreline along the contact, the gradient perpendicular to the 

contact, a/Oz., diminishes and Reynolds equation reduces to its one­

dimensional form. Here, Evans and Snidle obtain a first location of known 

height and the respective height value at the inlet of the contact in the 

manner as used for line contact problems. Then further locations 

perpendicular to the contact are determined on a curve through the initial 

boundary location, which fulfil the same definition of the respective height 

values as at the centreline. 

Hou, Zhu and Wen [75] give details for the pressure modification in an 

inverse point contact solution. They use the method proposed by Archard, 

Gair and Hirst [10], that the Boussinesq equation is used to describe a set of 

equations giving the correlation between the differences in the height of the 

gap and the necessary pressure corrections so that they diminish. To reduce 

the enormous numerical effort of solving this set of equations, it is assumed 

that a pressure correction influences the deflections only in its near 

neighbourhood. 

6.1.5 Hybrid methods 

Hybrid methods are a development of the Mohrenstein-Ertel approach of 

subsection 6.1.2.1, and are a combination of Grubin style methods, direct 

methods and inverse methods. The idea of splitting the contact into several 

regions is maintained from Mohrenstein-Ertel. In the section in which 

Mohrenstein-Ertel assumes a perfectly parallel gap a modification is applied: 

In this region, the above inverse method is applied. In the sections, in which 

Mohrenstein-Ertel solves the Reynolds equation, the direct solution is used, 

The expression -boundary values· can be confusing at this place. because any 
location can be the boundary of a section of the ehl contact. even those lying inside 
the analysis domain. 
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but also with the deflection caused by the inlet or outlet pressure distribution 

being considered. 

The method was used for example by Dowson and Higginson [17] or Evans 

and Snidle [74], who split the contact into two sections·, or Archard, Gair and 

Hirst [10], who used four sectionst. 

A" authors obtained results for highly loaded contacts without convergence 

problems worth mentioning. However, due to the split in several sections, a" 

methods required algorithms to locate the transition between the zones in a 

way that a continuous pressure distribution is obtained as observed for 

Grubin style methods. 

6.1.6 Newton-Raphson techniques 

6.1.6.1 Principal approach 

The (multi-dimensional) Newton-Raphson technique, as described by Press 

et al. [76], enables the solution of a set of n non-linear equations Fi of the 

form 

Fi (xJ = 0 with i = 1, 2 ... n (6.13) 

In the neighbourhood of xu' every single equation Fi can be considered as a 

truncated Taylor series 

(6.14). 

With a reasonable, but not perfect solution, available for Xu and with the 

objective, that the equation is perfectly satisfied for Xu + 5xu, means that 

(i) inlet zone: direct method, (ii) combined heavily loaded and outlet zone: inverse 
method. 

t (i) inlet zone: direct method, (ii) heavily loaded zone until contact centreline: Inverse 
method, (iii) heavily loaded zone after centreline: inverse method, (iv) outlet zone: 
direct method. 
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equation 6.14 reduces to 

(6.16). 

Putting all terms R in a vector F and introducing Jacobian matrix J with the 

derivatives oR/ OxUj as elements Ji,J' equation 6.16 becomes 

(6.17). 

By inversion of the Jacobian matrix, the vector giving the necessary 

modifications 5xu to the previous guess of the solution Xu 

(6.18) 

is obtained. The procedure is repeated with the corrected solution vector Xu 

until convergence is reached. 

6.1.6.2 Principal application 

Application of the Newton-Raphson technique to the elastohydrodynamic 

problem was first presented by Okamura [14]. The author uses the Reynolds 

equation in the form of equation 2.5 

dp (, ) h-h fRe =--6·11·\U1 +u2 • 0 =0 
dx h3 (6.19) 

and understands it as non-linear with respect to pressure because of the 

pressure dependencies of viscosity and height. Consequently, the above 

described Newton-Raphson technique is applied with equation 6.19 

discretised at n locations along the contact as a set of equations F and the 

pressure at these locations as unknowns xu'. 

Strictly speaking, discretisation at n locations leads to n-1 unknown pressure values 
with the unknown constant ho being the nih unknown value. 
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For the derivatives of the Jacobian matrix, Okamura considered not only the 

pressure itself but also the pressure dependencies of viscosity and the height 

of the gap: 

(6.20) 

For the solution procedure, Hertzian pressure distribution is selected as the 

initial pressure distribution for the first Newton-Raphson step and for the 

determination of viscosity and the shape of the gap. For the subsequent 

Newton-Raphson steps, height of the gap and viscosity is calculated from the 

pressure distribution at the beginning of that step. Hence, the Newton­

Raphson method can be understood as a direct method as defined in 

subsection 6.1.3. 

The method is reported to converge rapidly in several iterations and for a 

wide range of load cases including highly loaded contacts [8]. However this is 

only the case, when first order backward approximation is used for the 

pressure gradient dp/dx of Reynolds equation 6.19. In the case of second 

order central approximation of the pressure gradient dp/dx, oscillations and 

non-unique results were observed. 

An additional advantageous aspect of Okamura's approach is that the author 

understands the equation describing the equilibrium of pressure on the 

contact surface and applied load, as a further, n+ 1 th equation and the 

distance between the two un-deformed contact partners as the n+ 1 th 

unknown variable. Hence with this little extension, the superimposed loop 

necessary in other methods to adjust that load equilibrium can be spared. 

6.1.6.3 Modifications 

Many modifications of Okamura's approach were proposed or can be 

observed for the Newton-Raphson technique. 

Viscosity 1') and height of the gap h is written without an index I or j because 
discretisation leads to the fact that the variables at more than one locations, for 
example at 1 and 1+1 must be considered. 
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• Governing equations 

Many authors of the above mentioned, for example Hamrock, Pan and 

Lee [19], Wolff et al. [26] and Houpert and Hamrock [27], stay with the 

Reynolds equation which was used by Okamura, equation 6.19, 

dp ~ ) h-ho --6·n. u +u· =0 dx .• 1 2 h3 (6.21 ). 

On the other hand, as for the direct methods of subsection 6.1.3, also 

equations containing the reduced pressure q, equation 6.6, 

(6.22) 

were used, for example by Lubrecht [8]. Other authors such as Welsch 

[13], Lee and Hsu [30] or Chang, Conry and Cusano [77] stayed with 

the Reynolds equation with the pressure p, but preferred the second 

order differential form of equation 2.4 

- -.- =6·(u +u ).-d (h
3 

dP) dh 
dx 11 dx 1 2 dx 

(6.23) 

in contrast to the first order differential form of Okamura and the others. 

None of the two above modifications seems to have a substantial 

impact on the quality of the solution. 

• Discretisation 

Okamura stated that first order discretisation of the first order 

derivatives dp/dx is necessary to get non-oscillating, unique solutions 

of the ehl problem. 

For the application of the second order Reynolds equation 6.23, the 

problem that second order central approximation for first order 

derivatives spoils the numerical method, moves from the pressure 

gradient term dp/dx for the first order Reynolds equation 2.5 to the 

height gradient term dh/dx. For example Kostreva [78] detected 

regions of parameters for which the solution was unstable while 
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applying a second order central approximation the to the height gradient 

term dh/dx. Lubrecht, ten Napel and Bosma [79] claimed that central 

approximation is the reason for the instabilities and recommended first 

order backward approximation as a remedy. 

For the second order form of Reynolds equation 2.4, Cermak, [80] and 

[81], proposed a non-symmetric discretisation formula to minimise the 

discretisation error of the first order approximation. Non-symmetric 

discretisation means that the grid for the pressure gradient d2p/ dx2 is 

shifted by a quarter grid cell width in comparison to that for the height 

gradient dh/dx. Under these circumstances, second order central 

approximation can be used for the height gradient. 

Another procedure to improve numerical accuracy of the second order 

form of Reynolds equation 2.4 was proposed by Chang, Conry and 

Cusano [77] and used by Lee and Hsu [30]. The authors showed with 

their study that a second order central approximation can be used for 

the height gradient term in the determination of the residuals of 

Reynolds equation if first order backward approximation is used for the 

determination of the Jacobian matrix. 

• Nested loops 

Most authors, such as Lubrecht [8] or Welsch [13], follow Okamura's 

[14] proposal to incorporate the load equilibrium equation into the 

overall set of equations. However, for example Hamrock and Tripp [65] 

show also the possibility, well known from other methods, to treat the 

load equilibrium in a superimposed loop. 

• Jacobian matrix 

According to Press et al. [76], in the original Newton-Raphson 

technique, the full matrix of derivatives is determined analytically from 

the governing equations, e.g. Okamura [14]. 

Alternatively, Welsch [13], or Cermak [80] determined the derivatives 

numerically instead of analytically to reduce implementation effort, 

-85-



Chapter 6 Established numerical techniques 

which means that they changed from a tangent to a secant method. 

Cermak outlines the reduced effort of analytical work using numerical 

derivatives but an increased CPU effort, which makes such a procedure 

efficient when testing, for example, discretisation schemes. However 

neither of the two authors discusses changes in performance or range 

of convergence. 

A different modification in the determination of the Jacobian matrix is 

proposed by Chang, Conry and Cusano [77]. In order to accelerate 

analysis, the authors assume that the relevance of elements of the 

Jacobian matrix decreases as the distance of the element from the 

matrix's main diagonal increases. Since the Gaussian tri-diagonal 

algorithm provides a fast solution method, the authors reduce the 

Jacobian matrix to a tri-diagonal form. In addition, they start with a 

coarse grid and refine the grid, as often as a solution is obtained for the 

coarser grid. They claim a speed-up factor of two for this last feature. 

6.1.6.4 Disadvantages 

Some points are found to be disadvantageous for the Newton-Raphson 

approaches. Lubrecht [8] claims a cubic increase of the necessary 

computational resources, such as memory space and analysis time, for a 

linear increase of the number of discretised pOints. This might be acceptable 

for one-dimensional steady state analysis but is a particular problem for two­

dimensional flow and transient problems. Lubrecht also reports that, for an 

increasingly parallel gap as appears with increasing load, the diagonal 

dominance of the Jacobian matrix disappears, leading to difficulty in matrix 

inversion. However, Houpert and Hamrock [27] overcame the problem with 

non-equidistant grid application. 

6.1.7 The multigrid method 

6.1.7.1 Principal approach 

As the latest major step in development of the solution of the 

elastohydrodynamic problem, Lubrecht [8] introduced the application of the 

full multigrid technique to ehl problems to overcome the problems observed 
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for the Newton-Raphson technique. The basic ideas of multigrid are 

explained in Press et al. [76]. The authors define convergence speed as the 

number of iterations required for a Jacobi or Gauss-Seidel iterative scheme 

to sufficiently minimise the deviation of the actual solution of a problem from 

its perfect solution. This convergence speed is dependent on the width of a 

deviation on the grid which should be reduced in comparison to the grid size. 

With solutions on grids of different resolutions, with a particular sequence of 

solutions on those different grids and respective interpolation between the 

various grids, fast solutions are obtained. This is because for every extension 

of a deviation the ideal grid, leading to maximum convergence speed, is used 

sooner or later in the solution procedure. In the case where a loop is 

superimposed on the above method which stepwise refines the original grid, 

the method is named "full multigrid". 

In order to deal with the non-linearity as it appears in the ehl problem, a (one­

dimensional) Newton iteration must be introduced to the Gauss-Seidel 

relaxation scheme [76]. Similar to the Newton-Raphson scheme, the 

improved value for an unknown variable x~w is obtained with a previous 

guess x~ , the function Fi , which should be zero for the final solution, and its 

derivative with respect to the variable Xi 

new old Fi 
XUj =XUi - aF 

_I 

(6.24). 

OxUi 

6.1.7.2 Principal application 

For the solution of the ehl problem, Lubrecht uses the second order 

differential form of Reynolds equation 2.4 

f =0=-- -.- +6·(u +u ).-d (h
3 

dP) dh 
Re dx " dx 1 2 dx 

(6.25) 

and states that for the derivatives the pressure dependency of the viscosity 

and the height of the gap must be considered: 

dfRe i OfRe i OfRe i OTt OfRe I ah 
--=--+--.-+--.-
dPi Opi OTt Opi ah api 

(6.26). 
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However, the height of the gap cubed, h~, can be seen as a separate 

variable in comparison with the height of the gap h and need not be 

considered. 

On the other hand, he claims that derivatives taking viscosity as the only 

pressure dependent variable, i.e. 

dfRe i OfRe i OfRe i Or] --=--+--.-
dp, Opl Or] Opl 

(6.27), 

lead to the same poor convergence as the direct iterative methods of 

subsection 6.1.3. 

Using the derivative formulation 6.26, the multigrid method converges for the 

same parameters as the Newton-Raphson method does but with a much 

lower computational time, particularly for fine grids. Hence it can be 

concluded that the fact of understanding Reynolds equation as non-linear 

due to the pressure dependency of viscosity and height of the gap is 

important for the convergence of direct methods. Vice versa, omitting some 

dependency, as it cannot be avoided for the direct iterative methods of 

section 6.1.3, spoils convergence, independent of whether a direct iterative, a 

multigrid or a Newton-Raphson technique is used. 

The technique is refined by Venner, ten Napel and Bosma [82], who partially 

replaced the Gauss-Seidel method by Jacobi's dipole method to get 

improved convergence, obtaining converging results for Hertzian pressures 

at and above those technically relevant. 

6.1.7.3 Modifications and similarity with Newton-Raphson 
techniques 

By applying the Jacobi method rather than the Gauss-Seidel method, the 

method will deliver the same results as a Newton-Raphson method with the 

Jacobian matrix truncated to its main diagonal. Hence the multi-grid 

technique can also be understood as a particular modification of the Newton­

Raphson technique with peculiarities with respect to matrix truncation. In 

addition the derivative determination is of relevance for multigrid and Newton­

Raphson techniques. Hence in the further development of a solution method 
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for the proposed extended approach, multigrid will not be treated as a 

separate category but with the Newton-Raphson technique. 

6.1.8 Treatment of thermal and non-Newtonian problems 

The subsequent overview briefly covers the treatment of thermal and non­

Newtonian aspects in ehl analysis, in order to see whether these aspects 

require substantial alterations of the previously discussed methods, which 

would not allow a later extension of the intended Newtonian, isothermal 

solution of the ehl problem. 

For thermal solutions, three principal methods seem to be available; all of 

them are modifications of isothermal methods 

(i) The thermal analysis is treated in a superimposed loop: 

After a full solution of the ehl problem is obtained, the energy equation 

is solved for a temperature distribution in the contact and at the contact 

surfaces. With that temperature field correcting the viscosity field, a new 

solution for the pressure and height distribution is obtained. This 

procedure is repeated until convergence of the temperature field is 

reached. 

This method can be observed for the iterative direct method by Ghosh 

and Hamrock [83] and for the Newton-Raphson technique, for example 

by Sadeghi and Sui [84] or Welsch [13]. In these cases the thermal 

solution requires a CPU time many times that of the isothermal case, 

but convergence of the temperature is independent of the convergence 

of the ehl problem for a given temperature field. 

(ii) The thermal effects are considered during the analysis as soon as 

possible, meaning additional steps and eventually nested loops during 

the established isothermal method. This method can be observed in all 

styles of solution: 

In the Grubin style method of Murch and Wilson [62], thermal effects 

are already considered in the innermost solution of Reynolds equation 

in the inlet zone. In the thermal solution by Wallinger [67], the 
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temperature field is determined in a loop inside the outermost loop 

ensuring the equilibrium of integrated pressure along the contact and 

applied load. 

Liesegang [36] uses this method for his direct method, where thermal 

effects are considered before the pressure distribution is updated. 

For the hybrid solution, for example Cheng and Sternlicht [16], and for 

the inverse solution, for example Eller [7], the temperature effects are 

calculated before the procedure of updating the pressure distribution is 

carried out. 

Wolff et at. [26] avoided the superimposed loop in the Newton-Raphson 

technique, by solving the energy equation and updating the temperature 

distribution after every single Newton-Raphson step. 

In summary, the above methods seem to aim to incorporate the thermal 

effects as soon as possible into the ehl analysis. However numerical 

advantages in terms of convergence behaviour or solution speed are 

hardly discussed. 

(iii) A fully simultaneous treatment of thermal effects is shown by Lee and 

Hsu [30]. The authors use the Newton-Raphson method in a manner 

such that the pressure along the contact and the temperature along the 

contact form together the vector of unknowns xu' and Reynolds 

equation and the energy equation form together the vector of equations 

which have to be fulfilled F. 

For the treatment of non-Newtonian lubricants, often non-Newtonian 

Reynolds equations are derived. Of the above mentioned, for example 

Houpert and Hamrock [40], Lin and Lin [42], livonen and Hamrock [46], and 

Conry, Wang and Cusano [47] followed that procedure. For the solution of 

the ehl problem, all these authors use exclusively the Newton-Raphson 

technique and treat the non-Newtonian Reynolds equation in the same 

manner as the Newtonian Reynolds equation is treated in a Newton-Raphson 

technique. 
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Sui and Sadeghi [34] use, instead of a non-Newtonian Reynolds equation, 

the generalised Reynolds equation, such as equation 2.14, which allows 

consideration of any non-linear viscosity behaviour of the lubricant and solve 

Reynolds equation also with the Newton-Raphson technique. 

In summary, the observed treatment of thermal or non-Newtonian methods 

mean that all solution concepts were derived from adaptation or extension of 

procedures applied for Newtonian or isothermal cases. 

6.1.9 Concluding remarks 

The above survey covered several numerical solution techniques, each of 

them showing variations. For the subsequent development of a method for 

the solution of the ehl problem using the Navier-Stokes equations, they are 

briefly characterized as following: 

(i) Grubin style methods mean methods in which the contact is split into 

three sections, the assumption of Hertzian pressure and a parallel gap 

being assumed for the heavily loaded central section of the contact. The 

error of this assumption can be checked and evaluated but will, a-priori, 

not be corrected. 

(ii) Direct methods mean iterative methods in which initially Reynolds 

equation is solved for the pressure, or any modified variable instead of 

pressure, with subsequent modification of height and viscOSity. The loop 

is repeated until convergence is reached. Any application of Newton's 

method is considered in the category Newton-Raphson techniques. 

(iii) Inverse methods mean methods in which, for a given pressure 

distribution, the flow equations and the deformation equations are 

solved for the shape of the gap. If both results disagree, the pressure 

distribution is adapted until convergence is reached 

(iv) Hybrid methods mean methods in which the inverse method is used 

for the highly loaded zone of the contact and a direct method is used for 

the inlet and outlet region. 
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(v) Newton-Raphson techniques mean a direct method, in which 

Reynolds equation is solved for the pressure applying Newton's method 

for non-linear equations. Due to the fact that the method comprises 

various truncations of the Jacobian matrices and various methods of the 

matrix inversion, Newton-Raphson techniques includes also the one­

dimensional Newton's method and thus the multigrid method for the 

subsequent chapters of this study. 

6.2 Numerical techniques for solving the Navier­
Stokes equations 

6.2.1 General remarks 

According to Schlichting [55, 56], the Navier-Stokes equations, the continuity 

equation and an equation of state for the density behaviour, give a general 

description of fluid flow behaviour. The solution of this set of equations is 

difficult due to the number and complexity of the equations. The traditional 

strategy to solve the equations is the introduction of assumptions or 

simplifications to reduce the equations to an extent that they can be solved 

analytically or with simple numerical techniques [57]. For example, the 

determination of Reynolds equation follows this strategy and hence, strictly 

speaking, Reynolds equation is a solution of the Navier-Stokes equations. 

Hence for the present study the expression "numerical techniques for solving 

the Navier-Stokes equations" can be stated more precisely as follows: 

Numerical techniques for solving the incompressible, two-dimensional 

Navier-Stokes equations neglecting the inertia terms but with highly variable 

viscosity. Any development of the proposed method should involve an 

extension to weakly compressible fluid behaviour, three dimensions, and 

thermal or non-Newtonian considerations. 

Two general approaches were found fulfilling this requirement: 

6.2.2 The vorticity-stream function approach 

Roache [85] discusses the vortiCity-stream function approach, which aims for 

the solution of the Navier-Stokes equations and the continuity equation by 
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converting the equations into a different form for which treatment is easier. 

For the two-dimensional case, the two Navier-Stokes equations are 

converted into a single transport equation· for vorticity 00 which is generally 

defined according to Schlichting, [55, 56], as 

iJv au 
00=---ox Oy (6.28) 

and the continuity equation is converted with the help of the stream function 

\jI, where [57] 

O\v O\v u=- and v=--
Oy ox (6.29) 

into a Poisson partial differential equation. 

To obtain a solution, the vorticity transport equation, the stream function 

Poisson equation and the velocity equations 6.29 are solved successively 

and this is repeated until convergence is reached. Variations of this principal 

sequence, various methods to solve the single equations and settings for 

control parameters of the analysis have been reported, which might 

represent an optimum for one application but could fail for another [85, 86, 

87]. 

Pressure determination, which is necessary for a variable viscosity approach, 

is carried out at the end of the above sequence after convergence has been 

reached. Any parameters dependent on pressure mean a re-run of the 

complete iterative procedure, a reason why Roache [85] considers the 

approach as less suitable for applications requiring pressure data. 

The transport equation is a partial differential equation consisting of convective, 
diffusive, and source terms of the general form 

c(p. +) + div(P,., Vi)= div(r. grad+)+ s.· 
Ct 

Navier-Stokes equations can be understood as transport equations for the velocity 
component of that direction, for which they describe the equilibrium of momentum, I.e . 
• == u for the x-momentum equation, and. == v for the y-momentum equation. 
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The above method, given in [85] for incompressible flow, implies iso-viscous 

flow. The equations for variable viscosity would be much more complex than 

the above-mentioned case. Extension to the three-dimensional case would 

be even less straightforward, since the stream function expands to a three 

component vector, with the number of equations and difficulties in solution 

rising [85]. 

6.2.3 SIMPLE based methods 

6.2.3.1 Principal method 

A more popular alternative than the vorticity-stream function approach is the 

solution of the so-called primitive variables, which means the velocity 

components and the pressure are directly sought. Basically, for the solution 

of the primitive variables, the solution of each Navier-Stokes equation for its 

corresponding velocity component would be obvious. However this implies 

that the continuity equation must be used for pressure determination. 

However, its original form, equation 3.6, contains only velocity gradient 

terms. 

Patankar and Spalding [88] proposed the so-called SIMPLE method to 

convert the continuity equation into a pressure correction equation 

overcoming the above problem. The pressure correction equation is derived 

for the discretised equations. Each variable sought, i.e. pressure and velocity 

components, is split into a known· and unknown portion, the latter being the 

difference between the known values and the final result, i.e. representing 

the necessary correction of the known value to the final result, which is of 

course still unknown. Substituting these split descriptions into the momentum 

equations gives new transport equations describing the correlation of the 

pressure corrections and the velocity corrections. Some terms are omitted 

from these velocity correction equations as they are condensed to a simpler 

form. Incorporation of this simplified form into the continuity equation, for 

which the split of the velocities into a known and a correction portion is also 

The known portion can be the initial values or any actual value of the iterative solution 
process. 
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applied, finally leading to a transport equation containing pressure 

corrections as the unknown term. 

With the above described equations, the solution procedure for pressure and 

velocity components is again successive and iterative: each loop starts with a 

given pressure distribution and the velocities from the momentum equations 

are determined. Subsequently the pressure corrections from the respective 

transport equation and finally the velocity corrections from the simplified 

velocity correction equations are calculated and applied to the original 

values. This loop is repeated until convergence is reached. 

This procedure was later revised by Patankar [89] to the SIMPLER, SIMPLE­

revised, algorithm with improved robustness and computational speed. With 

SIMPLEC, SIMPLE-consistent, a further modification of the SIMPLE­

algorithm is available [90]. 

The SIMPLE based algorithm and its derivatives are robust and widely 

applicable, which is proved by the fact that all commercially available major 

CFD codes to solve the Navier-Stokes equations, such as CFX-4 [91] and 

CFX-S [92], Fluent [93] or Star CD [94], are based on the SIMPLE approach 

or its derivatives and have been successfully applied to a wide range of 

applications. 

6.2.3.2 Further aspects of SIMPLE based approaches 

In commercial packages other aspects are also taken into account, which 

must be kept in mind for the application of CFD software to ehl or when 

considering a special purpose adaptation of a SIMPLE based code to the ehl 

problem. 

Viscosity variation is considered at the beginning of each iterative loop, 

where all coefficients could be updated before the re-calculation of the 

variables [90, 91]. This means that the determination of pressure and 

viscosity is a successive process. Arbitrary descriptions for viscosity can also 

be used in commercial packages, since either Fortran routines [91, 93] or 

special command language expressions [92] can be added to describe the 

fluid properties. Even a major variation of viscosity in a domain, as relevant 
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for ehl, is a common case for commercial packages, since the influence of 

turbulence is modelled via changes in viscosity. The above location of 

viscosity modification can also be used to take other influences on the fluid 

into account, such as temperature or non-Newtonian behaviour, for which in 

commercial software packages often predefined models are available. 

Thermal effects in SIMPLE based solution algorithms are realised by adding 

the solution of the heat transportation equation to the end of the successive 

solution of velocity components and pressure correction [90]. 

Discretisation is also an essential issue for the implementation of SIMPLE 

based approaches. Versteeg and Malalasekera [90] show that a staggered 

grid, where the grid for the momentum equations is shifted half a cell width in 

the direction of force equilibrium, must be used to get a proper solution. 

Alternatively, if a single grid for all variables is desired, particular algorithms 

must be used, such as that by Rich and Chow [95] , e.g. in CFX-4 [91], which 

do not allow the use of the calculated velocity components for further 

analysis, but that of pressure gradients in the discretised cell and flow rates 

at the faces of the discretised cell. 

6.2.4 Fluid-structure interaction for CFD software 

For commercial CFD software, all three types of coupling proposed by 

Gartner, Rettweiler, and van de Sand [96], for coupling some structural 

analysis to the fluid flow analysis, can be observed. 

The concept of "program coupling" (co-simulation) means that one software, 

e.g. CFD software, delivers data relevant for another software, e.g. a 

pressure distribution. These are subsequently taken and used by the other 

software, e.g. a structural analysis code, which itself returns some modified 

data back to the first code, e.g. deflection data. This is repeated until 

convergence is reached. The method was used in the field of CFD, for 

example, by Ramos [97]. 

The concepts "model coupling" and "solver coupling" both mean the 

incorporation of one procedure, e.g. structural analysis, into the other, e.g. 
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the CFD software, which has to allow the change of the flow domain within 

an analysis. 

The major CFD codes allow the change of the flow domain as long as the 

topolog/ is not changed and offer Fortran interfaces and subroutines to allow 

the implementation of structural analysis and its solver ("solver coupling'). 

However, flow domain adaptation is located prior to the loop determining 

velocity, pressure, viscosity, and, eventually, temperature. It is hence less 

frequently visited than the other modifications and requires the generation of 

a superimposed loop as with a transient analysis [90, 93]. The coupling of 

pressure and temperature is successive as when coupling pressure with the 

other variables, but since the geometry determination is undertaken less 

frequently in the superimposed loop, the coupling is weaker. The method and 

the problem of the coupling are dealt with, for example, by Cabrera [98]. 

"Model coupling" is similar to "solver coupling~ the main difference being that 

the former method uses the solver of the CFD code to solve the structural 

analysiS model. Such results are available for CFX [99], but they require 

access to the software source code. The quality of the coupling is identical to 

that for "solver coupling". 

6.2.5 Concluding remark 

For the solution of the Navier-Stokes equations, SIMPLE based approaches 

are the most developed and also available in commercial software packages. 

They provide the capability to fulfil all requirements and can be coupled with 

structural analysis. With the vortiCity-stream function, a second suitable 

method is available; however, the approach seems to be more cumbersome 

and less suitable for extension. 

The topology means the number of discretised elements of cells and the qualitative 
position to each other. 
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Development of numerical method 

7.1 Introductory remarks 

Although both groups of methods shown in the previous chapter, Le. the 

special purpose ehl solution methods and the general Navier-Stokes 

equations solvers, can handle fluid flow problems with variable viscosity and 

elastic boundaries, they concentrate on different details. 

It can be seen from section 6.1 that the coupling of the fluid flow equations to 

the viscosity and deformation description is the essential problem when 

solving the ehl problem. Some five different categories of coupling schemes 

were specified for the realisation of this interaction. It should be noted that all 

the schemes are based on forms of the Reynolds equation and apparently 

have not been used for the extended approach. Similar considerations can 

be made for the solution methods for the Navier-Stokes equations, section 

6.2. Two principal methods are suggested for the coupling of the momentum 

equation to the continuity equation. However, for fluid-structure interactions, 

only the approach of successive coupling is established. 

Hence, a successive method of coupling appears to be the obvious approach 

to solve the ehl problem with the extended fluid flow description. However, 

this method of ehl coupling is only one out of a range of five methods. It has 

the disadvantage of suffering from relatively bad numerical performance as 

discussed in detail in subsection 6.1.3 and 7.2.1. Therefore, it was decided to 

attempt the combination of other coupling schemes with the Navier-Stokes 
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solvers. The five different methods of fluid-structure coupling and the further 

two methods of techniques to solve the Navier-Stokes equations, lead to a 

matrix of ten numerical schemes. For the investigation of these schemes, a 

method to realise the fluid-structure-viscosity interaction was prescribed and 

the incorporation of each of the various momentum-continuity coupling 

methods was then attempted. This method was preferred to the reverse 

procedure, because 

• the field of ehl solution methods is small in comparison to the field of the 

solvers of the complete Navier-Stokes equations with the enormous 

variety of applications, and 

• solution techniques for the Navier-Stokes equations also cover 

problems which are of minor relevance for the ehl problem, such as the 

determination of a converged solution without a good initial value or 

inertia flow. 

Consideration of the performance of a proposed numerical method was 

always made immediately after its introduction. This technique of 

development and appraisal allowed the recognition of problems at a very 

early stage and hence allowed for possible improvements to be made without 

any expensive computations. 

A final and summarizing overall comparison and evaluation of all discussed 

methods leading to the selection of a suitable method is given in section 7.3. 

Section 7.4 checks the applicability of commercially available software for the 

selected methods and finally section 7.5 reduces it to a single suitable CFD 

code. 
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7.2 Calculation schemes 

7.2.1 Direct methods of coupling 

7.2.1.1 Schemes using real pressure p 

In the established methods for the direct method of coupling, subsection 

6.1.3, the three equations, describing fluid flow, viscosity and deformation, 

are coupled successively. This means that each equation is solved for a 

specified unknown variable while all others were assumed to be known. This 

sequence of solutions is repeated until convergence is reached. The equality 

of applied load and resulting pressure is determined within an additional 

superimposed iteration scheme. 

The fluid flow equation requires geometry and viscosity as input and provides 

the pressure as output. These inputs and outputs are exactly the same as 

they are required by all established solvers of the Navier-Stokes equations 

based either on the SIMPLE algorithm or on the vortiCity-stream function 

approach. Hence, the extended set of equations can be introduced simply by 

replacing the Reynolds equation solver by a Navier-Stokes solver. 

Calculation of viscosity and deformation would remain unchanged. The 

respective calculation scheme is given in figure 7.1. The figure also illustrates 

which parts of the algorithm originate from established ehl calculation 

schemes and which from established Navier-Stokes equations solvers. 

The application of the fluid-structure interaction method proposed for the 

SIMPLE based codes, subsection 6.2.4, leads to a similar calculation 

scheme. In comparison with the scheme in figure 7.1, a SIMPLE based 

calculation allows the pressure-dependent variation of the viscosity be made 

within the fluid flow calculation. This feature reduces the previous loop 

coupling three equations to a pure fluid-structure coupling loop. This variant 

is illustrated in figure 7.2. 
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Figure 7.2: (concluded). 

7.2.1.2 Discussion of scheme 

The major drawback of the direct method of coupling is that converging 

results can only be obtained for a very limited range of parameters and by 

using considerable relaxation as discussed in subsection 6.1.3.1. Reynolds 

equation based solutions already fail to converge where the additional 

viscous effects do not influence the solution. For these cases a Navier­

Stokes equations solver would deliver the same results as a Reynolds 

equation solver. Hence no change in the numerical performance can be 

expected at the edge of convergence. Similarly, no converging results can be 

expected for high load and speed parameters in the case of pure rolling, 

since here Reynolds equation is expected to provide a correct solution as 

well. Therefore it was concluded that it is unlikely that the method delivers 

converging results for the case where additional viscous effects have a major 

influence. 
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Nesting the viscosity calculation in the SIMPLE algorithm and putting the 

fluid-structure interaction outside the Navier-Stokes solver, as proposed in 

figure 7.2, was expected to have only minor influence on the range of 

convergence. Tests based on Reynolds equation showed that even a pure 

fluid-viscosity coupling, assuming a rigid ehl shaped gap, fails to converge for 

relatively modest loads. Tests in collaboration with distributors of CFD 

software also showed that a pure fluid-viscosity coupling only converges for 

modest pressure values due to the highly non-linear pressure viscosity 

dependency. Accordingly, a test with a CFD code with variable viscosity and 

elastic boundaries converged only for considerable under-relaxation and 

modest load. This result, however, contrasts with that of Almqvist and 

Larsson [54] who show results for an obviously direct method without 

indicating major convergence problems. In addition to the above nesting of 

the viscosity in the fluid-flow calculation, a number of other measures were 

tested to try and improve the range of convergence for the method of direct 

coupling. Relaxation of the gap shape, stepwise application of the load, 

smoothing of the pressure distribution, smoothing of the height of the gap, 

normalising the load for viscosity and elasticity calculations, introducing 

artificial time steps in the Reynolds equation solver, and changing of the 

nesting of the different iteration loops were tested. None of these measures 

led to a reasonable improvement of the numerical behaviour. 

All the above schemes would require little implementation effort, since all the 

modules employ methods which are well established. Since SIMPLE based 

codes can be used without any major changes, even the application of 

commercially available codes is possible. 

7.2.1.3 Extension to thermal problems 

Two methods are possible to extend the above schemes to thermal 

calculations. The method of superimposing another loop outside the total 

calculation is widely established and was mentioned in subsection 6.1.8. This 

method is basically independent of the method of fluid-structure coupling and 

can therefore be used with all types of Navier-Stokes equation solvers. 
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The second method can be applied when using SIMPLE based methods for 

the solution of the Navier-Stokes equations. In SIMPLE based algorithms the 

fluid flow-heat transfer interaction is realised by incorporating the energy 

equation into the SIMPLE sequence as presented in subsection 6.2.3.2. This 

method is also shown in figure 7.2. 

7.2.1.4 Schemes for modified direct methods 

The introduction of reduced pressure parameters, such as q, q., <1>., or <1>' , 

equations 6.3, 6.5, and 6.8 in subsection 6.1.3.2, into ehl solution schemes 

ensures a closer coupling of the three equations describing fluid-flow, 

viscosity and deformation. The well-established methods for solving the 

Navier-Stokes equations do not provide such a close coupling. Hence, the 

application of this closer method of coupling means the introduction of an 

appropriate variable into the Navier-Stokes equation, which has not yet been 

suggested. 

When introducing the parameters q or q. into the Navier-Stokes equations, 

the original form of the equation would still look like a momentum equation 

with variable viscosity dependent of the reduced pressure and with a 

nonlinear pressure source term". However, in the original SIMPLE method 

the linear source term op/ax is substantial for the development of the 

pressure and velocity corrections. Hence introduction of the parameters q or 

q. would require at least a careful revision of the derivation of pressure and 

velocity coupling for a SIMPLE-similar scheme. Nevertheless a momentum 

For example, considering the simplified x-momentum equation 2.11 

:=~(~.:) 
and applying the reduced pressure definition equation 6.5 

q= e-40p 
I 

x-momentum equation becomes 

-~.~.:=~(~.:} 
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equation in q or qO would remain non-linear, in contrast to the reduction of 

Reynolds equation to linearity with respect to the pressure and viscosity. 

To reduce or overcome the non-linearity in the governing equations another 

variable description has to be found. It is not known whether there is any. 

Such a variable would give a new, different set of momentum and continuity 

equations requiring a new method of solution. 

When a parameter contains additional information about the geometry, such 

as the parameter <1>0 or <1>' , it cannot be introduced into the Cartesian form of 

the Navier-Stokes equations as no geometry information is incorporated in 

the equations. This information is normally introduced by discretisation or by 

transformation of the equations to body fitted co-ordinates. If it were possible 

to introduce a similar parameter into these transformed or discretised 

equations, again a new system of equations would have to be solved. 

In conclusion, any introduction of variables would require the development, 

implementation and testing of new equations and a method of coupling the 

developed momentum to the developed continuity equation. It would be 

expected that the development of such a method of coupling would be of 

similar complexity to the development of SIMPLE-algorithms or the vorticity­

stream function approach. Hence, the implementation of this method could 

be expected to require a major effort. 

Regarding the quality, it is expected, due to observations described in 

subsection 6.1.3.2, that the described effort could result in converging results 

for a wider range of parameters than the pure form of the direct method of 

coupling, but could not be as successful as e.g. a Newton-Raphson or 

inverse technique. 

- 106-



Chapter 7 Development of numerical method 

7.2.2 Inverse methods 

7.2.2.1 Inverse solution of the flow equations 

The inverse method of subsection 6.1.4 is characterised by the solution of 

the Reynolds equation for the height of the gap while the pressure is 

prescribed and a superimposed correction of this pressure. Regarding the 

first, the established calculation schemes to solve the Navier-Stokes 

equations and the continuity equation are designed for the converse, the 

determination of the pressure for a given geometry. In the Cartesian form of 

the Navier-Stokes equations the height geometry is not included. This 

information is brought into the equations either by discretisation or by the 

transformation of the equations to body-fitted co-ordinates. Additionally, in 

these equations, the pressure is only known at the boundaries of the flow, 

and unknown in the domain. A special purpose method of coupling the 

discretised momentum and continuity equations to solve the transformed 

equations for the height with given pressure boundaries would be necessary. 

As stated for the direct methods, the implementation of such a new method is 

expected to be a major effort. 

Alternatively, an iterative method searching for the correct shape of the gap 

for given pressure distributions can be considered. 

One proposal is that an initial shape of the gap is guessed. For this shape of 

the gap the pressure distribution can be calculated using the Navier-Stokes 

solver with the boundary conditions assuming tangentially moving walls. The 

calculated pressure is then compared with the given pressure distribution. If 

there are differences, the shape of the gap is changed and the calculation 

repeated until convergence is obtained. The correction of the shape could be 

realised for example by a Newton-Raphson scheme with the height as the 

unknown value Xu * and the difference between the desired and the given 

pressure as the residual F which should diminish. However this method 

would suffer from the fact that the determination of the pressure has to 

cf. subsection 6.1.6.1 
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consider the pressure-viscosity dependency. As mentioned in subsection 

7.2.1.2 for direct methods, this innermost loop will fail to converge. 

Alternatively, for a given shape of the gap also the pressure distribution - or 

a combination of tangential velocity and pressure - at the walls can be 

prescribed as boundary conditions. Then the Navier-Stokes solver returns 

the normal flow through the surfaces which means that the non-fulfilment of 

the obvious velocity boundary condition of no entrainment through the wall is 

quantified. Again with a Newton-Raphson method, the shape of the gap 

could then be determined by minimising the entrainment flow through the 

wall. For such an approach, neither the numerical performance of the Navier­

Stokes solver nor of the Newton-Raphson scheme is known. 

7.2.2.2 Correction of the pressure distribution 

Once a hydrodynamic shape of the gap is found with a new algorithm or an 

iterative search, the pressure correction must be undertaken. This uncovers 

another problem. The method such as proposed by Archard, Gair and Hirst 

[10], in which the correction is determined from the deflection equation, will 

suffer from the circumstance that it returns only a single pressure adaptation, 

but no information as to how the pressure varies between the two surfaces. 

This problem can be overcome by adopting Eller's idea [7] to consider also 

the flow description. However with the set of flow equations 3.38 and 3.39, 

the flow description is not available in a self contained form as it is with 

Reynolds equation for Eller. 

An alternate idea to overcome the problem is to start with identical pressure 

distributions for both surfaces, but to treat them separately for the 

determination of the hydrodynamic and elastic shape determination and for 

the pressure corrections due to the contour differences on both surfaces. 

7.2.2.3 Discussion of scheme 

An inverse method seems to be desirable due to the fact that it shows a good 

convergence behaviour for Reynolds equation . 
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However the iterative search contained in the method leads to some 

drawbacks. The convergence behaviour of a Newton-Raphson technique 

leading to the final shape of the gap has not yet been investigated. The 

solution of the Navier-Stokes equations within the innermost loop makes the 

calculation delicate to convergence problems and is likely to be extremely 

time-consuming, or, if other boundary conditions are considered, 

unpredictable. However, it allows the scheme to employ established solution 

methods for the Navier-Stokes equations contributing to easy implementation 

and allowing the use of commercially available CFD software packages. 

Also the fact that the pressure distribution at both surfaces must be treated 

separately makes the method cumbersome and its performance 

unpredictable. 

As for all methods the algorithm can be easily extended to thermal problems 

by a superimposed loop. Alternatively, the Navier-Stokes equations could be 

solved taking thermal effects into account. Due to the iterative determination 

of the shape of the gap even an extension of the calculation method to the 

point contact problem would be possible but again cumbersome. 

7.2.3 Hybrid methods 

Hybrid methods combine elements of the direct and the inverse solution 

schemes. Since both schemes can be implemented with a solver for the 

Navier-Stokes equations, the hybrid method can also be implemented. The 

problems and drawbacks discussed for the inverse solution will occur 

Similarly for hybrid methods. In addition, the effort to iterate the various 

sections would appear. 

7.2.4 Grubin style methods 

In the Grubin style methods the coupling problem is solved by assuming a 

rigid stamp-elastic cylinder model, subsection 6.1.2.1. The fluid flow equation 

is solved in the inlet and outlet zones but not in the central high pressure 

region where the gap is always assumed to be parallel. In the zones where 

the fluid flow is calculated, a direct method of coupling is used. This allows 

the easy application of any of the established solvers for the Navier-Stokes 
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equations. The algorithm requires a frequent solution of the Navier-Stokes 

equations which might cause considerable calculation times. The major 

drawback of the method lies in the assumption of a parallel gap in the heavily 

loaded zone. This assumption is reasonable for an isothermal and 

incompressible Reynolds equation based solution, but hides information 

when conSidering thermal or compressible effects. Accordingly, expected 

changes due to the additional viscous effects in the highly loaded zone on 

the shape of the gap cannot be investigated. However, as for Reynolds 

equation based solutions, where the error due to the assumption of the 

parallel gap can be determined, a detailed error consideration and further 

evidence for the need for the extended approach could be obtained. 

7.2.5 Newton-Raphson techniques 

7.2.5.1 Basic considerations 

Fully simultaneous coupling of the three equations describing the ehl problem 

can be realised by the Newton-Raphson technique: All three variables, 

pressure, viscosity and height of the gap, are assumed to be unknown in 

Reynolds equation at the same time. Thus Reynolds equation is understood 

as highly non-linear. For the solution, a pressure distribution is prescribed 

and the non-fulfilment, i.e. the residual vector, of Reynolds equation is 

quantified. With the knowledge of the residual change due to a pressure 

change, i.e. the Jacobian matrix, the non-fulfilment is then minimised. Since 

the Reynolds equation is, as shown in section 2.1, the integral continuity 

equation, into which the x-momentum equation has been incorporated, the 

residuals to be reduced are the mass continuity residuals. 

SIMPLE based, and vorticity-stream function based, Navier-Stokes equation 

solvers modify the pressure, rather than keeping it prescribed, and aim to 

iteratively minimise the continuity residuals. Consequently, they do not return 

the desired residuals and hence cannot be used for a Newton-Raphson 

method without being adapted. 

The realisation of the Newton-Raphson technique for the extended approach 

must rather attempt the solution of both momentum equations with a 
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prescribed pressure, so that the non-fulfilment, i.e. the residual vector, of the 

continuity equation is returned, even if that is likely to require an iterative 

procedure. For the general considerations of fluid flow, two forms of the 

continuity equation are available. Normally, the differential form of the 

continuity equation 

au ov 
-+-=0 
Ox Oy 

(7.1) 

is used, but when considering, for example, fluid flow in a gap, often the 

integral form can be employed 

(

y = upper surface J 
d ,_, ... [_ u·dy =0 

dx 
(7.2). 

Consequently, schemes for both forms of the continuity equation are 

considered in the following. 

7.2.5.2 Fully simultaneous method 

The fully simultaneous method is based on the differential continuity equation 

7.1. In order to obtain the residual vector for a given pressure distribution, the 

shape of the gap and the viscosity distribution are first calculated for this 

pressure distribution. Then the velocity components in the x- and y-direction 

are calculated from the respective momentum equations. Since both 

momentum equations include velocity components in both directions, an 

iterative solution of these two equations is necessary. After the determination 

of the velocity components, all information is available to calculate the 

residuals. The derivative terms of the Jacobian matrix for the Newton­

Raphson method can be numerically determined: One point of the pressure 

vector is slightly varied and the residual vector is recalculated in the same 

way as for the original pressure vector. The complete Jacobian matrix is then 

inverted and pressure corrections can be determined and applied. This loop 

is repeated until convergence is reached. The central height of the gap can 

be determined by considering the overall load within the Jacobian matrix as 

mentioned in subsection 6.1.6.2 or by adding a superimposed loop, as 
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discussed in subsection 6.1.6.3. The algorithm with this latter scheme is 

shown in figure 7.3. 

assume initial guess for 
pressure distribution and 

central film thickness 

calculate residuals of 
differential continuity 

e uation 

correct central height of 
the a 

Figure 7.3: Calculation scheme for the fully simultaneous Newton­
Raphson method to solve the ehl problem using the complete 
Navier-Stokes equations 
(continued). 

