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Abstract 

The resurgence of tuberculosis cases world-wide over the last two decades has led to one 

third of the population being infected and an ever increasing number of deaths (World 

Health Organisation, 2006). Little is known about the pathogenicity of the infectious 

agent, Tubercule bacillus, and resistance to the key chemotherapeutic drugs is 

widespread. Increasing research effort aiming to curtail the spread of this disease has 

been aided by the work of Cole et al. (1998 and 2002), which provided genomic 

annotations of the H37Rv strain of Mycobacterium tuberculosis. Subsequent structural 

genomics projects have identified hundreds of potential targets for structure-based drug 

design. 

The research presented in this thesis focuses on the expression and characterisation of 

targets from the Mycobacterium tuberculosis genome. Cell-free expression trials of 36 

unique targets were performed. Initial screening resulted in soluble expression for 30 % 

of the targets and inclusion of additives, such as molecular chaperones or detergents, 

increased this to 67 %. Milligram quantities of protein were obtained for eleven targets. 

As a comparison, four targets were chosen for expression trials using an E. coli in vivo 

system. Similar results were obtained for three of the targets using the cell-free or in 

vivo expression systems. However, significant quantities of soluble Rv3545c, a 

cytochrome P450 125, were only produced using the in vivo method. 

Proteins that were expressed in sufficient quantities were progressed into crystallisation 

trials, one of which yielded crystals suitable for X-ray diffraction. The crystal structure 

of Rv3628, an inorganic pyrophosphatase (Mtb-PPase), was refined to 2.7 A resolution 
in space group P3221. Inorganic pyrophosphatases (PPases) are ubiquitous 

metalloenzymes which belong to the phosphatase superfarnily, and play an essential role 
in biosynthetic reactions (Teplyakov et aL, 1994). 'ne refined crystal structure of Mtb- 

PPase was found to exhibit a similar overall fold and oligomeric form to existing type I 
PPase structures. Comparison with two recent Mtb-PPase structures, both in space 
group P6322 (Tammenkoski et al., 2005 and Benini and Wilson, to be published), 
highlighted a possible pH-dependent role of His93 within the active site. 
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The characterisation of Rv3545c, a predicted cytochrome P450 125 (Mtb-CYP125), is 

also described in this thesis. Cytochrome P450s are a superfamily of haern-thiolate 

proteins (50 to 60 kDa) which monooxygenate hydrophobic substrates as part of electron 

transport chains (Nebert and Gonzalez, 1987 and Chapple, 1998). P450s have recently 
been implicated as novel antimycobacterial targets (Munro et al., 2003). 

Spectroscopy was used to confirm the cytochrome P450 annotation of Rv3545c, with the 

ferrous enzyme exhibiting a Soret peak at 450 nm in the presence of CO. A high-to-low 

spin-shift was observed by UV/visible and EPR spectroscopy, upon imidazole-inhibition 

of ferric Mtb-CYP125. Secondary structural elements were determined by circular 

dichroism (CD) to be - 33 % a-helix and - 14 % P-sheet. Finally, dark brown/red 

crystals of Mtb-CYP125 were obtained, but it was not possible to collect a full data set. 
This was primarily due to the crystals forrrfing clusters which were impossible to 

separate. Despite this, weak diffraction data to 3 Aresolution were measured, and 
further optimisation of the crystallisation conditions may prove successful. 
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Preface 

'Mis thesis is a report of original research undertaken by the author and is submitted in 

partial fulfilment of the requirements for the degree of Doctor of Philosophy to 

Liverpool John Moores University. 

The expression and characterisation of metalloproteins from the pathogen 
Mycobacterium tuberculosis are the focus of research presented in this thesis. The 

expression of 36 targets was attempted using a bacterial cell-free protein expression 

system. As a comparison, the expression of four targets was also attempted using an E. 

coli in vivo system. The crystal structure of R0628, an inorganic pyrophosphatase, 

which was successfully expressed using the cell-free system, was refined to a resolution 

of 2.7 A and is described in this thesis. Finally, a cytochrome P450 125 (Rv3545c), 

expressed using the in vivo system, was characterised by bioinformatics, UV/visible 

spectroscopy, circular dichroism, and electron paramagnetic resonance. Crystallisation 

trials were also undertaken, yielding weakly-diffracting multiple crystals. 

Ile research presented in this thesis was performed predominantly at CCLRC 

Daresbury Laboratory . All cell-free protein expression studies were carried out at the 
Protein Research Group of the RIKEN Yokohama Institute, Japan. Electron 

paramagnetic resonance experiments were conducted at the EPSRC National Centre for 
EPR Spectroscopy, Manchester. 

Structure of the thesis: 

Chapter 1: A brief introduction to the disease tuberculosis and the causative agent, 
Mycobacterium tuberculosis, together with background information 

regarding inorganic pyrophosphatases and cytochrome P450s 
Chapter 2: A theoretical and experimental background to the production of proteins 

and their subsequent characterisation used throughout this thesis 
Chapter 3: A review of the theoretical and experimental background regarding 

protein crystallography 
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Chapter 4: Describes the expression trials of protein targets from Mycobacterium 

tuberculosis using both E. coli-based cell-free and in vivo systems and 

provides a brief comparison between the two systems 
Chapter 5: Describes the crystallisation and structure determination of an inorganic 

pyrophosphatase (Rv3628) from Mycobacterium tuberculosis to 2.7 A 

resolution 

Chapter 6: Describes the characterisation of cytochrome P450 125 (Rv3545c) from 

Mycobacterium tuberculosis by bioinformatics, UV/visible spectroscopy, 

circular dichroism, and electron paramagnetic resonance. This chapter 

also details crystallisation of this protein and the subsequent data 

collection from weakly-diffracting multiple crystals 

Chapter 7: Final conclusions regarding the entire thesis and suggestions for future 

work 
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Chapter I- Introduction 

Chapter 1- Introduction 

1.1 Mycobacterium tuberculosis 

1.1.1 Tuberculosis 

Tuberculosis is a chronic infectious disease caused by the pathogen Tubercle bacillus, 

which infects one in three people and accounts for more than two million deaths each 

year. Due to the highly infectious, airborne nature of the disease, the World Health 

Organisation (VMO) predicts that by 2020 nearly a billion people will be infected, 

leading to two hundred million cases and thirty-five million deaths worldwide. In 1993, 

as deaths from this single pathogen totalled more than those from malaria, diarrhoea, 

HIV/AIDS, and tropical diseases combined (Evans, 1998), the WHO declared a state of 

global emergency. 

Despite these devastating statistics, very little is known about the pathogenicity of this 

mycobacterium. Until the late 1990s tuberculosis was widely regarded as a disease of 

the poor (Evans, 1998). However, the sharp incline in HIV and AIDS cases in the 

Western world has accelerated the spread of this disease (WHO, 2000). Although a 

large proportion of the world's population is infected with TB, only 5- 10 % become ill, 

due to the host's immune system attacking the mycobacterium and forcing it to remain 

dormant. However, in immuno-suppressed hosts, rapid proliferation of the disease 

occurs and is the leading cause of death in HIV patients. 

The Bacille Calmette-Guerin (BCG) vaccine has prevented the number of deaths from 

tuberculosis rising further, conferring protection by inoculating the patient with a live 

attenuated strain of Mycobacterium bovis. This closely related species provides 
immunological protection from Mycobacterium tuberculosis in the same way that 
inoculation with cowpox prevents the emergence of smallpox (Evans, 1998). 

Until recently, development of anti-mycobacterial compounds has been fairly stagnant, 

medication instead relying upon five key chemotherapeutic drugs- isoniazid, rifampicin, 
pyrazinamide, ethambutol/streptomycin, and capriomycin. The use of these drugs as a 
first line defence against tuberculosis has led to widespread resistance, due in part to 
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incorrect drug regimes. Despite the emergence of resistant tuberculosis strains, the 

Direct Observation of Treatment (DOTs) scheme has a success rate of > 95 % and costs 

just US$ 11 per 6 month supply in developing countries. The scheme encompasses not 

only drug therapy, but also encourages political commitment, provides microbiology 

detection services, and monitors drug administration to prevent further resistance 

occurring. By 2015, the WHO aims to have reduced cases by 50 % compared with 1990 

levels, with complete eradication by 2050 (WHO, 2006). 

Over the last few years, tuberculosis research has come under the spotlight with the 

completion of the M. tb genome sequence, strain H37Rv (Cole et al., 1998). The 

information gained from the genome, together with subsequent structural genomics 

projects, will improve our biological understanding of this pathogen and allow us to 

design tailored anti-mycobacterial drugs. 

1.1.2 The Mycobacterium tuberculosis genome 

Our knowledge of Mycobacterium tuberculosis has been significantly advanced by the 

work at the Wellcome Trust Sanger Institute in Cambridge, where the research group 

headed by S. T. Cole, generated a significant amount of data regarding the pathogens 

genome. This was achieved by a combination of systematic sequence analysis from 

cosmids and BACS for large insert clones, together with random small-insert clones 

from a whole genome shotgun library. They identified large areas of repetition within 

the genome, together with many insertion sequences, more than fifty of which were 

intergenic or non-coding and localised near to tRNA genes. They postulated that this 

prevents key genes from being inactivated (Cole et al., 1998). 

The complete genome sequence, published in 1998, was that of the most characterised 
tuberculosis strain, H37Rv (Cole et al., 1998). The genorne, unusually rich in guanidine 
and cytosine bases (65.6 % compared with 50.8 % for E coli), encompasses 4,411,529 
base pairs and 3,974 genes, the second largest bacterial genome sequence currently 
available. 3,924 genes encode for peptides and 50 for stable RNA. The low abundance 
of adenine & thymine residues is reflected in the organism's codon bias, highlighted by 
the abnormally high frequency with which GTG start codons are observed (35 % 
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compared with only 9% in Bacillus subtilis). Greenacre's correspondence analysis 

showed a preference for G/C-rich amino acids such as alanine, glycine, proline, arginine, 

and tryptophan, and this GC content has been shown to be fairly constant throughout the 

genome (Cole et al., 1998). 

This phenomenon of codon bias occurs due to there being sixty-four different codons for 

only twenty amino acids. Therefore there is no requirement for all of the codons, all of 
the time. The third position base is usually insignificant and can be interchanged 

forming synonymous residues. Such residues are not used with the same frequency due 

to translational selection and mutational bias. 

Functional analysis of the tuberculosis genome allowed Cole's group to categorise many 

of the genes with regards to their assumed role. The eleven categories for which they 

identified were I- Virulence, detoxification, and adaption (91 genes); 2- Lipid 

metabolism (225 genes); 3- Information pathways (207 genes); 4- Cell-wall and cell 

processes (516 genes); 5- Stable RNAs (50 genes); 6- Insertion sequences and phages 
(137 genes); 7- PE and PPE proteins (proteins with N-terminal Pro-Glu and Pro-Pro- 

Glu motifs, respectively) (167 genes); 8- Intermediate metabolism and respiration (877 

genes); 9- Proteins of unknown functions (606 genes); 10 - Regulatory proteins (188 

genes); and II- Conserved hypothetical proteins (910 genes). 

This research has shown that a significantly large proportion of coding capacity from 

this mycobacterium is taken up by the biosynthesis of lipogenesis and lipolysis enzymes, 
including an extensive range of Cytochrome P450s. Two new families of glycine-rich 

proteins, PE and PPE, containing repetitive sequences which may represent antigenic 

variation, were also encoded for. An unpredicted observation of their work was a 

potential mechanism which allows Mycobacterium tuberculosis to present the immune 

system with a "moving target", by altering the expression pattern of a number of short 
peptides, thus evading destruction (Cole et al., 1998). 

Re-annotations of the H37Rv genome (now 4,411,532 nucleotides) published in 2002, 
identified twenty-two new protein-coding sequences with predicted functions, together 

with a further sixty of unknown function (Cole et al., 2002). No new RNA genes were 
identified (table 1.1). The bioinformatics tools, BLASTP and FASTA (Pearson and 
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Lipman, 1988) were exploited to manually re-analyse the protein-coding sequences 

within the original sequence. 

During this re-analysis, the group detected new sequences containing the appropriate GC 

content, correlation scores, and codon usage found in coding sequences. Further 

inspection employing the codon-usage program AMIGA (Automatic Microbial Genome 

Annotation), identified potential frameshifts and coding sequences. See tables 1.1 to 1.2 

for a description of M. tb genomic annotations. 

Table U: Annotations of the MYcobacterium tuberculosis genome. Genes grouped by their proposed 
function (Cole et a/., 1998 and 2002). 'Cole et al., 1998.2Cole et al., 2002. 
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Table 1.2: Changes to the functional classification of Mycobacterium tuberculosis genes following re- 

annotation by Cole et al. in 2002. 

1.1.3 Identification of essential genes 

1.1.3a Virulence, growth, and survival genes 

The identification of genes essential for M. tb virulence, growth, or survival, during 

infection will undoubtedly aid rational drug design in the fight against tuberculosis. A 

key paper in the determination of genes essential for mycobacterial survival was 

published in 2003 by Sassetti and Rubin (Sassetti and Rubin, 2003). This group created 

a library of mutants from the M. tb (H37Rv) genome, which were grown on agar plates 
for several weeks (in vitro pools) and also used to infect mice (in vivo pools) for the 

same period. Surviving bacteria were collected from the mice and re-plated onto agar, 
before being compared with the in vitro pools using transposon site hybridisation 

(TRASH). TRASH enabled the identification of all mutated genes present within the M. 

5 



Ch4pter I- Introduction 

tb cells prior to, and after infection. Those which were not present in the in vivo pools 

were deemed to be essential for M. tb survival. The results of this study are surnmarised 
in table 1.3, together with those from previous work describing genes essential for in 

vitro survival (Sassetti et al., 2001). 

1.1.3b Drug resistance genes 

Understanding the means by which M. tb confers resistance to chemotherapeutics, will 

enable the development of novel treatments. Resistance occurs frequently in 

tuberculosis due to the compartmentalisation of infection within the host, which prevents 

multiple-chemotherapeutics from functioning simultaneously, thereby resulting in 

monotherapy (Gillespie, 2002). Dessen et al. (2005) described the three mechanisms 

whereby such resistance can occur: inactivation of the antibiotic by modification; 

mutagenesis of key residues, resulting in modification of the macromolecular target; and 

promotion of antibiotic efflux from the cell. The most commonly used antibacterials 
target protein synthesis, nucleic acid replication and repair, and cell wall biosynthesis 

mechanisms (Dressen et al., 2005). 

Resistance to the antimycobacterial agent, streptomycin, was found to be due to 

mutations within the 16S RNA or the S12 protein, both involved in protein synthesis 
(Dressen et al., 2005). The identification of these proteins as drug targets was 
determined by the high resolution structure of the 30S ribosomal subunit, in complex 

with streptomycin (Carter et aL, 2000). 

Missense mutations within a conserved region of the rpoB gene, which encodes the 0- 

subunit of RNA polymerase, account for 97 % of all rifampicin-resistant M. tb isolates, 

as determined by RFLP analysis (Yuen et aL, 1999). Another mechanism by which M. 

tb acquires resistance is via the inactivation of an enzyme required by the drug for 

activity. The drug isoniazid requires catalase for activation and mutations within this 

gene, KatG, confer resistance (Gillespie, 2002). Finally, pyrazinamidase is the target for 

the chemotherapeutic, pyrazinamide. Resistance to this drug is due to mutations within 
the enzyme which prevent conversion of pyrazinamide to its active form, pyrazinoic acid 
(Gillespie, 2002). 

6 



Chapter I- Introduction 

Table 1.3: Genes found to be essential for Mycobacterium tuberculosis survival in vivo' (Sassetti and 

Rubin, 2003) and in Vitro 2 (Sassetti et al., 200 1 ). 

1.1.4 Structural biology consortia 

Several research projects dedicated to elucidating the complex structure-function 

relationships of the pathogen Mycobacterium tuberculosis are spread throughout the 

world. Consortia have been formed on varying scales to encourage the flow of 

information and accelerate the discovery of new drugs. Such groups within North 

America include the Tuberculosis Trials Consortium (TBTC); the Tuberculosis Results 

Action Consortium (TRAC); and the Tuberculosis Epidemiological Studies Consortium 

(TBESC). Closer to home are the XMTB German Mycobacterium tuberculosis 
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Structural Genomics project; the French Pasteur Institute; and the North West Structural 

Genomics Consortium (NWSGC), of which Daresbury Laboratory is a key member, 

together with the Universities of Manchester, Leeds, Liverpool, Liverpool John Moores, 

Astra Zeneca, and Astex Therapeutics, Cambridge. This consortium alone has over 

forty targets for structural characterisation. 

International efforts include the Global Alliance for Tuberculosis which operates in New 

York, Brussels, and Cape Town and, the Tuberculosis Structural Genomics Consortium 

(TBSGC). The latter comprises more than 230 members from 31 organisations, 

covering 13 countries, including the UK. To date, fifty crystal structures have been 

posted on the consortium website. However, with the overall goal of characterising 400 

potential drug targets, work is far from finished (Goulding et al., 2002). See table 1.4 

for list of recent crystal structures available in the Protein Data Bank. 

PDB Code Predicted function PDB Code Predicted function 

2HH7 CSOR 2AQ8 Enoyl-ACP (coA) reductase 
2HHl MPT64 2A6P Hypothetical protein (Rv3214) 

2NYX Hypothetical protein (Rv 1404) 2CDN Adenylate kinase 

2NQT Hypothetical protein (Rv 1652) IZEL Hypothetical protein (Rv2827c) 

2NTN MabA 2CIG Dihydroflorate reductase 
2NV6 InhA 2GDN P-lactamase 

2EV I 1264N 2G2D pdyO-type ATP cobalarnin 

adenosyltransferase 
IU5 CYP121 2BYO Lipoprotein LPPX Rv2945c 

2LXC CY C5' carbohydrate epimersae 

rmcc 

2G38 PE/PPE complex 

21TW Shikimate kinase 2BIP EPSP synthase 
2844 Hypothetical protein (Rv2844) IV5P LigD ligation domain 

2GKM TrHbn 2FHG Proteasome 
2C21 Hypothetical protein (RvO 130) 2A75 Acyl-coA carboxylase ACCDS 
2DTF Threonine synthase IXXX Dihydrodipicolinate synthase dapA 

Rv2753c 
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Table 1.4: Crystal structures from Mycobacterium tuberculosis published during 2006 

(http: //www. rcsb. org). 

A paper by Terwilliger et al. in 2003 highlighted a few of the recent successes, ranging 

from a glyoxylate pathway protein, essential for bacterial survival within the 

macrophage (Sacchettini et al., 2000 and Smith et al., 2003); to a P450 which provides a 

good model for novel anti-TB drugs (Mowat et al., 2002); and an iron-metabolic enzyme 

involved in NAD biosynthesis (Bossi et al., 2003). 

Clare Smith and James Sacchettini's research group from the Department of 
Biochemistry and Biophysics, Texas A&M University, successfully characterised two 

key enzymes in the glyoxylate shunt pathway. These proteins, isocitrate lyase, RvO467- 

icl (Sacchettini et al., 2000), and malate synthase, Rvl837c-glcB (Smith et al., 2003), 

become upregulated when bacteria shift to preferentially utilising substrates generated 
by 5-oxidation of fatty acids (Honer et al., 1999) and during macrophage infection 

(Graham et al., 1999). Hence, these enzymes are essential for bacterial survival and 

9 



Chgpter I- Introduction 

persistence within the activated macrophage (McKinney et al., 2000) and are extremely 

attractive targets for new anti-mycobacterials. 

As previously described, the Mycobacterium tuberculosis genome encodes a wide array 

of lipid-metabolising Cytochrome P450s, which oxidise fatty acids, sterols, and steroids 
(Porter and Coon, 1991). Generally prokaryotes encode for only a few, if any, P450s 

which led to Mowat et al. from the University of Edinburgh postulating that the number 

of P450s corresponds to the importance of lipid metabolism within the pathogen (Mowat 

et al., 2002). Subsequently they crystallised the mycobacterial CYP121 (gene Rv2276), 

which binds tightly to azole-based antifungals such as miconazole and clotrimazole. 
Such drugs potently inhibit P450s in the nanomolar range, and are hence obvious 

candidates for anti-mycobacterial drug development (Mowat et al., 2002). It was not 

possible to solve the structure using molecular replacement, despite obtaining diffraction 

data to 1.06 A, which represents a common problem associated with P450s as they tend 

to lack sequence homology between species. Instead, Multiple Isomorphous 

Replacement with Anomalous Scattering (MIRAS) was successfully used (Leys et al., 
2002). 

An Italian research group from the University of Pavia, working on proteins thought to 
be associated with NAD biosynthesis and iron metabolism, have recently determined the 

crystal structure of FprA (gene Rv3lO6) in both its oxidised (at 1.05 A reoslution) and 

reduced (at 1.25 A resolution) forms in complex with NADP. FprA has been classified 

as a mycobacterial oxidoreductase due to its significant sequence identity with 
mammalian and yeast adrenodoxin reductase. This highly structurally conserved family 

of enzymes plays a role in either iron metabolism or in Cytochrome P450 reductase 
activity, catalysing the transfer of reducing equivalents from NADPH to a protein 
acceptor (Bossi et al., 2002). 

1.1.5 Other research efforts 

Following on from Cole et al's genome sequence which highlighted the large percentage 
(- 18 %) of coding capacity dedicated to proteins involved within the cell wall, much of 
today's research revolves around such processes. It is well established that the thick and 
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waxy, hydrophobic cell envelope is formed of four types of polymers: peptidoglycan, 

arabinogalactan, mycolic acids, and lipoarabinomannan (Evans et al., 1998). This forms 

a permeability barrier around the mycobacterium protecting it from a number of 

antibiotic drugs (Brennan, 1995). By targeting proteins which the pathogen relies upon 

for protection, such as those involved in cell envelope synthesis or drug 

modifying/efflux enzymes, it may be possible to suppress the pathogenesis of this 

organism. 

A preliminary report of progress from the Centre of Proteomics and Genomics at the 

University of California, Los Angeles, outlined their tuberculosis protein targets and 

current status. The five classes for which they are interested are: extracellular proteins 

potentially involved in M. tb pathogenicity; iron-regulatory proteins essential for 

pathophysiology; functionally related proteins of known anti-TB drugs; mycobacterium- 

specific proteins likely to be involved in virulence and pathogenicity; and proteins 

containing predicted novel folds (Goulding et aL, 2002). 

A group at UCLA have obtained a crystal structure (to 2.4 A) of one of their targets, 
Rv2220, which encodes for glutamine synthase (Gil, et A, 1999). Previous research by 

Harth (1999) and Tullius (2001) has shown this enzyme to be involved in the early 
stages of infection and they conclude that this may play a role in the synthesis of unique 

pathogenic cell-wall polymers. 

Another success has been achieved by a different group at UCLA, at the UCLA-DOE 
Laboratory of Structural Biology and Molecular Medicine (Anderson et al., 2001). The 

group solved the structure of a major secretary protein, mycolyl transferase antigen 85B, 

which together with Antigen 85A and 85C (Sacchettini et al., 2000) catalyses the 
transfer of mycolic acids within the pathogen. These form major components of the 

mycobacterium's cell wall and are unique to mycobacteria, thus representing attractive 
drug targets. Experiments by Horwitz et al. in 1995 demonstrated that vaccination of 
guinea pigs with purified M. tb Antigen 85B induces considerable immunological 

protection against M. tb aerosol bacterium. Furthermore, inoculation with a recombinant 
form of the existing M. bovis BCG vaccine, expressing the M. tb A85B protein, induces 
a stronger immunity than the existing vaccine (Horwitz, et al., 2000). 
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1.2 Inorganic pyrophosphatases 

1.2.1 Phosphatases 

Phosphatases catalyse the removal of phosphate groups, attached to proteins by the 

action of kinases. Such cycles of phosphorylation and dephosphorylation provide a 

reversible regulation of many metabolic pathways, according to cellular requirement 
(Hames and Hooper, 2000 and Busam et al., 2006). Regulation of pathways such as 

glycogen synthesis, occurs by reversible covalent modification of the enzyme by 

attachment of a phosphate molecule to a hydroxyl group, often in an ATP-dependent 

manner. Such phosphoryl transfer alters the enzyme's tertiary structure, resulting in 

either up or down regulation of activity (Hames and Hooper, 2000). This is reversed by 

the action of phosphatases, which cleave the bond between the phosphate and enzyme, 

thereby releasing free phosphate. Some kinases and phosphatases act upon specific 

residues within the enzyme, such as threonine, serine, tyrosine, and histidine. 

This ubiquitous family can be grouped dependent upon substrate specificities, catalytic 

mechanisms, and amino acid sequences (Dombradi, 2002). The four groups are: 

phosphoprotein phosphatases; metal-ion-dependent proteins; tyrosine protein 

phosphatases; and histidine protein phosphatases. The most characterised of all 

phosphatases, tyrosine phosphatase, regulates the signal transduction pathways involving 

tyrosine phosphorylation. These enzymes have been implicated in the development of 

cancer, diabetes, rheumatoid arthritis and hypertension (Van Montfort et al., 2003). A 

less well known member of this family is histidine acid phosphatase, which functions 

optimally at low pH, to hydrolyse phosphate esters (Van Etten et al., 1991). Two 

conserved catalytically important histidines, are thought to form a phosphohistidine 

intermediate, and to act as a proton donor (INTERPRO). 

1.2.2 Inorganic pyrophosphatases 

Inorganic pyrophosphatase, PPase, (EC. 3.6.1.1) belongs to the phosphatase family of 
enzymes and catalyses the hydrolysis of the high energy compound, pyrophosphate 
(PPi), to orthophosphate (Pi), see equation 1.1 (Butler, 1971 and Matthews et al., 2000): 

12 



Chapter I- Introduction 

Equation 1.1: 
P207 -4 + H20 10 2Hpo4-2 

PPi formation occurs when ATP is hydrolysed to adenosine monophosphate (AMP) 

during many ATP-dependent biosynthetic reactions (Voet et al., 1999). In addition to 

hydrolysing PPi phosphonanhydride bonds (Chen et al., 1990), PPase also mediates 

oxygen exchange between inorganic phosphate and water (Lahti, 1983). These enzymes 

function as part of many biosynthetic reactions, such as protein/DNA/RNA synthesis 

(Kankare et al., 1996) and tRNA charging (Liu et al., 2004), and may also be involved 

in the copying of DNA molecules during chromosome duplication (Lahti, 1983 and 

Salminen et al., 1995). 

PPases are ubiquitous enzymes, having been identified in virtually every organism 

(Teplyakov et al., 1994). They are soluble proteins, predominantly found in the cytosol. 

Evolutionary analysis of PPase sequences from different organisms identified two 

distinct families: type I, which include most known PPases; and the less common type Il 

family, which are found in Bacillus subtilus, Methanococcus jannaschii, and several 

Streptococcus strains (Cooperman et al., 1992, Young et al., 1998 and Sivula et al., 

1999). The two families are evolutionarily distinct and hence share no sequence 

homology (Tammenkoski et al., 2005). 

Type I PPases are well characterised and can be further divided into two groups with the 

prokaryotes forming hexamers of approximately 120 kDa, and the eukaryotes existing as 
60 to 70 kDa homodimers. Identity between prokaryotic PPases is reasonably high (- 45 

%), however between the two groups is below 25 % (Teplyakov et al., 1994). A further 

group of membrane-bound PPases exist in plants and some bacteria, which function as 

reversible proton pumps, whilst hydrolysing and synthesising PPi, and share no 

sequence homology with the two families previously mentioned (Sivula et al., 1999). 

1.23 Importance of inorganic pyrophosphatases 

Nucleotide triphosphate-dependent biosynthetic reactions such as nucleic acid 

polymerisation, coenzyme synthesis, and amino acid activation, result in elevated levels 
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of cellular PPi. High levels of PPi can result in cellular toxicity, thus PPase plays an 

essential role in controlling these potentially toxic levels (Butler, 1971). The cytosolic 

PPase-dependent reaction shifts the equilibration constant towards biosynthesis 

(Komberg, 1962) and has been shown to be essential for E coli (Chen et al., 1990) and 

S. cerevisiae (Lundin et al., 199 1) viability. 

An increase in expression of PPase from Legionella pneumophila was found to occur in 

response to environmental stimuli during intracellular infection of macrophage-like cells 

(Kwaik, 1998). Further experiments by Triccas and Gicquel (2001) attempted to discern 

whether such a connection existed during infection with Mycobacterium tuberculosis, 

-however they could find, no such link. This may be due to the differences in intracellular 

environments which are encountered by the two pathogens (Kwak et al., 1999 and 
Triccas and Gicquel, 2001) 

Despite this, a recent review of the transcriptional response of Mycobacterium 

tuberculosis to different drugs and growth-inhibitory conditions identified an up- 

regulation of the PPase gene (Boshoff et al., 2004). Using microarray profiling, the 

study identified clusters of genes which were co-ordinately regulated under various 

stress conditions. The PPase gene belongs to the gene cluster (GC-71), implicated in 

ribosomal architecture and translation, and was found to be induced in response to 

inhibition of translation. This suggests an important role of this enzyme, however a 
further study by Sassetti and Rubin (2003) did not identify an essential requirement for 

Mycobacterium tuberculosis PPase during in vivo infection in mice. This alone however 

does not exclude the possibility of an important role for PPase in Mycobacterium 

tuberculosis. 

1.2.4 The role of metals in pyrophosphatase activity 

Cooperman and Chiu (1973) first identified the essential role of divalent metal cations in 

PPase catalysis, however the mechanism by which these metals exert activity has only 
recently been outlined. Type I PPases exhibit a preference for Me', decreasing in 

efficiency with Zn 2+, C02+, Mn 2+, and Cd2' at different pH's (Lahti and Kolakowski et 
al., 1990), which bind with a micromolar affinity (Fabrichniy et al., 2004). Type 11 
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enzymes however, prefer manganese or cobalt ions which bind with a greater, 

nanomolar affinity (Merckel et al., 2001 and Fabrichniy et al., 2004), with zinc acting as 

both a partial activator and inhibitor (Zyryanov et al., 2004). Suggestions for these 

differences are discussed further in section 1.2.8. Despite this preference for 

magnesium, manganese binds more tightly to the PPase (type 1) active site, subsequently 

intensifying substrate/product binding affinity (Cooperman, 1981). In the absence of 

metal cations, only 5% of the catalytic sites are predicted to be occupied by PPi (Janson 

et al., 1979). PPases are also relatively thermostable, particularly when cations are 

bound (Ichiba et al., 1998). 

Significant contributions to the role of metals in PPase catalysis were conducted in Yeast 

and E. coli (Rapoport, 1973, Baykov, 1974, Cooperman, 1981, and Knight, 1984). This 

demonstrated E-PPase's dependence upon four metal ligands for activity, whilst the 

larger Y-PPase utilizes only three. Metal ions (such as magnesium) activate the enzyme 

and neutralise substrate net charge, thus forming part of the active substrate MgPPi, and 

also stabilise the transition state (Cooperman, 1982 and Baykov, 1996, Samygina, 2001). 

The rate of catalysis was found to be proportional to the concentration of MgPPi and 

freeM '(Moe and Butler, 1972 and Rapoport etal., 1972). 

1.2.5 Mechanism 

The mechanism by which PPase functions differs between type I and 11 enzymes 
(Fabrichniy et al., 2004), as demonstrated by the varying affinity for metal cofactors 
described earlier. Little is known about the type 11 mechanism and so the type I PPase 

mechanism is discussed further here. 

Initial understanding of the PPase catalytic mechanism resulted from work by 

Cooperman et al. (1982), which predicted that a general base activation of an attacking 
nucleophilic water molecule within the active site, together with the activation of the 

phosphoryl leaving group through the formation of a metal ion complex, led to a general 
acid catalysis. Further work by Baykov in 1992 identified two potential catalytic 
pathways, with magnesium acting as a cofactor (Baykov and Shestakov, 1992). Two 
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activating Me' ions were found to bind primarily to the active site, followed by PPi, 

and a third substrate metal ion. The fourth Mj2+ was found to bind loosely. 

More recently, a detailed structure-based model for PPase mechanism has been 

described in Yeast by Heikinheirno, et al. (1996), the resulting mechanistic model is 

described here and shown in figure I. I. This was produced by docking a transition state 

model into the PPase-product structure (PDB ID: IWGJ). As described before, 

hydrolysis of the P207-Mn2 substrate occurs through attack by a potent nucleophile. 

Through site-directed mutagenesis and extensive biochemical characterisation, they 

identified the most plausible general base candidate for nucleophilic attack of PPi, to be 

a hydroxide ion (water 1, figure 1.1). This is further 'substantiated by the structure of 

fluoride-inhibited Y-PPase which also positions the hydroxide ion in close contact with 

the phosphoryl group, P2 (Heikinheimo et al., 2001). Stabilisation of this ion occurs 

through interaction of its lone pairs with two active site metal ions (MnI and Mn2, 

rigure 1.1), together with a hydrogen bond between the hydroxide's hydrogen and a 

side-chain oxygen from Asp 117 (Y-PPase numbering). They proposed that the 

negatively charged hydroxide attacks the electrophilic phosphorous group, P2, leading to 

its dissociation from the Mn3 metal. The suggestion that P2 dissociates before PI was 

made due to its lower binding affinity, together with its close contacts with the proposed 

nucleophile (water 1, figure 1.1). This however, contradicts previous work by 

Harutyunyan et al. (1996). 

Finally, during the P-0-P hydrolysis step, they postulate that a water (water 6, figure 

1.1) coordinated to Mn3, acts as a general acid, donating a proton to an oxygen on the 

leaving phosphorous group (Pl, figure 1.1). The potential for the MO-coordinated 

residues, Arg7g, Lys193, and Tyr192, to act as general acids was disregarded due to 

retention of activity in E-PPase containing mutations in homologous residues (Lahti and 
Pobjanoksa et al., 1990). 
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I 

Figure I. I.: Schematic representation of the PPase (type 1) mechanism of catalysis, as proposed by 

Heikinheimo et al. (1996) through computational docking of Y-PPase. Lines represent hydrogen 

bonding (grey) and metal coordination (dashed), and arrows indicate the proposed flow of electrons. 
Key residues are highlighted, as are the leaving (PI) and electrophilic (P2) phosphoryl groups of 

pyrophosphate, and the metal groups (Mnl-4). See text for a description of the mechanism. 
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1.2.6 Inhibition 

1.2.6a Calcium: A natural inhibitor 

The role of calcium in cellular regulation is well established (Samygina et al., 2001) and 
is known to act as a natural inhibitor of PPases, competing with the activating metals for 

position within the active site, as demonstrated in Y-PPase (Ridlington and Butler, 1972 

and Butler and Sperow et al., 1977) and E-PPase (Avaeva et al., 1998 and Samygina et 

al., 2001). Two calcium ions were found to bind to E-PPase in the absence of substrate 
(at positions MnI and Mn2, figure 1.1), one of which could be'replaced by magnesium, 

demonstrating the different binding affinities of these two sites (Avaeva et al., 1998). 

The higher affinity calcium binding site was found to coincide with the lower affinity 

magnesium/manganese site (Mn2, figure 1.1). In the presence of pyrophosphate and 

calcium, no activity was observed even at excessive concentrations of the ion (10 mM), 
implying that calcium cannot function as a PPase activating metal. 

Subsequent high resolution structures of E-PPase in complex with Ca 2+ and CaPPi 

(Samygina et al., 2001) located three calcium atoms within the active sites (Mnl - Mn3, 

flgure 1.1), coordinated to the same residues as described for magnesium/manganese 
(section 1.2.5). All calcium ions were found to bind more strongly in the presence of 
PPi, with the third calcium binding with very weak affinity in the absence of substrate. 
Calcium and magnesium/manganese were also found to exhibit the same coordination 

with PPi, as described in section 1.25. Calcium inhibition was found to occur due to the 

unhydrolysable CaPPi competing with MgPPi for position within the active site, and 

also due to the inability of Ca 2+ at site Mn2 to activate an attacking nucleophile (water 1, 
rigure 1.1), required for PPi hydrolysis (section 1.2.5). 

1.2.6b Other inhibitors 

A less common cellular inhibitor, fluoride, was found to reversibly inactivate PPases at 
millimolar concentrations (Smith, 1970 and Pinkse et al., 1999). Fluoride was found to 

rapidly bind E-PPase in the presence of MgPPi, followed by a slow decline in the 
inhibition rate (Baykov et al., 2000). Also, fluoride is known to bind with higher 

affinity in the presence of substrate. In the presence of I mM sodium fluoride, E-PPase 
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activity was reduced to 9 %, with less then 0.01 % activity when the concentration was 

increased to 10 mM (Josse, 1966). Extremely high concentrations of guanidine-HCI was 

also found to inhibit E-PPase, with activity reduced to 36 % and 3% at a concentration 

of IM and 2 M, respectively (Josse, 1966). 

1.2.7 Structure 

As of November 2006,36 unique type I and 6 type 11 three-dimensional structures of 
inorganic pyrophosphatase exist within the Protein Data Bank (PDB), with 16 E-PPase 

and 11 Y-PPase structures available. These two enzymes are the most characterised of 

all pyrophosphatases. Three structures exist from Helobacter pylori and Bacillus subtilis 
(type 11), two from Streptomyces gordonii (type 11) and Mycobacterium tuberculosis, and 

one each from: Pyrococcusfuriosus, Pyrococcus horikoshii, Streptomyces mutans (type 

II), Sulfolobus acidocaldarius, and Thermus thermophilus. To date, no mammalian 
PPase structure has been solved. See table 1.5 for examples of PPase structures 
deposited in the PDB. 

While no structures exist with both magnesium and phosphate bound, magnesium- 

manganese-sulphate (phosphate analog) (1174), manganese-phosphate (IWGJ, IYPP, 

8PRK, IE6A, IE9G), manganese-sulphate (IWPN, IK20), zinc-sulphate (IWPP), 

cobalt-phosphate (IM38), magnesium (IOBW, IEPW, IHUJ, lHUK, IQEZ) manganese 
(IINO, IWGI, IK23), and sulphate-bound structures (IJFD, IMJW, IMJX, IWPM, 

2PRD) further develop our knowledge of the structural basis of PPase catalysis. 

1.2.7a Primary structure 

As described previously, type I and II PPases are evolutionarily distinct and share no 

sequence homology, so will not be compared here. Based on primary structure alone, 
Sivula et al. (1999) divided type I PPases into three subfamilies: prokaryotic, with 191 ± 
29 residues; plant, 214 ± 3; and animal/fungal, 286 ± 6. Sequence identity between 

prokaryotic PPases ranges from as low as 23 % to a virtually indistinguishable 99 %. 
Conservation within the animal/fungal group is also diverse, with members sharing 
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between 42 and 95 % identity. Plant PPases on the other hand share between 74 and 90 

% identity, representing the least divergent group. 

PDB ID Species PPase Reference Res. Space Ligand 

type group 

IWPM Bacillus 11 Fabrichniy et 2.05 P21212, S04 

subtilis al., 2004 
I-F-AJ Escherichia I Kankare et al., 2.15 H32 None 

coli 1996 

1.116T Eschefichia I Samygina et 1.1.20 H32 1. Ca3PPi 

2.1 N40 coli al., 2001 2.1.10 2. Ca3 

ITWL Pyrococcus I Zhou et al., to 2.20 H32 None 

juriosus be published 
- FU -DE Pyrococcus I Liu et al., 2004 2.66 P21212 None 

horikoshii 
_FP-YP Saccharonqces I Harutyunyan et 3.00 P1121 None 

cerevisiae al., 1983 
Ty--PP Saccharomyces I Harutyunyan et 2.40 P212121 (Mn2Pi) 2 

cerevisiae al., 1996 

1. lWGJ Saccharomyces I Heikinheimo et 1.2.00 P212121 1. (MnPi) 2 
2. IWGI cerevisiae al., 1996 2.2.20 2. Mn2 

I K20 Streptomyces 11 Ahn et al., 1.50 P212121 MnS04 

gordonii 2001 
-FQ-EZ Sulfolobus Leppanen et 2.70 P21 Mg 

acidocaldarius al., 1999 (PI 211) 

Table 1.5: Examples of inorganic pyrophosphatase structures available in the Protein Data Bank (PDB), 

as of November 2006. 

Plant and prokaryotic PPases share between 27 and 49 % sequence identity and exhibit 

the same type of deletions. However, inter-group similarity between the plant and 

animal/fungal groups is below 29 %. 

Several insertions exist within animal/fungal PPases which have been implicated in 

weak membrane association (Vihinen and Lundin, 1992 and Sivula et al., 1999). These 
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additional residues are located between residues Asp36-Arg37 (both conserved active 

site residues), Met43-Ala44, Asp58-Asp59 (the beginning of a highly conserved region), 

and Glyll6-Alal2O (all Mtb-PPase numbering). Insertions in these regions, with the 

exception of Glyl 16-Alal2O, occur within Y-PPase (figure 5.12, section 5.8.4a) and the 

Asp58-Asp59 insertion is also found in the prokaryotic Chlamydia trachomatis. 

An alignment of 37 type I PPases identified 17 conserved residues (Sivula et al., 1999), 

which were observed by X-ray crystallography to form the active site (Terzyan et al., 

1984). A number of structural (Harutyunyan et al., 1996 and Heikinheimo et al., 1996) 

and biochemical (Lahti and Kolakowski et al., 1990 and Salminen et al., 1995) studies 

have found 13 of these to be involved in metal/substrate binding (E15, K23, E25, R37, 

Y49, D59, D61, D64, D91, D96, K98, Y133, and K134, Mtb-PPase numbering). Site- 

directed mutagenesis studies identified essential residues in E-PPase: Asp97 (Asp9l in 

Mtb-PPase) and Glu97 (002), to be important in maintaining the structural integrity of 

the enzyme; and Asp 102 (Asp96) and Lys 104 (Lys98), to be essential for PPase catalytic 

activity (Lahti and Pohjanoksa et al., 1990, Efimova et al., 1999, and Hyytia et al., 

2001). 

Residues found in a number of sequences, but which are not explicitly conserved, 
include Tyr45, Pro62, Gly76, Phe130, and LysI40 (Sivula et al., 1999). Residues 

involved in intersubunit interactions are also generally well conserved between the 

subgroups. The inter-trimeric interactions within prokaryotic PPases are often formed 

from residues homologous to His128, Hisl32, and Asp135 (Mtb-PPase numbering), as 
found in 74,35, and 44 % of the 23 aligned sequences, respectively (Sivula et al., 1999). 
His132 and Asp135 are substituted with a threonine and an alanine, respectively in T- 

PPase, and an arginine and a glutamic acid in Pfu- and Pho-PPases. Asp135 is also 

substituted with a glutamic acid in S-PPase. Hydrophobic interactions which stabilise 
the trimer however, are poorly conserved. Only three residues involved in interface 

interactions within the animallfungal group were found in all of the 9 sequences aligned: 
Arg5l, Trp52, and Trp279 (Y-PPase numbering). Unsurprisingly, none of these 
interface residues are conserved outside of the groups for which they belong. 
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1.2.7b Overall fold of type I pyrophosphatases 

Whilst prokaryotic PPases and Y-PPase differ in molecular weight and share low 

sequence identity, the overall fold remains conserved (flgure 1.2). Y-PPase forms 

extensions at either end of this core, with a 27-residue N-terminal and 59-residue C- 

terminal protrusions (Kankare et al., 1994 and Heikinheimo et al., 1996). PPases are 

predominantly P-structures, with the central core formed from five antiparallel P-strands 

(01 and P4-7), which twist into a P-barrel (Teplyakov et al., 1994 and Heikinheimo et 

al., 1996). The only two major a-helices, together with a long P-hairpin, flank either end 

of the barrel. One of these helices, a2, forms a lid over the base of the P-barrel 

(Teplyakov et al., 1994) and the second helix, al, forms an essential part of the active 

site cavity wall (Kankare et al., 1996). 

1.2.7c OHgomeric state of type I pyrophosphatases 

All known type I prokaryotic PPases form - 120 kDa hexarners (Teplyakov et al., 1994) 

under physiological conditions. Leppanen et al. (1999) postulated S-PPase to be a 

symmetric homohexamer in the resting state, however mutations of active site residues 

which stabilise the hexamer, resulted in dissociation to a dimer of trimers (Salminen et 

al., 1995). 

IntTa-trimeT interactions are very tight, stabilised by a parallel P-bridge between strands 
P2-3 (Pho-PPase)/P6 (T-PPase) of one subunit and a P-hairpin (residues Gln7l-Val77) 

of the other (Teplyakov et al., 1994 and Liu et al., 2004), however specific residues are 
not generally conserved within these regions. Extensive hydrophobic interactions also 
form between the subunits, stabilising the trimeric structure even further. Intra- 
hexameric contacts are predominantly formed by symmetry-related helices, al 
(Teplyakov et al., 1994). In E-PPase, stability arises through hydrogen bonds between 

three al residues from each monomer (Baykov et al., 1995 and Kankare et al., 1996). 
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Figure 1.2: Superimposition of E-PPase 116T (Samygina el al., 2001) (olive green) with the central core 

(residues 41-230) of Y-PPase lWGJ (Heikinheimo et al., 1996) (dark green). Figure generated using 

PYMOL (DeLano Scientific). 

The oligorneric state of Y-PPase differs from that described for prokaryotes, forming a 

physiologically active homodimer, with the two active sites - 4o kapart (Harutyunyan 

et al., 1996). The two monomers are stabilised by the stacking of aromatic rings, with 

two central histidines hydrogen-bonded to each other (Heikinheimo et al., 1996), 

however these contacts are relatively loose (Harutyunyan et al., 1996). No active site 

residues participate in dimer stabilisation, unlike in E-PPase (Heikinheimo et al., 1996). 
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1.2.7d Active site of type I pyrophosphatases 

A cavity between the P-barrel and al forms the active site within PPases and is lined 

with polar residues, with a hydrophobic base (Harutyunyan et al., 1996). The 13 

conserved residues mentioned in section 1.2.7a fill the active site and participate in 

substrate/product and activating metal coordination. In the proposed scheme, described 

in figure 1.3, four metal ions bind to the active site, together with the PPi substrate. 

Five conserved, positively charged residues, directly participate in coordination with the 

activating metals, namely four aspartic acids (Asp59,64,91, and 96 Mtb-PPase 

numbering) and a glutamic acid (Glu25) (Harutyunyan et al., 1996, Heikinheimo et al., 
1996, and Harutyunyan et al., 1997). Additional conserved residues indirectly interact 

with the ions, via water molecules. These include two glutamic acids (Glu15 and 25) 

and one aspartic acid (Asp6l). A number of polar and negatively charged residues, 

which also form part of the active site, anchor substrate in the correct orientation for 

hydrolysis. These are Lys23, Arg37, Tyr 133, and Lys 134 (Heikinheino et al., 1996 and 
Samygina et al., 2001). 

The activating metal binding site designated MnI (figure 1.1), binds with the highest 

affinity via interactions with oxygens from three of the aspartic acids (Asp59,64, and 
96), together with two water molecules, one being the nucleophilic hydroxide (section 
1.2.5), and a P2 oxygen (Harutyunyan et al., 1996 and Heikinheimo et al., 1996). The 

association of activating metal site 2, Mn2, is much weaker, with the only direct enzyme 
ligand being Asp64, together with four water ligands. Binding of the last two metals, 
Mn3-4, are reasonably similar. Mn3 interacts with the protein through contacts with a 
Glu25 oxygen and forms additional bonds with three water molecules and two 

phosphoryl oxygens (P1 and P2). Mn4 makes two contacts with two aspartic acids 
oxygens, Asp9l and Asp96. This is further stabilised by two water molecules and two 
phosphoryl oxygens (PI and P2) (Harutyunyan et al., 1996 and Heikinheimo et al., 
1996). 

Of the two phosphoryl groups, PI, represents the highest affinity site with its three free 

oxygens directly coordinated to three PPase residues: Arg37, Tyr133, and Lys134 
(Heikinehimo et al., 1996). PI is further stabilised by two water molecules and a direct 
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attachment to Mn3. P2 on the other hand, is only directly coordinated with one protein 

residue, Lys23, but interacts with all metal ions, although Mn2 is coordinated via the 

nucleophilic water molecule. P2 is also bound to an additional two water molecules. 

1.2.8 Structure of type 11 pyrophosphatases 

Relatively little structural information is known about type 11 PPases, however of the six 

structures solved to date (section 5.8.5), all exhibit a similar fold (Fabrichniy et al., 
2004). The structurally characterised PPases from Streptococcus mutans (Sm-PPase), 

Streptococcus gordonii (Sg-PPase), and Bacillus subtilis (Bs-PPase), are 310 ±I 

residues in length, with a monomeric structure formed of two domains (flgure 1.3). The 

N-terminal domain is the largest of the two, comprised of residues I- 189 in Sm-PPase, 

with the smaller C-terminal domain (residues 196 - 309) connected via a linker 

sequence (residues 190 - 195) (Merckel et al., 2001). The N-terminal domain is formed 

from a five-stranded parallel ý-sheet and seven a-helices, with one helix (aG) 

immediately preceding the linker sequence which enters the C-terminal, via a further 

helix (aH). The C-terminal domain is formed of a five-stranded mixed P-sheet, together 

with three a-helices (Merckel et al., 2001). Type U PPases form physiological dimers, 

with the interface formed by residues 99 - 115 in Sm-PPase. 
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Figure 1.3: Cartoon representation of the type 11 PPase from Streptococcus mutans 1174 (Merckel et al., 

2001). The N-terminal domain is shown in dark blue linked (deep pink) to the smaller C-terminal domain, 

represented in light blue. Figure generated using PYMOL (DeLano Scientific). 