- 112-



Chapter 7 

calculate 
Jacobian matrix 

invert 
Jabobian matrix 

Figure 7.3: (concluded). 

Development of numerical method 

~odules established in the solution of the Navier­
Stokes equations by SIMPLE based algorithms 
modules established in the solution of ehl problem 

modules neither established in ehl calculation nor in the 
solution of the Navier-Stokes equtaions. 

7.2.5.3 Discussion of the fully simultaneous method 

The Reynolds equation based Newton-Raphson technique has been 

established throughout the last decades as a form of standard method 

because of its balance between robustness and range of convergence. The 

proposed method is expected to show similar performance. However, two 

details differ from the established scheme and hinder the prediction of the 

performance of the method. 
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• The two momentum equations are coupled successively. The 

convergence behaviour of this coupling has not yet been investigated. 

However, it is expected that the successive coupling leads to 

convergence within a small number of iterations, since the x-momentum 

equation does not contain any important terms of v-velocity, as can be 

seen from equations 3.36 and 3.42. 

• The residuals of the differential continuity equation are evaluated rather 

than those of the integral continuity equation. In comparison with the 

perpendicularly constant Hertzian pressure distribution, which is 

established for Reynolds equation based solutions, residuals might vary 

much more strongly across the gap than they do along the gap. This 

strong variation might spoil the good convergence behaviour of the 

Reynolds equation based solutions. 

The computational effort of the new method will be considerably higher than 

for established Reynolds equation based solution methods. The second 

dimension in the contact requires a resolution of at least five to seven cells. 

Determination and inversion of the Jacobian matrix rise quadratically or at 

least more than linear with the number of elements. Additionally, the 

numerical solution and the iteration of both momentum equations require 

further time. 

When comparing the calculation method with· the SIMPLE based solution 

schemes it can be seen that many components appear in both techniques. 

This means that experience gained in SIMPLE based methods can be used. 

Eventually even the adaptation of SIMPLE based commercially available 

software codes can be considered. 

Vorticity stream-function based solutions of the Navier-Stokes equations 

solve pressure field impliCitly and are hence not suitable for the Newton­

Raphson technique applied in this manner. 
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7.2.5.4 Combined successive-simultaneous method 

In order to reduce the numerical effort and to overcome the problems with the 

uncertain numerical behaviour due to the perpendicular pressure variation, a 

method was developed employing the integral continuity equation as 

established for Reynolds equation based solutions. The proposed method is 

illustrated in figure 7.4. 

When returning to the evaluation of the integral continuity equation, only a 

one-dimensional pressure variation along one line of the gap can be 

determined within the Newton-Raphson process. The definition of this line is 

arbitrary, for example one of the surfaces or the centreline between. The 

pressure corrections perpendicular to the gap must be determined 

separately. This is realised by solving the y-momentum equation for the 

pressure and not for v-velocity. Any necessary v-velocity components can be 

determined from the continuity equation in its differential form. Since the 

pressure variation across the height of the gap influences its height, the 

viscosity distribution, and hence the u-velocity profile, the above loop must be 

repeated until convergence is reached for the pressure distribution across the 

height of the gap. The residuals for the Jacobian matrix to determine the 

longitudinal pressure corrections at the selected line can then be calculated 

numerically by again using the previously mentioned algorithm. 

Determination and application of the longitudinal pressure corrections is 

repeated in the usual manner until convergence is reached. The 

determination of the central height of the gap representing the equilibrium of 

applied load and pressure is realised by an additional superimposed loop, but 

could also be realised fully simultaneously within the fluid flow equations, as 

mentioned in subsections 6.1.6.3 and 7.2.5.2. 
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Figure 7.4: Calculation scheme for the combined successive­
simultaneous Newton-Raphson method to solve the ehl 
problem using the complete Navier-Stokes equations 

(continued). 

- 116-



Chapter 7 

calculate 
Jacobian matrix 

invert 
Jacobian matrix 

Development of numerical method 

no conver ence 

p10dules established in the solution of the Navier­
Stokes equations by SIMPLE based algorithms 
modules established in the solution of ehl problem 

modules neither established in ehl calculation nor in the 
solution of the Navier-Stokes equations. 

Figure 7.4: (concluded). 

7.2.5.5 Discussion of the combined successive-simultaneous 
method 

The suggested combined successive-simultaneous method is expected to 

follow basically the behaviour of Reynolds equation based Newton-Raphson 

methods. However, some details differ from the established Newton­

Raphson technique and were expected to influence the performance. The 

integration of the continuity equation is carried out analytically in the 

isothermal Reynolds equation based solutions. In the present case, the mass 

flow must be integrated numerically. The numerical method is expected to 

require exact methods since exact numerical methods are also essential in 
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the Reynolds equation based thermal solutions as discussed e.g. by Welsch 

[13]. The performance of the successively coupled loop to determine the 

perpendicular pressure variation across the gap is still unclear. However, the 

influence of the perpendicular pressure variation was expected to be small 

when the line, where the longitudinal pressure is set, is the centreline. The 

influence of the application of the continuity equation to determine v-velocity 

might also influence residuals and the Jacobian matrix. 

In the cases where the additional viscous terms do not influence the ehl 

solution, the proposed method reduces to the established Reynolds equation 

based solution with numerical solution of the continuity equation, a method 

that is known to converge. 

For the proposed method, the size of the Jacobian matrix is the same as for 

the Reynolds equation based case. The effort to invert the Jacobian matrix 

will remain similar to that for established solutions. However, further time will 

be required for the successive coupling and for the numerical integration of 

the mass flow. 

The implementation of the method does not allow the use of the established 

methods to solve the Navier-Stokes equations. Some parts of the calculation 

agree with parts of the SIMPLE based code, but the solution of the continuity 

equation for the v-velocity and that of the y-momentum equation for the 

pressure is not yet tested. 

For the same reason as for the fully simultaneous method, the combined 

successive-simultaneous method cannot be combined with a vorticity-stream 

function approach. 

7.2.5.6 Extension of methods 

Both methods can be extended to thermal problems. As for all methods, this 

can be done by introducing a superimposed loop as discussed in section 

6.1.8. However, similar to other methods, the extension can also be 

incorporated in the iteration of the two momentum equations, similar as in the 

SIMPLE scheme. The extension to non-Newtonian fluid behaviour is possible 

using the methods established for SIMPLE algorithms, subsection 6.2.3. 
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Both methods can also be extended to three-dimensional problems. 

However, particularly for the fully simultaneous method, the calculation would 

require enormous computational resources. 

7.2.5.7 Truncated Jacobian matrices 

Both proposed methods, the fully simultaneous and the successive­

simultaneous method, require iterative procedures to determine the mass 

continuity residuals in comparison to non-iterative solutions of equations for 

the Reynolds equation based solution. This means, in comparison with a 

Reynolds equation based solution, the contribution of the mass continuity 

residual determination to the total computational time will rise in comparison 

to the time required for the inversion of Jacobian matrix. In addition, one 

converged iterative procedure delivers residual data for all locations of the 

analysed domain. Hence opposite to the Reynolds equation based Newton­

Raphson technique, the effort to determine one or all residual values at a 

time is identical. Hence a method using as many residuals as possible at one 

time is advantageous. 

Additionally, since the residual analysis causes the most significant increase 

in analysis time, the method with a minimum number of residual evaluations 

should be chosen. The number of evaluations is the number of elements n 

plus one per Newton-Raphson step independent of the width of the Jacobian 

matrix but also per sweep of the multigrid technique of subsection 6.1.7 if 

simply the determination of the residuals is changed and the rest of the 

method remains unchanged. Since the Newton-Raphson method with the 

inversion of a full Jacobian matrix needs the minimum number of steps or 

sweeps, it is preferable. 

A substantial advantage might be a multigrid method which can deal with a 

full sequence of equations, however, this is outside the capabilities of the 

methods proposed and discussed for Reynolds equation based ehl problems 

in Lubrecht [8] or Press et al. [76]. 
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7.3 General comparison and selection of method 

In section 7.2, a number of different methods were presented and discussed. 

In the present section, a brief comparison and evaluation of the methods with 

a view to the specification of section 4.3 is given, in order to select the most 

suitable method. The results of this evaluation are summarised in table 7.1. 

• Principal influences 

All methods with exception for the Grubin-type methods can be used for 

the principal investigation of the isothermal line contact problem with the 

additional viscous terms. Due to the assumption of a parallel gap, 

Grubin-type methods are unsuitable for the investigation. 

• Flexibility 

Basically all methods allow the extension to investigate further effects 

such as compressible, thermal or transient flow. An extension to three 

dimensions is not possible with the vorticity-stream function approach. 

However, a replacement of the vorticity-stream function approach by a 

SIMPLE based method is always possible. 

• Implementation effort 

Two aspects are considered when evaluating the implementation effort: 

Firstly, it is evaluated to what degree components of the respective 

scheme have been already employed elsewhere, so that the behaviour, 

any problems and respective solutions can be transposed. The second 

aspect is the extent of the scheme itself and the number of different 

operations and iterations which have to be implemented and tested. 

Concerning the former point, the direct method of coupling using a 

modified pressure parameter and non-iterative forms of the inverse 

method are the most difficult methods to implement since neither 

suitable equations nor methods of coupling are available for them. The 

iterative forms of the inverse method require an iterative search for the 

hydrodynamic shape and a revised pressure correction strategy, both 

not yet tested. A corresponding implementation effort is necessary for 

the hybrid methods. Both Newton-Raphson methods mainly contain 
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well-known algorithms but contain one iteration loop for which the 

convergence behaviour cannot be predicted. In the direct method 

employing the real pressure and the Grubin style method, the Navier­

Stokes equations solvers can replace the Reynolds equation solvers 

without any further changes in the scheme. This means that the 

implementation only consists of the combination of well established 

modules and is therefore straightforward. 

With regard to the latter aspect, the complexity of the method itself, the 

iterative inverse method needs one more loop of iteration and correction 

and is therefore evaluated to require more implementation effort than 

the Newton Raphson technique. 

• Performance 

The main requirement is for a robust solver capable of dealing with a 

wide range of load and speed parameters. The direct method of 

coupling using the real pressure is expected to converge only for a very 

limited range of parameters and is therefore evaluated to be unsuitable 

for the present extended ehl problem. A slightly wider, but nevertheless 

insufficient range of parameters, is expected when employing the direct 

method with any modified pressure variables. Good numerical 

performance is expected for a range of four methods, the inverse, the 

hybrid and the two Newton-Raphson techniques. The Grubin-type 

method is expected to maintain its excellent numerical behaviour. 

Summarising the above details, it becomes clear that Grubin-type methods 

and direct methods cannot be employed due to essential drawbacks which 

would not allow a successful investigation. The direct method was evaluated 

to be the worst of acceptable methods. Of the remaining methods, the 

Newton-Raphson techniques seem to have advantages in comparison with 

inverse and hybrid methods. The two Newton-Raphson methods are 

relatively similar in structure and neither of the methods show significant 

advantages. Hence it was decided to implement and test both the fully 

simultaneous and the combined successive-simultaneous Newton-Raphson 

method. 

- 121-



Chapter 7 Development of numerical method 

7.4 Application of commercially available 
software 

After selection of suitable methods of solution the implementation of the 

scheme is to be realised. According to the specification, section 4.3, 

maximum flexibility, maximum robustness and minimum implementation 

effort was desired. In order to fulfil the specification, it was anticipated to 

consider the application of commercially available software tools and 

components. Three types of software were found which could possibly be 

used for the solution of the ehl problem with the extended set of equations: 

structural analysis packages, mathematical libraries and SIMPLE based CFD 

packages to solve the Navier-Stokes equations. It is discussed in the 

following whether the application of commercial software will lead to 

expected fulfilment of the specification. 

Structural analysis software can be used as a tool to calculate the matrix of 

influence numbers to determine the deflection of the solid surfaces and 

hence the shape of the gap. However, since application and implementation 

of the Boussinesq equation are expected to be both simple and fast, the 

application of structural analysis software was rejected. 

Mathematical libraries, such as NAG [100] or IMSL [101], can be used, as for 

example by Welsch [13], for the efficient solution of the discretised equations 

or inversion of the Jacobian matrix. However, other effects, such as 

discretisation of equations and the generation of an appropriate grid, are not 

supported. The employment of appropriate tools is therefore desired. 

CFD software offers a much wider range of support. These codes provide 

many of the features which have to be implemented for the solution of the ehl 

problem. Such components are, for example, 

• use of the exact governing equations, 

• interfaces to introduce user-defined description of the fluid properties 

such as viscosity and density, 

• discretisation and grid-generation for the geometry, 
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section 

Principal ++ ++ ++ ++ -- ++ ++ 

influences 

Flexibility ++ - ++ ++ ++ ++ ++ 

Implementation ++ 0 0 0 ++ + + 

effort 

Performance -- - 0 0 ++ + + 

Overall -- - 0 0 -- + + 

evaluation 

Table 7.1: Evaluation of calculation schemes for the ehl calculation taking 

additional viscous effects into account; 
++ means specification criterion is perfectly fulfilled, 
+ means specification criterion is fulfilled with some minor 

problems, 
o means specification criteria is reasonably fulfilled, 

means specification criterion is not fulfilled, 
means specification criteria is not fulfilled and the 
complete method is not suitable for the investigation. 

• correct, grid-independent coupling of the Navier-Stokes and the 

continuity equation, 

• advanced and efficient numerical solvers adapted to the purpose, and 

• possible extension to thermal calculations. 
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However, the complete SIMPLE-based algorithm cannot be used unchanged 

by the promising calculation schemes. The following problems must be 

solved: 

• the pressure corrections and the velocity corrections of the SIMPLE 

sequence must be switched off, other equations must be added, 

• the variation of the geometry during calculation, and 

• the implementation of the Newton Raphson scheme. 

These requirements are discussed in the following. 

7.4.1 Switching off particular equations 

A number of different methods are available to realise the switching off of 

certain equations in the SIMPLE algorithm. The most obvious and most 

convenient is simply to delete the appropriate components in the source code 

of the CFD program. That would require full access to the code, which is very 

unusual for such commercial packages. Other possibilities are, for example, 

to reset the appropriate values to zero in a later and accessible program 

module, to suppress them by extreme under-relaxation, or to manipulate the 

equation matrices in an appropriate way. 

7.4.2 Adding modules 

Similar to the switching off of particular modules of the SIMPLE code, the 

addition of modules can be realised: The most straightforward way would be 

the adding of appropriate subroutines to the source code of the program 

which would again require access to the source code. Alternatively, user­

defined subroutines within the program can be used to introduce additional 

data code. 

7.4.3 Variation of geometry 

Variation of geometry is essential for all calculation schemes and can be 

realised either by coupling outside the code, i.e. program coupling, or inside 

the code, i.e. solver coupling, both introduced in section 6.2.4 and illustrated 

- 124-



Chapter 7 Development of numerical method 

in figure 7.5. In the former method, geometry calculation is carried out 

outside the CFD code by user-defined code. Each time results from the 

modified SIMPLE algorithm are required, the CFD code must be started. The 

method is expected to require a great deal of file handling to transfer the 

respective geometry data into the CFD code and to return the pressure 

results. In addition, each time the CFD code is started, its time consuming 

initialisation sequence must be carried out. Hence, a variation of the 

geometry inside the CFD code is perceived as being a more efficient method. 

This can be realised using the capabilities of a transient calculation. Each 

new solution of the modified SIMPLE algorithm is considered to be a new 

time step with a new geometry. Hence, the method requires that the code 

allows a change of geometry between time steps. With the suggested 

procedure being the solution of a steady state problem by a transient 

calculation, it must be ensured that transient terms do not influence the 

result. However, since Reynolds number is small, the influence is expected to 

be small, and can be influenced by adopting large time steps. Nevertheless, 

a switching off of the transient terms would be desirable. 

- 125-



Chapter 7 

calculate fluid flow, 
use modified 

SIMPLE se uence 

calculate fluid flow, 
use modified 

SIMPLE s uence 

completion 

Development of numerical method 

prepare next 
calculation loop (e.g. 

calculate new 
pressure distribution) 

letion 

prepare next 
calculation loop (e.g. 

calculate new 
pressure distribution) 

(a) outer coupling 

user defined code 

odified steady state CFD 
ode 

(b) inner coupling 

user defined code 

odified transient CFD 
code 

Figure 7.5: Coupling of the modified CFD code and variable geometry by 
coupling (a) outside the code, i.e. program coupling, and (b) 
inside the code, i.e. solver coupling. 
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7.4.4 Implementation of the Newton-Raphson technique 

Newton-Raphson techniques normally require the analytical determination of 

derivatives for the Jacobian matrix. For the present case, numerically 

approximated gradients must be used for the determination of the Jacobian 

matrix. The calculation scheme and the necessary extensions for the 

numerical determination of the Jacobian matrix are shown in figure 7.6. This 

figure also shows that the combination of the Newton-Raphson technique 

and modified CFD software is easily possible by coupling outside the code, 

similar to that shown for the geometry variation above. Consequently, the 

drawbacks regarding file handling and frequent initialisation of the CFD code 

are also valid for the implementation of Newton-Raphson techniques. 

The realisation of the Newton-Raphson scheme within a CFD code requires 

a rearrangement of the calculation scheme for outer coupling shown in figure 

7.6. Using the CFD code, the residual calculation is called at one pOint in the 

program sequence only. As for the variable geometry, the transient 

calculation feature of the CFD code is used. After each time step, 

represented by calculation of the residuals, it is decided, in a user-defined 

subroutine, at which part of the Newton-Raphson scheme the calculation is at 

the moment. The results are then treated appropriately and the next time­

step is prepared. The procedure is illustrated in figure 7.7. The method 

requires a complete switch-off of the transient terms of the calculation. Even 

large time steps would lead to a systematic error in the Jacobian matrix. The 

method can be combined with the variation of geometry. 

An extension of the above method to transient problems would be possible, 

but would require manipulation of the transient capabilities of the CFD code. 
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Figure 7.6: Calculation scheme for the Newton-Raphson method 
approximating the derivatives numerically. Realisation of the 
method using a modified CFD code using outer coupling, i.e. 
program coupling. 

The above considerations show that the application of CFD software to the 

ehl problem requires a CFD program that can be adapted by the user. If 

available, such a code can reduce much of the implementation effort, but any 

adaptation will require a detailed knowledge of the code. It is understood that 

any adaptation may influence the performance of the code, e.g. for the 

combined successive-simultaneous method, where the y-momentum 

equation must be solved for the pressure gradient in the perpendicular 

direction, discretisation by the user is necessary. Care must be taken to 
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maintain consistency of the original with any implemented equations. 

Although there are some problems which appear when adapting 

commercially available CFD codes, it was expected that the advantages 

dominate the drawbacks. Therefore, the adaptation was pursued. 

Jacobian matrix 

residual analysis 

no 
convergence 

convergence 

alter first element of 
vector of unknowns 

reset altered 
element of the 

vector of unknowns 
to ori inal value 

calculate and apply 
correction for vector 

of unknowns 

alter next element of 
vector of unknowns 

end 

Figure 7.7: 

ifIed steady state CFD code user developed code 

Calculation scheme for the Newton-Raphson method 
approximating the derivatives numerically. Realisation of the 
method within a CFD code. 
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7.5 Selection of suitable CFD software 

7.5.1 Specification for CFD software 

It was concluded that the application of commercially available CFD software 

makes implementation easier. However, the code must allow for adaptation 

to the ehl problem. For the selection of the most suitable software, a 

specification for the software was developed using requirements which were 

derived from the general specification, section 4.3, and the selected 

numerical method. Essential details of the specification are given below, 

however the exact list of requirements was much more detailed. 

• Governing equations 

The complete Navier-Stokes equations and the energy equation must 

be provided for three-dimensional, compressible flow. It should be 

possible to switch off inertia terms. 

• Variable fluid properties 

The program must allow variable fluid properties. The implementation of 

user-defined laws to describe viscosity is essential, the implementation 

of user-defined laws to describe other properties such as density and 

heat capacity coefficients are desirable. 

• Method of coupling 

The program must allow the implementation of user defined subroutines 

to enable the calculation of pressure corrections using the Newton­

Raphson method. The program must also allow the change of geometry 

during the calculation procedure. It must be possible to switch off 

certain modules of the code. It should be possible to change all the 

variables at arbitrary positions in the code. 

Rating of priority was assigned to all requirements to indicate whether the 

requirement was essential, necessary or desirable. 
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7.5.2 Survey of available software 

Advertisements in journals and the internet were searched for available CFD 

codes. A list of codes is given in table 7.2. Only commercial software 

products were considered to ensure maximum state of the art regarding 

physical models, numerical techniques and user support. 

Name of the code Developer of the code Internet address 

ADINA-F ADINA R&D, Inc. www.adina.com 

CFDesign Blue Ridge Numerics www.cfdesign.com 

CFD-ACE CFDRC www.cfdrc.com 

CFX-4.2 AEA Technology www.ansys.com 

INVENT computing . 
FASTEST 

GmbH 

FIDAP 
Fluid Dynamics 

www.fluent.com 
International * 

FIRE A VL List GmbH www.avl.com 

FLOW-3D Flow Science, Inc. www.flow3d.com 

FLOWPLUS Blue Ridge Numerics www.cfdesign.com 

FLOTRAN ANSYS, Inc. www.ansys.com 

FLUENT Fluent, Inc. www.fluent.com 

P3/CFDt PDA Engineering www.mscsoftware.com 

PAMFLOW PSI www.esi-group.com 

PHOENICS CHAM www.cham.co.uk 

STAR CD 
Computational 

www.cd-adapco.com 
Dynamics 

Table 7.2: Available commercial CFD software, code developer (state 
August 1995), and homepage (state December 2004). 

t 

Provider is out of business (state December 2004). 
Former internet address: www.invent-computing.de. 

Program name is now MSc Nastran for Windows CFD (state December 2004). 
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7.5.3 Selection of CFD software 

All the above software was analysed to establish whether the requirements 

could be fulfilled by the particular code. The information was obtained from 

technical brochures for the programs and from personal discussion with the 

distributors. A detailed evaluation scheme was used to take the rating of 

priority as well as the degree of fulfilment into account. A survey of all the 

results is given in table 7.3. CFX-4.2 was found to be most suitable for the 

calculation. Other programs such as PHOENICS, FIRE and STAR CD are 

also assessed to be basically adaptable to ehl calculations. 
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~ 
Governing Fluid Numerical 

criteria equations properties method 

Program 

ADINA-F 

CFDesign 

CFD-ACE 

CFX-4 

FASTEST 

FIDAP 

FIRE 

FLOW-3D 

FLOWPLUS 

FLOTRAN 

FLUENT 

P3/CFD 

PAM FLOW 

PHOENICS 

STAR CD 

Table 7.3: 

- -
-

0 0 -

+ + + 

+ + -

+ + -
0 + 0 

+ -

0 0 -
0 -

+ + 0 

-

-
+ + 0 

+ 0 0 

Evaluation of available commercial CFD software; 
+ means all requirements are fulfilled; 

o means essential requirements are fulfilled, but some 
necessary or desirable requirements are not or only 
partially fulfilled; investigation of the ehl problem would 
still be possible; 
means essential requirements are not fulfilled; 
investigation of the ehl problem could not be carried out 
using this code; this assessment means that further 
requirements may not be evaluated, because the code 
could not be used. 
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Implementation assuming constant 
pressure across the height of the gap 

As a first step, a calculation method was implemented assuming constant 

pressure across the gap. The extension to variable pressure across the gap 

is described and discussed in chapter 9. This stepwise approach contains 

some advantages. The physical model for this simplified method is based on 

Reynolds equation and hence is well established. However, the adaptation of 

CFD software is novel. This enabled attention to be concentrated on the 

analysis and evaluation of the numerical method. On the other hand, this 

simplified method represents a special case of both proposed numerical 

schemes. Hence, the method implemented can easily be extended to allow 

variable pressure across the gap. 

8.1 Implementation details 

The implementation comprises the practical application of the ideas 

presented in sections 7.2 to 7.4 to the selected CFD code, CFX-4.2. The 

implementation required an exact knowledge of the calculation scheme of the 

CFD code. The scheme was analysed from the code manuals [91] and from 

tests with the software. The program structure, which was determined, is 

given in figure 8.1. It shows particularly the interfaces for user-defined 

adaptations. The following subsections widely refer to figure 8.1. A complete 

calculation scheme showing all the implementations is given at the end of the 

present section in figure 8.6. 
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(b) time step dependent modifications 
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8.1.1 Switching off modules 

The calculation method requires the switching off of the pressure and velocity 

corrections. A complete deletion of the pressure correcting subroutines was 

not possible. Therefore the coefficients of the matrix for the determination of 

pressure corrections for all points along and across the gap were 

manipulated within the subroutine USRSRC so that all values became zero: 

(8.1 ). 

The zero pressure correction values lead automatically to zero velocity 

corrections. This procedure was preferred to strong relaxation of the pressure 

correction results, because pressure correction relaxation does not lead to 

zero velocity corrections. These corrected velocities can falsify the residuals 

of the continuity equation and hence spoil the Newton-Raphson scheme. 

Details of the residual calculation are given in subsection 8.3.3. 

8.1.2 Viscosity variation 

Barus' description was implemented in the user-defined subroutine USRVIS, 

dedicated by the code for the introduction of a user-defined viscosity 

prescription, 

'11 - '11 • e a ·PI.) 
'Ii,j - '10 (8.2). 

8.1.3 Grid calculation 

Grid variation during the calculation was realised by the subroutine USRGRD 

which is dedicated to grid manipulation and is called during code initialisation 

and at the beginning of each time step. A uniform grid was used in the x­

direction. This uniform grid was chosen since influences due to the extended 

approach were expected to occur all along the heavily loaded zone of the 

contact and zones of particular interest could not be predicted in advance. 

In the y-direction, two different approaches were implemented: firstly the 

established method as nearly always used e.g. by [8, 13, 17], where all 

deformations and curvatures are applied to one surface as illustrated in figure 

8.2(a). Secondly the rather more correct method, illustrated in figure 8.2(b), in 

which the deformations and curvatures are applied to the corresponding 
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surfaces. The first method was applied in the present chapter aiming at the 

reproduction of established Reynolds equation based results. The benefit of 

the latter is considered in chapter 10.3. 

The calculation of the deformation of the solid differs slightly from the 

established approaches because the CFD code is based on a finite volume 

method (FVM) where the pressure is calculated and is available at the centre 

of the volumes but the geometry is described at the corners of the volume. 

Two approaches were applied, a zeroth order and a first order approximation. 

The zeroth order approximation is fully consistent with the calculation of 

surface forces of the CFD code, while the first order approach is more 

accurate. More details of the grid calculation are given in appendix G. 

(a) 

~ 
\ \ 
'\ ,\' f'_/ 

r"-' ....... _V ....... ....... r--... - ~ 

(b) 

~f'. 
f".. r--..... r--.JII' 

'" 
-~I- 1..- ........ 

~ I.--"" 

vV' 
Figure 8.2: Established geometry distribution assuming all contributions to 

one surface (a) and real geometry distribution assuming 
identical surface curvatures and material properties (b). 
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The fact that, in the finite volume discretisation of the CFD code, some 

values are determined and available for the centre of the finite volumes but 

others at the corners, edges or faces of the volumes requires some particular 

treatment of the indexing of variables. A small letter represents a position at 

the centre of a finite volume, and a capital letter a position at its surface. This 

is not only relevant for the grid determination but also for other aspects 

discussed in the following. 

8.1.4 Fluid flow boundary conditions 

The same boundary conditions as used in Reynolds equation based 

solutions were applied and are shown in figure B.3. The code only requires 

the input of keywords. The software allows the input of tangential and normal 

velocity components, not necessitating the Cartesian components: 

• At both solid surfaces the tangential velocity and the velocity 

perpendicular to the wall were set to the surface velocities and zero 

respectively 

V tangential 1,1 = U1 

V normal/,l = 0.0 ["i'] 
and 

V tangential I,M = U2 

V normal/,M = 0.0 ["i'] 
(B.3a, b). 

• At the inlet the pressure was assumed to be zero: 

(B.3c). 

• At the outlet the pressure was assumed to be zero: 

PN,J = 0.0 [Pa] (B.3d). 

The boundary conditions obtain the mixed indexing with one capital and one small 
letters because the values are defined at the centre (small letter) of the edge (capital 
letter) of the adjoining finite volume. 
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Inlet: I = 1 

Upper surface: J = M 
wall boundary condition 

V tangential I,M = U2 

V normal I,M = 0.0 [~] 

Outlet: I = N 
pressure boundary condition 

pressure boundary condition 
PN,j = 0.0 [Pa] 

P1,j = 0.0 [Pa] 

Lower surface: J = 1 
wall boundary condition 

V tangential 1,1 = u1 

V normal 1,1 = 0.0 [~] 

Figure 8.3: Boundary conditions for the ehl problem using CFD software. 

When the location of the outlet boundary is chosen correctly, the above 

Dirichlet boundary condition automatically fulfils the widely used cavitation 

boundary condition described e.g. by Dowson and Higginson [17] 

O 0 ~p] and ~ -- 0.0 [EArn ] p = . ~ a UA (8.4). 

The correct choice of the outlet boundary condition can be automated in a 

superimposed loop [8]. Tests using a Reynolds equation based solution 

scheme showed that the exact iterative calculation for the outlet position is 

time consuming. Therefore, for the principal test of the program the location 

of the outlet boundary was set to be fixed. 
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8.1.5 Convergence criteria of fluid flow calculation 

The CFD calculation scheme requires the fulfilment of convergence criteria to 

complete a time step. Within the SIMPLE algorithm the pressure correction or 

the continuity equation are normally used for the check of overall 

convergence. However, since the pressure corrections were set to zero, the 

calculation cannot be controlled by this default convergence criterion; the 

residuals of the continuity equation are required for the Newton-Raphson 

scheme. Instead of the continuity equation the x- and y-momentum equations 

must be evaluated. This can be realised by two methods. The more general 

one is to use the subroutine USRCVG where user-defined convergence 

criteria can be calculated from the actual values of the variables. The second 

method is to use the capabilities of the code, which are provided when using 

the so-called advanced time stepping transient analysis: with this feature of 

the applied code, any variable can be evaluated without any user-defined 

programming. 

8.1.6 Newton-Raphson method 

The Newton-Raphson method was implemented as suggested in section 7.4 

by solver coupling. The transient calculation capabilities of the CFD code 

were adapted using the user-defined subroutine USRTRN after each time 

step. Depending on the progress at the end of the different time steps, three 

options were available: 

(i) The current time step had the purpose of determining the residuals for a 

given pressure distribution, and, if convergence is not yet reached, a 

new Jacobian matrix has to be generated. This is carried out from the 

next time step, and, as preparation for this time step, the pressure in the 

first column of finite volumes is modified. 

(ii) The current time step had the purpose of determining a row of elements 

of the Jacobian matrix and these values are determined now. If the 

Jacobian matrix is not yet completed, the currently still modified 

pressure to determine the gradients is reset for the treated column of 

finite volumes, and, as preparation for the following time step, the 

pressure in the next column of finite volumes is modified. 
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(iii) The current time step had the purpose of determining a row of elements 

of the Jacobian matrix and these values are determined now. Because 

the Jacobian matrix is now complete, pressure corrections can now be 

determined by inversion of the Jacobian matrix. The corrected pressure 

is applied as preparation for the following residual determination. 

Since analytical derivatives could not be obtained from the code, the 

Jacobian matrix elements were determined numerically. The selection of the 

numerical parameters for the Newton-Raphson method is discussed in 

subsection 8.3.3. 

For the determination of the residuals of the continuity equation, the mass 

flow through the finite volume faces was considered rather than the velocity 

components. The mass flow values are much more accurate than the velocity 

at the cell centres. This is due to the Rhie and Chow method of avoiding 

numerical OSCillations [95] when solving the Navier-Stokes equations. It is to 

be expected that the use of these accurate values also avoids the 

convergence problems which appear when numerical integration across the 

height of the gap is necessary for the thermal Reynolds equation solutions. 

These problems are reported e.g. by Welsch [13] or Liesegang [36]. 

Using the above mass flow values, the calculation of residuals for the 

differential and integral continuity equations is very similar. Calculation of the 

differential residuals is carried out by summing the fluid flow over all the (four) 

faces of the volume. Calculation of the integral residuals means only adding 

the differential residuals over a column of volumes. Thus, the flow through 

inner surfaces cancels out, again resulting in the integral residual of the 

continuity equation, which is illustrated in figure 8.4. 

Although the flow rates through the inner surfaces cancel out, some accuracy 

for these values is required to avoid the residuals being spoiled by these 

values. This requires some knowledge of the v-velocity field, and hence a 

solution for the y-momentum equation is required but it does not have to be 

perfectly converged. Hence a solution for the v-velocity field, obtained with 

the minimum number of iterations, is considered in the calculation scheme. 
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Inversion of the Jacobian matrix was carried out by employment of the 

routine library IMSL and its inversion routine DLlNGR [101]. 

(a) (b) 

m 

Figure 8.4: Residual calculations for the continuity equation; 
(a) the differential continuity equation, 
(b) the integral continuity equation. 

8.1.7 Initial values 

As an initial value for the pressure distribution, the Hertzian pressure 

distribution was assumed within the Hertzian pressure zone with zero 

pressure being assumed everywhere else 

p = Phz • ~X2 - bhz 
2 

for Ixl .:::; bhz 

p = 0 for Ixl > bhz 

(8.5). 

Figure 8.5 illustrates the initial pressure distribution and the resulting shape 

of the gap. 
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Figure 8.5: Initial pressure distribution for ehl problem using CFD software 
and resulting shape of the gap. 

8.1.8 Height correction 

The correction of the central height of the gap to give equilibrium of inner and 

applied load was realised, as suggested in subsection 7.2.5, by a 

superimposed loop. As for the control of the Newton-Raphson scheme, the 

user subroutine USRTRN was used at the end of each time step to 

undertake the necessary actions. 

For the central height of the gap ho the approximation of equation 3.26 was 

used: 

h = 1 9· GO.6 • UO.7 • W-O.13 . r ° . red (8.6) 

The initialisation of the values was realised within the user-defined subroutine 

USRINT. 
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Figure B.6: 
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Complete calculation scheme for the ehl calculation using 

CFD software showing all details 

(a) main program, 
(b) details of Newton-Raphson technique handling 
(continued). 
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(b) Newton-Raphson technique handling 
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Figure 8.6: (concluded). 
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8.2 Stabilising the solution method 

8.2.1 Description of problem 

The first tests with the implemented program did not lead to converging 

results for a wide range of values of the parameters, even where established 

methods based on Reynolds equation provide solutions. Analysis of the test 

calculations showed that oscillations start to build up in the region of the 

pressure spike, grow over the complete loaded zone and finally spoil the 

complete solution. The process starting and development of the pressure 

oscillations is illustrated in figure 8.7. 

contact width x/bhz [-] 

O.Oe+O 

-2.0e+8 
o 

Newton-Raphson step [-] 

Figure 8.7: Development of the pressure distribution in the ehl contact 
during Newton-Raphson process. 

8.2.2 Discussion of problem 

To overcome the above problem various obvious measures were considered 

such as 
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• varying the numerical parameters of the calculation, as discussed in 

section 8.3, 

• smoothing the pressure distribution after each Newton-Raphson step, 

or filtering high frequency oscillations out of pressure distribution, or 

• refining the grid. 

None of the above methods led to the necessary improvements. 

Result graphs showing oscillating ehl problem results are presented, e.g. by 

Chang, Conry and Cusano [77] and Okamura [14]. Both show OSCillating 

results due to coarse grid resolution, Chang, Conry and Cusano as an 

intermediate result subsequently refined on a finer grid of a multi-level 

analysis. 

Additionally, Okamura [14] shows that oscillations could appear if the 

convergence of the gap is very small, Le. the load is high and the Jacobian 

matrix is weakly conditioned. However, it was found that the initial oscillations 

were not due to insufficient accuracy of the Jacobian matrix inversion by the 

library routine, which was indicated by returned characteristic values from the 

inversion. 

Another reason for the appearance of oscillations is the application of a 

second order, central approximation for the first order gradients in the 

governing Reynolds equation. As discussed in section 6.1.6.3, non­

OSCillating, converging results are obtained for a first order upwind 

discretisation of the pressure term ap/Ox for the integral Reynolds equation 

2.5 and for first order upwind discretisation of the height gradient ah/Ox for 

the differential Reynolds equation 2.4. 

The development and origin of the oscillations in the CFD code show a 

similar behaviour to those observed for a second order, central difference 

approximation of the first order gradient in Reynolds equation solution by 

Okamura [14]. The hypothesis that both phenomena might be the same is 

supported by the fact that, in the implemented CFD software based method, 

the height of the gap is determined for the corners of the finite volumes half 
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way between the volume centres, as discussed in subsection 8.1.3, 

independent of the flow direction. That means that, with respect to a finite 

volume, the corresponding height gradient is a central approximation from 

the two edges of a volume. Such central approximation of height terms 

causes oscillations for the differential Reynolds equation 2.4. Hence, it was 

concluded that the geometry determination in the CFD code based method 

must be adapted to introduce some effective upwinding to the ehl problem. 

8.2.3 Solution approach 

Changing the discretisation details of the CFD code was rejected as the code 

was not accessible in the necessary detail and an adaptation would mean a 

complete re-writing of the code. 

Consequently it was decided to consider the practical differences between 

both discretisation schemes. If a function is curved convexly, central 

approximation means smaller gradients than the negative approximation and 

vice versa for a concavely curved function. This is clear from geometrical 

considerations, as in figure 8.8 or by mathematical means. For the second 

order central approximation of a first order differential 

~ = fl+1 - f l_1 + E 
Ox 2.~ trune 

(8.7) 

the truncation error is according to Bronstein [102] 

(8.8) 

while for the first order negative approximation 

(8.9) 

it is 

1 82f 
Etrune =+-'~'-2 + ... 

2 Ox 
(8.10). 
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Since the truncation error of the first order negative approximation is greater 

than that of the second order central approximation, the difference between 

both approximations is 

(8.11 ). 

~ 
.. . .. ~ ..... ~ 

.,." "ot-J' ,,' 

o 
82f 

convex curvature of function: ax 2 < 0 82f 
concave curvature of function: ax2 > 0 

~ - t1 fl+1 - f l_1 
-->....:;:;.:....~ 

fl-t1 < t1- fl-1 
~x 2·~ ~ 2·~x 

- gradient assuming first order negative approximation 

........ gradient assuming second order central approximation 

fl - fl_1 
~ 

t1-t1 
2·~x 

Figure B.B: Differences in gradients for first order negative and second 
order central approximation. 

The wish to obtain gradients as in the negative discretisation scheme would 

require the reduction of the gradients in the concavely and the increase of the 

gradients in the convexly curved sections of the function. At least 

qualitatively, these effects can be attained by moving the function half a grid­

width to the right and retaining the use of central approximations. However, 

the shifting of the function leads to a change in the actual value of the 

function. The results from grid shifting are illustrated in figure 8.9. 
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82f 
convex curvature of function: ax2 < 0 

fl - fl_11 > fl - fl_11 
~x shifted ~x original 

82f concave curvature of function: -2 > 0 ax 
fl - fl_11 < fl - fl_11 

~ shifted ~ original 

- gradient assuming second order central approximation for the original grid 
fl - fl_1 . 

ax original 

.......... gradient assuming second order central approximation for the shifted grid 
fl+1 - fl_1 
2·~ shifted 

o original function fl original 
C: shifted function flshif1ed 

Figure B.9: Change of second order central approximated gradients of 
pressure due to grid-shifting. 

Application of the above ideas to the ehl problem signifies a shifting of the 

geometry of the gap in relation to the pressure. The height of the gap is now 

described by 

hi = ho + hr,I-1/2 + V d,I-1/2 (8.12) 

and is shown in figure 8.10. 

Since the Couette part of Reynolds equation is dominant in comparison with 

the Poiseuille contribution, the influence of the incorrect grid height due to 

grid shifting is expected to be small. Since, in this chapter, the assumption of 

constant pressure across the gap is made and the governing equations are 

the same, any improvements in numerical performance are also expected for 
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the solvers of the Navier-Stokes equations with variable pressure across the 

gap. 

~ 
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Figure 8. 10: Shifted and original grid for identical pressure distribution. 

8.2.4 Results 

The proposed method of grid-shifting leads to converging and non-oscillating 

results for the ehl problem when using CFD software. A sample result for the 

parameters listed in table 8.1 is given in figure 8.11. Variation of the shifting 

from half to a whole grid-width leads to an increasingly lower pressure spike, 

the rest of the results hardly changing. It is understood that, particularly for 

coarse grids, the method introduces a systematic error which decreases for 

finer grids. Comparison of calculated with published results is given below in 

subsection 8.4.5. 

Application of the above ideas to a Reynolds equation with a centrally 

approximated Couette term leads to improvements of numerical 

performance. Hence it can be concluded that grid-shifting is a generally 

applicable method to improve numerical behaviour for a wider range of ehl 

calculations. 
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input parameters 

Hertzian pressure Phz = 0.5 .109 Pa 

hydrodynamic speed uh = 0.5 m·s-1 

sliding ratio 8=0.5 

viscosity flo = 0.050 Pa· s 

pressure viscosity coefficient a = 2.18 .10-8 Pa-1 

reduced Young's modulus Ered = 2.27.1011 N ·m-2 

reduced radius rred = 0.025 m 

density p = 870 kg ·m-3 

Table 8.1: Input parameters of sample ehl calculation of figure 8.11. 
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Figure 8. 11: Sample result for ehl calculation assuming constant pressure 
across the height of the gap and using CFD software. For 
input parameters see table 8. 1. 
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8.3 Numerical parameters 

8.3.1 Numerical parameters appearing In ehl calculation 

Numerical analysis requires the setting of numerical parameters and for the 

present ehl investigation altogether five parameters must be set. 

In the basic Newton-Raphson method using Reynolds equation two 

numerical parameters appear: firstly the number of volumes or grid-points 

and secondly the residual vector of the Reynolds equation. The number of 

cells must be set for the calculation. This number ranges from about 40 [7, 8, 

36], where reasonable results are obtained, up to 1000 and more for detailed 

solutions [8]. The residuals of the Reynolds equation are returned from the 

solution procedure. The ratio of initial and current values can be used to 

evaluate the convergence of the solution. 

When, as in the present study, the Jacobian matrix is determined 

numerically, a third value defining the length of the section of abscissa must 

be set by the user to approximate the tangent by a secant. General text 

books on numerical methods recommend a change of the original input 

value, i.e. in ehl calculations the pressure, by the square root of the 

computation precision, i.e. 10-16 for double precision calculations [76] 

~p = ~Ecomputat'on = ~1 0-16 = 10-8 

P 
(8.13) 

For the particular case of ehl calculations, no details on the change of the 

original value for the numerical Jacobian matrix determination could be 

found. Detailed discussion on this issue is given in subsection 8.3.3.2. 

The introduction of CFD software assuming constant pressure across the 

height of the gap means the introduction of the fourth and fifth numerical 

parameters: Since the calculation is two-dimensional, the number of volumes 

of grid points in the y-direction must be set; the calculation of the u-velocity 

distribution is carried out numerically and hence a criterion to define 

convergence of this inner loop iteration must be defined. 
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For the present considerations, usually a grid of 70 x 7 volumes was used. 

This combination enabled reasonable calculation times when employing the 

CFD code, a reasonable discretisation of the domain and a reasonable 

resolution of the results to show the principal effects of the new method. 

Contrary to most Reynolds equation based solutions, the CFD code takes 

account of the dimensional problem. That means that residuals are 

dimensional and hence must be set individually for each particular 

calculation, even if dimensionless parameters might agree. 

8.3.2 Ranges of converging and non-converging 
parameters 

The interaction of the remaining three numerical parameters is now analysed 

with a defined grid of 70 x 7 volumes and for the set of parameters of table 

8.1. This constitutes a basis for the selection of these parameters in 

subsection 8.3.3. The relative variation of the input value to approximate the 

Jacobian matrix and the reduction of the residuals for the x-momentum 

equation as convergence criteria for the inner iteration was varied over some 

orders of magnitude. The development of the residuals of the integral 

continuity equation was analysed for a high number of Newton-Raphson 

steps. 

The results of this investigation are shown in figure 8.12. A triangular zone 

was found were the calculation method converges. In most of the zone the 

continuity residuals fall more than eight orders of magnitude below their initial 

values and then oscillate at this very low level. At one edge, the residuals of 

the continuity equation do not fall as much as eight orders of magnitude but 

remain at a low level. The triangular range of convergence is limited by three 

types of failure: 

(i) For low residual values for the x-momentum equation, the calculation 

fails because the x-momentum equation fails to converge to the desired 

residual. 

(ii) For relatively large pressure variations the method fails initially due to 

strong oscillations of the pressure corrections based on the Newton-
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Raphson technique. These oscillations lead to convergence problems 

for the x-momentum equation. For higher, relatively large pressure 

corrections, a negative height of the gap is obtained during calculation. 

(iii) At a particular ratio of relatively inaccurate residuals, represented by 

high residual values and small pressure variations, the calculation fails 

due to increasing oscillations after initial convergence. 

Furthermore, it was observed that calculation time increases with increasing 

pressure ratios and by decreasing the required residual for the x-momentum 

equation. 
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Figure 8. 12: Ranges of convergence and divergence for the ehl problem, 
parameters as in table 8. 1. 
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8.3.3 Selection of parameters 

8.3.3.1 Residual for the x-momentum equation 

Figure 8.12 showed that the x-momentum equation fails to converge when 

the required norm of the residuals falls below a particular level. It is essential 

not to fall below this value, because otherwise the calculation procedure 

would be interrupted. On the other hand, the minimum residual should be as 

close as possible to the minimum possible value in order to attain maximum 

precision. The present subsection estimates an optimum value for the 

dimensional value of the residual vector of the x-momentum equation. 

For this, the simplified Navier-Stokes equation in the x-direction assuming 

constant pressure across the gap and leading to Reynolds equation is 

considered, equation 2.1, 

(8.14). 

When pressure and hence viscosity is variable across the gap, equation 8.14 

is equal to the more general form, equation 2.11, 

(8.15). 

In this equation u velocity is now assumed to be the unknown variable and 

the pressure gradient a known source term. Application of the finite volume 

discretisation, figure 8.13, means integration over a discrete volume Il V . 

Details are e.g. given by Patankar and Spalding [88] or by Versteeg and 

Malalasekera [90]. Equation 8.15 becomes 

where 

RdP) A - ·dV =S·IlV. 
!:N dx 
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Figure 8. 13: Finite volume and description of indices. 

Approximation of the velocity gradients by a second order central 

approximation leads to the discretised equation, and taking into account that 

cell surface and viscosity do not change across the height of the gap, 

equation 8.16 becomes 

where ~y 

~V 

TJ·A f. ) A 

~y '\U1,j+1-2'Uj,j + U1,j_1 -5 ·~v = 0 (8.17), 

is the dimensional finite volume width across the gap and 
is the volume of the finite volume. 

Introducing non-dimensionalisation, as in section 3.3, and 8arus' equation 

3.9 gives 

TJo' ea·Phz·~., . uh ·bhz ·Ie • ~X· tlZ . (u -2. U + u )-8. ~v = 0 (8.18) 
ho . ~ Y l,j+1 I.j l,j-1 

where Ie is the width of the system, which must be finite in 
the CFD code and 

~X, ~ Y, and ~Z are the dimensionless volume dimensions in x-, y-, 
and z-direction. 

When computing, the above equation cannot be fulfilled exactly, a small 

algebraic error can remain due to the restrictions of digital calculations. When 
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computing in a double precision mode, the resolution of numbers is 16 digits, 

where the last digit is inaccurate. A change of the last digit of the central 

velocity value hence causes a residual for the cell of 

Q'Phl .f>;J b I 
f = 2. 110 • e . uh ' hz' c • m . E . 

I.J h . n.1 computation 
o 

(8.19) 

where Ecomputation is the error due to the limited resolution of numbers, 
which is 10-16 for double precision and 

n, m, and I are the number of cells in x, y and z direction 
respectively, with 

1 1 1 
AX=-, AY=-, AZ=-; 

n m I 

The sum of all the residuals, as is used in the CFD software, is obtained by 

summing the residuals of all cells 

I-n 
J=m 

fsum = Lfl•J 
1-1 
J=1 

(8.20). 

With the assumptions that the residuals of all individual volumes are of the 

same value of fi•J and that for all residuals the dimensionless pressure is 

unity, the minimum sum residual become: 

This assumption overestimates the real situation since the pressure and 

hence the residuals outside the heavily loaded zone are much smaller than 

the proposed value. 

Tests with the CFD software showed that setting the residual value of the 

CFD code to a value slightly higher than fx-mom.sum normally ensures 

convergence for the x-momentum equation and delivers accurate results for 

the u velocity field. However, when the pressure spike is considerably higher 

than the Hertzian pressure, convergence cannot be reached due to the 

residuals near the pressure spike. This normally happens for relatively high 

values of the hydrodynamic speed, which causes the spike to be relatively 

close to the centreline of the contact. 
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8.3.3.2 Pressure variations for numerical determination of the 
Jacobian matrix 

Convergence of the Newton-Raphson method is only obtained when, for the 

numerical determination of the Jacobian matrix, certain values for the 

pressure variation are used. Figure 8.12 has illustrated, that the maximum 

admissible value is constant and the minimum is dependent on the selected 

x-momentum residual. 

When the maximum admissible value is exceeded, strong oscillations 

develop near the vertex of the Hertzian pressure distribution. They lead 

normally to failure of convergence of the x-momentum equation. The 

appearance of the problem can be delayed but not avoided by under­

relaxation of the calculated pressure corrections of the Newton-Raphson 

scheme. It is assumed that the reason for this behaviour is the following: The 

higher the value of the pressure variation to obtain a secant, the less 

accurate this secant approximates the tangent of the original Newton­

Raphson technique. For the described case of oscillations, the two values 

describing the secant differ by so much that the secant represents an 

insufficient approximation of the tangent. 

On the other hand, minimum admissible values are dependent on the 

selected residual for the x-momentum equation. The generally recommended 

value of input variable variation of 10-8 for double precision represents, for 

the present case, the minimum value for which converging results are 

obtained when the optimum x-momentum residual was chosen. 

As, for example, discussed by Lubrecht [8], the velocity terms are dominant 

in comparison with the pressure terms. The non-dimensionalised and re­

arranged Navier-Stokes equation in the x-direction with Sarus' relation is 

Discretising the equation using a simple finite difference formula, 

(~+1.J - ~.J)= D·(~.J+1-2. ~.J + ~.J-1) 
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where D is the factor which causes the velocity terms to dominate the 

pressure terms, gives 

(8.24). 

When considering again the limited accuracy of the computation, the 

dominance factor D means that a change in the nth digit of one velocity value 

requires a change in that digit of one of the pressure terms, which is the 

order of the dominance factor D left of the nth digit, i.e. the (n -log Dr digit. 

That means, for the discussed sample result, that a relative change of the 

pressure values of less than 10-12 would not cause any changes in the 

velocity profile. On the other hand, for the residuals of the continuity 
, 

equation, the Newton-Raphson technique needs exact values, which are 

calculated from the u-velocity field. The difference of both the residuals, i.e. 

the original residual and the residual due to the change of the input value, 

should have as many correct digits as possible to keep algebraic errors 

small. Four to five digits were found to be the minimum number of correct 

digits necessary to obtain a converging solution. Therefore, the relative 

pressure variation can be calculated from the following formula: 

where 

~p 
->E .·S·S.·D - computation N-R reSidual p 

(8.25), 

Ecomputation is the numerical accuracy of the computation, 10.16 

for the employed double precision mode, 
SN-R is the accuracy required for the Newton-Raphson 

technique, at least four digits, 104
, 

Sresidual is the difference between the theoretical minimum 
residual due to the computation and the selected 
minimum residual which should be as small as 
possible, and was, with the above criteria, 
102",103 and 

D is the factor by which the velocity terms are 
dominant in comparison with the pressure terms, for 
the discussed sample result, 4 x 103

, 

Since the oscillations leading to the failure of convergence appear for 

increasing pressure variations, they should be chosen as small as possible, 
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It is clear from the above formula 8.24 that the dominance factor 0 grows 

rapidly with increasing Hertzian pressure. That means that the triangular 

range of convergence in figure 8.12 decreases for more severe conditions 

and that there will be a set of maximum values of parameters for which a 

successful calculation can be carried out. This limit is shown in section 8.5. 

8.3.3.3 Convergence and relaxation of Newton-Raphson 
technique 

Overall convergence of the analysis was defined to be obtained when the 

sum of the value of the continuity equation residuals decreased more than 

five orders of magnitude. 

For the Newton-Raphson technique, a constant relaxation factor of 0.3 was 

found to cause sufficient under-relaxation at the beginning of the analysis 

while keeping the convergence speed at an acceptable level 

8.4 Errors 

8.4.1 Types of error 

Errors appearing in numerical solutions can have a number of different 

origins. Normally, four groups of errors are distinguished; see e.g. Peric [103]: 

• model errors, 

• discretisation errors, 

• iteration errors, 

• implementation errors. 

These errors and the influence on the numerical method are discussed in the 

following. 

8.4.2 Model errors 

Model errors cause the difference between the exact solution of the selected 

mathematical model described by differential equations and the real solution. 

In the present investigation, some model errors were intentionally admitted, 
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such as isothermal, incompressible and Newtonian conditions, as we" as, in 

the present section, constant pressure across the gap. On the other hand it is 

the aim of the present investigation to improve the solution of the ehl 

problem. It is hoped that this is achieved by an improvement of the 

mathematical model, i.e. by reducing the model error. 

8.4.3 Discretisation errors 

Discretisation errors are the difference between the exact solution of the 

differential equation and the exact solution of the discretised system of 

algebraic equations. 

According to Peric [103], the discretisation error can be estimated from two 

solutions of the problem on grids of different resolution and the order of the 

method. 

where ~h 

~2h 

(8.26) 

is the result on the originally coarse grid, 

is the result at the same point from a grid with half the 
number of finite volumes or grid pOints in each direction, 
and 
is the order of the discretisation error. 

The order of a method can be determined from three solutions on different 

fine grids by 

(8.27) 

where ~h. ~2h are as above and 

~4h is the value for the function assuming quarter the resolution 
of the grid 

Thereby, the order of the method must be determined only once for the 

calculation scheme. 

The calculation of the order requires the iteration error, see below, to be as 

sma" as possible. Hence the calculation time is relatively long even for 
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coarse grids, and, as also applied, by considering only one superimposed 

loop of applied load equilibrium. In the present case, the first reasonable non­

oscillating results were obtained for a grid of 50 x 5 volumes. The calculation 

time was found to increase quadratically with the number of cells, as shown 

in figure B.14. Extrapolation showed that the finest necessary grid of 200 x 20 

volumes would require a CPU time of more than 30 hours on a SGI RBOOO 

processor. 

..... en -Q) 

E 
:;:; 
:J 
a. 
u 

1 000000 ~--=-=-=-=-=--=-'!:""'-=-=-'"='-:r.:_=_ =-_=_-:r._:-:r:-_ ;:-::-=-~-T-::-::-=-=-=--=-:":--=-=-~-::-::-=-=-~-:r.:_,..,..-::-r.: __ :-r':I = = = = = = = F = = =: : =i =:;: =1=;: 

100000 

10000 

1000 

:::::::;::::: determined by determined by:::;::;::,:;: 
-------~---- "'-1-1"-I-t-

- - - - - - - r- - - -. computations extrapolation -..., - ... -,-,.. _______ '- ___ • _.J _ J. _'_I. 
I.. I I I I 
I I I I I I I I I I I I I I 

= = = = = = = t= = = = 'l = = =,= = + = ~ = + =,= t=;: = = ~ = =I = '" =,=;: 
§§§§§§§§§§§~§§§~§!§~§~~§§~§ -~§§~§§§!§~~ 
- - - - - - -r- - --., - - -,- - T -.,. - r -1-, r - ..,---,--.,. -.., - T -,- r 
--- - - --I - - -.., - - -,-- T -"T - r -'-IT - -..,- - -,- - i -.., - T -,- r _______ ~ ___ ~ ___ ~_~_~_L~_~L ________ .J ___ ~_~_~_~_~L 

I I I I I I I I I I I I I I I I I 
I I I I I I I I I I, I I I I I I 

~~~~~~~E~~~3~~~~~!~3~E9~E - -~~~~E~~~~~~~E~3~3~!~EE 

~~~~~~~~~~~~~~~~~!~~~~~= = ~~~~~~~~~~~~~E~~~~~!~~~ 
- - - - - --I ---.., - - -,- - T - i - - - - - - - i - - -..,- - -,- i -., - T -,- r 
-------i---'---I--T-~ -'-ir- -----r----,---,--.,.-..,-T-'-r _______ ~ ___ ~ ___ ~_ __L~_~L ______ I. ___ .J ___ ~_~_.J_~_~L 