The type 11 active site is located within the domain interface and sequence identity 

within this region is understandably high (Merckel et al., 2001 and Fabrichniy et al., 
2004). Nine of the 36 residues explicitly conserved within the type 11 family appear to 

directly participate in metal ion and substrate binding (Merckel et al., 2001), and are 
described further here. Within the Sm-PPase structure, two manganese ions (M 1-2) and 

one magnesium (M3) were modelled, together with two sulphate molecules (Merckel et 

al., 2001). Coordination of the two manganese ions occurs via four aspartic acids 
(Aspl2,14,75, and 149) and two histidines (His8 and 97). The magnesium does not 

coordinate directly with any protein residue, highlighting the preference for manganese 

over magnesium in type 11 enzymes. This preference is thought to be due to the 

presence of histidines within the active site, which are generally not found within type I 
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PPases. Whilst magnesium binds almost exclusively to oxygen ligands, manganese is 

able to bind to the side-chain nitrogens of histidine (Merckel et A, 2001). The two 

sulphate molecules (SI-2) in Sm-PPase are bound to the positively charged side chains 

of Lys205 and Arg295 and SI is also coordinated to His98. 

Despite the complete lack of sequence homology between types I and 11 PPases, the 

arrangement of active site residues and their interactions with the metal ions/substrate 

are surprisingly similar, suggesting an analogous mechanism resultant of convergent 

evolution (Merckel et al., 2001). The Sm-PPase structure identified a water molecule 
bridging the two metal sites (MI-2), which they propose acts as the nucleophilic 
hydroxide due to analogy with Y-PPase (Heikinheimo et al., 1996 and 2001 and 
Merckel et al., 2001). 

1.3 Cytochrome P450s 

1.3.1 Haem proteins and cytochromes 

Haern proteins perform a vast array of functions across all species, ranging from 

catalysis (catalases, cytochrorne P450s, peroxidases), to electron transfer (cytochromes), 

oxygen transport and storage (globins), and nitric oxide transport (nitrophorin) 
(http: //metallo. scripps. edu/promise/HAEMMAIN. htm). Of the catalytic haern- 

containing enzymes, catalase converts hydrogen peroxide, a toxic product of 
metabolism, to water and oxygen and is implicated in ethanol metabolism, inflammation, 

apoptosis, ageing, and cancer (Putnam et al., 2000). It has one of the highest turnover 
rates of all known enzymes, with a conversion rate of 83,000 molecules per second. 
Haern proteins with no enzymatic function include vertebrate myoglobin and 
haemoglobin, which store (myoglobin) and transport (haemoglobin) oxygen within 
muscle and blood cells, respectively (Voet et al., 1999). Cytochromes are ubiquitous 
proteins, present in virtually every organism, with the exception of a few obligate 
anaerobes (Voet et al., 1999). These proteins exploit their ability to alternate between 
haem iron oxidation states (reduced, Fe2' and oxidised, Fe 3+), to enable electron 
transport. 
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Each haernoprotein requires a prosthetic haem group, of which nine exist (a - d, di, o, 

P460, and sirohaem), which coordinate to the protein via a central iron atom. Haem 

type-a exists within cytochrome c oxidases, whilst the b-type is found within b-type 

cytochromes, cytochrome P450s, and some globins and catalases. This type of haern (b) 

is known as a protoporphyrin IX, and is shown in figure 1.6. Type-a haems differ from 

protoporphyrin IX in that they contain a long, hydrophobic tail of isoprene units (Voet et 

al., 1999). Proteins such as c-type cytochromes, contain a haern group with cysteine 

sulfhydryls, which form thioether linkages to the protein. 

As well as the haem group with which they bind, cytochromes can also be classified by 

their haem iron coordination. In type-a and -b cytochromes, the haern iron is sixth- 

coordinated to the four porphyrin nitrogens, together with two histidine residues. In 

type-c cytochromes, one histidine is substituted with the sulphur atom from methionine. 
Finally, in cytochromes, P450, one axial ligand is provided by a deprotonated sulphur 
from a cysteine residue, with the final position able to bind to a number of compounds, 

such as water, dioxygen, carbon dioxide, and other inhibitors. 

1.3.2 Cytochrome P450s 

Cytochrome P450s are a superfamily of haern-thiolate proteins that are involved in 

"phase F' metabolism, whereby a wide array of hydrophobic substrates are 

monooxygenated (equation 1.2) (Nebert and Gonzalez, 1987). Such processes usually 

produce unstable products which are then further metabolised. P450s generally function 

as part of electron transport chains, acting as terminal oxidases during processes such as 

steroid metabolism, drug deactivation, procarcinogen activation, fatty acid metabolism, 

xenobiotic detoxification, and catabolism of exogenous compounds (Hasemann et al., 
1995). 

Equation 1.2: 

SH + 02 + NAD(P)H + 10 SOH + NAD(P)+ + H20 

Where SH is the substrate and SOH is the monooxygenated product. 
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P450s are so named because in the presence of CO, ferrous enzymes exhibit an intense 

Soret peak at 450 nm (see section 1.3.8) (Omura and Sato, 1964). These ubiquitous 

enzymes have been identified in bacteria, fungi, plants, insects, and vertebrates (Nelson 

et al., 1996). As of 20h October 2006,6,422 unique P450 genes have been identified 

within 708 families. Of these families, 99 are from animals (2,279 genes), 94 from 

plants (2,311 genes), 282 from fungi (1,001 genes), 177 from bacteria (621 genes), 51 

from protists (210 genes), and 5 from archaea (8 genes) 

(http: //dmelson. utmem. edu/CytochromeP450. html). New sequences are added regularly 

due to ongoing genome projects. 

Classification of P450s depends on the electron transfer system utilised, with class I 

proteins requiring an FAD-containing NAD(P)H ferredoxin reductase, together with an 
iron-sulphur (redoxin) protein which mediates electron transfer between the reductase 

and the P450 (Shimizu et al., 2000 and Li, 2001). In contrast, class 11 P450s require 

only one redox partner, an FAD/FMN-containing NADPH flavoprotein. Class III 

enzymes obtain an electron source from an endogenous endoperoxide or hydroperoxide 

encoded by the same polypeptide, while class IV enzymes receive electrons directly 

from NAD(P)H (Shimizu et al., 2000). Most bacterial and mitochondrial P450s belong 

to class 1, whilst some bacterial, together with microsomal and fungal P450s, belong to 

class II. 

Plant P450s can be further categorised by their reaction mechanisms: A-type are 
involved purely in plant-specific biochemical pathways; and B-type reactions, which are 

more closely related to non-plant P450s (Durst and Nelson, 1995). These enzymes are 
thought to be involved in highly conserved reactions such as sterol biosynthesis 
(Morikawa et al., 2006). 

13.3 Nomenclature 

The current nomenclature system for P450s was developed by Nebert and Nelson et al. 
(Nebert and Nelson, 1991, Nebert et al., 1991, and Nelson et al., 1993 and 1996). 

Cytochrome P450 is represented as "CYV' and is followed by an Arabic number which 
denotes the family name. When more than one subfamily exists, this is followed by a 
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letter, and finally by an Arabic numeral which represents the individual gene (such as 

CYP3A4). Where a family has only one member, a subfamily letter and gene number 

are not always included (such as CYP125). The criteria grouping P450s into families is 

generally sequence dependent, with those that share > 40 % amino acid sequence 

identity belonging to the same family. If sequence identity is > 55 %, P450s belong to 

the same subfamily. However there are some exceptions, as is the case for a number of 

plant P450s which are classified differently due to gene duplications and shuffling 

(Werck-Reichart et al., Nielsen and Moller, 2005). 

T'he nomenclature system is organised such that: CYPI through to CYP69 and CYP301- 

500 represent animal P450s; CYP71-99 and CYP701-772 represent plants; CYPIOI- 

281, bacteria; and CYP501-699, lower eukaryotes. CYP5001 onwards has also been 

allocated for newly identified animal, fungal, and lower eukaryotic P450s 

(http: //dmelson. utmem. edu/CytochromeP450. html). 

1.3.4 The importance of cytochrome P450s 

The myriad of metabolic roles performed by these enzymes has generated significant 
interest worldwide, particularly concerned with the role P450s play during human drug 

metabolism. Many potential drugs are discarded due to interactions with these enzymes, 

either they are metabolised too rapidly thus exerting no beneficial effect, or can 
themselves up or down regulate a P450, thereby affecting the metabolism of another 

compound (known as drug-drug interactions). Human P450s also function in the 

oxidation of xenobiotics such as carcinogens, pesticides, steroids, and vitamins 
(Guengerich, 1995), and can even promote carcinogenesis (Werck-Reichhart and 
Feyereisen, 2000). 

In pathogenic organisms, identification of P450s which are essential for virulence or 
survival during infection may facilitate novel drug design. A review by Munro et al. 
(2003) proposed the potential of P450s as novel antimycobacterial targets. Twenty-two 

unique P450s have been identified within the pathogen's genome, the highest number 
found in any bacterium, suggesting an important role within the organism. Furthermore, 

elevated levels of P450 have been identified in a number of drug-resistant organisms 
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including Mycobacterium tuberculosis (Rarnachandran and Gurumurthy, 2002). 

Specifically, a two-fold increase in P450 content was observed in isoniazid-resistant 

bacteria, compared with that of the non-resistant strain. They suggest that the 

importance of certain P450s in the metabolism of two key chemotherapeutics, isoniazid 

and rifarnpicin, made increased expression of these enzymes an evolutionary advantage 

in the presence of these toxic drugs. 

Cytochrome P450s account for the largest group of proteins within plants and catalyse 

the complex regio- and stereospecific-biosynthetic reactions yielding products which 

enable communication, attract pollinators, and deter pathogens and herbivores (Morant, 

et al., 2003). They execute critical oxidation steps within plant secondary metabolism, 

via hydroxylations, dealkylations, dehydrations, and carbon-carbon bond cleavages 
(Durst and Nelson, 1995). Pathways for which plant P450s play a metabolic role include 

the phenylpropanoid, terpenoid, and alkaloid pathways, which produce lignins, 

isoflavonoids, and anthocyanins (Chapple, 1998). These natural products are an 

attractive target for improving the health and nutritional value of commercial crops and 

plants, by engineering herbicide resistance or introducing new functions (Feldmann, 

2001). A further application of plant P450 studies is in pharmaceuticals, as 25 % of 

modem medicines are derived from plants and secondary metabolites contribute to many 

synthetic drugs (Morant et al., 2003). 

1.3.5 Mechanism 

The cycle begins with an oxidised substrate-free P450 in a low-spin state, with water as 

the sixth axial iron position (Sligar and Gunsalus, 1976). This is known as the resting 

state (step 1, figure 1.4). Although substrate does not interact directly with the iron (or 

the haem), its binding does dislodge the Oh axial water (step 2). This dehydration not 

only causes a spin-shift of the haern iron to a high-spin state (Li, 2001) but has also been 

shown to increase the redox potential from -300 rnV to -170 mV in P450cam (Sligar, 

1976). This prevents electron flow from the redox partner (iron-sulphur protein, redox 

potential approximately -200 rnV) to the haern iron in substrate-free systems, by making 
it thermodynamically unfavourable, thus avoiding unnecessary wastage of reducing 

equivalents (Mueller et al., 1995 and Li, 2001). The access of water to the Oh axial 

position has been proven to regulate the haern iron spin state of P450s, alternating 
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between the ferric S= 5/2 (5-coordinated, high-spin system) and S= 1/2 (6-coordinated, 

low-spin system) (Harris and Lowe, 1993). 

In step 3, an electron transferred from the redox partner, reduces the haern iron to the 
ferrous form (Li, 2001), allowing dioxygen to bind to the 6th position (step 4), forming a 
LS "oxy-P450" ferric-superoxide species (Tyson et al., 1972 and Sligar et al., 1974). In 

step 5, a second electron reduces the haem iron to a ferric-dioxo species, which provides 

a good Lewis base, undergoing protonation to yield a ferric peroxide complex (step 6) 

(Shaik and De Visser, 2005). Solvent molecules within the active site are thought to 

provide this source of protons (Poulos and Johnson, 2005), however a conserved 

threonine residue (Thr252 P450cam numbering) also plays an important role in 

protonation for some P450s (Shaik and De Visser, 2005). The haem-iron then 

undergoes a second protonation forming a reactive, high-valent iron-oxo complex, which 

releases water (step 7). Finally, the distal oxygen is transferred to the substrate and the 

product is released. Another water coordinates to the e axial ligand, bringing the cycle 
back to step I (Shaik and De Visser, 2005). 
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FIgure 1A The catalytic mechanism for cytochrome P450s (Shaik and De Visser, 2005). See text for 
descriptions of stages. The proximal cysteinate ligand is abbreviated as "C" and thick black lines denote 

the porphyrin. The substrate, SH, is monooxygenated to the product, SOH. 

1.3.6 Inhibition 

Many compounds interact with P450s and prevent catalysis at various points of the 

monooxygenation pathway. A review by Correia and Ortiz de Montellano (2005) 
described the mechanisms employed by a number of common inhibitors, which either 
bind reversibly to the active site, or (quasi)-iffeversibly after the oxidation step (step 4, 
figure 1A). The latter can often be categorised as "suicide" or mechanism-based 
inhibitors, whereby a compound only becomes inhibitory after partial or full catalysis by 
the target enzyme (Voet et al., 1999). Inhibition by mechanism-based methods are 
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highly specific due to the following requirements: the inhibitor must bind to the enzyme 

initially, then be recognised as a substrate to enable catalytic activation, and finally the 

reactive species produced must be able to irreversibly alter the enzyme and so stop the 

cycle (Ortiz de Montellano and Correia, 1995). Knowledge of which compounds inhibit 

particular P450s and their subsequent mechanism will undoubtedly aid in future drug 

design. 

1.3.6a Reversible inhibition 

Compounds which bind to the hydrophobic domain, coordinate to the haern iron, or 
interact with active site residues can reversibly inhibit P450s (Correia and Ortiz de 

Montellano, 2005). Different P450 substrates can competitively compete with each 

other, by binding to the liphophilic regions of the active site. This method of inhibition 
is not as effective as inhibitors which coordinate to the e haern iron position of ferric 

P450s, via their heteroatomic lone pair electrons. These compounds not only prevent 
dioxygen binding, but also change the redox potential sufficiently enough to discourage 

reduction by the P450 reductase partner. Examples of such inhibitors are cyanide 
(Kitada et al., 1977), NO (Wink et al., 1993), and other hydrophobic nitrogen-containing 

compounds including pyridine and imidazole derivatives (Testa and Jenner, 1981). The 

latter two derivatives are potent inhibitors of P450 due to additional strong interactions 

with liphophilic active site residues. 

The importance of these azole-based inhibitors in drug design is well recognized and 
innumerable publications relating to this field are available. Zhang et al. (2002) studied 
the interactions between various azole-based antifungal agents and human P450s with 
the aim of predicting potential drug-drug interactions. Of interest, all of the five drugs 

tested (clotrimazole, miconazole, sulconazole, tioconazole, and ketaconazole) exhibited 
non-selective inhibition towards the eight P450s studied (CYPIA2, CYP2A6, CYP2C9, 
CYP2CI9, CYP2D6, CYP2B6, CYP2EI, and CYP3A4). Furthermore, another study 
identified azole compounds as potent inhibitors of mycobacterial P450s (McLean and 
Marshall et al., 2002). 
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A number of inhibitors, most notably CO, bind to the 6 th axial haem iron position of 

ferrous P450s. The CO carbon donates electrons to the iron via a a-bond, in addition to 

a back-donation of electrons from the occupied iron d-orbitals to the empty antibonding 

ic-orbitals of CO (Hanson et al., 1976 and Correia and Ortiz de Montellano, 2005). CO- 

induced inhibition is relatively weak. 

1.3.6b Quasi-iffeversible and irreversible inhibition 

Mechanism-based inhibition is both highly specific and irreversible, and can affect the 

P450 in a number of ways. Some sulphur (Dalvi, 1987) and halogenated (Halpert and 

Neal, 1980) compounds, together with terminal alkyl/aryl olefins and acetylenes (Gan et 

al., 1984 and Roberts et al., 1993) are catalytically activated by P450 to form a reactive 

species which covalently binds to the protein (Correia and Ortiz de Montellano, 2005). 

In some cases they induce an autoimmune response in humans, resulting in destruction 

of the P450 (Fontana et al., 2005). Terminal olefins and acetylenes also inhibit P450s by 

covalent bonding, but to the haern. group rather than the polypeptide itself (Helvig et al., 

1997 and Zhou et al., 2005). In some cases these compounds modify the catalytic 

activity (Raner et al., 2002). 

Another form of mechanism-based inhibition involves the oxidised inhibitor modifying 

the P450 haem, resulting in an inactive enzyme covalently linked to a degraded haem. 

group (Correia and Ortiz de Montellano, 2005). Compounds which result in such 

changes include tetrachloromethane (Davies et al., 1986) and spironolactone, a 

medication used to treat hypeTaldosteronism (Osawa and Pohl, 1989). 

Finally, methylenedioxy compounds, amines, and 1,1-disubstituted- and acyl- 
hydrazines, can tightly coordinate to the haem group and inhibit P450s (Ortiz de 

Montellano and Correia). Such inhibitors are termed quasi-iffeversible due to the ability 
to dislodge them experimentally, for example using lipophilic compounds as in the case 
for 3,4-methylenedioxyphenyl- I -propene (isosafrole) (Dickins et al., 1979). 
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1.3.7 Structure 

Whilst more than 6,000 P450 genes have now been sequenced (section 1.3.2), only 169 

three-dimensional structures have been deposited within the Protein Data Bank. Table 

1.6 provides examples of P450 structures deposited, as of November 2006. This is 

predominantly due to complications encountered dur-ing the overexpression of soluble 

protein and during crystal li sation, and is particularly evident for eukaryotic P450s which 

tend to be associated with endoplasmic reticulum or the inner mitochondrial membrane 

(Wachenfeldt and Johnson, 1995). The first mammalian P450 crystalline structure was 

determined after the enzyme was engineered to exclude the single N-terminal 

transmembrane domain (Williams et al., 2000). 

Despite these problems, extensive characterisation of P450carn from Pseudomonas 

putida, spanning more than 30 years, drastically improved our knowledge of P450s and 

the rapid increase in the number of structures being released will further advance this 

area of research. 

PDB ID P450 Species Reference Res. Space Substrate (S) 

group Inhibitor (1) 

Mutant (M) 

I LGF P450 Amycolatopsis Zerbe et al., 2.20 C2 None 

oxyB orientalis 2002 (C 12 1) 

IT2B P450 Citrobacter Meharenna et 1.70 P21 1,8-cineole (S) 

cin braakii al., 2004 (P121 1) 

IEHG P450 Fusarium Shimizu et 1.70 P212121 None 

nor oxysporum al., 2000 

IOG5 CYP Homo sapiens Williams et 2.55 P321 S-Warfarin (S) 
2C9 al., 2003 

IWOE CYP Homo sapiens Williams et 2.80 1222 None 
3A4 al., 2004 

I. IEAI CYP51 Mycobacterium Podust et al., 1.2.21 P212121 1. Flucanazole (1) 
2.1 E9X tuberculosis 2001 2.2.10 2.4-Phenyl- 
3. IU13 3.2.01 in-tidazole (1) 

3. C37UC15 IT/ 
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C442A (M) 

1. IH5z CYP51 Mycobacterium Podust et al., 1.2.05 P212121 1. None 

2. lX8V tuberculosis 2004 2.1.55 2. Estriol (S) 

1. IN40 CYP Mycobacterium Leys et al., 1.1.06 P6522 1. None 

2. IN4G 121 tuberculosis 2003 2.1.80 2. lodopyrazole 

(I) 

1.21J5 CYP Mycobacterium Seward et al., 1.1.60 P212121 1. None 

2.2U7 121 tuberculosis to be 2.1.90 2. Flucanazole (1) 

published 

IDT6 CYP Oryctolagus Williams et 3.00 1222 None 

2C5 cuniculus al., 2000 

10yr P450 Pseudomonas Hasemann et 2.30 P6122 None 

terp SP. al., 1994 

IZ80 P450 Saccharo- Nagano et 1.70 P212121 6-Deoxy- 

eryF polyspora al., 2005 erythronolide B 

erythraea (S) 

2DOE CYP Streptomyces Zhao et al., 2.15 P212121 2-Hydroxy- 

158A2 coelicolor 2005 naphtho-quinone 
(S) 

2C7X P450 Streptomyces Sherman et 1.75 P212121 Narbomycin (S) 

pikC venezuelae al., 2006 

1109 CYP Sulfolobus Park et al., 2.00 P43212 None 

119 solfataricus 2000 

Table 1.6: Examples of cytochrome P450 structures available in the Protein Data Bank (PDB), as of 
November 2006. Structures of two Mycobacterium tuberculosis P450s and their complexes are included. 

1.3.7a Primary structure and sequence homology 

Of the known P450s, all have molecular weights in the region of 50 to 60 kDa, and 

comprise of 400 to 530 residues (Chapple, 1998). As described in section 1.3.3, 

sequence identity between families is extremely low, at less than 15 %. Until recently, 
three residues were believed to be explicitly conserved throughout the P450 superfamily: 
Cys357 (P450cam numbering) which provides the proximal thiolate ligand to the haem 
iron; and Glu287 and Arg290, which form the EXXR motif in the K helix (see section 
1.3.7f). This motif was thought to be essential during tertiary folding, however the 
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identification of a new family of P450s, CYP157, that contain a QXXW motif in place 

of the standard EXXR appears to contradict this (Rupasinghe et al., 2006). 

The identification of this novel enzyme demonstrates P450s explicit requirement for 

only one conserved residue, the proximal cysteinate ligand. Mutations to this residue 
have been shown to prevent haem incorporation, resulting in a catalytically inactive 

enzyme (Shimizu et al., 1988). Furthermore, loss of the cysteinate proximal ligand is 

responsible for the formation of the inactive cytochrome P420 (Perera et al., 2003). 

P450cam was inactivated by mutating this residue to a histidine, the proximal ligand for 

another haem-containing protein, cytochrome c-type (Yoshioka et al., 2001). In the 

presence of CO, the P450cam C357H mutant exhibited a discrete Soret maximum at 420 

nm, indicating full conversion to its inactive form, P420 (figure 1.5). This was further 

substantiated by the lack of catalytic activity in the presence of camphor. 

Although not explicitly conserved, residues homologous to Thr252 (P450carn 

numbering) are often found in P450s, forming half of the (E/D)T pair which has been 

implicated in the mediation of dioxygen activation (Aikens and Sligar, 1994, Tosha et 

al., 2003, and Nagano et al., 2005). Studies suggest this residue plays a role in oxy- 
ferrous stabilisation via hydrogen bonds with dioxygen (Gerber and Sligar, 1994). 

P450s which lack this residue, such as P450eryF which contains an alanine instead, are 

thought to utilise a water molecule in place of the OH group provided by Thr252 to 

stabilise the oxy-ferryl (Cupp-Vickery and Poulos, 1995 and Poulos et al., 1995). The 

crystal structure of CYP121 from Mycobacterium tuberculosis identified a serine in 

place of the standard threonine residue, providing evidence of a second alternate proton 
delivery pathway. Another important residue found in all P450s which are required to 

activate molecular oxygen, Phe350 (P450cam. numbering), controls the reaction between 

the haem iron and molecular oxygen (Ost, et al., 2001). 
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Figure 1.5: Carbon monoxide-complexes of dithionite-reduced P450cam: native (sold line); and C357H 

mutation of the proximal cysteinate haem-iron ligand (broken line). Figure taken from Yoshioka et al., 

2001. 

1.3.7b Haem iron coordination 

P450s belong to the haern-thiolate group of enzymes and so contain a b-type haem 

(figure 1.6) anchored to the protein via the 5 th haern iron coordination site and the 

deprotonated -S- group of an explicitly conserved cysteinate residue (Mueller et al., 

1995). The iron is held within the haem by the four porphyrin nitrogen atoms and has 

the potential to alternate between a pentacoordinated and a hexacoordinated system by 

allowing water, CO, NO, or azole compounds to bind to the 6 th axial position (figure 

1.6). This ligand sits in a trans position to that of the proximal position (Mueller et al., 
1995). 

Figure 1.6: Haem structure and iron coordination. (A) b-type haem (protoporphyrin IX), (B) 

pentacoordinated haern-thiolate geometry with a cysteinate group as the 5th proximal ligand, & (C) 
hexacoordinated haern-thiolate geometry with dioxygen as the Oh distal ligand. Figures taken from 
http: //metallo. scripps. edu/proniise/HAEM-THIOLATE. htn-d. 
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1.3.7c Conserved structural core 

Despite the low sequence identity observed between P450 families, X-ray 

crystallography has enabled the identification of a common overall fold (figure 1.7) (Li, 

2001) which to date, remains unique to the P450 superfamily (Poulos and Johnson, 

2005). With the distal substrate binding-side of haern facing forwards, and with the N- 

terminus on the "Ieft" side, P450s resemble a triangular-shaped molecule (Poulos et al., 

1995 and Li, 2001). In this orientation the P450 structure can be divided into two 

regions: a predominantly O-sheet containing domain on the left; and a helical-rich region 

on the right, with the majority of helices in plane with the haern. (rigure 1.7). 

Two long helices (I and L) flank the haern group and form an inner core, surrounded by 

additional helices from the N-terminal region. Finally, the antiparallel P-sheets form 

part of the proteins surface (Poulos et al., 1995). 

Especially conserved "core" regions are those which surround the haem, comprising of 

six helices (the D, E, 1, &L bundle and helices J& K), together with two sets of 0- 

sheets, and a region known as the 'meander' which forms between the K-helix and the 

Cys-loop (Graham and Peterson, 1999 and Werck-Reichhart and Feyereisen, 2000). 

1.3.7d The Cys-loop 

The region containing the proximal thiolate cysteine residue retains a high sequence 
identity throughout the P450 superfamily and unsurprisingly is also one of the most 

structurally conserved (Poulos et al., 1995, Werck-Reichhart and Feyereisen, 2000, and 
Li, 2001). This region comprises Phe350 to Cys357 (P450cam numbering) and forms a 
D-bulge, similar to an antiparallel P-pair, providing a hydrophobic environment for the 

cysteine (Hasemann et al., 1995). This arrangement protects the cysteinate ligand, 

possibly by shielding it from reducing agents within the solvent (Beale and Feinstein, 

1976), and also enables it to accept H-bonds from peptide NH groups (Poulos and 
Johnson, 2005). 
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1-1kohx 

NH2 

COOH 

C 
NH2 

D 

Figure 1.7: Structural comparisons of the overall fold of four cytochrome P450s. (A) P450cam 2CPP 

(Poulos et al., 1987), (B) P450eryF IJIN (Cupp-Vickery et al., 2001), (C) CYP51 lEAI (Podust et al., 

2001), and (D) CYP2C5 IDT6 (Williams et al., 2000). See text for a generalised description of P450 

structure. A number of (x-helices, including the I and K helices, are annotated for P450cam (A), however 

the Cys-loop is not visible from this angle. 

1.3.7e I-helix 

Another structurally conserved region of P450s is the long I-helix which spans the 

length of the molecule and helps to form an inner core (figure 1.7). This region has 

been proposed as the central catalytic site (Hasemann et al., 1995) and the (E/D)T motif, 

conserved in many of these enzymes (see section 1.3.7a), resides in a "kink" which often 
forms within the I-helix of P450 (Meharenna et al., 2004). This kink occurs due to the 
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donation of a H-bond from the conserved threonine to a carbonyl oxygen within the 

protein, thus interrupting the helical fold (Poulos and Johnson, 2005). This arrangement 

is implicated in proton delivery to the oxy-ferryl group in step 7 (rigure 1A) (Poulos et 

al., 1987, Hasemann et al., 1995, and Poulos and Johnson, 2005). 

1.3.7f K-helix and the 'meander' 

A region known as the 'meander' was first identified in the haernoprotein domain of 

P450BM-3 (Ravichandran et al., 1993). This region of about 20 residues was so named 

due to its apparent lack of organized structure, which meandered between the K' helix 

and the Cys-pocket. Further investigation found near-identical regions in the structures 

of other P450s, all of which form a specific structure via a hydrogen-bond network 
between a conserved Arg, His, or Asn residue from the meander, and a highly conserved 
EXXR motif in the K-helix (Hasemann et al., 1995 and Peterson and Graham-Lorence, 

1995). This region has been implicated in the correct binding of haern to P450, and 

mutations to the K-helix glutamate or arginine have resulted in inactive protein 
formation (Yoshikawa and Go, 1992 and Hasemann et al., 1995). 

1.3.7g Haem coordination 

The haem group of P450 is buried within the interior of the enzyme, surrounded by a 

number of secondary structural elements, namely: the I helix and the N-terminal L helix; 

the P6-1 and PI-4 strands; the B'-C turn; and the Cys-pocket (Hasemann et al., 1995). 
Three residues were found to be involved in hydrogen-bonding with the D-ring 

propionate oxygens via side chain nitrogens in P450terp (Hasemann et al., 1994), and 
similar configurations have been identified in other P450s including P450cam 
(Hasemann et al., 1995): His 124 and Arg 128 (P450terp numbering) are located at the N- 

terminal of the C helix; and His375 is found within the Cys-pocket. These residues 
provide the polar and/or charged side chains necessary for propionate coordination 
within the hydrophobic P450 core (Hasemann et al., 1995). A further six residues 
participate in an extended hydrogen-bonding network with propionate-bound water 
molecules in P450terp (Asn72, Phe317 and Arg319, Tyr342, His375, and Trp372), 
however this configuration is less well conserved within P450s. 
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1.3.7h Substrate binding region 

In contrast to the regions surrounding the haern group, residues involved in substrate 

recognition are poorly conserved throughout P450s. This reflects the ability of P450s, to 

catalyse a wide range of substrates. The regions involved in substrate binding include 

helices F and G, which form the substrate access channel entrance in P450BM-3 (Li and 

Poulos, 2004), and the B' helix which covers the substrate binding pocket (Li, 2001). 

Modifications to the length of helices F and G, together with alterations in the length of 

loops flanking the B' helix, enable various substrates to be accommodated within the 

active sites of different P450s. Such differences are demonstrated by a- 90 ' shift 

between the orientations of the B' helix within the P450carn and P450eryF structures 

(Poulos and Johnson, 2005). 

Characterisation of P450carn identified an eight-fold increase in substrate (camphor) 

binding in the presence of certain cations (Peterson, 1971 and Mueller et al., 1995). 

Potassium was later found to bind with the highest affinity (Deprez et al., 1994 and 
Mueller et al., 1995) and subsequent crystallographic data identified a potential cation 
binding site at residues Gly93, Glu94, Tyr96, and Glu98 (P450cam numbering) 
(Peterson, 1971, Poulos et al., 1987, and Mueller et al., 1995), however this has yet to be 

identified in any other P450 (Li, 2001). 

1.3.7i Membrane-binding domains of eukaryotic P450s 

Some eukaryotic P450s include a hydrophobic N-terminal helix which anchors to the 

cytosolic face of the endoplasmic reticulum, co-translationally inserting the enzyme into 

the membrane. Further signals which target the endoplasmic: reticulum have been 

identified by Szczesna-Skorupa et al. (1995), which help to maintain the enzyme's 

position within the membrane. A number of basic residues also interact with the 

organelle's membrane lipids, which in vivo allows the enzymes to localise where 

needed. This, together with the N-terminal helix can cause difficulties when attempting 
to purify and crystallise in vitro. Finally, a proline-rich region immediately after the N- 

terminal helix forms a hinge-like structure, and deletions in this area have been found to 
disrupt protein structure sufficiently enough to prevent haern incorporation (Szczesna- 
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Skorupa, et al., 1993 and Yamazaki, et al., 1993). A strategy for the crystallisation of 

membrane-bound P450s is described by Williams et al., 2000 (see section 1.3.7). 

1.3.8 Spectroscopic characterisation 

Spectroscopic methods are frequently used to characterise cytochrome P450s. As 

mentioned in section 1.3.2, these enzymes were named due to their intense absorption at 

450 nm in the presence of CO, when in a reduced state (figures 1.8 - 1.9). CO binds to 

the eh co-ordination site of the haern iron, through electron donation from the carbon to 

form a a-bond, competitively inhibiting oxygen binding and thus preventing catalysis 

(see section 1.3.6a for inhibition mechanism). Such absorption shifts are only observed 

in haem-thiolate proteins where the thiolate ligand is trans to the carbon monoxide 

molecule (Collman and Sorrell, 1975). 

Figure 1.8: Carbon monoxide difference spectra of liver microsornes, taken from Omura and Sato (1964). 
Spectra from microsomes in the absence of CO were subtracted from the microsomes-CO data. Curve A- 

anaerobic dithionite-reduced microsomes. Curve B: aerobic microsornes, in the absence of dithionite. 
Both curves were recorded in the presence of carbon monoxide. 
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Figure 1.9: A standard UV/visible spectra of P450BM-3 in different redox/spin states. The wavelength 

region of 500 to 700 nm has been magnified to illustrate the smaller cc and P peaks, to an absorbance range 

of -0.1 to 0.1. Figure taken from Li et al., 200 1. 

All P450s exhibit similar absorption spectra, with a Soret peak at approximately 418 nm, 

with smaller a- and 0- bands at - 536 and - 570 nm, respectively, in the ferric state 
(figure 1.9) (Li, 2001). This Soret band shifts to - 408 nm upon reduction of the haem. 

iron. Binding of substrates often induces a blue type-I shift to - 390 nm due to 

displacement of the water from the distal haem-iron position, resulting in a five co- 

ordinated system (Sligar, 1976, Mueller et al., 1995,1995 and Li, 2001). Such changes 

effect the distribution of the outer shell electrons within the haern iron, changing its 

electronic configuration from S= 1/2 in the low-spin state to S= 5/2 in the high spin. 

P450 spin-shifts have also been characterised by electron paramagnetic resonance 
(EPR). P450carn exhibits g-values, of- 2.45 (&), 2.26 (gy), and 1.91 (g,, ), for the 

substrate-free enzyme, which is characteristic of a low-spin haem iron (figure 1.10A) 

(Tsai, et al., 1970 and Lipscomb, 1980). Similar results were also obtained for 

substrate-free ferric P450BM-3: 2.42,2.26,1.96 (Miles et al., 1992); and CYP 121 from 

Mycobacterium tuberculosis: 2.48,2.25,1.90 (McLean et al., 2005). Upon substrate 
binding, the system shifts to a predominantly high-spin, with g-values of: 7.95,3.97, and 
1.78 (figure 1.10B). Conversely, an EPR spectrum characteristic of a high-spin haem 

system was obtained for substrate-free HPL (hydroperoxide lyase, CYP74C3) from 
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Medicago truncatula, with g-values of: 8.03,3.51,1.68 (Hughes et al., 2006). This 

shifted to a low-spin system upon addition of its substrate, 13-HPOTE (13- S- 

hydroperoxyoctadeca-9Z), with corresponding g-values of: 2.39,2.24,1.93. Some 

inhibitors which bind strongly to the Oh axial haern iron position, such as azole 

compounds (section 1.3.6a), were found to induce a type-11 red shift to approximately 

425 - 435 nrn (Jefcoate, 1978). This occurs due to the haern-iron adopting a 6- 

coordination, low-spin configuration. 

Figure 1.10: EPR spectra of P450carn (1.1 mM) at 15 *K: (A) substrate-free, typical of a low-spin haem 
iron and (B) in the presence of 1.5 mM D-camphor, characterstic of a predominantly high-spin system. g- 
values are shown. Figure modified from Tsai et al., 1970. 

Spectroscopic methods have also been exploited to determine secondary structure within 
P450s, through the use of circular dichroism (CD). CD measurements of Mtb-CYP121 

and the haem-domain of P450BM-3 (both 3 gm), recorded in the far-UV region (190 - 
260 nin), identified greater than 50 % a-helical content in both enzymes, figure 1.11 
(McLean and Cheesman et al., 2002). 

A study by Yun et al. (1996) identified a proportional relationship between salt 
concentration and helix content of rabbit CYPIA2, measurable by CD (rigure 1.12). 
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The helical content was increased from - 30 % (in 80 mM potassium phosphate, pH 

7.4), to - 36 % in the presence of 0.05 M NaCl, and - 49 % in 0.1 M NaCl. However, 

further work by the same group, using rat CYP2BI, did not identify such dramatic 

changes, with a-helical content increasing by just 5% in the presence of 0.1 M NaCl (in 

50mM potassium phosphate, pH 7.4) to - 58 % (Yun et al., 1998). 
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Figure 1.11: CD spectra for Mtb-CYP121 and the haem-domain of P450BM-3 (both 3gm) in the far-UV 

region (190 to 260 run). Mtb-CYP121 is represented as a solid line and P450BM-3 (baem-dornain) as a 

broken line. Figure modified from McLean and Cheesman et al., 2002. 

FIgure 1.12: Effect of ionic strength on the a-helix content of CYPlA2 from Oryctolagus cuniculus 
(rabbit) (Yun et al., 1996). Data were measured in the far-UV region (190 to 260 nm) at a concentration 
of I pm. Figure modified from Yun et al., 1996. 
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Chapter 2- Theoretical and experimental backaround to Protein production and 

characterisation 

2.1 In vivo protein expression 

2.1.1 Introduedon 

A number of possibilities exist for the production of heterologous proteins in vivo, such 

as the prokaryotic (Escherichia coli and Bacillus subtilis) and eukaryotic 

(Saccharomyces cerevisiae, immortalised mammalian cell lines, and Spodoptera 

fi, ugiperda Sf21 cell line) systems. Whilst all have their advantages, bacterial expression 

systems, and in particular those which use E. coli as a host strain, are the most common 

(Pouwels, 1992 and Sorensen and Mortensen, 2005). Inexpensive cultures can be easily 

grown overnight and genetic manipulation protocols are well established. Unless the 

protein of interest is toxic within the host cell, foreign proteins are generally well- 

tolerated in E. coli. Lack of post-translational modification can however be problematic 

in bacterial systems, for example when expressing eukaryotic proteins which require 

glycosylation. Another consideration is the possibility of the recombinant protein being 

expressed as an inclusion body, however this can sometimes be overcome by denaturing 

the insoluble protein in high salt (such as 6M guanidine hydrochloride), and then slowly 

refolding by decreasing the ionic concentration (Whittington, 1989). Recombinant 

proteins with non-E coli codon usage (such as CGG for arginine and AUA for 

isoleucine) can successfully be expressed in modified strains such as Rosetta 2 (DE3) by 

Novagen. 

A common E. coli procedure, which was used to express recombinant proteins in section 
4.3, is described further in this chapter (figure 2.1). This prokaryotic system involves 

the isolation of target DNA from a genomic source using PCR, which is subsequently 
inserted into a bacterial plasmid vector containing an antibiotic resistance gene. The 

construct is transformed into an expression strain and positive transformants, selected for 

by antibiotic resistance screening, are grown in culture medium containing isopropyl-p- 

D-thiogalactopyranoside (IPTG). This induces transcription of T7 RNA polymerase 
from the host chromosome which, in turn, transcribes target genes from the recombinant 
plasmid. 
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Cloning 

1. Amplification of target gene by PCR 

I 

2. Analysis by agarose gel electrophoresis and extraction of DNA from gel (if not using TA-cloning or 
similar system, digest fragment with restriction endonucleases before proceeding to step 3) 

I 

3. Insert fragment into a cloning vector and transform into a host lacking a chromosomal T7 RNA 
polymerase gene (alternatively, fragment can be digested with restriction enzymes and inserted directly into 

a suitable expression vector) 
I 

4. Select positive colonies 

I 
5. Purify plasmids from overnight culture 

I 

6. Digest plasmid with restriction enzymes and separate insert from plasmid by agarose gel electrophoresis 
I 

7. Ligate fragment into an expression vector (digested with the same restriction enzymes) and transform 
into an E. coh host containing an IPTG-inducible chromosomal T7 RNA polymerase gene 

I 

8. Purify plasmids from overnight culture 

I 
9. DNA sequencing of plasmids to identify positive clones (alternatively this can be performed after step 5) 

Protein Expression 

10. Culture a positive clone overnight. Dilute in fresh medium and allow to grow to an 0.13 600 - 0.6 
I 

11. Induce expression with IPTG and incubate cultures on a rocking platform 

Extraction of Soluble Protein 

12. Pellet cells and resuspend in buffer 

I 13. Lyse cells by mechanical, chemical, or enzymatic methods 
I 

14. Pellet insoluble fraction and check expression by SDS-PAGE 
I 

15. Where applicable, purify soluble fraction by chromatography and determine purity by SDS-PAGE 

Figure 2.1: Schematic representation of a common procedure used for the expression of recombinant 
proteins in a T7 bacterial (E coli) in vivo system. This system was used to express proteins in section 4.3. 
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2.1.2 Polymerase chain reaction (PCR) 

Amplification of target genes (step 1, figure 2.1) can be performed using the polymerase 

chain reaction (PCR), first conceived by Kary Mullis in the 1980s (Saiki et al., 1985). 

This method enables the highly sensitive synthesis of regions of DNA from larger 

fragments. Target DNA is amplified a million-fold in a matter of hours, without the 

need for cellular cloning. 

A known part of the DNA sequence is used to design two synthetic oligonucleotides 

(primers), at each end of the region to be amplified. Primers are designed such that each 
is complementary to one strand of DNA only ("forward" and "reverse" strand primers). 

Additional sequences may also be added to either end of the final PCR product by 

engineering the primers with complementary sequences. Such additional elements may 
include restriction sites, linker sequences, signal peptides, or purification tags. 

Target DNA is combined with these oligonucleotide primers, together with a 

thermostable bacterial DNA polymerase, free deoxy-nucteotides, and a polymerase 

reaction buffer containing M902. The reaction is first heated to above 94 'C to denature 

the double stranded DNA, resulting in two single strands, and then cooled to 

approximately 40 to 60 T. This allows the hybridisation of oligonucleotide primers to 

complementary sequences on the target DNA and is known as the annealing step. 
Precise temperatures for this step require optimisation and are dependent upon the 

melting point of the primers used. 

During the extension period, reactions are heated to approximately 74 T and the regions 
of DNA downstream from the synthetic primers are synthesised by DNA polymerase 
using free dNTPs included in the reaction. 

As the cycle is repeated 20 to 40 times, the newly synthesised fragments, together with 
the primers, act as templates resulting in the rapid synthesis of a single species of DNA 
fragments. Correctly sized PCR fragments can be identified by agarose gel 
electrophoresis. 
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2.1.3 Restriction digestion 

Restriction digestion refers to the highly specific cleavage of DNA molecules by 

endonucleases, resulting in discrete fragments which can be re-ligated to complementary 

sequences by DNA ligase (Brown, 1992). Such cleavage is necessary when inserting 

gene fragments into certain vectors (steps 2 and 6, figure 2.1). Both the plasmid and the 

fragment to be inserted are digested with the same enzymes to create complementary 

ends. 

Several hundred of these enzymes have been isolated from prokaryotic sources and are 

commercially available, allowing for the manipulation of DNA molecules within the 

laboratory. In situ, restriction endonucleases protect bacteria and some viruses from 

foreign DNA molecules by cleaving them at specific recognition sequences. These 

enzymes are usually coupled with a modification enzyme, such as DNA- 

methyltransferase which protects the cells own DNA from cleavage at these sites. A 

methyl group is added to one base pair of the recognition sequence on each strand, 

preventing cleavage by the endonuclease. Such restriction-modification systems may be 

formed of two separate proteins or by two domains in a multi-subunit complex. The 

type 11 enzymes used for laboratory purposes cleave within their recognition sequence. 
Most of these recognise symmetrical DNA sequences and bind as homodimers, however 

a few bind as heterodimers to asymmetrical sequences. The efficiency of cleavage can 
be visualised by agarose gel electrophoresis. 

2.1.4 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method used to separate DNA molecules, predominantly 
as a function of DNA size and conformation. In the expression protocol described in 

figure 2.1, agarose gel electrophoresis is used to identify PCR products of correct size 
(step 2) and to separate fragments from restriction digestion (step 6). When agarose, a 
linear polymer derived from seaweed, is heated in buffer and subsequently cooled, it 
forms a matrix whose density is proportional to the percentage of agarose. Ethidium 
bromide, which fluoresces under ultra violet light, intercalates between the bases of the 
double stranded helix, and is commonly used to stain the gel (Andrews, 1992). Linear 

molecules become saturated with ethidium bromide, whilst supercoiled bind to a finite 
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number of dye molecules due to the introduction of superhelical turns. This results in 

linear fragments appearing brighter under UN light than for supercoiled DNA of the 

same concentration. 

DNA samples are applied to the gel in wells formed by adding a comb to the gel tray 

before cooling. The negatively charged DNA migrates towards the cathode when an 

electrical field is applied across the gel. Linear fragments migrate through the gel matrix 

at a rate inversely proportional to the logio of the number of base pairs (Helling et al., 

1974). Linear, super-coiled, and nicked circular DNA of the same molecular weight 

migrate at different rates through an agarose matrix, however the rate of migration is 

determined by the running buffer and electrical current used (Thome, 1966). 

2.1.4a Extraction of DNA from agarose gels 

DNA molecules visualised by agarose gel electrophoresis can easily be extracted using 

commercially available kits, such as the QlAquick@ gel extraction kit from Qiagen 

which incorporates spin columns containing a silica membrane. Gel slices are dissolved 

in buffer at 55 'C and then applied to the spin column. DNA binds to the membrane in 

high salt concentrations by adsorption and enzymes, buffers, and other contaminants are 

removed by washing the column with buffer containing ethanol. Finally, DNA is eluted 

with water or a low salt buffer. 

2.1.5 Cloning of target DNA 

Before expression of recombinant protein can proceed, PCR-amplified target DNA must 
first be inserted into a plasmid vector and transformed into an E. coli host lacking the U 

RNA polyrnerase gene (step 3, rigure 2.1). This allows for the stable establishment of 

positive clones (step 4, flgure 2.1), without expression of recombinant protein. PCR 

products can either be digested with restriction endonucleases, if such recognition 

sequences are introduced by primers, and ligated into a vector with complementary ends, 
or directly inserted into a suitable vector (such as TA-cloning, see section 2.1-5a) 

without the need for such enzymes. Positive clones can be identified by antibiotic 
screening, blue/white colony screening, restriction digestion, or DNA sequencing. 
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2.1.5a Cloning vectors 

TA-cloning is a common system used to clone recombinant genes, and is described 

further here. PCR products synthesised with Taq DNA polymerase produce fragments 

with 3' single deoxyadenosine overhangs, which can be ligated into a linear vector with 

corresponding 3' terminal thymidines. This reaction is performed by T4 DNA ligase, 

isolated from E. coli, which catalyzes the formation of phosphodiester bonds between 

neighbouring Y-hydroxyl and 5'-phosphate ends in double-stranded DNA. As these 

vectors contain restriction sites in their cloning regions, the introduction of such sites by 

PCR is not essential. It is sometimes necessary however when specific restriction sites 

are not present in both the cloning and expression vectors. Restriction sites are not 

expressed as part of the target gene as the start codon is placed downstream of the 5' site 

and a termination codon is included before the 3' site. 

The pGEMO-T Vector System from Promega enables PCR products to be inserted into 

the plasmid via TA cloning (figure 2.2). Following cleavage of pGEM'8, -5Zf(+) with 

EcoR V, 3' terminal thymidines are added, preventing recircularisation. Taq polymerase 

synthesised DNA fragments are ligated into the linearised plasmid by T4 DNA ligase. 

The multiple cloning region of pGEMO-T exists within an a-peptide coding region for 0- 

galactosidase (lacZ), allowing for blue/white colony screening of positive transformants, 

when plated onto LB agar containing IPTG (Isopropyl-o-D-thiogalactopyranoside) and 

X-gal (5-bromo-4-chloro-3-indolyl-o-D-galacto-pyranoside) (step 4, figure 2.1). IPTG 

induces transcription of the IacZ gene, producing O-galactosidase which metabolises X- 

gal to a blue product, resulting in blue colonies. When genes are cloned in-frame into 

this region, insertional inactivation prevents the transcription of the lacZ gene and so X- 

gal, and the colonies, remains colourless. 
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Figure 2.2: Promega's pGem@-T vector, a commonly used vector for the TA-cloning of genes. Figure 

reproduced with permission from Promega Corporation. 

2.1.5b Cloning hosts 

E coli cells which lack the XDE3 lysogen are suitable for initial cloning as they lack a 

chromosomal copy of the T`7 RNA polymerase gene. A number of commercially 

available cloning hosts are deficient in both genomic and episomal copies of the lacZ. 

These cells are thus suitable for blue/white screening of positive clones, when 

transformed with plasmids containing an ct-peptide coding region for P-galactosidase. 

This is in addition to the standard ant ibioti c-resi stance screening used to select positive 

transformants (step 4, rigure 2.1). 

An example of a host routinely used for initial cloning steps is Novagen's NovaBlue@ 

cells, which exhibit a high transformation efficiency and are suitable for blue/white 

colony screening. They confer tetracycline resistance, allowing for additional 

confirmation of positive colonies. 

2.1.5c Transformation of host cells with recombinant plasmids 

Whilst a number of procedures exist for the transformation of competent host cells with 
recombinant plasmids, the heat-shock method first described by Cohen et al. in 1972 is 
both economical and easy to perform. Cells are made competent during the early log 

phase of growth by washing in ice-cold 0.1 M calcium chloride, however the precise 
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mechanism remains unknown. Supercoiled plasmid DNA is added to the cells on ice 

and heat-shocked in a water bath at 42 'C before replacing on ice. Cells are grown in an 

antibiotic-free nutrient rich media, such as SOC, to allow the cells to recover and express 

the antibiotic resistance gene from the recombinant plasmid. Cells are then plated onto 

LB agar containing the specific antibiotic, to select for positive transformants. 

2.1.5d Purification of plasmid DNA 

To enable detection of positive clones by restriction digestion and DNA sequencing, it is 

first necessary to purify the recombinant plasmid from cell cultures (step 5, rigure 2.1). 

Overnight cultures, grown from single transformation colonies, are centrifuged to obtain 

cell pellets. A commonly used protocol performs an alkaline lysis step to break the 

cells, and the cleared lysate, obtained by centrifugation, is applied to a silica membrane 

within a spin column. Plasmid DNA is adsorbed onto the membrane in a high salt buffer 

and contaminants are removed by washing with buffer containing ethanol. DNA is 

eluted with a low salt buffer or water. Many commercially available kits are designed 

for the purification of plasmid DNA, such as Wizard@ Plus Miniprep (Promega) and 
QIAprep@ Spin Miniprep (Qiagen). 

2.1.5e Expression vectors 

Target DNA is cleaved from the cloning vector using restriction enzymes and ligated 
into the multiple cloning site of a vector suitable for expression (steps 6-7, figure 2.1). 
Alternately, oligonucleotide primers may be designed to include restriction sites, 
enabling PCR fragments to be directly inserted into an expression vector. The well 
established pET system (Plasmids for Expression by T7 RNA polymerase), developed 
by Studier et al. in 1986, provides an efficient construct for the expression of 
recombinant proteins in E. coli hosts under strong control of the bacteriophage 77 

promoter. Such systems can direct most of the cells resources to the expression of target 
protein. 

The pET expression system uses host cells which are lysogens of XDE3 and therefore 
contain a chromosomal copy of T7 RNA polymerase within a lac operon, under the 
control of a IacUV5 promoter. This polymerase directs the transcription of target genes 
at the T7 promoter site on the recombinant plasmid. 
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Preventing destabilisation of the system, particularly when toxic gene products are 

incorporated, is controlled with a mechanism based upon lactose operon regulation in E 

coli. Transcription of T7 RNA polymerase is naturally inhibited by the expression of a 

lac repressor protein, encoded by a chromosomal copy of the lacl gene, which binds 

reversibly to the lac operator. This inhibits subsequent transcription of target genes on 

the recombinant plasmid, although some basal transcription often remains. Such 

transcription can be reduced further by the addition of a lacl gene upstream from the 

plasmid T7 promoter which prevents the polyrnerase from synthesising the RNA chain. 

Whilst this system provides a highly efficient mechanism for repression, it does not 
interfere with target gene transcription upon induction with IPTG. IPTG relieves the 
inhibition by binding to an allosteric site on the repressor protein, causing a 

conformational change and so decreasing its affinity for the lac operator. IPTG is used 

preferentially over the natural inducer lactose as it cannot be broken down within the 

cells and so the concentration remains constant. Further control can be achieved by the 
inclusion of '17 lysozyme which naturally inhibits T7 RNA polyrnerase activity. 

Two commercially available pET vectors, which were used to express recombinant 

proteins in section 4.3, are briefly described here (figure 2.3). The pET-17b vector 
(Novagen) contains an N-terminal Ilaa T7*Tae sequence followed by a multiple 

cloning region. Histidine tags are not included in the vector but can be added to target 
DNA during PCR. pET-28a vectors (Novagen) carry an N-terminal His-Tage in 

addition to a thrombin cleavage site and a T7*Taglo. An optional C-terminal His-Tag 

can be removed from resulting target protein by the addition of a termination codon 
sequence. 

2.1.5f Expression hosts 

Expression plasmids are transformed into E. coli hosts suitable for protein production 
and cultured overnight to enable the purification of plasmids (steps 7-8, figure 2.1). 
Plasmids are then sequenced (step 9, figure 2.1), however this can performed after the 
initial cloning step instead (after step 5, figure 2.1). 
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Figure 2.3: Examples of Novagen's pET system expression vectors, pET17b and pFr28a. Figures 

reproduced with permission from Merck Chemicals Ltd. 
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The E. coli strain BL21 (DE3), is one of the most common general purpose expression 

hosts used in laboratories worldwide. Whilst being deficient in both ompT and ion 

proteases, the DE3 lysogenic strain contains a chromosomal T7 RNA polymerase gene 

under control of the IacUV5 promoter (Novagen, 2006). 

However, for expressing recombinant genes which exhibit usage of a high percentage of 

non-E. coli codons (AGA, AGG, AUA, CCC, CGA, CGG, CUA, GGA, and UUA) the 

BL21 derivative, Rosetta 2 (DE3), can be used to provide a universal translation system 

(Brinkmann et al., 1989, Seidel et al., 1992, Del Tito et al., 1995, and Rosenburg, 1996). 

These Novagen cells contain a chloramphenicol-resistant pRARE plasmid which 

encodes tRNAs for these unusual amino acid codons, under control of their native 

promoters (Novy et al., 2001). This improves the success rate of expression of such 
ORFs (open reading frames). Another E. coli expression strain, HMS174 (DE3), 

includes a recA mutation in a K-12 background, which can stabilize certain target genes 

whose products cause the loss of the DE3 prophage (Novagen, 2006). 

2.1.6 DNA sequencing 

Determining the precise nucleotide sequence of a cloned fragment is an essential step in 

molecular cloning (step 9, figure 2.1). If the target gene is already known, sequencing 

verifies that the correct fragment has been synthesised and identifies any mutations 

which may have arisen during arnplification. The method also distinguishes genes 
which are correctly cloned in-frame with the start codon from those which are not. 
Recombinant plasmids are transformed into an E. coli host and grown overnight in LB 

media. Plasmids are purified as outlined in section 2.1.5d, in preparation for the 

sequencing reaction. 

A number of sequencing methods have been developed over the last 40 years, the most 
popular being the chain termination procedure described by Sanger in 1977 (Sanger et 
al., 1977). A variation of this method, dye terminator sequencing, is widely used and 
will be described here. The reaction includes template DNA, oligonucleotide primers 
complementary to a region of the template DNA which form the start point of 
amplification, DNA polymerase, the four deoxynucleotide bases (dATP, dGTP, dCTP, 

and dTTP), and a low concentration of four dideoxynucleotide chain-terminators. In the 
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case of molecular cloning, the primers flank either side of the gene of interest and it is 

commonplace to use "universal" primers for regions contained on the plasmid vector 

such as the T7 promoter and T7 terminator sequences. Dideoxynucleotides lack the Y- 

OH group essential for chain extension and are each labelled with dyes which fluoresce 

at different wavelengths. As the DNA chain is replicated, the dideoxynucleotides are 

incorporated at random, thereby terminating the sequence and resulting in many related 

DNA fragments of varying length. Fragments are separated by size on a polyacrylamide 

gel and fluorescence at different wavelengths is detected. The autoradiogram output 

shows peaks of different colours, each representing a different dideoxynucleotide. From 

this, the nucleotide sequence can be inferred by the largest peak at each point (figure 

2.4). 

Figure 2.4: Output file from Sanger dye terminator sequencing. Each colour represents a different 

dideoxynucleotide, the order of which represent the DNA sequence. Figure taken from 

www. wikipedia. org. 

2.1.7 Expression of recombinant protein 

Positive transformants of an expression vector, selected for by antibiotic resistance 

screening, restriction digestion and DNA sequencing, are grown on a small scale in a 

suitable medium overnight. Luria-Bertani broth (LB) is a standard media used for this 

purpose (see appendix 2) (step 10, figure 2.1). 

Overnight culture is diluted in fresh medium and allowed to grow at 37 T until the 

optical density at 600 nm reaches 0.6 - 0.8 (mid-log phase) and then expression of 

recombinant protein is induced by the addition of ITPG (step 11, figure 2.1). If 

extended incubations, above 24 hours, are required for expression, it is necessary to use 

a nutrient-rich media such as terrific broth (TB) (see appendix 2). 
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Small-scale cultures are performed initially to determine the optimum incubation 

parameters such as temperature, time, and inducer concentrations, before scaling up. 

Multiple litres of culture may be grown from several millilitres of overnight culture, and 

can result in milligram quantities of recombinant protein being produced. 

2.1.8 Extraction of protein 

Cells are pelleted by centrifugation and resuspended in buffer before lysis using 

mechanical, chemical, or enzymatic means. French pressure cells mechanically lyse 

cells by forcing crude slurries through a tight space at very high pressures of around 10, 

000 psi (pounds per square inch). The sudden release of pressure as the sample is 

released causes the cells to burst open (Salusbury, 1992). Another mechanical method, 

sonication, applies frequencies of over 20 kHz to the sample, resulting in the production 

of gas bubbles. When these collapse, shock waves are formed which lyse the cells 

(Salusbury, 1992). 

Chemical lysis generally incorporates the use of detergents and may include solvents 

which stimulate autolysis (Goodwin, 1992). A commercially available chemical lysis 

method is the BugBuster@ Protein Extraction Reagent (Novagen) which gently disrupts 

E. coli cells through a combination of detergents. Enzymatic disruption is generally 

gentler than the mechanical or chemical methods mentioned previously. Enzymes such 

as trypsin, lysozyme, and other proteases disrupt the cell wall, with full lysis completed 
by osmotic shock or gentle mechanical treatment (Goodwin, 1992). 

The French pressure cell method is generally very successful at lysing bacterial cells and 

so was predominantly used throughout the work described in this thesis. Soluble 

fractions are obtained by centrifugation and the extent of expression is determined by 

SDS-PAGE. When sufficient target protein exists within the soluble fraction, soluble 

protein extracts can then be purified by a number of chromatographic steps. Expression 

conditions can be further optimised to obtain greater yields of soluble protein. A 

number of techniques exist to overcome the production of target protein as inclusion 
bodies, one of which is described in section 2.1.1. 
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2.1.9 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins can be separated, as a function of size, using sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) as first described by Laemmli in 1970. 

In the presence of an electrical field, protein molecules negatively charged by the 

binding of SDS, reduced by 2-mercaptoethanol, and denatured at 100 OC, migrate 

towards the positively charged anode. Anionic SDS detergent binds to the polypeptide 

backbone at a constant molecular ratio of 1.4 g of SDS :Ig of protein (Reynolds and 

Tanford, 1970), conferring a net negative charge to the molecule. The reducing agent, 2- 

mercaptoethanol, is added to reduce disulphide bridges allowing the protein to adopt a 

random-coil configuration. 

The discontinuous system, developed by Laemmli (1970) based upon work by Ornstein 

and Davis (both 1964), consists of a large-pore gel which stacks and concentrates 

samples before they progress into a second more-restrictive resolving gel. This greatly 

improves the resolution at which proteins are separated compared with continuous buffer 

systems. 

2.2 Cell-free protein expression 

2.2.1 A brief history 

Cell-free expression systems were developed as an alternative to the traditional in vivo 

methods and to overcome problems associated with the use of living cells. Cell-free 

systems offer advantages over in vivo methods, such as the ability to express host-toxic 

proteins and the high-throughput manner in which expression can be performed (Katzen 

et al., 2005). 

Early cell-free systems for protein synthesis were based on cytoplasmic animal cell 

extracts free from mitochondria (Littlefield et at., 1955) and later, from bacterial extracts 
(Schachtschabel and Zillig, 1959; Lamborg and Zarnecnik, 1960; and Tissidres, et al., 
1960), both of which expressed endogenous mRNA's only. The first bacterial system to 

allow for the translation of exogenous mRNA's was developed in 1961 by Nirenberg 

and Matthaei. Endogenous mRNA's were removed by incubating the cell extract at 
physiological temperature, allowing ribosomes to accept exogenous templates. 
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Eukaryotic cell-free systems were developed to allow for the translation of exogenous 

mRNA by treating rabbit teiculocytes with micrococcal Ca2'-dependent RNase (Pelham 

and Jackson, 1976). Wheat germ extracts could be used directly for translation due to 

low level endogenous mRNA (Roberts and Paterson, 1973 and Marcus et al., 1974). 

The bacterial cell-free system was further developed to allow for a coupled transcription- 

translation reaction, whereby translation occurs whilst mRNA is synthesised from 

template DNA by an endogenous RNA polymerase (Lederman and Zubay, 1967). 

2.2.2 Composition of cell-free systems 

Modem bacterial cell-free reaction solutions contain all of the components required for 

transcription and translation of target proteins. Whilst the composition of such systems 

often require optimisation, dependent upon individual protein characteristics, they are 

usually based upon one of two crude cell extracts including: 1. ribosomes and all soluble 

enzymes, translation factors, and tRNAs, known as an E. coli S30 extract; 2. a 

combination of ribosome-free extract (S 100 extract) plus isolated ribosomes. In the case 

of codon bias or unusual codon usage, the composition of individual tRNAs can be 

adjusted (Chumpolkulwong et al., 2006). Nucleotide tri-phosphates (NTPs) provide an 

essential energy source for cell-free translation, however their role is finite due to NTP- 

dependent metabolic reactions and the presence of NTPases in the bacterial extract. 

Continuous cell-free expression systems overcame this problem by providing a continual 

supply of essential components such as amino acids and NTPs whilst simultaneously 

removing reaction waste products (Baranov et al., 1989 and 2002). This was achieved 
by dialysing the cell-free reaction against a larger feeding solution, across a membrane 

with a molecular weight lower than that of the target protein and the protein-synthesising 

machinery (figure 2.5). Further optimisation of the dialysis system has allowed 

members of the Protein Research Group at the RIKEN Yokohama Institute to achieve up 
to 8 mg of target protein per millilitre of cell-free reaction solution (Kigawa et al., 1999, 

2002, and 2004 and Yokoyama, 2003). 

Briefly, target genes are amplified by PCR (see section 2.1.2), ligated into cloning 
vectors and transformed into a host cell lacking a chromosomal copy of the T7 RNA 

polymerase gene (see section 2.1.5c). Plasmids are purified from the culture as outlined 

63 



Chapter 2- Theoretical and experimental background to protein production and charactefisation 

in section 2.1.5d. Once positive clones have been identified by DNA sequencing (see 

section 2.1.6), they are included directly in the cell-free reaction solution as the DNA 

template for transcription (figure 2.6). 

Figure 2.5: A representation of the E. coli cell-free system used to express recombinant proteins in section 

4.2. All components essential for transcription, translation, and ATP regeneration, together with the target 

DNA template, are included within the internal "reaction" solution. A dialysis membrane simultaneously 

filters out waste products and supplies fresh components from an external "feeding" solution. Figure 

obtained by personal communication from Matsuda et al. (RIKEN Yokohama Institute). 

2.2.3 Cloning of target DNA 

The first step of cell-free systems is the preparation of target DNA suitable for use as a 

template for transcription. A common method begins with the amplification of target 

DNA by PCR (described in section 2.1.2) to produce discrete fragments which are then 

inserted into a cloning vector (see sections 2.1.5a - 2.1.5d) and sequenced (section 2.1.6) 

(steps I-6, figure 2.6). An example of this procedure, and the one used to clone target 

DNA in section 4.2, is described in the following section. 
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Cloning 

1. Amplification of target gene by PCR 

it 
2. Analysis by agarose gel electrophoresis and extraction of DNA from gel C, 

I 
3. Directly clone fragment into a suitable vector, such as the TA-compatible vector, and transform into an 

E. coli host lacking chromosomal T7 RNA polymerase gene 

I 
4. Select positive colonies 

I 
5. Purify plasmids from ovemight culture 

I 

6. DNA sequencing of plasmids 

Protein Expression 

7. Add plasmid DNA to cell-free components in a dialysis membrane 

it 
8. Incubate on a rocking platform 

Extraction of Soluble Protein 

9. Separate total and soluble fractions by centrifugation 
I 

10. Check expression by SDS-PAGE 
I 

11. Purify soluble fraction by chromatography and determine purity by SDS-PAGE 

Figure 2.6: Schematic representation of a common procedure used for the expression of recombinant 

proteins using a bacterial (E coli) in vitro system. This system was used to express proteins in section 4.2. 

2.2.3a PCR 

PCR is performed as described in section 2.1.2, however several additional sequences 

are included within the primers, resulting in a final PCR product which includes not only 
the target sequence, but also components essential for transcription and translation. 
Such components include a ribosome binding site, a T7 promoter and terminator, and 

stop codon sequences, if required. Tags to aid solubility or purification may also be 

engineered at this stage. 
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2.2.3b Invitrogen TOP040 TA cloning system 

The resulting PCR fragment, purified by agarose gel electrophoresis, is then ligated into 

a suitable cloning vector. An example is the TOPW' TA Cloning System (figure 2.7) 

which exploits the dual restriction enzyme/ligase activity of toposiornerase I (Vaccinia 

virus) (Shuman, 1994). The enzyme cleaves a single strand of the plasmid at 5'- 

(C/T)CCTT-3' and remains covalently bound to the phosphate group of the 3' 

thymidine. Re-ligation of the vector, and release of the enzyme, occurs upon addition of 

target DNA synthesised with single 3' adenosine overhangs. 

Figure 2.7: The modified pCR@2. I -TOPO@ cloning vector used as a template for the cell-free expression 

of proteins in section 4.2. Components essential for translation were introduced during PCR, see section 
2.2.3a. An explanation of the additional components flanking the open reading frame (ORF) is also given 
in section 4.2.2a. Modified figure reproduced with permission from Invitrogen Ltd. 
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2.2.3c Cloning host 

A host suitable for establishing recombinant plasmids in preparation for cell-free protein 

expression, is DH5aTm from Invitrogen. They support blue/white colony screening for 

the selection of positive transformants, and have a high transformation efficiency, 

required for initial cloning. Insert stability is also improved by mutations in the recAl 

and endAl. 

2.2A Optimisation of the cell-free reaction 

The major benefit of cell-free expression systems is the ability to incorporate any 

number of additives, cofactors, or molecular chaperones, to test their effect upon total 

expression or solubility, on a very small scale (Betton, 2003 and Murthy et al., 2004). 
Similar experiments in an in vivo system would be extremely time-consuming due to the 
larger volumes needed to obtain detectable quantities of target protein, together with the 

requirement for cell lysis. In vitro, this can easily be performed in a 96-well dialysis- 

plate format in a matter of hours. A common external reaction solution is provided to all 
of the wells, with each well containing an individual combination of additives and/or 

proteins. Detectable quantities of protein can be synthesised in an hour, when reactions 
are placed in a shaking incubator. Scaling up the reaction requires the use of individual 

dialysis cups or dialysis membranes, encased in a plastic box containing an external 

reaction solution. 

Inclusion of non-ionic detergents, above their critical micelle concentration (CMC), in 

the cell-free reaction may help to solubilise proteins with transmembrane domains. 

These regions are incorporated into the hydrophobic core of the micelle, shielding the 
hydrophobic domains from solvent (Marston and Hartley, 1990). Detergents may also 

prevent aggregation and precipitation of proteins which do not contain transmembrane 
domains, by protecting hydrophobic domains from the solvent. 

Molecular chaperones can be included in cell-free reactions to promote solubility and 
correct folding, by recognising hydrophobic residues or regions of unstructured 
backbone (Hard and Hayer-Hartl, 2002). The groE system (groEL and groES) 
compartmentalises individual polypeptide chains, allowing them to fold correctly in 
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isolation from one another, thus preventing aggregation (Wang and Boisvert, 2003), 

whilst the Hsp70 system (dnaK, the Hsp4O dnaJ, and the nucleotide exchange factor 

grpE, in E. coli) promotes folding through numerous cycles of ATP-dependent substrate 

binding and release (Hartl and Hayer-Hartl, 2002). 

As with any expression system, the inclusion of certain additives such as detergents and 

molecular chaperones may adversely affect downstream applications, and so are only 

used when absolutely necessary. Problems may occur when attempting to separate 

additives from the solubilised protein, particularly when they shield hydrophobic regions 
from solvent. Some detergents, especially those with high CMC values, can often be 

removed by dialysis. Alternatively, detergents which form small micelles may be 

removed by gel filtration chromatography if the target protein's molecular weight is 

greater (Hjelmeland, 1990). Some detergents however, either cannot be completely 

removed from the system, or their removal causes target protein aggregation or 

precipitation. 

Removal of molecular chaperones can sometimes be performed by chromatographic 

steps alone, however invariably this is unsuccessful. Incubating a protein-groE complex 

with ATP can induce a conformational change within the chaperones, which in turn may 

release the protein. Similarly ATP can liberate bound protein from Hsp70 complexes in 

two stages: firstly, ATP binds to dnaK and relieves dnaJ of the bound protein; and 

secondly, grpE catalyses the hydrolysis of AT? to ADP, inducing a conformational. 

change in dnaK significant enough to release the protein (Hard and Hayer-Hartl, 2002). 

As with detergents, removal of chaperones may result in the unfolding or aggregation of 
target protein. 

The cell-free system can also be used to produce labelled proteins, such as 
selenornethionine-labelling in preparation for MAD-phasing, during crystallography 
(Kigawa et al., 2002). 

As with the in vivo system, it is necessary to optimise incubation parameters to obtain 
the maximum level of soluble protein. A typical large scale reaction requires 9 ml of 
internal and 90 ml of external solution and favourable, conditions can produce milligram 
quantities of recombinant protein in several hours (steps 7-8, figure 2.6). 
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2.2.5 Extraction of protein 

Soluble fractions can easily be obtained without the use of mechanical or chemical lysis 

due to the lack of whole cells within the reaction. Reaction solutions are transferred to a 

96-well plate or a Falcon tube and centrifuged. The extent of expression is deterinined 

by SDS-PAGE (see section 2.1.9) and the soluble fraction can be purified by 

chromatographic methods. Purification tags such as histidine-tags are often incorporated 

during PCR, by the inclusion of such sequences within the oligonucleotide primers 

(section 2.1.2), and can provide a simple and generally highly effective first-stage 

purification (steps 9- 11, figure 2.6). 

2.3 Protein purification 

2.3.1 Chromatography 

Chromatography was first discovered in 1903 by Mikhail Tswett as a method for 

separating molecules through their specific interactions with porous solid matrices. 
Molecules solubilised in a mobile phase are passed through a column packed with a 
porous resin (the stationary phase). The properties of a molecule affect its interaction 

with the resin and subsequently determine its rate of migration through the column. 

For simple separations, it is possible to perform chromatography manually on the bench, 

by using an air-filled syringe or a small pump to force the mobile phase through the 

matrix. Ilis is particularly useful when purifying coloured proteins from a crude 
extract, as they may be identified visually. 

Complex purifications are more conveniently performed using fast-protein liquid 

chromatography (FPLC), an automated system which precisely pumps samples at 
controlled flow rates through the matrix. Glass or plastic beads, 3- 300 Rm in diameter, 

coated with chromatographic media are packed into a column and attached to a system 
which incorporates an ultraviolet light source to measure the absorption spectra of eluted 
proteins. For purification of protein molecules, it is commonplace to measure 
absorbance at 280 nm, and peaks containing the protein of interest may be identified by 
SDS-PAGE. 
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Developments in FPLC technology have produced many commercially available, high 

specification systems which increase throughput and require less user intervention. The 

AKTATm Explorer systems from Amersharn Biosciences provides an automated 

platform for the purification of proteins through a series of chromatographic columns, 

from user-defined protocols. 

2.3.1a Immobilised metal ion adsorption chromatography (EVIAC) 

Metal chelate affinity chromatography (IMAQ provides a simple first step purification 

of recombinant proteins engineered with an exposed polyhistidine tag at one end of the 

polypeptide chain. Ligands, such as Ni2+' CU2+, or Zn 2+ ions, which specifically bind to 

polyhistidine regions, are covalently bound to an inert matrix. As natural proteins do not 

generally bind with high affinity to these charged matrices, they are removed from the 

column in a low salt buffer. A competitive chelating reagent such as imidazole is added 

to the column to elute the non-covalently bound target protein. When polybistidine tags 

are engineered well, the majority of contaminating proteins can be removed in just one 

step. 

An example of commercially available metal chelate media, is the nickel-seph arose resin 

available from Amersham Biosciences. This consists of a chelating group, pre-charged 
with Ni2+ ions, coupled to highly cross-linked agarose beads. 

2.3.1b Ion exchange chromatography 

In contrast with metal affinity chromatography which can be performed with limited 
biochemical knowledge of the protein sample, it is generally necessary to know the 
isoelectric point of the target protein when performing ion exchange chromatography. 
Charged molecules bind to immobilised groups of opposite charge on a cellulose or 
agarose matrix. Proteins which are negatively charged below the pH of the buffer to be 

used, bind to cationic groups on an anion exchange column, and vice versa for positively 
charged cations. When the pI of the protein is not known, proteins may be separated by 

using a strong ion exchanger which functions over a wide pH range to determine the best 

system to use. 
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The column is washed with a low salt buffer and weakly bound proteins are removed 

from the matrix. The target protein is eluted in a gradient (linear or step-wise) of low to 

high salt buffer, which competitively binds to the charged resin, thereby releasing 

proteins at a rate dependent upon their binding affinity. 

Examples of commercially available ion exchange resins include CM sepharose, a weak 

cation exchanger, and Q sepharose, a strong anion exchanger, both from Amsersharn 

Biosciences. These resins are formed from 6% highly cross-linked spherical agarose 

beads. 

2.3.1c Gel filtration/size exclusion chromatography 

By exploiting the porous nature of agarose beads, proteins can be separated according to 

their size and shape. The extent of cross-linking between agarose beads, and so pore 

size, is chosen dependent upon the desired range of molecular weights to be separated. 
When heterogeneous solutions are applied, smaller molecules pass through the pores and 
larger ones are excluded. The resulting effect being that larger molecules elute from the 

column at a faster rate than smaller molecules. 

There is a linear relationship between the logarithm of the molecular mass of a protein 

and its relative elution volume from the column, hence it is possible to extrapolate the 

oligomeric state of a protein when the molecular weight is known. It is first necessary to 

calibrate the column by passing a heterogeneous solution of proteins of known 

molecular weight through the matrix. A calibration curve of a column is calculated by 

plotting Kav values (equation 2.1) of each known protein against their molecular 

weight. 

Equation 2.1: 

Kav = (Ve - Vo) / (Vt - Vo) 

Where: 

V, elution. volume for the protein 
Vo void volume of the column (the volume of mobile phase between the stationary 
phase beads) 

Vt = total bed volume of the column 
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2.4 DNA/protein characterisation 

2.4.1 Bioinformatics 

Bioinformatics brings together computer science, mathematics, and information theory, 

to enable the analysis of biological systems through the sharing of vast amounts of data. 

Such techniques have been essential in the collation of genomic data and have played 

significant roles in the progression of structural biology. A number of techniques used 
throughout this thesis are described briefly. 

UniProt provides a comprehensive database of protein information, compiled from 

Swiss-Prot, TrEMBL, and PIR (http: //www. ebi. uniprot. org), whilst the RCSB PDB 

(Protein Data Bank) provides structural information about biological macromolecules, 
highlighting their relationships to sequence, function, and disease (http: //www. rcsb. org). 
PredictProtein enables the prediction of structure and function of entire proteins or 

particular domains, by comparing with similar sequences (www. predictprotein. org). 
The American NCBI (National Center for Biotechnology Information) database is a 

multi-purpose tool, providing access to information such as journal articles, 

protein/DNA sequences, and protein structures (http: //www. ncbi. nlm. nih. gov). Global 

alignment of sequences can be performed using ClustalW, a multiple alignment tool 

which highlights similarities in sequences and also introduces gaps which represent 

evolutionary insertions or deletions (Thompson et al., 1994 and 

www. ebi. ac. uk/clustalw/). Finally, SMART (Simple Modular Architecture Research 
Tool) can be used to estimate functional annotations of unknown protein sequences, 
based upon molecules of known structures (smart. embl-heidelberg. de/). 

2.4.2 Electronic spectroscopy 

Spectroscopic methods, and in particular electronic spectroscopy, are often used to 

characterise biological systems by studying the interaction of radiation with matter. In 

the ultra-violet/visible region, radiation may be partially absorbed by a molecule 
(chromophore), causing a rearrangement of electrons to a higher energy state (Hammes, 
2005). This absorption is detected by measuring the difference in intensity between the 
light before and after it passes through the sample. Absorption can be quantified using 
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the Beer-Lambert law, which states that there is a linear relationship between absorbance 

and concentration of an absorbing species (Lambert, 1760 and Beer, 1852). To 

determine absorption using the Beer-Lambert law, a known extinction coefficient is 

required. This is a constant value specific to the molecule of interest at a particular 

wavelength and is either experimentally derived or calculated using quantum mechanics 
(Hammes, 2005). Inaccuracies may occur when the light is not monochromatic or if the 

sample has aggregated. 

The Beer-Lambert law, in terms of molarity, is written as: 

Equation 2.2: 

A=excxl 

Where: 

A experimentally derived absorbance 

e wavelength dependent molar extinction coefficient in (M-1 cm-1) 

c molar concentration of the protein 
I path length of the cuvette 

Hence, the molar concentration of an unknown protein in solution may be calculated by: 

Equation 2.3: 

c =A/ F, x1 

2.4.2a Protein quantification 

Protein concentration may be estimated spectroscopically, by absorbance and 
colounnetric assays. Both methods can only estimate the concentration, particularly for 
impure samples. The concentration of a soluble protein may be calculated from its 

absorbance of ultraviolet light at 280 nrn, as amino acids with aromatic rings absorb at 
this wavelength (Dunn, 1992). Chromophores which exhibit strong absorption in this 
region are phenylalanine, tyrosine, and tryptophan. The extent at which a specific pure 
protein, in a specific buffer, absorbs light at 280 nm can be calculated to yield a molar 
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extinction coefficient (c). It is therefore possible to calculate the concentration from the 

extinction coefficient specific to that protein (equation 2.3). 

A second method for quantifying proteins in solution, and one which does not require 
knowledge of specific extinction coefficients, is the colourmetric assay developed by 

Bradford (Bradford, 1976). The Bradford assay measures the absorption change which 

occurs upon binding of protein to Coornassie brilliant blue G-250 dye. The red cationic 
form of the dye absorbs at a maximum of 465 nm, which shifts to the blue anionic form 

upon binding of certain amino acids, with an absorption maximum of 595 nm. The dye 

binds only to arginine, tryptophan, tyrosine, histidine, and phenylalanine residues. 

Absorption measurements at 595 nm, for a series of standards including Bradford 

reagent, must first be performed. Bovine serum albumin (BSA) of known concentration 
is commonly used for this purpose, over a linear concentration range of 0.1 to 1.4 

mg/ml. A standard curve is calculated by plotting absorbance at 595 nm against the 
known concentration. Unknown concentrations may then be calculated by performing 
the assay using several dilutions of the protein, complexed with Bradford reagent. 
Concentrations are extrapolated from the standard curve. 

Protein concentration may also be determined, to a high degree of accuracy, using an 
amino acid analyser. This method determines the quantity of each amino acid within a 
protein, in four steps: 1. hydrolysis; 2. derivatization; 3. HPLC separation; and 4. data 
interpretation and analysis. Whilst this is the most accurate method of determining 

protein concentration, only a few laboratories are equipped with such a facility and is 

generally only used when precise quantification is required. 

2.4.3 Circular dichroism 

Circular dichroism (CD) exploits the differences in absorption of left and right handed 

polarised light by asymmetric or chiral molecules (Walker, 1998). Well ordered 
structures result in both positive and negative signals, whilst irregular structures give a 
zero signal. Chromophores within the protein, namely the peptide bonds, absorb in the 
"far" IN region (170 to 250 nm), the resulting data of which can be used to predict 
secondary structure. This is because a-helices, P-sheets, and random coils, give rise to 
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a characteristic spectrum which can be interpreted using various algorithms to estimate 

the percentage of each structural element. This method cannot however be used to 

identify specific residues involved in such formations. CD performed at synchrotron 

radiation sources provides significantly improved signal to noise ratios than bench 

sources and so enables a greater accuracy of predictions (Jones and Clarke, 2004), 

particularly at shorter wavelengths. 

A further use of CD occurs in the "near" UV region (250 to 350 nm), whereby aromatic 

residues and disulphide bonds contribute to the spectra. Signals in this region can 

indicate the correct folding of protein and can be used to assess the effects of buffer, PH, 

salt, and ligand-binding, amongst other variables (http: //www. ap- 

lab. conVeircular-dichroism. htm). 

2.4.4 Electron paramagnetic resonance 

Electron paramagnetic resonance (EPR) spectroscopy studies the effect of radiation on 

molecules within a strong magnetic field (Harnes, 2005). An EPR signal arises due to an 

unpaired d-orbital electron within a molecule, which in the case of haern proteins is 

supplied by the ferric iron (Feý'), which has one unpaired electron in its outermost shell. 
Such molecules are paramagnetic and give rise to an EPR signal (Hammes, 2005), whilst 

molecules which have a full complement of electrons in the outer shell are "EPR-silent". 
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Chapter 3- Theoretical and exiDerimental backaround to jDrotein crvstalloLyrai)hV 

3.1 Introduction 

The structural study of biologically important molecules can be achieved using many 

different methods with varying levels of resolution. Techniques include electron 

microscopy, nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), 

and protein crystallography (PX), the most powerful of which, PX, produces high 

resolution three dimensional models of the molecule of interest. Highly pure protein is 

generally required to grow crystals suitable for PX and the production of such crystals is 

responsible for one of the major bottle-necks of the technique. Another consideration is 

that crystal packing may also affect the true structure of the protein. Both NMR and 

SAXS yield structural information of proteins in solution, thereby removing the 

requirement for crystallised sample material. NMR allows small molecules to be 

visualised in motion within a solvent, however sensitivity may be compromised. 

Unlike the universal helical structure of DNA (Watson and Crick, 1953), every protein 

has a unique configuration which may be only partially conserved within molecules of 

homologous sequence or function. The first protein structures, myoglobin and 

haemoglobin, were not published until 1960 and further growth within the field 

remained slow until the surge in computing power in the 1970s and the availability of 

Synchrotron radiation in the 1980s (Giacovazzo et al., 2002). Currently there are 38, 

620 protein structures deposited in the Protein Data Bank (PDB) database (Berman et 

al., 2003), 46 % of which were deposited in the last five years (2000 to 2005). Of the 

structures available, 84.8 % were determined by single-crystal X-ray crystallography, 

14.6 % by NMR, and just 0.3 % by electron microscopy. 

3.2 X-ray diffraction 

Protein crystallography centres around the principal that ordered structures such as 

crystals, which contain a regular lattice of molecules, scatter bombarded X-rays from 

atomic electrons. The diffracting rays can either constructively or destructively interfere 

with each other, producing an interference pattern. In order for multiple X-rays to be 

scattered in phase (constructively), they must satisfy Bragg's law (equation 3.1) (Bragg, 
1912). This is shown in rigure 3.1, which illustrates diffraction from multiple planes (of 
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atoms) within a crystal, separated by a distance (d). The radiation will travel different 

distances dependent upon the distance between the diffracting planes. For the waves to 

scatter in phase, these distances must be integral (n) multiples of the wavelength 

(Harnmes, 2005). 

Equation 3.1: 

nX = 2dsin(#) 

Where n is an integer number, X is the wavelength of the X-rays, d is the spacing 

between planes within the crystal lattice, and 0 is the angle between the incident ray and 

the scattering planes. 

Figure 3.1: Diff-raction of X-rays from a crystal lattice. The parallel lines represent planes of atoms within 

a crystal, which are separated by a distance (d), and the angle at which radiation interacts with the crystal 
is shown as 0. Figure taken from Hammes, 2005. 

The direction and intensity of the scattered X-rays are measured by an automatic 
detector (such as a CCD or image plate) and computational methods are used to convert 

this diffraction image into a three dimensional electron density map. Briefly, once the 

program has found a value for all reflections in the reciprocal indices (h, k, l), this can be 

considered as the equivalent real-space direction along the crystal's axes (x, y, z) when a 
Fourier transform is applied to the structure factors, F(hkl). Structure factors include 

three components, the frequency (pre-determined by the source wavelength), the 
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amplitude (calculated from the measured intensity IhkI), and the phase (determined by 

phasing methods, see section 3.5). The structure factors may be expressed as: 

Equation 3.2: 
F(hkl) ý Fhki eXP(iO(hkl) 

Where Fhkj is the amplitude and MkI is the phase of the structure factor for each 

reflection. FhkI is directly measured from the experimental data as it is related to the 

intensity of the reflections (Ihki), however the phase information (Crhkl) must be 

computationally derived. 

The structure factors, obtained from a crystallographic experiment, may be represented 
by: 

Equation 3.3: 
N 

F(hkl) 2, f, exp(2; d(hxj + kyj + Izj)) 
J-1 

Where h, kl define the coordinates in reciprocal space of a particular reflection (the 

Miller indices), xj, yj, zj are the coordinates for the t atom, and fj is the scattering factor 

for the j th atom. 

A Fourier transformation of the structure factors, F(hkl), may be expressed as: 

Equation 3A: 

.jY, 
I F(hkl) I exp[-2)d(hx + ky + Iz) + ia(hkl)l P(Xyz) = 2: 

VhkI 

Where p(xyz) is the calculated electron density map, the F(hkl) amplitudes are the sum 

of allfhkI values for individual atoms in a unit cell, and V is the volume of the unit cell. 

The detailed description of the theory and principles of X-ray diffraction have been well 
documented and are beyond the scope of this work, so will not be discussed further 

(Blundell and Johnson, 1976, Drenth, 1999, Ladd and Plamer, 1994, and Stout and 
Jensen, 1989). 
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3.3 X-ray diffraction data collection 

3.3.1 Crystal growth 

The production of suitable sample material and the growth of single crystals accounts for 

one of the major bottle-necks in protein crystallography. Highly pure protein (> 95 %) is 

generally required for the growth of crystals suitable for X-ray diffraction experiments, 
however in some cases contamination may actually improve crystallisation. Sample 

purity is usually estimated by separating contaminating proteins from the target by 

electrophoresis and comparing the subsequent band intensities. 

A number of modem techniques exist for the crystallisation of macromolecules and are 

described further in the literature (Ducruix and Giege, 1992 and McPherson, 1999). The 

commonly used method of vapour diffusion gradually removes water from a drop 

containing both protein and a precipitant, at a start concentration just below that required 

to precipitate the protein. 'Mis occurs by placing the drop over a reservoir containing 

precipitant solution in a closed system, allowing for equilibration. The drop can be 

suspended over the reservoir on a siliconised glass coverslip, as in hanging-drop vapour 
diffusion, or placed on a small plastic bridge over the reservoir, as in sitting-drop 

systems (figure 3.2). Further techniques include sandwich drop and microdialysis 

crystallisation. In sandwich drop crystallisation, protein is combined with precipitant 

and placed between two siliconised coverslips, with a small gap at each end to enable 
diffusion. Microdialysis crystallisation involves the gradual exchange of two precipitant 

solutions of varying ionic strength/pH. This technique can be used for proteins which 

require high concentrations of salt for solubility (flgure 3.2). 

The system slowly reaches supersaturation, whereby evaporation from the drop 

sufficiently increases precipitant concentration, so that crystal formation can occur. If 

this process occurs too quickly, such as if the start precipitant concentration is too high, 

the protein will precipitate out of solution and no crystalline growth will be observed 
(figure 3.3). Alternatively when the process is successful, clusters of protein form 

nuclei from which crystals may grow. When multiple nuclei are present within a drop, 

many small microcrystals may be formed, which can then be individually used as seeds 
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in fresh drops to induce the formation of larger crystals. T'his method can be used to 

produce single crystals and to improve the overall quality. 

Conditions used to obtain initial crystals can be optimised by varying factors such as pH, 

salt concentration, and temperature. Small molecular additives may also be included, 

which can manipulate sample-sample/sample-solvent interactions, as well as the water 

structure (Hampton Research). 

A 
; 3c= 

i H, O 

reservoir solution 

C 

remvoir solution 

B 

nucrodialysis button 

Figure 3.2: Diagrammatic representation of four common protein crystallisation techniques. (A) 

Hanging-drop vapour-diffusion, (B) sitting-drop vapour-diffusion, (C) sandwich-drop crystal lisation, and 
(D) microdialysis crystallisation. Figures reproduced with permission from Hampton Research 

Corporation. 
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Ak 

Crystallising agent concentration 

Figure 3.3: Idealised phase diagram showing the probability of nucleation in relation to supersaturation of 

the crystallisation system. The blue region represents undersaturation and yellow/brown regions represent 

su persatu ration. 

Many sparse-matfix precipitant screens are now commercially available, formulated 

based around previous conditions used to successfully crystallise macromolecules (such 

as Hampton Research, Molecular Dimensions, and Qiagen Nextal). These are available 

in multiple formats for both manual and robotic screening and provide a starting point 

for crystallisation of novel proteins. Potential "hits" obtained from these screens can 

then be optimised by finer manual screening. Another method to identify the condition 

required for crystallographic growth can often be found by screening around the 

conditions used to crystallise molecules of significant sequence identity. 

3.3.2 Preparation of crystals for X-ray studies 

Many X-ray diffraction experiments are successfully performed at room temperature, 

however this procedure does little to minimise the damage caused by high-intensity 

radiation, particularly when using macromolecular crystals. Such crystals may only 

survive for several minutes in a synchrotron beam, usually not enough time to collect 

sufficient data. Primary radiation damage occurs when X-rays cleave bonds within the 

crystal, producing free radicals (Gonzalez and Nave, 1994). These highly reactive 

molecules can diffuse through the crystal's solvent channels, causing secondary damage 

by reacting with other molecules, destabilising the crystal and disrupting the precise 

crystal lattice (Nave, 1995). Finally tertiary damage, also descfibed as the "domino 
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effect" by Henderson (1990), results in destabilisation of the lattice in other parts of the 

crystal not affected by previous primary and secondary damage. 

To decrease the effects of radiation damage, protein crystals are often frozen at very low 

temperatures (around 100 K), in a process known as cryocrystallography. Whilst such 

cooling protects the crystal from the latter two stages of radiation damage due to the 

decrease in free radical mobility, it cannot prevent formation of these molecules in the 

first instance. The method of cryocrystallography also introduces further problems 

which must first be overcome before a valid data set can be collected. Cooling to low 

temperatures can result in the formation of crystalline ice which disrupts the crystal 

lattice. Soaking the crystals in mother liquor containing a cryoprotectant (such as 

glycerol, ethylene glycol, PEG, or MPD), before flash-freezing in a stream of liquid 

nitrogen, can help prevent this. 

Cryoprotectants, when applied correctly to the crystal without causing damage, form an 

amorphous phase both within and around the crystal upon flash-freezing, thus protecting 

the precise internal lattice. In such situations, cryoprotectants also reduce background 

scattering from water and provide effective platforms for the storage and transport of 

crystals. However when the conditions are not exact, flash-freezing can affect the order 

of the crystal, resulting in a higher mosaicity. Mosaicity refers to the angular 

measurement of order within a crystal lattice. In some cases mosaicity, and even 

resolution, can be improved by reannealing the crystal, whereby the cryostream is 

interrupted briefly before rerneasuring the data (Samygina et al., 2000 and Ellis et al., 

2002). Detwinning of crystals has also been resolved using this method. 

3.3.3 X-ray radiation sources 

3.3.3a Conventional sources 

For the purpose of crystallography, X-ray radiation can be obtained from either 

conventional laboratory or synchrotron sources. Laboratory generators are both weaker 
in intensity and allow less possible experimental wavelengths than synchrotron sources, 
however they provide a cheaper and convenient in-house alternative. Such laboratory 

sources can be further categorised into sealed tube and rotating anode generators, the 
latter of which produces significantly more intensity than sealed tube sources 
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(Giacovazzo et al., 2002). Sealed-tube generators consist of a high-voltage power 

supply (40 to 50 kV) which accelerates cathode-generated electrons through a vacuum, 

towards a fixed metal anode plate, producing X-rays which escape from the tube through 

perpendicular beryllium windows. The transformation efficiency of electrons into X- 

rays is just 0.1 %, the limiting factor being the efficiency of the system used to cool the 

anode. 

As the name suggests rotating anode sources overcome this by the continual movement 

of the metal anode target, thereby allowing greater power to be applied, resulting in a 
higher intensity X-ray output. Whilst copper is the most commonly used metal target, 

other materials such as molybdenum and tungsten can be used, resulting in a limited 

number of wavelength variations. 

3.3.3b Synchrotron sources 

Synchrotron radiation sources (figure 3.4) produce a wide-ranging spectrum of light and 

produce X-rays which are at least W times more intense than those from rotating anode 

generators, allowing for the collection of very high resolution data (Giacovazzo et al., 
2002). Such facilities were first developed in the 1960s and have since been improved 

to include sources of different "generations" (Helliwell, 1992). Initial first generation 

sources produced synchrotron radiation merely as a by-product of high-energy particle 

physics. The first dedicated synchrotron facility, the SRS at Daresbury in Cheshire, 

paved the way for other second generation sources whereby X-rays were principally 

generated via bending magnets. Further modifications have since been added to these 
facilities to improve intensity, such as the addition of undulators, wigglers, and 

wavelength shifters. Finally, third-generation sources such as the ESRF in Grenoble 

operate with significantly greater flux and brilliance, further increasing the potential 

quality of data obtainable. 

When the direction of a charged particle beam changes, the electrons or positrons are 
accelerated, emitting a continuous spectrum of electromagnetic radiation, at a 
wavelength characteristic of the bending magnet. Particles are first accelerated in a 
linear accelerator and then in a booster ring accelerator, before injecting into a storage 
ring. Bending magnets within this large polygonal chamber ensure the particles 
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circulate continuously (Giacovazzo et al., 2002). All synchrotron chambers are kept 

under the best possible vacuum. Electrical current within the storage ring decreases over 

time, caused by interactions between the accelerated particles and contaminating atoms, 

due to this deficiency. Radio-frequency transmitters provide the energy source for 

Synchrotron radiation sources. 

%or 40 
Figure 3.4: Generalised diagram showing the layout of a synchrotron radiation facility. Electrons are 

generated from a high-voltage source (1) and are accelerated by the linear accelerator (linac) (2) and then 

the booster ring (3), before injecting into the storage ring (4). An individual beamline is shown at position 

5 and a user station at position 6. Figure taken from the Canadian Virtual Science Fair, 2005 

(www. virtualsciencefair. org/2005/shar5a0/how-does-a-synchrotron-work. htm). 

Bending magnets alter the direction of the beam by accelerating particles towards the 

centre of the ring, thus emitting radiation tangentially, which is then focused by 

quadrupolar magnets (Giacovazzo et al., 2002). Crystal monochromators are used to 

reduce the electromagnetic spectrum to a user-defined wavelength, thereby supporting 

many different experimental applications. Monochromators consist of one or two stable 

crystals, commonly silicon, orientated with one face parallel to a major set of crystal 

planes (Giacovazzo et al., 2002). Such crystals diffract the incoming beam at a 

wavelength determined by the angle of the crystals scattering plate, as described by 

Bragg's law (equation 3.1). Multiple crystal monochromators, as implemented on 

station 10.1 at the SRS, result in very narrow bandwidths which prevent movement of 

the X-ray beam during wavelength modifications and allow for an increased flux and 

rapid tunability around an absorption edge (Cianci et al., 2005). 

Further modifications to synchrotron sources include the addition of wigglers and 

undulators, a number of magnets with alternating polarities, which are positioned within 
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the straight sections of the storage ring (Giacovazzo et al., 2002). These alter the 

characteristics of the radiation by shortening the wavelength and increasing acceleration, 

thereby increasing intensity. 

3-3A Data collection 

Protein crystals can be mounted ready for X-ray exposure in one of two ways, dependent 

upon the temperature at which data are to be collected. Micro-capillary mounting is 

used when collecting at room temperature and involves 'injection' of the crystal into a 

small capillary. The capillary is sealed with wax and then secured onto a goniometer 
head using putty. The second method, used when collecting data at lOOK, involves 

soaking the crystal in a cryoprotectant solution and flash-freezing in liquid nitrogen, as 
described in section 3.3.2. The crystal is suspended in a loop and then immersed in 

cryoprotectant. The loop is mounted onto a magnetic base and secured to a goniometer 
head in a nitrogen cryostream. 

Once the crystal has been mounted correctly, a preliminary assessment to determine the 

unit cell parameters and the approximate quality and resolution of diffraction, is 

performed. The crystal, attached to a goniometer, is placed in the pathway of the X-ray 

beam and several test images are recorded and processed. If these parameters are 

satisfactory, IhkI intensities of the recorded reflections are measured to as high a 

resolution as possible. If they are not, additional crystals must be selected and analysed. 
Preliminary analysis can also allow appropriate experimental parameters such as total 

oscillation angle, crystal to detector distance, exposure time, and the wavelength at 

which data are to be determined. Data are then reduced and individual reflections are 
indexed, resulting in known unit cell parameters and space group. The data are then 

scaled and merged, before determining the phase of each reflection (see sections 3.4 - 
3.5). 

The data used to determine the structure described in chapter 5 were collected on the 
MAD station 10.1 at the SRS, Daresbury (Cianci et al., 2005) using a CCD detector. 
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3.4 Data processing 

all 

Once experimental data have been collected, a number of processing steps must first be 

performed before structure determination can occur. Many computational programmes 

are available to perform these tasks, including Mosflm (Leslie, 1992) and the program 

which was used to process all data in this work, HKL2000 (Otwinowski and Minor, 

1997). 