I I I I I I I I I I I I I I I I 
I I ,r I I I I I I I I I I I I 

~~~~~~~E~~~3~ =~1~3EE9~EE~ EEEE~EEEE3EEEEE3E3E3EEE 
-------c---- '--I-l-r-'-cr- :::::r::::J:::C:l::J:I:':r = : : : : : : I- : - - -: :,: : T : ..,. : to :,: t- 1"': - - - - - t- - - - -1- - - r- - -t - -t - ... -1- t-
-- --- - -, - , - - -1- - T - i - T"' -1-. T"' - - --- - r - --i- --r- i -., - T-I- r 
-------r---'--~--T-'-r~-rr- -----r---'---r-'-'-T-~r _______ ~ ___ ~ ___ ~_~_~_L~_~~_ -----~---~ ___ ~_~_~_~_~L 

I I I I I I I I I I I I I I I I 

100 +-----~'--~'--~~' ~'~'~'~'~'~----~'--~'--~'~'~,~,~,~, 

100 1000 10000 
total number of grid pOints [-] 

Figure 8. 14: CPU times for various total number of finite volume or grid 
points. 

Hence it was decided to test the order of the method using another method. 

When the order of a method is quadratic, function ~ varies with the grid size 

as follows 

(B.2B) 

where n is the number of grid-pOints in one direction, e.g. the x­
direction and 

k
1

, k2 are coefficients which can be calculated from two pairs of 
function value and respective grid size, 

k1 = V ~~ - ~ 2 and k2 = ~1 - ~. V ~~ - ~ 2 
1 n1 -1 n2 n1 1 n1 - 1 n2 
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The order of the method implemented was checked by comparing the 

theoretical development of the central height of the gap for first and second 

order methods with calculated results. Results are shown in figure 8.15. The 

central height of the gap was chosen since comparison of pressure values 

would require interpolation which might influence the order. 

Figure 8.15 shows that particularly for grids finer than 80 x 8 volumes, the 

method follows the second order method. This agrees with the expectation of 

section 8.1 because the CFD code is of second order and for the user 

defined features second order approximation was also chosen. 

0.346 

0.344 

0.342 

...... 
E 0.340 
:::l. ...-

~ 0.338 
~ 
CD 
:6 0.336 

E 
.~ 0.334 
.c. 

0.332 

0.330 

----,-----'-----r-----r----'-----r---- ---
I I I I I I 
I I 
I I 
I I I I 

I 
I ____ ~ _____ J _____ L _____ ~ ____ J_ _ L _____ 1 _____ .J 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

I I I I I I I ----,-----'-----r---- -'-----r-----r----' 
I I I I I I 

I I I 
I I 

I I I I I I 

----~-----~-----~ -~----~-----~-----~----~ 
I I I I I I I 
I I I I 
I I I I 
I I I I I I 

- - - - _1- ____ ..! __ ____ L ____ J _____ L _____ L ____ J 

I I I I I I I 

_____ 1 __ _ 

I 
I 
I 
I 

I 
I 
I 

I I I I 
I I 
I I 

I I I I I 

---~-----~----~-----~-----~----~ 
I I I I I I 
I I I I I 
I I I I I 
I I I I I I J _____ L _____ L ____ J _____ L _____ L ____ J 

I I I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I I I --'-----r-----r----'-----r-----r----' 
, I I I I I I 

-¢-CFDcode 
-cJ- method of second order 
-&- method of first order 

I 
I 
I 

-I 

0.328 +---II+--'==="';====r===;=====;=====;=====;=======-; 

40 50 60 70 80 90 100 110 120 

number of volumes along the gap n 
(number of volumes perpendicular to the gap m=nl10) 

Figure 8.15: Variation of the height of the gap ho depending on grid 
resolution. 

- 165-



Chapter 8 Implementation assuming constant pressure across the height of the gap 

8.4.4 Iteration errors 

Iteration errors are the difference between the exact solution and the 

calculated result of the system of discretised, algebraic equations. Iteration 

errors appear due to both the limited accuracy of the computational 

calculation and the termination of iterative solution loops. 

In the present investigation, problems due to the termination of the iterative 

solution loops appear at three levels, firstly for the iteration of the x­

momentum equation, secondly for the Newton-Raphson scheme during 

iteration of the continuity equation and thirdly for the iteration for the exact 

height of the gap. 

In subsection 8.3.3.1 a method was discussed to calculate the convergence 

criteria for the x-momentum equation as exactly as possible to keep the 

iteration error of the same order as the error due to the limited accuracy of 

the calculation. The reduction of the iteration error at this level is essential 

since the iteration error has a strong influence on the calculation of the 

residuals of the continuity equation and hence on the generation of the 

Jacobian matrix. Hence the iteration error can significantly influence the 

numerical performance of the calculation. The error due to the limited 

accuracy of the computational operation leads to the same problems, and it 

was expected that the iteration error would lead to failure of the calculation 

method if certain values of parameters are exceeded. 

In contrast to the above iteration, a truncation of the Newton-Raphson 

iteration is less sensitive. Depending on the desired accuracy for the central 

height of the gap in the superimposed iteration loop, the reduction of the 

residuals of the continuity equation by four to five orders of magnitudes was 

found to be sufficient. 

8.4.5 Implementation errors 

Implementation errors appear due to incorrect implementation of the 

discretised equations and their solution into the computational program. 

Implementation errors can be detected by comparing results from one code 

with results obtained with another, independent code. However, it must be 
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ensured that other types of errors are as small as possible or that their 

magnitude is known. 

For the detection of any implementation error of the present method, the 

sample result, figure 8.11, was compared with a result for the same 

parameters by 8akolas and Poulios [104]. Results are shown in figure 8.16. 

For both calculations identical models, i.e. isothermal, incompressible 

conditions using 8arus' equation, and parameters, i.e. those of table 8.1, 

were used. Nevertheless minor differences between both approaches and 

hence of the model error must be expected from details such as the usage of 

the Hertzian pressure in the definition of the applied load. 

Discretisation error must be expected to be different because of several 

differences between the two compared methods. The solution by 8akolas 

and Poulios [104] is based on finite differences, while the present study is 

based on the finite volume method. The approximation of the derivatives 

differs for both methods, with the present method using grid shifting to 

stabilise the solution. Additionally, 8akolas and Poulios use a finer grid; i.e. 

32 finite differences per Hertzian width vs. 23 finite volumes for the present 

study. 

Regarding the iteration error, differences between methods must be 

expected, because there are several differences in the analysis scheme. 

Nevertheless, it was attempted, in the present study, to keep iteration error 

as small as possible. 

The comparison of figure 8.16 show very good qualitative agreement 

between the results of 8akolas and Poulios and those of the present study, 

e.g. when considering the position and the shape of the pressure spike and 

the ehl constriction. 

On the other hand, some minor quantitative differences, such as a Slightly 

higher central height of the gap, a slightly higher pressure in the inlet zone 

and a slightly lower pressure at the contact centreline, each for 8akolas and 

Poulios' result, can be observed. 
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Due to the good qualitative agreement of both results, and due to the fact 

that minor model, discretisation and iteration errors must be expected, it is 

concluded from figure 8.16 that implementation errors are most unlikely. 

Further checks of the present method lead always to results qualitatively 

consistent with established observations, such as reduction of the central 

height of the gap with increasing load and movement of the pressure spike to 

the end of the contact with decreasing hydrodynamic speed. 
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Figure 8. 16: Comparison of the sample of the present method with data 
from the method by Bako/as and Poulios [104]. 
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8.5 Limits of the method 

8.5.1 Sample calculation of limits 

Limits of the method were determined empirically by sample calculations 

varying load, speed and viscosity. Young's modulus, radii of the surfaces and 

pressure-viscosity coefficient were kept constant. 8arus' pressure viscosity 

approach was assumed for all calculations. Figure 8.17 illustrates for which 

sets of dimensionless load parameter Wand dimensionless speed parameter 

U converging results were obtained. However it was also found that when 

keeping the dimensionless parameters U and W constant, sometimes 

converging results were obtained, while for higher speed and lower viscosity 

no converging results were obtained. It was found that the limits of figure 

8.17 are only valid if the pressure spike is relatively close to the end of the 

contact and the absolute height of the spike is not higher than the Hertzian 

pressure. 

8.5.2 Numerical description 

Subsection 8.3.3.2 showed that selection of numerical parameters of the 

calculation method is dependent on the ratio of dominance in the Reynolds 

equation as defined in equation 8.24, 

(8.29), 

and that this value might limit the range of application of the presented 

numerical method. 

Introduction of the dimensionless parameters for speed, load and material as 

well as the formula for the height of the gap, as discussed in chapter 3.3 and 

described in detail in appendix H, allows rewriting of the factor of dominance 

as 

2 
D = 1.11. m • G-1.2 • U-O.4 • W O.26 • eO.4.G-W°5 

n 
(8.30). 

This description enables the presentation of lines of constant factor of 

dominance in figure 8.17. 
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These lines show that converging results were only obtained if the factor of 

dominance was smaller than 105
• 

This is consistent with equation 8.25 

Ap P ~ Ecomputation • SN-R • SreSldUal • D (8.31 ). 

For the factor D = 105
, a pressure modification of Ap/p = 10-4, double 

precision computation, i.e. Ecomputation = 10-16
, and a loss in accuracy due to 

numerical techniques of three orders of magnitude Sresidual = 103
, leads to an 

accuracy of the Newton-Raphson technique of SN-R = 104
, which is the 

empirically determined minimum. Hence a factor of dominance of D = 105 

defines some limit of the presented method. This limit can be reduced by the 

previously described fact that a developing, high pressure spike spoils the 

convergence of the x-momentum equation and hence the analysis. The 

range of convergence can be slightly expanded by allowing coarser values 

for the pressure modification Ap/p and attempting a reduction of the loss of 

accuracy due to the numerical technique Sresidual, but both methods can 

easily lead to non-convergence as shown in subsection 8.3.2. 

8.5.3 Comparison with other calculation methods 

Beside sample analyses for the present study and lines of constant factors of 

dominance, figure 8.17 shows also those load cases for which Pan and 

Hamrock [64] presented numerical results. These cases were also shown in 

figure 3.10 of the present study to outline the practical relevance of the 

extended approach. Pan and Hamrock's load cases exceed clearly those 

parameters which mark the border of the numerical method of the present 

study. These might be due to the following reasons: 

• The extended approach of the present study also requires discretisation 

across the gap. The number of volumes across the gap is part of the 

definition of the factor of dominance, equation 8.30, and leads to 

increase of this factor. 
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Figure 8. 17: Load cases of converged solutions for the ehl regime with 
constant pressure across the gap, load cases of converged 
solutions by Pan and Hamrock [64] and lines of constant factor 
of dominance D. 

• The numerical solution of the u-velocity field in the x-momentum 

equation requires a convergence criterion, subsection 8.3.3.1. Since 

this convergence criterion must be coarser than the numerical accuracy 

of the equation solver, the number of valid digits in the continuity 

equation is smaller, as discussed in section 8.3.3.1. 

• The numerical determination of the elements of the Jacobian matrix 

implies a reduction of accuracy in comparison to analytically determined 

values. 

In conclusion, the presented numerical method can only cope with a smaller 

range of dimensionless parameters U and W than established Newton­

Raphson solutions of the ehl problem such as that presented by Pan and 

Hamrock [64]. 
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Chapter 9 

Implementation allowing variable 
pressure across the height of the 
gap 

In the present chapter the calculation method is extended to allow variable 

pressure across the height of the gap. The two proposed methods which are 

derived from the Newton-Raphson technique, i.e. the fully simultaneous 

method of section 7.2.5.2 and the combined successive-simultaneous 

method of section 7.2.5.4, are implemented. Both methods are considered in 

a manner similar to that applied in chapter 8 for constant pressure across the 

gap. In the last section 9.3, both methods are compared, and the approach to 

get results for a wider range of parameters is selected. 

9.1 The fully simultaneous method 

9.1.1 Implementation details 

The fully simultaneous method was realised by introducing some minor 

modifications to the calculation scheme for constant pressure across the gap 

discussed in section 8.1 and illustrated in figure 8.6. The modifications are 

discussed in the following and illustrated in figure 9.1. 
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9.1.1.1 Newton-Raphson technique 

The number of unknown pressure values to be determined with the Newton­

Raphson technique rises from the number of finite volumes along the gap, n, 

for constant pressure across the gap, to the number of finite volumes along 

times the number across the gap, n x m. 

This means that for the fully simultaneous method the residuals of the 

differential continuity equation, equation 7.1, 

oU ov 
-+-=0 
Ox Oy 

(9.1) 

must be evaluated rather than the residuals of the integral continuity equation 

7.2 

(9.2) 

used for constant pressure across the gap. 

As described in section 8.1.6, calculation of the integral residuals was carried 

out by adding the mass flow over all surfaces of each finite volume, and 

subsequent adding of all the residuals of one column, i.e. one position along 

the gap. Hence, calculation of the residuals of the differential continuity 

equation is included in the constant pressure method. The necessary 

modification is the omission of the adding of the residuals across the gap. 

Correspondingly, the influence of pressure variation on the residuals, I.e. 

gradients of the Jacobian matrix, has to be determined not only for each 

column of finite volumes along the gap, but for each finite volume along and 

across the gap. Hence the procedure to determine the Jacobian matrix must 

be changed from column wise modification, evaluation and resetting of the 

pressure to individual treatment of each finite volume. 
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9.1.1.2 The v-momentum equation 

For the determination of the differential continuity equation residuals, the v­

velocity components across the gap must be known. These v-velocity 

components were also calculated and used in the method with constant 

pressure across the gap but their result cancelled out in the continuity 

equation residual determination and did not influence the calculation 

procedure. Hence, no adaptations are necessary. 

Boundary conditions for the y-momentum equation are calculated by the CFD 

software automatically from the given tangential and normal speed 

components. Aspects of the convergence criteria for the y-momentum 

equation are discussed in section 9.1.3.1. 

9.1.1.3 Initial values 

As initial values two sets, illustrated in figure 9.2, were considered: 

(i) Hertzian pressure distribution with constant pressure across the height 

of the gap, as established for solutions assuming constant pressure 

across the height of the gap, or 

(ii) the converged ehl pressure distribution assuming a constant pressure 

across the height of the gap, i.e. a calculation with constant pressure 

across the height of the gap preceded the fully two-dimensional 

solution. 

For the extended approach, the first approach is not only an approximation 

along but also across the gap, i.e. a "worse" initial value distribution than for 

the constant pressure. This could be the reason why no converging results 

could be obtained in numerical tests with this initial pressure distribution. In 

contrast, the latter approach might cause problems because it predefines the 

position of the pressure spike. However, the latter method did deliver 

converging sample results. Hence the latter method was used. 
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Figure 9.2: Possible initial pressure distributions for the ehl line contact 
problem allowing variable pressure across the height of the gap 
and using the fully simultaneous method of coupling: 
(a) Hertzian pressure distribution along the gap, constant 

pressure perpendicular to the gap, 
(b) ehl pressure distribution along the gap, constant 

pressure perpendicular to the gap. 
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9.1.2 Sample result 

A sample result of the extended method for the parameters also used for the 

sample in chapter 8, table 8.1 is given in figure 9.3. It is already obvious at 

this level that the sample results differ from those for the solution with the 

constant pressure across the height of the gap, figure 8.11 . Detailed 

investigation is given in part III of the present study. 
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Figure 9.3: Sample result for the ehl line contact problem allowing 
pressure variation across the gap using the fully simultaneous 
method of coupling. 
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9.1.3 Numerical parameters 

9.1.3.1 The v-momentum equation residuals 

The introduction of the y-momentum equation requires a revision of the 

convergence criteria for the inner, modified SIMPLE iteration loop. The x­

momentum equation residuals were the only residuals relevant for constant 

pressure across the height of the gap and hence were used. With the 

extended approach, x- and y-momentum equations are solved and both 

deliver residuals which can be used to check convergence. However, the 

employed CFD code only allows the check of one of the variables of the loop, 

which means either the x-momentum or the y-momentum equation. This 

problem can be overcome by the use of a user defined Fortran routine. 

Test showed that the y-momentum equation converges slightly faster than 

the x-momentum equation. When considering the residuals, the y-momentum 

equation already oscillated at a low level due to the limited accuracy of the 

computation before the x-momentum equation reached the required 

convergence criterion. Figure 9.4 illustrates the development of x- and y­

momentum residuals during computation. Since the x-momentum residuals 

are the stronger convergence criterion than the y-momentum residuals, the x­

momentum residual was used also used in the extended approach to check 

convergence. 

The selection of the necessary numerical parameters, that are the residual of 

the x-momentum equation and the length of the abscissa for the 

approximation of the tangents for the Jacobian matrix, follows the methods 

proposed in section 8.3. 

9.1.3.2 The x-momentum equation residuals 

The residual value for the x-momentum equation is derived in appendix I. 

The value agrees with that for the solution assuming constant pressure 

across the gap and is 

a-phz 'P b I 2 n·e ·u· ··m f f I '1 0 h hz C E 
x- mom,sum = I,j' n . m· = h ' computational 

o 
(9.3). 
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Figure 9.4: Qualitative development of x- and y-momentum residuals 
during the modified SIMPLE iteration loops. 

9.1.3.3 Pressure variation for Newton-Raphson technique 

As discussed in 8.3.3.2, for the pressure variation to approximate the 

derivatives for the Jacobian matrix, the relative dominance of the different 

terms is helpful. When considering the set of equations 3.42, where 8arus' 

equation is incorporated, 

o ~ !~ . [ -~: +2·K·y' ·U· !~J+:.[ K·U· !~J +[ K· !~~J 
o ~ !~.[ -~: +2.K·Y·U· :~J + !~.[ K· Y· U· !~J +[ K·Y· :~~J 

(9.4), 

an analysis is quite difficult due to the number of terms and the coupling 

between the equations. A more simple consideration is possible when using 

the equations where both momentum equations are combined, either 

equation 3.39 or, more detailed 3.44. The easiest consideration is possible 

with equation 3.39 

ap '[1 -(k . aUJ2] = k . a2u ax P ay C ay2 (9.5) 
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with 

'Yl ·u ·ea ·Phz ·
P b k = '10 h .--B. 

e h2 
o 

(9.6a) 

and 

k - 110' uh • a a ·phz ·P - ·e 
p h 

o 
(9.6b). 

Discretised, equation 9.5 becomes 

(9.7) 

with the factor Dext describing how the velocity terms dominate the pressure 

term for the extended approach 

(9.8), 

Contrary to the Reynolds equation based case assuming constant pressure 

across the height of the gap, the ratio of dominance is dependent on the 

velocity gradient across the gap, discretised as t· m . (LI.J+1 - LI.i-1)' and the 

factor kp• Comparison of the factor describing the dominance for constant 

pressure across the gap, equation 8.24* 

(9.9), 

with that factor for the extended approach Dext is given in figure 9.4. The 

absolute value of the ratio /Dext/D/ is shown versus the term 

t· kp . m· (LI.J+1 - LI.J-1 )' The figure shows that the ratio of dominance is unity as 

long as factor kp or the sliding ratio is small, i.e. the numerical behaviour of 

the extended approach is identical to the solution with constant pressure 

across the gap, 

The definition of factor ke• e.g. equation 9.6a. was introduced to equation 8.24 to 
simplify comparison. 
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If the product i· kp . m· (LI,j+1 - LI,j-J approaches unity, the dominance ratio 

reaches infinite values for the singularity of the governing equations. This 

means that near the location of the singularity, a variation of the pressure 

gradient would not lead to any change in velocity and consequently to no 

changes in the mass continuity residuals, which might spoil the condition of 

the Jacobian matrix or cause, at least, a numerically more sensitive analysis. 

To overcome the problem, some measures can be employed. 

• The pressure variation to determine the Jacobian matrix is selected as 

large as possible to maintain as much accuracy as possible, 

• Obviously large pressure corrections caused by inaccurate Jacobian 

matrices are more strongly relaxed than obviously correct values. Care 

has to be taken not to extinguish the pressure spike by such 

procedures. Due to this problem a smoothing of the pressure 

corrections cannot be applied, as discussed by Okamura [14]. 
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• The quality of residuals is checked by calculating the approximated 

tangents of the Jacobian matrix not only from two but from more pOints. 

Using this method, accuracy of the Jacobian matrix could also be 

improved since the truncation error of the approximation can be 

reduced by one order. 

• For fully user-implemented solutions, the ratio of dominance could be 

calculated at all grid-points and, if necessary, manipulated. 

The first and the second measures were found to be sufficient for the present 

tests. All pressure corrections were restricted to 10 per cent of the Hertzian 

pressure and the pressure variation to determine the Jacobian matrix was set 

to 10.3. 

Beyond the point of the singularity, the ratio of dominance falls well below 

values for the case of constant pressure across the gap, determination of the 

Jacobian matrix elements is less sensitive than for the constant pressure 

case. 

9.1.3.4 Relaxation and convergence criteria for the Newton­
Raphson technique 

For the Newton-Raphson scheme a relaxation factor of 0.15 was introduced; 

the relaxation factor of 0.3, which was used when analysing the constant 

pressure across the gap, was found to cause oscillations in test runs. With 

the above parameters mass continuity residuals reduced nearly four orders 

of magnitude during the Newton-Raphson iterations, but could not achieve 

the eight orders observed for the constant viscosity across the height of the 

gap. 

9.1.4 Errors 

9.1.4.1 Discretisation error 

For the fully simultaneous method discretisation error is of second order as 

for the method assuming constant pressure across the height of the gap. 

This is due to the fact that the discretisation of all modules of the CFD 

software is of second order and all user added modules are of second order, 
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as proved in subsection 8.4.3. Consequently the complete discretisation 

scheme is expected to be of second order. Numerical analysis of the code 

was not carried out since the calculation times were already considerable for 

a grid of 70 x 7 volumes, and were expected to rise by an order higher than 

for the calculation assuming constant pressure across the height of the gap. 

9.1.4.2 Iteration error 

Iteration errors are attempted to be minimized by appropriate selection of the 

convergence criterion for the inner loop. However, it is clear that, due to a 

sometimes more critical ratio of dominance, the iteration error due to the 

limited accuracy of the computational calculation might be considerable. 

9.1.4.3 Implementation error 

The implementation error is more difficult to detect than for the assumption of 

constant pressure across the height of the gap, since no other calculation 

results are available for the extended approach. The following measures to 

exclude implementation errors were considered: 

• Comparison with results from the second calculation method 

considered, the combined successive-simultaneous method discussed 

in the following section 9.2. If the results of the two different added 

modules for the pressure variation across the height of the gap agree, 

and the basis, i.e. the calculation assuming constant pressure 

perpendicular to the gap, is free of errors, it is likely that there are no 

implementation errors. 

• Qualitative comparison of calculated results with the theoretical 

considerations of section 3.3. When calculated results and theoretical 

considerations are consistent, errors are unlikely. 

• Check of particular case of pure rolling, where no changes are expected 

in comparison with results assuming constant pressure across the 

height of the gap. 

The first point is discussed in section 9.2, the latter two are considered in 

chapter 11. 

- 184-



Chapter 9 Implementation allowing variable pressure across the height of the gap 

9.1.5 Performance 

In comparison with the method assuming constant pressure across the 

height of the gap the extended approach requires for the grid of 70 x 7 

volumes 17 times the calculation time. Using a Silicon Graphics R 8000 

processor a calculation time of approximately 17000 seconds is required, 

without modification of the height of the gap. The Newton-Raphson technique 

for the differential continuity equation converges within approximately 20 

steps. The rise in the calculation time results from the larger Jacobian matrix 

and the increased number of time iteration steps until the Newton-Raphson 

scheme converged. 

The higher ratio of dominance leads to a smaller range of values of 

parameters as the method converges. Additionally, due to the described 

problems with the singularity, the method fails for particular cases. For small 

changes of input or numerical values of parameters the method converges 

again. Therefore, no map of convergence was produced. For future 

application of the method, the application of the other methods of section 

9.1.3.3 to overcome the singularity problem should be considered. 

9.2 The combined successive simultaneous 
method 

9.2.1 Implementation details 

The combined successive-simultaneous method requires slightly more effort 

of implementation than the fully simultaneous method, because the y­

momentum equation must be implemented and coupled by the user. 

However, it is a pure extension of the method for constant pressure across 

the gap, i.e. nothing of the method of chapter 8 has to be altered or switched 

off. The necessary adaptations are discussed in the following and illustrated 

in figure 9.6. 
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(a) 

Figure 9.6: 
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Figure 9.6: (concluded). 
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9.2.1.1 The v-momentum equation 

The introduction of the y-momentum equation solved for the pressure 

variation across the gap and not for v-velocity must be realised by user- . 

defined subroutines. The necessary calculations were implemented at the 

beginning of subroutine USRTRN after each artificial time step, as shown in 

figure 9.6. An incorporation of the pressure corrections by manipulating 

source terms of the pressure correction equations would also be possible. 

However, this could lead to the problem that the determination of pressure 

corrections across the gap from an insufficiently converged u-velocity 

distribution might spoil the convergence of the successive solution of the x­

and the y-momentum equation and pressure correction equation. 

Additionally, such a procedure would exclude the consideration of surface 

deflection from the innermost loop. 

Various forms of the y-momentum equation can be considered as the basis 

for the implementation of the y-momentum equation as proposed in 

subsection 7.2.5.4. All these forms have to be re-arranged in a manner that 

the pressure gradient across the gap on the left hand side marks the 

unknowns, while all terms on the right hand side represent the source terms, 

which are assumed to be known at the moment of solution. Possible 

equations are, e.g., 

• the original Navier-Stokes equation in y-direction without inertia effects, 

which is independent of the employed pressure-viscosity description, 

i.e. equation 3.15, 

(9.10), 

• the simplified Navier-Stokes equation in the y-direction where 8arus' 

pressure-viscosity description is incorporated, i.e. the re-arranged 

second equation of set 3.42, 
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or 

• the simplified Navier-Stokes equation in the y-direction into which the 

simplified Navier-Stokes equation in the x-direction and Barus' 

pressure-viscosity description are incorporated, i.e. the rearranged 

second equation of set 3.44, 

Selection of the most suitable equation is influenced by different aspects. 

Firstly, the two equations 9.11 and 9.12 show a singularity while the first 

equation 9.10 does not. Accordingly, equations 9.11 and 9.12 require some 

treatment to avoid failure of the program. 

Secondly, when considering the treatment of the viscosity gradients in the y­

momentum equations, the equation shows different behaviour: equations 

9.11 and 9.12 provide a closer coupling than equation 9.10. This is because 

in equation 9.10 all viscosity gradient terms are on the right hand side, i.e 

viscosity gradients from the previous iteration loop are considered. In 

equation 9.11, the pressure gradient and hence the viscosity gradient in the 

x-direction is on the right hand side, i.e. the values from the previous loop are 

considered, while the pressure gradient representing the viscosity gradient in 

the y-direction has been moved to the left hand side and is hence considered 

simultaneously. In equation 9.12, all pressure gradients and hence viscosity 

gradients are on the left hand side. Because the viscosity gradient along the 

gap was found to be significant, section 3.3, equation 9.12 appears to be 

preferable and it was selected for implementation. 
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The implementation of the equation requires re-transformation of the selected 

equation into its dimensional form, because the applied CFD software is 

based on the dimensional equations. The re-transformation is given in detail 

in appendix J. Equation 9.12 becomes 

(9.13) 

Replacing the perpendicular v-velocity component using the continuity 

equation makes the equation independent of this velocity component, 

(9.14). 

The replacement of v-velocity means also that the result of the y-momentum 

equation solution in the CFD code is irrelevant. 

Discretisation of equation 9.14 should maintain the second order accuracy of 

the method and take into account the peculiarities due to the algorithm by 

Rhie and Chow to avoid numerical oscillations, as mentioned in section 

6.2.3.2. 

The pressure gradient across the gap is discretised using the finite volume 

approach as used in the CFD code 

.R :) 0\1,1 ~ (p,,+ 1 - Pi.J)' ill< . ~ (9.15). 

with the pressure values Pi,J+1 and Pi,J at the border of a finite volumes i,j as 

illustrated in figure 9.7. 

The right hand side terms of equation 9.15, i.e. the source terms, are 

discretised with the velocity gradients provided by the CFD code for the first 

order and mixed second order derivatives, since they are most accurate. The 

remaining derivatives are approximated with second order discretisation: 
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Figure 9.7: Nomenclature for discretisation of pressure terms of y­
momentum equations. 
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Near the surfaces, for the finite volumes i,1 and i,m, the applied central 

approximation could not be used and respective negative or positive second 

order approximations were applied. 

Integration from one volume centre i,j to the next i,j+ 1 was realised by using 

the pressure gradient of volume i,j and i,j+ 1 to determine the pressure 

increase between the volume centres and the common volume edge 

(
ap ap )!!oy 

PI,/+1 = PI,/ + By + By . 2" 
1,/ 1,/+1 

(9.17). 

For the extrapolation of the pressure value of the finite volume centres to the 

boundary surfaces centres, which is required for the determination of the 

surface deflection, the built in extrapolation of the CFD code was used. 

Finally, the boundary for the discretised y-momentum equation must be 

defined, i.e. a line along the contact where the pressure distribution defined 

by the Newton-Raphson technique does not change due to the pressure 

variation across the gap. The pressure at one of the two surfaces may be set, 

as illustrated in figure 9.8 (a) and (b), followed by integration to the opposite 

surface. Such a setting will result in a change of the shape of the gap, in case 

(a) even opposite to that expected in subsection 3.3.4. 

The centre line between both surfaces, i.e. the row of the centres of the finite 

volumes half way between the surfaces, figure 9.8 (c) was found to be the 

most suitable because this condition causes the smallest influence on the 

total deflection at a location Xi. To a major degree, the increase of pressure 

on one surface is balanced by a decrease on the surface of the other. This 

procedure accelerates the convergence of the innermost iteration loop. 

Additionally, with this approach the extrapolation of the pressure at the 

volume centres to the walls, which is implemented in the CFD code, can be 

used. 
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9.2.1.2 Newton-Raphson technique and continuity equation 
residuals 

For the combined successive-simultaneous method, the residuals of the 

integral continuity equation are evaluated. Hence the method proposed in 

section 8.1 .6 for the method assuming constant pressure across the height of 

the gap, could be used unchanged. 

9.2.1.3 Initial values 

The same two initial pressure distributions, as used for the fully simultaneous 

method, can also be employed for the present method: The Hertzian 

pressure distribution or a converged pressure distribution assuming constant 

pressure across the height of the gap. However in the present case pressure 

corrections across the height of the gap are already calculated and employed 

before the continuity equation residuals are calculated for the first time. That 

means that the true pressure distribution, from which the Newton-Raphson 

technique starts, is already two-dimensional. Figure 9.9 illustrates the set 

Hertzian pressure distribution (a) and the real initial pressure distribution 

calculated by considering the y-momentum equation (b). The latter is a better 

initial value to the ehl problem with the extended approach than the first, 

which was also attempted for the fully simultaneous method. The modified 

Hertzian pressure distribution leads to converging results and was hence 

applied. 

In contrast, the application of a converged ehl result as an initial pressure 

distribution leads to a strongly distorted initial pressure distribution near the 

pressure spike, which leads to convergence problems at the beginning of the 

calculations. 
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9.2.2 Stabilising the solution 

9.2.2.1 Description of problem 

Initial test of the program led to converging solutions only for modest values 

of load and speed parameters, where the influence of the additional viscous 

terms was expected to be small. For higher loads, the program fai/ed to 

converge after increasing oscillations of the pressure corrections of the 

Newton-Raphson method. 

It was observed for the calculation method assuming constant pressure 

across the gap, section 8.2.1, that the Newton-Raphson technique started to 

oscillate and failed to converge due to the central differencing scheme 

implied in the application of CFD software. This problem was cured by some 

grid shifting, which reduced the initial oscillations to a measure that they 

finally disappeared again. 

The first Newton-Raphson step of the combined successive-simultaneous 

method, as with the method with constant pressure across the gap, also 

leads to a slightly oscillating pressure distribution along the gap, such as that 

shown in figure 8.7. These oscillations cause the pressure variations across 

the gap, i.e. the deviation from the pressure on the centreline along the gap, 

to change from the smooth distribution for the initial value, figure 9.10 (a) to 

the strongly oscillating shape shown in figure 9.1 0 (b). Hence, at the surfaces 

the oscillations for the successive-simultaneous method are higher than at 

the centreline and for the calculations with constant pressure across the gap. 

These oscillations increase during the subsequent steps and lead finally to 

divergence of the solution. 
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Figure 9.10: Pressure variation across the gap resulting from smooth (a) 
and oscillating (b) pressure corrections of the Newton­
Raphson technique, 
N.B. pressure variation across the gap is magnified in 

comparison to along the gap. 
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9.2.2.2 Solution approach 

Various methods to overcome oscillation problems were discussed in 

subsection 8.2.2. Although smoothing of the pressure was recognized as 

spoiling the solution near the pressure spike [14], it was the only method 

leading to converging results for the present approach. The smoothing was 

applied to the pressure distribution along the gap after the pressure 

corrections from the Newton-Raphson technique were applied, to which 

relaxation had already been applied. The smoothing was realised by 

calculating an average value of three or five values, 

PA -.l.p +.l.p +.l.p 
I.J - 4 1-1.J 2 I.J 4 1+1.J (9.18a) 

and 

PA -..1-.p +.l.p +.§..'p +.l.p +..1-.p 
I.J - 16 1-2.J 4 1-1.J 16 I.J 4 1+1.] 16 1+2.J (9.18b). 

In order to reduce the spoiling of any pressure spike, the application of the 

latter equation for the first three Newton-Raphson iterations and the 

subsequent application of the first equation in the case of a pressure 

maximum in the first half of the contact was found to be a practical smoothing 

scheme leading to converged results and was hence used. 

9.2.3 Sample result 

For the same parameters as previously used in subsection 8.2.4 and 9.1.2 

and given in table 8.1, a sample result is given in figure 9.11 for the 

combined successive-simultaneous method. As for the sample of the fully 

simultaneous method, figure 9.3, it is also obvious that the results differ from 

those for the analysis assuming a constant pressure across the gap. 
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Figure 9. 11: Sample result for the ehl line contact problem allowing 
pressure variation across the gap using the combined 
successive-simultaneous method of coupling. Input 
parameters according to table 8. 1 agree with those of the 
sample for the fully simultaneous method, figure 9.3. 

9.2.4 Numerical parameters 

The introduction of the additional iteration loop requires the introduction of an 

additional convergence criterion for the convergence of the y-momentum 

equation beside those parameters also used for the method with constant 

pressure across the gap. 

9.2.4.1 The x-momentum equation 

The criterion of convergence for the x-momentum equation remains 

unchanged as for the method assuming constant pressure across the gap 

and the fully simultaneous method. 

TJ ·eU·PHZ·P·u ·b ·m2 ·1 
f f I 0 H hz c E 
x- mom,sum = x- mom,i,]· n· m · = h . computational 

o 
(9.19). 
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9.2.4.2 The y-momentum equation 

Because of the form of equations 9.15 to 9.17 and the resulting fact that the 

determination of the new pressure distribution across the gap is explicit and 

non-iterative, a residual for the y-momentum equation is not necessary. 

9.2.4.3. The coupling of x- and y-momentum and elasticity 
equations 

However, it is necessary to establish a criterion, when the successive 

iteration of the x- and y-momentum equations and the deformation equation 

has converged. This means that the source term approximations for the y­

momentum equation, equation 9.16, and also for the x-momentum equation, 

change their values only due to numerical truncation and round-off effects. 

The prediction of the number of valid digits in the source terms is difficult 

because of the variable, possibly infinite, factor of dominance discussed in 

subsection 9.1.3.3 and because of the successive treatment of the x- and y­

momentum equations and deformation equation .. 

Hence a different consideration is attempted. It was found for the method 

with constant pressure across the gap that a pressure variation of ~p/p = 10-4 

was a good working approximation to obtain changes in the velocity field 

resulting in residual changes which are sufficiently accurate to provide a 

Jacobian matrix for a converging solution. 

On the other hand, four valid digits for the u-velocity gradients were found 

necessary to obtain a Jacobian matrix for converging results. This means 

that changes of the pressure below 10-4 x 10-4 = 10-8 are small enough that 

they do not have an arbitrary influence on the Jacobian matrix to secure 

convergence, as for the method with constant pressure across the gap. 

Hence, the convergence criterion of the x-momentum and y-momentum 

iteration should be ideally set so that the change of the pressure from one 

iteration loop to the next should be smaller than 10-8, 

(9.20). 
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However, practical tests showed that this convergence criterion is too tight to 

be fulfilled by the successive coupling of grid adaptation, and the x- and the 

y-momentum equation. A value of 

p - Pprev =:;; 1 0-6 

P 

was found to be a reliably working convergence criterion. 

9.2.4.4 Newton-Raphson technique 

(9.21 ) 

For the modification of pressure to approximate the Jacobian matrix the 

considerations for the ratio of dominance of the fully simultaneous method of 

subsection 9.1.3.3 are valid as well, because both solutions are based on the 

same differential equations. The measures mentioned there can also be 

applied to the present numerical method. However, the present method is 

expected to be slightly less sensitive than the fully simultaneous method, due 

to the evaluation of the residuals of the integral continuity equation. The 

integrated residuals are calculated from a sum of cell residuals. If the residual 

of one cell is inaccurate because of a high ratio of dominance, the summing 

can reduce the error. 

Additionally, finer pressure modifications to determine the Jacobian matrix 

make the convergence criterion for the x-momentum-y-momentum coupling 

even tighter, although this value could not even be set to the desired value 

for pressure modifications of 10-4, as discussed in the previous subsection. 

Nevertheless, pressure modifications of Ap/p = 10-4 were selected for the 

Newton-Raphson technique as a value previously used successfully. 

The relaxation factor for the pressure corrections obtained from the Newton­

Raphson method was set to 0.3. The described settings led to a reduction of 

the continuity equation residuals of about five orders of magnitude, i.e. values 

slightly better than that for the fully simultaneous method. 
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9.2.5 Errors 

9.2.5.1 Discretisation errors 

Discretisation error was investigated using the same method as for the 

method assuming constant pressure across the height of the gap of 

subsection 8.4.3. Again, not a full set of single, double and quadruple fine 

grids was used because of the expected calculation times. Similar to figure 

8.15, figure 9.12 shows the development of the height of the gap depending 

on the grid size, for the implemented program and for the assumption of first 

and second order approximation. 

The discretisation error figure 9.12 principally confirms the second order 

accuracy of the implemented method for the combined successive­

simultaneous method, in particular when the grid size is finer than 80 x 8 

volumes. 

9.2.5.2 Iteration errors 

The additional iteration loop leads to a further iteration. The iteration error of 

the x-momentum equation is minimized by making the residuals defining 

convergence as small as possible. However, the convergence criterion for 

the loop iterating the x-momentum equation, the modified y-momentum 

equation, and the elasticity equation could not be set as tight as possible. 

Although iteration errors are restricted to a minimum, an influence of these 

cannot be excluded for the combined successive-simultaneous method of 

coupling. 

9.2.5.3 Implementation errors 

The methods to detect implementation errors are the same as for the fully 

simultaneous method, i.e. comparison of the fully simultaneous method with 

the combined successive-simultaneous method, qualitative comparison with 

theory and evaluation for load cases where Reynolds equation based 

approach and extended approach are expected to agree. The latest 

approach investigates exclusively the extension to variable viscosity across 

the gap, because those parts of the method, which were already 
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implemented for a constant pressure across the gap, remained completely 

unaltered during the extension. 

Any differences in results between both methods can also result from 

iteration errors. 
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Figure 9. 12: Variation of height of the gap depending on grid resolution for 
the combined successive-simultaneous method of coupling. 

9.2.6 Performance 

The combined successive-simultaneous method proved to be 50 per cent 

slower than the calculation scheme with constant pressure of chapter 8. 

For the limits of the method, the same aspects, as discussed for the method 

with the constant pressure across the height of the gap in section 8.5 and for 

the fully simultaneous method in subsection 9.1.5, are valid. If the influence 
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of the extended approach is small, the limits are as for the method with a 

constant pressure across the height of the gap. If influence of the extended 

approach is high, the very high factor of dominance near the singularity might 

cause bad conditioning of the Jacobian matrix and hence spoil the solution. A 

determination of the range of parameters, for which the combined 

successive-simultaneous method can be applied, is covered in part III of the 

present study, where a wider field of parameters is investigated. 

9.3 Preliminary evaluation of the numerical 
methods 

For preliminary evaluation of the two numerical methods for the extended 

approach, i.e. the fully simultaneous and the combined successive­

simultaneous method, the sample results for these two methods are 

compared and features distinguishing the two methods are summarized. With 

this information, conclusions are drawn which define the further procedure of 

evaluation and discussion. 

9.3.1 Comparison of sample results 

Figure 9.13 compares the two numerical methods by showing results for the 

sample given in table 8.1. Part (a) of figure 9.13 gives the dimensionless 

pressure distribution at the lower, slower surface, 

p = PSIOw 
slow Phz (9.22), 

for a Reynolds equation based solution assuming constant pressure across 

the gap as presented in chapter 8, for the extended approach allowing 

pressure variation across the gap and using both the fully simultaneous 

method, section 9.1, and the combined successive-simultaneous method, 

section 9.2. The pressure distribution principally agrees for the two methods 

solving the extended approach except for the pressure spike area. Here, the 

combined successive-simultaneous method shows a pressure spike similar 

to that for the Reynolds equation based solution, while the pressure spike 

disappears for the solution from the fully simultaneous method. 
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Part (b) of figure 9.13 gives the height of the gap, non-dimensionalised by the 

height of the gap at the contact centreline for the Reynolds equation based 

solution, 

h 
H=-

ho,Re 
(9.23), 

for the same three analysis methods. The shape of the gap is similar with an 

additional constriction in the first half of the contact and a widening in the 

second half of the contact. Some differences appear for the first half of the 

contact. Corresponding to the pressure distribution, significant differences 

between the methods are present for the traditional ehl constriction where the 

combined successive-simultaneous method agrees again with the Reynolds 

equation based solution, whereas the constriction appears later and is 

smaller for the fully simultaneous approach. 

9.3.2 Further differences 

In addition to the above sample result differences, the following major 

differences can be summarized for the two implemented methods: 

9.3.2.1 Model aspects 

• The forms of the governing equations are different for the fully 

simultaneous approach in comparison with the combined successive­

simultaneous method. The former takes the genuine momentum 

equations into account, while the latter uses the genuine x-momentum 

equation and an equation derived from both the x- and y-momentum 

equations. The latter equation is, in comparison with the full Navier­

Stokes equations, simplified by omitting negligible terms. 
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Figure 9. 13: Comparison of the sample result for the fully simultaneous and 
the combined successive-simultaneous method, 
(a) pressure distribution at the lower, slower surface, 
(b) height distribution. 
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9.3.2.2 Governing equations 

• The combined successive-simultaneous method evaluates the integral 

conservation of mass residual values, equation 9.2, whilst the fully 

simultaneous method evaluates the differential values, equation 9.1. 

• The fully simultaneous method requires the determination of the velocity 

component across the gap, while the combined successive­

simultaneous method in the selected form does not evaluate any v­

velocity values. 

9.3.2.3 Numerical parameters 

• The fully simultaneous method requires a converged Reynolds equation 

based solution as an initial guess to achieve convergence whilst the 

combined successive-simultaneous method can also cope with a 

Hertzian pressure distribution as initial values. This means, that during 

the run of the fully simultaneous method the pressure spike disappears 

while it develops for the combined successive-simultaneous method. 

• The fully simultaneous method requires stronger relaxation of the 

pressure corrections proposed by the Newton-Raphson method than is 

required for the combined successive-simultaneous method. Hence 

more Newton-Raphson iterations are required until the same degree of 

convergence is reached. 

• Described by the numbers of orders of magnitude by which the 

residuals of the continuity equation reduce, the successive­

simultaneous method converges, for the test case, better than the fully 

simultaneous method. With the former method, five orders of magnitude 

were achieved compared with less than four for the latter method. 

• Treatment of the numerical problems due to the singularity is easier for 

the combined successive-simultaneous method than it is for the fully 

simultaneous method. 

• Results of the combined successive-simultaneous method might be 

influenced by some iteration error. 
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9.3.2.4 Computational effort 

• The computational effort for a single Newton-Raphson step is higher for 

the fully simultaneous method due to the larger Jacobian matrix, so that 

the total computational time for the fully simultaneous exceeds that for 

the successive-simultaneous method by one order of magnitude. 

• The total required number of Newton-Raphson steps to reach a 

particular convergence is higher for the fully simultaneous method than 

for the combined successive-simultaneous, which leads to an additional 

increase in the total computational time. 

9.3.3 Conclusion 

The above described similarity of the sample results for the fully 

simultaneous and the combined successive-simultaneous methods suggest 

at this stage that both methods seem to be suitable for the solution of the ehl 

problem using the extended approach. However, both methods show 

differences in the zone where Reynolds equation based solutions show the 

ehl pressure spike. For a full understanding and evaluation of the methods 

and its differences, detailed consideration and discussion of the results with 

reference to the governing equations is required. 

The limits of the presented extended methods could not be predicted exactly, 

so determination of the limits by the application of the new numerical 

techniques to a wider range of parameters is desirable. Such an application 

would contribute considerably to the objective of the present study, to 

understand whether the extended approach can lead to a more realistic 

contact description. 

For such a generation of multiple results as well as for any practical 

application, the combined successive-simultaneous solution with 

computational times measured in hours is much preferable to the fully 

simultaneous method with computational times of almost one day. 

Hence, in the succeeding part III, results for a variety of parameters are 

presented, all of which were obtained with the combined successive-
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simultaneous numerical method. Afterwards, these results are discussed with 

view to numerical and physical aspects, referring to the fully simultaneous 

method and sample results where necessary. 
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Chapter 10 

Results from the extended 
approach 

10.1 Introduction 

After the development, preliminary evaluation and selection of a numerical 

method for the extended approach in part II of this study, part III fulfils a twin 

function. On the one hand, it deals with those numerical method issues which 

could not be answered in part II. Simultaneously, it reverts to the 

consideration of physical phenomena due to the application of Navier-Stokes 

equations as discussed in part I. For a detailed understanding of numerical 

and physical phenomena, results for a range of parameters are considered. 

Chapter 10 defines this range and presents the results, while chapters 11 

and 12 provide detailed discussion from different points of view for both 

numerical and physical aspects. 

The present chapter initially introduces the parameters for which results are 

available and gives reasons why these parameters were chosen. The 

subsequent section 10.2 delivers results to answer the question as to 

whether traditional methods of data presentation are also suitable for the 

extended approach of the present study. From section 10.3 onwards, results 

for the various unknown variables of the ehl problem and comparison with 

Reynolds equation based solutions are given, starting with the shape of the 

gap as a one-dimensional variable. Subsequently, results for the two­

dimensional variables, velocity and pressure, are given in sections 10.4 and 
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10.5 respectively. Finally, results for the shear stress and the traction 

coefficient are presented. 

Two types of data presentation were chosen throughout this chapter: 

• For selected operating conditions the full field distribution of a variable 

is presented at all positions of the contact. 

• Where differences with Reynolds equation based solutions are 

significant, characteristic values describing these differences were 

defined. These values are then displayed for all investigated 

parameters in summarizing figures. 

For the cases, where the full two-dimensional data fields were used, they 

were obtained from the default output files of the CFD software, showing 

results in a four digit format x.xxx x 10xx. This leads to the fact that, in some 

cases, effects due to the extended approach have the same order of 

magnitude as the accuracy of the numerical data used. 

10.2 Investigated parameters 

The selection of the parameters for this results chapter was guided by a 

number of aspects: The parameters were chosen so that the factors kp and 

kr, defined in equation 3.38 and 3.39, subsection 3.3.4.1, range up to values 

which require an extended solution approach instead of a Reynolds equation 

based solution. Similar parameters as used in the development of the 

numerical method and in other published work were desired. An attempt was 

made to cover some variety in result features by variation of the pressure 

spike position and central film thickness and by variation of the factors kp and 

kr• 

Furthermore the parameters were chosen so that converging results were 

obtained for any sliding ratio value without alteration to the numerical settings 

defined in chapter 9. Hence, the cases considered define some zone where 

the proposed combined successive-simultaneous method can be applied. 

Solution of the extended approach with somewhat higher values for the 
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factors kp and kr may be possible with some purpose made alterations to 

numerical settings. 

Taking the above-mentioned into consideration, results for the extended 

approach are presented for a sample configuration defined by the reduced 

radius of the contact, the oil density and the material parameters Young's 

modulus and Poisson's ratio for the solid surfaces. For this configuration two 

hydrodynamic speed-viscosity combinations and two applied load values 

were selected and the four possible combinations, subsequently named load 

cases, were considered. For all load cases, the sliding ratio was varied in 

eleven steps from pure rolling, S = 0 to pure sliding S = 1, while 

hydrodynamic speed was kept constant. The values for the load cases are 

given in table 10.1. 

All cases were investigated with a grid of 70 x 7 finite volumes and, in terms 

of Hertzian width, fixed boundaries of X = - 2.0 and X = + 1.08 were defined, 

in order to get comparable resolution in the Hertzian pressure zone. * 

For familiarisation, results based on a Reynolds equation based approach for 

the four load cases are given in figure 10.1 t. Dimensional axes were used to 

emphasize the differences between the load cases. Load is smaller for load 

cases i and ii than for load cases iii and iv. Hence the length and height of the 

Hertzian pressure distribution is smaller for load cases i and ii. However, the 

height of the gap is hardly influenced by load increase*. Velocity and 

viscosity are higher for load cases ii and iv than for load cases i and iii and 

therefore the height of the gap is larger for load cases ii and iv. Velocity and 

In the present chapter the dimensionless values are still characterised by capital 
letters, however, since these are numerical data with some inherent inaccuracy, the 
bar was not applied. The bar indicates non-dimensional values in theoretical 
considerations. 

t The results shown were obtained assuming pure rolling conditions. However, since 
the results have been based on an isothermal Reynolds equation based approach, 
they would be identical for partial or pure sliding. 

* The results shown were obtained with fixed, predefined boundaries at X = -2.0 and 
X = + 1.08. At the outlet, X = 1.08, this leads to the fact that the cavitation boundary 
condition, pressure and pressure gradient are both zero, is not always perfectly 
fulfilled. At the inlet the distance X = - 2.0 leads to a non-zero pressure gradient for 
load case ii, representing so-called starved conditions. This is the reason why the 
height of the gap increases as the load increases towards load case iv. 
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viscosity have a significant influence on the location of the pressure spike, 

which moves towards the contact centre with increasing velocity and 

viscosity, as shown by a comparison of load case i with load case ii and of 

load case iii with load case iv. Influence of the load on the pressure spike and 

constriction position is less significant, with lower load causing a movement 

of the pressure spike towards the contact centreline. 
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Figure 10. 1: Shape and pressure distribution along the gap obtained with a 
Reynolds equation based approach for the four investigated 
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Chapter 10 Results from the extended approach 

Except for the pressure spike and constriction position details, the above is 

summarized in figure 10.2(a). A small change of the height of the gap is 

shown for dimensionless load parameter W variation with significant changes 

in gap height being obtained for dimensionless speed parameter U variation. 

Figures 10.2(b) and (c) show that the sliding influence factor kp defined in 

equation 3.39 and discussed in subsections 3.3.4.4 to 3.3.4.6, takes on 

values from below 1 to approximately 100 and factor kr, the pressure gradient 

ratio factor, defined in equation 3.38 and discussed in the same subsections 

takes on values from 10-3 to nearly unity. 
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Figure 10.2: Investigated load cases in the U-W-diagram with view to 
(a) dimensionless minimum height of the gap Hmin, 

(b) sliding influence factor kp, 
(c) pressure gradient ratio k" 
(continued). 
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10.3 Influence of the different load distribution on 
each contact surface 

As mentioned in section 8.1.3, in the established Reynolds equation based 

solutions only the height of the gap and its gradients are taken into account 

but not the shape of the gap centreline of the contact. That means that the 

reduction of both curvatures of the surfaces to one reduced radius and the 

application of a mean reduced Young's modulus do not influence the results 

of the calculation. Consequently, Reynolds equation based results can be 

displayed with one straight and un-deformed and one curved and deformed 

surface without loss of information. This form of display is illustrated in figure 

10.3(a) and is used in probably all publications on ehl. 

With the new extended approach, not only the above mentioned effects of 

curvature and elasticity but also the expected different pressure distributions 

on each surface can cause a curved centreline of the contact, even if 

curvature and elasticity of both surfaces are identical. On the other hand, the 

new applied numerical method allows the investigation of such curved 

centreline effects. 

The results in the present section concentrate on an investigation of the 

effect of the new method wherein the pressure distributions on each surface 

are different. Results are given for the following three configurations: 

• All deflections and curvatures are applied to the upper, in this case faster, 

surface, as normally displayed and illustrated in figure 10.3(a). 

• Each deflection and curvature is applied to the individual surface as in 

reality. This situation is illustrated in figure 1 0.3(b). 

• All deflections and the curvatures are applied to the lower, in this case 

slower, surface as shown in figure 10.3(c). 

For all results load case iv of table 10.1 and 50 per cent sliding, S = 0.5, was 

assumed. 

Figure 10.4 shows results for the height of the gap. The upper part shows 

dimensionless height H along the dimensionless contact width X for the three 
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configurations. The lower section compares these values. The relative 

deviation from a median value EH, where 

(10.1 ), 

was locally determined from the three available values. 

All data obtained using the extended approach and CFD software packages 

were stored in a scientific format with a four digit mantissa, X.XXX x 1 OXX. A 

change of the last digit can be caused by rounding-off effects on this four 

digit format. Depending whether the mantissa takes on its smallest value, 

1.000, or its largest possible value, 9.999, the deviation caused by changing 

the last digit by one ranges from 

1.001-1.000 10-3 t 9.999 - 9.998 10-4 
E= = 0 E= ~ 

1.000 9.999 
(10.2). 

In figure 10.4 additional lines have been introduced, indicating how much of 

the deviation could be caused by round-off errors. At the positions where the 

exponent of the height changes values, these lines develop a saw tooth like 

shape. 

Figure 10.5 shows the dimensionless pressure P distribution and its relative 

deviation from the median value, Ep, for the faster (a) and the slower (b) 

surface, where 

P-Pmedian 
Ep = 

Pmedian 

(10.3). 

A detailed discussion and conclusions of the results are given in chapter 11. 

However, it may be stated at this stage that applying all curvatures and 

deflections on one surface does not lead to a substantial loss of information. 

Hence the traditional from of displaying data was applied in the following 

sections of the present chapter. 
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surfaces for ehl calculation and display of results: 
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on the upper (faster) surface, 
(b) curvatures and deflections applied to and displayed on 

the individual surfaces as in reality, 
(c) all curvatures and deflections applied to and displayed on 
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10.4 Geometry of the gap 

Results for the shape of the gap for the new extended approach are given in 

the present section. Figure 10.6 shows the shape of the gap for pure rolling, 

50 per cent sliding and pure sliding for load case iv (table 10.1) and also 

compares these cases with a Reynolds equation based solution. The upper 

part of the figure shows the height of the gap H, which is normalized by 

dividing by the contact centreline height of a Reynolds equation based 

solution for the same load case: 

h 
H=-

ho,Re 
(10.4). 

The relative deviation from the Reynolds equation based solution, EH,Re, 

where 

_ H-HRe 
EH,Re - H 

Re 

is shown in the lower part of the figure. 

(10.5) 

The equivalent results for the load cases i to iii are given in appendix K, 

figures K.1 to K.3. 

Figure 10.6 shows that the gap is not parallel when using the new approach. 

In addition to the well-known ehl constriction, the gap contains a constriction 

before the centreline of the contact and a subsequent widening. The 

minimum height at this additional constriction for all load cases and sliding 

ratios is given in figure 10.7(a). The upper part shows the dimensional height 

hmin', the lower the dimensionless values 

H . '= hmin ' 
min h 

O,Re 
(10.6), 

where again the central film thickness of a Reynolds equation based solution 

ho,Re was used as reference. Maximum film thickness between the additional 

and the well-known constriction is given in part (b) of figure 10.7. As for the 

minimum film thickness, the figure shows the dimensional height hmax' and 

dimensionless values Hmax' with 

-224-



Chapter 10 Results from the extended approach 

Hmax 1 = hhmax' (1 0.7). 
O,Re 

Figure 10.7(c) gives the height of the gap at the contact centreline in 

dimensional ho,ext, and non-dimensional 

H = ho,ext 
a,ext h 

a,Re 

(10.8) 

form. 

Information on the dimensionless position of the minimum height Hmin' and 

the maximum height Hmax' is compiled in figure 10.8. Part (a) shows the 

dimensionless position of the minimum height 

x . = xhmin = X{H = H . ') 
hmln b \: min 

Hz 
(10.9), 

part (b) that of the maximum height 

x = xhmax = X{H = H ') 
hmax b \: max 

Hz 
(10.10). 

Apart from the well-known constriction, the height of the gap calculated with 

the new extended approach agrees at one point with that from Reynolds 

equation based solutions. The position of this point 

x = xcross = X{H = 1) 
cross b \: 

Hz 
(10.11) 

is displayed in figure 10.8(c). For some load case-sliding ratio combinations 

minimum and maximum heights cannot be determined within the bounds of 

numerical accuracy of the result files. Hence positions for such combinations 

cannot be determined. Therefore results in figure 10.8 are only printed for 

those load case-sliding ratio combinations for which they could be 

determined. 
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Reynolds equation based approach Xcross for load cases i to iv 
(table 10. 1) and various sliding ratios 5, 
(a) position of the minimum height of the gap X hmin, 

(b) position of the maximum height of the gap Xhmax, 

(c) position of the intersection point with a Reynolds 

equation based solution Xcross. 

N.B. Values are not displayed for all load cases and sliding 
ratio combinations 

(continued). 
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Figure 10.8: (concluded). 
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10.5 Velocity 

The present section contains results showing and discussing the velocity field 

in the gap. 

10.5.1 Velocity fields 

Contour plots provide a good qualitative impression of the velocity distribution 

when, as in the present case, one flow direction is dominant. Figure 10.9 

shows contour plots of u-velocity for load case iv {table 10.1} and for pure 

rolling {a}, 50 per cent sliding (b) and pure sliding (c). For each sliding ratio 

(a) to (c), two contour plots are given. The upper plot shows results 

determined with the new extended approach, the lower one showing results 

obtained from a Reynolds equation based solution for reference and 

comparison. Further results for load cases i to iii (table 10.1), can be found in 

appendix K, figures K.4 to K.B. 

Quantitative comparison of the velocity fields from each approach is difficult, 

since the shape of the gap and hence the domain considered differ. With the 

introduction of a normalised co-ordinate perpendicular to the gap 

(10.12), 

all gaps appear parallel with unit height and thus plots can be compared. In 

figure 10.10, comparison of the two approaches is given by displaying the 

relative deviation of the u-velocity of the new extended from the Reynolds 

equation based solution 

u-uRe E ----'-=-
u,Re - u

H 

(10.13) 

as a contour plot. 

Results are given for load case iv (table 10.1) and three sliding ratios 0.0, 

0.5, and 1.0, results for load cases i to iii (table 10.1) can be found in 

appendix K, figures K.7 to K.9. 
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Results from the extended approach 
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Figure 10.9: Contour plots of velocity in x-direction u distribution in the gap 
for extended (upper part) and Reynolds equation based (lower 

part) approach; load case iv (table 10.1), sliding ratios S = 0.0, 
0.5, and 1.0, 
(a) sliding ratio S = 0.0, 
(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0 
(continued). 
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(b) 

Figure 10.9: (continued). 
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(c) 

Figure 10.9: (concluded). 
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Figure 10.10: Relative deviation of velocity in x-direction u of extended from 

Reynolds equation based approach cu,Re; load case iv (table 
10.1), sliding ratios S=O.O, 0.5, and 1.0, 
(a) sliding ratio S = 0.0, 
(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0 
(continued). 
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Figure 10.10: (concluded). 
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Detailed quantitative consideration and comparison of velocity fields from 

both approaches is provided in figure 10.11. For load case iv and three 

sliding ratios, S = 0.0, 0.5 and 1.0, profiles of the velocity component in the x­

direction perpendicular to the gap are given for various positions. The 

position of the minimum height of the gap Xhmin (a), the position of the 

maximum height of the gap Xhmax, the position, where Reynolds equation and 

extended approach based solutions have the same height Xcross and the 

centreline of the contact X = 0.0 were selected. The application of the 

normalised height co-ordinate Y* introduced above enabled the different 

sliding ratios and Reynolds equation and extended approach based solutions 

to be displayed in one diagram. The graphs also give comparison of both 

approaches by displaying the relative deviation of the extended approach 

from Reynolds equation based solutions as introduced for the velocity fields, 

equation 10.13. 

For load cases i to iii, corresponding figures can be found in appendix K. 
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Figure 10. 11.' Velocity in x-direction u and relative deviation from Reynolds 

equation based solution £u,Re at selected positions X for 
various sliding ratios; load case iv (table 10. 1), sliding ratios 
S = 0.0,0.5, and 1.0, 
(a) at the position of minimum height of the gap Xhmin, 

(b) at the position of maximum height of the gap Xhmax, 

(c) at the position of agreement of Reynolds equation and 
extended approach based solution Xcross, 

(d) at the contact centreline X = 0.0 
(continued). 
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Figure 10.11 (continued). 
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Figure 10.11 (concluded). 

10.5.3 Flow rate 

Integration of mass flux across the gap at an arbitrary position leads to the 

gap mass flow per unit flow width 

m~ = r p·u·dy (10.14). 

Mass flow m L reduces the velocity field information to a single value per load 

case and sliding ratio. Hence, mass flow m L enables a quantitative 

comparison of various load cases and sliding ratios independent of position. 

Figure 10.12 shows the mass flow m L for all load cases i to iv and sliding 

ratios and shows the relative deviation of mass flow m L between the 

extended and the Reynolds equation based solutions 

, , 
mL - mLRe E - , 

m.Re - m' 
L,Re 

(10.15). 
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Figure 10.12: Mass flow per unit flow width m'L and relative deviation of 

mass flow from Reynolds equation based solution Em.Re, for 
load case i to iv (table 10. 1) and various sliding ratios S. 
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10.6 Pressure and pressure dependent variables 

The new approach proposed within this thesis allows pressure variation 

across the height of the gap. Hence computations with the new approach 

lead to two-dimensional pressure fields instead of one-dimensional pressure 

results normally delivered by Reynolds equation based solutions. The 

following subsections present various types of graphs showing the pressure 

distribution in the gap and giving comparison with Reynolds equation based 

solutions. 

10.6.1 Pressure fields 

An overall impression of the pressure distribution in the contact is given in the 

contour plots of figure 10.13. The pressure distribution is given for load case 

iv and pure rolling (a), 50 per cent sliding (b) and pure sliding (c). In part (d), 

the pressure distribution of a Reynolds equation based solution is given for 

reference and comparison. Results for load cases i to iii can be found in 

appendix K, figures K.13 to K.15. In these plots, pressure variation along the 

gap dominates over pressure variation across the gap. However pressure 

variation across the gap is of particular interest in this work. The contour plots 

of figure 10.14 focus on the pressure variation across the gap by displaying 

the absolute pressure deviation across the gap 

Ep,abS = P - Pel (10.16) 

for load case iv and sliding ratios for pure rolling (a), 50 per cent sliding (b) 

and pure sliding (c). In equation 10.16 Pcl represents the centreline pressure, 

which is the pressure half way between the two surfaces actually at the 

position along the contact of a corresponding pressure value, i.e. 

(10.17). 

The respective results for load cases i to iii are presented in figures K.16 to 

K.18 of appendix K. Comparison of the results of the extended approach with 

Reynolds equation based solutions for load case iv is given in figure 10.15. 

The contour plots show the relative deviation of pressure between the two 

approaches. 
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E - P - PRe 
P.Re - p 

Hz 
(10.18). 

As for the comparison of velocity data, the normalised height Y* was used for 

this figure. For the relative deviation of pressure, results for load cases i to iii 

are given in figures K.19 to K.21 of appendix K. 
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F 5 .00 E+ 008 

G 6 .00 E+008 

A 

Figure 10. 13: Contour plots of pressure distribution p in the gap for extended 
and Reynolds equation based approaches; load case iv (table 
10.1), sliding ratios S = 0.0, 0.5, and 1.0, 
(a) sliding ratio S = 0.0, 
(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0, 
(d) Reynolds equation based solution 
(continued). 
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(b) 

(c) 

Figure 10.13: (continued). 
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(d) 

Figure 10.13: (concluded). 
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(a) 

Results from the extended approach 

absolute pressure deviation Cp,abs [Pal 
A -2 .00E+006 
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Figure 10. 14: Contour plots of absolute pressure deviation from the 

centreline pressure Ep,abs in the gap for extended approach; 
load case iv (table 10.1), sliding ratios S = 0.0, 0.5, and 1.0, 

(a) S = 0.0, 
(b) S =0.5, 
(c) S = 1.0, 
N.B. the absolute pressure deviation lies entirely between the 

two limits A and B 
(continued). 
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(c) 

Figure 10.14: (concluded). 
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Figure 10. 15: Relative deviation of pressure of extended from Reynolds 

equation based approach SP,Re; load case iv (table 10. 1), 
sliding ratios 8 = 0.0, 0.5, and 1.0, 
(a) 8=0.0, 
(b) 8 = 0.5, 
(c) 8 = 1.0 
(continued). 
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10.6.2 Pressure profiles 

The plots of figure 10.14 and 10.15 show that the largest differences between 

the extended and Reynolds equation based solutions appear on the 

surfaces. Figure 10.16 gives the dimensionless pressure distribution for the 

slower surface (a) and the faster surface (b) for load case iv. Part (c) of figure 

10.16 gives the mean value of both pressure distributions 

(10.19), 

which is relevant for the deformation of the solid surfaces. For all three 

pressure distributions, the relative deviation from a Reynolds equation based 

solution is shown for comparison together with the respective pressure 

distribution, where 

(10.20), 

Pfast -PRe 
E - ---""'''--~ 

Pfast,Re - p. 
Re 

(10.21 ), 

and 
_ Pmean -PRe 

Epmean,Re - p. 
Re 

(10.22). 

Further information on the pressure variation across the gap is given in figure 

10.17. The dimensionless pressure difference between the slower and the 

faster surface 

(10.23) 

is shown for load case iv. For load cases i to iii information corresponding to 

that of figure 10.16 and 10.17 are given in appendix K in figures K.22 to K.24 

and K.25 to K.27. 
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Figure 10. 16: Pressure on the slower surface ps/ow and the faster surface 
P'ast and mean pressure Pmean and relative deviation of these 
values from Reynolds equation based solution SPs/ow,Re, 

SPfast,Re, and SPmean,Re for various sliding ratios; load case iv 
(table 10.1), sliding ratios S = 0.0, 0.5, and 1.0, 

(a) pressure on slower surface Pslow and relative deviation SPsIow,Re, 

(b) pressure on faster surface Pfast and relative deviation 8PfastRe, 
(c) mean pressure Pmean and relative deviation SPmean,Re 
(continued). 
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Figure 10.16: (continued). 
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Figure 10.16: (concluded). 
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Figure 10. 17: Dimensionless pressure difference between faster and slower 

surface L1P for various sliding ratios; load case iv (table 10. 1), 

sliding ratios S = 0.0, 0.5, and 1.0. 

10.6.3 Pressure values 

The above figures 10.16 and 10.17 show that the value and position of 

maximum pressure, apart from the ehl pressure spike, differ from the contact 

centre line for the extended approach. Figure 10.18 summarizes the 

maximum pressure value for all investigated load cases and sliding ratios for 

the slower surface (a), the faster surface (b) and the mean pressure (c) as 

dimensional and dimensionless values. The corresponding dimensionless 

positions of maximum pressure 

and 

X PSIOW = X~SIOW = X(PS10W = Ps1ow,max ) 
Hz 

X pfast = X~fast = X(Pfast = Pfast,max ) 
Hz 

X pmean = X~mean = X(Pmean = Pmean,max ) 
Hz 

are given in figure 10.20 (a) to (c). 
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The figure 10.17 shows the difference between the slower and the faster 

surface. The curves contain two extreme values, a minimum where the 

pressure on the faster surface exceeds the pressure on the slow surface by a 

maximum amount and a maximum where the pressure on the slow surface 

exceeds the pressure on the fast surface by a maximum amount. The values 

of these extreme values for all load cases and sliding ratios are given in 

figure 1 0.19(a) and (b). The position of these extreme values 

and 

x p . 
X~pmin = ~ min = X(6P = 6Pmin) 

bHz 

x = x~Pmax = X(6P = i\P ) 
~Pmax b max 

Hz 

are given in part (d) and (e) of figure 10.20. 
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Figure 10. 18: Dimensional and dimensionless maximum pressure on the 
slower surface Pslow,max and Ps1ow,max, and on the faster surface 
Pfast,max and Pfast,max and dimensional and dimensionless 
maximum mean pressure Pmean,rnax and Pmean,max for load cases 
i to iv (table 10. 1) and various sliding ratios 8, 

(a) maximum pressure at slower surface Pslow,max and Ps1ow,max, 

(b) maximum pressure at faster surface Pfast,max and Pfast,max, 

(c) maximum mean pressure Pmean,max and Pmean,max 

(continued). 
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Figure 10.18: (continued). 
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Figure 10.18: (concluded). 
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Figure 10. 19: Dimensionless minimum and maximum pressure difference 

L1Pmin and L1Pmax for load cases ito iv (table 10.1) and various 
sliding ratios 8, 

(a) minimum pressure difference L1Pmin, 

(b) maximum pressure difference L1Pmax• 
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N.B. Values are not displayed for all load case-sliding ratio 
combinations 

(continued). 
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Figure 10.20: (continued). 

-261-



Chapter 10 Results from the extended approach 

(d) 1 

0.9 

0.8 
........ 
...!.. 0.7 
C/) 

o 0.6 
~ 

0.5 

0.4 

0.3 

0.2 

0.1 

-----------,-I 
I 

-----------i~ 

- ---- ------:--. 
- - - - - - - - - - _I __ 

I 

- - - - - - - - - - -I--
I 

- - - - - - - - - - -,--
I 

Ii I I I 

~x------~-----------+-----------~--- ~i 
I I I I ~ii 

I I I 

-x------~-----------~-----------L---

I : : :-o-jjj 
I I I -x ------ -< -----------.. ----------- I- - - - -x- iv 

I I I : 

I I I 

-x------~-----------~-----------~-----------I I I I 

-x------~-----------+-----------~-----------
I I I I 

I I I 

-x------~-----------+-----------~-----------

I I I I 
I I I 

-x------~-----------~-----------~-----------

I : I I 

I I I 

-x-------<-----------+-----------I------------
I 

I I I 

I I I -x------,-----------,-----------,-----------

o+---------~------~--------~--------~------~ 

(e) 1 

........ 
I ...... 

C/) 

0.9 

0.8 

0.7 
o 
~ 0.6 

0) 
.S 
:g 
CJ) 

0.5 

0.4 

0.3 

0.2 

0.1 

-0.5 o 0.5 
position of minimum pressure difference X~Pmin [-] 

.---------~--------~~--------~~--~x-r--_r====~ II I • 

-----! --~---- ~~. 
I : ~II 

~~~l~ ~~:~~~~ =:~ 

I I I 
-----------~----------,-----------1 

I I 
I 

-----------~----------~-----------~ I I 

-----------~----------~-----------+ 

I : 
:~:: :::::::::::::: 

-----------~----------~-----------~ -x-------~-----------

I II : 
-----------~----------~-----------+- ---------1------------

I I I 

I I I -----------r----------,-----------, 
I 

I 

I I I 
-----------~----------,-----------1 

I I 

I I I I I 
I I I I 
I I I I 

-----------r----------,-----------,~---------,-----------
I I I I I 
I I J I 

-----------~----------~-----------t~---------~-----------

O+---------~------~--------~--------~------~ 

-0.5 o 0.5 
position of maximum pressure difference X8Pmax [-] 

Figure 10.20: (concluded). 
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10.6.4 Viscosity 

Only a single set of figures is presented for viscosity. Viscosity ranges more 

than five orders of magnitude along the gap. Graphs with a linear viscosity 

axis or contour plots with a linear distribution would contain a very small zone 

of reasonable resolution and a large zone of unsatisfactory resolution. On the 

other hand, introduction of a logarithmic distribution to contour plots or a 

logarithmic viscosity axis in x-y-plots leads to graphs identical to those 

presented above for pressure distribution. Hence only a set of figures 

showing the differences between extended and Reynolds equation based 

solutions, and displaying the variation of viscosity across the gap, is given. 

For load case iv and three sliding ratios, S = 0.0, S = 0.5, and S = 1.0, relative 

deviation of viscosity from Reynolds equation based solution at the slow 

surface 

E - Tlslow - TIRe 
1'\slow,Re -

TIRe 

(10.29) 

and at the fast surface 

(10.30) 

are given in figure 10.21 (a) and (b) respectively. Figure 10.21 (c) shows the 

relative deviation of viscosity across the gap related to the average viscosity 

near the surfaces 

E = TI slow - TI fast 
1\1'\ .1. ( ) 

2· TI slow + TI fast 

(10.31 ) 

for load case iv. The viscosity results for load case i to iii are given in 

appendix K, figures and K.28 to K.30. 
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Figure 10.21: Relative deviation of viscosity from Reynolds equation based 

solution on the slower surface G17slow,Re and the faster surface 

GT}fast,Re and relative deviation of viscosity across the gap G4 for 
various sliding ratios; load case iv (table 10. 1), sliding ratios 
S = 0.0, 0.5, and 1.0, 

(a) relative deviation at slower surface G17slow,Re, 

(b) relative deviation at faster surface G17fast,Re, 

(c) relative deviation across the gap G417 

(continued). 
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10.7 Shear stress and traction coefficient 

In the present section, results showing the influence of the fluid film on the 

surfaces are presented. For load case iv, figure 10.22 shows the shear stress 

iN t oU 
't='ll'-~'ll'-

onn Oy 
(10.32) 

on the lubricant at the slower (a) and the faster (b) surface in the 

dimensionless form-

and 

T = 'tslow 
slow P 

Hz 

T = 't last 
last p 

Hz 

(10.33) 

(10.34). 

Results are given for the extended and the Reynolds equation based 

approach. In addition, comparison of these two approaches is given by 

displaying the relative deviation of shear stress from the Reynolds equation 

based approach for the slower surface 

E - T slow - TAe,SIOW 
Tslow,Ae - T. 

Ae,slow 

(10.35) 

and the faster surface 

E - T slow - TAe,last 
Tfast,Ae - T. 

Ae,last 

(10.36). 

For isothermal Reynolds equation based solutions. the value of shear stress 

at both surfaces is almost identical in the highly loaded zone of the contact. 

For the extended approach the value of shear stress varies for the two 

surfaces. This absolute difference between the two surfaces 

(10.37) 

is given in figure 10.23 for load case iv. Graphs for load cases i to iii are 

given in figures K.31 to K.33 and K.34 to K.36 of appendix K. 

The sign for Tsiow and Tfasl in figures 10.22 results from the fact, that the shear stress 
on the lower face of a finite volume is directed towards -x, at the upper surface 
towards +X, cf. figures 3.1 and 3.13. 
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(continued). 
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The traction coefficient of a contact is determined by integration of the 

dimensionless shear stress along the contact 

(10.38). 

The traction coefficient for the extended approach is given for all load cases 

and sliding ratios in figure 10.24. This figure also shows comparison with 

Reynolds equation based solutions by displaying the relative deviation 

£ _ ~T - ~T,Ae 
~T,Ae -

IlT,Ae 

(10.39). 
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Chapter 11 

Extended approach result 
discussion 

11.1 Introduction 

Consideration of the results for the new extended approach and their 

comparison with the established Reynolds equation based solution, as 

presented in chapter 10, delivers a large number of aspects which are worthy 

of discussion. Because many of these aspects correlate or even interact with 

others and because many aspects can be of both numerical and physical 

relevance at the same time, the structure of the discussion is as following. 

Section 11.2 discusses whether there is an influence as to which surface the 

deflections are applied. This is necessary to qualify the established methods 

of data presentation for the extended approach. 

From section 11.3, the various results variables, starting with the shape of 

the gap, are discussed. For this discussion, initially results and their deviation 

from Reynolds equation based solutions are described particularly in relation 

to the governing equations of chapter 3 and basic fluid mechanics principles. 

Section 11.4 extends discussion to the velocity distribution. Beside the above 

aspects, correlations with the shape of the gap, already discussed at this 

stage, will be considered. In the same way, discussion is further broadened 

in section 11.5 by looking at the contact pressure and viscosity fields. Section 

11.6 completes discussion of the result values by treating the traction 

coefficient aspects. 
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Subsequently, aspects of the elasto-hydrodynamic lubrication pressure spike 

and the relevance of the dimensionless factors are considered in section 11.7 

and 11.8 respectively. The chapter is concluded by a summary of the major 

findings. 

11.2 Influence of different load distributions on 
both contact surfaces 

For all investigations, it is important to know whether the established method 

of applying all curvature and deflections to one surface can also be used for 

the extended approach results. The upper part of figure 10.4 suggests that it 

does not make any difference to the shape of the gap whether all curvature 

and deflection is applied to the upper, faster surface or to the lower, slower 

surface or whether curvature and deflections are distributed to both surfaces 

according to reality. The upper parts of figure 10.5 show the same result for 

the pressure distribution for the faster and the slower surface. However, the 

lower parts of figures 10.4 and 10.5 show that the curves do not perfectly 

agree but show minor deviations between the three configurations. For the 

shape of the gap and the pressure distributions, the results for curvature and 

deflection "applied on lower surface" prove to be the median and hence the 

reference. The deviation curves for curvature and deflections II applied on 

upper surface" tend to oscillate above the median curve, and those for 

curvature and deflections "distributed to both surfaces" below the median 

curve. Oscillations and deviations appear more often in the pressure 

distribution figure 1 0.5 and less in the shape of the gap, figure 1 0.4. 