3A. 1 Data reduction 

HKL2000 performs the first stage of processing, data reduction, in two steps. Firstly, all 

possible indices for all measured reflections are identified, to determine correct h, k, I 

values. An estimation of the unit cell dimensions, crystal orientation, and symmetry 

point group can be made from this auto-indexing step. Further parameters such as 

mosaicity, spot shape, and beam position, are then refined to optimise the fit of the 

predicted diffraction pattern against the observed experimental pattern. Statistical 

methods are used to assess the quality of this fit, one weighted factor is defined as X2 (in 

both directions of the two-dimensional plane). Smaller values indicate a better 

agreement between the two data sets and values below 2.0 are generally considered to be 

acceptable. 

Secondly, diffraction spot intensities are accurately recorded using a profile-fitting 
integration method in HKL2000. The spot profiles over a specified area of the detector 

are averaged and each spot is assigned a profile based upon this value. Signal to noise 

ratio is estimated by measuring a small area of diffraction background. Each reflection 
is assigned as either fully recorded, where the spot is entirely measured in one image, or 

partially recorded, where the spot is measured over a number of images. When partially 

recorded reflections are observed, the full profile of the spot must be calculated from the 

sum of each these images. A wider oscillation range of data collection may be 

performed to ensure the spot is collected in its entirety, however this can result in an 
increase in background and may also result in the overlap of different reflections. The 

optimum oscillation range can be identified during preliminary analysis of the crystal. 
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3.4.2 Data scaling and merging 

The next stage of data processing involves scaling the data from each individual image 

and merging the data into a single dataset. The SCALEPACK program within the 

HKL2000 package (Otwinowski, 1993) was used during these stages throughout this 

thesis. Inconsistencies may arise during data collection, such as the varying of X-ray 

beam intensity, detector sensitivity, or differing thickness and imperfections visible 

within the crystal during rotation. Scaling increases the consistency of the dataset by 

merging identical reflections of the same index (h, k, l) from different images and 

assigning them identical intensities. Identical reflections may also be merged from 

different diffraction patterns obtained from multiple crystals, or from single crystals 

collected at more than one resolution. The factor by which datasets are scaled (the scale 

factor) is calculated as described by Fox and Holmes (1968), whereby the scale between 

a reference image and the last image (I) is given by: 

Equation 3.5: 

Gj = Ki exp - 
2Bi sin 

20 

Aý 

Where Ki and Bi are the scale and temperature factors between the images. 

These factors are then applied to the data and a single value is assigned to each h, k, I 

reflection. The merged intensities are then converted to structure factors and the 

magnitude is determined by the French and Wilson method using the CCP4 program 
IRUNCATE (French and Wilson, 1978 and CCP4,1994). Finally, an overall 
temperature factor may also be approximated (Wilson, 1949). 

3.5 Phasing of macromolecular diffraction data 

As described in section 3.2, a three dimensional electron density map of the crystal can 
be obtained by performing a Fourier transform of the structure factors, F(hkl). T'he 

magnitude term of these factors can be calculated directly from the diffraction pattern, 
however the phase term is lost, and so must be determined by alternative means. A 
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number of methods exist to overcome this "phase problem", the most popular of which 

are discussed here. 

3.5.1 Molecular replacement (MR) 

Molecular replacement seeks to determine the phases of an unknown crystal structure by 

comparison with a known homologous structure, as first described by Rossmann and 

Blow (1962). If a significant level of structural identity exists between the two 

molecules, estimates of the unknown's phases can be sufficiently accurate to allow 

structure determination. The "phasing model", or the known structure, is placed into the 

crystal system of the unknown structure (the "experimental" model) and the correct 

positioning of this allows for the estimation of phase factors. Computational methods 

are used to orient the phasing model using six transformation parameters, three 

rotational and three translational, which are split into two processes for computational 

efficiency. The cross-rotation function first defines the relative orientations of the 

experimental data within the phasing model and the translational function then attempts 

to position the correctly orientated model into a unit cell of the experimental crystal. 

The Patterson function drives MR and is used to represent the summation of the product 

of electron densities in a crystal at points separated by a vector (u, v, w). The output of 
this function, a Patterson map (equations 3.6 - 3.7), is a three dimensional plot of the 
function with axes (u, v, w). Vectors between atoms within the crystal are represented as 
vectors between an origin and peaks on the map, with peak height proportional to the 

square of the atomic number. 

Equation 3.6: 

P(U, V, W) = 
fp(x, 

y, z)p(x + u, y+v, z+ w)dv 
v 

Which is expressed for crystallographic purposes as: 

Equation 3.7: 

P(u, V, W) =IE 12 

, 
2]IF cos21r(hu+kv+lw) v 
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The maximum radius for which electron density is considered for inclusion in a 

Patterson map can be chosen so as to optimise the probability of finding a correct 

orientation. As Patterson vectors correspond to distances between atoms, those within a 

2r radius around the Patterson map are generally regarded as intrarnolecular, however a 

small number of close intermolecular vectors may also be. included in this radius. The 

value, r, coffesponds to the maximum atomic displacement from the centre of mass. 

3.5.1a The cross-rotation function 

The first stage of MR, cross-rotation, involves the superimposition of the phasing 
Patterson map over that of the experimental one, in an attempt to detern-line the relative 

orientations of the two models. The correlations of the two maps are calculated at each 

set of angles as the phasing model is rotated three dimensionally through a specified 

radius W around the origin. This rotational transformation between the two maps 

represents transformations between the two structures and ideally only includes 

intramolecular vectors. The optimum orientation is generally calculated in reciprocal 

space using the Crowther-Blow algorithm (equation 3.8) (Crowther and Blow, 1967), 

however a more accurate orientation can be obtained using the slower real-space 

method. 

Equation 3.8: 

R= JP, (X, )P, (X, )dx, 

u 

Where PI(XI) is the Patterson map calculated from the diffraction data, P2(X2) is the 
Paterson of the rotated phasing model, and the integral is carried out over a volume of u. 

3.5.1b The translation function 

'Me second stage of MR phasing, translation, then attempts to position the correctly 

orientated model into a unit cell of the experimental crystal using only intermolecular 
(cross) Patterson vectors. The crystal's space group determines the position of specific 
Harker sections, around which Patterson vectors are clustered. The optimised orientation 
of the two Paterson maps, obtained from cross-rotation, is placed at its origin within the 
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unit cell. Cross Patterson vectors are measured at each position and screened against the 

experimental Patterson data for similar vectors: 

Equation 3.9: 

T(t) = 
IP(u)P(L4 t) du 

Finally, the position and orientation of the phasing model is refined to improve its fit to 

the experimentally derived structure factors. This stage is performed automatically at 

the end of molecular replacement when using the MOLREP program (Vagin and 

Teplyakov, 1997). Relative phases can then be calculated from the positioning of the 

phasing map within the unknown's unit cell and these, together with the observed 

(magnitude) structure factors, enable calculation of an electron density map. 

3.5.2 Isomorphous replacement 

Isomorphous replacement, the first method developed to solve the phase problem in 

protein structures, involves the use of two crystals, one soaked in a heavy metal solution 

(such as platinum, mercury, or uranium) and another "native" crystal (Green et al., 
1954). Both crystals are required to be highly similar (isomorphous) with regards to unit 

cell parameters and symmetry. Such metals bind tightly to one or more sites within the 

asymmetric unit and form a major constituent of the overall X-ray scattering. The 

differential scattering (a "difference" Patterson map) between the two crystals forms the 
basis of this technique. The positions of the incorporated metal atoms can be inferred 

from this Paterson map, allowing for subsequent approximation of phase for each 

reflection using the Harker construction (Harker, 1956). The major downside of this 

technique is the potential for disruption of the structure by metal incorporation and the 

difficulty in obtaining isomorphous crystals. 

Whilst it is possible to solve the phase problem using just one heavy metal derivative, as 
in the case of Single Isomorphous Replacement (SIR), it is more common to use two or 
more derivatives, known as Multiple Isomorphous Replacement (MIR). The use of 
multiple metals increases the accuracy of phase determination and hence increases the 
chance of successful structure determination. 
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3.5.3 Anomalous scattering 

Anomalous scattering is another phasing method which relies upon the properties of 

metals. Advances in synchrotron technology have enabled the development of 

beamlines with tuneable X-ray wavelengths, which are exploited in anomalous 

scattering experiments. All metals absorb X-rays at a specific wavelength, known as 

their absorption edge, and anomalous dispersion occurs when the wavelength is close to 

this value. Multiple Anomalous Dispersion (MAD) phasing uses two or more 

wavelengths for data collection and is particularly useful for phasing metalloproteins, 

which may intrinsically contain sufficient metal content so as not to require additional 

soaking. The most commonly used procedure of heavy atom incorporation for 

anomalous phasing is the substitution of methionine with selenomethionine during 

protein expression. Production of selenomethionine-labelled proteins is well 
documented, both in in vivo (Leahy et al., 1992) and in vitro (Kigawa et al., 2002) 

systems. Finally, the availability of intense beam at wavelengths >2A has enabled the 

use of native sulphur phasing, without the need for additional metals (Dauter et al., 
1999). 

3.6 Structure refinement and vaUdation 

Whichever phasing method is used, positioning of the model is then refined to improve 

the fit of the calculated structure factors with the experimental data. With the exception 

of structures determined by the molecular replacement method, it is first necessary to 
build a model into the electron density. This can be performed using graphical 
interfaces such as 0 (Jones et al., 1991) or Coot (Emsley et al., 2004). The resulting 
model, or the model produced from molecular replacement, is subjected to cycles of 
automatic refinement by programs such as REFMAC5 using the CCP4 suite 
(Murshudov et al., 1997), which refines the model and re-calculates the electron density 

map, before being re-built manually. Refinement is generally performed using 
stereochernical restraints, due to the low ratio of observed (Fo) to refinable parameters 
(x, y, z, B). The extent of these restraints depends upon the resolution at which data are 
collected, with lower resolution data sets requiring higher weightings. A 

crystallographic R-factor is used to monitor the agreement between the model and the 
experimental data during these cycles of refinement. The value of R is inversely 
proportional to this agreement and is expressed as: 
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Equation 3.10: 
I: IlFobsl -klFcalcli hd 

. _, 
IFobsi 

hki 

Where R is the R-factor, k is the scaling factor, Fobs is the observed experimental 

structure factors, and Fcalc is the calculated structure factors. 

A second value, R-free, allows for the cross-validation of refinement to prevent over- 
fitting of the data (BrOnger, 1992). Such over-refinement of the data is particularly 

apparent when working at low resolution, due to the reduced number of observed 

reflections. Prior to any refinement of the data, a small random subset of reflections 
(about 5 %) are removed from the refinement process and used to calculate the R-free 

value as described below: 

Equation 3.11: 

11IFobsl 
-klFcalcll 

free hkicT 
T- I Fobsl 

hkIcT 

The R-free value is expected to decrease during a successful progression of refinement. 
A typical over-refined data set will yield a low R-factor with an unchanged or increased 

R-free value. However in all refinements, the R-free value generally remains 

approximately 2 to 5% higher than the R-factor. 

Throughout the refinement process a number of other validation methods are performed 
to monitor the quality of the model. The programs PROCHECK (Laskowski et al., 
1993) and WHATEF (Vriend, 1990) assess the overall structure and individual residues 
using a number of stereochemical tests. Root-mean-square (rms) deviations of the 

model's bond lengths and angles from accepted values are measured throughout 

refinement and provide an additional validation parameter (McRee and David, 1999). A 
library of standard bond characteristics, derived from simple organic compounds (Engh 

and Huber, 1991), provide the reference values for each bond. Rms values for bond 
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lengths and angles of < 0.02 A and <3* respectively are considered to be well refined, 
however these vary dependent upon the resolution at which data are collected. 

Ramachandran plots are also used to assess the stereochernical validity of the structure 

by plotting the phi (p and psi V dihedral angles of each residue (Ramachandran et al., 

1963). Only certain combinations are sterically feasible and values should fall within 

the accepted range as defined by the plot. As glycine residues lack side chain atoms, a 

wider range of angle combinations are allowed. A further parameter, the estimated 

standard uncertainty (ESU) value, estimates the overall coordinate error. This value 

estimates the data-only contribution to the positional uncertainty for an atom with a 

temperature factor equal to the Wilson B value for the whole molecule (Cruickshank, 

1996). 

3.6.1 REFMAC5 refinement 

All refinement in this thesis was performed using REFMAC5, which employs a 

maximum likelihood strategy for refinement, whereby the best model is that which is 

most statistically consistent with the experimental data. The detailed working of the 
REFMAC5 program is described elsewhere (Murshudov et al., 1997) and so will only 
briefly be described here. When refinement results in a change to the model which is 

more probable, the likelihood increases, providing a measurable quantity of 
improvement. Errors from both the model and the measurements are also taken into 

account when calculating probability. Such errors in the model decrease with each 

successful refinement cycle, which results in a sharpening of the probability values and a 

subsequent increase in likelihood, up to a maximum value. 

The program, ARP/wARP (Lamzin, 1993) can be used within REFMAC5, to enable the 
addition of solvent molecules during the refinement process. Further development of the 
REFMAC5 program has enabled the use to TLS refinement (Winn et al., 2001) and 
user-defined weight restraining, which takes into account any new data added during the 
refinement process. 

93 



Chgpter 4- Production of proteins from ffiLcobacteilum tuberculosis 

Chapter 4- Production of proteins from MVcohacteyium tuberculosis 

4.1 Introduction and target selection 

A number of protein targets from M. tb were selected for trials using an E. coli-based cell- 

free expression system (section 4.2), with the intent of producing soluble proteins suitable 

for downstream applications such as protein crystallography. The expression of several 

targets was also attempted using an in vivo E. coli system (section 4.3), to enable 

comparisons to be made between the two systems. 

Individual target proteins were initially selected based on the research interests of members 

of the NWSGC. A total of 28 targets were chosen for high-throughput trials using a cell- 

free expression system. Whilst a small percentage of the targets were hypothetical proteins, 

the majority were assigned putative functions based upon sequence analysis carried out by 

Cole et al. (1998 and 2002) and subsequent homology database searches using BLAST 

(Altschul et al., 1990). See table 4.1 for recent functional annotations of the 28 targets. 

A reyiew of current literature, and in particular a paper by Sassetti and Rubin in 2003 (see 

section 1.1.3a), enabled the selection of additional targets, unaffiliated with the NWSGC. 

To ensure existing crystal structures were not ayailable for these targets, each was screened 

against the Tuberculosis Structural Genomics Consortium (TBSGC) database, the Protein 

Data Bank (Berman et al., 2003), and the National Center for Biotechnology Information 

(NCBI) database. Prediction of membrane domains using the SOSUI Secondary Structure 

database (Hirokawa et al., 1998) also eliminated targets from the selection process. 
Finally, due to our group's interest in metalloproteins, targets were chosen based upon their 

predicted metal content (see table 4.2 for functional annotations). This resulted in the 

selection of eight further metalloprotein targets. 
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-ý_-l Rv 

0153c 

0171 

0185 

0247c 

0359 

0505c 

Gene' 

0153c 

mcelc 

0185 

0247c 

0359 

Functional 

Annotation 

Phosphotyrosine 

protein phosphatase 

MCE-family protein 

Zinc 

metal lopeptidase 

Succinate 

dehydrogenase 

Zinc 

Rv1 Gene 2 Functional 

Annotation 2 

2547 copG Transcriptional 

regulator protein 
2711 IdeR Iron-dependent 

repressor protein 

2718c 2718c Conserved hypothetical 

protein 
2776c 2776c Oxidoreductase 

2981c 2981c D-alanine-D-alanine 

ligase 

2986c hupB DNA binding protein 

3042c serB2 Phosphoserine 

phosphatase, 
3070 3070 Conserved integral 

membrane protein 
3628 ppa Inorganic 

pyrophosphatase 
3712 3712 Ligase 

3717 3717 Hypothetical protein 

3836 3836 Zinc metalloprotease 

3867 3867 Conserved hypothetical 

protein 
3915 3915 Hydrolase 

serB I 
metallopeptidase 

phosphatase 

Phosphoserine 

1398 mihF Integration host 

factor 

1407 1407 FMU protein 

1942c 1942c Conserved 

hypothetical protein 

1967 mce3B NICE family protein 

2060 2060 Conserved integral 

membrane protein 

2229c 2229c 2 Conserved 4 L 

hypothetical protein 

4 223 p tp Phosphotyrosine 

phosphatase 

2305 2305 Hypothetical 

conserved protein 

Table 4.1: The 28 Mycobacterium tuberculosis targets chosen for high-throughput trials using a cell-free 

expression system. 
1 Gene number assigned by sequence analysis (Cole et al., 1998). 2 Current gene and 

functional annotations taken from the Tuberculosis Structural Genomics Consortium (TBSGC) database. 
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Rv' Gene2 Function 

Annotation 2 
Metaf Progress 

(from TBSGQ 4 

0670 end Endonuclease W Zinc Cloned 2002 

0950c 0950c Probable metalloprotease Unknown Targeted 2003 

1589 bioB Biotin synthetase Iron-sulphur Cloned 2002 

2388c hernN Oxygen-independent 

coproporphyrinogen III oxidase 

Iron-sulphur Expressed 2001 

2845c proS Prolyl-tRNA synthetase Zinc Targeted 2004 

3534c 3534c 4-Hydroxy-2-oxovalerate 

aldolase 

Unknown Not targeted 

3545c 3545c Cytochrorne P450 125 Iron (haern) Not targeted 

3781 3781 ATP-binding protein ABC 

transporter 

Unknown Not targeted 

Table 4.2: The eight Mycobacteriurn tuberculosis targets, found to be essential for in vivo infection, chosen 

for expression trials using a cell-free system. I Gene number assigned by sequence analysis (Cole et al., 1998), 
2 Current gene and functional annotations taken from the TBSGC database. 3 Metal requirement predicted by 

literature review of homologoues. 4 Current progress of the target by members of the TBSGC. 

4.2 Cell-free protein expression 

4.2.1 Introduction 

Two visits were made to the Protein Research Group at RIKEN, to exploit the cell-free 
technique over a period of eighteen weeks. During the first six week visit, a high- 

throughput approach was employed to screen 28 NWSGC targets from Mycobacterium 

tuberculosis (M. tb) (table 4.1). The constructs of all targets were prepared by PCR and 
ligated into a cloning vector. After selection of positive clones, targets were screened for 

expression on a small scale. Those targets which yielded soluble protein were progressed 
into large scale synthesis to yield milligram quantities of protein, which were subsequently 

purified using affinity chromatography. This work is described in sections 4.2.2 to 4.2.3. 

A different strategy was employed during the second twelve-week visit. The eight new 
targets (table 4.2), together with five NWSGC targets which were insoluble during the 
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first-round of cell-free trials (Rv0185, Rv0247c, Rv2776c, ROM, and ROM), were 

selected. This reduction in the number of targets allowed a more thorough approach to the 

optimisation of expression conditions. To examine the effect of additives on total yield and 

solubility, metals, molecular chaperones, and detergents were added to the cell-free reaction 

solutions. A number of soluble targets were expressed on a large-scale, together with a 
further four targets which were produced on a large-scale during the first visit (Rv2229c, 

Rv2547, Rv2981c, and ROM), to replenish protein stocks for crystallisation trials. This 

work is described in sections 4.2.4 to 4.2.5. 

4.2.2 High-throughput cell-free expression of 28 Mycobacterium tuberculosis targets: 

Methods 

All PCR primers described in section 4.2.2a were designed by Takashi Yabuki and Yukiko 
Fujikura. Cloning steps described in section 4.2.2b were performed by Takayoshi Matsuda 

and positive clones (section 4.2.2c) were identified by Eiko Seki, Masaomi Ikari, and 
Fumiko Hiroyasu. Optimisation of unsuccessful PCR reactions using DMSO (section 
4.2.4a), was performed by Dr. John Hall from De Montfort University, whilst at the RIKEN 
Yokohama Institute. The E coli S30 cell-free extracts were prepared by Natsuko Matsuda 

and Natsumi Suzuki (Kigawa et al., 2004). 

The recipes for buffers and media described in this section are given in appendix 2. 

4.2.2a PCR 

M. tb genes were amplified directly from genomic DNA using a 2-step PCR method 
(figure 4.1) (Yabuki et al., personal communication). Initial target-unique primers, also 
encoding a linker sequence, were used to amplify the genes from genomic M. tb DNA 
(H37Rv). 300 ng of genomic DNA (obtained from Colorado State University) was 
included in a typical 20 W PCR reaction solution of. 50 nM of each primer (Invitrogen); 0.2 
mM of each dNTP (dATP, dCTP, dGT?, and dUTP); 0.5 U expand HiFi Taq DNA 
polymerase (Roche); and Ix HiFi buffer (Roche). PCR cycling parameters are shown in 
table 4.3. 

The resulting PCR product (PCR 1) was used as a template for the second PCR step (PCR 
2). This was performed using a 'universal' primer, which annealed to additional fragments 
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(T7T and T7P) included in the second PCR reaction solution, via universal linker 

sequences. The 5' T7P fragment encoded a T7 promoter, a ribosome binding site, a native 

histidine tag (HAfrm tag, BD Biosciences Clontech), and a Tev protease cleavage site. 'fhe 

T7T fragment encoded two 3' downstream stop codons and a T7 terminator. These 

fragments annealed not only to the universal primers, but also to the linker sequence on the 

PCR I product, thereby synthesising the gene of interest linked to essential transcription 

and translation components, and providing the starting template for cell-free expression. 

The PCR 1 product was diluted five-fold and included in a reaction solution of I gM 

4universal' primer, 0.2 mM of each dNTP, 0.5 U expand HiFi Taq DNA polymerase, and I 

x HiFi buffer (both Roche), together with 50 pM of the T7T and T7P fragments. 

PCR reactions were perfon-ned using a PTC-200 thermocycler (MJ Research). PCR 

products were analysed by agarose gel electrophoresis on aI% agarose gel containing 0.5 

Rg/mI ethidium bromide (Sigma) and Ix TBE buffer. Gels were run at an electrical 

potential of 150 V and viewed under ultraviolet fluorescence. 

5% DMSO was included during PCR for targets which were not successfully amplified. 
Templates with a high GC content usually require a higher Strand separation temperature, 

leading to a decrease in product yield. Chemicals such as DMSO are employed to disrupt 

base pairing, thereby reducing the temperature requirement. 

4.2.2b Cloning of target DNA 

Although it was possible to synthesise target proteins directly from PCR products, 

polymerases can introduce single point mutations. To ensure no mutations had occurred, 
PCR products were inserted into a cloning vector in preparation for DNA sequencing. I ýtl 

of the final PCR product (PCR 2) was combined with 0.5 gl pCR402.1-TOPOO plasmid 

(Invitrogen), 0.5 gI salt solution (Invitrogen), and 1 gl Milli-Q water on ice. Reactions 

were incubated at room temperature for fifteen minutes. I RI of the ligation reaction was 

added to 15 W of DH5(x competent cells (Invitrogen) and incubated on ice for five minutes. 
Plasmids, were used to transform the cells by heat-shock at 42 OC for 45 seconds before 

returning on ice for two minutes. After the addition of 150 gl SOC medium, cells were 
incubated at 37 OC for 40 minutes. 
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The culture was spread onto an LB-Kan-IPTG-Xgal plate and incubated overnight at 37 OC. 

Blue-white screening was used to identify positive clones. For each target, 12 single white 

clones were used to independently inoculate I ml of super broth including 5.6 mM glucose 

and 25 gg/ml kanamycin in a 96 deep-well plate. The plate was incubated ovemight at 37 

OC in a shaker incubator. Plasmid DNA was purified using the standard Wizard@ Miniprep 

kit protocol (Promega) and then sequenced to identify positive clones (see section 4.2.2c). 

Positive clones were grown in 200 ml of LB-Kan overnight and purified using a Wizard@ 

Midiprep kit (Promega) on a vacuum manifold, following the manufacturer's protocol. 

DNA was eluted with 300 ýd MilliQ water, pre-heated to 70 T. Purified plasmids were 

visualised by agarose gel electrophoresis and yield calculated by Picogreen analysis 

(Invitrogen), before storing at - 20 'C. 
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PCR 1 

Genomic DNA 
tempiate 

Fw unique 
primer 

* Target 
IMMEN gene 
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primer 

sound 

PCR 2 Universal 
primer 

PCR product 
1 template 

T7P Tag 
Immom 

PCR pr(Wuct 1 

ATG TOV 

T7P Tag 

ATG Tev 

1000a. Unker sequence 

,awama UniversW lirker sequerme 

PCR .::::: 
product 1 Stop 

T7T 
0mm0m 

'er PCR product Stop 

T7T 

1- 
Universal 

primer 
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Figure 4.1: The 2-step PCR procedure used to amplify target genes from Aýwobacterium tuberculosis DNA, 

in preparation for cell-free expression. 

Cycling parameters 
-PFC -R Template Temp. Time (S) Cycles 

n numbe number 

T 

(10 

Gen(mic (J. n) ' 94 2 min I 

DNA 

94 30 20 

60 30 

72 60 

94 30 20 

60 30 

72 60+5 

sec/cycle 

72 7 nun I 

Cycling parameters 
PCR Template Temp. Time (s) Cycles 

number (IC) 

2 PCR 1 94 2 min I 

product 

94 30 10 

60 30 

72 90 

94 30 20 

64 30 

72 90+5 

sec/cycle 

72 7 min I 

Table 4.3- PCR cycling parameters used to amplify target DNA in preparation for cell-free expression. 
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4.2.2c DNA sequencing 

Sequencing reactions were carried out in two 96-well PCR plates, denoted forward and 

reverse. 0.2 gM of sequence primer (M13) was mixed on ice with 2 gl plasmid DNA, Ix 

sequencing buffer (Applied Biosystems), I gI BigDyeTm v3.1 terminator premix (Applied 

Biosystems), and 5.34 ýtl Milli-Q water. The sequencing reaction was performed using hot- 

start PCR at an initial denaturation temperature of 96 'C for 30 seconds, followed by 25 

cycles of- IT per second to 96 'C; 96 T for 10 seconds; IT per second to 50 T; 50 'C 

for 5 seconds; IT per second to 60 T; and 60 *C for 4 minutes. 

Completed sequencing reactions were placed on ice and 2.5 RI of 125 mm EDTA pH 8.0, 

followed by 25 W of 100 % ethanol were added. Reactions were incubated at room 

temperature for 15 minutes before centrifuging at 5,650 rpm for 30 minutes at 4 'C. Pellets 

were washed with 30 pI of 70 % ethanol and centrifuged at 5,650 rpm for 10 minutes. 

Pellets were resuspended in 20 RI of HiDi formarriide (Applied Biosystems) and boiled for 

2 minutes at 95 T. PCR products were sequenced using an in-house ABI PRISMCR) 3100 

Genetic Analyzer (Applied Biosysterns). 

Sequence data was aligned with the correct nucleotide sequence (TBSGC) for each target 

using ClustaIW (Thompson et al., 1994) on MacVector software (Accelrys). Clones with 

nonsense, missense, and read-through mutations were discarded. Positive clones 

(mutation-free or in some cases, those with silent mutations) were progressed into 

expression trials. 

4.2.2d Cell-free protein expression: Initial screening 

Initial screening for expression of target proteins was carried out using a 96-well micro- 
dialysis plate (15 kDa molecular weight cut off) from PCR 2 templates. Determination of 

successfully amplified PCR products (correct size) was assessed by agarose gel 

electrophoresis. Template DNA was not sequenced at this stage as the cloning steps 
detailed in section 4.2.2b were conducted in parallel to initial screening experiments. 

A 30 gl internal reaction solution contained 9 pI E. coli S30 extract (Kigawa et al., 2004); 1 

gl of PCR 2 product; 1.8 mM DTr; 1.2 mM ATP; 0.8 mM each of CTP, GTP, and UTP; 
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0.64 mM 3', 5'-cyclic AMP; 68 AM L(-)-5-formyl-5,6,7,8-tetrahydrofolic acid; 66.6 Rg/ml 

T7 RNA polymerase; 175 jig/ml E. coli total tRNA (Roche); 1.5 mM of each amino acid; 

90 mM creatine phosphate (Roche); 0.25 mg/mI creatine kinase (Roche); 9.28 mM 

magnesium acetate; 27.5 mM ammonium acetate; 200 mM potassium glutarnate; 0.05 % 

sodium azide; 58 mM Hepes-KOH pH 7.5; and 4.0 % PEG 8000 (Sigma). 

A 130 ml universal external solution contained the same components as the internal 

solution with the exception of PCR 2 product, T7 RNA polymerase, creatine kinase, and 

tRNA. The E. coli S30 extract was substituted with S30 buffer, 14 mM magnesium acetate, 

and I mM DTT. The cell-free dialysis reactions were incubated at 37 'C for 8 hours, whilst 

the external solution was mixed on a magnetic platform. 

After the incubation, 30 gl of buffer CF-A was added to the reaction solutions and soluble 

fractions were obtained by centrifugation at 5,650 rpm for 5 minutes at 4 *C, after removal 

of 5 ýd for the total fraction. 5 gl was removed for the soluble fraction and 25 gl of MilliQ 

water was added to both fractions. Due to the inclusion of PEG in the reaction solution, 
fractions were acetone precipitated for 5 minutes on ice and centrifuged for 30 minutes, to 

ensure good electrophoresis resolution. Pellets were dried at 65 T for 20 minutes and 

resuspended in 30 gl of Ix SDS sample buffer. Fractions (10 gl) were analysed by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), as described by 

Laemn-Ai (1970). Molecular weight markers from Sigma (SDS7) allowed for the estimation 

of protein molecular weight. 

4.2.2e Cell-free protein expression: Optimisation 

Optimisation of cell-free reaction conditions were performed using the dialysis method 
from PCR 2 templates. Capped dialysis cups with 15 kDa cut-off membranes were placed 
inside 1.5 ml screw-top tubes containing magnetic stirrers. Dialysis cups contained the 

internal reaction solution of 30 gl and a 300 0 external reaction solution was housed in the 

screw-top tube. Reactions were stirred on an incubated magnetic platform. 

Metal compounds were incorporated into the cell-free reactions for targets which gave no 

or insoluble expression during initial screening. 50 gM Of ZnS04 and FeSO4 were added to 

both internal and external reaction solutions for the zinc and iron metalloproteins, 
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respectively. Both metals were added separately to the proteins with unknown metal 

affinity. Metal solutions were also included in the reaction solutions of soluble targets 

thought to bind zinc or iron, to identify any effect on yield. Reactions were set up using 

PCR 2 templates and incubated overnight at 37 T. 

A time-course study was set up to examine the effect of incubation time on expression for a 

number of targets that were synthesised incorrectly under standard reaction conditions. 

Rv0359, Rv2547, and Rv2718 were synthesised from PCR 2 templates at 37 OC and 

solubility was assessed at varying time points between 0 to 24 hours. 

To enable the possibility of MAD-phasing during crystallography, it was necessary to 

substitute methionine with selenomethionoine within the cell-free reaction. As insolubility 

of target protein can occur as a result of selenomethionine oxidation, methionine was 

substituted with 1.5 mM selenomethionine to assess the effect on protein solubility before 

progressing to large-scale synthesis. Soluble proteins were synthesised from plasmid 

templates (I Rg/ml of pCR402.1-TOPOO-target was included in the internal reaction 

solution) at 30 *C for 8 hours. 

4.2.2f Tev cleavage study 

All target proteins were constructed to include a His-tag to aid purification. An upstream 
Tev protease cleavage site was also included to enable cleavage of the His-tag (- 15 kDa) 

following affinity purification. To achieve optimal cleavage, the concentration of Tev 

protease and incubation parameters were analysed using Rv3629 as a test target. The cell- 
free expression system was scaled up to a3 ml internal reaction solution, dialysed against a 
30 ml external solution overnight at 30 T, with gentle shaking. Rv3629 was synthesised 
from plasmid template. 

1.6 nil of TALONTm Superflow cobalt resin (BD Biosciences Clontech) was added to the 

soluble fraction, obtained by centrifuging at 8,000 rpm for 5 minutes at 4 'C. The slurry 

was incubated at room temperature for 20 minutes, to allow the protein to bind to the resin. 
The slurry was then loaded onto a TurboFilter plate (Qiagen), pre-equilibrated with buffer 
CF-A. A vacuum was applied to the plate at a rate of I to 2 drops per second (flow-through 
fraction). The resin was washed three times with 3.2 ml of the same buffer (wash fraction) 
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and His-tagged proteins were eluted in 4 ml of CF-B. Elution fractions were concentrated 

to 2 ml using Amicon 5 kDa cut-off centrifugation filters at 4,000 xg and split into 150 ýtl 

aliquots. Aliquots were incubated with varying concentrations of Tev protease at 4 'C and 

30 T for 3 hours to overnight (table 4.4). The extent of His-tag cleavage was analysed by 

SDS-PAGE. 

Time Temperature Concentration 
(00 Of Tev protease 

(4wml) 
3 hours 4 5 

30 10 
20 

4 5 
30 10 

20 
4 5 
30 10 

20 
Overnight 4 5 

30 10 
20 

4 5 
30 to 

20 
4 5 
30 10 

20 

Table 4.4: Optimisation of Tev cleavage conditions for Rv3628. Aliquots of Rv3628, synthesised by cell-free 

expression, were incubated with Tev protease and the extent of His-tag cleavage was analysed by SDS-PAGE. 

4.2.2g Large scale cell-free expression and purification 

Nine targets, which were successfully expressed in small-scale trials, were synthesised on a 

large scale. These were Rv2229c, Rv2234, Rv2547, Rv271 1, Rv2981c, Rv3042c, Rv3628, 

Rv3836, and ROW. All targets, with the exception of Rv3836 which was synthesised in 

the presence of 50 [tM ZnS04, were expressed without the inclusion of additives in the 

reaction solutions. 

Cell-free reactions were scaled up to include 18 ml (2 x9 ml) internal and 180 ml (2 x 90 

ml) external reaction solutions in 15 kDa dialysis membranes. Methionine was substituted 
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with 1.5 mM selenomethionine (Sigma) to allow for MAD phasing. Proteins were 

synthesised at 30 T for 9 hours, with gentle shaking. 

The synthesised His-tagged proteins were initially purified using vacuum-manifold cobalt- 

affinity chromatography as described in section 4.2.2f, with the following exceptions: 4.8 

ml of cobalt resin was added to each of the soluble fractions and proteins were washed with 

9.6 nil of buffer CF-A; His-tagged proteins were eluted in 12 MI of buffer CF-B and 

concentrated to 6 ml. After a three hour incubation of eluate at 4 'C with 20 Rg/mI Tev 

protease, proteins were desalted (500 mM to 0.5 mM imidazole) by buffer exchange into 

buffer CF-A, using Amicon 5 kDa concentrators. His-tags were then separated from target 

protein by affinity chromatography. 

Further purification steps to obtain protein of adequate purity for crystallisation trials were 

carried out using an AKTA Explorer system (Amersham Biosciences) at CCLRC 

Daresbury Laboratory. Proteins were buffer exchanged into buffer CF-C, concentrated to 

10 ml, and loaded onto a5 ml anion exchange column (HiTraprý Q SepharoseTm HP IEX, 

Amersharn Biosciences) equilibrated in buffer CF-C. Target proteins were eluted in a 

gradient of 0 to 100 % buffer CF-D. Proteins were concentrated to between 0.5 and 2 ml 

and then loaded onto a Superdex 75 10/300 column (Arnersharn Biosciences), equilibrated 

in buffer CF-E. The gel-filtration step was not necessary for targets Rv2547, Rv2981c, and 

Rv3836, Rv3867, which were judged to be > 95 % pure by SDS-PAGE, following anion- 

exchange chromatography. These proteins were buffer exchanged into buffer CF-E. All 

buffers were passed through a 0.2 gm Whatman filter membrane and degassed prior to use. 

Following analysis by SDS-PAGE, fractions of the required purity were pooled and protein 

quantification was performed using a standard Bradford assay (Bradford, 1976). 100 W of 

protein sample was incubated with 5 ml of a five-fold diluted Bradford assay reagent 
(BioRad) for 30 minutes at room temperature. Absorbance readings at 595 nrn were 

obtained using plastic disposable cuvettes. Protein concentration was calculated by 

performing a typical bovine serum albumin (BSA, Sigma) standard curve. Proteins were 

concentrated to 5 mg/mI and stored at 4 T. 

105 



Chapter 4- Production of proteins from Mycobacterium tuberculosis 

4.2.3 High-throughput cell-free expression of 28 Mycobacterium tuberculosis targets: 

Results 

In order to present these results in a concise manner it was thought appropriate to only 

include complete photographic evidence for targets which were expressed in milligram 

quantities, due to the large-scale of the study. Further gel photographs are included in 

appendix I and a summary of results is provided in table 4.5. 

Optimisation result 
Target 

Rv0153c 

Successful 

PCR 

(+ DMSO)' 

Yes (+) 

Positive 

clone 
obtained 2 

No 

Initial 

screening 

result 3 

No expression 

expression 
Rv0171 

Rv0185 

No (+) 

Yes 

No 

Yes 

No expression 

Insoluble 

n/a 

No expression 

(ZnS04) 

Rv0247c Yes Yes Insoluble Insoluble 
(FCS04) 

Rv0359 Yes (+) Yes 

No expression 

expression 

Rv05O5c 

R0388 

Rv 1407 

Rv I 942c 

Rv1967 

Yes (+) 

Yes 

Yes (+) 

No (+) 

No 

Yes 

Yes 

Yes 

No 

No 

Soluble 

Insoluble 

No expression 

MetalO 

(FeS04 and 
ZnSO4) 

No 

Insoluble 

No 

No 

expression 
(ZnS04) 

n/a 
Insoluble 

n/a 
No expression I n/a 

lUm e -co urr s-e3 

Smaller MW unknown 

protein present at all time- 

points except 0 hour 

Rv206O Yes Yes No expression No 

expression 
Rv2229c Yes Yes Soluble n/a 
Rv2234 Yes Yes Soluble n/a 
Rv2305 Yes(+) No No expression No 

expression 
Rv2547 Yes Yes Soluble n/a Smaller MW unknown 

protein present at all time- 

points except 0 hour 
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Rv271 +I Yes Yes Soluble Soluble 

TeS04) 

,c , 8c Rv2718c Ye Yes Yes Soluble n/a Larger MW unknown 

protein present from 2 

hour time-point onwards 

Rv2776c Yes Yes Insoluble Insoluble 

(FeSO4) 

Rv2986c Yes Yes No expression No 

expression 

Rv3042c Yes Yes Soluble n/a 

ROM Yes Yes Insoluble Insoluble 

Rv3628 Yes Yes Soluble n/a 

Rv3836 Yes Yes Soluble Soluble 
(ZnSO4) 

Rv3867 Yes Yes Soluble n/a 

Rv2981c Yes W Yes Soluble n/a 

R0712 Yes Yes No expression n/a 

R0717 Yes Yes Insoluble n/a 

R0915 Yes Yes Insoluble n/a 

Table 4.5: Results summary for the cloning and small-scale expression of 28 Mycobacterium tuberculosis 

targets using the cell-free system. 'Single PCR products of correct size, synthesised in the presence or 

absence of DMSO (section 4.2.3a). 2CIones free from nonsense, missense, and read-through mutations 

(section 4.2.3a). 3 Expression result from initial screening using standard conditions (section 4.2.3b). 
4Expression result from optimisation of reaction conditions including metal compounds (section 4.2.3c). 
txpression result of time-course study for targets where non-target or non-E coli proteins were expressed 
(section 4.2.3c). 

4.2.3a Cloning of target DNA 

Single products of correct size were amplified by PCR for seventeen of the targets. An 

example of successfully amplified PCR products is shown in figure Al, appendix 1. Due 

to the characteristically high GC content of the M. tb genome, it was necessary to add 
DMSO to the remaining targets during PCR (table 4.5). This procedure was successful for 

all but three of the target genes, Rv0171, Rv1942c, and Rv1967. Positive PCR products 
were used as templates for small-scale cell-free expression (sections 4.2.3b to 4.2.3c). 
Positive clones were obtained for all targets except Rv0153c, Rv0171, Rv1942c, Rv1967 
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and Rv2305. Positive clones were used as cell-free expression templates for those targets 

produced on a large-scale (section 4.2.3d). 

4.2.3b Cell-free protein expression: Initial screening 

initial expression trials performed using standard conditions from PCR 2 templates resulted 

in the synthesis of soluble protein for nine targets, insoluble protein for six, and no product 

for the remaining targets. For those targets which were not amplified correctly by PCR, no 

protein was produced due to errors in the template used for expression (the PCR product). 

Inclusion of DMSO during PCR for these targets produced discrete products and resulted in 

the soluble expression of two further proteins and the insoluble expression of one. 

Disregarding the three targets for which positive PCR 2 templates were not available, only 

seven targets gave no expression. Results are shown in figure 4.2 and are summarised in 

table 4.5. 
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Figure 4.2: 10 % SDS-PAGE of initial cell-free expression screening from PCR 2 templates (section 4.2.2d). 

Total extracts (T) and soluble fractions (S) from reactions incubated at 37 'C for 8 hours. Rv0153c: in lanes I 

- 2; ROM: 3-4; RvO185: 5-6; RvO247c: 7-8; Rv0359: 9- 10; Rv05O5c: 11 - 12; Rv1388: 13 - 14; 
Rv14O7: 15 - 16; Rv1942c: 17 - 18; RA967: 19 - 20; Rv206O: 21 - 22; Rv2229c: 23 - 24-, Rv2234: 25 - 26; 
Rv2305: 27 - 28-, Rv2547: 29 - 30; Rv2711: 31 - 32; Rv2718: 33 - 34; Rv2776c: 35 - 36; Rv2986c: 37 - 38; 

R0042c: 39 - 40; Rv307O: 41 - 42; Rv3628: 43 - 44; Rv3836: 45 - 46; Rv3867: 47 - 48; Rv3717: 49 - 50; 
Rv3915: 51 - 52. 

Initial cell-free expression screening from PCR templates synthesised with DMSO. Rv05O5c: 53 - 54; 
Rv1407: 55 - 56; Rv2234: 57 - 58; Rv2981c: 59 - 60; Rv3712: 61 - 62. Molecular weight marker in lanes 
A Target proteins highlighted in red. 
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4.2.3c Cell-free protein expression: Optimisation 

Metal incorporation 

For those targets which were insoluble or gave no protein, no change was observed upon 

addition of metal ions. Total expression of the soluble iron-dependent repressor protein, 

Rv271 1, was slightly reduced in the presence of FeS04, however this may be due to an 

inaccuracy during the experiment (figure 4.3). Solubility of Rv3836, a zinc 

metalloprotease, remained unchanged upon addition of ZnS04 (rigure 4.3). 
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20 

Figure 4.3: 10 % SDS-PAGE from optimisation of cell-free expression conditions by the addition of metal 

compounds (50 gM) (section 4.2.2e). Total extracts (T) and soluble fractions (S) from small-scale reactions 

incubated at 37 *C overnight. Rv2711 with: FeS04, lanes I-2; No metal, 3-4. Rv3836 with: ZnS04,5 - 6; 

No metal, 7-8. Molecular weight marker in lane M. Target proteins highlighted in red. 

Time-course expression study 

For a number of targets, non-E. coli proteins were expressed which did not correspond to 

the expected molecular weights of the target proteins. In these instances, a time-course 

expression study was performed to determine whether these proteins were degradation 

products of the proteins of interest. 

Although single PCR products were obtained for both Rv2547 PCR reactions, a lower 

molecular weight protein was over-expressed in addition to the 9.5 kDa target protein. This 

band was detectable by SDS-PAGE from the 2 hour time-point and was most noticeable 

after the overnight incubation, coinciding with the dramatic decrease in the amount of full 

sized target protein at this time-point. This leads to the assumption that the lower 

110 



Chapter 4- Production of proteins from Mycobacterium tuberculosis 

molecular weight band was a product of target protein degradation, rather than one of co- 

expression (figure 4-4). 

kDa 

29 

24 

20 

14 
4 
Unknown 
contaminant 

Figure 4A 10 % SDS-PAGE from cell-free time-course expression study of Rv2547 (section 4.2.2e). Total 

extracts (T) and soluble fractions (S) from small-scale reactions incubated at 37 'C over 0 to 24 hours. 0 

hours: lanes I-2; 2 hours: 3-4; 4 hours: 5-6; 6 hours: 7-8; 8 hours: 9- 10; 24 hours: 11 - 12. 

Molecular weight markers in lane M. Rv2547 highlighted in red. 

No band of the correct molecular weight was visible by SDS-PAGE for Rv0359, possibly 
due to degradation of the protein during synthesis or to incomplete amplification of the 

entire gene by PCR. However, a non-E. coh band was observed at approximately 10 kDa. 

it was hypothesised that the band was a target protein degradation product and the 

possibility that reducing reaction incubation time would eliminate this was investigated. 

This band was not present at the 0 hour time-point, emphasising its non-E. coli origin, 
however it was present at every other time-point measured (figure A2, appendix 1). No 

band of correct molecular weight was visible, possibly due to degradation of the target 

protein during synthesis. Another explanation is that multiple bands were obtained by PCR 
for Rv0359, suggesting that the gene was not amplified correctly. Repeated cell-free 

expression from a single-band PCR product (PCR 2), synthesised with DMSO, did not 
result in production of either target protein or the 10 kDa unknown protein. 

A larger molecular weight, non-E coli protein, was co-expressed with Rv2718. This band 

was present after a two hour incubation and increased in intensity up to the overnight time- 

point. As the DNA template, obtained by PCR, was a discrete band and the protein appears 
to be larger than the expected molecular weight of the target protein (so is not degradation), 

it remains unclear why this contaminant is present (figure A2, appendix 1). 
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Effect of selenomethionine substitution 

No change in overall expression or solubility was noticeable after substitution of 

methionine with selenomethionine. 

Tev cleavage study 

Rv3628 bands of reduced size were obtained for all conditions tested, signifying that 

cleavage of the His-tags had occurred. The cleaved tags were not visible by SDS-PAGE 

after 3 hours, however cleavage was evidenced by the presence of two differently sized 

Rv3628 bands. This absence of cleaved His-tags may be due to a sample loading error 

during SDS-PAGE. Incubating target proteins with 20 ýtg/ml Tev protease for 3 hours was 

deemed to provide sufficient cleavage, and so this method was chosen to conserve 

experimental time. As no difference was seen between 4 'C and 30 'C incubations, the 

lower temperature was selected to avoid potential degradation or aggregation of target 

protein (figure 4-5). 

3 hour incubation 
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Figure 4.5: 10 % SDS-PAGE from cell-free Tev cleavage study of Rv3628 (section 4.2.2f). Total extracts 

(T) and soluble fractions (S) from small-scale reactions, following affinity chromatography and incubation 

with Tev protease. Reactions incubated for the specified time at 4 OC with: 5 pWrnI Tev protease, lanes I-2; 

10 pWrW, 3-4; 20 gWFW, 5-6. Reactions incubated for the specified time at 30 'C with: 5 pg/rnI Tev 

protease, lanes 7-8; 10 gg/ml, 9- 10; 20 pgInd, 11 - 12. Molecular weight markers in lane M. Target 

protein highlighted in blue (uncleaved) and red (cleaved). Cleaved His-tags highlighted in yellow (not visible 
in the 3 hour incubation wells, possibly due to a problem with sample loading). 

4.2.3d Large scale protein expression and purification 

Milligram quantities of soluble protein were obtained for all of the nine targets that were 

progressed into large-scale cell-free synthesis (table 4.6). All were synthesised in the 

Overnight incubation 
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presence of selenomethionine and without the inclusion of additives such as metal ions 

(with the exception of Rv3836, see section 4.2.2g). His-tags were removed by cleavage 

with Tev protease and affinity chromatography (figure 4.7A). Proteins were further 

purified to remove bulk contaminants (table 4.6 and figure 4.7B). This was successful for 

all targets, with the exception of Rv2229c, which unexpectedly eluted from the gel 
filtration column in the void volume and was subsequently lost in the waste fraction. As 

the column separation range is 3 to 70 kDa and the Rv2229c monomer is 26.9 kDa, it 

seems likely that the protein formed an aggregate or an oligomeric structure. An example 

profile showing the purification of Rv3628 is shown in figure 4.6. 
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Cell-free reaction Successfully purified' Yield 

parameters 
Target Function Vol. Expressed Affmity2 Anion GF3 mg/nil Total 

(rrd) with reaction (nig) 

additives solution 
Rv2229c Conserved 18 No Yes Yes No* n/a n/a 

hypothetical 

protein 
Rv2234 Phosphotyrosine 18 No Yes Yes Yes 0.14 2.5 

phosphatase 
Rv2547 Transcriptional 18 No Yes Yes n/a 0.04 0.8 

regulator protein 
Rv2711 Iron-dependent 18 No Yes Yes Yes 0.05 0.9 

repressor protein 
--kv--3042c Phosphoserine 18 No Yes Yes Yes 0.28 5.0 

- 
phosphatase 

--Vv 3628 Inorganic 18 No Y es Yes Yes 1.49 26.9 

pyrophosphatase 
Rv3836 Zinc 18 Yes(50 Yes Yes n/a 0.33 6.0 

metalloprotease Pm 
ZnS04) 

Rv3867 Conserved 18 No Yes Yes n/a 0.18 3.2 
hypothetical 

protein 
Rv298lc D-alanine-D- 18 No Yes Yes n/a 0.11 2.0 

alanine ligase 

Table 4.6: Results summary from the large-scale expression and purification of 9 Mycobacterium 

tuberculosis targets using the cell-free system. 'Target judged to be - 95 % pure .2 Affinity chromatography 
3 followed by removal of His-tags by Tev protease and affinity chromatography. Proteins of inadequate purity 

were passed through a gel filtration column. *Rv2229c was lost during this step. 
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Figure 4.6: Example profiles showing the purification of Rv3628 by (A) anion exchange and (B) gel filtration 

chromatography, using an AKTA Explorer system (Amersham). Rv3628, synthesised using the cell-free 

expression system, was first applied to aQ sepharose anion exchange column (Amsersham) and eluted in a 

gradient of 0- 100 % buffer CF-D. The peak fractions were pooled and applied to a S75 10/300 gel filtration 

column (Amersham), equilibrated in buffer CF-E. Pooled fractions are shown between arrows. 

115 



Chapter 4- Production of proteins from Mycobacterium tuberculosis 

A 

kDa 

66 

45 

36 

6789 10 11 12 13 14 

29 40%11P, 4ý 
24 4w 

20 

14 

up 

I 

qNsomw 

dmb dOW 

I-- 

4ý 

B 
kDa 

66 

45 Immý 
36 -max» 
29 
24 

IM 

20 41klkb 

14 lot& 

F--ýý 

Figure 4.7: (A) 10 % SDS-PAGE from large-scale cell-free expression of nine targets (section 4.2.2g). 

Target proteins purified by affinity-chromatography and His-tags cleaved from proteins by incubation with 
Tev protease, followed by a further affinity chromatography step. Rv2229c: in lanes I (flowthrough) (FT) 

and 2 (elution) (E). Rv2234: 3 (FT) and 4 (E). Rv2547: 5 (Fr). Rv2711: 6 (FT) and 7 (E). R0042c: 8 

(FT) and 9 (E). Rv3628: 10 (Fr) and II (E). Rv3836 (synthesised with 50 ýN ZnSO4): 12 (FT). Rv3867: 

13 (FT). Rv2981c: 14 (Fr). 

(B) 15 % SDS-PAGE of proteins after further purification (see table 4.6): Rv2234,1; Rv2547,2; Rv2711,3; 

110042c, 4; Rv3628,5; Rv3836,6; ROW, 7; Rv2981c, 8. Molecular weight markers in lanes M. Target 

proteins highlighted in red and cleaved His-tags in yellow. 
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41.4 Optindsation of expression conditions for 13 Mycobacterium tuberculosis targets: 

Methods 

All procedures described in this section were performed by the author, with the following 

exceptions: PCR primers described in section 4.2.4a were designed by Takashi Yabuki and 

Yukiko Fujikura; E. coli S30 cell-free extracts were prepared by Natsuko Matsuda and 

Natsurni Suzuki (Kigawa et al., 2004); and chaperone cell extracts used in section 4.2.4c 

were prepared by Takayoshi Matsuda. 

The recipes for buffers and media described in this section are given in appendix 2. 

4.2Aa PCR, cloning, and sequencing of target DNA 

PCR and cloning steps were carried out as described in 4.2.2a to 4.2.2c. It was necessary to 

include DMSO in the PCR reactions for RvO950c, Rv2388c, and Rv3534c, to obtain 

discrete bands visible by agarose gel electrophoresis. For targets RvO185, Rv0247c, 

Rv2229c, Rv2547, Rv2776c, Rv2981c, Rv3628, Rv3717, Rv3915, and Rv3836, clones 

were retained from the first visit to RIKEN. 

4.2.4b Cell-free protein expression: Initial screening 

Initial screening from PCR 2 templates was performed using individual dialysis cups as 

described in 4.2.2e. 30 gl of internal reaction solution was dialysed against a 300 41 

external solution at 30 T for 6 hours. Initial screening was unnecessary for the repeat 

targets. 

Expression and solubility were compared in the presence and absence of metal ions. 50 ýLm 

(final concentration) of zinc sulphate was added to the predicted zinc metalloproteins: 
RvO670 and Rv2845c, and also to the unknown targets: Rv0950c, Rv3534c, and Rv3781. 

Iron sulphate was included for targets with iron-binding domains: RvI589, Rv2388c, and 
Rv3545c, and also in the unknown proteins mentioned previously. Sequence homology 

database searches suggested that manganese and magnesium might bind to Rv3534c and 
Rv3781 respectively, so 50 pM of these metals (MnCl and (MgCH3CH2)2) were included in 

the reaction solutions. 
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4.2.4c Cell-free protein expression: Optimisation 

Optimisation of the cell-free reactions was performed as described in 4.2.2e, using plasrnýid 

templates, at 30 OC for 4 hours. This decrease in reaction incubation time was found to 

improve target protein solubility in some cases (Matsuda et al., personal communication). 

Detergents were included in the cell-free reaction solutions for targets which were not 

expressed in a soluble form during initial screening. With the help of Dr. Satoru Watanabe 

at RIKEN, the most favourable conditions were identified to be 0.5 to I% v/v of the non- 
ionic detergents Brij-35 (polyoxyethylene 23 lauryl ether, CMC 0.09 MM) or Digitonin 

(Ishihara et al., 2004). These were included in both the internal and external reaction 

solutions at the above concentrations and also in the purification buffers at a final 

concentration of 0.01 % v/v (both Sigma), for those targets which were not expressed in a 

soluble form. 

Finally, molecular chaperones were added during the cell-free synthesis of insoluble 

targets. Half of the E. coli S30 extract was substituted with an equal volume of E. coli 
extract containing a chaperone-plasmid construct. Five different chaperone combinations 

were chosen: 1. dnaJ-dnaK-grpE-groEL-groES; 2. groEL-groES; 3. dnaJ-dnaK-grpE; 4. 

groEL-groES-trigger factor; and 5. trigger factor (Matsuda et al., personal communication). 
Due to the number of experimental conditions to be screened, the cell-free reaction was 

conducted in a 96-well micro-dialysis plate, as described in 4.2.2d. 

Proteins which were solubilised by the inclusion of molecular chaperones, were purified by 

adding 30 gl of buffer CF-A to the internal reaction solution in a 96-well plate. 5 RI was 

removed for the total fraction and the plate centrifuged at 4,500 rpm for 5 minutes at 4 *C. 

5 gl of supernatant was removed for the soluble fraction. Ile supernatant, together with 40 

W of TALONTm Superflow cobalt resin (BD Biosciences Clontech), were added to a 0.45 

gM multi-screen-HV plate (Millipore) pre-equilibrated with buffer CF-A. Following a 20 

minute incubation at room temperature, the plate was centrifuged at 1,500 rpm for I 

minute at 4 T, to obtain the flow-through fraction. Fractions were collected in a 96-well 

microtiter plate (ABgene). After three washes with 150 W of buffer CF-A (wash fraction), 

1-fis-tagged target proteins were eluted in 100 W of buffer CF-B. 
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Target proteins which remained bound to molecular chaperones following affinity 

chromatography (Rv3717 and ROM), were incubated with 5 mM AT? solution (ATP- 

2NA, pH 7.0) for 30 minutes at 37 'C. A further affinity chromatography step was then 

performed, in an attempt to remove the chaperones. 

4.2.4d Large scale protein expression & purification 

Large scale expression and purifications were performed as described in 4.2.2g. Targets 

with low solubility were expressed during a shorter incubation period, to reduce the 

fon-nation of aggregates (Matsuda et al., personal communication). Additional large scale 

preparations were also performed for targets with particularly low yield. His-tags were 

cleaved from target proteins by incubation with Tev protease and purification by affinity 

chromatography (see section 4.2.2h). 

Proteins were buffer exchanged into buffer CF-F, concentrated to 10 ml using Amicon 15 

kDa cut-off centrifugal filters (Millipore) at 4,000 x g, and loaded onto a5 n-fl anion 

exchange column equilibrated in the same buffer (HiTrapTm Q SepharoseTm HP IEX, 

Amersham Biosciences). Target proteins were eluted in a gradient of 0 to 100 % buffer 

CF-G, desalted into buffer CF-H, and concentrated to 1.5 ml. 2 41 of each were loaded 

onto a 15 % polyacrylamide, denaturing gel. Targets which were not pure enough for 

crystallisation (> 95 % purity) were concentrated to I to 1.5 ml and loaded onto a Superdex 

75 10/300 (Amersham Biosciences) equilibrated in buffer CF-H. The remaining proteins 

were buffer exchanged into buffer CF-H. 

Following purification steps, total yield was calculated by absorbance at 280 nm, using 
individual theoretical molar extinction coefficients (TBSGC). Bradford assays were not 

performed due to the limited quantities of protein available. Proteins were concentrated to 
10 mg/ml, snap frozen in liquid nitrogen, and stored at -80 T in 25 0 aliquots. 
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4.2.5 Optinjisation of expression conditions for 13 Mycobacterium tuberculosis targets: 

Results 

As described in section 4.2.3, only a selection of gel photographs are included in this 

section, additional SDS-PAGE photographs are included in appendix 1. A summary of 

results from small-scale expression trials is given in table 4.7. 

4.2.5a Cloning of target DNA 

PCR was used to successfully amplify single gene products of correct size for all targets. 

To achieve this it was necessary in include DMSO in the PCR reaction for targets Rv0950c, 

Rv2388c, and Rv3534c (see section 4.2.2a for a description of the use of DMSO during 

PCR). Positive clones of correct sequence were also obtained for all targets. 

4.2.5b Cell-free protein expression: Initial screening 

Some soluble expression was achieved without the addition of metals for Rv0670, 

Rv0950c, and Rv2845c. Rv1589 was soluble without metals and adding iron sulphate did 

not alter solubility. Solubility was marginally improved by the addition of zinc to 

Rv2845c, however no beneficial effect was observed when added to Rv0670. RvO950c 

was also soluble in the presence of zinc ions but not iron, magnesium, or manganese. The 

remaining four targets were completely insoluble with or without addition of metal 

cofactors. Rv3534c was insoluble without additives, however was not expressed in the 

presence of manganese. This may be due to the metal ions affecting the cell-free reaction 

or due to an experimental error. Finally, the solubility of Rv3781 was not improved upon 

addition of magnesium, however an increase in total yield was observed, possibly due to 

the ions effect on RNA polymerase activity. See figure 4.8. 
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Optimisation result 

Target 

Rv0185 

Succesdul 

PCR 

(+ DMSO)l 

Positive 

clone 
obtained 2 

Initial 

screening 

result3 
III, 

MetaW 

InNoluble 

(ZnSO. %) 

Rv0247c Yes Yes Insoluble Insoluble 
(FeS04) 

Rv2776c 
(Fe, S04) 

Rv3717 

Rv3915 

RvO670 
(ZnS04) 

RvO950c 
(ZnSO4) 

Rv1589 
(FeS04) 

Rv2388c 
(FeS04) 

Rv2845c 
(ZnS04) 

Rv3534c 

Rv3545c 
(FeS04) 

Rv3781 

((MgCH3 
CHI)2) 

Detergen 

Soluble 

Insoluble 

Insoluble 

Very low 

solubility 

Insoluble 

n/a 

n/a 

n/a 

Soluble 

n/a 

Low 

Molecular 

chaperonesý 

Soluble 

Very low 

solubility 

Insoluble 

Soluble 

Low 

solubility 
Very low 

solubility 

n/a 

n/a 

n/a 

Insoluble 

n/a 

Soluble 

solubility 

Insoluble 

Soluble 

Soluble 

Soluble 

Table 4.7: Results summary from the cloning and small-scale expression of 13 Mycobacterium tuberculosis 

targets using the cell-free system. 'Single PCR products of correct size, synthesised in the presence or 

absence of DMSO (section 4.2.5a) . 
2CIones free from nonsense, missense, and read-through mutations 

(section 4.2.5a). 3Expression result from initial screening using standard conditions (section 4.2.5b). 

Expression result from optimisation of reaction conditions including :4 Metal compounds (section 4.2.5b); 
513etergents (section 4.2.5c ); 6 Molecular chaperones (table 4.8 and section 4.2.5c). Text in red describes 

results obtained from sections 4.2.3a to 4.2.3c. 

121 

ye', 

es 

Yes 

Yes 

Yes (+) 
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Yes 
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Y c. 

Yes 
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Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Insoluble 

Insoluble 

Insoluble 

Soluble 

Soluble 

Insoluble 

Soluble 

Soluble 

Insoluble 

n/a 

n/a 

Insoluble 

Soluble 

Soluble 

Soluble 

Insoluble 

Soluble 

No 

expression 
(MnC12) 
Insoluble Insoluble 

Insoluble 
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Figure 4.8: 10 % SDS-PAGE of initial cell-free screening, with and without the addition of metal compounds 

(50 pM) (section 4.2.4b). Total extracts (T) and soluble fractions (S) from reactions incubated at 30 *C for 6 

hours. RvO670: in lanes I- 2-, with ZnS04 3-4. RvO950c: 5-6; with ZnS04 7-8; FeS04 9- 10; 

(MgCHICH2)2 11 - 12-, MnCl2 13 - 14. Rv1589: 15 - 16; with FeS04 17 - 18. Rv2388c: 19 - 20; with 

FeS04 21 - 22. Rv2845c: 23 - 24; with ZrIS04 25 - 26. Rv3534c: 27 - 28; with MnCI2 29 - 30. Rv3545c: 

31 - 32; with FeS04 33 - 34. Rv3781: 35 - 36; with (MgCH3CH2)2 37 - 38. Molecular weight markers in 

lanes M. Target proteins highlighted in red. 

4.2.5c Cell-free protein expression: Optimisation 

Addition of detergents 

Addition of Bfij-35 or Digitonin to reaction solutions increased solubility for targets 

Rv379l (figure 4.9), RvOI85, Rv3534c, and Rv3717. Most noticeably, a marked increase 

in solubility was observed for Rv2388c upon addition of either detergent. However the 

inclusion of detergents had no beneficial effect during synthesis of Rv0247c, Rv2776c, 

Rv3545c, or Rv3915, and these targets remained insoluble. See figures A3 and A4, 

appendix 1. 
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Figure 4.9: 10 % SDS-PAGE from optimisation of Rv3781 cell-free expression conditions by the addition of 

detergents (section 4.2.4c). Total extracts (T) and soluble fractions (S) from small-scale reactions incubated 

at 30 T for 4 hours. No detergent in lanes I-2: Brij-35,3 -4 (0.5 %) and 5-6 (1 %); Digitonin, 7-8 (0.5 

%) and 9- 10 (1 %). Molecular weight marker in lane M. Rv378l highlighted in red. 

Molecular chaperones 

inclusion of molecular chaperones in the cell-free reaction solution proved highly 

successful in solubilising previously insoluble targets from initial screening (table 4.8 and 
flgure 4.10). Only one target, Rv2388c, was not expressed in a soluble form in the 

presence of chaperones. Ibe most effective chaperone system, dnaJ-dnaK-grpE, improved 

solubility for eight targets. To remove molecular chaperones after synthesis, target proteins 

were purified by affinity chromatography, with an ATP incubation step when necessary, as 
described in section 4.2.4c. Rv0247c was not visible following affinity purification, 

suggesting aggregation or a misinterpretation of initial solubility. See also figures A5 to 

A7, appendix 1. 
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Son* soluble expression in the presence of: 

Target dnaK-dnaj-grpE- 

groEL-groES 

groEL- 

groES 

dnaj-dnaK- 

grpE 

groEL-groES- 

trigger factor 

Trigger factor 

RvO 185 Ye- 

Rv0247c Yes 

Rv2776c Yes 

Rv3717 Yes (dnaJ) 

Rv3915 Yes 

(groEL)* 

Yes 

Rv2398c 

Rv3534c Yes 

Rv3545c Yes 

(groEL) 

Yes 

Yes (dnaJ) 

Table 4.8: Optimisation of the cell-free reactions by addition of molecular chaperones to insoluble targets 

from initial screening. Text in parentheses represents chaperones which remained bound to target protein, 

following affinity chromatography, and those marked with an asterisk represent chaperones which were 

successfully removed by incubation with ATP. 
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Figure 4.10: 10 % SDS-PAGE from optimisation of Rv3781 cell-free expression conditions by the addition 

of molecular chaperones (section 4.2.4c). Total extracts (T) and soluble fractions (S) from small-scale 

reactions incubated at 30* C for 4 hours. No chaperones in lanes I-2; with dnaj-dnaK-grpE-groEL- 

groUS, 3-4, groEL-groES, 5-6; dnaJ-dnaK-grpE, 7-8; groEL-groES-trigger factor, 9- 10; trigger 
factor, 11 - 12. Fractions from affinity chromatography of Rv3781 synthesised in the presence of dnaJ-dnaK- 

grpE: Total, 13; Soluble, 14, Flow-through before ATP incubation, 15; Elution before ATP incubation, 

16; Flow-through after ATP incubation, 17; Elution after ATP incubation, 18. Molecular weight markers 
in lane M. Rv378l highlighted in red and chaperones in blue. 
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Selenomethionine incorporation 

No decrease in solubility occurred when synthesising RvO670, Rv1589, or Rv378l with 

selenomethionine, however no target protein was visible in the elution fraction following 

affinity-chromatography, by SDS-PAGE, for RvO950c. It was not necessary to determine 

the effect of selenomethionine on solubility for the 8 repeat targets, as this was shown to 

have no effect during previous experiments (see section 4.2.3c). 

4.2.5d Large scale protein expression and purification, 

Four soluble targets were selected for large scale synthesis (Rv0670, RvO950c, Rv 1599, 

and Rv3781), to produce sufficient quantities of protein for crystallisation trials (table 4.9 

and rigure 4.11A). Those targets which required molecular chaperones for solubility were 
discarded due to the time required to prepare sufficient quantities of chaperone extract and 

the potential problems associated with removing chaperones for downstream applications 
(table 4.8). Targets for which the addition of Digitonin was essential for soluble 

expression were also discarded due to the high cost of the detergent. Finally, those which 

resulted in very low target yield were not included in large-scale synthesis. Large scale 

preparations for the four targets which were successfully expressed previously, section 
4.2.3d (Rv2229c, Rv2547, Rv2981c, and Rv3836), were also performed (flgure 4.11A). 

Following purification by affinity chromarography, His-tags were successfully removed 
from targets by incubation with Tev protease, followed by an additional affinity 
chromatography step (figure 4.11A). RvO950c was not visible by SDS-PAGE following 

affinity chromatography, possibly due to aggregation, and so was not progressed further. 
Rv378l was also discarded due to its extremely low yield (< 0.5 mg, as estimated by SDS- 
PAGE), which would be unsuitable for crystallisation trials as further purification steps 
were required. All targets with the exception of RvO670 and Rv1589 were considered pure 
enough for crystallisation (> 95 % pure by SDS-PAGE) after an anion exchange 
chromatography step (figure 4.11B). The purity of RvI589 was improved by gel filtration 

chromatography, however Rv0670 was co-purified with a number of contaminants 
following this additional step. Further purification of this target was not performed due to 
the low yield of protein available. Rv2547 was co-purified with an unknown protein of - 
10 kDa. 
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Cell-free reaction parameters Yield 

--ia--rget Function Vol. 30 'C Expressed Successfully mg/n-d Total 

(Mb incubation with purified' reaction (mg) 

time (hr) additives solution 

Rv0670 Endonuclease 144 4 Yes Partially 0.03 4.8 

IV (ZnS04) (larger MW 

contaminants 

remained) 

RvO950c Hypothetical 72 4 No No (possible n/a n/a 

metalloprotease degradation) 

Rv1589 Biotin 72 4 No Yes 0.11 7.56 

synthetase 

Rv378I ATP-binding 72 4 Yes (0.5 No (yield too n/a n/a 

protein ABC % V/v low) 

transporter Brij-35) 

Rv2229c Conserved 18 8 No Yes 0.18 3.2 

hypothetical 

protein 

Rv2547 Transcriptional 18 8 No Yes 0.07 1.2 

regulator 
--k-v2981 c D-alanine-D- 18 8 No Yes 0.04 0.8 

alanine ligase 

38 3-6 Zinc 18 8 Yes Yes 0.35 6.3 

metalloprotease (ZnSO4) 

Table 4.9: Results summary for the large-scale expression and purification of 8 Mycobacterium tuberculosis 

targets using the cell-free system. 'Target proteins - 95 % pure by: 1. Affinity chromatography; 2. Incubation 

with Tev protease followed by an additional affinity chromatography step, to remove His-tags; and 3. Anion 

exchange chromatography. A final gel filtration step was also performed for Rv0670 and Rvl589. 
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Figure 4.11: (A) 10 % SDS-PAGE from large-scale cell-ftee expression of eight targets (section 4.2.4d). 

Target proteins purified by affinity chromatography and His-tags cleaved from proteins by incubation with 
Tev protease, followed by a further affinity chromatography step. Rv2229c: in lanes I (flow-through) (FT) 

and 2 (elution) (E). Rv2547: 3 (FT). Rv3836 (synthesised with 50 pM ZnS04): 4 (FT). Rv2981c: 5 (FT). 

Rv0670 (synthesised with 50 9M ZnS04): 6&8 (FT) and 7&9 (E). Rv0950c: 10 (not visible following 

affinity-chromatography) (Fr). Rv1589: 11 (FT) and 12 (E). Rv3781 (synthesised with 0.5 % Brij-35): 13 

(FT) and 14 (E). 

(B) 15 % SDS-PAGE of proteins after further purification by anion exchange chromatography: Rv2229c, 1; 

Rv2547,2 (the co-purified band is shown with an arrow); RV3836,3; Rv2981c, 4. Fractions after further 

purification by anion exchange and gel filtration chromatography: RvO670,5; Rv1589,6. Molecular weight 

markers in lanes M. Target proteins highlighted in red and cleaved His-tags in yellow. 
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4.2.6 Crystallisation trials of target proteins 

All ten of the targets which were expressed on a large-scale using the cell-free system and 

successfully purified, were progressed into crystallisation trials. Both manual and robotic 

trials was performed using commercially available broad matrix screens from Hampton 

Research, Molecular Dimensions, and Nextal Biotechnologies. Variables such as 

salt/precipitant type and concentration, additives, and pH, were screened using these kits. 

Where possible, hand-made screens based upon conditions used to crystallise homologous 

proteins, were also performed. 

Manual screening was performed using a standard 24-well pre-greased plate suitable for 

hanging-drop vapour-diffusion crystallisation (VDX plate, Hampton Research). I to 2 RI of 

protein was mixed with an equal volume of precipitant on a siliconised cover slip, 

suspended over a 500 RI reservoir. High-throughput screening was achieved using a 

Screenmaker 96 +8 (Innovadyne Technologies) robot. 100 nl of protein was mixed with 

an equal volume of precipitant, over an 80 Rl reservoir, in a 96-well sitting-drop plate. 

Plates were viewed using a Crystal Pro robot with Crystal L. I. M. S. software (both Tritek 

Corporation), at regular intervals. For both screening methods, protein concentration and 

incubation temperature were also varied. 

Despite screening each target against hundreds of unique conditions, only one protein gave 

crystals suitable for X-ray diffraction. The 2.7 A crystal structure of Rv3628, an inorganic 

pyrophosphatase, is described in chapter 5. This low success rate may partly be due to 

sample heterogeneity, resulting from extended incubations at 4 'C during shipment of the 

samples from Japan to England. 

4.3 In vivo protein expression 

43.1 Introduction 

To enable comparisons to be drawn between the cell-free system and more traditional 

expression systems, a number of targets described in section 4.1 were selected for 

expression trials using an E. coli in vivo system. Four targets were selected based upon 
their outcome from the cell-free expression trials. Rv3628 was selected for its high yield 

and solubility and Rv3836 for its reduced, but soluble yield. RvO950c was chosen because 
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it appeared soluble throughout expression trials, however was not detectable following 

affinity purification, possibly due to aggregation. Finally, Rv3545c was chosen as it 

remained completely insoluble, except in the presence of molecular chaperones. This 

target, a cytochrome P450 125, was also selected due to our group's ongoing interest in 

cytochromes. 

Oligonucleotide primers were designed from the genomic sequence of each target and were 

amplified by PCR. PCR products were inserted into a vector and were used to transform a 

number of different E. coli host strains, from which small-scale expression cultures were 

set up. Expression parameters were altered to obtain optimal yields of soluble protein 

before progressing, when appropriate, into large-scale production. Rv3545c was purified 

by successive chromatographic steps and used for downstream applications (see chapter 6). 

The cloning and expression of Rv3545c was based upon cuffent literature of homologous 

cytochrome P450s from Mycobacterium tuberculosis and was performed separately from 

the remaining three targets. 

43.2 Cloning and expression of Rv3545c: Methods 

The recipes for buffers and media described in this section are given in appendix 2. 

4.3.2a Rv3545c PCR 

The Rv3545c gene was amplified directly from the genome using a standard hot-start PCR 

protocol, from genomic M. tb DNA (H37Rv) obtained from Colorado State University. 

Oligonucleotide primers were designed based on those used to amplify a Rv3545c 

homologue, M. tb CYP51 (Bellamine et al., 1999), to incorporate a 5' upstream Ndel 

restriction site, a C-terminal 4-His tag, and a downstream HindIII site (rigure 4.12). To 

improve restriction enzyme recognition, a 3-nucleotide linker sequence was incorporated, 

flanking each of the restriction sites. 1.2 gg of genomic DNA was included in a typical 80 

gl PCR reaction solution of: 50 nM of each primer (Operon); 0.2 mM of each dNTP 

(dATP, dCTP, dGTP, and dUTP) (Novagen); 2U VentR HiFi DNA polymerase (New 

England Biolabs), and Ix HiFi buffer (New England Biolabs). An initial denaturation of 
double-stranded DNA at 94 IC for 5 minutes was followed by 30 cycles of 94 'C for 30 

seconds, followed by annealing of the primers at 62 'C for 30 seconds, and an extension 
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period of 72 'C for 45 seconds. A final extension at 72 'C for 10 minutes completed the 

cycle. PCR reactions were performed using a GeneAmp@ PCR System 2700 (Applied 

Biosystems). 

The PCR product was visualised by electrophoresis on a gel containing I% agarose and 0.5 

Rg/mI of ethidium bromide (Sigma) in Ix TBE buffer. The gel was run at an electrical 

potential of 150 V and viewed briefly under ultraviolet fluorescence. The PCR product of 

correct size was excised from the gel using a clean blade and purified using a QlAquick Gel 

Extraction kit (Qiagen), according to manufacturer's instructions. Purified DNA was 

eluted in 50 gl of autoclaved MilliQ water, before storing at - 20 'C. 

FW 5'CGCCATATGTCGTGGAATCACCAGTCA 

RV 5'CGCAAGCTI'CA(, 'l (, kI(, (. I (; \I(. 'GTGAGCAACCGGGCATCTACCGG 

Figure 4.12: Primer sequences used to amplify the Rv3545c gene for in vivo expression. Bold text identifies 

linker sequences (blue), restriction sites (red), start and stop codons (underlined), and the C-terminal His-tag 

(grey). Normal text identifies Rv3545c-unique sequences. 

4.3.2b Cloning of Rv3545c 

The Rv3545c PCR product was directly cloned into the expression vector pET17b 
(Novagen). Both the PCR product and pET17b were digested with Ndel and HindIll to 

produce compatible sticky ends for cloning. In separate 1.5 ml Eppendorf tubes, 20 ýd of 

gel-purified PCR product and 3 gg of pET17b plasmid DNA were mixed with 20 U of each 

restriction enzyme and Ix reaction buffer #2 (all New England Biolabs) in 30 gl reactions. 
Reactions were incubated at 37 'C for 3 hours. The digested pET17b plasmid was 
dephosphorylated to prevent recircularisation during the ligation reaction by incubating 

with 0.2 U (- 0.05 U per pmol of DNA ends) of calf intestinal alkaline phosphatase 
(Roche) for a further 30 minutes. Digests were viewed by agarose gel electrophoresis and 

correctly sized bands were purified using the QlAquick Gel Extraction kit (Qiagen). The 

Rv3545c fragment and the linearised pET17b were eluted in 20 ýd and 30 gl of MIIIIQ 

water, respectively. 
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12 gI of Rv3545c was ligated into 100 ng of pET17b in a 20 RI reaction containing IU T4 

DNA ligase and Ix ligase buffer (both Roche) by incubating overnight at 15 'C. Novablue 

single cells (Novagen) were transformed with ligation reaction, using the standard heat- 

shock protocol described by Novagen (Novagen, 2006). Cells were thawed on ice, mixed 

with I gI of ligation reaction, and incubated on ice for 5 minutes. Cells were heat-shocked 

in a 42 IC waterbath for 30 seconds and returned to ice for a further 2 minutes. 250 VI of 

SOC medium was added and 25 to 50 gl of cells were plated onto LB-Amp agar plates 

containing 100 gg/ml ampicillin. Plates were incubated overnight at 37 'C. 

Sixteen single clones were used to independently inoculate 5 ml of LB-Amp media. 

Cultures were incubated overnight at 37 T and plasmid DNA was purified using a 
QlAprep Spin Miniprep kit (Qiagen). Glycerol stocks were first made by removing 900 VI 

of each culture and mixing with 100 gl of 80 % glycerol, before freezing at -80 T. The 

Rv3545c-pET17b plasmids, were purified from 3 ml of culture, following manufacturers 
instructions, and eluted in 100 gl of MilliQ water, before storing at - 20 IC. 

Initial screening for positive clones was performed by digesting the purified plasmids (7.5 

Rl) with NdeI and HindIll, as described previously. This enabled the identification of 

clones containing both pET17b and the Rv3545c insert but did not take into account 

mutations which may have occurred during PCR. Five of these clones were sent to Oxford 

University for DNA sequencing, using an Applied Biosystems 9700 Thermal Cycler 

(http: //polaris. bioch. ox. ac. uk/dnaseq). Sequence files were aligned with the correct 
Rv3545c sequence, obtained from the TBSGC, using ClustalW (Thompson et al., 1994), 

and positive clones were identified. 

One positive clone was used to transform HMS 174 (DE3) cells (Novagen), a host used to 

successfully express the homologous M. tb cytochrome P450, CYP51 Rv0764c (Bellamine 

et al., 1999). The same clone was also used to transform Rosetta 2 (DE3) cells (Novagen), 

a host used to express proteins which utilise non-E. coli codons (Novagen, 2006). 20 W of 

cells were transformed with IW of purified plasmid, as described before. In each case, a 
single colony was grown overnight at 37 'C in 5 ml of LB-Amp media, for HMS 174 (DE3) 

cells, and LB-Amp-Carn (including 34 gg/ml chloramphenicol) media, for Rosetta 2 (DE3) 
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cells. 900 gl of ovemight culture was removed for a glycerol stock, as described 

previously. 

4.31c Expression trials of Rv3545c: Method I 

The expression and extraction protocols detailed here are modified from those described by 

Bellamine et al. (1999). A starter culture of Rv3545c-HMS174 (DE3) was obtained by 

inoculating 5 ml of LB-Amp with 3 VI of glycerol stock and incubating overnight at 37 'C 

in a 50 ml falcon tube. 

Overnight culture was diluted ten fold in fresh TB-Amp and grown to an OD 600 of 0.6 - 
1.0. The haem precursor, 8-aminolevulinic acid (Sigma), was added to a final concentration 

of 2 mM and cultures were induced with I mM (final concentration) of EPTG, before 

incubating for the specified time and temperature, whilst shaking at 185 rpm (table 4.10). 

The OD 600 was recorded, before pelleting cells by centrifugation at 8,000 rpm in a 

Beckman JA20 rotor for 20 minutes, and pellets were stored at - 20 'C overnight. 

To obtain the soluble fraction, thawed cells were resuspended in 0.125 x volume of TES 

buffer and incubated on a stirring platform with 0.5 mg/ml lysozyme (Sigma) for 15 

minutes at 4 T. One volume of 0.1 mM EDTA (Sigma) solution was added and then 

incubated for a further 30 minutes, before pelleting the spheroplasts at 3,000 xg for 20 

minutes. The supernatant was incubated with I gg/ml of DNasel (Sigma) at 4T and 

ultracentrifuged at 225,000 xg for 30 minutes in a Beckman 70Ti rotor. The resulting 

supernatant (supernatant A) was stored at 4 'C. Spheroplasts were resuspended in two-fold 

diluted TES buffer and sonicated at a 50 % output for 5 cycles of 30 second bursts, each 
followed by aI minute recovery period, on ice using a Branson sonicator. Lysates were 

ultracentrifuged, as before. No brown/red colour, indicative of the presence of P450, was 

visible in the periplasmic fraction and so supematant A was combined with supematant B 

to form the soluble fraction. All centrifugation steps were performed at 4 T. Fractions 

were normalised for SDS-PAGE using equation 4.1 (Novagen, 2006). 

Total fractions were prepared by pelleting I ml of cell culture in a bench-top Eppendorf 

centrifuge for I minute at 14,000 rpm and resuspending in 100 gI of Ix PBS buffer. Cells 
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were sonicated for several seconds at 30 % output and then denatured with 150 ý11 of Ix 

sample loading buffer at 90 'C for 5 minutes. 

Normalised soluble fractions were denatured at 90 'C for 5 minutes, in Ix sample loading 

buffer. Samples were applied to a 15 % polyacrylamide gel in Ix tris-glycine running 

buffer and run at 35 mA for 30 minutes, before viewing under white light. Expression 

conditions are described in table 4.10. 

Equation 4.1: 

Z= OD 600 x DF 

V= 80 PI /Z 

Where: 

Z= undiluted OD 600 reading 

DIF = dilution factor of the sample 

V= normalised. volume in microlitres of sample 

Incubation Parameters 

Expression Time Temp. Media' Additives Reason 

variable (hours) (cc) 

Initial 6 30 TB None Initial conditions 
Screen 24 

Temp. 6 18 TB None Lower incubation 

25 temperatures can improve 

30 protein solubility (Novagen, 

2006) 

Glucose 24 25 TB 0.5 % glucose Decrease any basal 

added to 5 ml expression, to prevent 

overnight plasmid instability 

starter culture (Grossman et al., 1998) 

Table 4.10: Small-scale (50 ml) optimisation of in vivo expression conditions for Rv3545c in pET17b and 
HMS174 (DE3). 1 Terrific broth containing 100 pg/ml arnpicillin. 
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4.3.2d Expression trials of Rv3545c: Method 2 

The following method is a modification of that used to successfully express the human 

P450, CYP2C9 (Williams et al., personal communication). Rv3545c (Rosetta 2) starter 

cultures (LB-Amp-Cam) were prepared and diluted in fresh TB-Amp-Cam, following the 

method described in section 4.3.2c. IL cultures were grown to an OD 600 of 0.35 to 0.45, 

before adding 90 mg of 8-aminolevulinic acid (Sigma). Following a further incubation at 

37 IC (for approximately 30 minutes), cultures were induced at an OD 600 of 0.7 - 0.8 with 

ImM of IPTG (final concentration) and incubated at 25 'C for 24 and 72 hours, with 

shaking at 185 rpm. The OD 600 was recorded and cells were pelleted by centrifugation at 

6,000 rpm in a Beckman JLA8.1 rotor for 15 minutes and snap-frozen in liquid nitrogen, 

before storing at - 80 T overnight. 

Ilawed cells were resuspended in 125-lysis buffer (10 n-d per litre of culture) and disrupted 

by passage three times through a French pressure cell at 10,000 pounds per square inch. 

The soluble fraction was obtained by centrifugation at 14,000 rpm in a Beckman JA20 

rotor for 30 minutes. All centrifugation steps were performed at 4 *C. Fractions were 

normalised for SDS-PAGE as described in section 4.3.2c. 

4.3.2e Large scale expression and purification of soluble Rv3545c 

Rv3545c was expressed and the soluble fraction obtained as outlined in section 4.3.2d. 6L 

of Rosetta 2 (DE3) culture was pelleted and resuspended in 50 ml of 125-Lysis buffer, and 
the soluble fraction was incubated overnight with 15 ml of Nickel Sepharose High 
Performance resin (Amersham) at 4 "C on a rolling platform. The slurry was applied to a 
100 n-d empty column (Amersham), attached to a downstream peristaltic pump, and the 
resin was washed with 10 column volumes (150 ml) each of buffers 125-NiA and 125-NiB. 
Bound protein was eluted in 2 column volumes of buffer 125-NiC and dark red/brown 
fractions were pooled (10 ml). 

Protein was concentrated to 4 ml in a Vivaspin-20 30 kDa MWCO filtration unit by 

centrifugation at 3,500 x g. The concentrated sample was loaded onto a Superdex Hi-Prep 
S200 26/60 gel filtration column (Amersham) in two applications. The column, attached to 

an automated ALKTA Explorer platform (Amersham), was equilibrated in 2 column 
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volumes (640 ml) of 125-GF buffer. The sample (2ml) was applied to the column and 

eluted in 1.2 column volumes of the same buffer, at a flow rate of 3 ml/min with a 

maximum pressure limit of 0.5 MPa. Absorption measurements were recorded at 280 nm 

and 392 nm (the Soret peak of high-spin P450) and peaks were collected in I ml fractions 

at an absorbance (280 nra) above 200 mAu. Nine fractions from the centre of the peak 

were collected (18 ml total) and concentrated to 40 mg/ml, as described previously 

(concentration determined by Bradford assay). 

4.3.3 Cloning and expression of Rv3545c: Results 

Amplification of the Rv3545c by PCR and subsequent cloning steps were successful. 

Rv3545c production was observed when following the initial conditions described in 

method I (section 4.3.2c), however solubility was negligible (figure 4.13A). Reducing the 

incubation temperature to 25 'C did little to increase solubility, however a marginal 

improvement was observed at 18 'C (rigure 4.13B). The addition of glucose during the 

overnight incubation, with the aim of stabilising the plasmid by decreasing basal 

expression, had no beneficial effect (rigure 4.13A). 

Significant yields of soluble protein were only achieved when expression incubations were 

extended to 72 hours, as described in method 2 (section 4.3.2d). Dark red/brown pellets 

(rigure 4.15A), obtained from Rosetta 2 (DE3) cultures incubated at 25 T, were suggestive 

of soluble P450 expression and this was confirmed by spectrometric analysis (section 6.3). 

Large-scale expression of Rv3545c under these conditions (section 4.3.2e) produced 

significant quantities of protein with a Soret peak characteristic of cytochrome P450s (in a 
low-spin haern-iron system) present at 426 nm, after purification by affinity 

chromatography (section 6.3.2a). Further purification by gel filtration yielded 13 mg of 

pure protein per litre of culture (80 mg total) using this procedure, with a Soret peak at 392 

nm (high-spin system). See rigures 4.14B and 4.15 for the large-scale purification of 
Rv3545c. 
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Figure 4.13: (A) 15 % SDS-PAGE from small-scale in vivo expression trials of Rv3545c in pET17b and 

HMS 174 (DE3) (section 4.3.2c). Cultures incubated at 30 T for: 6 hours, in lanes I (insoluble) and 2 

(soluble); 24 hours, 3 (insoluble) and 4 (soluble). Cultures grown at 25 'C for 24 hours from starter cultures 

containing 0.5 % glucose: 5 (insoluble); 6 (soluble). 

(B) Cultures incubated for 6 hours at various temperatures. 18 "C: total, 1; insoluble, 2; soluble. 3.25 'C: 

total, 4; insoluble, 5; soluble, 6.30 'C: total, 7; insoluble, 8; soluble, 9. Molecular weight markers in lanes 
M. Rv3545c highlighted in red. 
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Figure 4.14: (A) 15 % SDS-PAGE from small-scale in vivo expression trials of Rv3545c in pET17b and 

Rosetta 2 (DE3) (section 4.3.2d). Cultures incubated at 25* C for 24 and 72 hours. Uninduced in lane 1; 

total and soluble, 2-3 (24 hours) and total and soluble, 4-5 (72 hours). 

(B) Fractions from purification of Rv3545c, following large-scale production and purification (section 4.3.2e). 

Cultures incubated at 25 'C for 72 hours. Soluble lysate in lane 1; post-affmity chromatography, 2; post- 

gel filtration, 3. Molecular weight markers in lanes A Rv3545c highlighted in red. 
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Figure 4.15: Large-sLale in vivo expression and purification of Rv3545c. 

(A) Cell pellets from Rv3545c expressed in Rosetta 2 (DE3) for 24 and 72 hours at 25 *C (section 4.3.2d). 

Both yield and intensity of the brown/red colour (indicative of haem proteins) are improved with prolonged 

expression incubations. 

(B) Rv3545c after cell lysis and purification by affinity chromatography. Rosetta 2 (DE3) cultures (6 L) 

grown at 25 T for 72 hours (section 4.3.2e). 

(C) Profile from the purification of Rv3545c by gel filtration using an S200 26/60 column (Amersham 

Biosciences), from Rosetta 2 (DE3) culture (3 L) grown at 25 T for 72 hours. Absorbance at 392 nm is 

predominantly due to the presence of cytochrome P450 in a high-spin system. Pooled fractions are shown 
between arrows (section 4.3.2e). 

(D) Purification of Rv3545c by gel filtration, as before. 
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4.3.4 Cloning and expression of Rv0950c, RQ628, and Rv3836: Methods 

The recipes for buffers and media described in this section are given in appendix 2. 

4.3.4a PCR 

Target genes were amplified directly from the genome. Oligonucleotide primers were 

designed to incorporate a 5' upstream Ndel restriction site and a downstream Xhol site 

(rigure 4.16) for insertion into the expression vector, pET28a (Novagen). This positioning 

within the pET28a construct resulted in the expression of a 6-His tag at the N-terminal of 

each target protein. 1.2 ýtg of genomic DNA was included in a typical 80 ý11 PCR reaction 

solution of: 50 nM of each primer (Operon)-, 0.2 mM of each dNTP (dATP, dCTP, dGTP, 

and dUTP) (Novagen); 2U Taq DNA polyrnrease in storage buffer B; and Ix Taq buffer 

including 15 MM MgC12 (both Promega). PCR reaction conditions were as described in 

section 4.3.2a, with the exception of the annealing temperature which was decreased to 58 

IC. This was necessary due to the low Tm (64 'C) of the Rv3628-Rv primer. PCR 

products were purified from an agarose gel, as detailed in section 4.3.2a. 

Rv0950c Primers 

FW 5'('A'I'A'I'(. GCAGCGATTCGCACACCTCG 

RV 5'CTCGAGTCAACCGGTGTAATTGCCGACGC 

Rv3628 Primers 

FW 5'('A'I'A'['(; CAATTCGACGTGACCATCG 

RV 5'CTCGAGTCAGTGTGTACCGGCCTTGAAGC 

Rv3836 Primers 

FW 5'('A'I'A'rGACAGTACCirGATGGACCCGCA 

RV 5'CTCGAGTCATGGGCCGTTCATAGCATCGG 

Figure 4.16: Primer sequences used to amplify RvO950c, RQ628, and Rv3836 for in vivo expression. Bold 

text identifies Ndel (red) and Xhol (blue) restriction sites. Start/stop codons are underlined and normal text 
identifies target-unique sequences. 
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43.4b Cloning of target genes 

PCR products were first inserted into the cloning vector, pGernTI (Promega) by TA 

cloning. Purified PCR product was included, at a vector to insert ratio of I: 1, with 50 ng 

of pGemTl DNA, 3U of T4 DNA ligase, and Ix ligation buffer (all Promega) in a 10 gl 

reaction. Reactions were incubated at room temperature for I hour (Rv0950c and Rv3628) 

and at 4T overnight (Rv3836). 20 W of Novablue cells (Novagen) were transformed with 
I VI of ligation reaction, as described in section 4.3-2b. Cells were plated onto LB-Amp 

plates containing 0.5 mM IPTG and 80 gg/ml X-gal, to enable blue/white colony screening. 

For each target, 8 single white colonies were grown overnight in LB-Amp and the plasmids 

were purified as described in section 4.3.2b. Purified plasmids were digested with Ndel 

(New England Biolabs) and Xhol (Roche), in preparation for subcloning into the expression 

vector, pET28a (Novagen). 7.5 ýd of plasmid (from 150 pl) was added to a 20 gl reaction 

with 20 U each of NdeI and Xhol and Ix reaction buffer #2 (New England Biolabs). 

Reactions were incubated at 37 'C for 3 hours and inserts of correct size were identified by 

agarose gel electrophoresis, as described in section 4.3.2b. 

Two positive clones were selected for each target. Both constructs and pET28a plasmid 
DNA were digested with Ndel and XhoL and purified from an agarose gel. 100 ng of 
digested and purified pET28a was included in a 20 VI reaction with 0.2 pmol of purified 
insert, IU of T4 DNA ligase, and Ix ligase buffer (both Roche) and incubated overnight at 
15 OC. HMS174 (M) and Rosetta 2 (DE3) cells were transformed with ligation reaction, 
as described in section 4.3.2b. Purified plasmids were obtained from overnight cultures 
from a single colony and two clones for each target were sent to Oxford University for 
DNA sequencing (http: //polaris. bioch. ox. ac. uk/dnaseq). Data were analysed as outlined in 

section 4.3.2b. One positive clone with the correct sequence for each target was selected 
and progressed into expression trials. 

43.4c Expression trials of target genes 

Starter cultures, LB-Kan (containing 35 Vg/mI kanamycin) for HMS174 (DE3) cells and 
LB-Kan-Cam for Rosetta 2 (DE3) cells, were prepared as described in section 4.3.2c. 
Overnight culture was diluted ten fold in fresh TB, containing the appropriate antibiotic, 
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and grown to an OD 600 of 0.6 - 1.0. Cultures were induced with I mM of IPTG before 

incubating at the specified temperature (table 4.11), whilst shaking at 185 rpm. The OD 

600 was recorded before pelleting cells by centrifugation at 8,000 rpm in a Beckman JA20 

rotor for 20 minutes and storing at -20 'C overnight. 

Thawed cells were resuspended in Na-Lysis buffer and disrupted by sonication on ice, 

using a Branson sonicator at 50 % output. Cells were subjected to twenty cycles of a3 

second burst followed by a7 second rest, with a resting period at the midway point to 

prevent overheating of the sample. Soluble fractions were obtained by centrifugation at 14, 

000 rpm for 30 minutes and prepared for SDS-PAGE, as described in section 4.3.2c. 

Expression conditions are described in table 4.11. 

E eoli strain Rationale Time Temp. Volume Lysis 
(hours) (OC) (ml) method 

HMS174 (DE3) Initial conditions 6 25 50 None 
30 

Rosetta 2 (DE3) Cells may provide 6 25 50 Sonication 

unusual codons required 30 
for target protein 
expression/solubility 

Rosetta 2 (DE3) As above. Increased 24 25 1000 Sonication 
incubation period may 
increase expression 

Table 4.11: Optimisation of in vivo expression conditions for Rv0950c, Rv3628, and RQ836 in pET28a. 
Cultures grown in terrific broth (TB). 

4.3.4d Large scale expression and purification of Rv3628 

The expression of Rv3628 was scaled-up to produce a sufficient quantity of protein for 

purification by chromatography. The resulting yield was compared with that produced 
from cell-free expression (section 4.2.3d). 

Rv3628 was expressed for 6 hours at 25 'C in Rosetta 2 (DE3). IL of culture was pelleted 

and resuspended in 7.5 ml of ppa-Lysis buffer and the soluble fraction was obtained by the 
French pressure cell method and centrifugation (see section 4.3.2d). The soluble fraction 
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(10 n-fl) was applied to aI ml HisTrap HP Nickel column (Amersham), equilibrated in ppa- 

NiA buffer. Non-bound material was washed in 20 column volumes of ppa-NiB buffer at I 

ml/min with a maximum pressure of 0.3 MPa. Bound protein was eluted with 10 column 

volumes of ppa-NiB buffer and collected in I ml fractions. A large peak in 280 nrn 

absorbance was observed after washing with 5 column volumes of eluant. Five fractions 

were pooled (5 ml) and loaded onto a5 ml HiTrap Desalting column (Amersham) 

equilibrated in ppa-AxA buffer. The sample was applied to the column at 2 ml/min with a 

pressure limit of 0.3 MPa. Finally, the single large peak was pooled (5 ml) and applied to a 

5ml HiTrap QFF anion exchange column (Amersham), equilibrated in the same buffer. 

The column was washed with 5 column volumes of buffer at 5 ml/min, with a maximum 

pressure of 0.5 MPa. Bound protein was eluted in a gradient of 0- 100 % buffer ppa-AxB 
(0 -IM sodium chloride) over 15 column volumes. A large, well defined peak in 

absorbance at 280 nm was observed at 75 % of eluant, was pooled (17 ml) and 

concentration was deten-nined by Bradford assay. 

4.3.5 Cloning and expression of Rv0950c, Rv3628, and Rv3836: Results 

All targets were successfully amplified by PCR and positive clones were isolated. Rv3628 

was expressed in both Rosetta 2 (DE3) and HMS174 (DE3) cells, however total yield was 
dramatically reduced when using the latter (figure 4.17A). Rv3628 was predominantly 

expressed in a soluble form by Rosetta 2 (DE3) cells. Extended incubations of the 

expression media marginally improved solubility of this target. Chromatographic steps 

removed - 95 % of contaminating proteins from the large-scale preparation, yielding 20 mg 

of pure Rv3628 per litre of culture (figure 4.18). Rv0950c (figure 4.17C), and to a lesser 

extent, Rv3836 (figure 4.17B) were also expressed in Rosetta 2 (DE3) cultures, however 

Rv0950c remained insoluble. Solubility of Rv3836 was improved by increasing the 
incubation time to 24 hours. 
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Figure 4.17: 15 % SDS-PAGE from small-scale in vivo expression trials of: (A) R0629; (B) Rv3836; and 

(C) RvO950c, in pET28a (section 4.3.4c). Total extracts from HMS174 (DE3) (H) and Rosetta 2 (DE3) (R) 

cultures incubated for 6 hours at: 25 "C, lanes I&3; 30 'C, 2&4. Rosetta 2 (DE3) cultures incubated at 25 

'C for: 6 hours total (lane 5), insoluble (6), soluble (7); 24 hours uninduced (8), total (9), insoluble (10), 

soluble (11). Molecular weight markers in lanes A Target proteins highlighted in red. 
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4 Rv3628 

Figure 4.18: Fractions from purification of Rv3628, following large-scale production and purification 
(section 4.3.4d). Cultures incubated at 25 'C for 6 hours. Soluble lysate in lane 1; post-affinity 

chromatography, 2; post-gel filtration, 3. Molecular weight markers in lanes A 

4.4 Discussion 

4.4.1 Summary of results from the cell-free system 

Positive clones were obtained for all but five of the targets, however with additional 

experimental time it is likely that mutation-free clones could have been obtained for all 

targets. Mutations can be introduced during amplification by PCR, although the use of 

proof-reading polymerases limits such errors. Also, the inclusion of DMSO during PCR 

for some targets may have induced mutations, making it necessary to sequence more 

clones. 