For figures 1 0.4 and 1 0.5, four-digit data material, as delivered by the CFD 

code, was used. Deviations of the shape of the gap or of pressure 

distributions can be caused by physical or numerical effects. Some of the 

latter effects are round-off errors. The two "numerical accuracy" lines in the 

lower parts describe the zone where deviations can appear when rounding 

off the data material to four digits. The deviations of the shape of the gap lie 

always between the two accuracy lines. The deviation lines for the pressure 

distributions range mostly between the accuracy lines but exceed them in the 

inlet zone of the contact and after the pressure spike. 
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Because the deviations in the high pressure zone do not exceed the 

accuracy, the method of distribution of curvature and deflections to the two 

surfaces is practically irrelevant in this zone. However this does not rule out 

the fact that the small tendencies mentioned above are caused by physical 

differences of the three configurations. The pressure deviations in the inlet 

zone exceeding accuracy might be caused by two effects. Firstly, the strongly 

converging gap causes small pressure variations across the gap, even for 

iso-viscous lubricants. Secondly, the pressure values themselves are small. 

The comparison of two small values with the method used for determining 

the deviations finally leads to relatively large values. The reason for the 

deviation is of a physical nature. However, these relatively large but 

absolutely still small deviations do not appear in the high pressure zone, 

which this study concentrates on. Hence, these deviations do not justify the 

presentation of the data in another manner than that established. 

The reason for exceeding accuracy after the pressure spike is of a numerical 

nature. As above the pressure values themselves are already quite small. On 

the other hand, the Newton-Raphson method still delivers relatively large 

pressure corrections for the zone at and behind the pressure spike when 

convergence is reached. This idea is supported by the fact that the deviations 

are not wall-dependent but nearly identical for both walls. Since these 

deviations are neither in the interesting high pressure zone nor caused by 

physical effects, they also do not justify the introduction of a new presentation 

method. 

In conclusion, the method selected to distribute curvature and deflection to 

the two surfaces is irrelevant for the results. As already stated in section 

10.3, the traditional method of display, where all curvature and deflection is 

applied on the upper, normally faster, surface is also suitable and hence 

used for the present results from the extended approach. 
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11.3 Shape of the gap 

11.3.1 Principal shape 

For the investigated load cases, figures 10.6 and K.1 to K.3, the gap shows 

the well-known parallel shape with the typical constriction at the end, when 

pure rolling, S = 0.0, is considered. The agreement of the extended approach 

and Reynolds equation based solutions for pure rolling is confirmed in the 

lower parts of those figures 10.6 and K.1 to K.3, showing that there are no 

deviations between the two approaches. This agreement was expected 

because the governing equations 3.38 and 3.39 reduce to the basis of 

Reynolds equation" when the velocity gradient across the gap au/ay 
becomes zero. 

With an increase in the sliding ratio, S = 0.5 and S = 1.0, an additional 

constriction develops in the first half of the contact and a widening appears 

between that additional and the well-known, traditional ehl constriction. The 

shape of the gap in the inlet zone and in the traditional ehl constriction is 

hardly affected by the extended approach. Details regarding the traditional 

ehl constriction and pressure spike are discussed in section 11.7. 

A zone of reduced height in the first half of the contact and a zone of 

extended height in the second half was also expected in the theoretical 

predictions, as mentioned in subsections 3.3.4.4 to 3.3.4.6. Hence, the 

computational results agree qualitatively with those theoretical predictions. 

For load case i, figure K.1, the additional constriction can only be estimated 

from the deviation diagram, because accuracy of the applied data and 

physical effects have the same order of magnitude. This result, that extended 

approach phenomena are visible but overlaid by data accuracy effects, can 

be observed for many figures showing load case i data, but will not be 

discussed again in the remaining part of the present section. In conclusion, 

load case i represents conditions where the new approach starts to show 

• Basic equations for Reynolds equation are ap = " . a2
u and ap = 0 • equations 2.1 and 2.3. 

ax ay2 ay 
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physical effects but which are physically irrelevant since they are as small as 

the numerical accuracy. 

Further consideration of figure 10.6 suggests the following phenomena for 

the sliding cases: 

• The deflection rises exponentially with sliding ratio. 

• The first additional constriction is longer and flatter in comparison to the 

widening which is shorter and deeper. The transition from the additional 

constriction to the widening appears on the outlet side of the contact 

centreline. 

Detailed discussion of these phenomena is enabled by the consideration of 

figures 10.7 and 10.8. 

11.3.2 Perpendicular extension of additional constriction 
and widening 

Figure 1 0.7(a) and (b), the survey of minimum and maximum height Hmin' and 

Hmax' data, prove that the height of the gap changes, increasing exponentially 

with sliding ratio. However, for the most heavily loaded case iv, the minimum 

height of the gap Hmin' varies only linearly when a sliding ratio of S = 0.6 is 

exceeded. For the maximum height Hmax', this linearity appears when the 

sliding ratio exceeds S = 0.8. Possibly some of the interactive effects 

suggested in subsection 3.3.4.6, caused by the additional terms of the 

extended approach, are starting to have an influence. Hence, in the 

remaining sections of this chapter the results of load case iv at high sliding 

ratios will be considered particularly. 

Regarding the value of the perpendicular extension of the additional 

constriction and of the widening, comparison of figure 10.7(a) with 10.7(b) 

suggests that the perpendicular extension of the additional constriction and 

the widening are of similar size for load cases ii and iii. This also applies to 

load case iv if the sliding ratio does not exceed S = 0.5. Only for load case iv 

and sliding ratios exceeding S = 0.5, is the perpendicular extension of the 

widening greater than the reduction of the additional constriction. 
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The minimum height for load case iv and pure sliding is approximately 6 per 

cent below Reynolds equation based solution values, however, the traditional 

ehl constriction still remains a stronger height reduction. This means that 

within the range of parameters considered, the extended approach should 

have some relevance for centreline film thickness formulae such as equation 

3.26, but not on minimum film thickness formulae such as equation 3.25. 

Further, the extended approach would have an influence on all analyses 

using centreline film thickness or centreline film thickness formulae, for 

example advanced bearing fatigue life analyses. However, film thickness 

formulae are obtained by a regression process, so the actual relevance of the 

extended approach for film thickness formulae could only be evaluated by 

comparison with the accuracy of general film thickness formulae. 

11.3.3 Length of additional constriction and widening 

Some initial implicit information on the length of the additional constriction 

and the widening is given in figure 10.7(c) and its comparison with figure 

10.7(a) and (b). At the contact centreline, X = 0.0, the additional constriction 

can also be observed, having still most of its maximum perpendicular 

reduction at this point. Since the widening is limited by the traditional 

constriction, the widening is shorter than the additional constriction. 

Details are delivered by figure 10.S(a) and (b) which show the pOSition of the 

minimum and maximum height Xhmin and Xhmax• Positions are displayed for 

those load case-sliding ratio combinations for which the relevant information 

could be determined from the CFD data: 

From the displayed curves for load cases ii, iii and iv, the results seem to be 

quite different. 

Theoretically, for all isothermal and incompressible solutions including those based on 
Reynolds equation, with a relative minimum in the pressure distribution between the 
maximum on the Hertzian pressure curve and the ehl pressure spike, there is a 
relative minimum and a relative maximum both shortly before the ehl pressure spike. 
However, they are normally so small that they cannot be detected in diagrams but only 
when considering very exact numerical data. 
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• For load case ii, the minimum height position moves towards the inlet 

for an increasing sliding ratio S, the position of maximum height 

maintains its position while the point of agreement of the heights from 

the extended and Reynolds equation based solutions moves slowly 

towards the inlet. This is due to the following reason as illustrated in 

figure 11.1 (a): 

Load case ii represents a load case with low load but high velocity and 

viscosity. It is the load case closest to the transition to hydrodynamic 

lubrication, as visible from figure 10.2(a)-(c). Correspondingly, pressure 

and height distributions, figure 10.1 show a pressure and height 

distribution closer to a hydrodynamic distribution than any other 

investigated load case. 

For such cases and Reynolds equation based solutions, convergence 

of the so-called parallel gap· in the high pressure zone is higher than 

that for the other load cases. In the present case, the value and 

gradient of this convergence from a Reynolds equation based solution 

have the same order of magnitude as the value and gradient of the 

perpendicular change of the additional constriction by the extended 

approach. The addition of both effects combines both curves so that the 

above described movement of the characteristic points happens. 

Although height variation values are relatively small, the present case ii 

indicates the effect, when the extended approach is applied to 

hydrodynamic situations. Figures 10.2(a)-(c) show that both the 

relevant parameters kp and 1<,., equations 3.38 and 3.39 of subsection 

3.3.4.1, still have significant values when approaching the transition to 

hydrodynamic lubrication, so extended approach effects will also 

appear for hydrodynamic regimes.t 

The "parallel" ehl gap is always very slightly converging until the transition towards the 
pressure spike. 

Subsection 3.3.4.4 discussed that the application of the extended approach requires 
adaptation of the gap height so that finite pressure values appear for the singularity. 
Hence hydrodynamic lubrication analysis with the extended approach cannot mean an 
analysis assuming a rigid contour. 
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• For load case iii, the sliding ratio has no influence on any of the 

positions. 

This is due to the fact that the order of magnitude of any changes in 

height due to the extended approach dominates over the convergence 

of a Reynolds equation based approach gap, as shown in figure 

11.1 (b). All positions are almost symmetrical about the contact 

centreline, X = 0, which means that the additional constriction and the 

widening are of similar size. Reasons for this symmetry are explained 

below when the pressure distribution in the contact is discussed. 

However, as a result of load case iii, it can be concluded that the 

widening is not necessarily smaller than the additional constriction. 

• For load case iv, the minimum position is sliding ratio independent, as 

for load case iii. However, the maximum height position and the position 

where extended and Reynolds equation based approaches deliver 

identical height values, move towards the outlet, which means a short 

but extensive widening. For this case also, height changes due to the 

extended approach dominate over the height variation due to gap 

convergence. The explanation requires consideration of further aspects 

and will be given in section 11 .5. 

In conclusion, regarding the shape of the gap, all four load cases show the 

same development with an additional constriction in the first half of the 

contact and a widening between the additional and the traditional 

constriction. However, four different regimes are represented when 

considering the detailed development of this shape. The effects on the shape 

of the gap rise with the dimensionless speed and load parameters U and W, 

as well as with the factors kp and kr. Quantitative discussion of the variation 

of height values with the dimensionless factors is given in section 11.8. 
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(a) 

(b) 

Xhmin(ii) ::::: Xhmax(ii) ::::: 
Xhmin(iii) Xhmax(iii) 

(i) Shape of the 
for Reynolds equation approach 

(ii) Shape of the gap 
for extended approach and small sliding ratio 

(iii) Shape of the gap 
for extended approach and large sliding ratio 

Figure 11. 1: Development of characteristic pOints of the gap when 
(a) convergence of the gap and changes due to the extended 

approach are of similar size, 
(b) convergence of the gap is much smaller than changes due 

to the extended approach. 
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11.4 Velocity 

11.4.1 Overall velocity field 

The contour plots for pure rolling, figure 10.9(a), suggest for load case iv that 

the velocity fields are identical for the extended and Reynolds equation 

based approaches. This result is explained and is a requirement from the 

identical shapes of the gap for both approaches and the relevance of the 

various terms of the governing equations mentioned in the above section 

11.3.1. 

For increasing sliding ratios of S = 0.5 and S = 1.0, displayed in figures 

10.9(b) and (c), the velocity fields differ from Reynolds equation based 

solutions in those zones where also the shape of the gap differs: 

Best visible for the pure sliding case, figure 10.9(c), it can be observed that 

for the parallel gap of the Reynolds equation solution· the various patches 

between the contours are of identical width in the parallel zone, which means 

a regular increase in velocity or, in other words, a pure Couette flow. For the 

extended approach solution t, in the zones of the widening of the gap, it can 

be seen, that the dark patches representing low speed are slightly wider than 

those bright, representing high speed. This means that the velocity increase 

across the height of the gap is lower at slow velocities or that a backwards 

directed Poiseuille component overlies the Couette flow. This is also 

necessary to fulfil the continuity equation. 

According observations can be made for the zone of the additional 

constriction, indicating a forward directed Poiseuille flow component. 

In the remaining parts of the contact, where the shape of the gap agrees for 

both approaches, the velocity field also agrees. This includes the facts that 

t 

The Reynolds equation based solution is shown in the lower of the two graphs of 
figure 10.9(c). 

The extended set of equation based solution is shown in the upper of the two graphs 
of figure 10.9(c). 
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the stagnation point of the inlet flow remains at the same position as for 

Reynolds equation based solutions and that the traditional ehl constriction is 

unchanged. Identical observations can be made for load cases iii with the 

help of figure K.6. For load case i and ii, figures K.4 and K.5, resolution of the 

scalar plots is too coarse to allow even qualitative discussion. 

The contour plots for load case iv, figure 10.10, showing the deviation of 

speed between the extended approach and a Reynolds equation based 

solution, confirm and quantify the results from the above contour plots. For 

pure rolling, S = 0.0, no relevant deviations can be observed. However, for 

partial or pure sliding, S = 0.5 and S = 1.0, considerable deviations of ±4 and 

±12 per cent respectively are displayed for the additional constriction and the 

widening. The deviations seem to be distributed almost symmetrically about 

the centreline along the contact Y* = 0.5. Maximum deviations appear at the 

centreline along the gap, reducing to zero at the solid surfaces where speed 

is the prescribed boundary condition. This behaviour is consistent with the 

idea of Poiseuille flow components proposed above. 

This described symmetry is not apparent for the contour lines for the pure 

sliding Situation, S = 1.0 in figure 10.1 O(c). Zero deviation, defined as the 

boundary between minimum negative and minimum positive deviation, 

occurs at the transition from the additional constriction to the widening. This 

line is not perpendicular to the axis along the gap but slightly tilted. 

Agreement of the extended with the Reynolds equation based approach 

happens closer to the contact centreline X = 0.0 on the upper, faster surface 

rather than on the lower, slower surface. This means an s-shaped flow profile 

which is discussed in detail later in this section. 

For load cases ii and iii, the respective figures K.8 and K.g confirm the almost 

symmetrical distribution of relative speed between the extended and 

Reynolds equation based solutions. 

Forward directed Poiseuille components in the first half of the contact and 

backwards directed components in the second half were also expected from 

the theoretical considerations as to how the extended approach results will 

differ from Reynolds equation based solutions, subsection 3.3.4.4 to 3.3.4.6. 
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Theoretical predictions and computational results are thus again in qualitative 

agreement. 

11.4.2 Flow profiles 

A closer insight into the flow of load case iv can be seen from the x-y-plots of 

u-velocity and its deviation from Reynolds equation based solutions at the 

narrowest position of the additional constriction X = Xhmin, at the widest 

position of the widening X = Xhmax, at the pOSition where the gap has identical 

height for both approaches X = Xcross and at the contact centreline X = 0.0, 

figures 10.11 (a) to (d). For sliding ratios S = 0.5 and S = 1.0, parabolic 

deviations, i.e. the above-mentioned forward directed Poiseuille-like flow, can 

be observed for the additional constriction and the contact centreline. The 

forward-directed Poiseuille component results in a decrease in velocity 

gradient at the upper, faster surface and hence a reduction of the local 

traction force if pressure and hence viscosity are considered unchanged. At 

the opposite lower and slower surface, the velocity gradient increases. This 

would result in an increase of the local traction force. 

An exact parabolic shape of the deviation curve appears for pure one­

dimensional flow if pressure, and hence viscosity, are constant across the 

height of the gap. However, the x-y-plots plots with forward directed 

Poiseuille components, figure 10.11 (a) and (d), tend to show slightly higher 

deviations from pure Couette flow in the lower half of the contact, Y* < 0.5·, 

than in the upper half. Correspondingly, for the widening of figure 10.11 (b), a 

slightly higher deviation can be observed for the upper part of the contact 

height Y* > 0.5. 

The observed differences from a parabolic flow profile indicate that the 

Poiseuille component cannot solely result from a pressure gradient purely 

varying along the contact; there must be other effects, such as pressure and 

hence viscosity variation across the gap. This viscosity variation will also 

The differences between upper and the lower half of the deviation curves are so small 
that some hardly exceed the accuracy of the data used. 
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influence the traction coefficient which will be considered in detail in section 

11.5. 

Results for the position where the extended and the Reynolds equation 

based approaches lead to the identical height X = Xcross show further aspects 

but also different behaviour for different situations. For load cases i to iii, 

figures K.1 0 to K.12, the flow shape is identical for both approaches. For load 

case iv and partial sliding S = 0.5, figure 10.11 (c), a slight backwards-directed 

Poiseuille flow component can be observed, meaning a slightly reduced 

overall flow for the extended in comparison to the Reynolds equation based 

approach. For the pure sliding situation, S = 1.0 of load case iv, an s-shaped 

deviation from a pure Couette flow profile is obtained. Since the backwards­

directed flow section exceeds that of the forward-directed, the total flow rate 

is also smaller for the extended approach compared with the partial sliding 

case. However the s-shape suggests that there must be a pressure variation 

across the gap with maximum pressure and hence viscosity at the centreline 

along the contact Y* = 0.5. 

11.4.3 Flow rate 

The detailed summary of flow rate data for all load cases and sliding ratios, 

figure 10.12, shows that for load case i to iii the flow rate is independent of 

the sliding ratio, any deviations are likely to be of a numerical nature. This 

also applies to load case iv if the sliding ratio does not exceed S = 0.4. For 

sliding ratios exceeding S = 0.4, a small reduction in the mass flow can be 

observed, as expected from the previous discussion of the flow profiles. 

However, the relative reduction of flow rate is almost two orders of magnitude 

smaller than the deviations observed for other variables. Hence, it is not 

clear, whether it is a numerical or a physical phenomenon. 

As for the height of the gap, a discussion of the dimensionless factors 

indicating the significance of the additional terms in the extended approach, 

subsections 3.3.4.1 and 3.3.4.2. is given below, in section 11.8. 
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11.5 Pressure and viscosity 

11.5.1 Overall pressure distribution 

The contour plots showing the overall pressure distribution, figure 10.13 for 

load case iv and figures K.13 to K.15 for load cases i to iii respectively, 

illustrate once more, when pure rolling, S = 0.0, is considered, that the results 

from the extended and Reynolds equation based approaches are identical. 

All other figures, which will be discussed later in the present section on 

pressure, show further evidence of this fact. However, none of this evidence 

is mentioned to avoid constant repetition. 

For partial and full sliding situations, S = 0.5 and S = 1.0, the maximum isobar 

contour line, representing p = 0.5 GPa for load cases iii and iv are shifted and 

tilted in comparison to those for pure rolling S = 0.0: In principle, shifting 

means a different pressure distribution along the gap while tilting means a 

pressure variation across the gap and hence a different pressure distribution 

along the gap on each surface. 

While the pressure contour plots figures 10.13 and K.13, are fine enough to 

indicate the existence of significant pressure variation across and along the 

gap, the contour plots showing the differences between the extended and 

Reynolds equation based solutions, figure 10.15 and K.19 to K.21 , gives 

refined information. In principle, two zones of differences can be detected, 

most obviously for the partial sliding case S = 0.5, figure 10.15(b): 

(i) The first zone, starting in the inlet half of the contact, approximately at 

the dimensionless contact width X = - 0.5, shows higher pressure for the 

upper, faster surface than for the lower, slower surface. 

(ii) In contrast, the second zone, starting at or just after the contact 

centreline X = 0.0 and ending at the traditional ehl constriction, shows 

higher pressure for the lower, slower surface than for the upper, faster 

surface. 

Not only can the described phenomenon not be observed for load case i, but also for 
load case ii due to its smallness. 
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In both zones the difference values are higher at the lower, slower surface 

than at the faster surface. These are also the features which were predicted 

as the extended set of equations, in subsection 3.3.4.4 to 3.3.4.6, was 

derived and discussed. 

The above applies to all load cases and sliding ratios 8, but as before 

particular effects appear for the pure sliding condition of load case iv, figure 

10.15(c). Pressure difference values in the second zone dominate over those 

of the first zone for this case. 

The pressure variation across the gap and along the gap lead to different 

aspects of discussion, so both phenomena are treated separately in the 

following subsections before finally correlation effects are discussed. 

11.5.2 Pressure distribution across the gap 

Figure 10.14 concentrates on the pressure variation across the contact by 

showing the deviations of the pressure from the pressure at the centreline 

along the gap, Y* = 0.5, at the same position X for load case iv. For non-pure­

rolling conditions the above mentioned two zones of pressure variation can 

be detected, where in the first zone the pressure decreases from the upper, 

faster surface to the lower, slower surface and in the second zone the 

pressure increases from the upper, faster surface to the lower, slower 

surface. The first zone is longer than the second. 

11.5.2.1 Principal relevance for the shape of the gap 

For the partial sliding case 8 = 0.5 of load case iv, figure 10.14(b), in terms of 

its absolute values, the pressure variation across the gap is nearly 

symmetrical about the centreline along the gap Y*=0.5 as was found in 

subsection 11.4.1 for the velocity deviation contour plot, figure 10.1 O(b). This 

"symmetrical" distribution thus suggests an approximately linear variation of 

the pressure across the height of the gap. 
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A pressure variation across the height of the gap means also a 

corresponding viscosity variation. A change to the velocity profile results as 

explained in the following: 

The basis for any Reynolds equation allowing viscosity variation across the 

gap is the following simplified x-momentum equation 2.11 * 

(11.1 ) 

Assuming a negligible pressure gradient along the gapt fJp/Ox ~ 0, constant 

viscosity across the gap, and a moving and a non-moving wall, a triangular 

Couette velocity profile is obtained, as figure 11.2{a) shows. Introducing a 

variable viscosity with higher values at the moving surface, the Couette flow 

profile will have a forward directed Poiseuille-like profile superimposed 

because the velocity gradient must be smaller at the faster surface to keep 

the term fl' fJulay constant. A convex flow profile is generated by viscosity 

gradient across the gap but not by pressure gradient along the gap. Hence 

this flow component has previously been, and will be throughout the rest of 

t 

The simplified x-momentum equation 

:=~~{:) 
is the basis for thermal ehl analysis, but also x-momentum equation 3.36 could be 
derived from this equation. By applying product rule 

Op au OJ, a2u 
-=-'-+'1'\'-' ox Oy Oy Oy2 

Barus' approach for the viscosity 

'1'\ = '1'\0 . ea
.
p 

and resolution of the viscosity gradient as 

OJ, a·p Op 
Oy =~o ·a·e . fJy 

the following dimensional form of equation 3.36 is obtained after rearranging the terms 

O Op a·p Op au ail a2u 
=--+~o·a·e ·-·-+'I'\o·e '-' 

OX fJy fJy fJy2 

A negligible pressure gradient appears when either the pressure gradient is zero or if 
viscosity values are very high. The latter is the case for flow profile description in the 
"parallel" section of the ehl gap. 
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this chapter, named a "Poiseuille-like flow componenf' instead of "Poiseuille 

flow componenf'. For the same reason, the pressure profile is logarithmic 

instead of parabolic, as figure 11.2(b) illustrates; this also explains the 

observed deviations from a parabolic Poiseuille flow component in 

subsection 11 .4.2. 

Accordingly, a backwards-directed Poiseuille-like flow component is obtained 

for a variable viscosity distribution with maximum viscosity at the non-moving 

surface, figure 11.2(c). 

(a) --"·n 

Y* 

r 

(c) --"·n 

Y* 

r 

- - ... u (b) 

Y* 

r 

--... u viscosity profile across the gap 

flow profile with Poiseuille-like 
component due to viscosity 
distribution across the gap 

flow profile of identical flow rate 
with Poiseuille component due to 
pressure gradient along the gap 
(constant viscosity across the gap) 

Figure 11.2: Flow profiles for zero pressure gradient along the flow and 
various viscosity distribution across the height 
(a) constant viscosity across the height of the gap 
(b) linear viscosity distribution with maximum value at the 

faster surface. 
(c) linear viscosity distribution with minimum value at the 

slower surface. 

Assuming an unchanged height of the gap, these flow profiles signify a 

higher flow rate for variable viscosity and maximum viscosity at the moving 

surface than for the iso-viscous case. For variable viscosity and maximum 

-287 -



Chapter 11 Extended approach result discussion 

viscosity at the non-moving surface, it means a lower flow rate than for the 

iso-viscous case. If a constant flow rate is desired then, in comparison with 

an iso-viscous case, the height of the gap must be reduced for the variable 

pressure and viscosity case with the maximum viscosity at the faster surface, 

and expanded for a variable viscosity with minimum viscosity at the faster 

surface. This hypothesis can be confirmed by comparison of the curve 

showing the deviation of height of the gap from a Reynolds equation based 

solution figure 10.6, and the curve showing the pressure difference across 

the gap in figure 10.17. Both figures show identical curve behaviour with 

identical minimum, cross-section and maximum position. 

In conclusion, assuming the pressure gradient along the gap as negligible for 

the moment, the pressure and hence viscosity variation across the height of 

the gap not only explains and confirms the reasons why the flow distribution 

is not parabolic but in reality has a logarithmic Poiseuille-like flow component, 

shown in figures 1 0.11 (a) to (c) and discussed in subsection 11.4.2, but also 

delivers an explanation as to why there must be an additional constriction at 

the beginning of the contact and a subsequent widening. 

11.5.2.2 Non-linear pressure distribution across the gap 

For the pure sliding case, S = 1.0, figure 1 0.14(c) the "symmetry" about the 

centreline along the gap has disappeared as it has for the velocity deviation 

in figure 10.1 O(c). The pressure patches indicating pressure below that at the 

centreline along the contact Y· < 0.5 are wider than those indicating a higher 

pressure and show also higher magnitudes. That means a change from a 

linear towards a logarithmic pressure distribution across the height of the 

gap. 

In principle, the above discussion made for the partial sliding case of load 

case iv applies also to this pure sliding case S = 1.0. However, the 

logarithmic pressure profile suggests that effects are magnified by 

repercussions. 

Between the two major zones of pressure variation across the gap, a small 

zone can be detected where the pressure distribution across the gap has its 
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maximum at the centreline along the contact, the pressure consequently 

decreasing towards each surface. This pressure distribution results in a 

viscosity distribution with a maximum viscosity at the centreline along the 

contact. This distribution confirms the expectations from the flow profile 

discussion at the position where the height of the gap is identical for both the 

extended and Reynolds equation based approaches, figure 10.11 (c) and 

subsection 11.4.2. 

11.5.2.3 Correlation with governing equations 

The above finding that the pressure distribution across the height of the gap 

and the shape of the gap are closely coupled is confirmed by the second 

equation of set 3.37, 

(11.2). 

Isolating the pressure gradient across the gap, 

h 2 2 - au 
'K ·u·-=- 2-

2 [1
0 

(ho '1C.:
V
aUJ2]' :y~ Phz' - '-=-

PhZ ay 

ap 
(11.3) 

is obtained, which is a simplified form of the equation implemented in the 

successive-simultaneous method for determination of the pressure variation 

across the gap, subsection 9.2.1.1, equation 9.12. Equation 11.3 shows, for 

non-pure rolling cases, that wherever there is a curvature of the flow profile 

there must be an according pressure gradient across the gap, which must be, 

due to the term ho . K' u· (au; ay )/PhZ exceeding unity, of the opposite sign. 

11.5.2.4 Load case features 

Transferability of the above findings to the other load cases is discussed by 

consideration of the values for minimum and maximum pressure difference 

across the height of the gap, compiled in figure 10.19, and the position of 

these minimum and maximum pressure values, shown in figure 10.20(d) and 

(e) respectively. 
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For all load cases, a linear growth of minimum and maximum pressure 

variation across the height of the gap can be observed with the usual 

peculiarities for load case iv and high sliding ratio values. The values 

observed for the pressure differences are similar in magnitude to minimum 

and maximum pressure difference, as long as the increase is linear. The 

appearance of pressure difference across the height of the gap for all load 

cases mean that all the above described phenomena regarding pressure 

variation across the gap, flow profiles and the shape of the gap are present 

for all load cases, although they might be so small that they cannot be 

spotted in the respective graphs for load cases i to iii, figures K.16 to K.18 in 

Appendix K. 

For the position of the minimum and maximum pressure difference, load 

cases ii and iii show slightly different behaviour, compared to that for the 

shape of the gap. 

• As stated above, for load case iv, minimum and maximum pressure 

difference position, X~Pmin and X~pmax. agree with minimum and 

maximum height deviation positions Xhmin and X hmax: The minimum 

height and minimum pressure difference position maintains its position 

and the maximum height and maximum pressure position moves 

towards the outlet for increasing sliding ratio values. 

• Load case iii also shows strong correlation between minimum height 

deviation and minimum pressure difference and between maximum 

height deviation and maximum pressure difference. Minimum and 

maximum values appear nearly symmetrical about the contact 

centreline. Consequently, the behaviour of load case iii differs from that 

of load case iv as it did for the height positions. Explanation of this 

symmetry is again provided in subsection 11.5.3.3. 

• Consistent with the above, load case ii shows, for the maximum 

pressure position and the maximum height position, identical values 

which are independent of the sliding ratio. 

For the minimum pressure and the minimum height values, however, 

development is different: Minimum pressure difference is approximately 
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at the same point as it appears for the other load cases and constant, 

whereas the minimum gap moves towards the inlet of the contact. For 

the pure sliding ratio situation, S = 1.0, minimum pressure difference 

and minimum height positions then nearly agree. As for the height of 

the gap, the described development is due to the similar order of 

magnitude of the convergence of the gap in the so-called parallel zone 

of the gap and the height variation due to the extended approach. 

Figure 11.3 gives an example when the position of minimum height of 

the gap differs from that of minimum pressure difference. A negative 

pressure difference, figure 11.3(a), causes a corresponding forward 

directed Poiseuille-like pressure distribution, with a maximum for the 

maximum pressure difference value as given in figure 11.3(b). A 

converging gap, as shown in figure 11.3(c) leads to backwards directed 

"real" Poiseuille components as shown in figure 11.3(d), which 

decrease with decreasing height of the gap until the Poiseuille 

component becomes zero, whilst the Couette flow remains constant. 

Combination of both effects leads to either the dominance of the real 

Poiseuille component over the viscosity gradient caused Poiseuille-like 

component or exact compensation or dominance of the Poiseuille-like 

component, as figure 10.3(f) shows. Concluding from the flow profile the 

correlating shape of the gap gives figure 11.3(g), and comparison of 

part (g) with (a) shows that minimum pressure difference and minimum 

height of the gap appear with some distance along the gap. 

The dominance between real Poiseuille and Poiseuille-like pressure 

components will be of relevance at a later stage below. 

Summarizing the three above load cases ii to iv, two zones of pressure 

variation across the gap are always present, however, their position and 

extent vary for the different load cases. 
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Figure 11.3: Correlation between pressure variation across the gap and 
shape of the gap for converging gaps: 
(a) pressure, and viscosity, variation across the gap, 
(b) Poiseuil/e-like flow component due to pressure and 

viscosity variation, 
(c) shape of a converging gap, 
(d) Couette flow component in converging gap due to moving 

and non-moving walls, 
(e) Poiseuille flow components due to gap convergence 
(f) flow profile taking components (b), (e) and (f) into account 
(g) shape of the gap due to flow profile (f). 
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11.5.3 Pressure distribution along the gap 

11.5.3.1 Typical features of pressure distribution along the gap 

For load case iv, pressure variation along the contact is shown by figure 

10.16 for both surfaces, (a) and (b) and the mean value (c). The mean value 

curve is most suitable for the discussion of pressure distribution for two 

reasons: Firstly, it is almost the pressure at the centreline of the contact, for 

which the pressure distribution along the gap is determined by the Newton­

Raphson technique, section 9.2.1.2. Secondly, the mean pressure gives in a 

single curve that pressure distribution which is responsible for the deflection. 

Hence easy comparison of the extended and Reynolds equation based 

approach is possible whilst disregarding pressure variation across the gap. 

For the mean pressure of the non-pure-rolling conditions of load case iv, 

figure 1 0.16(c) a lower pressure in the first half and also at the beginning of 

the second half of the contact can be observed. In the second half, a higher 

value is apparent. For the pure sliding case S = 1.0, the higher values in the 

second half of the contact even develop to a kind of second pressure spike. 

A comparison with the Reynolds equation based solution indicates that four 

zones can be distinguished where Reynolds equation based solutions differ 

from those for the extended approach. These four zones appear for all load 

cases. 

(i) In the first zone, covering the inlet zone of the contact and the 

beginning of the high pressure zone, the pressure distribution for the 

extended approach exceeds that for a Reynolds equation based 

solution. Pressure values are small in this zone and the relative 

deviations displayed are at least partially due to comparison of small 

numbers. The total load capacity of the contact is hardly influenced. 

(ii) As soon as the pressure exceeds approximately 80 per cent of Hertzian 

pressure, P = 0.8, the pressure for the extended approach falls below 

that for the Reynolds equation based solution. Relative deviation values 

are at least slightly higher than those in the first zone and are, because 
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of the high pressure values, relevant for load capacity and deflection 

considerations. 

(iii) The start and end of the third zone, dependent on the load case, lies 

generally in the second half of the contact. In this zone the extended 

approach results return to exceed the Reynolds equation based 

solution. Values are either as big as in the second zone but rising 

higher when the third zone is smaller in comparison with the second 

zone. Deviation of pressure from Reynolds equation based values 

contributes to the contact load capacity and the surface deflection due 

to higher values. For the pure sliding situation, S = 1.0 of load case iv, 

this third zone is quite strongly developed. 

(iv) In the fourth zone, from the pressure spike to the end of the contact, 

pressure falls again below Reynolds equation based values. As in the 

first zone, deviation values result also from the comparison of small 

values, so that this zone has no relevance for deflection and load 

capacity considerations. 

The development of the mean pressure along the gap correlates with the 

aspects discussed for the shape of the gap in subsection 11.3.1. The 

reduced mean pressure in the second zone leads to the additional 

constriction, whilst the increased pressure in the third zone agrees with the 

widening between the additional and the traditional constriction. Agreement 

with the expectation of the theory, subsections 3.3.4.6, is also given. More 

detailed understanding of the pressure distribution along the gap can be 

provided by looking at the flow distribution again. 

11.5.3.2 Pressure distribution along the gap and flow profiles 

In the above subsection 11.5.2.1, it was shown that most of the flow profile 

curvature is due to the pressure and viscosity variation across the height of 

the gap and that it appears even for a constant pressure gradient across the 

gap. Applying the product rule to equation 11.1, 

:=~(~.:) (11.4), 
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leads to 

(11.5). 

Assuming no pressure gradient and hence viscosity gradient across the gap, 

streamwise pressure gradient is responsible for all curvature of the flow 

profile. Assuming no pressure gradient along the gap, the total pressure 

curvature is caused by pressure and hence viscosity variation across the 

gap. Combining both considerations means that for a flow with pressure and 

hence viscosity variation across the gap and a pressure gradient along the 

gap, the total curvature of a flow profile is a combination of Poiseuille-like 

flow component due to pressure and hence viscosity variation across the gap 

and a real Poiseuille component due to a pressure gradient along the gap. 

Hence the same final flow profile can result from different combinations of 

Poiseuille-like and real Poiseuille components as figure 11.4 illustrates. 

For the Reynolds equation based analyses, the real Poiseuille flow 

component curvature is so small that it can only be detected by particular 

analysis of output data and cannot be seen; however, a Poiseuille-like flow 

component can be clearly seen for the extended approach. The dominant 

contribution of the Poiseuille-like flow to the total flow profile curvature can 

also be seen from the dimensionless form of the simplified x-momentum 

equation 11.5*, 

o = oP . [_ Phz ] + oP . [lC . a . 0 U] + [lC. 0
2 U] 

ax bhz aY ay oy2 
(11.6), 

and the values of the coefficients Phz/bhz , lC· a and lC, which gives values of 

2.3.1012
, 1.1.1017 

, and 9.9.1015 respectively for the present case iv. 

The equation can also be obtained from the x-momentum equation for an arbitrary 
shape of the gap, given as the first equation of set 3.42 

0= o~ .[_ PhZ +2.IC .y2.a. o~]+ o~ .[IC.a. o~] +[IC. o~u]; 
oX bhz ax ay oy oy2 

Omission of the normal tension term 2·IC· y2 . a . ouj oX and rearranging the 

parameters gives equation 11.6. 
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total flow Couette flow Poiseuille- Poiseuille 
profile component like flow flow 
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due to due to 
variable pressure 
viscosity gradient 
across the along the 
gap gap 

Figure 11.4: Various combinations of Poiseuille and Poiseuille-like flow 
leading to identical flow profiles: 
(a) backwards directed (positive) Poiseuille component, 
(b) no Poiseuille component, 
(c) forward directed (negative) Poiseuille component. 

Hence conclusions of the effect of the velocity profiles on the pressure 

distribution are difficult. However, in the opposite direction, a positive 

pressure gradient means a velocity profile slightly slower than pure 

Poiseuille-like flow, figure 10.5(a) to (c) and a negative pressure gradient 

means a velocity profile slightly ahead of a pure Poiseuille-like component, 

figure 11.5(d) to (e). 
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(b) (c) 

(e) (f) 

• u • u 

total flow profile 

Couette flow component and Poiseuille-like flow component 
due to variable viscosity across the gap 

Poiseuille flow component due to pressure gradient along 
the gap 

Figure 11.5: Flow profiles for variable viscosity and various pressure 
gradients: 
(a)-(c) increasing pressure along the flow, 
(d)-(f) decreasing pressure along the flow. 

11.5.3.3 Regime of the development of the pressure distribution 
along the gap 

Understanding of the development of the pressure distribution requires the 

view suggested in section 3.3.4.6. 

As a result of the elimination of the pressure gradient across the gap from the 

x-momentum equation, equation 11.6 becomes equation 3.39, 

ap [1-(k . aUJ2] = k . a2u ax P ay C ay2 (11 .7). 
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Assuming Hertzian pressure distribution and a parallel gap, changes to the 

Poiseuille flow components will appear except for the maximum pressure, 

with maximum values at a dimensionless contact width of X = ± 0.2*. In terms 

of their absolute value, these components will be symmetrical about the 

contact centreline X = 0.0, however they will differ with respect to their sign. 

Pressure distribution along the gap and shape of the gap are linked by the 

Boussinesq approach, which means that changes to the shape of the gap 

require a change to the pressure profile in the same region. 

If the required pressure correction is now small enough, that the pressure 

variation at all pOints are smaller than the difference between the original 

elliptical Hertzian pressure value and the maximum Hertzian pressure at this 

pOint, then the maximum pressure along the contact, except for any 

traditional pressure spike, will remain at the original contact centreline 

position X = 0.0 as shown in figure 11.6(a). Effects from the extended 

approach then appear nearly independently in the first and second half of the 

contact only linked by some weak effects of the Boussinesq approach, with 

maximum pressure remaining at the contact centreline. 

This development is present for all sliding ratios of load case ii and iii and for 

sliding ratios below S = 0.3 for load case iv, where the maximum pressure 

position, as figure 10.20(a) to (c) is not varying. When the pressure spike is 

now late enough so that the mean pressure distribution along the contact still 

follows the elliptical Hertzian distribution where the extended approach is of 

relevance, then a nearly symmetrical pressure variation along the contact 

can be observed. Figure 10.1 shows that the (degenerated) pressure spike is 

very late for load case iii, which explains all the symmetrical observations for 

this load case, for example in section 11.3.3 and 11.5.2.4. 

The maximum value at X=±O.2 results from the fact that kp varies along the Hertzian 
pressure distribution with an exponential pressure influence. Together with maximum 
elliptical Hertzian pressure distribution for the other selected analysis parameters the 

maximum of the term o~ '[1-(k . O~)2] is at X=±O.2 which is confirmed by the 
oX p OY 

minimum height position for load cases ii to iv. 
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Phz = 
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~!o( xpmax = 0 
1 . bhz 

Phz Pmax 
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original, Hertzian pressure distribution 

modified pressure distribution 

Figure 11.6: Development of the pressure for the extended approach: 
(a) pressure corrections do not exceed Hertzian pressure, 
(b) pressure corrections exceed Hertzian pressure. 

When pressure correction exceeds the difference between an originally 

elliptical Hertzian pressure distribution and the maximum Hertzian pressure, 

the maximum contact pressure will shift into the second half of the contact, 

as illustrated in figure 11.6(b). This means, however, that the first "half' of the 

contact and the additional constriction become wider, and the second "half', 

the widening, becomes smaller. That will cause a smaller pressure gradient 

in the first half and higher pressure gradient in the second half, which means 
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that flow profile deviation in the first half is smaller than in the second. This 

leads to less height reduction in the first half than height extension in the 

second half, causing repercussions on mean pressure distribution. This 

consideration explains at least the pressure distribution for the partial sliding 

case, S = 0.5, of load case iv and explains the movement of the maximum 

pressure position towards the outlet in figure 10.20(c) with increasing sliding 

ratio for load case iv. It explains also the movement of the position of 

maximum height position and position of agreement of height of the extended 

approach and Reynolds equation based solution, figure 10.8(b) and (c). 

In conclusion, load case iii and iv represent two different regimes where 

repercussions do not and do playa relevant role respectively. 

These repercussion effects also give an idea why load case iv behaves 

differently to the other load cases; however, for a full explanation, one more 

detail must be considered in the subsequent subsection. 

11.5.4 Correlation between pressure distributions along 
and across the gap 

11.5.4.1 Features of correlation 

The section on the pressure distribution across the gap, 11.5.2 discussed two 

patches of pressure and hence viscosity variation across the gap and 

explained why the height of the gap has to differ for constant and variable 

viscosity distributions across the gap. However the necessary change of the 

gap can only be achieved by a change of the mean pressure distribution 

along the contact as discussed in section 11.5.3. This means that, for the 

extended approach, pressure variation along and across the gap have to 

appear simultaneously for the extended set of equations. 

With the lower pressure on the lower, slower surface in the zone of the 

additional constriction, where the deforming mean pressure has to be below 

a Reynolds equation based pressure distribution, and the higher pressure on 

the lower, slower surface in the zone of the widening, where the deforming 

mean pressure is above that of a Reynolds equation based solution, the 

pressure at the lower, slower surface will always differ more from the 
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Reynolds equation based solution than at the faster surface. This is proved 

by the contour plots showing the deviation between the extended approach 

and Reynolds equation based solutions, figures 1 0.15(b) to (c). 

11.5.4.2 Technical relevance 

Pressure distribution at the contact surfaces, as a result of the pressure 

distribution across and along the gap, is an input parameter for stress 

analysis below the surface of the contact partners, which is used for fatigue 

life determination. So, the extended approach will lead to some changes in 

the stress distribution, particularly for the lower, slower surface. However, 

since the changes will be small and since state of the art standard fatigue 

analysis methods for roller bearings are based on Hertzian pressure 

distribution [105] the extended approach is of minor technical relevance. 

11.5.4.3 Correlation with governing equations 

Section 11.5.2 stated consistency of pressure variation across the gap with a 

view to its relevant governing equation and section 11.5.3 did the same for 

the pressure distribution along the gap. The pressure gradient ratio, equation 

3.38, 

(11.8), 

thus provides an opportunity to compare overall pressure distribution with a 

single governing equation. For the partial sliding case S = 0.5 of load case iv, 

the condition is fulfilled with both pressure gradients changing sign at a 

dimensionless contact width of X~+0.1, figures 10.16(a) to (c) and 10.17. 

For the pure sliding situation S = 1.0, it can be seen from the same figure, 

that the pressure difference across the gap, and hence pressure gradient, 

changes sign at the contact width of X ~ + 0.2, whilst the main maximum 

appears at X ~ + 0.35, which contradicts equation 11.8. 

It was stated in section 3.3.5, that there might be a need for governing 

equations taking also perpendicular flow components V into account, which 

would mean that the pressure gradient ratio equation must be rewritten. 
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Dividing the second equation of set 3.44 by the first and neglecting small 

terms as usual, leads to the following, pressure gradient ratio: 

ap 
ay 
ap 
ax 

(11.9). 

For small values of the term 110' uh • ex . 'Y' ea.P /ho «1 equation 11.9 returns to 

equation 11.8. However, for load case iv and pure sliding S = 1.0, term 

110 . uh • ex . 'Y • ea.
p 

/ho becomes relevant by equalling 0.13 for a pressure of 

pmean = 0.50 GPa and 0.24 for the maximum mean pressure of 

Pmean = 0.52 GPa. Hence the results for the differentials 

(au/av ·a2V/av2 -2·aV/ay .a2u/av2) are of some relevance for the shape 

of the gap observed and must be taken into account. 

For a maximum or a minimum of the height of the gap, velocity V becomes 

zero for both surfaces, and probably also between the two surfaces. Hence 

the gradients aV/av and a2v/ay2 also become zero. This means that, for a 

dominance of term 110' uh • ex . 'Y • ea.
p 
/ho » 1, pressure gradient will become 

zero near the height of the gap maximum, whilst for small terms 

110'4, .ex''Y. ea.P /ho «1, zero pressure gradient will occur for the case of pure 

triangular or trapezian flow. If the term is close to unity, 

110 . uh • ex· 'Y • ea.
p 
/ho ~ 1, the position of pure Couette flow lies between both 

the described positions. This is the case for the present pure sliding situation 

of load case iv, where the maximum pressure position lies between 

Xcross = + 0.20 and the height of the gap maximum Xhmax = + 0.45 at 

XPmax = + 0.35. 