The cell-free system proved to be a highly successful method for rapidly screening large 

numbers of M. tb targets for expression. Initial screening, using standard reaction 

conditions without additives, resulted in one third of the targets yielding soluble protein. 
For targets where expression was not observed and discrete PCR products were not 
available, inclusion of DMSO during PCR resulted in the correct amplification of PCR 2 

templates, which subsequently led to the production of soluble protein for a further three 
targets. 
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Metals are known to act as structural elements and folding nucleation points for unfolded 

proteins (ITQB[UNL, 2006). Due to the predicted metal requirement for several of the 

targets, it was possible that the lack of such ions within the reaction solution might account 

for insolubility. However addition of metal compounds to the cell-free reactions did 

nothing to improve solubility, with the exception of a marginal improvement in solubility 

for Rv2845c upon addition of zinc. A number of the targets have unknown metal 

requirements and so it may be necessary to screen a larger number of different ions. Also, 

optimisation of ion concentration and the inclusion of proteins involved in metal 

incorporation may be required to induce any noticeable improvement in the expression of 

soluble protein. 

Addition of detergents or molecular chaperones to the standard reaction conditions greatly 

improved solubility for problematic targets. Five previously insoluble targets were made 

soluble by the additon of detergents, and a further four by molecular chaperones, bringing 

the total percentage of targets expressed in a soluble form to 67 %. Considering the 

equivalent success rate for the TBSGC is 30 % (soluble expression obtained from 518 out 

of 1558 targets, as of December 2006), this constitutes a significant improvement. Little 

difference was observed between the two detergents tested, however the dnaJ-dnaK-grpE 

group of molecular chaperones proved to be the most successful in producing soluble M. tb 

proteins (through promotion of correct folding), followed by the groEL-groES pair. Taking 

into account the costs associated with these additives (the preparation of chaperones for use 

in cell-free reactions is time consuming and detergents such as Digitonin are extremely 

expensive) and potential difficulties during their removal, synthesis by these methods may 

only be cost-effective when significant yields are obtained. 

Milligram quantities of soluble protein were obtained for 9 of the 28 original targets 

screened (section 4.2.3), however only two of the newly selected 8 targets gave similar 

results (section 4.2.5). Although some soluble expression was observed for all of the 

previously insoluble targets, by addition of detergents or molecular chaperones to the 

reaction solutions (section 4.2.5c), only Rv2388c was significantly improved. One target, 
RvO950c, was thought to be soluble throughout expression trials. However, upon 

purification by affinity chromatography, the protein was 'lost' suggesting either 
degradation during the purification stage or a misinterpretation of solubility during SDS- 
PAGE analysis. 
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4.4.2 Summary of results from the in vivo system 

Several targets were selected for comparative expression trials using a traditional in vivo 

system, as described in section 4.3.1. Targets were cloned into expression vectors which 

were used to transform two expression hosts, HMS174 (DE3) and Rosetta 2 (DE3). 

Positive clones were obtained for all targets. Whilst both Rv3628 and Rv3545c were 

expressed in HMS174 (DE3), yield was significantly improved by using Rosetta 2 (DE3) 

hosts, and expression of Rv3836 and RvO950c was only achieved using these cells. This is 

likely to be due to Rosetta 2 cells providing tRNA molecules with the unusual codons 

necessary to translate Mycobacterium tuberculosis proteins efficiently (Del Tito et at., 
1995, Rosenburg, 1996, and Novy et al., 2001). No difference in total expression was 

observed between cultures incubated at 25 *C and those at 30 'C, but it seems sensible to 

use lower temperatures in order to facilitate solubility (Novagen, 2006). Whilst Rv3836 

was expressed in a soluble form, overall yield was very low, and RvO950c remained 
insoluble throughout. 

Rv3628 expressed very well without optimisation of the expression conditions. However 

only n-tinimal amounts of soluble Rv3545c were produced and altering the expression 

temperatures (18 - 30 T), incubation times (6 - 24 hours), and host cell (HMS174 and 

Rosetta 2) made little difference to the overall solubility of this target. A literature search 

of homologous P450s (such as Bellamine et al., 1999 and McLean and Cheesman et al., 

2002) found that soluble protein was generally obtained 6 to 24 hours after induction, but 

soluble yields of Rv3545c were extremely low under these conditions and were only 
improved by increasing the incubation to 72 hours. Such extended expression periods are 

only possible in nutrient-rich media such as terrific broth which contains both glycerol and 

a high proportion of yeast extract. The effect of incubation time on Rv3545c expression is 

clearly demonstrated in figure 4.15A, which shows cell pellets after 24 (light brown) and 
72 hours (dark red/brown). 

4.43 Advantages and disadvantages of the cell-free expression system 

One of the major benefits of this system is the ability to express target proteins either 
directly from the PCR product or from constructs generated in just one cloning step (Lesley 

et al., 1991). 'Ibis significantly reduces the amount of time taken to progress from target 

selection to protein expression. Tags to aid solubility or purification are easily incorporated 
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by tailoring PCR primers to the specific requirement. The small volumes of reaction 

solution required to produce quantities of protein sufficient for analysis by SDS-PAGE also 

allow for the initial screening of large numbers of targets in a short time frame. 

Problems associated with the expression of proteins toxic to host cells is not an issue with 

this system, due to the lack of whole cells (Golf and Goldberg, 1987 and Murthy et al., 
2004). Particularly important when attempting to express proteins from species such as M. 

tb, is the ability to translate sequences which utilise non-E. coli codons, and this is another 

advantage of the system, due to the optional inclusion of minor-tRNA's within the reaction 

solution (Chumpolkulwong et al., 2006). Additional benefits are the ease with which 

additives and cofactors can be included in the reaction solutions and subsequently screened 

against target proteins for solubility/correct folding (Betton, 2003 and Murthy et al., 2004). 

Proteins can also be synthesised in a methionine-deficient environment, thus ensuring full 

selenomethionine incorporation when MAD phasing is required for structure determination 

(Kigawa et al., 2002). 

Whilst the cell-free system proved to be a highly successful method for expressing M. tb 

proteins in this study, there are also disadvantages. The system is generally regarded as 
being more expensive to set up than the in vivo method, although the success rate may 

outweigh this cost. High grade reagents and cell extract must be either commercially 

obtained or produced in-house, the latter of which is a time consuming and technically 

challenging process (Murthy et al., 2004). The success achieved during this project was 
facilitated by performing the experiments in a laboratory dedicated to in vitro expression 

systems. Finally, the expression of certain metalloproteins, which are biologically active, 
using this system may not be possible due to a lack of metal incorporation pathways. 
However, many metalloproteins have been successfully expressed using the cell-free 
system, and a recent publication describes an optimised protocol for the expression of zinc- 
binding proteins (Matsuda et al., 2006). 

The cell-free system operates a more high-throughput approach than most traditional 
systems and its potential to screen large numbers of targets is one of its major advantages. 
However, although it is possible to screen many different reaction conditions in an attempt 
to improve negative results, larger starting sample pools clearly result in a greater success. 
Moreover, it seems that targets that express without assistance are more likely to produce 
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satisfactory quantities of protein when synthesised on a large scale. That is not to say it is 

impossible to produce sufficient amounts of these proteins, only that more time would be 

required to optimise the scaling-up of a smaller number of targets, and this must be 

balanced against the cost of such procedures. 

4.4.4 Advantages and disadvantages of the E. coli in vivo expression system 

The key benefit of this system is the ease with which it can be set up and executed in 

virtually any biological laboratory. Standard protocols are well established and the 

necessary reagents are readily available from commercial sources. Additional buffers and 

growth media can be made in-house using standard laboratory chemicals and are easily 

disinfected by autoclaving at high temperatures. This all accounts for the relatively low 

cost required to establish such a system. 

As this method utilises whole living cells, it is often unnecessary to include additives such 

as metals which are required for solubility/folding or activity, as these are available within 

the system. However, when overexpressing metalloproteins the requirement can exceed the 

supply and the additive or a precursor may be included for optimal results. Once positive 

clones have been obtained and a successful expression strategy has been optimised, 

expression can easily be scaled up using glycerol stocks of the original colony and repeated 

whenever necessary to obtain more protein. 

A disadvantage associated with the in vivo system can be the length of time taken to 

progress from gene to protein (Murthy et al., 2004). More than one cloning step is 

generally required, although PCR products can be directly cloned into pET expression 

vectors (Novagen, 2006). Also, it may be necessary to screen a number of vector-host 

combinations to produce target protein. This can make the high-throughput expression of 

targets extremely time consuming and whilst the procurement of reagents and equipment 

may be of minimal cost, such experiments can be financially unviable due to the intensive 

labour required. In vivo methods are however regularly used for high-throughput protein 

production, due to the availability of efficient plasmids, which improve solubility and 
simplify purification, and highly inducible gene expression hosts (Braun and LaBaer, 2003, 
Scheich et al., 2003, and Murthy et al., 2004). 
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As described above, an extensive but often expensive selection of host cells are 

commercially available, optimised for particular stages of cloning and expression. 

Alternatively stocks of host cells can be grown in-house and made competent for 

expression, but the convenience of ready-made cells may be preferred. This comprehensive 

range of cells are generated either by modifications to the host's genome or by transforming 

the bacteria with plasmid DNA, both of which provide mechanisms to aid the soluble 

expression of target proteins. Such modifications may provide the unusual codons required 

to translate a target protein or promote correct folding by enhancing disulphide bond 

formation within the cytoplasm (Novagen, 2004). An even wider selection of bacterial 

plasmids are commercially available which offer a multitude of cloning options. Target 

genes are conveniently inserted into the multiple cloning site of such plasmids and proteins 

can be expressed, together with tags required for signalling or purification, however these 

can also be added by designing suitable primers during PCR. 

Whilst the scaling up of expression conditions is in principle very simple, many litres of 

culture may be required to yield significant quantities of target protein and not all 

laboratories are equipped with such facilities. Target protein may be retained in the 

cytoplasm, exported to the periplasmic space, or secreted into the medium, and extraction 

can form a bottleneck. Mechanical disruption by a French pressure cell can be difficult to 

operate, time consuming, and not suitable for high-throughput purposes. Also, chemical 
lysis methods are not always successful. Finally, purification of target proteins from the 

substantial E. coli contribution can be difficult, particularly when the overexpressed yield is 

low. 

4.4.5 Comparisons between the cell-free and in vivo expression systems 

Whilst Rv3836 was expressed in a soluble form using the in vivo system described, overall 

yield was very low. As with the insoluble RvO950c, further optimisation of the expression 

conditions may have improved this. However, the similar results obtained using the cell- 
free system suggest that improvements may not be possible. 

Twenty milligrams of pure protein per litre of culture was obtained for Rv3628 using the in 

vivo system. Comparing this with the total yield from cell-free synthesis of 27 mg (1.5 mg 
per millilitre of reaction solution), the in vivo system does appear to have the advantage in 
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that the cost and effort required to scale up such a system would be minimal. Another issue 

to raise during this comparison is that of metal incorporation. Rv3628, an inorganic 

pyrophosphatase, requires metals such as magnesium or zinc for enzymatic activity 

(Cooperman and Chiu, 1973 and Lahti and Kolakowski et al., 1990). The X-ray crystal 

structure from protein synthesised using the cell-free method (see chapter 5), reveals the 

lack of these metals and so represents an inactive molecule. Magnesium acetate (9.28 mM) 

was included in the synthesis reaction, however this was clearly not incorporated into the 

protein. Greater quantities of metal ions may have been required, however due to the 

essential requirement of magnesium for RNA polymerase activity, levels of these ions were 

optimised for expression and so alteration may affect overall productivity. Another option 

would be to incorporate metals during crystallisation or to soak the apoenzyme crystals in 

metal solutions prior to data collection. '17hese methods were used to prepare Y-PPase 

(Heikinheimo et al., 1996 and Harutyunyan et al., 1996) and E-PPase (Samygina et al., 
2001) holoenzymes, prior to X-ray data collection, suggesting activating metals were not 
fully incorporated during protein expression. 

The greatest success from this comparative study was the expression of Rv3545c, a 

cytochrome P450 125, which yielded 13 mg of pure protein per litre of culture, and yet was 

predominantly insoluble using the cell-free system. The ability of cell-free systems to 

express active haem proteins is questionable, as there are no mechanisms whereby haem 

can be produced or incorporated into the polypeptide. In living cell systems, a precursor is 

converted to haem by its biosynthetic pathway, which is not possible in in vitro set ups due 

to the lack of whole cells. 
To summarise, the cell-free system was used to rapidly express large numbers of targets, 
however the in vivo system was arguably the more successful. Of the four targets chosen, 
three gave comparable results to those obtained from cell-free synthesis, and the expression 

of Rv3545c was dramatically improved (table 4.12). However, a clear benefit of the cell- 
free system is shown in section 4.2.5c, whereby relatively simple optimisation of small- 

scale reaction conditions yielded partially soluble protein for all of the 9 targets tested. 
Similar results may be obtainable in an in vivo system, although optimisation of expression 

conditions for multiple targets could be time-consuming (Murthy et al., 2004). 
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I Cell-free expression system In vivo expression system 

Target Function Result Yield' Result2 Yield 3 

RvO950c Probable Possibly soluble n/a Insoluble n/a 

metalloprotease (aggregated during 

pufification? ) 

Rv3545c Cytochrome Soluble (with n/a Very soluble (72 90 mg 

P450 125 molecular hour expression) 03 mg/L) 

chaperones) 

Rv3628 -i-norganic Very soluble 26.9 mg Very soluble (6 20 mg 

pyrophosphatase (without additives) (1.5 mg/ml) hour expression) (20 mg/L) 

Rv3836 Zinc Soluble (without 6.0 mg Soluble (24 hour n/a 

metalloprotease additives) (0.3 mg/ml) expression) 

Table 4.12: Comparison between cell free and in vivo systems for the expression of four Mycobacterium 

tuberculosis targets. 'Total yield from large-scale preparation. Text in parenthesis shows the yield per 

millilitre of reaction solution. 2 All soluble proteins expressed in Rosetta 2 (DE3) cells. ITotal yield from 

large-scale preparation. Text in parenthesis shows the yield per litre of culture. 

Due to the lack of whole cells, the cell-free system would suggest fewer host proteins are 

present, which in principle would allow for an easier purification, however this was not 

apparent during this study. A similar number of purification steps were required to remove 

- 95 % of host contaminants, following cell-free expression, as would generally be used 

following in vivo expression. An example is shown in figures 4.7 and 4.18, whereby 

Rv3628 was purified by 3-step chromatography following cell-free expression, and by only 

2-steps following in vivo expression. However the anion exchange step was routinely 

performed after cell-free expression and may not have been necessary. The correct 

engineering of tags which aid purification (such as His-tags) during cloning stages and the 

use of efficient purification resins can be successful in removing the majority of host 

contaminants in a single step, as shown in figure 4.14B. Furthermore, a study comparing 

the expression of 63 proteins from Pseudomonas aeruginosa using E coli-based in vivo and 

in vitro systems, identified a higher proportion of contaminating host proteins for in vitro- 

expressed proteins, following a single-step affinity purification (Murthy et al., 2004). 

151 



Chgpter 4- Production of proteins ftom Mycobacterium tuberculosis 

4.4.6 Additional considerations 

Whilst not an inherent issue with the cell-free system, another problem encountered during 

this study was the inability to replenish protein stocks once experimental time at RIKEN 

had ended. This was due to the lack of specialist equipment and reagents at Daresbury 

Laboratory, required to perform such experiments. This resulted in the use of protein, 

which had been stored for several months, in downstream applications such as 

crystallisation and enzymatic assays. Also shipping the protein from Japan to England took 

considerable periods of time, further increasing the chances of degradation and 

precipitation. 
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Chapter 5- Structure of inorganic Pvrovhosvha (Rv3628) from MycobacteHum 

tuberculosis 

5.1 uction 

inorganic pyrophosphatases (PPases) belong to the phosphatase superfarnily and are 

ubiquitous enzymes, which play an essential role in biosynthetic reactions. PPases catalyse 

the hydrolysis of pyrophosphate (M), a product of reactions such as protein and nucleotide 

synthesis, to orthophosphate (Pi)2. The first PPase X-ray crystal structure was published in 

1981 by Arutiunian et al (PDB code: IPYP). This 3.0 A yeast apoenzyme identified the 

now distinctive oligomeric fold and large polar active site, characteristic of type I PPases. 

it was a further 13 years before the second structure became available, a high resolution 2.0 

A structure of Thermus thermophilus PPase (PDB ID: 2PRD). 

Much of our existing knowledge of this enzyme has been gained in the last few years, 34 

apoenzyme/ligand-bound structures are now deposited in the Protein Data Bank (PDB), 

from nine unique organisms: Escherichia coli (IIPW & IFAJ: Kankare, 1996; IOBW: 

Harutyunyan, 1997; IND & IMJW: Avaeva, 1997 & 1998; H40 & 116T: Samygina, 

2001; ), Saccharomyces cerevisiae (IWGI/IWGJ & IE6A/IE9G: Heikinheimo, 1996 & 

2001; IYPP: Harutyunyan, 1997; 8PRK: Tuominen, 1998; IM38: Kuranova, 2003), 

Bacillus subtilis (IK23: Ahn, 2001; IWPM/IWPN: Fabrichniy, 2004), Streptococcus 

gordonii (IK20, Ahn, 2001; IWPP: Fabrichniy, 2004), Streptococcus mutans (1174: 

Merckel, 2001), Sulfolobus acidocaldarius (IQEZ: Leppanen, 1999), Pyrococcusfuriosus 

(ITWL: Zhou, 2004), Pyrococcus horikoshii (IUDE: Liu, 2004), and Thennus 

thertnophilus (2PRD: Teplyakov, 1994). 19 of these 34 structures were solved in the last 7 

years, predominantly due to advances in genomic sequencing. 

A detailed introduction to inorganic pyrophosphatases is given in section 1.2. The X-ray 

crystal structure of Mtb-PPase is presented here, refined to a resolution of 2.7 A. Analysis 

of the structure and comparisons with a number of the existing structures mentioned above, 

are presented here. 
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5.2 Protein expression and crystallisation 

Mtb-PPase was synthesised using the cell-free expression method outlined in section 

4.2.2g. Crystals were grown at room temperature using the hanging drop vapour diffusion 

method. The protein concentration was 5 mg/ml in CF-E buffer (50 mM NaH2PO4 pH 8.0, 

150 mM NaCl, and I mM DTT). 2 gI of protein was mixed with an equal volume of 

reservoir solution containing 2M ammonium sulphate, 2% v/v PEG 400, and 0.1 M 

HEPES-Na, pH 7.5. Crystals grew in one week to a size of 100 x 200 ýM. The multiple 

crystal shown in rigure 5.1 was separated using a thin brass needle, and the larger of the 

two crystals was used to collect the full dataset. Separation and mounting of the crystal 

were performed by Dr Svetlana Antonyuk at the SRS. 

Figure 5.1: The multiple Mtb-PPase crystal, which was separated and used during data collection. The larger 

of the two crystals (indicated with a broken black arrow) was separated from the smaller crystal (white broken 

arrow) and used to collect data. 
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53 Data collection 

Prior to data collection the crystal was soaked for approximately one minute in a 

cryoprotectant solution consisting of mother liquor and 25 % glycerol, before flash-cooling 

to lOOK in a nitrogen cryostream. X-ray diffraction data were collected on station MAD 

10.1 at the Synchrotron Radiation Source, Daresbury (Cianci et al., 2005) using a Mar CCD 

detector at an X-ray wavelength of 0.979 A. The maximum resolution obtainable was 2.7 
A. The crystal to detector distance was set to 265 mm and data were collected over an 

oscillation angle of I' per image, with an exposure time of 60 seconds per frame. A total 

of 360 images were collected. See figure 5.2 for the first diffraction image. 

5.4 Data processing 

The dataset was processed using HKL2000 (Otwinowski and Minor, 1997), which 
incorporates Denzo for determining the crystal's orientation and performing spot 
integration, Xdisplayf for displaying the diffraction images, and Scalepack to scale and 

merge the data. The space group was determined to be P3221, with unit cell parameters of. 

a= 102.022, b= 102.022, c= 80.812 A; and (x = 90,5 = 90, y= 120'3. A total of 1,234, 

197 reflections were recorded, 13,447 of which were unique. The maximum resolution 

was judged to be 2.7 A, based upon three parameters: data being 98 % complete, with 97 % 

completeness in the outer shell at this resolution; merging R-factors being 16.1 % for the 

whole dataset, and 63 % for the outermost shell; and an intensity to standard deviation of 
intensity ratio, I/a(l), of 6.1 and 1.5 in the outer shell. The overall B-factor was estimated 

using a Wilson plot to be 32.94 A2 (Wilson, 1949). Data collection statistics are given in 

table 5.1 
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Figure 5.2: The first diffraction image from the Mtb-PPase crystal. (A) The whole image, with labels 

representing the resolution shells to 50,10,5, and 2.5 A. (B) A region near to the resolution limit of 2.7 A. 

Image generated using HKL2000 (Otwinowski and Minor, 1997). 
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Resolution range (A) 44.00-2.70 

Space group P3221 

Unit cell parameters a= 102.022, b= 102.022, c 80.812 

(x = 90, P= 90, Y= 120 0 

Redundancy (last shell) 5.6(3.2) 

Average Ilo(I) (last shell) 6.1(1.5) 

Rmerge (%) (last shell) 16.1(63.0) 

Completeness (%) (last shell) 98.0(87.0) 

Reflections 
(Overall) 1,234,197 

(Unique) 13,447 

Wilson B value 32.94 

Table 5.1: Mtb-PPase data processing statistics. 

5.5 Solvent content 

The contents of the asymmetric unit were estimated using the Matthews coefficient 

calculation (equation 5.1). The molecular weight of monomeric Mtb-PPase is known to be 

18.3 kDa. 

Equation 5.1: 
vm = 

Vcell 

-Nmr 

Where V,, jj is the volume of the unit cell, N is the number of monomers in the asymmetric 

unit, and M, is the molecular weight of the protein. The Matthews coefficient was 

calculated to be 2.2 A3 Dal. If three monomers are located in the Mtb-PPase asymmetric 

unit, the associated solvent content is 50 %. 

5.6 Structure solution and refinement 

The structure was solved by the molecular replacement method using MOLREP (Vagin and 
Teplyakov, 1997), as part of the CCP4 suite (CCP4,1994). The 2.2 A crystal structure of a 
monomeric E. coli pyrophosphatase (PDB ID: IFAJ) (Kankare et al., 1996), which shares 
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45 % sequence identity with Mtb-PPase, was used as the starting model. Initially, the most 

plausible solution for only one monomer was determined. This was then inputted as a fixed 

solution during determination of the remaining two monomers within the asymmetric unit. 

This yielded an overall R-factor of 51 % with a correlation coefficient of 39.8 %. 

The model was rebuilt using COOT (Emsley and Cowtan, 2004) and 0 (Jones et al., 1991) 

and refinement was performed using the maximum likelihood method in REFMAC5 

(Murshudov et al., 1997), both using an MAC G5 machine (Apple). Throughout 

refinement PROCHECK (Laskowski et al., 1993) and WHATIF (Vriend, 1990) were used 

to check the model's stereochemistry. 

Initial rigid body refinement, using data in the range of 44 to 3 A, slightly reduced the R- 

factor to 50 % (R-free 50 %) after twenty cycles. Prior to this, 5% of the reflections were 

set aside for determination of the free-R factor (BrUnger, 1992). Medium main chain and 

loose side-chain non-crystallographic symmetry restraints were applied to the three 

monomers in the asymmetric unit, during restrained-positional and individual isotropic 

temperature refinement. With the weighting matrix set to 0.01, the R-factor was further 

lowered to 36 % (R-free 44 %) after 20 cycles. Additional data to the maximum resolution 

of 2.7 A was then subjected to another 20 cycles of refinement, with the weighting term 

increased to 0.02 and 0.03, resulting in R-factors of 34 and 33 % respectively (R-free 44 

and 45 %). Successive cycles of refinement and examination of the model's fit within the 

electron density, with the weighting term set to 0.05, decreased the R factor to 28 % (R-free 

38%). 

The ARP/wARP program within CCP4 (Lainzin, 1993) was then used to identify potential 

solvent peaks. Three cycles of ARP/wARP refinement followed ten restrained cycles, 

resulting in the addition of 42 waters and an R-factor of 23 % (R-free 33 %). The 

modelling of a further 13 water molecules gave an R-factor of 22 % (R-free 32 %). This 

was followed by multiple cycles of maximum likelihood and restrained TLS refinement 
(Winn et al., 2001) and the removal of unfeasible water molecules, resulting in an R-factor 

of 21 % (R-free 30 %). 

In an attempt to improve the R-free, tight non-crystallographic symmetry restraints were 
applied to both the main and side chains. Unfeasible water molecules were also removed, 
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resulting in a final R-factor of 23.2 % (R-free 27.4 %). The final refined model included 36 

water molecules, with an average B-factor of 19.1 A2. Water molecules were only 

modelled when the following criteria were met: well-defined positive peaks were visible in 

both the 2Fo-Fc and Fo-Fc density maps; reasonable hydrogen bonds with protein residues 

or other water molecules, and with acceptable temperature factors in relation to the average 

solvent B-factor. See table 5.2 for a summary of the refinement process and ifigure 5.3 for 

a plot of R-factors as a function of refinement cycle. 

Cycle Maximum R-factor R-free Solvent Description 

number resolution (%) (%) molecules 

1 3 50 50 0 Rigid body refinement 

3 36 44 0 Restrained positional and isotropic 

refinement (weighting term 0.0 1). 

Medium main chain/loose side chain 

NCS restraints 

3 2.7 34 44 0 As above (weighting term 0.02) 

2.7 33 45 0 As above (weighting term 0.03) 

5 2.7 29 37 0 Model rebuild and refinement 

(weighting term 0.03) 

2.7 28 38 0 As above (weighting term 0.05) 

7 2.7 23 33 42 Addition of waters by ARP-wARP 

refinement 

8 2.7 22 32 53 Addition of more waters by ARP- 

wARP refinement 

9 2.7 21 30 44 TLS refinement and removal of 

unfeasible water molecules 

10 2.7 23.2 27.4 36 TLS and tight NCS-restrained 

refinement. Removal of unfeasible 

water molecules 

Table 5.2: The process used to refine the Mtb-PPase crystal structure. 
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Figure 5.3: R-factors (%) as a function of refinement cycle number. The R-factor is shown in blue and the R- 

free in red. 

5.7 Quality assessment 

The stereochemical quality of the model was assessed using PROCHECK (Laskowski et 

al., 1993) and WHATIF (Vfiend, 1990). A Ramachandran plot, generated using CCP4 

(Ramachandran et al., 1963), found 90.3 % (363 residues) of all non-proline or glycine 

residues to be in the "most favoured" regions, with 9.5 % (38 residues) within the 

"additionally allowed" region. Ala145 (chain B) was found within the "generously 

allowed" region. 

The estimated standard uncertainty (ESU) (Cruickshank, 1996) based upon the R-free value 

was found to be 0.417 A. This describes the contribution of experimental data to the 

positional uncertainty of an atom with a B-factor equal to that of the Wilson B value for the 

whole molecule. 

Refinement and model quality statistics are summarised in table 5.3 and the Ramachandran 

plot is shown in figure 5.4. 
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Matthews coefficient (A3 Dal) 2.2 

Solvent content 50 

Protein atoms 3828 

Solvent atoms 36 

Rwork 23.2 

Rfree (%) 27.4 

B value 
Average 

Solvent 

Phosphate 

19.1 

32.1 

30.6 

rmsd bonds 0.012 

rmsd angles 1.362 

Ramachandran plot 
Most favoured regions 

Additionally allowed regions 
Generously allowed regions 

Disallowed regions 

90.3 

9.5 

0.2 

0.0 

E. S. U based upon R-free (A) 0.417 

Table 5.3: Mtb-PPase refinement and model quality statistics. 
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Figure 5A. The final Ramachandran plot for Mtb-PPase following refinement, generated by PROCHECK 

using the CCP4 suite (Ramachandran et al., 1963). See text for description. 

5.8 Analysis and comparison with other inorganic pyrophosphatases; 

5.8.1 Quality of the structure 

The structure of Mtb-PPase was refined to a maximum resolution of 2.7 A, consisting of 

three monomers in the asymmetric unit, each containing one phosphate group within the 

active site. The final model consists of residues Gly7 to Ala166, from a total of 169 

residues in the protein sequence (residues Glyl to Gly7 form a linker sequence, introduced 

by the cell-free synthesis method). The remaining residues at the N-terminus were 
disordered. Side chain density was missing for residues: Lys 143 from Cy onwards (chains 

B&Q; Arg 150 from Cý (C); Arg 159 from C8 (A); Glu 162 from C8 (A & B), and these 

were modelled with zero occupancy. The side chain density for Phel2l (chain Q was 
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partially missing from Cy onwards, and these atoms were modelled with an occupancy of 

0.5. 

The model contains a total of 3,828 protein atoms, 36 water molecules, and 3 phosphate 

molecules, with average B-factors of 19.1 A2 (overall model), 32.1 A2 (solvent atoms), and 

30.6 A2 (phosphate atoms). See figure 5.5 for a plot of the average B-factors for each 

residue. The stereochernical quality of the model was generally good: 90.3 % of all non- 

glycine residues fell within the most favoured region of a Ramachandran plot 

(Ramachandran et al., 1963), with no residues in the disallowed region (figure 5.4). The 

final crystallographic R-factor was 23.2 % and the R-free was 27.4 %. Model quality 

statistics are given in table 5.3. 

30 
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Figure 5.5: A plot of the average amino acid temperature factors for each Mtb-PPase chain: chain A (blue); B 
(red); and C (yellow). Data generated using the BAVERAGE program in CCP4 (CCP4,1994). Residues 
Gly I to Gly7, which form the linker sequence added during cell-free expression, are not included as they were 
not visible in the electron density. 
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5.8.2 Overall structure and oligomeric form 

The asymmetric unit of Mtb-PPase consists of three 18.2 kDa monomers, forming a 

compact non-crystallographic trimer (figure 5.6). The monomers are related by a three- 

fold non-crystallographic symmetry axis and the C(x atoms may be superimposed with root 

mean square deviations (rmsd) of 0.08 A. 

All crystal structures in this chapter were generated using PYMOL (DeLano Scientific), 

and labeled secondary structural elements were defined by PROMOTIF (Hutchinson & 

Thornton, 1996). 

(C 

N 

Figure 5.6: Cartoon representation of the non-crystallographic Mtb-PPase trimer. Secondary structural 
elements are labelled and active site residues are represented as sticks. A nine-strand P-barrel is formed at the 
centre of the tri mer by strands P 1,3, and 6. 
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The topology of the model was analysed using PROMOTIF (Hutchinson & Thornton, 

1996) and is similar to that described for other PPases. The overall fold of each monomer 

is that of a globular oblate shaped molecule, with each monomer forming a highly distorted 

P-baffel consisting of strands 01 and 04 to 7; a ten-residue loop connecting P5 and P6; and 

a 15-residue (x-helix (a2) following strand P8, which caps the end of the barrel (figure 5.7). 

A network of hydrogen bonds support the P-baffel. A second 15 residue a-helix (al), three 

P-strands (P2 to 3 and P8), and two short (x-helices (0 and 4) surround the P-baffel. Both 

long helices ((xl and 2) are strictly conserved in all type I PPases, including the much larger 

32.2 kDa Y-PPase (Heikinheimo et al., 1996). 

Figure 5.7: A cartoon representation of the Mtb-PPase chain A. Secondary structural elements have been 
labelled, with P-sheets shown in blue/cyan and a-helices in red. Characteristic of type I PPases, a highly 
distorted 5 strand P-barrel is formed by strands PI and P4 to 7. 
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Each monomer forms a parallel P-sheet with the contiguous monomer, via main chain 

hydrogen bonds involving residues Va]330-Leu78N and Leu35N-Leu780 on strands ý3 

and P6 of the P-barrel (figure 5.8). This P-sheet extends around the whole core of the 

trimer forming a P-barrel of 9 strands, populated with hydrophobic residues: Leu35 (03)-, 

Leu78, Va179, Ala8O (P6); and Leu69, Pro70, Pro72, Va. 173, Phe74 (C-terminal extension 

of 06). The P-sheet hydrogen bonds are reinforced by ion pair interactions between Aspl I 

and Arg34 across the monomer-monomer interface and by additional hydrogen bonds 

involving Thr 13 and Arg32. A number of close, inter-subunit, hydrophobic contacts exist 

between the aromatic residues Tyr38-Pro7O, Tyr24-Phe74, Phe74-Phe74, and Phe74-Pro75. 

All interactions were identified by the CONTACT program within the CCP4 suite, and 

subsequently checked manually using COOT (table 5.4). 

Figure 5.8: The hydrogen bonds which stabilise the Mtb-PPase trimer, shown here for chains A (pink) and C 
(grey). Relevant residues are shown as sticks and P-sheets as arrows. 
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Chain Residue Chain Residue Interaction Distance 
(A) 

A Aspl 1 081 
082 

082 

B Arg34 M12 

Nil 1 

NY12 

Ion-pair 2.44 

3.30 

2.78 

A Thrl3 Gryl B Arg32 M12 H-bond 2.70 

A GIu53 OF- I B Arg32 M12 H-bond 2.50 

A Pro70 Oy B Tyr38 C82 Hydrophobic contact 3.43 

A Phe74 C81 B Tyr24 CZ Hydrophobic contact 3.77 

A Phe74 Crr, 2 B Phe74 C82 Hydrophobic contact 3.83 

A Phe74 CEI B Pro75 C8 Hydrophobic contact 3.98 

A Lcu78 N B Va133 0 H-bond 2.75 

A Leu78 0 B Leu35 N H-bond 2.85 

A Arg32 M12 C Thr13 071 H-bond 2.65 

A Va133 0 C Leu78 N H-bond 2.81 

A Arg34 NTI I 

NT12 

NT12 

C Aspl 1 082 

081 
082 

Ion-pair 3.53 

2.58 

3.05 

Leu35 N 

A 

A 

B 

Phe74 C82 

Pro75 C-y 

Asp 11 081 

082 

082 

B 

B 
B 

B 

B 

B 

Thrl3 Oyl 

Phe74 C81 

Phe74 CE2 

Phe74 C81 

Leu78 N 

Leu78 0 

C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

Leu78 0 

Phe74 CF-2 

Phe74 C81 

Arg34 Ni12 

Nil I 

N112 

Arg32 NT12 

Tyr24 CZ 

Phe74 C62 

Pro75 C-y 

Va133 0 

Leu35 N 

H-bond 

Hydrophobic contact 

Hydrophobic contact 

Ion-pair 

H-bond 

Hydrophobic contact 

Hydrophobic contact 

Hydrophobic contact 

H-bond 

H-bond 

2.89 

3.76 

3.92 

2.54 

3.47 

2.90 

2.70 

3.62 

3.74 

3.76 

2.75 

2.75 

Table 5.4: Mtb-PPase intra-trimer interactions, measured by CONTACT in CCP4 (Murshudov er al., 1997). 

The non-crystallographic trimers are packed into hexamers, related by twofold 

crystallographic symmetry axes (figure 5.9). Hydrogen bonds are formed between 

symmetry-related subunits A-C and B-B at residues His128NF_2 and Asp135082 (3.05 A). 

Homologous interactions exist in the E-PPase hexamer (Kankare et al., 1996 and Sivula et 
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al., 1999). The lack of strong interactions within the hexamer reflects the ease with which 

dissociation to trimers, occurs at low pH (Schreier, 1980). The overall surface area buried 

in the intra-trimer interface is 552.2 Ik2. 

Figure 5.9: The Mtb-PPase hexamer, generated by applying symmetry operations to the crystallographic 

trimer. The blue/grey structure represents the symmetrical trimer: chain D (dark blue); E (light blue); and F 

(grey); generated from the pink/purple trimer: chain A (deep pink), B (purple); and C (light pink). Secondary 

structural elements are represented as cartoons and phosphate groups as sticks. 

5.8.3 The active site 

Conserved residues which forrn the type I PPase, active site as described in section 1.2.7a, 

are also conserved in Mtb-PPase. The deep Mtb-PPase active site is formed by residues 
located between the C-terminal end of al and the exterior of the P-barrel, and contains the 
13 residues involved in either substrate/metal binding or in catalysis. 
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The active site residues in Mtb-PPase are: Glu15 (located within strand ý1); Lys23 (P2); 

Glu25 (02); Arg37 (P3); Tyr49 (04); Asp64 (05); Asp96 (P7); and Lys98 (P7). Residues 

located in the loops between the P-barrel strands are: Asp59 (P4-05); Asp6l (P4-05); and 

Asp9l (P6-07). Residues Tyr133 and Lys134 are located on the C-terminal of OtI (Tyrl33) 

and on the loop extending from the ccl C-terminus (Lys 134). The 13 active site residues in 

each Mtb-PPase monomer can be superimposed with rms deviations of 0.07 A (chains A& 

B), 0.08 A (chains A&Q, and 0.07 A (chains B&Q. 

5.8.3a The substratelproduct and metal binding sites 

As described in section 1.2.4, PPases require metal ions such as Mg2l' Zn 21 
, and Mn 2+ for 

activity. Although Mtb-PPase was not crystallised in the presence of any such metal, the 

availability of magnesium ions during cell-free expression or cobalt during affinity- 

chromatography may have been sufficient to incorporate into the protein. To determine 

whether magnesium ions were present within the electron density, it was first necessary to 

identify active site residues. This was performed by sequence comparison with Mtb-PPase 

homologues of known structure, and is shown in rigure 5.12 (section 5.8.4a). 

Examination of the electron density in the region of these residues did identify potential 

magnesium1cobalt sites, however upon further investigation these were found to not be 

genuine. Firstly, the distances between the "ion" and surrounding residues were 

predominantly longer than 3 A. Secondly, the residues listed in table 5.5, do not 

correspond with those directly involved in metal binding in Y-PPase or E-PPase (Glu25 

and Asp59,64,91, and 96, Mtb-PPase numbering) (Harutyunyan et al., 1996 and 1997, 
Heikinheimo et al., 1996, and Samygina et al., 2001). Finally, they do not provide the 

negative charge required for such metal coordination. Instead, the positively charged 
residues surrounding this unknown region of density, suggest a phosphate-binding site 
(figure 5.10). This corresponds with data from the Y-PPase structure, where homologous 

residues of those listed in table 5.5 are involved in phosphate binding (Heikinheimo et al., 
1996). Furthermore, residues homologous to Lys23 and Arg37 were proposed (Salminen et 
al., 1995), and later identified (Samygina et al., 2001), as product/substrate binding regions 
in E-PPase. Modelling of water into this region of density yielded a average B-factor of 
6.61 A2, which is significantly lower than the overall B-factor of 19.1 A2 (overall solvent 
B-factor 32.1 A2), suggesting that water does not belong in this position either. 
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Although it is was not possible to distinguish between phosphate (present in the cell-free 

reaction solution in the form of 80 mM creatine phosphate and in the protein storage buffer 

as 50 mM NaH2PO4) and sulphate (present in the crystallisation solution in the form of 2M 

ammonium sulphate) in the electron density maps at this resolution, one phosphate 

molecule per monomer was modelled (figures 5.10 to 5.11), coordinated to the basic 

residues Arg37 and TyrI 33 (table 5.5). 

Homologous residues in Y-PPase (Harutyunyan et al., 1996) and E-PPase (Samygina, 

2001) have been found to bind to phosphate, denoted site PI, however no density was 
found at the P2 location (Lys23 and Tyr49). Whilst the possibility exists that a sulphate 

group may be present (from the crystallisation medium), modelling this group into the 

structure results in significantly elevated B-factors (59.2 A2 for sulphate and 30.6 A2 for 

phosphate), suggesting this may not be the case. Potentially, the phosphate may have 

incorporated strongly enough during cell-free synthesis and subsequent storage in 

phosphate buffer, to prevent substitution of sulphate during crystallisation. 
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L, vs23 

Figure 5.10: The Mtb-PPase active site (chain A) with phosphate modelled into the region of unknown 
density. PI binding sites in Y-PPase are shown in dark blue, P2 sites in light blue, metal coordination regions 
in deep pink, and other active site residues in light pink (Heikinheimo et al., 1996). The 2Fo-Fc electron 

density map is shown, contoured to 1.0 rms. 

Chain Residue Phosphate H-bond bond 

ligand distance (A) 

A Arg37 Nij2 01 3.07 

Arg37 M12 04 2.62 

Tyr133 on Ol 2.62 

B Arg37 NT12 01 2.96 

Arg37 NT12 04 2.65 

Tyr133 Oll 01 2.57 

C Arg37 M12 01 3.05 

Arg37 N712 04 2.68 

Tyr133 On 01 2.64 

Table 5.5: Distances between the modelled product (phosphate) binding sites and their Mtb-PPase ligands for 

each unit of the trimer. Distances measured manually using COOT (Emsley and Cowtan, 2004). 
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Figure 5.11: The active site region of Mtb-PPase. Carbon is represented in grey; oxygen in red; nitrogen in 

blue; and phosphorous in orange. Distances between the phosphate group oxygens and its ligands are labelled 

(chain A). 

5.8.4 Comparisons with type I inorganic pyrophosphatases 

5.8.4a Primary structure 

The Rv3628 protein sequence was obtained from the TBSGC and used to search for 
homologues within both the UniProt and the PDB databases, using the NCBI BLAST2 

blastp software (http: //www. ebi. ac. uk/blastall/index. html). All of the twenty most similar 
sequences, identified from the UniProt database, were from bacterial sources (table 5.7). 

The PDB search identified six unique PPase structures, one of which, yeast PPase, shares 
just 25% sequence identity (table 5.6). This illustrates the low sequence identity between 

prokaryotic and eukaryotic PPases. Despite this, alignment of these six sequences 
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identified 17 conserved residues (figure 5.12), including the 13 active site residues required 

for catalytic activity in type I PPases (see section 1.2.7a). 

Although an X-ray crystal structure is not available for human PPase (H-PPase, NCBI gi 

accession code: 33150672), a sequence comparison was carried out (figure 5.13). Despite 

sharing only 25 % identity with Mtb-PPase, the active site residues were strictly conserved. 

A crystal structure of human PPase is therefore a priority in order to identify structural 

differences, which could lead to the use of Mtb-PPase as a target for rational drug design. 

Species PDB ID Score Length Sequence 

identity (%) 

Pyrococcus I UDE 392 195 49 

horikoshii 

Thermus 2PRD 391 174 51 

thermophilus 

Sulfolobus I QEZ 390 173 45 

acidocaldarius 
Pyrococcus ITWL 377 186 47 

furiosus 

Escherichia coli I FAJ 358 175 45 

Saccharomyces IWGJ 112 286 25 

cerevisiae 

Table 5.6: Output from an NCBI BLAST blastp PDB database search of the Rv3628 gene product, Mtb- 

PPase. Data taken from an output of the fifty highest scoring sequences (all inorganic pyrophosphatases)- 
Sequences listed more than once were removed from the output. 
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Species Protein Length Sequence 

identify 

Mycobacterium tuberculosis Inorganic pyrophosphatase 162 100 

Mycobacterium bovis Inorganic pyrophosphatase 162 100 

Mycobacterium leprae Inorganic pyrophosphatase 162 89 

Mycobacterium paratuberculosis Inorganic pyrophosphatase 162 86 

Rhodococcus sp. Inorganic diphosphatase 163 82 

Mycobacterium flavescens Inorganic pyrophosphatase 161 80 

Mycobacterium vanbaalenii 

(PYR-1) 

Inorganic diphosphatase 161 79 

Mycobacterium sp. (JLS) Inorganic diphosphatase 162 75 

Mycobacterium sp. (MCS) Inorganic diphosphatase 162 75 

Nocardiafarcinica Putative inorganic 

pyrophosphatase 

163 76 

Corynebacterium diphtheriae Inorganic pyrophosphatase 158 68 

Streptomyces coelicolor Inorganic pyrophosphatase 163 68 

Acidothermus cellulolyticus 

(11B) 

Inorganic diphosphatase 161 66 

Kineococcus radiotolerans 

(SRS30216) 

Inorganic diphosphatase 173 67 

Streptomyces avermitilis Putative inorganic 

pyrophosphatase 

163 65 

Thermobifidafusca 

Nocardioides sp. (JS614) 

Corynebacterium efficiens 

Corynebacterium jeikeium 

(K41 1) 

Corynebacterium glutamicum 
(Brevibacterium flavwn) 

Inorganic diphosphatase 

Inorganic diphosphatase 

Inorganic pyrophosphatase 
Inorganic pyrophosphatase 

Inorganic pyrophosphatase 

171 

163 

158 

160 

158 

67 

64 

65 

64 

62 

Table 5.7: Output from an NCBI BLAST blastp UniProt database search of the Rv3628 gene product, Mtb- 
PPase. Data taken from an output of the twenty highest scoring sequences. Sequences listed more than once 
were removed from the output. 
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pi 

Mtb-PPase 

T-PPase (2PRD 51 

Pho-PPaBe (IUDE-A 49 

Pfu-PPaBe (1TWL A 47 

E-PPase (IFAJ 45 li) 

S-PPase (lQEZ-A 45 

Y-PPase (IWGJ_A 25 

02 

-------------------------------- GS-SGSSGMQFDVTIEIPKGQR-NKYEV 26 

-------------------------- ANLKSLPV-GDKAPEVVHMVIEVPRGSG-NKYEY 32 

-------- HHHHHHSSGLVPRGSHMMNPFHDLEP-GPNVPEVVYALIEIPKGSR-NKYEL 50 

------- AHHHHHHGS ---------- NPFHDLEP-GPDVPEVVYAIIEIPKGSR-NKYEL 41 

--------------------------- SLLNVPA-GKDLPEDIYVVIEIPANADPIKYEI 32 

----------------------------- MKLSP-GKNAPDVVNVLVEIPQGSN-IKYEY 29 

TYTTRQIGAKNTLEYKVYIEKDGKPVSAFHDIPLYAI)KENNIFNMVVEIPRWTN-AXLEI 59 

P3 P4 

Mtb-PPase 

T-PPase 

Pho-PPaBe 

Pfu-PPase 

E-PPase 

S-PPase 

Y-PPase 

Mtb-PPase 

T-PPase 

Pho-PPase 
Pfu-PPase 

E-PPase 

S-PPase 
Y-PPase 

DHET--GRVRLD ------ RYLYTPM --- AYPTDYGFIEDTLGD ------------ DGDPL 63 

DPDL--GAIKLD ------ RVLPGAQ --- FYPGDYGFIPSTLAE ------------ DGDPL 69 

DKET--GLLKLD ------ RVLYTPF---HYPVDYGIIPRTWYE ------------ DGDPF 87 

DKKT--GLLKLD ------ RVLYSPF --- FYPVDYGIIPRTWYE ------------ DDDPF 78 

DKES--GALFVD ------ RFMSTAM --- FYPCNYGYINHTLSL ------------ DGDPV 69 

DDEE--GVIKVD ------ RVLYTSM --- NYPFNYGFIPGTLEE ------------ DGDPL 66 

TKEETLNPIIQDTKKGKLRFVRNCFPHHGYIHNYGAFPQT'WEDPNVSHPETKAVGDNDPI 119 

ß5 ß6 ß7 (13 üt4 (11 

DALVLLPQPVFPGVLVAARPVGMFRMVDEHGGDDKVLCVPAG --- DPRWDHVQDIGDVPA 120 

DGLVLSTYPLLPGVVVEVRVVGLLLMEDEKGGDAKVIGVVAE --- DQRLDHIQDIGDVPE 126 
DIKVIMREPTYPLTIIEARPIOLFKMIDSGDKDYXVLAvpvE --- DPYFKDWKDISDVPK 144 
DIKVIMREPVYPLTIIEARPIGLFKMIDSGDKDYXVLAVPVE --- DPYFKDWYDIDDVPK 135 

DVLVPTPYPLQPGSVIRCRPVGVLKMTDEAGEDAXLVAVPHSK-LSKEYDHIKDVNDLPE 128 

DVLVITNYQLYPGSVIEVRPIGILYMKDEEGEDAKIVAVPKDK-TDPSFSNIKDINDLPQ 125 
DVLEIGETIAYTGQVKQVKALGIMALLDEGETDWKVIAIDINDPLAPKLNDIEDVEKYFP 179 

08 oL2 

Mtb-PPase FELDAIKHFFVHYKDLEP--GKFVKAAD ---- WVDRAEAEAEVQRSVERFKAGTH----- 169 

T-PPase GVKQEIQHFFETYTALEAKKGKKVKVTG ---- WRDRKAALEEVRACIARYKG -------- 174 

Pho-PPaBe AFLDEIAHFFKRYKELEG --- KEIIVEG ---- WEGAEAAKREILRAIEMYKEKFGKKE-- 195 

Pfu-PPase AFLDEIAHFFKRYKELOG --- KEIIVEG ---- WEGAEAAKREILRAIEMYKEKFGKYE-- 186 

E-PPase LLKAQIAHFFEHYKDLEK--GKWVKVEG ---- WENAEAAKAEIVASFERAKNK ------- 175 

S-PPase ATKNKIVHFFEHYKELEP--GKYVKISG ---- WGSATEAKNRIQLAIKRVSGGQ ------ 173 

Y-PPase GLLRATNEWFRIYKIPD---GKPENQFAFSGEAKNKKYALDIIKETHDSWKQLIAGKSSD 236 

Y-PPase SKGIDLTNVTLPDTPTYSKAASDAIPPASLKADAPIDKSIDKWFFISGSV 286 

Figure 5.12: Amino acid sequence alignment (Thompson et al., 2000) of Mtb-PPase and type I PPases from 

Thermus thermophilus (T-PPase); Pyrococcus horikoshii (Pho-PPase); Pyrococcus furiosus (Pfu-PPase); 

Escherichia coli (E-PPase); Sulfolobus acidoculdarius (S-PPase); and Saccharomyces cerevisiae (Y-PPase). 

Sequence identity and PDB ID are shown in parenthesis. Conserved residues in all known soluble type I 

PPases are shown in boldface (Sivula el al., 1999). Catalytically essential and phosphate/metal-binding 

residues are shown in red (Y-PPase, Heikinheimo, 1996). Secondary structural information for Mtb-PPase is 

shown above the sequence, as determined by PROMOTIF (Hutchinson and Thornton, 1996). Novel histidine 

active site residues in Mtb-PPase are highlighted in yellow (Tanunenkoski et al., 2005). 
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mtb-PPase 
H-PPase (25 

Mtb-PPase 
H-PPase 

---------------------- GSSG ------------ SSGMQFDVTIZIPKGQRNKYEV 26 
MSGFSTEERAAPPSLEYRVFLKNEKGQYISPFHDIPIYADKDVFHMVVZVPRWSNAKMZI 60 

DHET--GRVRLD ------ RYLYTPM --- AYPTDYGFIEDTLGD ------------ DGDPL 63 
ATKDPLNPIKQDVKKGKLRYVANLFPYKGYIWNYGAIPQTWEDPGHNDKHTGCCGDNDPI 120 

Mtb-PPase DALVLLPQPVFPGVLVAARPVGMFRMVDEHGGDDKVLCVPAG --- DPRWDHVQDIGDVPA 122 
H-PPase 

Mtb-PPase 
H-PPase 

H-PPase 

DVCEIGSKVCARGEIIGVKVL<; ILAMIDEGETDWKVIAINVDDPDAANYNDINDVKRLKP 180 

FELDAIKHFFVHYXDLEP--GKFVKAADWVDRAEAF, AEVQRSVERFKAGTH -------- 169 
GYLEATVDWFRRYKVPD --- GKPENEFAFNAEFKDKDFAIDIIKSTHDHWKALVrKKTN 236 

GKGISCMNTTLSESPFKCDPDAARAIVDALPPPCESACTVPTDVI)KWFHHQKN 289 

Figure 5.13- Amino acid sequence alignment (Thompson et al., 2000) of Mtb-PPase and PPase from Homo 

sapiens (H-PPase, 25 % sequence identity). Conserved residues in all known soluble type I PPases are shown 

in boldface (Sivula et al., 1999). Catalytically essential and phosphate/metal-binding residues are shown in 

red (Y-PPase, Heikinheimo, 1996). 

5.8.4b Overall fold 

No significant variation in the overall monomeric fold of Mtb-PPase was identified in 

comparison with existing prokaryotic PPase structures of comparable size (178 ± 17 

residues). When superimposed, the core tertiary structures of all type I prokaryotic PPases 

are virtually indistinguishable (figure 5.14). Cot atoms of the Mtb-PPase structure (chain 

A) were superimposed onto the structures of several PPases giving n-ns deviations of: 1.04 
A, T-PPase (Teplyakov et al., 1994); 0.94A, Pho-PPase (Liu et al., 2004); 0.93 A, E-PPase 

CaPPI (Samygina et al., 2001); 0.87 A, S-PPase Mg (Leppanen et al., 1999); 0.85 A, E- 

PPase apoenzyme (Kankare et al., 1996); and 0.80 A, Pfu-PPase (Zhou et al., 2006). 

Aligning the Ca atoms (chain A) of the thirteen active site residues alone gave rms 
deviations of: 2.07 A, E-PPase (apoenzyme, 2.15 A); 1.94 A, Pfu-PPase (apoenzyme, 2.2 
A); 1.60 A, T-PPase (S04,2.0 A); 0.89 A, Pho-PPase (apoenzyme, 2.7 A); and 0.82 A, E- 

PPase (CaPPI, 1.2 A). Variation in the orientation of the apoenzymes (Pfu-, Pho-, and E- 

PPase) with Mtb-PPase is a partial result of the Mtb-PPase active site adopting a different 

conformation in the P04-bound state. Conversely, alternate conformations of metal- 
binding residues occur in the calcium-inhibited structure of E-PPase. Aligning the active 

site residues of Mtb-PPase and T-PPase gave a larger rms deviation value than might be 

expected given that both structures have P04/S04 bound. 
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Figure 5.14: Superimposition of three PPase structures (chains A): Mtb-PPase P04 (represented in red); E- 

PPase apoenzyme (yellow) (Kankare et al., 1996); and the Y-PPase (MnPi)2 core, residues 41-230 (blue) 

(Heikinheimo er al., 1996), highlights the striking similarity in the overall fold of type I PPases, despite Y- 

PPase sharing only 25 % sequence identity with Mtb-PPase. The highly distorted, five stranded D-barrel and 

the two large a-helices are clearly conserved within these structures. 

5.8.4c Oligomeric form 

The oligorneric form for prokaryotic type I PPases, described in section 1.2.7c, remains 

conserved for Mtb-PPase, despite intra-trimer interactions involving poorly-conserved 

residues. The Coc atoms of the Mtb-PPase non-crystallographic trimer were superimposed 

onto the S-PPase and Pho-PPase trimers, with rms deviations of 1.30 and 1.49 A, 
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respectively. The typical hexameric arrangement, formed from two dimers, is also 

conserved in Mtb-PPase (figure 5.9). 

5.8.4d Active site 

The active site cavity for PPases which have metal and/or phosphate bound tend to adopt a 

tighter conformation. In particular, residues known to form interactions with these ligands 

are orientated differently so as to allow for closer contacts (Samygina et al., 2001). 

Comparison of these orientations, by aligning individual active site residues (C(x atoms) 
from different PPases, was used to further substantiate the role of these residues in ligand 

binding (table 5.8). Although active site residues are conserved between E-PPase (CaPPi) 

and Mtb-PPase (Pi), conformation of some of these residues differ quite significantly. 

Whilst this may be attributed to the different resolution at which X-ray data were collected 
(1.2 A and 2.7 A, E-PPase and Mtb-PPase respectively), it seems sensible to assume that 
ligand binding would induce a structural shift within the active site. 

5.8.4e Comparison with T-PPase, in complex with sulphate 

Conformational changes within the active sites of Mtb-PPase and other homologous 

structures may be as a result of substrate/product binding, metal incorporation, or due to 
differences in resolution. As described in section 5.8.4b, aligning the Cot atoms (chain A) 

of Mtb-PPase and T-PPase (PDB ID: 2PRD) active site residues showed a greater variation 

than expected, considering the presence of one phosphate/sulphate group in each monomer. 
Firstly, the orientation of the T-PPase S04 differs from the Mtb-PPase P04 group, with the 
Mtb-PPase phosphate being slightly more centralised within the active site, resulting in a 

greater distance between itself and Lys, 134 Ný (0.40 A) (rigure 5.15). However, this is 
likely to be partly due to the different resolution at which the two data sets were collected. 

Of the three PI binding residues, the Arg37 and Lys134 side chains vary the most between 

the two structures. Mtb-PPase Arg37 adopts a flipped conformation at atom NF-, which 
results in N711 facing away from the modelled phosphate. A similar shift is also seen for 

Lys134, whereby the Mtb-PPase CS and CE atoms flip, resulting in a greater distance 
between Ný and the phosphate. Finally, the main chain of Asp96 adopts a more extended 
conformation in T-PPase, with the 061 atom orientated at approximately 90 * to the 
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corresponding atom in Mtb-PPase. Again, these differences may be due to the improved 

resolution at which the T-PPase data were collected. 

Table 5.8: Root mean square deviations (A) from superimposing the 13 conserved active site residues of 

Mtb-PPase with equivalent residues in homologous PPases, using PYMOL (DeLano Scientific). Ligands 

bound to each PPase and the resolution at which data were collected are shown in parentheses. PPi and metal- 

binding residues are highlighted in red and boldface, respectively (Heikinheimo et al., 1996, Harutyunyan et 

al., 1996, and Samygina et al., 2001). Where multiple subunits exist, chain A was used for the alignment. 
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Glu'25 (3 1 

Figure 5.15: Superimposition of Mtb-PPase chain A (shown in teal) and T-PPase S04 (Teplyakov et al., 

1994) (shown in light green) active site residues with high rms deviations between the two structures. 

Interactions with Mtb-PPase residues and the modelled phosphate are shown as black broken lines. 

5.8.4f Comparison with E-PPase, in complex with its natural inhibitor calcium 

Binding of the natural inhibitor, Ca 2+, to E-PPase at the metal binding sites, MI-3, induced 

a structural shift similar to that of Mn 2+ binding (Samygina et al., 2001). Aligning the Ox 

atoms (chain A) of Mtb-PPase and E-PPase (CaPPi) (PDB ID: 116T) active site residues 
identified seven with high rms deviations (> 0.38 A) (table 5.8). The most prominent of 
these deviations are in residues Glu25 and Asp96 (metal binding residues), which align 

with corresponding residues in E-PPase (CaPPi) with rms deviations of > 0.8 A (table 5.8). 

The Glu25 in Mtb-PPase is positioned 1.57 A (C8 to P atoms) further away from PI than in 

the E-PPase structure (rigure 5.16). The side chain is flipped from Cy onwards, with a 
distance of 2.42 A between the two positions of the Cy atom. The E-PPase conformation of 

these residues is also seen in the Y-PPase (MnPi)2 structure, emphasising the role of these 

residues in metal binding. In the E-PPase structure, Asp96 is orientated such that both 08 
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atoms have close contact with a mcdelled calcium, whilst in Mtb-PPase, the 081 faces 

away from this atom. 

Extension of the E-PPase Asp59 main chain towards the active site allows for a 2.75 A 

closer contact between 081 and the modelled calcium, than is evident within the Mtb- 

PPase structure. Also, an extended confon-nation exists for E-PPase Lys23 than in Mtb- 

PPase, allowing for a 1.05 A closer contact with the P2 site, which is not present in the 

Mtb-PPase structure. Finally, both Nil atoms of Arg37 form contacts with the PI site 

within the E-PPase structure. In Mtb-PPase, only N712 interacts with the phosphate group. 

Asp59165) 

A%pW) 1102) 
QCal a 

Cu2 
I-JOI&IFU112501) 

Figure 5.16: Superimposition of Mtb-PPase chain A (shown in teal) and E-PPase CaPPi (Samygina et al., 
2001) (shown in light green) active site residues with high rms deviations. E-PPase calcium atoms are shown 
as spheres. 
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5.8.4g Comparison with Y-PPase 

Superimposing the Ca atoms of Mtb-PPase (chain A) with the Y-PPase (PDB ID: IWGJ) 

core (residues 41 - 230) gave an rms deviation of 2.4 A, whilst superimposing the 13 active 

site residues alone gave an rms deviation of 0.92 A (table 5.8). Similar values are obtained 

when superimposing other prokaryotic PPases with Y-PPase (data not shown), which 

demonstrates the divergence of Y-PPase from prokaryotic orthologues. Y-PPase forms an 

elongated 286 residue subunit with N- and C- terminal extensions which form an additional 

P-sheet and a long P- loop, elements found to be involved in oligomeric interactions 

(Heikinheimo et al., 1996). Aside from these differences, the central core of the Y-PPase 

monomer retains the tertiary fold characteristic of type I PPases, as described previously. 
Unlike all prokaryotic PPases, Y-PPase forms a homodimer stabilised mainly by stacking 

of aromatic rings. Mtb-PPase and Y-PPase share 25 % sequence similarity, with the 17 

explicitly conserved residues accounting for 9 %, explaining why the rms deviation for 

superimposing active site residues alone is significantly lower than that for the monomer as 

a whole. 

5.8.4h Comparison with Mtb-PPase, in space group P6322 

Soon after completion of the Mtb-PPase crystal structure in space group P3221, another 

Mtb-PPase structure was deposited in the PDB, in space group P6322, to a resolution of 1.3 
A (PDB ID: ISXV, Tammenkoski et al., 2005). This was crystallised in the presence of 
1.7 M ammonium sulphate and 100 mM sodium acetate, pH 5.0. The structure was solved 
by molecular replacement using T-PPase as a starting model, with one monomer in the 

asymmetric unit. The structure was refined to a final R-factor of 15.4 % (R-free 16.9 %), 

with 238 water molecules and one sulphate group modelled. Later, another structure 
became available to a resolution of 1.54. A, containing both phosphate and potassium (PDB 
ID: IWCF, Benini and Wilson, to be published). This second structure was produced from 

crystals grown at pH 7.0. The availability of these structures allows a comparison to be 

made with the Mtb-PPase structure described in this chapter. 
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The superimposition of all chain A Ccc atoms of Mtb-PPase P3221 (in this section, referred 

to as P322 1) with Mtb-PPase P6322 pH 5.0 S04 (I SXV) and Mtb-PPase P6322 pH 7.0 K2Pi 

(IWCF), gave rms deviations of 0.35 A and 0.34 A, respectively (rigure 5.17). 

Superimposing the 13 active site residues alone gave nns deviations of 0.48 A (I SXV) and 

0.36 A (IWCF). It seems likely that these differences are at least partially attributed to the 

improved resolution at which the two P6322 structures were collected. To determine the 

contribution to these differences, individual active site residues were superimposed using 

PYMOL (DeLano Scientific) (table 5.9). 

Figure 5.17: Superimposition of three Mtb-PPase structures (chains A): Mtb-PPase P3221 (represented in 
dark blue); Mtb-PPase ISXV (Tarnmenkoski er al., 2005) (light pink); and Mtb-PPase lWCF (Benini and 
Wilson, to be published) (light blue). 
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- Rms deviation 
sidue 

FRe 1SXV (S04) 1.3, & 

P6322 pH 5.0 
1WCF (K2Pi) 1.54N 

P6322 pH 7.0 
Glul5 0.083 0.077 

0.035 0.041 
Glu25 0.004 0.048 
Ar,, 37 0.458 0.464 

Tyr49 0.093 0.073 
Asp59 0.511 0.607 
Asp6l 0.220 0.135 
Asp64 0.084 0.134 
Asp9l 0.165 0.083 
Asp96 0.662 0.800 
Lys98 0.041 0.045 
Tyr133 1.371 1.372 
Lys134 0.220 0.154 

Table 5.9: Root mean square deviations from superimposing the 13 conserved active site residues (chain A) 

of Mtb-PPase P3221 (P04, pH 7.5) with Mtb-PPase I SXV (Tammenkoski et al., 2005) and Mtb-PPase I WCF 

(Benini and Wilson, to be published). Ligands bound to each PPase are shown in parentheses. PPi and metal- 

binding residues are highlighted in red and boldface, respectively. 

Of interest are the observations of Tammenkoski et al. (2005) of two histidine residues 

within the active site of ISXV, His28 and His93, the latter of which interacts with PI. 

These are not found in any type I PPases, but are generally conserved within type 11 PPases 

(Fabfichniy et al., 2006). His93 was not regarded with interest in the Mtb-PPase P3221 

structure as its adopts a less prominent position within the active site, due to an alternate 

confon-nation, which results in a significantly greater distance between itself and the 

modelled phosphate (figure 5.18). In I SXV, there is localised extension of the main, chain 

towards the active site, with the His93 side chain orientated such that the Nrr-2 atom is 

positioned 2.66 A from the sulphate 04. The His93 fing within the Mtb-PPase P3221 

structure is angled such that the N81 atom is the closest to the phosphate group. The 

resulting distance between the histidine NSI and the phosphate 03 group is 5.41 A, clearly 
too long for hydrogen bond formation. This was assumed to be a problem with the lower 
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resolution at which the latter data were collected, however upon inspection of the IWCF 

structure (Benini and Wilson, to be published), a similar conformation was observed, with a 

6.12 A distance between the histidine N81 and the phosphate 04. This is unlikely to be 

caused by the different ions (sulphur/phosphorous) found in the structure, due to their near- 

identical characteristics, or by an error with the I SXV model, due to the resolution at which 

data were collected. Instead this suggests a possible pH-dependence. 

The two crystal structures at more neutral pH (IWCF, pH7.0 and P3221, pH 7.5) did not 

suggest H-bond bond fori-nation with the phosphate groups, whilst the more acidic crystal 

structure, I SXV, identified a 2.66 k interaction with a sulphate oxygen, due to protonation 

of the His93 (Benini and Wilson, 2004). 

0 
K2 

KI 
() 

Figure 5.18: Superimposition of three Mtb-PPase His93 (86) residues (chains A) in relation to the modelled 

phosphate/sulphate groups. Mtb-PPase P3221 (represented in dark blue); Mtb-PPase ISXV (Tammenkoski et 

al., 2005) (dark pink), and Mtb-PPase lWCF (Benini and Wilson, to be published) (light pink). Mtb-PPase 

lWCF potassium atoms are shown as spheres. The 2Fo-Fc electron density map for Mtb-PPase P3221 is 

shown, contoured to 1.0 rms. 

The orientation of His28 remains fairly similar between the three structures. Mutations of 
this residue resulted in a marked decrease in catalytic activity, with the H28K mutation 
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resulting in a four-fold loss in the presence of magnesium (Tammenkoski et al., 2005). 

Interestingly however, activity was increased three-fold in the presence of zinc ions, 

highlighting the non-essential nature of these histidines (Tammenkoski et al., 2005). 

The lWCF structure contains metal ions, however examination of the structure found these 

two potassium atoms do not locate the activating metal binding sites typical of type I 

PPases. Residues involved in metal binding within type 11 PPases do not account for the 

positioning of these ions either, despite the identification of type 11-like active site 
histidines within Mtb-PPase. 

Further conformational differences of interest, within the active site residues of the three 

Mtb-PPase structures, are described here (figure 5.19). The Ne atoms of Arg37 in both 

Mtb-PPase P6322 structures are rotated by approximately 180 ' in comparison with the 

P3221 counterpart, resulting in both Nil atoms facing towards the phosphate/sulphate 

groups. In the P3221 structure, only the N712 group makes contact with the phosphate (2.62 
A). In Y-PPase, both Nil atoms make direct contact with phosphate oxygens, suggesting 
this should also be the case in the P3221 structure. 

The main chain between Gly57 and Asp6l and around Asp96 of Mtb-PPase P3221 is 

slightly twisted, in comparison with the Mtb-PPase P6322 structures. In the lWCF 

structure, the 08 1 group of Asp96 is also 1.36 k closer to the modelled potassium, than in 
the metal-free Mtb-PPase P3221 structure. This residue is known to participate in metal 
binding, and although the position of this potassium ion does not represent a catalytic 
binding site, it is likely that the negative charge of the Asp96 side chain enables 
coordination with this atom. 
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Figure 5.19: Superimposition of active site residues (chains A) with high rms deviations between the three 

Mtb-PPase structures. Mtb-PPase P3221 (represented in dark blue); Mtb-PPase ISXV (Tarnmenkoski et al., 
2005) (teal); and Mtb-PPase lWCF (Benini and Wilson, to be published) (light pink). Mtb-PPase lWCF 

potassium atoms are shown as spheres. Hydrogen bonds between Mtb-PPase P3221 and the modelled 

phosphate, and between Mtb-PPase I SXV and sulphate are shown as black broken lines. 

5.8.5 Structural comparisons with type 11 inorganic pyrophosphatases 

In comparison with the 34 X-ray crystal structures currently available for type I PPases, 

only six type 11 structures exist. These are from three organisms: Bacillus subtilis (Bs- 

PPase), complexed with Mn (Ahn et al., 2001), S04, and MnS04 (both Fabrichniy et al., 
2004); Streptococcus gordonii (Sg-PPase), complexed with MnS04 (Ahn et al., 2001) and 
ZnS04 (Fabrichniy et al., 2004); and Streptococcus mutans (Sm-PPase), complexed with 
MgMnS04 (Merckel et al., 2001). 

Superimposition of the main chain Cot atoms of the Mtb-PPase and Bs-PPase (S04) 

structures (chain A), gave an rrns deviation of 15.89 A, which is expected due to the low 

sequence identity between these two enzymes. As the primary sequences between type I 

and 11 PPases are so distinct (Fabrichniy et al., 2004), sequence analysis was not perfon-ned. 
Bs-PPase forms a functional dimer, with each monomer folding into two distinct domains. 
The larger N-ten-ninal region connects to the smaller C-terminal domain via a six-residue 
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linker. This is in comparison with the biologically active Mtb-PPase hexamer, which forms 

from six, single domain monomers. The Mtb-PPase active site is partially buried within the 

enzyme, with most of the surface residues at the hexamer interface. In Bs-PPase, the active 

site resides within the N- and C-terminal domain interface (flgure 5.20). Within the active 

site of both enzymes is the presence of two histidine residues, which bind to manganese in 

the Bs-PPase (MnSO4) structure. The Mtb-PPase His93 is thought to be analogous to the 

Bs-PPase His98 (Tammenkoski et al., 2005). 
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A 

B 

Figure 5.20: Comparison of the location of Bs-PPase and Mtb-PPase active sites. (A) Bs-PPase (S04) chain 

A: N-terminal domain shown in dark blue, C-terminal domain in cyan; and the linker region in deep pink 

(Fabrichniy er al., 2004). The active site is located at the domain interface, represented by the two active site 

sulphate groups (deep pink sticks). (B) Mtb-PPase (PO4): Chain C is shown as deep pink ribbons and the 

symmetrically-derived chain E, in blue. The active site is located at the hexameric interface, as represented 

by the active site phosphate groups, shown as sticks. 
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5.9 Conclusions 

A type I inorganic pyrophosphatase from Mycobacterium tuberculosis has been over- 

expressed using a cell-free protein expression system, and its three dimensional structure 
has been determined to a resolution of 2.7 A. Sequence analysis highlighted 17 residues 

explicitly conserved throughout type I PPases which form the active site, 13 of which 

participate in substrate/product or metal binding (Sivula et al., 1999). Comparison of the 

structure with other prokaryotic type I PPases highlighted the striking similarity in the 

overall fold and orientation of active site residues. Although a structure for human PPase is 

not available, the already well documented similarity in the fold and conservation of active 

site residues for type I PPases suggest H-PPase may adopt analogous characteristics. This 

is further substantiated by a 52 % sequence identity between H-PPase and the well 

characterised Y-PPase. Whilst Y-PPase and Mtb-PPase share only 25 % identity, the core 

of the much larger Y-PPase monomer can be superimposed onto Mtb-PPase in a similar 

manner to that of prokaryotic PPases. Comparative analysis of the orientation of active site 

residues in Mtb-PPase and various ligand-bound hornologues, emphasised the role of 

specific residues in phosphate and metal binding. 

The higher resolution structure of Mtb-PPase in space group P6322 (I SXV) identified two 

novel active site histidines, one of which, His93, coordinates with the modelled sulphate 

group (Tammenkoski et al., 2005). Such coordination is not visible within the Mtb-PPase 

structure described here (pH 7.5), or in the P6322 (pH 7.0) structure solved by Benini and 
Wilson (to be published), suggesting a pH-dependence. How crucial these histidines are 
for Mtb-PPase catalysis remains to be seen, since mutations of these residues only hamper 

activity in the presence of magnesium (Tammenkoski et al., 2005). They propose that 
His93 may act as a general acid during catalysis in acidic conditions, however further 
investigations are required (Tarnmenkoski et al., 2005). 
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Chapter 6- Characterisation of cytochrome P450 125 (Rv3545c) from MvcobaCteyiUm 

tuberculosis 

6.1 Introduction 

An in-depth discussion of cytochrome P450 background has been described in section 1.3 

and so will not be reiterated here. An interest in P450s has been developed during the 

course of this research, with initial work centring on the crystallisation of the plant 

CYP74C3, hydroperoxide lyase from Medicago truncatula. Despite considerable efforts in 

this area, no crystals suitable for X-ray diffraction were produced and so efforts were 

focused towards the expression and crystallisation of Mycobacterium tuberculosis targets. 

identification of potential targets by literature review identified 22 probable P450s, one of 

which (Mtb-CYP125, encoded by the gene Rv3545c) was of particular interest due to its 

essential nature during in vivo infection in mice (Sassetti and Rubin, 2003) and the lack of 

existing structural information. This target was progressed into cell-free expression trials, 
however gave disappointing results (sections 4.2.4 to 4.2.5). Further attempts at obtaining 

soluble protein were successful using an E. coli expression system (sections 4.3.2 to 4.3.3), 

which allowed for progression into crystallisation trials and characterisation by 

spectroscopy, both of which are described in this chapter. 

Further characterisation of Mtb-CYP125 by computational methods are also described in 

this chapter, to highlight sequence similarities between P450 homologues, and to predict 

secondary structural information and domain architecture. 

All buffers described in this chapter are detailed in appendix 2. 

6.2 Bioinfonmatics 

6.2.1 Introduction 

Bioinformatics can be described as the "mathematical, statistical and computing methods 
that aim to solve biological problems using DNA and amino acid sequences and related 
informatioW' (Fredj Tekaia at the Institut Pasteur). For this purpose, bioinformatics was 

191 



Chgpter 6- Characterisation of cytochrome P450 125 (Rv3545c) from Mycobacterium tuberculosis - 

used to compare homologues from the cytochrome P450 family, and to gain knowledge of 

the organisation of the Rv3545c gene. 

6.2.2 Methods and results 

6.2.2a Homologous protein searches 

The Rv3545c protein sequence was obtained from the Tuberculosis Structural Genomics 

Consortium (TBSGC) and used to search for homologues within both the UniProt and the 

PDB databases using the NCBI BLAST2 blastp software 

(http: //www. ebi-ac. ukfblastall/index. htn-fl). 

The UniProt search provided confirmation that the correct sequence of the Rv3545c gene- 

product had been obtained, by showing a 100 % match with a putative cytochrome P450 

125 from both Mycobacterium tuberculosis and Mycobacterium bovis (table 6.1). Two 

further bacterial Mtb-CYPI 25 homologues were identified in Rhodococcus sp. (RHA 1) and 

Nocardiodes sp. (JS614), with sequence identities of 68 % and 55 % respectively. 

Additional searches using the NCBI database (http: //www. ncbi. nlm. nib. gov) confirmed the 

existence of only four CYP 125 proteins to date. 

The Rv3545c gene product was also found to share 42 % sequence identity with M. tb 
CYP124, encoded by the gene Rv2266. P450 sequences from a further nine species were 
found with sequence identities above 35 %, from four Mycobacterium species, and one 

each from Salinispora, Nocardia, Frankia, Rubrobacter, and Streptomyces. Two 

Mycobactefium Linalool 8-monooxygenase sequences were identified, both with 37 % 

identity. Finally, a hypothetical protein from Mycobacterium paratuberculosis was found 

to share 82 % identity with Rv3545c, and a Nigl) from Streptomyces violaceoniger to share 
35 %. See table 6.1 for a summary of the output. 

The PDB search identified eight unique sequences, whose protein structures are known, and 

which share 26 - 34 % identity with Rv3545c (table 6.2). The highest scoring of which 

was a P450terp from Pseudomonas sp. which shared 29 % sequence identity, demonstrating 

the low identity between P450s from different families. 
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Species Protein Length Sequence 

identify (%) 

Mycobacterium tuberculosis Putative cytochrome P450 125 433 1W 

Mycobacterium bovis Putative cytochrome P450 125 433 100 

Mycobacterium 

paratuberculosis 

Hypothetical protein 416 82 

Mycobacterium vanbaalenii 
(PYR-1) 

Cytochrome P450 419 74 

Mycobacterium sp. (MCS) Cytochrome P450 427 73 

Mycobacterium sp. (KMS) Cytochrome P450 427 73 

Mycobacteriumflavescens 

(PYR-GCK) 

Cytochrome P450 417 74 

Rhodococcus sp. (RHA I) Cytochrome P450 125 471 68 

Nocardia farcinica Cytochrome P450 

monooxygenase 

422 68 

Salinispora tropica (CNB-440) Cytochrome P450 408 58 

Streptomyces avermitilis Cytochrome P450 hydroxylase 414 57 

Nocardioides sp. US614) Probable cytochrome P450 125 413 55 

MYcobacterium tuberculosis Putative cytochrome P450 124 428 42 

Mycobacterium bovis Putative cytochrome, P450 124 428 42 

Mycobacterium sp. (JLS) Linalool 8-monooxygenase 433 37 

Mycobacterium sp. (MCS) Linalool 8-monooxygenase 433 37 

Rubrobacter xylanophilus 
(DSM 9941 / NBRC 16129) 

Cytochrome P450 414 36 

Streptomyces violaceoniger NigD 419 35 

Frankia alni (ACN14a) Putative cytochrome P450 423 36 

Table 6.1: Output from an NCBI BLAST blastp UniProt database search of the Rv3545c gene product, Mtb- 
CYP125. Data taken from an output of the fifty highest scoring sequences. Sequences listed more than once 
were removed from the output. 
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Species tein PDB Score Length Sequence 7 

ID identity (%) 

Pseudomonas sp. Cytochrome P450terp I I CPT 420 428 28 

Streptomyces Cytochrome 2C7X 404 436 34 

venezuelae P450pikC 107LI 

Saccharopolyspora Cytochrome I Z8Q 384 404 30 

erythraea P450eryF 107A I 

Streptomyces Cytochrome P450 2DOE 369 407 31 

coelicolor a3 (2) 158A2 

Sulfolobus Cytochrome P450 1108 357 368 28 

solfataricus CYPI 19 
1 

Fusarium Cytochrome P450nor IEHG 334 403 28 

OxYSPOrUm 
Citrobacter braakii Cytochrome P450cin IT2B 1 331 397 26 

Amycolatopis Cytochrome ILGF 324 398 29 

orientalis P450oxyB 

Table 6.2: Output from an NCBI BLAST blastp PDB database search of the Rv3545c gene product, Mtb- 

CYP125. Data taken from an output of the fifty highest scoring sequences. Sequences listed more than once 

were removed from the output. 

6.2.2b Sequence alignment and secondary structure prediction 

The protein sequence of Mtb-CYP125 was aligned with the homologous proteins identified 

in table 6.2 using ClustalW (Thompson et al., 1994 and www. ebi. ac. uk/clustalw/). 
Secondary structural elements of Rv3545c and the homologous P450terp (Hasemann et al., 
1994) were predicted using the PROF-sec function of PredictProtein (Rost et al., 2003 and 
http: //www. predictprotein. org). The aligned sequences were annotated to include 

secondary structural information of P450terp from both the prediction software and from 

crystallographic experiments, to allow a comparison of the two methods to be made (figure 

6.1). 

Due to the low sequence identity between P450s, the alignment cannot be considered 

complete and a number of key residues may not be marked as being conserved. Those 
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which are, are generally located close to the haem-binding region, and in particular the Cys- 

loop (highlighted in flgure 6.1 with a thick underline). The only explicitly conserved P450 

residue, the cysteinate proximal haem-ligand, is also conserved within Mtb-CYP125 at 

position Cys377. The three residues involved in hydrogen bonding between side chain 

nitrogen atoms and D-ring propionate oxygens in P450terp (Hasemann et al., 1994): 

His124; Arg128; and His375, are also present. Four of the six residues found to form 

extended hydrogen networks with propionate-bound water molecules in P450terp are 

retained (Phe317, Arg318, Tyr341, and His375), however this region is generally less well 

conserved. 

The EXXR motif (Glu305 and Arg308) within the K helix, conserved in most P450s, is 

also conserved in this protein, as is His375 from the "meander" region which forms 

hydrogen bonds with Glu305 homologues in P450BM-3 and P450cam (Peterson and 

Graham-Lorence, 1995). A region of the I helix, structurally conserved in P450BM-3 and 
P450cam, contains a residue essential for catalysis in some P450s, and is present in the 

Mtb-CYP125 sequence (Thr272), together with Glu271 which forms the (E/D)T pair 
described in sections 1.3.7a and 1.3.7c (Aikens and Sligar, 1994 and Tosha et al., 2003). 

PredictProtein predicted 13 discrete a-helical (- 41 %) and 7 P-sheet (- 8 %) regions, 

encoded by the Mtb-CYP125 amino acid sequence. A significant similarity was observed 

for the P450terp secondary structural information derived from both experimental and 

computational methods (rigure 6.1 and Haseman et at., 1994). However the length of 

predicted secondary structure did not always match that of the actual data, and the 

computational method failed to recognise 3 a-helical and 7 O-sheet regions. Despite this, 

an approximation of Mtb-CYP125 secondary structure can be made using the 

computational data, when compared to that of P450terp. Similar secondary structural 

elements are apparent throughout the two proteins, of particular interest is the suggestion of 

an (x-helix at Mtb-CYP125 residues Asp255 to Va1267, a catalytically important region (cd) 

in a number of prokaryotic P450s with known structures (Poulos et al., 1995). 

Surprisingly, no secondary structure was predicted at Mtb-CYP125 residues LyslOl to Val 

I 11, which has been experimentally determined to be involved in substrate binding in 

P450terp, P450BM3, and P450carn (Hasemann et al., 1995), however this was also missing 
from the P450terp prediction. Identical predictions of 0-strand structure at Mtb-CYP125 
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residues Thi-319 to Leu321 and corresponding P450terp residues were identified. This 

region has also been implicated in substrate binding. 

Mtb-CYP125 
P450terp (1CPT 28 
P450pikC (2C7X 34 
P450eryF (1ZBO 30 
CYP158A, 2 (2DOE 31 
CYP119 (1108 28 
P450nor (IEHG 28 
P450Cin (lT2B 26 
P4500xyB (lLGF 29 

mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP15BA2 
CYP119 
P450nor 
P450cin 
P450oxyB 

mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP158A2 
CYP119 
P450nor 
P450cin 
P450oxyB 

Mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP158A2 
CYP119 
P450nor 
P450cin 
P450oxyB 

Mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP15BA2 
CYP119 
P450nor 
P450cin 
P450oxyB 

Mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP158A2 
CYPI19 
P450nor 
P450cin 
P450oxyB 

Continued on page 197. 

CEA' (XA 01-1 

--------- VSWNHQSVEIAVRRTTVPSPNLPPGFDFTDPAIYAERLPVAEFAEI, RSAAP 51 

--------------------- MDARATIPEHIARTVILPQGYADDEVIYPAF KWL RDEQP 39 
MGSSHHHHHHSSGLVPRGSHMRRTQQGTTASPPVýI. GALGQDFAADPYPTYARLRA, EGP 60 

------------------------------ MTTVPDLES--DSFHVDWYRTYAELRETAP 28 

---------------------- MTEETISQAVPPVRDWPAVDLPGSDFDPVLTELMREGP 38 

----------------------------------------------- MYDWFSEMRKKDP 13 

------------------------------ MASGAPSFPFSRASGPEPPAEFAKLRATNP 30 

---------------------------- TSLFTTADHYHTPLGPDGTPRAFFEALRDEAE 32 

---------------------- MSED ---------- DPRPL14IRRQGLDP-ADELLAAGA 27 

51-2 4 01-5 CO, 
IWWNGQDPGKGGGFHDGGFWAITK',,? ý"". 'ýýF, ISRHSDVFSSYENGVIPRFKNDIAREDIEV 111 
LAMAHIEGYDP ------- MWIATKH,,: 1 ý3KQPGLFSNAEGSEILYDQNNF-AFMRSIS 92 
A. HRVRTPEGDE ------- VWLVVGYDRARAVLADPRFSKDWRNSTTPLTEAEAALN---- 109 
VTPVR-FLGQD ------- AWLVTGYDEAKAALSDLRLSSDPKKKYPGVEVEFPAYLGFPE 80 
VTRISLPNGE ------ GWAWLVTRHDDVRLVTND-PRFGREAVMDRQVTRLAPHFIPARG 91 
VYYDG ------------ NIWQVLSYRYTKEVLNNFSKFSSDLTGYHERLEDLRNGKIRFD 61 
VSQVKLFDGS ------- LAWLVTKHKDVCFVATSEKLSKVRTRQGFPELSASGKQAAKAK 83 
TTPIGWSEAYGG ------ HWVVAGYKEIQAVIQNTKAFSNKGVTFPRYETGEFELMMAGQ 86 
LTRVTIGSGADA ---- ETHWMTAHAVVRQVMGDHQQFSTRRRWDPRDEIGGKGIFRPRE 83 

aC ac I CED P3-1 
QR ----- FVMLNMDAPHHTRLRKIISRGFTPRAVGRLHDELQERAQKIAAEAAAAG ---- 162 
GGCPHVIDSLTSMDPPTHTAYR(', I, TLNWFQPASIRKLEENIRRIAQASVQRLLI)FDG --- 149 
------- HNMLESDPPRHTRLRKLVAREFTMRRVELLRPRVQEIVDGLVDAMLAAPD--G 160 
DVRNYFATNMGTSDPPTHTRLRKLVSQEFTVRRVEAMRPRVEQITAELLDEVGDS ---- G 136 
----- AVG --- FLDPPDHTRLRRSVAAAFTARGVERVRERSRGMLDELVI)AMLRAG---P 140 
IP --- TRYTMLTSDPPLHDELRSMSADIFSPQKLQTLETFIRETTRSLLDSIDPRE---- 114 
P ------- TFVDMDPPERMHORSMVEPTFTPEAVKNLQPYIQRTVDDLLEQMKQKGCANG 136 
------------- DDPVHKKYRQLVAKPFSPEATDLFTEQLRQSTNDLIDARIELG ---- 129 
----- LVGNLMDYDPPEHTRLRRKLTPGFTLRKMQRMAPYIEQIVNDRLDEMERAG --- S 135 

CLE , aE (XF (xG 
SGDFVFQVSCELPDýA IA(; LL#GVPQF. L)R(; KLFIIWSNEM*I'GNEDPEYAHIDP --------- 213 
ECDFMTDC-;, I, 'i"! 'P:. IiVVMTALGVPEDDEPI, MLKLTQI)FF ',, HEPDEQAVAAPRQSADEAA 209 
i5MLMESLAWPLPITVISELLGVPEPDRAAFRV-WTDAFVFPDD--PAQAQ 

---------- 208 
VVDIVDRFAHPLPIKVICELLGIVDEKYRGEFGRWSSElLVMDPERAEQRG ---------- 186 
PADLTEAVLSPFPIAVICELMGVPATDRHSMHTWTQLILSSSHG-AEVSE ---------- 189 
-DDIVKKLAVPLPIIVISKIL(; LPIEDKEKFKEWSDLVAFRLGKPGEIFEL --------- 164 
PVDLVKEFALPVPSYIIYTLLGVPFND --- LEYLTQQNAIRTNGSSTAREA --------- 184 
EGDAATWLANEIPARLTAILLGLPPEDGDTYRRWVWAITHVENPEEGAEIF --------- 180 
PADLIAFVADKVPGAVLCELVGVPRDDRDMFMKLCHGHLDASLS-QKRRA ---------- 184 

CtH P5-1 55-2 al 
: '-: 'ýýlAQADID-GEKLS1 _)DEF6FFv'VMLAVAG 269 

ýN ; F7, !, ý PSCPKDDVMSLLANqKl- -GNYIDDK): _lNAlYVAIATAG 268 

----TAMAEMSGYLSRLIDSKRGQDGEDLLSACV SDEDGSRLTSEELLGMAH _iT ILLVAG 264 
---- OAAREVVNFILDLVERRRTEPGDDLLSALIRVQDDDDGRLSADELTSIALVLLLAG 242 
---- RAKNEMNAYFSDLIGLRSDSAGEDVTSLLGAAVGR--DEITLSEAVGLAVLLQIGG 243 
--- GKKYLELIGYVKDHLN ----- SGTEVVSRVVNSNLS ------ DIEKLGYIILLLIAG 210 
---SAANQELLDYLAILVEQRLVFPKDDIISKLCTEQVK-PGNIDKSDAVQIAFLLLVAG 240 
------- AELVAHARTLIAERRTNPGNDIMSRVIMSKID-GESLSEDDLIGFFrILLL4GG 232 
---- ALGDKFSRYLLNMIARERKEPGEGMIGAVVAEYG --- DDATDEELRGFCVQVMLAG 237 

cci ctK ß1-4 ß2-1 
NErlYN. ý, 11'VIM! -1.! ýý'AEHPýYýWF. 1, YK, ý'VPP--1ýTAADRIVRWATP--VTAFQRTALRDYE 325 

326 
HErI'VNLIANGMYALLSHPDQLAALR. ADMTLLDGAVEEMLRYEGP-VESATYRFPýEPVD 323 
FEASVSLIGIGTYLLLTHPDQLALVRRDPSALPNAVERILRYIAP-PETTT-RFAAEEVE 300 
-EAVTNNSGQMFHLLLSRPELAERLRSEPEIRPRAIDELLRWIPHRNAVGLSRIALEDVE 302 
NETTTNLISNSVIDFTRFN-LWQRIR-EENLYLKAIEBALRYSPP--VMRTVRKTKERVK 266 
NATMVNMIALGVATLAQHPDQLAQLKANPSLAPQFVEELCRYHTA-VALAIKRTAKEDVM 299 
IDNTARFLSSVFWRLAWDIELRRRLIAHPELIPNAVDELLRFYGP 

--- AMVGRLVTQEVT 289 
DDNISGMIGLGVLAMLRHPEQIDAFRGDEQSAQRAVDELIRYLTVPYSP-TPRIAREDLT 296 
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mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP158A2 
CYP119 
P450nor 
P450cin 
P450oxyB 

mtb-CYP125 
P450terp 
P450pikC 
P450eryF 
CYP15BA2 
CYP119 
P450nor 
P450cin 
P450oxyB 

P2-2 pl-3 C(K' OLL 
LSGVQIKKG4QRVVMFYRSANFDEEVFQDPFTFNILR- -NPNPHVGFOGTCAHYC I (, ANLA 383 

VRGQNIKRGDRIMLSYP'ANRDEEVFSNPDEFDITR--FPNRHLGE2-Wd2&MS: ; ýýýHLA 383 
LDGTVIPAGDTVLVVLADAHRTPERFPDPHRFDIRR--DTAGHLAFG-HGIHFCIGAPLA 380 

IGGVAIPQYSTVLVANGAANRDPKQFPDPHRFDVTR--DTRGHLSFG-QGIHFCMGRPLA 357 

IKGVRIRAGDAVYVSYLAANRDPEVFPDPDRIDFER--SPNPHVSFG-FGPHYCPGGMLA 359 

LGDQTIEEGEYVRV'WIASANRDEEV'FHDGEKFIPDR- -NPNPHLSFG-SGIHLCLGAPLA 323 

IGDKLVRANEGIIASNQSANRDEEVFENPDEFNMNRKWPPQDPLGFG-FGDHRCIAEHLA 358 

VGDITMKPG4QTAMLWFPIASRDRSAFDSPDNIVIER- -TPNRELSLG-HGIHRCLGAELI 346 

LAGQEIKY, GDSVICSLPAANRDPALAPDVDRLDVTR--EPIPHVAFG-HGVHHCLGAALA 353 

03-3 54-1 P4 -2 P3-2 
RMTINLIFNAVADHMPDLKPISAP---ERLRSGWLNGIKHWQVDYTGRCPVAH--- 
KL, F. MY: ý'F'EELLPKLKSVELSGPPR---LVATNFVGGPKNMP-IR17M -------- 
RLEARIAVRALLERCPDIALDVSPGELVWYPNPMIRGLKALPIRWRRGREAGRRTG 
KLEGEVALRALFGRFPALSLGIDADDVVWRRSLLLRGIDHLPVRLDG --------- 
RLESELLVDAVLDRVPGLKLAVAPEDVPFKKGALIRGPEAL --------------- 
RLF. ARIAIEEFSKRFRHIEILDTEK ---- VPNEVLNGYKRLVVRLKSNE ------- 
KAELT7VFSTLYQKFPDLKVAVPLGKINYTPLNRDVGIVDLPVIF ----------- 
RVEARVAITEFLKRIPEFSLDPNKE--CEWLMGQVAGMLHVPIIFPKGKRLSE --- 
RLELRTVFTELWRRFPALRLADPAQDTEFRLTTPAYGLTELMVAW ----------- 

433 
428 
436 
404 
400 
368 
403 
397 
398 

Figure 6.1: Multiple sequence alignment of Mtb-CYPI 25 homologues, aligned using ClustalW (Thompson et 

al, 1994). Sequence identities to Mtb-CYP125 are shown in parentheses. Key residues are highlighted: 

conserved residues (boldface); explicitly conserved proximal cysteinate ligand (red); generally conserved 

Cys-loop region (thick underline). Underlined residues and annotations correspond to the secondary structure 

of P450terp as determined by X-ray crystallography (Hasemann et al., 1994). Coloured text represents 

predicted secondary structural elements (a-helices in red and P-sheets in blue) for Mtb-CYP125 and P450terp, 

as determined by sequence analysis using the PROF-sec function of PredictProtein (Rost et al., 2003). 

6.2.2c Domain organisation 

The SMART database (genomic mode) was used to characterise the domain architecture of 

the Rv3545c gene product. PFAM domain and signal peptide searches performed on the 

Mtb-CYP125 protein sequence identified only one domain, that of a cytochrome P450. 

This is to be expected as despite requiring a redox partner, only a very few P450s encode 

this on a single polypeptide (figure 6.2), as described in section 1.3.2. 

1 100 200 
I I 

--I 

Figure 6.2: Domain organisation of Mtb-CYP125, taken from the SMART database (http: //smart. embi- 
heidelberg. de/). 
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6.3 Ultra-violet/visible absorption spectroscopy 

6.3.1 Introduction 

Spectroscopic techniques are widely used during the characterisation of haem proteins and 

provide abundant information about the molecule's identity, purity, and specific activity. 

Such methods are also useful in determining oxidation state, estimating spin state, and 

assessing ligand binding (Li, 2001). Spectral measurements of cytochrome P450s are 

especially well established and a number of experiments are discussed further here. 

Due to the highly characteristic shift in maximal absorbance to 450 nm upon binding of CO 

to ferrous P450 (Omura and Sato, 1964), the presence of haem-thiolate proteins can be 

identified by spectroscopy. Binding of substrate ligands can often be inferred from spectral 

changes which occur, due to the accompanying spin-state shifts, induced by the blocking of 

water access to the distal haern iron position (Sligar, 1976 and Li, 2001). It may also be 

possible to identify the oxidation states of a P450 haem iron, although spectral shifts 

between the two states are often negligible (Li, 2001). 

6.3.2 Methods and results 

Mtb-CYP125 was expressed and purified as described in section 4.3.2e and concentrated to 
40 mg/ml (826 Rm) using a Vivapsin-6 30kDa MWCO centrifuge filtration unit. 
Concentration was determined by absorbance at 280 nm, using a theoretical extinction 

coefficient of 62.8 M-lcm-' (TBSGQ. All spectral measurements were performed using 
UVWinLab 2 software on a Lambdal6 dual UV/visible spectrophotometer (both Perkin 

Elmer). Scans were measured from 270 nni to 700 nrn with aI nrn slit width. 
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6.3.2a Spin state and substrate binding 

Initial Measurements 

A spectrum was measured after each purification step. Two identical 500 pl quartz cuvettes 

containing the appropriate purification buffer (table 6.3) were used to blank the system. 

The buffer in one cuvette was replaced with Mtb-CYP125, diluted to 5 ýtm in the same 

buffer, and a spectral scan was measured. 

Mtb-CYP125 purification stage I Buffer 

Nickel-affinity chromatography I 125-NiC 

Gel filtration chromatography 125-GF 

Buffer composition 
500 mM KPi pH 7.4 

300 mM Imidazole 

10 mM 0-mercaptoethanot 

50 mM KPi pH 7.4 

500 mM KCI 

I mM DTT 

Table 6.3: Spectral characterisation of Mtb-CYP125 after each purification step. Buffers shown were used to 

dilute protein stocks and as blanks. 

The nickel-affinity preparation gave a spectrum characteristic of oxidised P450 in a low- 

spin (LS) state (Li, 2001), as defined by a sharp 426 nm Soret peak with fainter cc and P 

peaks at 540 nm and 575 nm (figure 6.3). After further purification by gel filtration, a blue 

type-I shift typical of a high-spin (HS) system was observed (Li, 2001). The Soret peak 

shifted to 392 nm and a small, broader peak at 640 rim, replaced the previous (x and P peaks 

(figure 6.3). A similar shift is also seen in the plant P450, hydroperoxide lyase (HPL), 

from Medicago truncatula (Hughes et al., 2006), and in P450BM-3 (Li, 2001) (see section 

1.3.8). This is thought to be due to a water molecule coordinating to the distal haem-iron 

position in the LS system, which is sterically blocked by the presence of "substrate" in the 

HS system. 
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Wavelength (nm) 

Figure 6.3: UV/visible spectra of Mtb-CYP125 after purification by (1) nickel-affinity chromatography in LS 

form (blue) and (2) nickel-affinity and gel filtration chromatography, in HS form (red). Curves normalised at 

280 rim. 