Hence load case iv represents a regime, where the extended approach not 

only needs the set of equations 3.38 and 3.39 but also the full Navier-Stokes 

equations 3.42. 

In addition, the three summands of comparable magnitude in the 

denominator of equation 11.9 might give more locations where the sum 
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changes sign. Then equation 11.9 could also explain the further maximum at 

the contact centreline, the minimum at the position where the pressure 

difference across the gap changes sign at X ~ + 0.20 and the short section of 

negative pressure gradient along the gap between. However, it is difficult to 

confirm the existence of these two extreme values, not only because values 

of the gradients could not be estimated with the necessary accuracy from the 

available results, but also because it was seen that the curvature of the flow 

profile across the gap showing different signs at the position X ~ + 0.20, as 

shown in figure 10.11 (c). 

On the other hand since, for this situation, both the equations which are 

incorporated in the simulation method, first equation of set 3.42 and second 

of equation 3.44, are fulfilled and since a slightly higher pressure in the 

mentioned zone of negative pressure gradient would give at least qualitative 

fulfilment of equation 11.9, it cannot be ruled out that the applied numerical 

method reaches its numerical capacity although an optimum selection of 

parameters was attempted. Overcoming the problem is eventually possible 

by application of the fully simultaneous method of section 9.1. This idea 

originates from figure 9.13, comparing the sample results for the fully­

simultaneous and the successive-simultaneous method, where a slightly 

flatter pressure distribution near the contact centreline X = 0.0 for the 

simultaneous-successive method might already indicate numerical 

phenomena which cause the concave pressure zone of the pure sliding case. 

11.5.5 Viscosity 

Viscosity and pressure are related by the exponential Barus' description, 

equation 3.18a, 

(11.10), 

which means that both variables have identical zones of increasing and 

decreasing gradients and identical maximum and minimum pOSitions. 

Accordingly, description of pressure variation along and across the gap also 

applies to viscosity. Most arguments made and conclusions drawn for 

velocity, section 11.4 and pressure, subsections 11.5.1 to 11.5.4, implied 
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pressure-viscosity dependency and hence discussed viscosity behaviour. In 

the remaining part of this subsection, only additional aspects are considered. 

Values from the figures 10.21 (a) and (b) show that differences between the 

extended and the Reynolds equation based approach are considerable for 

viscosity. For the pure sliding condition S = 1.0, viscosity reaches only 60 per 

cent of the value it reaches for the Reynolds equation based solution in the 

first half of the contact but takes on triple the value in the second half of the 

contact. Comparison of these values with the viscosity variation across the 

gap, figure 10.21 (c), which is less than 15 per cent, underlines the 

dominance of the pressure effects along the gap. 

The viscosity gradient across the height of the gap will compensate the 

velocity gradient and will contribute to similar shear stress at both sides of the 

contact. However, the significant difference in viscosity along the gap is 

expected to have a significant influence on the shear stress distribution along 

the gap. Due to the much higher viscosity at some positions along the gap, 

shear stress peaks are expected which will prevent any desired smaller 

traction coefficient values. 

11.6 Shear stress and traction coefficient 

Figure 10.22 shows the shear stress distribution expected from the viscosity 

distribution including some shear stress peaks for the pure sliding condition 

S = 1.0 of load case iv. Comparison of the distribution for the extended 

approach and the reference curves for a Reynolds equation based solution 

show that the average values indicate a virtually unchanged traction 

coefficient". 

The dimensionless shear stress difference graph, figure 10.23 shows much 

smaller shear stress variations across the gap than figure 10.22 showed 

differences between the extended and Reynolds equation based approach. 

The shear stress in the first half of the contact is higher for the higher, faster 

surface and in the second half higher for the lower, slower surface. This 

Traction coefficient is the integrated dimensionless shear stress. 
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means that pressure and hence viscosity variation across the height of the 

gap cause more change to the shear stress than the variation of velocity 

gradient across the gap. Positive and negative shear stress differences seem 

to balance each other along the gap, which means also that the traction 

coefficient of the contact with the extended approach remains unchanged. 

In summary, shear stress distribution is mostly influenced by the pressure 

distribution along the gap, pressure variation across the gap has a smaller 

influence and the change to the flow profile the smallest influence on the 

shear stress distribution. 

Finally, figure 10.24 shows the traction coefficient for all load cases versus 

the sliding ratio S and deviation of the traction coefficient for the extended 

approach from that of Reynolds equation based solutions. Except for load 

case iv, traction coefficient values show a linear increase with sliding ratio S 

and are unchanged for the extended approach in comparison with the 

Reynolds equation based solution. For load case iv, traction coefficient 

values lie increasingly but only slightly below Reynolds equation based 

results for a sliding ratio below S = 0.6. This trend changes for sliding ratios S 

above 0.6 where the full Navier-Stokes equations become relevant and 

numerical inaccuracies were detected. 

Despite minor deviations, traction coefficient values, particularly for load case 

iii and iv are much above values expected from practical experience, as they 

are from Reynolds equation based solutions. It must be concluded that the 

extended approach clearly fails any expectations to contribute to an 

improvement of traction coefficient determination. 

11.7 Pressure spi ke phenomena 

11.7.1 Introduction 

Previous sections of the present chapter discussed the effects caused by the 

extended approach for that region of the contact where, for Reynolds 

equation based solutions, the so-called parallel gap is obtained. The present 

section 11.7 now concentrates on the zone of the traditional ehl constriction 

and the corresponding pressure spike. This is also the zone where the fully 
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simultaneous and the combined successive-simultaneous method showed 

some differences. 

Figure 10.1, showing the various load cases, show that for the applied, 

relatively coarse grid, some pressure spikes can be observed for load case ii 

and iv, but for load case i and iii the pressure spike degenerates to a 

"pressure edge". Development of the pressure spike in comparison with the 

Reynolds equation based solution is of particular interest when the pressure 

spike is in the region where the extended approach is relevant. This is 

determined by calculating factor kp of equation 3.39, 

ap [1-(k . au)2] = k . a2u ax P ay C ay2 {11.11} 

with 

using the maximum spike pressure instead of Hertzian pressure. Table 11.1 

gives the maximum spike pressure for the load cases and the value of kp and 

shows that for load cases ii and iv pressure spike lies in the region where the 

extended approach is relevant. 

relevance 
load case 

pressure 
for 

spike factor kp 
number extended 

pressure 
approach 

- GPa - -
i 0.24 0.16 no 

ii 0.34 2.7 yes 

iii 0.30 0.60 no 

iv 0.42 17 yes 

Table 11. 1: Factor kp describing the relevance of the extended approach 
at the pressure spike for load cases i to iv (table 10. 1). 
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Consideration of the height of the gap in figure 10.6 and of the pressure 

distribution in figure 10.16{a) to (c) allows the proposition that the pressure 

spike is not or is hardly affected by the extended approach. 

11.7.2 Correlation with governing equations 

The large degree of preservation of the pressure spike and the traditional 

constriction for the extended approach is consistent with the governing 

equations, when those used for the combined successive-simultaneous 

method are considered. These are the first equation of set 3.36 in its 

dimensional form, 

(11.12), 

and the second equation of set 3.37 in its re-arranged and dimensional form 

9.13·, 

op 
-= 
8y 

(11.13). 

As proposed in subsection 11.5.3.2, and shown by figure 11.5, a pressure 

increase in the first equation means that the real Poiseuille component is 

backwards directed in comparison to the total curvature of the flow profile; a 

pressure decrease means a forward directed flow profile. In the latter 

equation, pressure gradient across the height of the gap is determined by the 

total curvature. 

However, as for the consideration of correlation of the pressure distribution 

along and across the gap, subsection 11 .5.4.3, the results obtained with the 

combined simultaneous method contradict the pressure gradient ratio 

equation 3.38, 

Equation 11.13 is equation 9.13 without that term, which was found to be irrelevant for 
equation 3.37. Equation 9.13 was obtained in appendix J from the second equation of 
set 3.44. 
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aPjap -k au 
av ax - r· av (11.14). 

This is obvious from figure 11.7, showing that there is no change in the 

pressure difference across the gap ~P at the start of the ascent to the 

pressure spike. 

Contrary to the situation in the region where a Reynolds equation based 

approach leads to a parallel gap, the insufficient satisfying of equation 11 .14 

is present not only for the pure sliding situation S = 1.0 but for all load cases 

with the presence of a pressure spike, which are load cases ii and iv. 

Hence further consideration is required to understand which features mark a 

fully consistent pressure and height distribution in the pressure spike and 

constriction region. This discussion will conclude with a hypothesis in 

subsection 11.7.5 for the above observed not fully consistent pressure spike 

formation. 
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Figure 11.7: Detail of pressure, pressure difference and height distribution 
for load case iv (table 10.1) and pure sliding S = 1.0. 
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11.7.3 Theoretical aspects of pressure spike existence 

Combination of equation 11.13 and 11.14 lead in dimensionless form again 

back to equation 3.39 

(11.15), 

which indicates that, despite the pressure and viscosity distribution, a pure 

linear Couette flow profile must appear when either of the factors ap!aXor 

[1- (kp • au! aY r ] becomes zero. For a traditional ehl solution with a pressure 

spike, such as load case iv, four positions of flow profile change are present: 

(i) the first at the contact centreline, 

(ii) the second at the relative minimum of the pressure distribution marking 

the beginning of the pressure spike, 

(iii) the third at the top of the spike, and 

(iv) the last at the boundary of the analysis after the traditional constriction 

at the position of lubricant film rupture. 

The extended approach generates two extra positions where kp ' au! aY 

becomes unity, 

(v) in the first half of the contact, for load case iv at the transition from the 

inlet zone to the parallel gap, 

(vi) and after the pressure spike. 

These six positions are illustrated in figure 11.8. Accordingly, there must be 

six changes of the flow profile and, for an incompressible fluid, accordingly 

six positions of identical height. Between these positions, the gap is 

alternately smaller or wider. Figure 11.8 also shows a qualitative shape for 

the gap. 
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p 

1 

---+. X 

singularity 
pressure 

height of pure 
Couette flow 

(H = 1) 

--- pressure distribution 

--- shape of the gap for Reynolds equation based solution 

--- shape of the gap for extended appraoch 

Figure 11.8: Qualitative shape of the gap resulting from a typical ehl 
pressure distribution with pressure spike for the Reynolds 
equation based and the extended approach. 

However, some aspects make it difficult to imagine that such a shape of the 

gap can result from a qualitatively identical pressure distribution with two 

maximums, as for example: 

• The extension of the additional widening of the gap due to the extended 

approach exceeds that of the very small widening by the pressure spike 

by several orders of magnitude. Accordingly, the convergence of the 

gap before the very small pressure spike induced widening differs also 

by several orders of magnitude. However, the type of dent generated by 

a typical pressure spike is much too small to generate a dent which 

allows two positions of identical height in a much stronger convergence, 

as figure 11.9 illustrates. 
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• Whilst for a Reynolds equation based solution the small widening 

before the constriction is to the left of the pressure spike which 

contributes to its generation, it has to change to the right side for the 

extended approach. Considering the pressure spike for a Reynolds 

equation based approach as an edge pressure, then for the extended 

approach this edge pressure would appear slightly inside the edge. 

(a) (b) 

shape of the gap (with dent) 

Figure 11.9: Influence of dent depending on slope 
(a) small slope causing threefold intersection with 

horizontal, 
(b) increased slope causing single intersection with 

horizontal. 

On the other hand, consideration of a pressure distribution along the gap as 

having some kind of "pressure edge" rather than a pressure spike, the 

number of positions, where pure Couette flow is present, is two for the 

Reynolds equation based approach and four for the extended approach, as 

shown in figure 11.10. 
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singularity 
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--- shape of the gap for extended appraoch 

Figure 11. 10: Qualitative shape of the gap resulting from an ehl pressure 
distribution without pressure spike for the Reynolds equation 
based and the extended approach. 

For the extended approach this would lead to a direct transition from the 

additional widening into the traditional ehl constriction without a small extra 

dent. This is qualitatively the shape of the gap also shown in figure 11.10 for 

the computations. The pressure spike here causes a brief change in the 

curvature but is far from generating qualitatively the shape required for a 

solution with a pressure spike. 

In summary, a number of theoretical arguments have been made proposing 

the fact that it is likely that no pressure spike should be present for the 

extended approach, however, there is so far no numerical evidence for the 

existence or non-existence of a pressure spike for the extended approach. 
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11.7.4 Pressure spike and the fully simultaneous method 

With the above possibility, that the pressure spike might disappear for the 

extended approach, the sample result from the fully simultaneous method of 

section 9.1.2, which also misses the pressure spike, is reconsidered. 

According to figure 11.10, four points of linear Couette flow are expected. 

From figure 11.11, three pOints of pure linear Couette flow where the 

dimensionless height becomes unity, are shown, a fourth would appear for 

the film rupture point. Comparison with the pressure distribution shows that 

linear Couette flow appears for the maximum pressure and also for a 

dimensionless pressure P = 0.6 representing the pressure where the factor kp 

of equations 11.15 becomes unity. The beginning of the traditional 

constriction appears not at the degenerated pressure spike but slightly later, 

causing a somewhat smaller constriction. 
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Figure 11. 11,' Pressure distribution along the gap and shape of the gap near 
the traditional constriction for load case iv (table 10. 1) and 
partial sliding S = 0.5 computed by the fully simultaneous 
method. 
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In conclusion, with the result from the fully simultaneous method, it is likely 

that a solution of the extended approach fulfilling any combinations of 

governing equations, will lose the pressure spike, and will show some 

changes to the constriction in comparison to a Reynolds equation based 

solution. 

11.7.5 Hypotheses for pressure spike development 

Likely disappearance of the pressure spike for the fully simultaneous method 

and the unlikely appearance for the combined successive-simultaneous 

method raises the question of possible reasons. Comparison of the fully 

simultaneous method and the combined successive-simultaneous method in 

section 9.3 showed that both numerical methods show various differences 

with regards to the form of the governing equations finally used, the initial 

guess used, the residual evaluation and the values to control the analysis. 

These differences are subsequently discussed with regards to their possible 

contribution to different results. 

• As initial guess, a fully converged ehl pressure distribution with 

pressure spike and the according shape of the gap was used for the 

fully simultaneous method in subsection 9.1.1.3 and figure 9.2(b), whilst 

a Hertzian pressure distribution with the successively determined 

pressure variation across the height of the gap was used for the 

combined successive-simultaneous method, subsection 9.2.1.3 and 

figure 9.9(b) 

Physically, some of the traditional constriction is incorporated in the 

initial guess of the former method, whilst some of the extended 

approach is incorporated in the latter. Basically in any Newton-Raphson 

technique, different initial guesses might lead to different results, as 

they possibly do for the extended approach solution. However, the 

different initial guesses were not selected arbitrarily but were required 

by the respective method. 

• Regarding the selection of the equations which were finally used, the 

original Navier-Stokes equations were evaluated for the fully 
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simultaneous method, section 9.1.1.2. For the combined successive­

simultaneous method the original x-momentum equation was also used 

but a re-arranged equation for the determination of the pressure 

variation across the height of the gap 

(11.16), 

and 

op 
-= 
Oy 

(11.17). 

This arrangement means that any changes in the sign of the pressure 

gradient along the gap in equation 11.16, does not immediately result in 

a change of the sign of the velocity profile curvature in equation 11.16, 

but slowly via changes of the pressure gradient across the gap in 

equation 11.17. This latter method reliably converged even for difficult 

convergence conditions. Application of other equations, subsection 

9.2.1.1, would lead to a different behaviour as tests indicated. 

• The differential continuity equation was used to determine the mass 

flow residuals for the fully simultaneous methods, subsection 9.1.1.1, 

and the integral continuity equation was used to determine those for the 

combined successive-simultaneous method, subsection 9.2.1.2. Any 

inconsistencies regarding other than the x-momentum equation, will be 

seen in the mass flow residuals determined from the differential 

continuity equation but not in those from the integrated continuity 

equation. This might be an advantage of the fully simultaneous method. 

• Different numerical parameters to control both methods were set. Some 

of those had to be defined individually dependent on how the equations 

were coupled, which equations were applied and which residuals were 

used. Selection of numerical parameters can be of relevance for any 

solution. However, it was always attempted to set the values as tight as 
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possible; however, accuracy of any ehl analysis based on the CFD 

software is limited. 

In conclusion, it appears that the generation of the pressure spike in the 

successive-simultaneous methods can be caused by any of the above 

differences. An optimisation of the method must hence consider all the above 

phenomena. However, a substantial increase in the accuracy of the methods 

would require turning away from a CFD based solution with a numerical 

determination of the Jacobian matrix to an analytical determination of the 

Jacobian. 

11.8 Correlation with dimensionless factors 

Consideration of the numerical results with a view to the dimensionless 

factors kp, kc and kr of equations 3.38 and 3.39 enables a further check of the 

numerical method and could, vice versa, qualify such factors for application 

in simple design formulae which could describe the influence of the extended 

approach without requiring expensive numerical analysis. 

11.8.1 Check of numerical method 

The check of the numerical method is realised by obtaining those gradients, 

which are involved in the definition of the respective dimensionless factor, 

graphically from result plots at a selected position and a subsequent check 

on equality of the defining equations, 3.38 for kr, and 3.39 for kc and kr, at this 

pOint. 

The determination of most of the required gradients is straightforward. The 

pressure gradient along the gap op/ox can be obtained by measuring the 

slope in the respective plot showing the pressure distribution along the gap, 

as figure 10.16(c). The pressure gradient across the height of the gap 

op/oY can be obtained from the graph showing the pressure difference 

across the gap ~P, as figure 10.17, and the height of the gap at the same 

location, as figure 10.6. The first order velocity gradient across the gap 

oU/oY can be obtained from the sliding ratio definition, equation 3.41, 
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(11.18), 

and the above mentioned height of the gap. Only the determination of the 

second order velocity gradient a2u/ay2 is difficult, since the gradient can 

hardly be seen in the respective graph, e.g. figure 10.11, and furthermore the 

graphical determination is more cumbersome. In order to overcome this 

problem, the second order velocity gradient of equation 3.39 was substituted 

by a height description of appendix L, 

so that equation 3.39 becomes 

12. H -1 = a2 u 
H3 ay2 

ap[1_(k .au)2]=12'k .H-1 ax P ay c H3 

(11.19), 

(11.20). 

The applied correlation was obtained with the help of a one-dimensional, 

isothermal Reynolds equation as shown in Appendix L, under the assumption 

that the curvature due to viscosity variation is similar to that due to pressure 

gradient. 

For the check, factors ke, kp and kr are not determined with the dimensionless 

parameters form of equation 3.38 and 3.39, 

kc = 1.11. U-O·4 • G-1.2 • WO.26 • eO.4.GWO.5 

kp = 0.53. UO.3 • GO.4 • W O.13 • eO.4.G.wO.5 

kr = 0.63· U· G. W-O.5 • eO.4.GWO.5 

(11.21 ), 

but from a definition, which excludes the simplifications discussed in 

subsection 3.3.3, and illustrated in figure 3.7, and requiring knowledge of the 

pressure at the investigated location·: 

Details of the determination are given in Appendix D. 
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(11.22). 

Application of the described procedure to the partial sliding condition 

S = 0.5 of load case iv, table 10.1, as a sample case, leads to 

kc = 4002; kp = 68.2 and kr = 0.108 (11.23) 

and, as shown in Appendix M, to 

H=0.981, ap =0.190, ap =0.0213 and aU=1.019 (11.24) ax ay ay 

so that equation 3.38, 

is reasonably fulfilled by 

ap/ap -k au 
ay ax - r' ay 

0.0217 ~ 0.108.1.019 
0.190 
0.114 ~ 0.110 

and equation 3.39 modified to equation 11.20 

is reasonably fulfilled by 

o 190 J1-(68.2.1.019\2] ~ 12.4002._0._98_1--=--1 . l J 0.9813 

929 ~ 966 

(11.25), 

(11.26) 

(11.27) 

(11.28) 

The above agreement is evidence of a correct adaptation of the CFD code to 

the ehl problem and the correct implementation of the extended approach for 

the investigated set of parameters. This evidence is also obtained for other 

load cases and sliding ratio values. However, for those parameters, where 
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the applied successive-simultaneous method requires the full set of 

equations 3.42 and might reach its limit, subsection 11.4.4, the above 

agreement reduces. 

11.8.2 Application to useful design formulae 

The shown close consistency qualifies simple governing equations and 

dimensionless factors to be used to obtain some results, or even result charts 

as figures 3.8, 3.9, and 10.2(a) to (c), for the extended approach without 

expensive computations. Quantities, such as pressure variation, viscosity 

variation and minimum height may be described. However the factors 

determined for the check of the method should reasonably agree with th,ose 

determined without knowing details, from the dimensionless ehl parameters 

G, U andW. 

Table 11.2 shows these values for the situation used for the above check of 

the method, row (i), and for the application of the definition using the 

dimensionless ehl parameters, G, U and W, as in equation 11.21, row (ii). For 

the latter the dimensionless parameters as given in table 10.1 were used. 

Differences of approximately 50 per cent between the two cases can be 

observed for all factors, which seem to disqualify the factors kc, kp, and kr for 

easy design formulae. The differences result from different aspects: 

• The data of row (i) considers the real pressure at the location of 

pressure variation, row (ii) assumes maximum Hertzian pressure. 

• The data of row (i) are based on the calculated centreline height of the 

gap, row (ii) on that estimated from the dimensionless parameters, 

equation 3.26. 

• The values for the dimensionless parameters G, U and W of table 10.1, 

are round-off values. 

• The derivation of the factors of form 11.22 contains also some rounding. 

- 319-



Chapter 11 Extended approach result discussion 

However, a determination of maximum pressure variation across the gap or 

of the shape of the gap requires the consideration of the variation with the 

pressure along the gap of factors 1<0, kp, and kr. This is because if the 

pressure were kept constant at the Hertzian pressure the maximum values 

would appear at the beginning and end of a Hertzian pressure. 

In order to achieve such a variable description of factors 1<0, kp, and k,. without 

a full ehl analysis, the result of a film thickness formulae, for example 

equation 3.26, must be used for the centreline film thickness ho in the 

equation of form 11.22. Alternatively, equations 11.21 are modified so that 

the terms considering the pressure are made variable. The exponential term 

is that which causes pressure dependency in equation 11.22. This can be 

transposed by multiplying the exponent by the normalised pressure, so the 

factors become: 

1<0 kp kr 

factors obtained from the original form 11.22, 

(i) 
taking pressure at the position of maximum 

4002 68.2 0.108 
pressure variation across the gap into 

account 

factors obtained from dimensionless speed 
(ii) load and material parameters equation 6018 103 0.161 

11.21, assuming Hertzian pressure 

factors obtained from the original form 11.22 
taking pressure at the position of maximum 

(iii) pressure variation across the gap into 4145 69.8 0.108 
account, estimating the central film thickness 

from equation 3.26 

factors obtained from modified 
dimensionless speed load and material 

(iv) parameters, equation 11.23, taking pressure 4281 72.4 83.05 
at the position of maximum pressure 

* variation across the gap 

Table 11.2: Values of ke, kp and k, for load case iv determined using 
various methods. 

For the present case, the accurate values for G, U and W obtained with the definitions 
3.25 were used rather than the rounded values of table 10.1. 
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kc = 1.11· U-O·4 . G-1.2 • WO.26 • eO.4.P.G-W°.s 

kp = 0.53. UO.3 • GO.4 . WO.13 • e°.4.p.G-W°.s 

kr = 0.63· U· G . W-O.5 • eO.4.P.G.Wo.s 

(11.23). 

Results for the former method are shown in row (iii) of table 11.2 and for the 

latter in row (iv): Neither the alteration of the centreline film thickness from 

computed 0.346 IJm to estimated 0.340 IJm nor application of equation 11.23 

leads to significant deviations. Hence, the factors !<C, kp and kr can be used 

for easy design formulae as long as the real pressure is considered. 

However, the proposed procedure becomes increasingly inaccurate when the 

assumptions may deviate from reality, for example, for the pressure 

distribution, when the point of maximum pressure starts to move into the 

second half of the contact. This starts to be the case when the sliding ratio of 

load case iv exceeds 0.5 and is almost certainly the case for load cases 

exceeding the investigated range of parameters. Transferability can only be 

proved by further investigation. 

In conclusion, the limited range of validity of such formulae or charts and the 

minor technical relevance of the extended approach suggests not pursuing 

the material at this stage. The dimensionless factors !<C, kp and kr in its pure 

form 11.21 obtained from dimensionless ehl parameters G, U and W 

overestimate the influence of the extended approach as considered in 

section 3.3. 

11.9 Summary 

Throughout the present chapter, results have been discussed, mainly with a 

view to the various variables of the ehl analysis, the pressure spike and the 

dimensionless factors indicating the significance of additional terms defined 

in subsection 3.3.4.1. The present section summarises the main aspects and 

conclusions from the discussion by looking at the above findings from a 

different point of view, i.e. main features of results from the extended 

approach, technical relevance of the results and classification with regards to 

governing equations. 
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11.9.1 Main result features 

11.9.1.1 Pure rolling 

Results from the extended approach show perfect agreement with that from 

Reynolds equation based solution for pure rolling cases, 

11.9.1.2 Partial and pure sliding 

Extended approach results differ from those of a Reynolds equation based 

approach for non-pure-rolling conditions as follows: 

• The shape of the gap shows an additional constriction in the first half of 

the contact and a widening between this first constriction and the 

traditional constriction. The extension of the additional constriction 

along the gap might exceed that of the widening. Regarding the 

extension across the gap, the value of gap extension in the widening 

zone exceeds the value of constriction in the additional constriction 

zone. 

• In fulfilment of the continuity equation, a Poiseuille like logarithmic 

forward directed flow component, which is caused by viscosity variation 

across the gap, overlies the Couette flow in the constricted zone in the 

first half of the contact. Accordingly, a backwards directed Poiseuille like 

logarithmic flow component overlies a Couette flow in the zone of the 

additional widening. Overall flow rate is hardly affected by the extended 

approach. 

• For the extended approach pressure variation across the gap is 

present. In the zone of the additional constriction, pressure at the faster 

surface exceeds that at the slower surface; in the zone of the additional 

widening, pressure at the slower surface exceeds that at the faster 

surface. 

Pressure along the gap falls below values for the Reynolds equation 

based solutions in the first half of the contact and exceeds those in the 

second half. 
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• Shear forces along the contact differ considerably from that for the 

Reynolds equation based solution, however traction coefficient remains 

unchanged. 

11.9.2 Technical relevance of extended approach 

• The height outside the traditional ehl constriction is reduced in 

comparison to Reynolds equation based solutions in the zone of the 

additional constriction. The extended approach is of relevance for 

applications where centre line film thickness is used for further analysis 

as in some bearing fatigue analysis. The magnitude of height change 

has to be considered in comparison to the accuracy of any film 

thickness formulae and is hence technically irrelevant. 

• Pressure distribution at the contact surfaces is different compared with 

a Reynolds equation based solution. The extended approach leads to 

slightly different stress distributions in the contact material, however 

without relevance for technical applications such as fatigue life analysis 

• Traction coefficient values for the extended approach hardly change in 

comparison to Reynolds equation based solutions. Hence the extended 

approach cannot contribute to realistic traction coefficient values. 

11.9.3 Pressure spike 

The two applied numerical methods, the combined successive-simultaneous 

and the fully simultaneous method, show different behaviour regarding the 

formation of the ehl pressure spike. The fully simultaneous method proposes 

a disappearance of the pressure spike, which is supported by theoretical 

considerations. However the combined successive-simultaneous method 

suggests the existence of the pressure spike. Both the investigated methods 

show differences regarding the method of coupling, the formulation of the 

governing equations and initial values. Further investigations are necessary 

for a full understanding of the pressure spike for the presented extended 

approach. 
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11.9.4 Regimes of results for the extended approach 
solution 

With the extended approach and the applied successive-simultaneous 

approach various regimes of results were observed as 

• principal appearance of the extended approach phenomena, but with 

the magnitude of the numerical resolution of the result data, as in load 

case i, 

• typical behaviour of the extended approach for regimes close to the 

hydrodynamic regime, where the additional constriction has the same 

order of magnitude as the hydrodynamic convergence of the gap, as 

load case ii, 

• a behaviour showing a mainly independent influence of the extended 

approach on the first and second half of the contact without affecting 

centreline pressure and height, as in load case iii, 

• a behaviour showing interference of the phenomena in the first and 

second half of the contact as that maximum pressure is shifted towards 

the second half of the contact, and the value of the additional 

constriction and the widening differ, as for load case iv for the partial 

sliding conditions S = 0.5. 

• a behaviour showing a further development of the previous case, with a 

strong interaction between effects in the first and the second half of the 

contact, and the development of a pressure bulge in the second half of 

the contact, which is however not fully consistent with theoretical 

considerations and hence mark the border of the validity of the 

combined successive-simultaneous method, as for the pure sliding 

situation of load case iv. 
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The extended approach with regard 
to other work 

12.1 Introduction 

The previous chapter 11 discussed the numerical and physical aspects of the 

results obtained from the extended approach within the assumptions made in 

chapter 3, such as Barus' approach and Newtonian, isothermal conditions. 

These assumptions were made to simplify the set of equations for theoretical 

and numerical analysis. The current chapter intends to broaden the 

discussion to a more general evaluation of the extended approach and its 

solution methods. 

However, full quantitative validation of the extended approach cannot be 

applied with the current state of development of the method, because the 

simplifying assumptions of chapter 3 would themselves cause major 

deviations between theoretical and experimental results. Consequently, only 

some qualitative validation of pressure is considered in section 12.2. 

Explanation and quantitative estimation of differences between the present 

study and experimental experience, is discussed in the subsequent sections 

12.3 to 12.5. The consequences of dropping some simplifying assumptions of 

chapter 3 are considered, namely aspects due to the pressure-viscosity 

description, the assumption of Newtonian fluid behaviour and the assumption 

of isothermal conditions. 
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12.2 Validation using experimental pressure 
distribution 

As stated, fully quantitative validation of the extended approach with 

experimental data cannot be undertaken. However, consideration of 

experimental pressure distributions might be useful to confirm or otherwise 

the existence or relevance of phenomena caused by the physical effects 

described by the approach. This is because pressure variation across the 

gap is the result feature which is most characteristic, appearing exclusively in 

the extended approach of the present study. If such a pressure difference is 

not apparent then any other physical effects reduce the extended approach 

features to having little significance. 

However, determination of the pressure along the gap for both surfaces 

seems not to have been an important issue for publication so far. This might 

be due to the generally used assumption of constant pressure across the 

height of the gap and the fact that such measurements were preferably 

undertaken for the faster of the contact partners [106] to preserve the 

sensors. In addition measurement of the pressure with resistive transducers, 

such as those used by Baumann [106], must be temperature compensated to 

give the same pressure values for a sliding and a rolling contact of identical 

operating conditions, i.e. differences in the temperatures of the two surfaces 

sliding against each other can cause some apparent pressure differences. 

Any experimental pressure differences across the gap could also be caused 

by thermal phenomena, so that experimentally obtained pressures cannot be 

interpreted as an exclusive indication of physical pressure variation across 

the gap. If such experimental data were to be used for discussion of pressure 

variation across the height of the gap, a detailed and accurate understanding 

of the temperature drift would be required. 

A further qualitative validation could be the search for typical features of the 

pressure distribution along the gap and the corresponding shape of the gap 
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consistent with the predictions such as a slightly reduced pressure in the first 

half of the contact" or the additional constriction and the widening of the gap. 

Omissions due to simplifying assumptions could lead to significant changes 

also in the qualitative distribution of results, as, for example, thermal effects 

do in HSiao and Hamrock [107]. Hence the discussion is turned towards the 

understanding of the omitted effects of the extended approach rather than 

any qualitative comparison, even though some experimentally obtained 

height distributions, a shape containing so-called dimples observed by 

Kaneta and Nishikawa [108, 109], have a qualitatively astonishing similarity 

to the computed results of the present study. 

In conclusion, experimental evidence as to whether the additional terms of 

the extended approach are practically relevant, cannot be provided at 

present. Further consideration or even analyses are needed to overcome the 

simplifications made and to allow direct validation. On the other hand, 

extension of pressure measurements to account for both surfaces should be 

encouraged in the future. 

12.3 Influence of other pressure-viscosity 
descriptions 

12.3.1 Qualitative influence of Roelands' approach 

In the present study, Barus' approach, equation 3.18a, 

(12.1 ) 

was used, because of its compact form, in comparison to more developed 

descriptions such as the Roelands' equation in its isothermal form, equation 

3.18b, 

(In (110 )r9067}[ -1+(1+501010-9 op r] 
11 = 110' e (12.2) 

Spotting this effect would be difficult anyway, because the effect is quite small for the 
usually experimentally investigated faster surface, but would appear to be more 
significant for the slower surface. 

- 327-



Chapter 12 The extended approach with regard to other work 

with the viscosity-pressure index 

Barus' equation normally tends to overestimate the average pressure­

viscosity coefficient and hence the viscosity, particularly for high pressure 

values. 

This means that in the extended approach, the dimensionless factors kp and 

kr of equations 3.38 and 3.39 in their form of equation 11.22*, 

(12.3), 

would not be as high as they are and would not change as rapidly as they do 

for Barus' approach in figures 3.8 and 3.9 with an increase of the 

dimensionless speed parameter U and the dimensionless load parameter W. 

This means that the importance of the additional terms is smaller when 

considering Roelands' rather than Barus' approach. 

12.3.2 Quantitative influence of Roelands' approach 

The reduced values and hence the reduction in comparison to Barus' 

approach can be obtained by adaptation of factors kp and kr to Roelands' 

approach. The term ea'Ph% in the factors represents the ratio of viscosity at 

Hertzian pressure over viscosity at ambient conditions and can be replaced 

by the respective term of Roelands' equation. The term becomes 

with 

(12.4) 

In comparison to equation 11.22, dimensionless pressure viscosity coefficient 
a = (lo Phz was resolved into its original factors and P

hZ 
cancelled for the present form. 
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The term a represents the derivative of the exponent of the pressure 

viscosity description with respect to Hertzian pressure, i.e. 

(12.5) 

for Barus' equation and consequently becomes for Roelands' equation 

The dimensionless factors for (isothermal) Roelands' equation hence 

become 

... ".fi'(P ).ell(phz).u k = 0 hz h 
P h o 

... ". fi'(P ). ell(Phz) . u k = 0 hz H .y 
r h 

o 

(12.7). 

Values for the factors kp and kr for Barus' and kp and kr for Roelands' 

approach and comparisons for the load cases investigated, table 10.1, are 

given in table 12.1. 

dimensionless sliding dimensionless pressure 
influence factor gradient ratio 

comparing 
using using using using ratio 
Barus' Roelands' Sarus' Roelands' 

equation equation equation equation 

kp kp kr kr 
kr kp 
-=-
kr kp 

load case i 0.604 0.207 0.0004573 0.0001572 2.90 

load case ii 1.258 0.294 0.002856 0.000668 4.28 

load case iii 15.747 1.683 0.021 0.002295 9.15 

load case iv 98.42 4.837 0.134 0.00645 20.8 

Table 12.1: Values of factors kp' kp kr and kr for the load cases 

investigated (table 10. 1). 

It is apparent that a reduction factor of between 2.90 for load case i and 20.8 

for load case iv exists when comparing the two equations. It is seen that, for 
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load case ii that factor kr is similar in magnitude to the value of kr for load 

case i. Influence of the extended approach would hardly be evident within 

numerical error. For load cases iii and iv, factor kr also falls below the value 

for load cases ii and iii respectively. Accordingly, the magnitude of the 

changes to the results is comparable to cases ii and iii. Hence when 

determining the relevance of the extended approach, Barus' approach must 

be quoted as inaccurate even for the investigated low pressure of 0.3 GPa 

and 0.5 GPa, where normally Barus' approach is not considered inaccurate, 

Gohar [9], section 2.3. 

However, the extended approach is not generally negligible but may be 

significant beyond the dimensionless speed and load factors U and W 

currently investigated. It is expected that for this range of parameters the 

values for dimensionless factors kp and kr will drop to values similar to those 

investigated in the current study and will not take the very high values 

suggested in figures 3.8 and 3.9. 

For illustration of the validity of this suggestion various samples from 

published work, which have already been referenced earlier in this chapter, 

were considered, i.e. 

(i) a result of Baumann [106] including temperature measurement, for 

which the sensor temperature drift was considered, in the following 

referenced as case B 1, 

(ii) the maximum load case of the theoretical work by Eller [7] which 

complemented the experimental work of Baumann [106]; Eller's load 

case "BeispieI12" is referenced as case E1, 

(iii) two load cases used by Hsiao and Hamrock [107] as well as by Lee and 

Hamrock [48],referenced as H1, for their "Oil-I", and H2 for their 'Oil-2'~ 
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(iv) an experimental result of Kaneta et Nishikawa [108], which showed 

astonishing qualitative similarity for the shape of the gap with the 

isothermal results of the present study, but does not give thermal 

parameters *; this is referenced as case K1. 

The relevant parameters of these cases are listed in table 12.2t. 

Table 12.3 gives an overview of how the factors kp, kp, kr and kr behave 

for these published cases under the assumption of Barus' and Roelands' 

description respectively. 

dimensionless sliding dimensionless pressure 
influence factor gradient ratio 

comparing 
using using using using ratio 
Barus' Roelands' Barus' Roelands' 

equation equation equation equation 

kp kp kr kr ~=~ 
kr kp 

B1 7258 79.1 54.0 0.589 91.6 

E1 1.36 x 106 544 3690 1.48 2801 

H1 1.73 x 104 127 28.1 0.369 76.2 

H2 118 2.03 0.155 2.66 x 10-3 58.4 

K1 2.76 x 105 3.42 X 106 691 8554 0.08 

Table 12.3: Values for factors kp, kp, kr and kr using Barus' and 

Roelands' approach respectively for selected published 
results. 

As expected for the first four examples, B1, E1, H1, and H2, the values of 

factors kp and kr for Roelands' approach are up to more than three orders of 

magnitude smaller than the corresponding values of kp and kr for Barus' 

t 

Kaneta and Nishikawa [108] investigated elliptical contacts; for the present 
investigation, the contact with the major axis perpendicular to the motion of the 
surfaces and with the minor axis in the direction of motion was considered. Although it 
is still an elliptical contact, it was considered as a line contact for this consideration. 

The temperature column contains information relevant to section 12.5. 
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approach. For cases 81, E1, and H1, kr is approximately unity and tends to 

be slightly above the value of kr for load case iv of the present study. This 

means that the results presented in chapter 10 and discussed in chapter 11 

represent a typical magnitude of changes which can be expected for practical 

applications. Further, the specification for the suggested improvement of the 

numerical methods would not be as rigid as it seemed in chapter 11. 

However, for case K1 the values of the factors kp and kr are not smaller but 

even greater than kp and kr• For factor kr' the value is well above unity, and 

hence the additional terms remain of great importance. The reason for this 

behaviour is that the fluid used in the experiment was not a typical lubricant 

but the traction fluid "santrotrac 100': The pressure viscosity coefficient is 

high enough to give a viscosity-pressure index greater than unity, which 

leads to the observed rise in viscosity and hence values of the factors above 

those for Sarus' approach. 

12.4 Non-Newtonian effects 

A Newtonian behaviour was assumed for the lubricant throughout the 

development and discussion of the extended approach. The influence of the 

application of a non-Newtonian limiting shear stress on the presented 

extended approach was considered by Greenwood [110] following a 

presentation of first sample results of the extended approach [111]. 

Greenwood repeated the derivation of the governing equations but in 

dimensional form, so that equation 3.39 was written as 

(12.8) 

with 

Substituting the "usual approximatiorl' of the shear stress, 
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into the equation gives 

The extended approach with regard to other work 

au 
't =1')'-

xy Oy (12.9), 

(12.10)*. 

Assuming a pressure-viscosity coefficient of a = 2.0.10-8 .1jPa and "talking 

down" the shear stress to 'txy =10.106 ·Pa, Greenwood suggests that the 

bracket term [1- (a • 'txy f] is 0.96, which is equivalent, in equation 3.39, to a 

value of kp = 0.2. For such small values the expected change to the ehl 

solution due to the extended approach is smaller than that for load case i, 

having a kp value of 0.6, and is hence negligible. Higher kp values than the 

above cannot appear due to the limiting shear stress concept. 

Consequently, Greenwood concludes that the application of the extended 

approach will not have to be taken into account "provided that other essential 

modifications of Newtonian theory are introduced", as for example the limiting 

shear stress assumption. This statement implies that combination of the 

presented extended approach with established non-Newtonian approaches 

will not lead to further result improvement. On the other hand, it is not ruling 

out the fact that the extended approach of the present work could replace the 

non-Newtonian approach. However such a replacement is unlikely for the 

following two reasons: 

Firstly, as stated in chapter 11, the extended approach, at least in the 

investigated isothermal form, cannot contribute to any relevant improvement 

of the traction coefficient. Secondly, in the extended approach, the fluid 

properties only have influence on the pressure-viscosity coefficient. High 

pressure-viscosity coefficient values lead to higher values for factor kr, 

Although obtained in this case with the usual approximation of the shear stress, the 
bracket term ~ - (ex. 't xy r jiS the exact term, even if the accurate definition of shear 

stress is used [110]. 
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a·phz 11 . a.. e . uH k = 0 .y 
r h 

o 
(12.11), 

and to a stronger change of the results in comparison with a Reynolds 

equation based solution. So, high pressure-viscosity coefficient values would 

be needed for liquids showing a strong non-Newtonian behaviour i.e. a lower 

limiting shear stress. In contrast, for example in [9] or [18] the highest 

pressure-viscosity coefficient values at ambient conditions are reported for 

traction liquids, which have a rather high limiting shear stress value. 

Hence at the present position of this subsection, it must be stated that the 

extended approach using the full Navier-Stokes equations for the ehl 

problem, at least in its isothermal form, is not an alternative approach or 

additional contribution to non-Newtonian, limiting shear stress approaches, 

but is rather further argument for the non-Newtonian behaviour existence. 

Only if the limiting shear stress is high, a co-existence of extended approach 

effects and non-Newtonian effects might appear. This cannot be excluded at 

the moment for the above described case K1 with the traction fluid and its 

high pressure-viscosity dependency. 

For all cases considered the pressure-viscosity coefficient shows different 

behaviour at higher temperatures than the above described [18] so a final 

statement cannot be made without a thermal analysis of the extended 

approach. 

12.5 Thermal effects 

The simplifying assumption of isothermal behaviour is discussed by 

considering the interaction of thermal effects and the extended approach. For 

the pressure-viscosity dependency, initial qualitative considerations are made 

for both the influence of any thermal effects on the significance of the 

additional terms in the extended approach and vice versa, the influence of 

the extended approach on the thermal results. Subsequently, both aspects 

are combined and a proposal is made for the development of the numerical 

method. Finally some quantitative aspects are considered rounding off the 

previous findings. 
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12.5.1 Qualitative influence of thermal effects 

12.5.1.1 Influence of thermal effects on the relevance of the 
additional terms 

From the qualitative point of view, the introduction of thermal considerations 

to the extended approach will have a similar effect as the introduction of 

Roelands' rather than Barus' approach in section 12.3. The thermal 

Roelands' equation 

(In '10 +9.67}(-1+{1+5.1.10-t.P f)-YR·M 
11 = 110' e (12.12) 

contains an additional term in the exponent, which implies a reduction of the 

exponent when the temperature rises above ambient conditions. A reduction 

of the exponent implies a reduced viscosity, and that causes a further 

reduction of the relevance of the terms of the extended approach. This 

results in a further reduction of the range of parameters of dimensionless 

speed and load, U and W, where the extended approach is relevant. The 

range of reduction is discussed below in subsection 12.5.2. 

12.5.1.2 Influence of the additional terms on the thermal results 

The need for consideration of the additional terms in the extended approach 

resulted from the non-dimensionalisation of the Navier-Stokes equations and 

the subsequent evaluation of the factors accompanying the dimensionless 

gradients with regard to negligibility. Non-dimensionalisation and neglecting 

of irrelevant terms of the generally valid thermal equation according to 

Schlichting [55, 56], 

Oe . - 8 ( 83) 8 ( 83) 8 ( 83) p·-+p·dlvw=- k·- +- k·- +- k·- +11·<1> 
at ax ax ay ay az 8z 

(12.13), 

where <1> represents the dissipation function 

(12.14), 
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leads, as shown in appendix N, to that form of the dissipation function which 

is also used for Reynolds equation based solutions, for example presented 

by Dowson and Higginson [17], 

(12.15). 

The dissipation term of equation 12.13 can also be written as 

(12.16). 

Assuming a perfectly parallel gap for the moment, so that Bu/Oy in t· Bu/Oy 

becomes constant at all positions, a dimensionless shear stress diagram 

along the gap as figure 10.22 also represents the distribution of the 

dissipation term along the gap. Figure 12.1 shows this distribution of shear 

stress and dissipation for load case iv, table 10.1, partial sliding S = 0.5 , and 

the Reynolds equation based and the extended approach case. Integration of 

the dissipation term ". <I> along the contact leads to the dissipative heat 

applied to the lubricant, which is, when neglecting conductive heat transfer 

into the surfaces, proportional to the temperature increase. As figure 12.1 

illustrates, this dissipative heat absorbed, J". <I> • dx up to the point of 

maximum shear stress t = max, is higher for the extended approach than for 

the Reynolds equation based solution. This means that the temperature at 

the maximum shear stress position will be higher for the extended approach, 

and hence the maximum shear stress due to the lower temperature will be 

smaller. This is not only expected for this single position. Generally speaking, 

for the extended approach, higher shear stress appears rather in the second 

half of the contact where the temperatures will be higher [106]. Hence a 

reduction of the traction coefficient in comparison to a thermal, Reynolds 

equation based solution might be expected. 
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Figure 12. 1: Qualitative dissipation and qualitative shear stress distribution 
for the Reynolds equation based and extended approach 
solution; 
load case iv (table 10. 1), sliding ratio S = 0.5 . 
The upwards hatched surface is shown in the downwards 
hatched again to simplify size comparison. 

The effect described is reduced by the fact that the relevance of the extended 

approach is reduced by the existence of an increased temperature, and the 

later appearance of the maximum pressure will be smaller. 

In conclusion, a thermal extended approach using the Navier-Stokes 

equations might have some potential to improve traction coefficient results, 

which were originally anticipated for the present isothermal extended 

approach but were not achieved. 

12.5.1.3 Computational aspects of a thermal solution of the 
extended approach 

The computation of a thermal extended approach would mean that there are 

two mechanisms causing a viscosity variation across the height of the gap: 

Firstly the extended approach with the pressure variation across the gap 

leads to a viscosity variation; secondly the temperature distribution across 

the height of the gap due to different speeds along the gap and the 
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consequent variation of heat conduction across the gap into the solids 

causes a viscosity variation across the height of the gap. 

Currently, at least in Newton-Raphson techniques, the temperature 

distribution and hence viscosity correction across the height of the gap is 

mainly done in a loop superimposed on the internal loop solving the shape of 

the gap and the pressure distribution for a given temperature field, section 

6.1.8. In contrast, pressure variation across the gap and the resulting 

viscosity corrections are taken into account immediately as the residuals are 

calculated. So the two viscosity corrections are undertaken at completely 

different positions of the computational procedure. This discrimination of the 

viscosity variation treatments requires explanation and eventual 

compensation. 

The difference in position is because the process of finding a suitable method 

was driven by the idea of replacing Reynolds equation by the Navier-Stokes 

equations, and not by the fact that there are two potential viscosity 

modification features. Apparently there are two places where the viscosity 

variation across the gap can be unified. Incorporation of thermal aspects 

when analysing the flow field has already been mentioned in section 7.2, but 

would likely suffer from the same limitations as the method implemented. 

Shifting the analyses of the pressure and viscosity variation across the gap to 

the superimposed loop, as is established for Newton-Raphson solutions of 

Reynolds equation based thermal problems, would bring the whole analysis 

scheme closer to established and intensively explored methods, but would 

still require a description of the flow which takes into account the fact that 

pressure varies along and across the gap. This flow equation could be a two­

dimensional formulation as used for the fully simultaneous method, or 

perhaps a strong modification of a one-dimensional Reynolds equation going 

beyond Fowles' formulation [33] of a thermal Reynolds equation. Because 

such a method is closer to the established and better explored method, 

development of such a method could contribute to an expansion of the 

numerical borders of the present approach to a wider field of parameters and 

could also be used for extended isothermal analyses. 
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12.5.2 Quantitative influence of thermal effects 

In order to quantify the relevance of the additional terms of the extended 

approach the development of factors kp and kr as used for the evaluation with 

Barus' and Roelands' (isothermal) pressure-viscosity description is desired. 

The derivation of these factors follows mainly the ideas of section 3.3 and is 

shown in appendix O. The thermal Roelands' equation factors, now named 

kp and kr' become 

.. T)' a'(p ~3 ). eci(Phz,Mmax) • u k = 0 hz' max h 
p ho 

.. T)' a'(p ~3 ). eii(Phz,Mmax ) • u 
k = 0 hz' max h • Y 

r h o 

(12.17) 

with 

(12.18a) 

and 

a'(Phz,~3max) = Z· 5.1·1 0-9 . (In 110 + 9.67). (1 + 5.1.10-9 . PhZ)-1 - YR ~3max 
PhZ 

(12.18b). 

Equations 12.18a and b show that the relevance of the extended approach 

will become negligible, provided the temperature is high enough. For a 

realistic estimation of the relevance, knowledge of the temperature level is 

needed. For load cases which are required to be theoretically investigated 

from scratch, the temperature level is not apparent. Also for optical 

measurements, such as Kaneta and Nishikawa's [108] measurements for 

case K1 with a ball disc unit, temperature data are not available. Even for 

cases already investigated with regards to the temperature, such as the 

above-mentioned cases 81, E1, H1, and H2, it is difficult to define a correct 

temperature value. Considering Eller's [7] computed case E1, the 

temperature varies over 100 per cent between the faster surface temperature 

and the maximum temperature. The temperature level is overestimated since 

temperature reduction effects due to limiting shear stress or extended 

approach effects are not considered. Hence the overestimated temperature 
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might underestimate the significance of the extended approach. Baumann's 

experimental result [106] provides data for the faster surface only, and there 

is no information on the maximum and mean temperatures in the system, so 

the relevance of the extended approach might be overestimated. For Hsiao 

and Hamrock's [107] computed result the temperature level is again rather 

low because they assume limiting shear stress, which reduces dissipation 

and thus temperature, which leads again rather to an overestimation of the 

relevance. Hence a method was conSidered, which gives some information 

as to the relevance of the extended approach without knowing the contact 

temperature. However, it should be clear that such a method contains 

assumptions which will give an idea of the relevance of the extended 

approach. However, accurate answers can only be given by thermal 

numerical analysis. 

The method not requiring a temperature value is based on knowledge that 

the traction coefficient must have realistic values, which is for simplicity 

assumed to be O. f. With the assumption that the pressure variation along 

the gap is a pure Hertzian elliptical distribution and that the viscosity 

distribution is slimmer and hence, for simplicity reasons, is assumed to be a 

triangular shape with maximum viscosity at the centreline and zero at the 

edge of the Hertzian contact, the value of the maximum viscosity, for which 

the given traction coefficient can be obtained, as shown in detail in appendix 

pt,as 

(12.19). 

When considering this equation, it is not important as to whether this 

maximum viscosity value is physically existent or whether it appears for some 

other reason. 

t 

It is understood that real traction coefficients might differ depending on the type of the 
lubricant and other parameters. 

A similar, more advanced and accurate method could be found in [112]. 
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This value is now compared with the viscosity obtained at a certain 

temperature for the same Hertzian pressure, giving the viscosity ratio 

k = TJ(PhZ ' ,M~ max) ., 
TJmax 

(12.20) . 

When the viscosity ratio k., becomes unity, viscosity due to the temperature 

is that which is required for a realistic traction coefficient. Figure 12.2 displays 

the viscosity ratio k., versus the dimensionless pressure gradient ratio kr·' 

Factor kr is multiplied by the velocity gradient across the gap au! av in order 

to allow comparison of various sliding ratio cases. Characteristics for the 

selected five cases 81, E1, H1, H2, and K1, subsection 12.3.2, obtained with 

this method are shown. 

In addition, four points are shown which can be determined for the respective 

cases for given temperature values, described in table 12.2. 

Looking at the points, figure 12.2 shows that for case E1 and H2 the 

temperatures given are high enough to reduce viscosity, according to 

Roelands' approach, to values which are comparable with those required to 

give a traction coefficient estimated with equation 12.19. At the same time, 

pressure gradient ratio multiplied by the velocity gradient kr • au! av is 

approximately 0.001, for which very small changes to the flow can be 

expected. Cases 81 and H1 have values of kr .au!av close to 0.1 so 

changes to the flow similar to load case iv of the present study, table 10.1, 

can be expected. However, maximum viscosity values obtained are 10 times 

higher than those leading to realistic traction coefficient values. 

Factor kr represents the relevance of additional terms, for the same pressure and 
temperature. 
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Figure 12.2: Viscosity ratio kTJ versus effective dimensionless pressure 

gradient ratio factor x velocity gradient kr . au/av for various 

cases from published work. 

With regard to the general characteristics of figure 12.2, it can be observed 

for all displayed cases that if viscosity ratio and hence viscosity are, for 

whatever reason, small enough such that realistic traction coefficients are 

obtained, then the pressure gradient factor multiplied by velocity gradient 

kr . aUf av is always smaller than 0.01. This means that the additional terms 

are hardly relevant and that the changes to the shape of the gap and the 

pressure distribution are minor. The extended approach can thus be 

neglected for practical applications. 

On the other hand, as soon as the pressure gradient ratio (multiplied by 

velocity gradient) reaches values around 0.1, the dimensionless viscosity 

ratio has already risen to more than 10. This means that changes to the 
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pressure profile and the shape of the gap of the magnitude shown in chapter 

10 for load case iv and partial sliding S = 0.5, must lead to effects which lead 

to a 90 per cent reduction of the traction forces on the surfaces. This is most 

unlikely. 

The above applies to all considered cases, with also the traction liquid case 

K1. Here, as for E1, the required viscosity reduction is slightly milder for a 

given pressure gradient ratio. Hence, for the traction liquid for which a high 

limiting shear stress is proposed, the influence of the extended approach is 

slightly higher but still small and cannot contribute to the explanation of the 

dimple shape observed by Kaneta and Nishikawa [108]. 

In conclusion, not only Greenwood's statement [110], that the extended 

approach is negligible provided other modifications are applied to the 

Newtonian approach, is correct but also that modifications to the Newtonian 

approach are required even if the extended approach is used. 

12.6 Closing remark 

After theoretical discussion of the influence of some of the simplifying 

assumptions of chapter 3, i.e. Barus' approach, Newtonian fluid behaviour 

and isothermal conditions, the range of parameters computed in the present 

study covers, at least from the point of the dimensionless factors, most 

practically relevant cases. However changes to the flow in these cases are 

small as long as the flow is considered isothermal. 

In order to achieve realistic traction coefficients, a reduction of the tangential 

stress acting on the surfaces of up to several orders of magnitude would be 

needed. This seems to be unlikely because the computed relatively small 

changes in flow characteristics would have to cause such a large reduction. 

Hence the extended approach rather underlines the need for other 

modifications to the Newtonian fluid assumption, such as limiting shear 

stress. 
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Conclusions 

13.1 Governing equations 

Theoretical consideration of the Navier-Stokes equations showed that when 

deriving the governing equations for ehl analysis some terms are admissible, 

others inadmissible: 

• Inertia forces are irrelevant for the ehl problem and hence negligible. 

• For non pure rolling cases, additional viscous shear force terms 

perpendicular to the gap, appearing due to the strong viscosity gradient 

along the gap, must be taken into account. 

7 In consequence, the pressure variation across the gap is relevant 

and must be taken into account for non pure rolling cases. 

7 The additional viscous terms are increasingly relevant for high 

dimensionless load and speed parameters and high sliding ratio 

values. 

7 The magnitude of the additionally relevant terms depends on the 

applied pressure-viscosity description. 

7 Additional terms are irrelevant if a limiting shear stress model with a 

common limiting shear stress value is assumed. 
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13.2 Application of a general purpose software 
code to ehl problem 

General purpose software for the solution of the Navier-Stokes equations, 

CFD software, was applied to the ehl problem for the first time. 

• CFD software can be applied to solve the ehl problem. 

• Traditional SIMPLE type pressure corrections must be replaced by e.g. 

a Newton-Raphson technique to achieve converged results. 

• Analytical determination of the Jacobian matrix in the Newton-Raphson 

technique cannot be realised in a CFD code and hence must be 

substituted by numerical approximation. 

~ Numerical parameters within the CFD based solution must be 

carefully balanced to achieve convergence. 

~ The range of parameters, for which converging results are obtained, 

is reduced due to the numerical determination of the Jacobian 

matrix. 

• Negative first order discretisation of the height of the gap as used in 

Reynolds equation cannot be realised with CFD software. 

~ Default utilisation of geometry data in CFD software is equivalent to 

a central discretisation scheme. 

~ A CFD based solution of the ehl problem tends to fail for the default 

central discretisation scheme. 

~ Grid staggering can be used to overcome fluid-structure interaction 

problems. 

• Due to high analysis times, large adaptation effort and a reduced range 

of parameters, a CFD based solution of the ehl problem cannot 

compete with special purpose solutions. 
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13.3 Numerical techniques for an extended ehl 
solution 

The following conclusions can be drawn for the numerical techniques and 

their implementation independent of the application of general purpose 

software or the development of special purpose software. 

• Solution of the Navier-Stokes equations at the singularity is possible if 

simultaneous deflection of the shape of the gap is allowed. 

• Newton-Raphson techniques are the most suitable to realise the 

solution of the extended set of equations. 

• Various concepts are available for the solution of the extended 

approach: a fully simultaneous and two successive-simultaneous 

concepts: 

7 the fully simultaneous method requires higher computational 

resources but less implementation effort, 

7 the successive-simultaneous method is considerably faster but 

requires more implementation effort, and 

7 the successive-simultaneous method with postponed determination 

of the pressure variation across the gap will be of use for the 

thermal solution of the extended approach. 

• Depending on the concepts, various arrangements of the governing 

equations can be used. 

7 The fully simultaneous method allows the solution of both 

momentum equations for their corresponding velocity components 

as implemented in standard CFD software. The continuity equation 

must be applied in its differential form. 

7 In the case of the successive-simultaneous method, the same 

integral continuity equation can be applied as for the traditional ehl 

problem solution. The x-momentum can be solved for the velocity 

along the gap but the y-momentum equation must be solved for the 

pressure variation across the gap. 
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~ Various forms of the y-momentum equations are available for the 

determination of the pressure variation across the gap. Depending 

on the form, both the implementation effort and the quality of the 

results can be influenced. 

• Selection of a concept and a form of the governing equations leads to 

different convergence behaviour and differences with respect to the 

pressure spike. 

• Additional terms of the extended approach lead to a reduction of the 

range of parameters, for which the ehl solution converges. 

~ The iteration error of the residuals of the continuity equation 

increases due to the extra inner iteration of the y-momentum 

equation in the successive-simultaneous method. 

~ The maximum pressure determining the range of parameters for 

which convergence is obtained, can be higher for the extended 

approach than for a Reynolds equation based solution of the same 

Hertzian pressure. Hence the range of the Hertzian pressure for 

which convergence is obtained is smaller. 

13.4 Typical result features for an extended 
approach and technical relevance 

Isothermal computation and discussion of the results lead to the following 

conclusions: 

13.4.1 Pure rolling 

• Results based on Reynolds equation and based on the extended 

approach are identical. 

13.4.2 Partial and pure sliding 

• The shape of the gap develops an additional constriction in the first half 

of the contact and develops a widening in the second half of the contact 

before the traditional ehl constriction. 
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~ If the relevance of the additional terms is small, the transition 

between the additional constriction and the widening is at the 

contact centreline and moves into the second half of the contact for 

increasing relevance of the terms. 

~ The computed changes to the shape of the gap are too small to be 

of technical relevance. 

• In the zone of the additional constriction the flow develops a forward 

directed Poiseuille-like component; in the zone of the· widening a 

backward directed Poiseuille-like flow component. 

• The mean pressure falls below Reynolds equation based solutions in 

the first half of the contact and rises above them in the second half of 

the contact. 

~ The position of the maximum pressure is shifted in the second half 

of the contact with increasing relevance of the additional terms. 

• A pressure difference between the slower and the faster surface of the 

contact develops with the pressure on the faster surface exceeding that 

on the slower surface in the zone of the additional constriction and vice 

versa in the zone of the widening. 

• Local traction coefficient distribution changes but the integral traction 

coefficient shows very small changes. 

~ The computed changes to the traction coefficient are to small to be 

of technical relevance. 

• With the extended approach, the pressure spike is likely to disappear. 

• A consideration of realistic pressure-viscosity approaches and 

incorporating thermal effects will reduce the influence of the extended 

approach. 

• The extended approach cannot replace any other essential modification 

to a Newtonian approach, i.e. non-Newtonian behaviour. 
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Recommendation for future work 

14.1 Numerical aspects 

The numerical method presented was developed to understand the influence 

of the extended approach on the ehl problem. It delivered results allowing 

many conclusions regarding the extended approach, but could not provide 

the numerical results for the extended approach once their influence 

exceeded certain limits. Hence the re-implementation of the proposed 

methods in a special purpose code, and outside a general purpose CFD 

software would allow further research on the improvement of the 

numerical quality of the extended approach. This would allow the obtaining 

of numerical results for numerical parameters beyond those which define the 

limit and would give a definite answer to the question of the existence of a 

pressure spike for the extended approach. A subsequent extension of the 

method to thermal, compressible, non-Newtonian conditions could 

analyse the advantage of shifting the thermal analysiS into the Newton­

Raphson loop as proposed in section 7 and contribute to research which is 

investigating the Navier-Stokes equations for rough contacts. Application of 

the multigrid technique to the extended approach would provide a further 

improvement of the performance of the extended approach solution, allowing 

a fast investigation of a wide field of parameters, fine discretisation of the 

contact, transient analysis and the consideration of pOint contacts. 
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14.2 Physical aspects 

Although it is expected that the technical relevance of the extended approach 

is likely to be small for thermal conditions, once the numerical performance of 

the numerical methods is improved, numerical results for the extended 

approach taking thermal effects and Roelands equation into account 

would be an interesting completion of the present study. This is because it 

would give final numerical evidence for the conclusions drawn in the present 

study based on theoretical, one-dimensional considerations. 
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Appendix A 

Details of Reynolds number 
determination 

Derivation of Reynolds number written in dimensional parameters, equation 

3.28b, or in dimensionless ehl parameters, equation 3.28c, follows the 

subsequent procedure, shown in more detail than in section 3.1. 

In the definition of Reynolds number, equation 3.23c, 

(A.1) 

the definition of the geometrical ratio, equation 3.21, 

(A.2) 

is introduced and Reynolds number becomes 

(A.3). 

The introduction of the description of the Hertzian width bhz by the Hertzian 

pressure Phz, equation 3.24a, 

gives for the Reynolds number 

rred 
bhz = 4'PhZ' E' 

R 
Po' uh • ho 2 • E' e = ..;.......=...--'-'----=--

4'1')0 'PhZ ·rred 
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Appendix A Details of Reynolds number determination 

Replacing the central height of the gap by its definition, equation 3.26, 

leads for the Reynolds number to 

Re = Po . uh • (1.9. GO.6 
• UO.7 

• W-O.13 
• rred) • E' 

4'110 'PhZ ·rred 

which can be written as 

361. P . u . E'· G1.2 . U1.4 . W-()·26 . r 
Re =' ° h red 

4'110 'PhZ 

(A,7) 

(A,8a), 

(A,8b). 

Introduction of the definitions of the dimensionless parameters, equation 

3.25, 

(A.9a), 

(A,9b), 

and 

G=E'·a (A.9c) 

gives 

3.61. P . u . E' .fE' . a)1.2 . (110' uh )1.4 .(2.1t. PhZ 
2 

J-o.26 . r ° h ~ E' . r E,2 red 

R 
_________________ ~ __ ~re~d~~ ______ ~ __ ___ e= 

(A,10a), 

which can be reduced to equation 3.28b 

0.56. P . u 2.4. E,1.32 . TJ 0.4. a 1.2 
Re = 0 h ° 

P 
1.52. r 0.4 

hz red 

(A.10b). 

Rearranging the definition of load parameter W for Hertzian pressure Phz 

gives 

WO.S ·E' 
PhZ= ~ 
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and that of the speed parameter U for the viscosity at ambient conditions 110, 

(A.11b). 

Substitution into equation A.8b leads to 

361.p ·U ·E'·G1
.
2 ·U1

.
4 ·W-o·26 ·r U Re =' 0 h red • h 

4 U E' r W 0.5 • E' . • • red 

which can be simplified to equation 3.28c 

2 

Re = 2.26. Po' uh .G1.2 .UO.4 • W-O.76 

E' 
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Appendix B 

Determination of the maximum 
Reynolds number 

Reynolds number is determined by the equation 3.28b 

in which the variables range between the limits shown in table B.1: 

Hertzian pressure Phz = 0.1 .. .4.0 GPa 

reduced radius rred = 0.0002 ... 0.1 m 

hydrodynamic speed uh = (0.0) ... 0.2 ... 20 m·s-1 

reduced Young's modulus E' = 2.27 ·1 05 N·mm-2 

pressure-viscosity a = 2.18 ·10-8 Pa-1 

coefficient 

viscosity 110 = 0.002 ... 0.5 Pa·s 

density p=870 kg·m-3 

Table B. 1: Range of parameters for Reynolds number calculation. 

There are no local maxima within the domain of definition since none of the 

partial derivatives can become zero in the domain. Therefore, the maximum 

of the function must be at the edge of the domain. The maximum value is 

obtained if the variables with a positive exponent take their maximum value 

and those with negative exponents their minimum. The maximum Reynolds 

number is 

Remax = 6.4 (B.2) 
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However, the dimensionless parameters U and W of the above Reynolds 

number suggest that rigid hydrodynamic theory must be applied, whereby the 

definition of Reynolds number B.1 is not valid. The condition for 

elastohydrodynamic lubrication is 

W ~ 0.017. UO.325 

Equation B.3a can be rewritten as 

W = k· 0.017. UO.325 

with k ~ 1. 

(B.3a). 

(B.3b) 

The definition of the dimensionless parameters Wand U, equation 3.25, is 

introduced in equation B.3b, and the equation is solved for any of the 

variables, e.g. the Hertzian pressure Phz, 

P _ kO.s ·0052· 0.5. u 0.5 • r -0.5. Eo.S38 
hz - • flo h red (B.4) 

Substituting equation B.4 into equation B.1 leads to 

U~·153 • E,0.047 • a 1.2 • fl O.153 • P 
Re = 50 . kO.76 • rO.153 

red 

(B.5). 

As in equation B.1, the new definition of Reynolds number does not contain 

any local maximum within the domain of definition. The absolute maximum 

appears at the border of the domain. Again, using maximum values for 

variables in the numerator and minimum values for those in the denominator, 

the maximum Reynolds number is 

Remax,ehd = 0.2 (B.6). 
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Appendix C 

Details of the derivation of the 
viscous terms significance 

The present appendix aims to give more details of the derivation to determine 

the significance of the individual viscous terms of the Navier Stokes equation 

than is included in section 3.3. 

C.1 Non-dimensional form of Navier-Stokes 
equations 

(corresponding to section 3.3.1) 

Governing equations are the incompressible, two-dimensional Navier-Stokes 

equations 3.15, 

p{u.: +y. ~) =-: +2· ![~. :]+ ~[~{~ + :)] 
p{u.: +y. :) =-: +2· ~[~.:]+ ![~{~ + :)] 

Neglecting the inertia terms gives 

0=-: +2· ![~. :]+ ~[~{~ + :)] 
0=-: +2· ~[~. :]+ ![~{~ + :)] 

Differentiation of the products gives 
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AppendixC Details of the derivation of the viscous terms significance 

(C.3). 

Introduction of 8arus' pressure-viscosity description, equation 3.18a, gives 

ap a. a2v Or]o • ea
.
p Ov 

o = - Oy + 2· 110 • e p. Oy2 + 2· Oy . Oy 

e
a-p a2u Or]o . ea

.
p au a-p a2v Or]o • ea

.
p Ov 

+ 110 • • OxOy + Ox . Oy + 110 • e . Ox2 + Ox • Ox 

(C.4). 

Differentiation of the products introduced by 8arus' equation leads to 

(C.5). 

Non-dimensionalisation with definitions 3.19 and 3.29 results in 
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BP BV 

(C.6). 

Introduction of the dimensionless pressure-viscosity coefficient a = a· PhZ' 

equation 3.31 a, yields 

Cl'P ho " . eCl'P • a . _h_o . u 
11o·e '-b-'Uh a2v '10 b h ap av 

+ hz.-=-= + ____ -=hz'--_. -='-= 
bhz • ho aXay bhZ • ho ay ax 

2 Cl'P ho 2 Cl'P - ho - ·11o· e ,-,uh a2v ·11o· e .a·-
b 

,uh 
P ap b ap m 0= _.J!l...-=+ hz • __ + hz 
ho ay h~ ay2 h~ . ay . BY 

(C.7). 

Introducing the geometry ratio y = ho/bhZ , equation 3.21, results in 
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a·p 
Finally, summarizing by defining K = llo' e 2 • uh gives equation 3.30 

ho 

- 2- - -

0= _Phz ap + 2.y2 'K' a u +2.y2 'K.a' ap . au 
bhz ax ax2 ax ax 

a2 u _ ap au 
+ K·--=-+K·a '--='--=-ay2 ay ay 

2- - -
2 a v 2 _ ap av 

+ y 'K'-=-=+Y ·K·a·-==·-= axay aY ax 

C.2 Simplifying the equations 

(corresponding to section 3.3.2) 

(c.g). 

Equation C.g and 3.30 respectively can be simplified by applying Schwarz' 

rule for mixed derivations and continuity equation to the terms containing 

mixed derivatives 
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(C.10a) 

and 

(C.10b). 

Equation C.9 and 3.30 respectively simplifies to 

- 2- - -

O=_PhZ oP +y2'1(' au +2.y2'1('(l' op. au 
bhz ax ox2 oX ax 

02U _ op au 2 _ oP oV 
+ 1(.-=-+1(.(l .-=.-=-+ Y '1('(l'-='-= 

oy2 oy oy oy ax 
(C.11 ). 

Collecting with respect to the pressure gradient gives equation 3.33 

(C.12). 

The geometry ratio I can be neglected in comparison to unity, so equation 

C.12 simplifies to equation 3.34 

o = ~~ -[ - ~: + 2 ° q2 ° a ° ~~] + ~~ -[ K-<X ° ~] + [ K ° ~~~] 
0= :~ -[ - ~: +2 oq oa. o ~]+ ~~ -[ Koyoa ° ~]+oyo ~~~] 
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C.3 Consideration of parallel gap 

(corresponding to section 3.3.4) 

For the consideration of the parallel gap, the continuity equation is introduced 

to the x-momentum equation so that equation C. 13 becomes 

0= :~ o[_~: -2 oq·ou o ~]+ :~ -[NO :~]+o :~~] 
0= ~~ -[ -~: +2

o
q

o
u

o ~]+ :~ -[ qou
o :~]+oro :~~] 

(C.14). 

For the consideration of the parallel contact, the velocity across the contact is 

defined to be zero, equation 3.35 

(C.15), 

so that by neglecting all terms containing V equation 3.36 is obtained 

- - - 2-
Phz ap - au ap a u 

0=--·-=+ K' (X. '--=:-'-=+K'~ 
bhz ax ay ay ay2 

(C.16). 

Phz ap - au ap 
0= --'-= + K'Y' (X. .--=:-.--=-

ho ay ay ax 

For the development of equations containing only one pressure gradient, the 

second equation of set C.16 is solved for the two pressure gradients 

ap ho _ au ap 
-==-·K·Y·(X.·-=·-= ay Phz ay ax 

(C.17) 

and 

ap Phz 1 ap 
~=-. 

ax ho _ au ay 
K'Y'(x' '-= ay 

(C.18). 

Substituting equation C.17 into the first equation of set C.16 gives an 

equation for the pressure gradient along the gap 

- - -- 2-

0= - PhZ • ap + K' a . au . ho . K' 'Y' a . au . ap + K' a ~ 
bhz ax BY Phz ay oX BY 

(C.19). 
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Collecting the pressure gradient terms gives 

(C.20). 

Collecting the term Phz/bhZ and resolving the geometry ratio y yields the first 

equation of set 3.37 

(C.21). 

Substituting equation C.18 into the first equation of set C.16 gives an 

equation for the pressure gradient across the gap 

2-Phz Phz 1 ap _ au ap a u 
0=--·-· .--=+ lC' a. .-=-.--=+ lC' -2 

bhz ho _ au ay ay ay ay 
lC·y·a.·-=-ay 

(C.22). 

M It' I' b - au . u Ip ylng Y lC' Y • a. . --= gives ay 
- - - - - 2-

O=_PhZ .PhZ. ap +lC.a.. au 'lC.y.a.. au ap +lC'lC'y.a.. au. a u 
bhz ho ay ay ay ay ay ay2 (C.23). 

Dividing by Phz /bhZ and collecting the pressure gradient terms gives 

(C.24). 

Collecting the term PhZ /ho and resolving the geometry ratio y yields the 

second equation of set 3.37 

0= _PhZ . ap '[1- h~ 'lC: .a2(au)2]+'lC2 .a. .y. bhZ • au. a2~ (C.25). 
ho ay PhZ ay PhZ ay ay 
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C.4 Consideration of an arbitrary shape of the gap 

(corresponding to section 3.3.5) 

The basis for the analysis is the governing equation 3.15 

0= ~~ 0[_ ~: +2 0Koy' 0a 0 ~~]+ ~~ o[ Koa 0 ~~] +[ Ko ~~~] 

o = ~~ 0 [ - ~: + 2 0 K 0 Y 0 a 0 :~] + ~~ 0 [ K 0 yo a 0 ~~] + 0 yo :~~] 
(C.26). 

For the determination of the momentum equations containing only a single 

pressure gradient, equations C.26 are written in a simplified form as 

0= ap . [X1 + x2]+ ap . X3 + x4 ax ay (C.27) 
ap [ ] ap 

0=--==· Y1+Y2 +--=='Y3+Y4 ay ax 

with 

x = _ PhZ (C.28a), 1 bhz 

2 2 - au (C.28b), x2 = . 1C . Y . a. . --=-ax 
_ au 

(C.28c), x =1C.a..--=-3 ay 

a2u (C.28d), x =K'-4 ay2 

Y __ PhZ 1 - , 
ho 

(C.28e), 

2 - av (C.28f), Y2 = ·K·Y·a.·-= ay 

_ au 
(C.28g), Y 3 = K • Y . a· ay 

and 

a2v 
(C.28h). Y 4 = K • Y . 8y2 
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In order to get an equation for the pressure gradient along the gap, the first 

equation of set C.27 is multiplied by (Y1 +Y2) and the second is multiplied by 

by - ><3; set C.27 then becomes 

o = a p . [X1 + X 2] . [y 1 + Y 2] + 8 P . X 3 . [y 1 + Y 2] + x4 . [y 1 + Y 2] ax 8Y 

0=- 8P .[y +Y ].x _ 8P. y ·X -Y ·x 8Y 1 2 3 ax 3 3 4 3 

(C.29). 

Adding both equations gives a description of the pressure gradient along the 

gap 

which can be simplified to 

(C.31) 

with 

(C.32a) 

and 

(C.32b). 

Following the same procedure in order to get an equation for the pressure 

gradient across the gap, the first equation of set C.27 is multiplied by Y3 and 

the second by - ( X1 + X2 ) 

(C.33). 

Adding both equations C.33 gives 

which can be simplified to 
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ap 
Zl'--= = Z3 ay (C.35) 

with Z1 as defined in equation C.32a and 

Z3 =x4 'Y3 -(Xl +X2 )'Y4 (C.36). 

Parameters Z1 to Z3 are determined by substituting the definitions of X1 to X4 

and Y1 to Y4, equations C.28a-h, back into equations C.32a-b and C.36. 

(C.37). 

The second bracket is modified by adapting the denominator of the term 

- Phz /ho to the same form used for the corresponding term in the first bracket 

using geometry ratio y 

Zl = (- PhZ + 2. y2 • K' a . au). (_ Phz + 2. y2 • 1(. a . av) . .! 
bhz ax bhz ay y (C.38). 
_ au _ au 

-1(·a·--=·y·1(·a·--= ay ay 

The velocity gradient term in the second bracket is replaced by using the 

continuity equation av/ay =-au/ax so that 

This equation can be summarized to 

(C.40). 

The geometry ratio y is small in comparison with unity, and hence the second 

summand, which is l smaller than the third, can be neglected, and hence 

equation C.40 simplifies to 
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(C.41). 

Parameter Z2 is 

(C.42). 

Multiplication and rearranging gives 

which can be simplified to 

(C.44). 

Parameter Z3 is 

(C.4S). 

Multiplying and re-arranging gives 

(C.46), 

which can be summarised to 

(C.47). 

The second term in the bracket is negligible since the geometry ration -( is 

small, and hence equation C.47 reduces to 

(C.4B). 

Substituting the definitions of Z1 to Z3, equations C.41, C.44, and C.4B, into 

the equation for the pressure variation along the gap, equation C.31, gives 
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(C.4g) 

and, with the resolution of the geometry ratio "( and further re-arrangements, 

the first equation of set 3.43 is obtained 

!~ -[(~:J -(r"N" !~)} 
K-( ~: "!~~ H"y' "(1 -( !~" :~~ -2" :~" !~~)) 

(C.SO). 

Substituting the definitions of Z1 to Z3, equations C.41, C.44, and C.4S, into 

the equation for the pressure variation across the gap, equation C.3S, gives 

(C.51) 

and, with further re-arrangements, the second equation of set 3.43 is 

obtained 

(C.S2). 

Expanding the abbreviations defined in equations 3.31 a-c, 

(C.53a), 

h 
,,(=_0 

bhz 

(C.53b), 

and 

(C.S3c), 

equations C.SO and C.S2 become 
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!~ -[(~:r -( :: -~o -U'h('" -a-p~ -~)} 
110 'Uh ·ea-p .... P .(Phz . B~U + 110 'Uh ·e

a
·
P 
... :

P 
. h~ .(X. .(BU. B

2
V -2. BV. B

2
UJ) 

h~ bhz By2 h~ b~z Phz BY By2 BY By2 

(C.54a) 

and 

ap .[(PhZ)2 _(~. 110 'Uh ·eu-p .... P .ex..p . aUJ2]= 
ay b b h2 hz ay 

hz hz 0 

Dividing the equation by Phz/bhZ and collecting these terms on the left hand 

side gives 

(C.55a) 

which simplifies to equation 3.44 

~: -!~ -[1-( ~o -:0' -a _e
u
,,' - !~)} 

110 ·uh .ea-p"".P .(a
2
U +y' 110 ,uh • ex. .ea-phz·P .(au. a2

v -2. av. a
2u)) 

h~ By2 ho BY ay2 ay By2 

(C.56a) 

and 
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(C.56b). 
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Appendix D 

Details of dimensionless factor 
determination 

The determination of the dimensionless factors kc, kp, and kr follows a similar 

procedure as the determination of Reynolds number in Appendix A. 

By comparison of equations 3.36 and 3.37 with 3.38 and 3.39, it can be seen 

that 

(0.1a), 

(O.1b), 

and 

(O.1C). 

Expanding the abbreviations defined in equation 3.31 a-c, 

(O.2a), 

h y=_o 
bhz 

(O.2b), 

and 

(l = (l·Phz (0.2c), 
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and assuming unity for the dimensionless pressure P factors ke, kp, and kr 

become 

(D.3a), 

(D.3b), 

and 

(D.3c). 

Introducing, where applicable, the description of the Hertzian width bhz by the 

Hertzian pressure Phz, equation 3.24a, 

gives 

and 

r bh = 4 . Ph • red 
Z Z E' 

a.p 4. P . rred 
Tl ·u·e hi hz E' 4·Tl·u·r k = '10 h. = '10 h red .ea·PhZ 

c h2 p h2.E' o ~ 0 

k 110 • Uh • a. a'Phl = ·e 
P h o 

(0.4) 

(O.Sa), 

(D.Sb), 

(D.Sc). 

Introducing the definitions of the dimensionless ehl parameters G, U, and W, 

equation 3.25, where the dimensionless material parameter G is rearranged 

for the pressure-viscosity coefficient 

G 
a.=­

E' 
(O.6a), 

the dimensionless velocity parameter U is rearranged for the product of 

viscosity at ambient conditions and the hydrodynamic speed 

(O.6b), 
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and the dimensionless load parameter W is rearranged for the Hertzian 

pressure, 

Wo.5 ·E' 
PhZ = J2:;. 

Introducing the film thickness formula 3.26, 

ho = 1.9· GO.s . UO.7 • W-O.13 • rred 

equations D.5a-c become 

and 

U.E'.r . G .E' G WOS·E' 
k _ red E' . E-' & 

r - Wo.5 .E' e 
4 . J2:;. . r red 

2·1t 

Simplification of the above leads to 

kc = 1.11· G-1.2 • U-O.4 • W O.26 • eO.4.GWo.s 

and 

kr = 0.63· G • U. W-O·5 • eO.4.G.Wo.s 
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Appendix E 

Values for the geometrical ratio y 

For the determination of values of the geometrical ratio y, equation 3.21, 

(E.1 ), 

initially the description of the Hertzian width bhz in terms of the Hertzian 

pressure Phz, equation 3.24a, 

b 4 rred 
h = ·Ph·-

Z Z E' (E.2) 

is introduced into equation E.1 so that it becomes 

(E.3). 

With the definition of the dimensionless load parameter W, equation 3.25, 

resolved for the Hertzian pressure Phz, 

(E.4), 

and the definition for the height of the gap, equation 3.26, 

ho = 1.9· GO.6 • UO.7 • W-o·13 • rred (E.5), 

the geometrical ratio y can be written in the dimensionless ehl parameters G, 

U, andWas 
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1 9 Go.s UO.7 W-O·13 r E' 
.' •• • red' 1 19 GO.s UO.7 W-O.63 y= ~ . . . 

WO.5 • 

4.~.E'.r 
2 

red 
·n 

(E.6). 

With the definition of the transition between the elastohydrodynamic regime 

and the hydrodynamic regime, equation 3.27, 

W ~ 0.017. UO.325 (E.7) 

the geometrical ratio at the transition line to the hydrodynamic regime 

becomes 

(E.8) 

The maximum value for Y in the borders shown in figure 3.8 and 3.9 is 

obtained at the transition to the hydrodynamic lubrication regime for the 

maximum dimensionless velocity parameter U = 10.9 

as 

Ymax=0.078 (E.9). 

The minimum value for Y is obtained for minimum dimensionless velocity 

parameter U = 10.13 and maximum load parameter W = 10.3 as 

Ymin =1.2 x 10.5 (E.10). 
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Appendix F 

Tangential and normal wall forces 

The tangential wall force on an infinitesimal small element can be seen in 

figure 3.1. Considering a wall normal to the y-direction and assuming line 

contact conditions, the wall force in the x-direction is 

(F.1 ). 

Introducing the definition of the stress terms, equation 3.3, gives 

dF. =T)' -+- ·dA (au ov) 
t By Ox Y 

(F.2). 

Together with Barus' equation 3.9, equation F.2 becomes 

dF, = '1 •. ea. -( : + :)-dAy (F.3). 

Non-dimensionalisation, using the definitions of equations 3.18 and 3.29, 

gives 

Application of the geometry ratio y = ho /bhz leads to 

dF. - T'lo . uh a·phz·P (au 2 av) dA 
t - ·e . --=-+Y .-= . 

ho aY ax y' 
(F.5), 
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where the second term can be neglected, because l is much smaller than 

unity. The tangential wall force hence is 

(F.6). 

The normal wall force on an infinitesimal wall element consists of a pressure 

component and a tensile stress component 

(F.7). 

With the definition of stress terms, equation 3.3, and the assumption of an 

incompressible fluid, normal force becomes 

dF. =( -P+2"'1": }dA, (F.8). 

With Barus' equation 3.9, equation F.8 becomes 

(F.9). 

Non-dimensionalisation, using the definitions of equations 3.18 and 3.29, 

gives 

ho 
110 ·uh ·- -

dF. -_ P 2 bhz a·phz·j5 oV . dA 
n - Phz • +. h . e . oY y 

o 
(F.10), 

which can be simplified to 

( 
- 110' uh aq,z.;; OV) 

dF. = -p ·P+2· ·e·-= ·dA 
n hz b oY Y hz 

(F.11). 

Taking Phz out of the brackets and understanding the parameters 

accompanying the velocity gradient in terms of kr, e.g. equation D.3c of 

appendix D, gives 

( 
- 2·k OV) dF. =p . -p+ r.-= .dA 

n hz PhZ • a oY Y 
(F.12). 
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With the definitions of the dimensionless ehl parameters G, U and W, 

equation 3.25, pressure viscosity coefficient ex can be replaced by 

G 
a=-

E' 

and Hertzian pressure can be replaced by 

Woos .E' 
Phz = ..j2:;, 

Equation F.12 changes to 

(F.13), 

(F.15). 

- 2· k av (- 5· k BV) 
dFn = PhZ· - P + Woos . E~ G· ay . dAy ~ PhZ· - P + G. W~os . BY . dA (F.16) . 

..j2:;, . E' 

For the parameters displayed in figures 3.8 and 3.9, i.e the dimensionless 

material parameter of G = 5000 and a dimensionless load parameter from 

W = 10.6 to 10.3, the factor 5/{G. Woos) ranges between unity and 0.03. This 

means that the factor accompanying the velocity gradient becomes 

significant if kr becomes also relevant. However, that is only the case for a 

significant velocity gradient, i.e. when the gap is not parallel. 

The force components of a fluid element onto the wall are of identical 

absolute value but of different sign. 
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Appendix G 

Grid calculation in the CFD code 

CFX-4.2 allows the user-defined determination of the grid by Cartesian co­

ordinates. As illustrated in figure G.1, the user has to determine the co­

ordinates of the nodes representing the corners of the finite volumes; the co­

ordinates of the centre points are calculated by the program. The CFD code 

uses dimensional values during its calculation and hence all user-defined 

data must be provided in SI dimensions. 

I .. ' 
, / 

(I.J+1.K+1)' .' I / 
~--_____ ~: (1+1.J+1.K+1) 

...... 

" . ............ .... 
................. : \ ..... 

·1·· ... ~·Genfi:e QH/~u 
I ...... \1'" 

: (i.j.~:Q., ... 
(I J+1 K) I • ,.' \ ~~, · .'-cr:~~ \ ..... ~ ....... 

, .... ----..:..:---- ............. . 
,~...... \ -----..:~ 

~~...... \ 
; .•.. 

comer of volume (node) /"fo'" \ 
(I.J.K \ 

(1+1.J+1.K) - ....... 

., 

z 

x 

Figure G.1: Finite volume; centre of volume and corners of volume; 
nomenclature. 
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For the ehl problem, an equidistant grid was chosen along the gap because 

areas requiring improved resolution are still unknown for the extended 

approach. The co-ordinates in the x-direction of all the corners can be 

determined from the location of the inlet and outlet boundaries and from the 

number of cells along this distance by 

1-1 ( ) 
x1,J = xinlet + N -1' Xoutlet - X Inlet (G.1), 

where Nand M 

I andJ 

Xoutlet and Xinlet 

is the total number of corners along and across 
the domain or the number of volumes nand m 
plus one, 

run from zero to Nand M respectively, and 

are the positions of the inlet and outlet 
respectively. 

All variables are illustrated in figure G.2. 

~ 
y 

1,J \ 
~ /J \\ 

,\' "-C::V,J ~' ....... -
......... ........ - ./ r--.. 

~ 

o Xoutlet 
x 

Figure G.2: Calculation of co-ordinates of the corners in x-direction. 

The co-ordinates in the y-direction are calculated in a similar way taking the 

local minimum and maximum edge of the gap into account, compare figure 

G.3 

where I, J, Nand M 

Yl,min 

Yl,max 

J-1 ( ) 
YI,J = Yl,min + M -1' Yl,max - Yl,min (G.2), 

are as above, 

is the position of the lower surface in Y­
direction, which is zero when employing the 
widely used method of presentation, and 

is the position of the upper surface in Y­
direction. 
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y 

x 

Figure G.3: Calculation of co-ordinates of the corners in y-direction. 

For the established Reynolds equation based solutions, Yl,min is normally 

assumed to be zero along the gap, and all changes in height due to 

deformation and curvature are applied to the upper surface as shown in 

figure G.4(a). However, a practical application normally consists of two 

elastic and curved surfaces and agrees with figure G.4(b), where, as an 

example, identical material properties and radii are assumed for both 

surfaces. 

(a) (b) 

\ 
\ ~ 
r'\ i\' 1 ...... 1"""/ 

" ~ 
.... ...... ~~ 

.... ~, 

~~ 
~~,.... ~..,. 

~~ -...... 
~-

'I 

Figure G.4: Established geometry distribution assuming all contributions to 
one surface (a) and real geometry distribution assuming 
identical surface CUNatures and material properties (b). 
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For the established isothermal Reynolds equation based solutions the two 

above considerations do not lead to any difference. This is because all the 

variables appearing in Reynolds equation are assumed to vary in one 

direction only, pressure and viscosity in longitudinal direction, velocity in 

perpendicular direction. This can also be shown mathematically by applying 

co-ordinate transformation on those simplified Navier-Stokes equations from 

which Reynolds equation is derived. Details are shown by Liesegang [36]. 

However, for the extended set of governing equations 3.42 as well as for 

thermal equations, the solution is influenced by the position of the centreline 

of the gap. Co-ordinate transformation shows that the coefficients in the 

transformed and discretised governing equations can change with different 

definitions of the centreline. However, these changed coefficients and the 

boundary values are expected to cancel out and hence practical influence on 

the solution is expected to be small [36]. 

The positions of the lower and upper surface in y-direction are 

YI,min = 0.0 [m] and YI,max = ho + hr1 + hr2 + V d1 + V d2 (G.3) 

when all curvatures and deformations are applied to one surface and 

YI,min = -hr1 - v d1 and YI,max = ho + hr2 + V d2 (G.4) 

when the curvatures and deformations are applied to the corresponding 

surface, with the variables explained below. 

The value of the height of the gap at the contact centreline ho must be 

determined during the calculation. As an initial value for ho equation 3.26 is 

used 

ho = 1.9 . Go.e . UO.7 • W-O·13 • rred (G.S). 

The height of the gap due to curvature was calculated using Pythagoras' law 

(G.6a) 

and 

(G.6b) 

for the lower and the upper surface respectively. The deflection is calculated 

from the Boussinesq equation 3.11 , 

-400-



AppendixG Grid calculation in the CFD code 

1 2 +ao ( ) 
-u x-s 

v(x)-v(xref )=-2. . Jp(s).ln ·ds 
E·1t x f-S -00 re 

(G.7). 

For the present calculation, the centre of the contact Xref = 0.0 [m], was 

chosen as the reference point. The employment of CFD software based on 

the finite volume method leads to the fact, that the pressure is given at the 

volume centres and at the centres of the boundary faces, while deformation 

must be calculated for the nodes, determining the corners of the volumes. 

Hence, the discretisation of the deformation is slightly different as, for 

example, for the finite difference method (FDM). A zeroth order and a first 

order discretisation scheme were considered, both illustrated in figure G.5. 

p 

I 
' 1 ' l i i . . .. 
! ! ..... .... i ..... ~ .. . 
i : ." 
i .", . ." . ..... ""'-..... . 

: ." 'A(' 

.,,-r 
· ..... U- ..... 
:~ 
~ 

~: 

••• 
• • 

1-1 1+1 1+2 . 
i-1 i+1 

o boundary pressure from CFD code 

••••••• zeroth order pressure distribution for 
deformation calculation 

- - first order pressure distribution for 
deformation calculation 

location of 
centres 

location of 
nodes 

x 

Figure G.S: Zeroth and first order discretisation of pressure for deformation 
calculation. 

Zeroth order approximation assumes constant pressure over the complete 

volume surface. Zero order approximation agrees with the standard method 
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implemented in the CFD code for determination of surface forces and would 

provide full consistency with data available from the CFD code. For the lower 

surface Boussinesq' equation becomes discretised 

(G.8), 

and, with the integral solved, 

v" = - 2t/)· t~,·[Onlxl-sl-l).(xl-sHnlx~1 -~-l).(xml -s)C:f 

(G.9) 

where 

(G.10a) 

and 

lim (tnlxref - sl-1). (Xref - s) = 0 
x,.,-+s 

(G.10b). 

For the upper surface the values are obtained in the same manner. 

First order discretisation assumes linear pressure distribution between the 

centre points of the boundary faces. The method is more accurate than the 

previous but not consistent with force determination of the CFD software. 

Neglecting those half volumes at the edges of the system, i.e. between XI and 

Xi and Xn and XN, discretisation of Boussinesq's equation gives, again for the 

lower surface, 

(G.11 ) 
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[( 
XI + S nI I 3· XI + s) ( ) ( xref + S nl I 3· xref + s) ( )11 ]S, --2-· I"xl -s + 4 . xl-s - - 2 .I"xret -s + 4 . xref -s J s,-, 

(G.12) 

With respect to the location of the deflection XI, the pressure distribution is of 

second order accuracy, because the pressure gradient approximation 

defined by positions i and i-1 is the second order approximation with respect 

to the position I. Because the discretisation of the CFD software is of second 

order, the above approximation is sufficiently accurate. 
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Details of dominance factor 
determination 

The determination of the factor D follows a similar procedure as the 

determination of Reynolds number in appendix A. 

The dominance factor D is defined in equation 8.24 as 

b ." . eaoPhZoP • u m2 
0= hz 0 h._ 

h~ 'PhZ n 
(H.1). 

Assuming unity for the dimensionless pressure P and introducing the 

description of the Hertzian width bhz by the Hertzian pressure Phz, equation 

3.24a, 

the dominance factor becomes 

r. b =4.p . red 
hz hZ E' (H.2), 

(H.3). 

Introducing the definitions of the dimensionless ehl parameters G, U, and W, 

equation 3.25, where the dimensionless material parameter G is rearranged 

for the pressure-viscosity coefficient 

G 
0.=-

E' (H.4a), 
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the dimensionless velocity parameter U is rearranged for the product of 

viscosity at ambient conditions and the hydrodynamic speed 

(H.4b), 

and the dimensionless load parameter W is rearranged for the Hertzian 

pressure, 

Wo.5 ·E' 
PhZ = ..j2:;, 

and introducing the film thickness formula 3.26, 

h = 1 9· GO.6 • UO.7 • W-O·13 • r a • red 

equation H.3 becomes 

G WO'S·E' r. -.--
4. red .U.E'.r. ·eE'.{2:;. 2 

E' red m 
0= .-

1.92 • G1
.2 • U1

.4 • W-O.26 • r!d n 

Simplification of the above leads to equation 8.30, 

rn2 os o = 1.11. _. G-1.2 • U-O.4 • WO.26 • e O.4 .GW . 

n 
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Appendix I 

Estimation of the residuals of the 
extended x-momentum equation 

Basis for the calculation is the simplified Navier-Stokes equation 3.15 without 

inertia terms: 

0=-: +2· ![~. :]+ ~[~-(: + :)] (1.1 ). 

Non-dimensionalisation of the bracket (aujfJy+ovjax) shows that the second 

summand* is much smaller than the first one and hence negligible. Other 

terms would also be negligible but complicate the later discretisation. 

Equation 1.1 becomes 

0= - Op +2'~(T)' aU)+~(f)' au) 
Ox Ox Ox fJy fJy 

(1.2). 

Assuming a rectangular volume for simplicity and applying finite volume 

discretisation according to Patankar and Spalding [88] or Versteeg and 

Compare section 3.2, non-dimensionalising by assuming 

X - ~, y = L, u = ~ = u and V = .:!..- = v 
- bt,z ho Uh f· (u, + u2 ) vm uh ' {ho/bhz } 

the bracket term becomes 

~.(o~ +y2. ii!..) 
ho OY oX 

where y = ho/bhz «1 and hence the second term of the sum is negligible. 
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Malalasekera [90] with the nomenclature of figure 1.1, the discretised 

momentum equation is 

J~ (ll' dU). dV + J~(ll ' dUJ. dV - J( dP). dV = 
vdx dx avdy dy aV dx 

( dU) ( dU) ( dU J ( dUJ A = ll·Ax ·- - ll· Ax ·- + ll·Ay '- - ll·Ay ' - - S·/).V = 
dx 1+1 dx 1 dy J+1 dy J 

= 0 
(1.3) 

where 

(1.4). 

I 

I 

A y "'-... 
.J tly.. 

'" " ! 
, 

/Ax 
"- / ), 

J+1 

Ax _____ /).V 
--------_._--- ._._._. _ . ____ 4 . _. ___ ._._. __ _ .. _ .. _- /).y '-

J 
,~ 

! 
~~ 

I Ay 
I 

I 

I 

1+1 

Figure 1.1: Nomenclature of finite volume discretisation. 

Approximating the velocity gradients by second order central approximation 

and taking into account that volume is a cuboid and hence facing surfaces 

are equal, equation 1.3 becomes 

- 407-



Appendix' Estimation of the residuals of the extended x-momentum equation 

111+1' Ax . fu. _ u.)- 111' Ax . (u. - u. )+ 
tu< ~ 1+1 1 tu< 1 1-1 

11J+1·
Ax.fu. _u.)_l1J • Ax ,fu._u. )-S./1V=O 

/1y ~ )+1 ) /1y ~ J 1+1 

(1.5). 

Introducing non-dimensionalisation as in section 3.3* and 8arus' equationt , 

equation 1.5 becomes 

where 

~=~./1Y 
bhz /1X 

(1.6), 

(I. 7). 

When calculating the above equation, the computation is not exact due to 

limited computational accuracy. A change of the last digit of the central speed 

component i,j hence causes a residual of 

(1.8) 

or, with the assumptions that the pressure is constant in the volume and that 

the geometry ratio ~ is small, 

t 
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where 

Estimation of the residuals of the extended x-momentum equation 

f 2 110' uh • bhz ·Ie ~X . J1Z. iio'P;,1 E 
x-mom,i,J =. h '!1 Y . e . computational (1.9), 

Ecomputational 

!1X, ~ y and J1Z. 

o 

is the error due to the limited accuracy of the 
computation, which is 10-16 for double 
precision, and 

is the dimensionless volume width in X-, y-, 
and z-direction, 

!1X = .!, ~ y = ~ and J1Z. = ! . 
n m I 

The sum of the residuals is obtained by summing up the residuals of all 

volumes 

i=n 
j=m 

f x-mom,sum = L fi,) 
1=1 
)=1 

(1.10). 

Assuming the residuals of all individual volumes having the same value of fi,j, 

the minimum sum residual becomes 

aophzoP b I 2 11 ·e ,uh ' ··m 
fx-mom,sum = fi,J • n· m·1 = 2· 0 h hz e • EeomputatiOnal (1.11). 

o 

Hence, the residual value agrees with the value obtained for the solution with 

constant pressure across the height of the gap. 
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Re-dimensionalisation of the 
y-momentum equation 

Basis for the re-dimensionalisation is the secod equation of set 3.44, 

repeated as equation 9.12, 

(J.1 ). 

Equation J.1 is re-arranged by multiplication by Phz/bhz and expansion of the 

last bracket, 

Hertzian width bhz is written in terms of ho and the geometry ratio y = holbhz, 

Re-introducing the definition of viscosity, 
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AppendixJ Re-dimensionalisation of the y-momentum equation 

reduces equation J.3 to 

Application of the definition of dimensionless variables, equation 3.19, 

and 

p -
-=p 
PhZ 

u --=u 
Uo 

y -
-=y 
ho 

simplifies equation J.5 to equation 9.13, 

Employment of the continuity equation 3.14 

oU ov 
-+-=0 
Ox Oy 

(J.4), 

(J.5). 

(J.6a), 

(J.6b), 

(J.6c), 

(J.6d), 

allows the exclusion of the v-velocity component of equation J.7 (9.13), so 

that equation 9.14 is obtained, 
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Further result graphs 

The graphs are displayed on the following pages. 
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Figure K.1: 

-1.5 -1 .0 -0.5 0.0 0.5 1.0 

contact width X [-] 

Height of the gap H and relative deviation from Reynolds 

equation based solution SH,Re for various sliding ratios; load 
case i (table 10.1), sliding ratios S = 0.0, 0.5, and 1.0. 
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Figure K.2: 

-1.5 -1.0 -0.5 0.0 0.5 1.0 

contact width X [-] 

Height of the gap H and relative deviation from Reynolds 

equation based solution SH,Re for various sliding ratios; load 
case ii (table 10.1), sliding ratios S = 0.0,0.5, and 1.0. 
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Figure K.3: 

-1.5 -1.0 -0.5 0.0 0.5 1.0 

contact width X [-] 

Height of the gap H and relative deviation from Reynolds 

equation based solution CH,Re for various sliding ratios; load 
case iii (table 10. 1), sliding ratios S = 0.0, 0.5, and 1. O. 
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(a) velocity u [m/s) 

A -1 .00E-00l 

B O.OOE+OOO 

C 1.00E-001 

D 2.00E-001 

E 3 .00E-00l 

F 4.00E-00l 

(b) velocity u [m/s) 

A -1 .00E-00l 

B O.OOE+OOO 

C 1.00E-001 

D 2.00E-001 

E 3 .00E-00l 

F 4.00E-00l 

Figure K.4: Contour plots of velocity in x-direction u distribution in the gap 
for extended (a) and Reynolds equation based (b) 
approaches; load case i (table 10.1), sliding ratio S = 1.0, 
(a) extended approach plot, 
(b) Reynolds equation based plot. 
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(a) 

(b) 

Further result graphs 

velocity u [m /s] 

A -2 .00E-00l 

B -2.48E-009 

C 2.00E-00 1 

D 4.00E-00l 

E 6 .00E-00l 

F 8 .00E-00l 

G 1.00E+000 

G 

F 

velocity u [m /s] 

A -2 .00E-00l 

B -2 .48E-009 

C 2.00E-00 1 

D 4.00E-00l 

E 6.00E-00l 

F 8 .00E - 00l 

G 1.00E+000 

G 

Figure K.5: Contour plots of velocity in x-direction u distribution in the gap 
for extended (a) and Reynolds equation based (b) approaches; 
load case ii (table 10.1) sliding ratio S = 1.0, 
(a) extended approach plot, 
(b) Reynolds equation based plot. 
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(a) 

(b) 

Further result graphs 

velocity u [m /s] 
A - 1 . .33 E - 00 1 

B -2 .50E-005 

C 1.33E-001 

0 2.67E-001 

E 4.00E-001 

velocity u [m /s] 
A -1 . .33E-00 1 

B -2.50E-005 

C 1.3.3E-001 

0 2.67E-001 

E 4 .00E-001 

Figure K.6: Contour plots of velocity in x-direction u distribution in the gap 
for extended (a) and Reynolds equation based (b) 
approaches; load case iii (table 10.1) sliding ratio S = 1.0, 
(a) extended approach plot, 
(b) Reynolds equation based plot. 
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Figure K. 7: Relative deviation of velocity in x-direction u of extended from 

Reynolds equation based approach eu,Re; load case i (table 
10. 1), sliding ratio 1. O . 
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Figure K.8: Relative deviation of velocity in x-direction u of extended from 

Reynolds equation based approach eu,Re; load case ii (table 
10. 1), sliding ratio 1. O. 
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Figure K.9: Relative deviation of velocity in x-direction u of extended from 

Reynolds equation based approach Gu,Re; load case iii (table 
10.1), sliding ratio 1.0. 
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Figure K. 10: Velocity in x-direction u and relative deviation from Reynolds 
equation based solution GU,Re at selected positions X for 
various sliding ratios; load case i (table 10. 1), sliding ratios 
S = 0.0, 0.5, and 1.0, 
(a) at the position of minimum height of the gap Xhmin, 

(b) at the position of maximum height of the gap Xhmax, 

(c) at the position of agreement of Reynolds equation and 
extended approach based solution Xcross, 

(d) at the contact centreline X = 0.0 
(continued). 
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Figure K.10: (continued). 
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Figure K.10: (concluded). 
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Figure K. 11: Velocity in x-direction u and relative deviation from Reynolds 

equation based solution GU,Re at selected positions X for 
various sliding ratios; load case ii (table 10. 1), sliding ratios 
S = 0.0, 0.5, and 1.0, 
(a) at the position of minimum height of the gap Xhmin, 

(b) at the position of maximum height of the gap Xhmax, 

(c) at the position of agreement of Reynolds equation and 
extended approach based solution Xcross, 

(d) at the contact centreline X = 0.0 
(continued). 
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Figure K. 11: (continued). 
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Figure K.11: (concluded). 
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various sliding ratios; load case iii (table 10. 1), sliding ratios 
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(a) at the position of minimum height of the gap Xhmin, 
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(continued). 
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Figure K. 13: Contour plots of pressure distribution p in the gap for extended 
and Reynolds equation based approaches; load case i (table 
10.1), sliding ratios S = 0.0, 0.5, and 1.0, 
(a) sliding ratio S = 0.0, 
(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0, 
(d) Reynolds equation based solution 
(continued). 
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Figure K. 13: (concluded). 
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Figure K. 14: Contour plots of pressure distribution p in the gap for extended 

and Reynolds equation based approaches; load case ii (table 

10.1), sliding ratios S = 0.0, 0.5, and 1.0, 
(a) sliding ratio S = O. 0, 

(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0, 
(d) Reynolds equation based solution 
(continued). 
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Figure K.14: (concluded). 
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Figure K. 15: Contour plots of pressure distribution p in the gap for extended 
and Reynolds equation based approaches; load case iii (table 
10.1), sliding ratios S = 0.0, 0.5, and 1.0, 
(a) sliding ratio S = 0.0, 
(b) sliding ratio S = 0.5, 
(c) sliding ratio S = 1.0, 
(d) Reynolds equation based solution 
(continued). 
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Figure K.15: (concluded). 
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Figure K. 16: Contour plots of absolute pressure deviation from the 

centreline pressure Gp,abs in the gap for extended approach; 
load case i (table 10.1), sliding ratios S = 0.0, 0.5, and 1.0, 
(a) $=0.0, 
(b) $=0.5, 
(c)S=1.0 
(continued). 
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Figure K.16: (concluded). 
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Figure K. 17: Contour plots of absolute pressure deviation from the 

centreline pressure Gp.abs in the gap for extended approach; 
load case ii (table 10. 1), sliding ratios 8 = 0.0, 0.5, and 1.0, 
(a) 8=0.0, 
(b) 8=0.5, 
(c) 8 = 1.0 
(continued). 
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Figure K. 17: (concluded). 
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Figure K. 18: Contour plots of absolute pressure deviation from the 

centreline pressure £p,abs in the gap for extended approach; 
load case iii (table 10.1), sliding ratios 5 = 0.0, 0.5, and 1.0, 
(a) 5=0.0, 
(b) 5=0.5, 
(c) 5= 1.0 
(continued). 
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Figure K.18: (concluded). 
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Figure K. 19: Relative deviation of pressure of extended from Reynolds 

equation based approach BP,Re; load case i (table 10. 1), sliding 
ratios S = 0.0, 0.5, and 1.0, 
(a) S = 0.0, 
(b) 8=0.5, 
(c)S=1.0 
(continued). 
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Figure K.20: Relative deviation of pressure of extended from Reynolds 

equation based approach CP,Re; load case ii (table 10. 1), 
sliding ratios 5=0.0,0.5, and 1.0, 
(a) 5=0.0, 
(b) 5 =0.5, 
(c) 5= 1.0 
(continued). 
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Figure K.21: Relative deviation of pressure of extended from Reynolds 

equation based approach eP.Re: load case iii (table 10. 1), 
sliding ratios 5 = 0.0, 0.5, and 1.0, 
(a) 5 =0.0, 
(b) 5=0.5, 
(c) 5 = 1.0 
(continued). 
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Figure K.22: Pressure on the slower surface ps/ow and the faster surface 
P'ast and mean pressure Pmean and relative deviation of these 

values from Reynolds equation based solution CPs/ow,Re, CPfast,Re 
and CPmean,Re for various sliding ratios; load case i (table 10. 1), 
sliding ratios S = 0.0, 0.5, and 1.0, 
(a) pressure on slower surface Ps/ow and relative deviation CPslow,Re, 

(b) pressure on faster surface P'ast and relative deviation CPfast,Re, 

(c) mean pressure Pmean and relative deviation CPmean,Re 
(continued). 
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Figure K.22: (continued). 
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Figure K.23: Pressure on the slower surface ps/ow and the faster surface 
Pfast and mean pressure Pmean and relative deviation of these 

values from Reynolds equation based solution 6Ps/ow,Re, 6Pfast,Re 
and 6Pmean,Re for various sliding ratios; load case ii (table 10. 1), 
sliding ratios S = 0.0, 0.5, and 1.0, 
(a) pressure on slower surface Pslow and relative deviation 8Pslow,Re, 
(b) pressure on faster surface Pfast and relative deviation 6Pfast,Re, 

(c) mean pressure Pmean and relative deviation 8Pmean,Re 
(continued). 
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Figure K.23: (continued). 
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Figure K.23: (concluded). 
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Figure K.24: Pressure on the slower surface Ps10w and the faster surface 
Pfast and mean pressure Pmean and relative deviation of these 
values from Reynolds equation based solution BPs/ow,Re, BPfast,Re 
and Bpmean,Re for various sliding ratios; load case iii (table 10. 1), 

sliding ratios S = 0.0, 0.5, and 1.0, 

(a) pressure on slower surface Pstow and relative deviation BPsJow,Re, 

(b) pressure on faster surface Pfast and relative deviation BPfast,Re, 

(c) mean pressure Pmean and relative deviation BPmean,Re 
(continued). 
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Figure K.24: (continued). 

- 454-



Appendix K Further result graphs 

(c) 1.2 

....... 

...!... 
c 

'" (I) 

E 
a.. 
Q) .... 
::J 
en en 
~ 
a. 
c 
(\3 
Q.) 

E 

1 

0.8 

0.6 

0.4 

-s=o.o 
- S=0.5 

S=1.0 

--------r--------r-----

--------r--------r-
I 
I 

-----.--------.--------.----

0.2 --------.------- r--------r--------~--------r------
I 
I 
I 

o ~------~~---~--~------~ 

0.03 T.=====:::::c::;--:---:------,--------,----------:l 
-S=o.o 
- S=0.5 I I I 0.02 -------r--------r-------------------------- -....... 

...!... 
(I) 

a: 
i 0.01 
E 
Cl. 
t.Il 

- S=1.0 

I I I I --------r--------j--------T--------r----------------
I I I I 

§ o +~~==~~==~~~~~BB~~~~~~~ 
~ 
°5 

I I I I ~ -0.01 --------,--------1--------,--------,--------,-------- -
Q.) 
> :;:::; 
(\3 

Q.) -0.02 .... 

-0.03 
-2 

I I 

I I I ________ L ________ L _________________ ~ ________________ _ 
I I 

-1 .5 -1 -0.5 o 0.5 

contact width X [-] 

Figure K.24: (concluded). 
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Figure K.25: Dimensionless pressure difference between faster and slower 

surface ..dP for various sliding ratios; load case i (table 10. 1), 
sliding ratios 8 = 0.0, 0.5, and 1.0. 
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Figure K.26: Dimensionless pressure difference between faster and slower 

surface t1P for various sliding ratios; load case ii (table 10. 1), 
sliding ratios 8=0.0,0.5, and 1.0. 
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Figure K.27: Dimensionless pressure difference between faster and slower 

surface L1P for various sliding ratios; load case iii (table 10. 1), 
sliding ratios S = 0.0, 0.5, and 1.0. 
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Figure K.28: Relative deviation of viscosity from Reynolds equation based 

solution on the lubricant at the slower surface £'7slow,Re and the 

faster surface £'7fast,Re and relative deviation of viscosity across 

the gap £.1'7 for various sliding ratios; load case i (table 10. 1), 

sliding ratios S = 0.0, 0.5, and 1.0, 

(a) relative deviation at slower surface £'7slow,Re, 

(b) relative deviation at faster surface £'7fast,Re, 

(c) relative deviation across the gap £.1'7 

(continued). 
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Figure K.28: (concluded). 
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Figure K.29: Relative deviation of viscosity from Reynolds equation based 

solution on the lubricant at the slower surface &"slow,Re and the 

faster surface &"fast,Re and relative deviation of viscosity across 

the gap &/1" for various sliding ratios; load case ii (table 10. 1), 
sliding ratios S = 0.0, 0.5, and 1.0, 

(a) relative deviation at slower surface &"slow,Re, 

(b) relative deviation at faster surface E"fast,Re, 

(c) relative deviation across the gap E/1" 

(continued). 
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Figure K.29: (concluded). 

- 461 -



Append;xK 

(a) 0.1 

0.08 

::!: 0.06 

~ 
0.04 "i 

0 
"iii 
~ 

0.02 w 
c 
0 

~ 0 .s; 
Q) 

-0.02 -0 

~ 
~ -0.04 
~ 

-0.06 

-0.08 

-2 

Further result graphs 

-s=o.o : , 
- - S=0.5 - - - - - - - - - - - - - - - - - - - - - - - - - ,- - - - - - - - - - - - - - - - - - ~­

, 
S= 1.0 - - - - - -., - - - - - - - - ~ - - - - - - - - - ,- - - - - - -:.. - - - - - - - - ~-, , , 

--------T--------~--------r----------, 

, 
-----------------~-

--------T-----------------~---, , 
I 

-1.5 -1 -0.5 o 0.5 1 

contact width X [-] 

Figure K.30: Relative deviation of viscosity from Reynolds equation based 

solution on the lubricant at the slower surface C"slow,Re and the 

faster surface C"fast,Re and relative deviation of viscosity across 

the gap c~" for various sliding ratios; load case iii (table 1 O. 1), 
sliding ratios S = 0.0, 0.5, and 1.0, 

(a) relative deviation at slower surface C"slow,Re, 

(b) relative deviation at faster surface C"fast,Re, 

(c) relative deviation across the gap c~" 
(continued). 
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Figure K.30: (concluded). 
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Figure K.31: Dimensionless shear stress on the lubricant at the slower 

surface Tslow and the faster surface Tfast and relative deviation 

from Reynolds equation based solution 8Tslow,Re and 871ast,Re for 
various sliding ratios; load case i (table 10.1), sliding ratios 
S = 0.0, 0.5, and 1.0, 

(a) shear stress on slower surface Tslow and relative 

deviation 8Tslow,Re, 

(b) shear stress on faster surface 1fast and relative deviation 

811ast,Re 

(continued). 
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Figure K.31: (concluded). 
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Figure K.32: Dimensionless shear stress on the lubricant at the slower 

surface Ts/ow and the faster surface Ttast and relative deviation 

from Reynolds equation based solution Ers/ow,Re and E71ast,Re for 
various sliding ratios; load case ii (table 10. 1), sliding ratios 
S = 0.0, 0.5, and 1.0, 
(a) shear stress on slower surface Ts/ow and relative 

deviation ETs/ow,Re, 

(b) shear stress on faster surface Ttast and relative deviation 

E71ast,Re 

(continued). 
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Figure K.32: (concluded). 

- 467 -



Appendix K Further result graphs 

(a) 2 ,--------,----,------,---------,---.,.-----, 

O ~----~-----.~~--~------------_,.~~~ 

-2 

--------~-------~---------I I -4 

-6 -S=O,O Re 

-S=O,Oext 
-8 - S=O,5 Re -- .... -------------

I 

- S=O,5 ext 

--S=1,O Re 
I 

--~-----------------~-------------------10 
I I I 

- S=1 ,Oext I 

-12 ~--------------------------------------------~ 

0,06 T-;::::====::!::::::;----:-----,----;------r------:--l 
-S=O,O 

- S=O,5 I 

S=1,O 
I I 

-----,--------------------0,04 

I 
I I I --------r-------,--------,--------r 
I 

I - - - - - - - -,- - - - - - - - ..., - - - - - - - - ., - -
I 

-0,04 -1-----,----,-------,----.,-------,----.--' 

-2 -1,5 -1 -0,5 o 0,5 1 

contact width X [-] 

Figure K.33: Dimensionless shear stress on the lubricant at the slower 

surface Ts/ow and the faster surface Ttast and relative deviation 

from Reynolds equation based solution GTs/ow,Re and B71ast,Re for 
various sliding ratios; load case iii (table 10, 1), sliding ratios 
S=O,O, 0.5, and 1.0, 

(a) shear stress on slower surface Ts/ow and relative 

deviation BTs/ow,Re, 

(b) shear stress on faster surface Ttast and relative deviation 

G71ast,Re 

(continued). 
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Figure K.34: Dimensionless shear stress difference L1 T for various sliding 
ratios; load case i (table 10. 1), sliding ratios S = 0.0, 0.5, and 
1.0. 
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Figure K.35: Dimensionless shear stress difference L1 T for various sliding 
ratios; load case ii (table 10.1), sliding ratios S = 0.0, 0.5, and 
1.0. 

- 470-



Appendix K Further result graphs 

0.2 Tr=======~-----:----'------:----r----~ 

....... 

...!.. 
~ 0.1 
<l 
Q) 
(.) 
c 
~ 

-8=0.0 

- 8=0.5 
I 
I 

- 8=1.0 I 
L-____ ~~-------l--------l---

~ 0 +---------------~--~~~------~-----~~------- I '6 
~ 
~ 
U5 
ill -0.1 
.c 
(/) 

I 

- - - - - - - - .. - - - - - - - - ...j - - - - - - - - ....j - - - - - - - - - 1- - -
I I 

-0.2 +-------i-----,------.--------,.----,----t---! 

-2 -1.5 -1 -0.5 o 0.5 1 

contact width X [-] 

Figure K.36: Dimensionless shear stress difference LI T for various sliding 
ratios; load case iii (table 10.1), sliding ratios S = 0.0, 0.5, and 
1.0. 
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Appendix L 

Derivation of a dependency of 
height and second order velocity 
gradient 

Governing equation for the derivation of a height-second order velocity 

gradient dependency is the governing equation for a one-dimensional, iso­

viscous Reynolds equation 2.1 : 

Twofold integration with respect to the velocity leads to 

and 

With the boundary conditions, that each wall has its velocity, 

u(y =0) = up 

u(y = h) = u2 

the equation describing the velocity profile becomes 

u =_1_. op .(y2 -h.y)+(u -u). Y +u 
2.1') ox ~ 2 1 h 1 
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(L.1 ). 

(L.2) 

(L.3). 

(L.4a, b), 

(L.S). 



Appendix L Derivation of a dependency of height and second order velocity gradient 

Integration of equation L.5 across the height of the gap gives the flow rate in 

the gap, which is constant along the gap, 

hI . 1 op 3 ~ )h u·dy= V =---·-·h + u -u ·-+u·h 
o 12'1l Ox 2 1 2 1 

(L.6). 

Defining ho as the height where pure Couette flow is obtained, flow rate 

becomes at this point 

(L.7) 

and equation L.6 can be rewritten with the help of equation L.7 as 

(, ) h - ho ( ) 1 op 3 \u2 -u1 • +u1 ' h-ho =--·-·h 
2 12'1l Ox 

(L.S), 

which can be solved for the pressure gradient 

(L.9). 

With substitution of the pressure gradient into the original equation L.1, a 

description for the height-second order velocity gradient description is 

obtained 

(L.10), 

rewritten in dimensionless form as 

(L.11 ), 

which reduces to 

(L.12) 

when considering that 

(L.13). 

-473-



Appendix M 

Graphical determination of 
gradients 

For partial sliding S = 0.5 of load case iv, table 10.1, various values and 

gradients are determined graphically within this appendix for a check of the 

developed numerical method by using the dimensionless factors. 

The dimensionless height H at the position X = - 0.2 can determined from 

the shape distribution, figure M.1, as 

H{X = -0.2)= H(X = -0.2)= 0.981 (M.1). 

The pressure gradient along the gap oP I oX can be approximated from 

figure M.2 as 

oP (- ) ~p ) 0.2 
-= X=-0.2 ::::I-(X=-0.2 =-=0.190 
oX ~ 1.05 

(M.2). 

The pressure P itself can also be obtained from figure M.2 as 

p{X = -0.2)= p(X = -0.2)= 0.98 (M.3). 

The pressure gradient can be obtained with help of the dimensionless 

pressure difference across the gap, figure M.3, wherein the pressure 

difference across the height of the gap is 

~p(x = -0.2) = 0.0213 (M.4), 

which leads, together with the dimensionless height of the gap, to 
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Appendix M Graphical determination of gradients 

BP (X = - 0.2) ~ LlP(X = - 0.2) = 0.0213 = 0.0217 (M 5) 
BY H(X = - 0.2) 0.981 . . 

Finally, the velocity gradient across the height of the gap is 

BU (X = -0.2) ~ LlU(X = - 0.2) = 1 = 1.019 (M.6) 
BY H(X = - 0.2) 0.981 

with 

.1U=2·S=2·0.5=1 (M.7). 
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Figure M.3: Determination of the pressure difference across the height of 

the gap Ll P from the pressure difference figure 10. 17. 
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Appendix N 

Determination of relevant 
dissipation function terms 

Determination of the relevant terms of dissipation for the line contact problem 

follows the procedure applied in chapter 3 to the Navier-Stokes equations. 

Starting from the generally valid form of the dissipation function, equation 

12.15, 

(N.1), 

this equation simplifies by the assumption of a infinitely wide gap, equation 

3.12a, 

to the two-dimensional form 

a 
-=0 and w=O 
Oz 

(N.2), 

By introducing the continuity equation 3.14, which is already written in the 

two-dimensional form 
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AppendixN Determination of relevant dissipation function terms 

au fN 
-+-=0 ox Oy 

dissipation function of equation N.3 simplifies to 

Non-dimensionalisation following the definitions of equation 3.19a-d, 

and 

leads to 

- x x=­
bhz 

- y y=-
ho 

and, with the geometry ratio 'Y, equation 3.21, 

h 'Y=_o 
bhZ 

to 

and 
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(N.4), 

(N.S). 

(N.6a), 

(N.6b), 

(N.6c), 

(N.6d), 

(N.7) 

(N.8), 



AppendixN Determination of relevant dissipation function terms 

Uh 2 au 2 av 4 av 2 av au au ( )2 [ (-)2 ( -)2 ( -)2 (- -) ( -)2] 
<I> = ho'" . 2· Y ax + 2 • Y av + Y • ax + 2 • Y • ax· av + av 

(N.9b). 

The geometry ratio y is much smaller than zero. Hence, all gradients 

accompanied by y2 or y4 can be neglected and equation N.9b simplifies to 

(N.10), 

which can be re-transformed into its dimensional form with the help of 

equations N.6a-d to 

(N.11 ) 

as presented by Dowson and Higginson [4]. 
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Appendix 0 

Determination of dimensionless 
factors for thermal Roelands' 
approach 

Instead of using the method, which was used in section 12.3 to determine 

factors kp and kr, by adaptation, the dimensionless factors are derived from 

the re-dimensionalised form of the governing equations for the isothermal 

system, equation 3.36 

op OTt oU 02U 
-=-'-+1')'-
Ox By By By2 

op OTt oU -=-.-
By Ox By 

(0.1). 

Following the procedure used in section 3.3 to obtain compact equations, the 

viscosity gradient along the contact is determined by differentiation from 

Roelands' equation 

(0.2) 

as 

OTt = '110 .[Z.5.1.10-e • (In '110 +9.67). (1 + 5.1.10-9• pj-1 • Op -YR' o~s]. 
Ox Ox Ox 

·e 
(In 110 +e067){ -1+(1+501-10-' opf]-y"oI\S 

(0.3), 

and hence 
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Appendix 0 Determination of dimensionless factors for thermal Roelands' approach 

(0.4). 

Non-dimensionalisation as before 3.19a and 3.29a with 

- x - p 
x=- and P=-

bhz Phz 
(O.Sa, b) 

and introduction of dimensionless temperature defined with the maximum 

temperature, which is not yet known for new analysis but known when 

considering experiments 

(O.Sc) 

gives 

Or] Phz ap 
- = flo .-.-=-. ax bhz ax 

(0.6) 

As in subsection 3.3.3, for the further determination of factors kp and kr, p 

and ~S are considered as unity. The gradient ratio can take on arbitrary 

signs and values. Furthermore, it is assumed that the pressure and 

temperature distributions have identical shape and thus the ratio becomes 

unity due to its non-dimensional form, so that equation 0.6 can be re-written 

as 

(0.7a) 

with 
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Appendix 0 Determination of dimensionless factors for thermal Roelands' approach 

a~s 

(1 5 1 1 0-9 P )-1 ~Smax ax . + .' .. Phl - 'YR' --=-
PhZ ap 

(0.7b) 

ax 

and 

a(phZ I ~Smax) = {In 110 + 9.67). [-1 + (1 + 5.1.10-9 • P . Phl) ]- 'YR • ~Smax . ~S 
(0.7C). 

Substituting into the second equation of set 0.1 and non-dimensionalisation 

of the other terms leads to the well-known form 

with 

",(p An) ci(p"".M ..... > u 
k" 11o'U hz,LlO'maX· e . h 

= ''Y r h 

and correspondingly 

and 

o 

" • ",(p ~S ).eci(PI\z·6S ..... >.U k = 110 U hz' max h 

P h o 

" eci(p"".t.s ..... >·U 
" '10' h k = ...!)!..----...:..:.. 

C Phl • ho • 'Y 
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(0.8) 

(0.9a) 

(0.9b) 

(0.9c). 



Appendix P 

Maximum viscosity determination 

The maximum viscosity which could be expected in an ehl contact can be 

estimated as following. The traction coefficient is defined as the ratio of 

tangential force to normal force, 

F. II _ t 
rT--

Fn 
(P.1 ). 

Assuming a triangular viscosity distribution with its maximum at the 

centreline, zero viscosity at the edges and a parallel gap, the tangential force 

can be estimated as 

F. =..!..n .8U. 2 .b .w,=..!..n .2,S,uh ·2·b
h 

·w' (P.2) 
t 2 'Imax Oy hz 2 'Imax ho Z 

and the latter normal force, with the assumption of an elliptical Hertzian 

pressure distribution as 

(P.3). 

The effective viscosity is then 

(P.4). 

-484-



Appendix Q 

Published work 

Schafer, C. T., Giese, P., Rowe, W. B., and Woolley, N. H.: 

"Elastohydrodynamically lubricated line contact based on the Navier-Stokes 

equations." 

Thinning films and tribological interfaces. Proceedings of the 2f1h Leeds-Lyon 
Symposium on tribology, 14th -11h September 1999. 

Edited by Dowson, D. et al. 

Amsterdam: Elsevier, 2000. 
pp.57-69. 

Schafer, C. T. and Woolley, N. H.: 
"Elastohydrodynamic lubrication - a particular fluid-structure-interaction 

problem." 

Proceedings of the 2002 European CFX conference. Strasbourg, 16h-1Sh 

September 2002. 
CD-Rom edition. 

Otterfing: CFX, 2002. 

-485-


	431290_001
	431290_002
	431290_003
	431290_004
	431290_005
	431290_006
	431290_007
	431290_008
	431290_009
	431290_010
	431290_011
	431290_012
	431290_013
	431290_014
	431290_015
	431290_016
	431290_017
	431290_018
	431290_019
	431290_020
	431290_021
	431290_022
	431290_023
	431290_024
	431290_025
	431290_026
	431290_027
	431290_028
	431290_029
	431290_030
	431290_031
	431290_032
	431290_033
	431290_034
	431290_035
	431290_036
	431290_037
	431290_038
	431290_039
	431290_040
	431290_041
	431290_042
	431290_043
	431290_044
	431290_045
	431290_046
	431290_047
	431290_048
	431290_049
	431290_050
	431290_051
	431290_052
	431290_053
	431290_054
	431290_055
	431290_056
	431290_057
	431290_058
	431290_059
	431290_060
	431290_061
	431290_062
	431290_063
	431290_064
	431290_065
	431290_066
	431290_067
	431290_068
	431290_069
	431290_070
	431290_071
	431290_072
	431290_073
	431290_074
	431290_075
	431290_076
	431290_077
	431290_078
	431290_079
	431290_080
	431290_081
	431290_082
	431290_083
	431290_084
	431290_085
	431290_086
	431290_087
	431290_088
	431290_089
	431290_090
	431290_091
	431290_092
	431290_093
	431290_094
	431290_095
	431290_096
	431290_097
	431290_098
	431290_099
	431290_100
	431290_101
	431290_102
	431290_103
	431290_104
	431290_105
	431290_106
	431290_107
	431290_108
	431290_109
	431290_110
	431290_111
	431290_112
	431290_113
	431290_114
	431290_115
	431290_116
	431290_117
	431290_118
	431290_119
	431290_120
	431290_121
	431290_122
	431290_123
	431290_124
	431290_125
	431290_126
	431290_127
	431290_128
	431290_129
	431290_130
	431290_131
	431290_132
	431290_133
	431290_134
	431290_135
	431290_136
	431290_137
	431290_138
	431290_139
	431290_140
	431290_141
	431290_142
	431290_143
	431290_144
	431290_145
	431290_146
	431290_147
	431290_148
	431290_149
	431290_150
	431290_151
	431290_152
	431290_153
	431290_154
	431290_155
	431290_156
	431290_157
	431290_158
	431290_159
	431290_160
	431290_161
	431290_162
	431290_163
	431290_164
	431290_165
	431290_166
	431290_167
	431290_168
	431290_169
	431290_170
	431290_171
	431290_172
	431290_173
	431290_174
	431290_175
	431290_176
	431290_177
	431290_178
	431290_179
	431290_180
	431290_181
	431290_182
	431290_183
	431290_184
	431290_185
	431290_186
	431290_187
	431290_188
	431290_189
	431290_190
	431290_191
	431290_192
	431290_193
	431290_194
	431290_195
	431290_196
	431290_197
	431290_198
	431290_199
	431290_200
	431290_201
	431290_202
	431290_203
	431290_204
	431290_205
	431290_206
	431290_207
	431290_208
	431290_209
	431290_210
	431290_211
	431290_212
	431290_213
	431290_214
	431290_215
	431290_216
	431290_217
	431290_218
	431290_219
	431290_220
	431290_221
	431290_222
	431290_223
	431290_224
	431290_225
	431290_226
	431290_227
	431290_228
	431290_229
	431290_230
	431290_231
	431290_232
	431290_233
	431290_234
	431290_235
	431290_236
	431290_237
	431290_238
	431290_239
	431290_240
	431290_241
	431290_242
	431290_243
	431290_244
	431290_245
	431290_246
	431290_247
	431290_248
	431290_249
	431290_250
	431290_251
	431290_252
	431290_253
	431290_254
	431290_255
	431290_256
	431290_257
	431290_258
	431290_259
	431290_260
	431290_261
	431290_262
	431290_263
	431290_264
	431290_265
	431290_266
	431290_267
	431290_268
	431290_269
	431290_270
	431290_271
	431290_272
	431290_273
	431290_274
	431290_275
	431290_276
	431290_277
	431290_278
	431290_279
	431290_280
	431290_281
	431290_282
	431290_283
	431290_284
	431290_285
	431290_286
	431290_287
	431290_288
	431290_289
	431290_290
	431290_291
	431290_292
	431290_293
	431290_294
	431290_295
	431290_296
	431290_297
	431290_298
	431290_299
	431290_300
	431290_301
	431290_302
	431290_303
	431290_304
	431290_305
	431290_306
	431290_307
	431290_308
	431290_309
	431290_310
	431290_311
	431290_312
	431290_313
	431290_314
	431290_315
	431290_316
	431290_317
	431290_318
	431290_319
	431290_320
	431290_321
	431290_322
	431290_323
	431290_324
	431290_325
	431290_326
	431290_327
	431290_328
	431290_329
	431290_330
	431290_331
	431290_332
	431290_333
	431290_334
	431290_335
	431290_336
	431290_337
	431290_338
	431290_339
	431290_340
	431290_341
	431290_342
	431290_343
	431290_344
	431290_345
	431290_346
	431290_347
	431290_348
	431290_349
	431290_350
	431290_351
	431290_352
	431290_353
	431290_354
	431290_355
	431290_356
	431290_357
	431290_358
	431290_359
	431290_360
	431290_361
	431290_362
	431290_363
	431290_364
	431290_365
	431290_366
	431290_367
	431290_368
	431290_369
	431290_370
	431290_371
	431290_372
	431290_373
	431290_374
	431290_375
	431290_376
	431290_377
	431290_378
	431290_379
	431290_380
	431290_381
	431290_382
	431290_383
	431290_384
	431290_385
	431290_386
	431290_387
	431290_388
	431290_389
	431290_390
	431290_391
	431290_392
	431290_393
	431290_394
	431290_395
	431290_396
	431290_397
	431290_398
	431290_399
	431290_400
	431290_401
	431290_402
	431290_403
	431290_404
	431290_405
	431290_406
	431290_407
	431290_408
	431290_409
	431290_410
	431290_411
	431290_412
	431290_413
	431290_414
	431290_415
	431290_416
	431290_417
	431290_418
	431290_419
	431290_420
	431290_421
	431290_422
	431290_423
	431290_424
	431290_425
	431290_426
	431290_427
	431290_428
	431290_429
	431290_430
	431290_431
	431290_432
	431290_433
	431290_434
	431290_435
	431290_436
	431290_437
	431290_438
	431290_439
	431290_440
	431290_441
	431290_442
	431290_443
	431290_444
	431290_445
	431290_446
	431290_447
	431290_448
	431290_449
	431290_450
	431290_451
	431290_452
	431290_453
	431290_454
	431290_455
	431290_456
	431290_457
	431290_458
	431290_459
	431290_460
	431290_461
	431290_462
	431290_463
	431290_464
	431290_465
	431290_466
	431290_467
	431290_468
	431290_469
	431290_470
	431290_471
	431290_472
	431290_473
	431290_474
	431290_475
	431290_476
	431290_477
	431290_478
	431290_479
	431290_480
	431290_481
	431290_482
	431290_483
	431290_484
	431290_485
	431290_486
	431290_487
	431290_488
	431290_489
	431290_490
	431290_491
	431290_492
	431290_493
	431290_495
	431290_496
	431290_497
	431290_498
	431290_499
	431290_500
	431290_501
	431290_502
	431290_503
	431290_504
	431290_505
	431290_506
	431290_507
	431290_508
	431290_509
	431290_510
	431290_511
	431290_512
	431290_513
	431290_514
	431290_515
	431290_516
	431290_517
	431290_518
	431290_519
	431290_520
	431290_521
	431290_523
	431290_524
	431290_525
	431290_526
	431290_527
	431290_528
	431290_529
	431290_530
	431290_531
	431290_532
	431290_533
	431290_534
	431290_535
	431290_536