Inhibition by imidazole 

It was hypothesised that the different buffer components (table 6.3) used during each 

purification step may account for the spectral differences observed. As described in section 

1.3.6a, imidazole acts as an inhibitor of P450s by binding reversibly to the distal site of the 

haem-iron, causing a type-11 red shift in the Soret maximum (section 1.3.8). 

This would account for the LS state of the nickel-affinity preparation in the presence of 300 

mM imidazole. Desalting by gel filtration would, in the absence of substrate, result in the 

transfer of water back to the sixth position. However in the presence of substrate, water 

access is blocked and the haern shifts to a HS fifth co-ordinated system. 

A spectral scan of the nickel-affinity preparation (5 ýtm) was performed using 125-NiC as a 
blank (scan 1, rigure 6.4). A further 5 pm was diluted into imidazole-free buffer (I 25-Ni-1) 

and the spectrum was repeated, using 125-Ni-I buffer as a blank (scan 2). Finally, the Mtb- 
CYP 125 used in scan 2 was diluted to 2.5 ýtm in imidazole buffer (end concentration 300 

mM) and the spectrum repeated using 125-NiC as a blank (scan 3). 
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Removing the imidazole from Mtb-CYP125 resulted in a LS to HS shift, characterised by 

the change in Soret peak from 426 nm to 392 nm. A return to the LS system was 

accomplished by reintroducing imidazole into the system, demonstrating the reversible 

inhibition of Mtb-CYP125 by this compound (figure 6.4). 

Wavelength (nm) 

Figure 6.4: UV/visible spectra of Mtb-CYP125: Inhibition by imidazole. Mtb-CYP125 in: (1) 300 MM 
imidazole buffer, in LS form (blue); (2) diluted into in-tidazole-free buffer, in HS form (red); and (3) 300 MM 
imidzole reintroduced, in LS form (yellow). All curves normalised at 280 nm. 

Identirication of substrate 

The ability of the haem iron to alternate between two spin states suggests that a (pseudo) 

substrate must remain in the system when not bound. As phosphate was included in both 

purification buffers at high concentrations (above 500 mM), it was thought that it might be 

mimicking a natural substrate, blocking access of water to the distal haem. iron position. 

A spectral scan of the gel filtration preparation (5 ýtm) was performed using 125-GF as a 
blank. The same sample was then buffer exchanged into a phosphate-free buffer (buffer 

125-P) using a Vivaspin-6 30 kDa MWCO filtration unit. 125-P buffer was used to blank 

the spectrophotometer. No return to a low-spin system was observed upon dilution of 
phosphate from the system (figure 6.5). 
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Figure 6.5: UV/visible spectra of Mtb-CYP125: Identification of substrate. Mtb-CYP125 in: (1) 500 mM 

phosphate buffer, in HS form (blue); and (2) buffer exchanged into phosphate-free buffer, in HS form (red). 

Curves normalised at 280 mn. 

Cation binding site 

As described in section 1.3.7h, structural characterisation of P450cam identified an increase 

in substrate affinity upon cation binding (Peterson, 1971). Although no such binding site 

has been identified in any other structurally characterised P450 (Li, 2001), it was thought 

that the high concentrations (above 500 mM) of potassium included in the purification 

buffers may be contributing to "substrate" binding affinity. Also, increased salt 

concentrations have been found to induce a spin-shift (low to high-spin) in a P450cam 

(Lange et al., 1980), CY PI A2 (Yun et al., 1996), and CYP2B I (Yun et al., 1998). 

A spectral scan of the gel filtration preparation (5ýtm) was performed using 125-GF as a 
blank. A further 5 gm of Mtb-CYP125 was buffer exchange into a potassium/phosphate- 
free buffer (I 25-K) and a spectrum was obtained using 125-K as a blank. No shift occurred 

upon dilution of potassium and phosphate from the gel filtration preparation of Mtb- 

CYP125 (rigure 6.6). 
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Wavelength (nm) 

Figure 6.6: UV/visible spectra of Mtb-CYP125: Cation binding site. Mtb-CYP125 in: (1) 50 mM KPi, pH 

7.4 + 500 mM KCI, in HS form (blue); (2) buffer exchanged into potassium and phosphate-free buffer, also in 

HS form (red). Curves normalised at 280 nm. 

To see if removal of the two buffer components from the nickel-affinity preparation 

prevented a HS shift upon dilution of imidazole, Mtb-CYP125 (5 ýLm) was buffer 

exchanged into potassium/phosphate/imidazole-free buffer (125-K) and a spectrum 

recorded. Again no spin shift occurred, signifying either strong "substrate" binding or that 

potassium exerts little or no effect on Mtb-CYP125 substrate binding (figure 6.7). 

Wavelength (nm) 

Figure 6.7: UV/visible spectra of Mtb-CYP125: Cation binding site (in the presence of imidazole). Mtb- 
CYP125 in: (1) 500 mM KPi + 300 mM Imidazole, in LS form (blue); (2) buffer exchanged into 

potassiunVphosphate/imidazole-free buffer, in HS form (red). Curves normalised at 280 nm. 
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63.2b CO-binding assay 

To confirm the function of the Rv3545c gene product, inferred through sequence homology 

to be a cytochrome P450, the CO-binding assay was performed (see section 1.3.8). The 

protocol was modified from Nelson (1998), in that dithionite was used to reduce the protein 

prior to inclusion of CO gas. 

Mtb-CYP125 in high-spin state (substrate-bound) 

Briefly, two identical 500 VI quartz cuvettes were sealed with rubber caps and degassed 

with N2- 125-GF buffer (without DTT) was degassed in the same way and used to dilute 

Mtb-CYP125 to 10 Vm in a sealed, degassed flask. A 50 mM sodium dithionite (Sigma) 

solution was made fresh before each experiment in the degassed buffer. Both cuvettes were 
blanked in 500 VI of degassed buffer over a range of 240 to 700 nm. 260 VI of buffer was 

removed from the "sample" cuvette and replaced with 250 41 of HS, substrate-bound Mtb- 
CYP125 (5 [im), and 10 W of the dithionite solution (I mM). The cuvette was incubated 
for ten minutes at room temperature, to allow reduction of the Mtb-CYP125 haem iron. 
The cuvette was then gently bubbled with 5 ml of CO gas, using a syringe. A "blank" 

spectrum was also recorded, identical to that of the "sample" cuvette, except lacking CO. 

Difference spectra were obtained by subtracting the "blank" from that of the "sample" data. 

The spectrum produced from oxidised HS Mtb-CYP125 had a Soret peak at 392 nm with a 
418 nm shoulder (rigure 6.8), which became much broader upon reduction with dithionite. 

The typical Soret peak of ferrous P450s is around 408 nm, so this suggests reduction had at 
least partially occurred (Li, 2001). Incubating the reduced sample with CO for ten minutes 
resulted in the characteristic 450 nm absorbance maximum, together with a distinct 420 nm 

peak of similar size. The difference spectrum offers a more accurate representation of this 
data, as the contribution of reduced Mtb-CYP125 alone is removed from the 420 nm peak 
in the presence of CO. The resultant spectrum illustrates a wide trough at about 392 nm 
with a peak at 450 nm, signifying conversion of Mtb-CYP125 to the Mtb-CYP125-CO 

complex. The peak seen at 420 nm may represent partial conversion of Mtb-CYP125 to the 
inactive cytochrome P420, the value of which is negative due to the broadening of the 
resting P450 Soret peak upon reduction, resulting in a greater absorbance at 420 nm than 
that of the CO-complex. 
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Wavelength (nm) 

Figure 6.8: UV/visible spectra of Mtb-CYP125 (substrate-bound, HS): CO-binding assay. Mtb-CYP125 in: 

(1) ferric state (blue); (2) reduced by I mM sodium dithionite ("blank") (red); (3) ferrous state, bubbled with 5 

ml of CO ("sample") (yellow); (4) the difference spectrum obtained by subtracting the "blank" from the 

"sample" data (green). 

Effect of glycerol on P450 conversion to P420 (substrate-bound) 

Due to the partial conversion of ferrous P450 to its inactive form, P420, in the presence of 
CO, an additional preparation of Mtb-CYP125 was purified in buffers containing glycerol. 
Glycerol is known to protect the hydrophobic region within P450s, thereby limiting the 
damage caused to the proximal cysteinate ligand (Falzon et al., 1986 and Nebbia et al., 
1999). 

IL of Mtb-CYP 125 culture was grown and purified as described in section 4.3.2e, with the 

exception that all buffers contained 20 % glycerol. The protein was concentrated to 826 

ýtrn in 125-GF buffer including 20 % glycerol. Both preparations of Mtb-CYP125 (with 

and without glycerol) were subjected to the CO-binding assay, as described previously. 
Figure 6.9 shows the difference spectra for both preparations. 

Some protection was conferred by including 20 % glycerol in the protein preparation, 
evidenced by a larger P450 to P420 ratio than for the glycerol-free protein, however P420 

conversion was not eliminated entirely. 
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Figure 6.9: UV/visible spectra of ferrous Mtb-CYP125 (substrate-bound, HS) in the presence of CO: Effect 

of glycerol on P450 conversion to P420. Difference spectra of Mtb-CYP125 in: (1) buffer 125-GF (blue) and 

(2) buffer 125-GF + 20 % glycerol (red). 

Effect of time on inactivation of P450 to P420 (substrate-bound) 

To investigate the conversion of P450 to P420 over time, CO-difference spectra were 

recorded at increasing intervals after reduction. 5 ml of CO was bubbled anaerobically into 

the ferric Mtb-CYP125 cuvette, before adding I mM sodium dithionite. Spectra were 

recorded over 0 to 25 minutes. Identical 'blank' spectra, lacking CO, were also recorded. 

Figure 6.10 shows a time-dependent increase in both P420 and P450 species, with no 

obvious conversion of the P450-CO complex to its inactive form. 

206 



Chgpter 6- Characterisation of cytochrome P450 125 (Rv3545c) from Llycobacterium tuberculosis 

0.2 

0.16 

Wavelength (nm) 

Figure 6.10: UV/visible spectra of ferrous Mtb-CYP 125 (substrate-bound, HS) in the presence of CO: Effect 

of time on conversion of P450 to P420. Spectra of Mtb-CYP125 in buffer 125-GF, bubbled with 5 ml of CO. 

Time after reduction by I mM dithionite: 0 min (blue); 4 rrýns (red); 10 mins (yellow); 15 mins (green); 20 

mins (black); and 25 mins (light blue). 

Mtb-CYP125 in low-spin state (substrate-free) 

The CO-binding assay was performed, following nickel-affinity chromatography, using 
Mtb-CYP125 in a substrate-free, low-spin state. Buffer 125-NiC (without P- 

mercaptoethanol) was used as a blank. The redox potential of substrate-free P450 differs 

from that of the substrate complex, as observed by a shift from - 170 to -300 mV in 

P450cam upon loss of substrate (see section 1.3.5) (Sligar and Gunsalus, 1976 and Li, 

2001). In addition to this, inhibitors such as imidazole which bind to the distal haem iron 

position, also induce an increase in redox potential (Ortiz de Montellano and Correia, 

1995). As the redox potential of dithionite is - 550 mV, its ability to reduce the LS 

imidazole-bound Mtb-CYP125 is decreased, in comparison with the HS form. To 

counteract this, 10 mM of dithionite was used to reduce the protein and a spectrum was 
recorded over 0 to 60 minutes in the presence of CO, to ensure full reduction of the P450. 

The spectrum produced from oxidised LS Mtb-CYP 125 exhibits a well-defined Soret peak 
at 426 nm (figure 6.11), with a very slight blue shift upon reduction. Incubating the 
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reduced sample with CO for 25 minutes resulted in a further blue shift to about 420 nm, 

together with the characteristic 450 nrn absorbance maximum. The difference spectrum 

clearly highlights the 426 nni trough together with the 450nm Soret peak, along with a 

negative 420 nm peak. 

Wavelength (nm) 

Figure 6.11: UV/visible spectra of Mtb-CYP125 (substrate-free, LS): CO-binding assay. Mtb-CYP125 in: 

(1) ferric state (blue); (2) reduced with 10 mM sodium dithionite ("blank") (red); (3) ferrous state, bubbled 

with 5 ml of CO ("sample") (yellow); and (4) the difference spectrum obtained by subtracting the "blank" 

from the "sample" data (green). 

6.4 Circular dichroism 

6.4.1 Introduction 

In order to identify secondary structural elements within Mtb-CYP125, and to complement 
data obtained through computational methods (section 6.2.2b), circular dichroism (CD) was 

performed. To enable comparisons to be made with another P450, a CD spectrum of 
hydroperoxide lyase (CYP74C3) from Medicago truncatula (HPL) was also recorded. 

6.4.2 Methods and results 

All CD data were collected on station 12.1 at the Synchrotron Radiation Source, Daresbury. 
The detector was first calibrated using a standard protein solution of cunphosulphonic acid 
(CSA) at a concentration of 10 mg/ml. A blank spectrum of water alone was subtracted 
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from the CSA data. This resulted in a2: I ratio between a negative peak at 192 nm and 

positive peak at 290 nm, characteristic of a successful calibration. Prior to sample 

application, the system was purged with nitrogen gas to prevent absorption of 

contaminating oxygen during data collection. 

Purified HPL was kindly provided by Drs. Richard Hughes and Eric Belfield at the John 

Innes Centre, Norwich. Protein concentrations were determined by absorbance at 290 nrn 

using theoretical extinction coefficients derived from ProtPararn 

(http: //www. expasy. org/tools/protparam. htm]). Mtb-CYP125 and HPL were diluted to 5 

mg/mI in low salt buffer: Mtb-CYP125 in 50 rnM potassium phosphate pH 7.4; and HPL in 

10 mM sodium phosphate pH 7.9. This dilution of ionic strength was necessary to 

decrease the absorption contribution of salt in the "far" UV regions, particularly at 

wavelengths below 200 nm. 30 gl of sample was inserted into a sample cell with a 0.02 

mm pathlength, and secured in a sample holder. The required concentration of protein was 

determined using the following equation: 

Equation 6.1: 

0.1 

C 

Where p= the cell pathlength, c= concentration of protein, and 0.1 refers to the cell 

pathlength used during CSA calibration. 

Data were collected over a complete range of 170 to 260 nm, to incorporate both the "far" 

and "near" UV regions, with an increment of 0.5 nm and a dwell period of 1.0 second. The 

scan resolution was set to I nm to maximise the light passing through the cell at each 
increment. Scans were repeated three times for Mtb-CYP125 and twice for HPL. Blank 

spectra containing buffer alone were performed before each sample scan. 

The blank data were subtracted from the sample, before normalisation using the CSA 

calibration curve, by an in-house data reduction program. The web-based program, 
Dichroweb was then used to analyse the data (Lobley et al., 2002, Whitmore and Wallace, 
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2004, and http-//www. cryst. bbk. ac. uk/cdweb/htnAome. html). Three algorithms were 

used during data analysis: CDSSTR (Compton and Johnson, 1986 and Sreerama and 

Woody, 2000); SELCON3 (Sreerema and Woody, 1993 and Sreerema et al., 1999); and 

CONTINLL (Provencher and Glockner, 1981 and Van Stokkum et al., 1990). Although all 

three methods have been found to be comparable (Sreerama and Woody, 2000), it was 

thought reliability may be improved by comparing outputs. 

The resulting CD data plots for both Mtb-CYP125 and HPL are shown in figures 6.12 and 
6.13. Only one dataset for each protein is shown graphically: Mtb-CYP125 (sample 3, 

table 6.4); and HPL (sample 2, table 6.4). The agreement between experimental and 

optimised datasets is more accurate using CDSSTR for both proteins. This program fits the 

experimental data against an optimised set of CD data points within the database. A 

comparison of the experimental data for Mtb-CYP125 and HPL is shown in flgure 6.14. 

The resulting secondary structural predictions from an average of all three algorithms (and 

from CDSSTR alone) for Mtb-CYP125 are: - 33 %±3.0 (31 %±1.2) (x-helix; - 14 % 

2.6 (14 %±2.5) P-sheet; - 19 %±1.3 (19 %±1 -0) loops/tums; and - 34 % : j-- 2.0 (34 % 

2.0) unordered. 

The resulting secondary structural predictions from an average of all three algorithms (and 
from CDSSTR alone) for HPL are: - 45 %±5.0 (48 %±2.0) a-helix; -9%±6.0 (5 %± 
2.0) P-sheet; - 17 %±3.2 (18 %±0.5) loops/turns; and - 29 %±2.4 (29 %±1.0) 

unordered. 
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Figure 6.12: Graphical output of the experimental (green), optin-dsed (blue), and difference (pink) spectra 
from CD datasets of Mtb-CYP125 (sample 3, table 6.4). The optimýised datasets were determined by: (A) 
CDSSTR; (B) CONTINLL; and (C) SELCON3. 

211 



Chapter 6- Characterisation of cytochrome P450 125 (Rv3545c) from Mycobacterium tuberculosis 

10 

-4 

170 ISO 

Figure 6.13: Graphical output of the experimental (green), optimised (blue), and difference (pink) spectra 

from CD datasets of HPL (sample 2, table 6.4). The optimised datasets were determined by: (A) CDSSTR; 

(B) CONTINLL; and (C) SELCON3. 
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Figure 6.14: Comparison of the experimental CD spectra for Mtb-CYP 125 (blue) and HPL (red). 

Mtb- Analysis CE- 310- P-sheet Turns Loops Unordered Total 

CYP125 method helix helix 

sample 
CDSSTR 0.220 0.080 0.114 0.110 0.090 0.360 1.000 

CONTINLL 0.255 0.091 0.120 0.121 0.082 0.330 0.999 

SELCON3 0.232 0.080 0.125 0.135 1 0.054 0.340 0.965 

2 CDSSTR 0.248 0.068 0.154 0.132 0.055 0.337 0.993 

CONTINLL 0.250 0.070 0.150 0.130 0.070 0.340 1.001 

SELCON3 0.253 0.072 0.148 0.127 0.067 0.334 1.001 

3 CDSSTR 0.250 0.070 0.150 0.120 0.070 0.330 0.990 

CONTINLL 0.268 0.076 0.137 0.127 0.068 0.325 1.001 

SELCON3 0.250 0.066 0.158 0.131 0.053 0.338 0.996 

AVERAGE 0.247 0.079 0.140 0.126 0.068 0.337 0.994 

AVERAGE(%) 24.7 7.9 14.0 12.6 6.8 33.7 99.4 

HPI, Analysis a- 310- P-sheet Turns Loops Unordered Total 

sample method helix helix 

I CDSSI'R 0.360 0.100 0.070 0.140 0.030 0.300 1.000 

CONTINLL 0.317 0.091 0.123 0.121 0.061 0.288 1.001 

SELCON3 0.355 0.088 0.098 0.116 0.045 0.314 1.016 
2 CDSSTR 0.370 0.130 0.030 0.170 0.010 0.280 0.990 

CONTINLL 0.317 0.101 0.111 0.140 0.050 0.280 0.999 
SELCON3 0.386 0.075 0.118 0.102 0.036 0.269 0.986 

AVERAGE 0.351 0.098 0.091 0.132 0.039 0.289 0.999 
AVERAGE(%) 35.1 9.8 9.1 13.2 3.9 28.9 ". 9 

Table 6.4: Analysis from CD measurements of Mtb-CYP125 and HPL from Medicago truncatula using 
CDSSTR, CONTINLL, and SELCON3 via Dichroweb (http: //www. cryst. bbk. ac. uk/cdweb). 
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6.5 Electron paramagnetic resonance (EPR) 

6.5.1 Introduction 

Electron paramagnetic resonance (EPR) was used to confirm the spin-state of Mtb- 

CYP125, determined by comparative analysis of UV/visible spectra with published data 

(section 6.3.2a). Both substrate-free and substrate-bound systems were measured in the 

presence and absence of imidazole, respectively. 

6.5.2 Methods and results 

EPR spectra were collected using a Bruker ESP300E spectrometer fitted with an X-band 

microwave bridge (SuperX, ER 049X), dielectric resonator (ER4118 SPT-NI), and a 

variable temperature liquid helium flow cryostat (Oxford Instruments auto-tuning 

temperature controller ITC503). Spectra were obtained at the EPSRC National Centre for 

EPR Spectroscopy, Manchester, with the help of Dr. Radoslaw Kowalczyk. Mtb-CYP125 

(substrate-bound) was purified as described in section 4.3.2e and concentrated to 96 mg/ml 

(2 mM) in 50 mM potassium phosphate pH 7.4,500 mM potassium chloride, and I mM 
dithioreitol. Data were recorded at 10 K, with a microwave power of 200 mW and a 

frequency of 9.43 GHz. The sample was thawed and 300 mM imidazole was added, 

resulting in an inhibited, substrate-free system (section 6.3.2a). Data were recorded at 30 

K, with a microwave power of 50 mW, at a frequency of 9.38 GHz, due to overloading of 

the signal in the low-spin region at lower temperatures. g-values were estimated using the 

following calculation: 

Equation 6.2: 

g= (h/jiB) v/B 
Where: 

h= Planck's constant 

ji = Bohr's magnetron 
B= the experimental magnetic field 

v= frequency 

The value of (h/gB) during these experiments was 714.4775. 
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At 10 K, the substrate-bound Mtb-CYP125 exhibited a spectrum characteristic of a 

predominantly high-spin (S = 5/2) haem iron system, with corresponding g-values at 8.05, 

3.56, and 1.68 (figure 6.15). Inclusion of the reversible inhibitor, imidazole, which binds 

to the distal haem iron position, resulted in a spin-shift to a low-spin (S = 1/2) system, with 

g-values at 2.47,2.27, and 1.88 (figure 6.16). 
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Figure 6.15: EPR spectrum of Mtb-CYP125 (substrate-bound), measured at 10 K. The corresponding g- 

values, characteristic of a high-spin haem iron system, are labelled. 

Magnetic field (mT) 

Figure 6.16: EPR spectrum of Mtb-CYP125 (substrate-free) inhibited by imidazole (300 mM), measured at 
30 K. The corresponding g-values, characteristic of a low-spin haern iron system, are labelled. 

215 



ycobacterium tuberculosis Chgpter 6- Characterisation of cyLochrome P450 125 (Rv3545c) from M 

6.6 Crystallisation 

6.6.1 Introduction 

Despite the abundance of cytochrome P450s within nature, only 169 structures are available 

within the Protein Data Bank, 45 of which are various forms of the most structurally 

characterised P450, P450cam. P450s are often difficult to crystallise, particularly the 

membrane-bound enzymes, which often require engineering to remove transmembrane 

domains in order to facilitate solubility prior to crystallisation. 

Robotic crystallisation was used to identify initial hits, to enable a large number of 

conditions to be screened rapidly. A smaller number of manual screens were also 

performed, and potential hits were optimised manually. 

6.6.2 Methods and results 

Mtb-CYP125 was expressed and purified as described in section 4.3.2e and concentrated 

using Vivaspin-6 30 kDa centrifuge filtration units. Purity was determined 

spectroscopically with a ratio of 392 nm (Mtb-CYP125, HS) to 280 nm of > 1.0. The 

protein was centrifuged for 5 minutes at 14,000 rpm using a bench-top Eppendorf 

centrifuge at 4 'C, immediately prior to crystallisation, to remove precipitate. All screens 

were set up at room temperature and incubated at 20 'C. Buffer conditions and protein 

concentrations were varied (table 6.5), to increase the number of different conditions 

screened. The HS gel-filtration preparation of Mtb-CYP125 was screened at three 

concentrations (10,20, and 40 mg/ml) in high-salt buffer (B - D, table 6.5), and also at a 
lower ionic strength at 20 and 40 mg/ml (F - G, table 6.5). Crystallisation trials of the 

imidazole-bound nickel-affinity preparation (LS) were also performed, as it was thought 

imidazole-binding may induce a conformational shift conducive to crystal formation (A, 

table 6.5). Finally, the crystallisation conditions from three Mtb-CYP125 homologues 

were also tested, in buffers H to J (table 6.5). 
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preýaration Final Concentration Buffer 

ID chromatography step mg/mI 

A Nickel-affinity 20 500 mM KPi pH 7.4 

300 mM Imidazole 

1w- Gel filtration 40 50 mM M pH 7.4 

500 mM KCI 

C Gel filtration 20 50 mM KPi pH 7.4 

500 mM KCI 

D Gel filtration 10 50 rnM KPi pH 7.4 

500 rnM KCI 

E Gel filtration 20 50 rnM KPI pH 7.4 

20 % Glycerol 

250 rn. M KCI 

F Gel filtration 40 50 mM M pH 7.4 

150 mM KCI 

G Gel filtration 20 50 mM KPi pH 7.4 

150 rnM KCI 

H Get filtration 40 50 rnM KPi pH 
Gel filtration 10 50 rnM Tris-HCI pH 7.4 

Gel filtration to 10 rnM Tris-HCI pH 7.5 

50 rnM NaCl 

Table 6.5: Mtb-CYP125 preparations and buffer conditions used for protein crystallisation. 

6.6.2a Robotic screening 

The broad matrix 96-well screens which were available in our laboratory, were used to 

identify initial hits (table 6.6) (Qiagen, formerly Nextal Biotechnologies). With the 

exception of H to J, all buffer/sample conditions described in table 6.5 were screened 

against these precipitant conditions. Due to the limited quantity of protein retained from 

the nickel-affinity preparation (A, table 6.5), only two 96-well screens were performed 

using this sample. These were the JCSG and PEGS screens, which gave promising results 

using the gel-filtration Mtb-CYP125 preparations (table 6.7 and figure 6.17). 
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Screen Preparation ID' 

Nextal AMS04 B/C/FJF/G 

Nextal Cations B/C/E/F/G 

Nextal Classics B/C/E/F/G 

Nextal Cryo B/C/E/F/G 

Nextal JCSG A/B/C/FJF/G 

Nextal MPD B/C/E/F/G 

Nextal PACT B/CAEIF/G 

Nextal PEGS A/B/C/FJF/G 

Table 6.6: Robotic broad-matrix crystallisation conditions used for initial screening of Mtb-CYP125. 'The 

purification and buffer conditions of the protein, as described in table 6.5. 

200 n] of protein was mixed with an equal volume of precipitant over an 80 VI reservoir, in 

a 96-well sitting-drop plate, using a Screenmaker 96 +8 (Innovadyne Technologies) robot. 
Plates were then covered with a heat-sealable plastic sheet and viewed using a Crystal Pro 

robot with Crystal L. I. M. S. software (both Tritek Corporation) at regular intervals. 

A number of hits were obtained using the PEGS, JCSG, and PACT screens, in the form of 
brown/red clusters of small crystalline plates, which appeared after approximately one 

week (table 6.7 and figure 6.17). Colourless crystals were disregarded due to the intense 

colour of Mtb-CYPI 25 in solution. A requirement for PEG was observed in all hits but the 

overall crystal morphology was largely unaffected by changes in salt content, and no single 

crystals were observed in any condition. The most promising condition from the PEG 

screen was that of 20 % PEG 3350 with 0.2 M ammonium chloride, which gave large 

clusters of plates. Slightly less compacted clusters were obtained when using the lower 

protein concentration of 20 mg/ml for this condition. Increasing the molecular weight of 
PEG to 6000 and including 0.1 M MES pH 6.0, gave better defined and less densely packed 
clusters of crystals, although again no single crystals were visible. 
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Hit Preparation Screen Well Condition Description 

number ID' 

I 

I E PEGS E5 20 % PEG 3350 Multiple tightly 

0.2 M Magnesium packed clusters of 

chloride dark brown needles 

2 C PEGS E9 20 % PEG 3350 Tightly packed 
0.2 M Ammonium cluster of dark brown 

chloride needles 

3 B PEGS E9 20 % PEG 3350 2 tightly packed 
I 

0.2 M Ammonium clusters of dark 

I chloride brown needles 

4 C PEGS E12 20 % PEG 3350 Multiple clusters of 
0.2 M Ammonium iodide brown needles 

B JCSG A5 20 % PEG 3350 Multiple tightly 

0.2 M Magnesium formate packed clusters of 
dark brown needles 

6C PACT B7 0.1 M MES pH 6.0 Large cluster of 
20 % PEG 6000 brown/pink needles 
0.2 M Sodium chloride 

7 

8 

9 

C 

C 

C 

PACT 

PACT 

PACT 

Bg 

B9 

BIO 

0.1 M MES pH 6.0 

20 % PEG 6000 

0.2 M Ammonium 

chloride 
0.1 M MES pH 6.0 

20 % PEG 6000 

0.2 M Lithium chloride 
0.1 M MES pH 6.0 

20 % PEG 6000 

0.2 M Magnesium 

chloride 

Large cluster of 
brown/pink needles 

Medium clusters of 

small brown/pink 

needles 

Less densely packed 

clusters of 
brown/pink needles 

Table 6.7: Main hits obtained from the robotic screening of crystallisation conditions for Mtb-CYP125 using 
broad-matrix Nextal screens. I The purification and buffer conditions of the protein (table 6.5). Refer to 
figure 6.17 for photographs of crystal hits. 
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Figure 6.17: Mtb-CYP 125 crystals obtained from robotic screening, see table 6.7 for descriptions. 

6.6.2b Manual screening 

-A 

Manual screening of suitable conditions for Mtb-CYP125 crystallisation were performed 

using a standard 24-well pre-greased plate, suitable for hanging-drop vapour-diffusion 

crystallisation (VDX plate, Hampton Research). 1 to 2 ýtl of protein was mixed, using a 

pipette, with an equal volume of precipitant on a siliconised cover slip, suspended over a 

500 gi reservoir and incubated at 20 'C. Both commercially sourced (Hampton Research) 

and hand-made screens based upon conditions used to crystallise several homologues were 

performed (tables 6.8 and 6.9). Commercial screens were selected if they included 

conditions which had not been screened during the robotic trials. Only a limited number of 
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manual screens were performed as coloured crystals were identified in the robotic trials, 

and so optimisation of these conditions were priofitised. Mtb-CYP125 was screened at 10 

mg/ml, as a starting concentration for the crystallisation trials. 

No significant hits were produced using the screens described in tables 6.8 and 6.9. 

However small colourless crystals were produced from a number of these conditions, but 

were presumed to be salt as they did not show the deep red/brown colour of the Mtb- 

CYP125 protein. 

Preparation ID' Screen 
D Hamp ton Research Crystal Screen I 
D Hamp ton Research Crystal Screen 2 
D Hamp ton Research Cryo 
D Ham pton Research Salt RX I 
D Ham pton Research Sodium Malonate 

Table 6.8: Manual broad-matrix crystallisation screens used to identify hits for Mtb-CYP 125.1 The 

purification and buffer conditions of the protein (table 6.5). 

Preparation Screen Protein Species Sequence PDB ID 
ID' identity 

with Mtb- 
CYP125 

H 0.1 M Pipes pH 6.4 - 6.8 P450terp Pseudomonassp. 29 "Ic I CPT 
12 - 24 % PEG 12 k 

1 0.1 M MES pH 5.0 - 6.0 CYP 121 Mycobacterium 27% 
0.8 - 3.2 M Ammonium tuberculosis 
sulphate 
0.1 M Sodium cacodylate CYP51 ct- Aývcobacterium 23% 
pH 6.2 - 6.5 sterol tuberculosis 
18-25 %PEG 4k methylase 
10 % Isopropanol I 

Table 6.9: Manual crystallisation screens used during crystallisation trials of Mtb-CYP125, based upon 

conditions used to crystallise homologous proteins. I The purification and buffer conditions of Mtb-CYP125 
234 (table 6.5) 

. Hasemann et al., 1994. Leys et al., 2003. Podust et al., 2004. 

6.6.2c Optimisation 

A number of hits, obtained by robotic screening, were optimised by fine screening of the 
conditions. Predominantly this was done using the manual hanging-drop method, but one 
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screen was set up in a 96-well sitting-drop plate, using a Microlab STARlet (Hamilton 

Research) liquid handler and a Screenmaker 96 +8 (Innovadyne Technologies) robot. 

Precipitant, salt, and pH were varied during this step, together with the concentration of 

protein used and the ratio of protein to precipitant (table 6.10). In the absence of crystals in 

some wells, small clusters of crystals from the robotic screens were used to seed fresh drops 

after 5 to 7 days. Clusters were either crushed using a needle and streak-seeded, or 

transferred intact to a drop using a loop. 

Screening around the initial conditions did not visibly improve crystal morphology and still 

resulted in the growth of multiple crystals (table 6.11 and figure 6.18). A slight 

improvement was observed however by increasing the ammonium chloride concentration to 

0.4 M in the presence of 22 % PEG 3350, which yielded crystals less densely packed than 

previously (optimisation number 1, table 6.11). Increasing the molecular weight of PEG to 

20 k also had a similar effect. In all screens performed, crystals only grew spontaneously 

when fresh protein (stored at 4 'C for <3 weeks, following purification) was used. In some 

cases, seeding could induce the growth of crystals after this time, although after 

approximately 4 weeks, no crystallisation was observed. 
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Optimisation Hit Preparation Screen Methoe Ratio4 

number number I ID 2 

C 15 - 25 % PEG 3350 H-D I: I 
0.1 - OAM Ammonium chloride 

22C 15 - 25 % PEG 3350 H-D 1 :1 
0.1 - 0.4 M Ammonium chloride 
0.1 M buffer pH 4.6 (NaAc), 6.5 
(MES), 7.5 (Hepes), 8.4 ( ris-HCI) 

2C 15 - 24 % PEG 3350 S-D 1: 1 
0.1 - 0.4 M Ammonium chloride 

1 

0.1 - 0.4 M buffer pH 6.5 (MES), 
7.5 (Hepes), 8.5 (Tris-HCI) 

_ A 42C 20 - 25 % PEG 3350 H-D 1: 1 
0.3 - 0.6 M Ammonium chloride 

52C 12 - 25 % PEG 3350 H-D 1: 2 
0.1 - 0.6 M Ammonium chloride 

63B 15 - 24 % PEG 3350 S-D 1 :1 
0.1 -0 .4M Ammonium chloride 
0.1 - 0.4 M buffer pH 6.5 (MES), 

L 

7.5 (Hepes), 8.5 (Tris-HCI) 
77 4C 15 - 25 % PEG 3350 H-D 1: 1 

0.1 - 0.4 M Ammonium iodide 
8 4C 15 - 25 % PEG 3350 H-D 1: 1 

0.1 - 0.4 M Ammonium iodide 
0.1 M buffer pH 4.6 (NaAc), 6.5 
(MES), 7.5 (Hepes), 8.4 (Tris-HCI) 

9 4B 15 - 24 % PEG 3350 S-D 1: 1 
0.1 - 0.4 M Ammonium chloride 
0.1 - 0.4 M buffer pH 6.5 (MES), 

-- 
7.5 (Hepes), 8.5 (Tris-HCI) 

10 4C 15 - 24 % PEG 3350 I S-D 1: 1 
T 

0.1 - 0.4 M Ammonium chloride 0 
0.1 - 0.4 M buffer pH 6.5 (MES), 0 
7.5 (Hepes), 8.5 (Tris-HCI) 

7B 19 - 24 % PEG 6k/8k/ I 20k/20k H-D 1: 1 
0.1 - 0.4 M Ammonium chloride 
0.1 M MES pH 6.0 

12 7 19-24 %PEG 6k/gk/120k/20k H-D 1 :1 
0.1 - 0.4 M Ammonium chloride 
0.1 M MES pH 6.0 

Table 6.10: Optin-tisation of Mtb-CYP125 crystallisation conditions from initial robotic screening hits. 
'Robotic screening hit (table 6.7). 2 Purification and buffer conditions of the protein (table 6.5). 3 The 

crystallisation method used, with "H-D" specifying manual hanging-drop vapour diffusion and "S-D", robotic 

sitting-drop vapour diffusion. 4 The ratio of protein to precipitant. 
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Hit Optimisation Preparation Condition Seeded3 Description 
number number' iD2 
10 1 C 22 % PEG 3350 & 0.4 No Less densely 

M Ammonium chloride packed clusters 
of brown/red 
needles 

11 5 C 23 % PEG 3350 & 0.6 Yes Thin clusters of 
M Ammonium chloride brown needles 

12 12 C 21 % PEG l2k, 0.2 M No Multiple clusters 
Ammonium chloride & of dark brown 
0.1 M MES pH 6.0 needles 

13 12 C 19 % PEG 20k, 0.2 M No Less densely 
Ammonium chloride & packed clusters 
0.1 M MES pH 6.0 of brown/pink 

needles 
14 12 C 22 % PEG 20k, 0.2 M No Thin clusters of 

Ammonium chloride & brown/pink 
0.1 M MES pH 6.0 needles 

15 12 C 23 % PEG 20k, 0.2 M No Small clusters of 
Ammonium chloride & brown/pink 
0.1 M MES pH 6.0 needles 

Table 6.11: Most improved hits from optimisation of Mtb-CYP125 crystallisation conditions. All obtained 

by manual hanging-drop vapour diffusion crystallisation. I The optimisation screen (table 6.10). 2 The 

purification and buffer conditions of the protein (table 6.5). 3 Crystals grown after streak-seeding with 

crushed needle clusters after 7 days (seeds obtained from optimisation number 4, table 6.7). Photographs of 

the crystals are shown in figure 6.18. 

P% 10 

13 Wj 

4 

11 12 

14 1.15 

Figure 6.18: Mtb-CYP125 crystals obtained from manual optimisation of robotic hit numbers 2 and 3 (table 
6.7). No significant change in crystal morphology was observed, although the number of plates per cluster 
were somewhat reduced. Descriptions of crystal conditions are given in table 6.11. 
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6.6.2d X-ray crystallography data collection 

The most promising (least densely packed) clusters of crystals were used for X-ray data 

collection on station MAD 10.1 at the Synchrotron Radiation Source, Daresbury. These are 

listed in table 6.12. In the absence of single crystals, it was necessary to attempt to 

separate the multiple crystals using a needle. Crystals were briefly soaked in a 

cryoprotectant of mother liquor containing 20 % glycerol, mounted using a cryo-loop, and 
flash-cooled to 100 K in a nitrogen cryostream. An X-ray diffraction pattern was collected 

using an exposure time of 90 seconds, from each crystal. Data were collected over an 

oscillation range of 1.0 ', at a wavelength of 1.17 A, with the crystal to detector distance set 

to 300 mm. 

only very weak diffraction was observed from all of the crystals, at a maximum resolution 

of 3A for hit number 2 (table 6.12). It was not possible to separate the crystals entirely 

and so multiple-crystal diffraction was also observed. In an attempt to improve diffraction, 

the cryostream was interrupted briefly to enable annealing of the crystal to occur. This 

produced a slightly more defined diffraction pattern for hit number 7 (table 6.12), to a 
maximum resolution of 3A (figure 6.19), as identified using HKL2000 (Otwinowski and 
Minor, 1997), however it was not possible to reproducibly deten-nine unit cell parameters. 
Additional cryoprotectants were also tested, however these did not improve the diffraction 

quality. 

Hit number' Preparation ID 2 Condition 

2 C 20 17( PEG 3350 & 0.2 M Ammonium chloride 
3 B 20 % PEG 3350 & 0.2 M Ammonium chloride 
5 B 20 % PEG 3350 & 0.2 M Magnesium formate 

6 C 20 % PEG 6k, 0.2 M Sodium chloride & 0.1 M MES pH 6.0 
7 C 20 % PEG 6k, 0.2 M Ammonium chloride & 0.1 M MES pH 

6.0 

8 C 20 % PEG 6k, 0.2 M Lithium chloride & 0.1 M MES pH 6.0 

9 C 20 % PEG 6k, 0.2 M Magnesium chloride & 0.1 M MES pH 
6.0 

10 22 % PEG 3350 & 0.4 M Ammonium chloride 
C 23 % PEG 3350 & 0.6 M Ammonium chloride 

Table 6.12: Mtb-CYP125 crystals used during X-ray data collection. 'Robotic screening hit (tables 6.7 & 
2 6. lIandflgures6.17&6.18). Purification and buffer conditions of the protein (table 6.5). 
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Figure 6.19: The weak diffraction pattern generated from multiple Mtb-CYP 125 crystals grown in 20 % PEG 

6000,0.2 M ammonium chloride, and 0.1 M MES pH 6.0 (hit number 7, table 6.12). The whole image is 

shown in (A) and (B) shows a region close to the maximum resolution limit of 3 A, where a number of very 

weak diffraction spots are just visible. Figure produced using HKL2000 (Otwinowski and Minor, 1997). 

6.7 Discussion 

6.7.1 Comparison of P450 sequences 

From the homology searches performed in section 6.2.2a, CYP125 was identified in two 

other non-Mycobacterial species, Rhodococcus sp. (RHAI) and Nocardiodes sp. (JS614), 

the latter shares only 55 % sequence identity with Mtb-CYP125. The unknown protein 
from Mycobacterium paratuberculosis may share the same functional annotation as Mtb- 

CYP125 due to the high sequence identity between the two proteins. No three-dimensional 

structures of proteins from the CYP125 family exist to date, highlighting the need for 

structural information regarding Mtb-CYP125. 

Alignment of Mtb-CYP125 with P450 homologues of known structure identified conserved 
regions of catalytic and architectural importance, most notably around the Cys-loop. This 

strong conservation suggests the region within Mtb-CYP125 will exhibit a structure similar 
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to that found in other P450s, such as P450eryF (Cupp-Vickery et al., 2001). The 

identification of a threonine residue (Thr272) within the probable I-helix region of Mtb- 

CYP125 suggests this enzyme does not require a water molecule to stabilise the oxy-ferryl 

bond, as is the case for P450eryF (Cupp-Vickery and Poulos, 1995 and Poulos et al, 1995). 

Furthermore, conservation in Mtb-CYP125, of polar/charged residues involved in haem 

coordination in a number of P450s, also suggests a similar configuration (see section 

1.3.7g). The lack of homology in regions implicated in substrate access and binding is 

common in P450s, reflecting the large number of different substrates metabolised by these 

enzymes. 

6.7.2 Secondary structure 

Circular dichroism was used to corroborate secondary structural information gained from 

bioinformatics methods. Prediction software such as PredictProtein can identify potential 
localised structure for an idealised sample. CD, however, cannot be used to identify 

specific regions, but does provide a more accurate representation of the protein in its 

existing state. This partially explains the differences observed between the two methods, 

whereby CD (all algorithms) and PreditProtein calculated Mtb-CYP125 to contain 33 and 
41 % a-helix and 14 and 8% O-sheet, respectively (table 6.4). Apart from these 
differences, both suggest a predominantly helical structure, which is to be expected for a 

cytochrorne P450 (Poulos et al., 1987 and Ravichandran et al., 1993). 

Analysis of the CD measurements using three algorithms, calculated HPL to contain an 

average of - 45 % a-helix and just -9% P-sheet. Figure 6.14 clearly shows two troughs, 

characteristic of helical structure, present at - 210 and 225 nm within the HPL sample, 
which are much less prominent within Mtb-CYP125. Increased helical content has also 
been observed in two Mtb-CYP125 homologues: greater than 50 % in Mtb-CYP121 
(McLean and Cheesman et al., 2002); and - 44 % in CYPI 19 from S. solfataricus (Maves 

and Sligar, 2006), further suggesting that the CD-determined helical content of Mtb- 
CYP125 is lower than expected. Partial degradation of the sample during storage at 4T 

may account for some of this discrepancy, as the content of unordered structure (~ 34 %) 

was slightly higher than in the HPL sample (- 29 %). 
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An alternative explanation is described in section 1.3.8, where Yun et al. (1996) identified 

an increased a-helical content of CYPIA2 in the presence of increasing ionic strength. 

Initial measurements in the absence of sodium chloride yielded just - 30 % a-helix content, 

similar to the result obtained for Mtb-CYP125, which was also measured in an low salt 

envirom-nent (50 mM potassium phosphate, pH 7.4). Inclusion of 0.1 M sodium chloride in 

the CYPIA2 sample increased the value to - 49 %. This may account for the low, CD- 

determined, helical content of Mtb-CYP125. 

6.73 Effect of "substrate" on spin-state 

The ability of Mtb-CYP125 to alternate between spin-states, in otherwise identical buffer 

systems, upon reversible inhibition by imidazole, is of interest due to the unknown nature 

of its substrate. Since the main buffer component, phosphate, was found not to have an 

effect on spin state when diluted out, whatever compound is mimicking a natural substrate, 

must bind to the protein with high affinity to remain within the system when not bound 

during affinity-cbromatography. Alternative suggestions are that the "substrate" is retained 
from this purification step and binds to Mtb-CYP125 during desalting (of imidazole) by 

gel-filtration, or that the "substrate" binds to a co-purifying protein. In either case it seems 

unlikely that this compound represents a native substrate, unless a complex was formed 

within the E. coli host cell during expression. The action of phosphate on altering the spin 

state cannot, however, be ruled out entirely and may require competitive dilution by another 

compound. 

Ionic strength is known to play an important role in the catalytic activity of some P450s 

(Yun et al., 1996) and high concentrations of sodium chloride have been found to stabilise 
these enzymes by preferential hydration (Timasheff and Arakawa, 1989). Spectral shifts, 
indicating alterations in spin-state, have been observed in a number of P450s in the 

presence of high salt concentrations (Yun et al., 1999). However, removal of both 

phosphate and potassium chloride from the high-spin Mtb-CYP125, did not result in a 

return to the resting, low-spin system. This suggests either strong "substrate" binding or 
that potassium exerts little or no effect on the binding of substrate to Mtb-CYP125. As an 
effect of potassium on substrate binding affinity has, to date, only been found in P450cam, 

the latter seems most likely (Peterson, 1971, Poulos et al., 1997, and Mueller et al., 1995). 
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EPR measurements of Mtb-CYP125 (substrate-bound) resulted in a spectrum characteristic 

of a predominantly high-spin haem iron system. The g-values (8.05 g,, 3.56 gy, 1.68 g") 

were consistent with those published for P450cam in the presence of D-camphor (7.85, 

3.97,1.78) (Tsai et al., 1970 and Lipscomb, 1980). Similar g-values were also obtained 

from the HPL spectrum, however this sample was deemed to be substrate-free by the 

authors (8.03,3.51,1.68) (Hughes et al., 2006). 

Inclusion of imidazole shifted the spin state to low-spin, with g-values (2.47,2.27,1.88), 

similar to the substrate-free low-spin P450carn (2.45,2.26,1.91), P450BM-3 (2.42,2.26, 

1.96) (Miles et al., 1992), and Mtb-CYP121 (2.48,2.25,1.90) (McLean et al., 2005). 

Again these values correspond to those identified in the low-spin HPL system, however 

substrate was present in this sample (2.39,2.24,1.93) (Hughes et al., 2006). Overall, these 

data confirm the Mtb-CYP125 spin-states of substrate-bound (high-spin) and substrate-free 

(low-spin) systems, as determined by UV/visible spectroscopy. 

6.7.4 CO-binding assay 

Together with the UV/visible spectra of ferric Mtb-CYP125 described in section 6.3.2a, the 

CO-binding assay of ferrous protein confirmed the cytochrome P450 annotation of this 

enzyme. In both the substrate-free and substrate-bound forms, a distinct peak at 450 nrn 

was observed upon anaerobic addition of CO. The shift was especially prominent in the 

substrate-bound system, due to the shift in Soret peak from 392 nm to 450 rim. In both 

cases, reduction with dithionite did not alter the maximal absorbance wavelength 

significantly, however a large decrease in intensity was observed in the substrate-bound 

protein, resulting in a much broader peak, as is characteristic of P450s (McLean and 

Cheesman et al., 2002). 

The presence of a second peak at 420 rim for both forms of Mtb-CYP125 was initially 

thought to mean partial degradation of the protein during purification. Glycerol is known 

to confer limited protection against such conversion and so was included during the 

purification of additional protein. A repeat CO-binding assay found less P420 conversion 

than in the glycerol-free preparation, however did not eliminate it entirely. 
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Further CO-binding experiments performed using Mtb-CYP 125, in the absence of glycerol, 

showed a time-dependent increase in the production of both P420- and P450-CO 

complexes. P420 often forms in the ferrous state, possibly due to protonation of the 

cysteinate -S- group, which forms a neutral cysteine, and so is unlikely to have formed 

within the oxidised protein (Perera et al., 2002). This suggests the issue was a limitation of 

the experiment and not an inherent problem with the protein itself. 

Also, full conversion to P420 was observed upon loss of the proximal cysteinate ligand in 

the P450cam C357H mutant (section 1.3.7a), which was not apparent in the Mtb-CYP125 

spectra (Yoshioka et al., 2001). 'Ibis suggests that the partial conversion observed for Mtb- 

CYP125 is of less significance. Furthermore, characterisation of the Mtb-CYý121 enzyme 

observed aggregation and precipitation upon addition of large excesses of dithionite, and 

partial conversion to P420 was noted in the presence of CO (McLean and Cheesman et al., 

2002). The subsequent crystal structure of ferric Mtb-CYP121 found an intact cysteinate 

ligand, demonstrating the cause of P420 conversion to be entirely due to the CO-binding 

experiment (Leys et al., 2003). 

6.7.5 Protein crystallography 

Despite obtaining dark brown/red Mtb-CYP125 crystals from a number of crystallisation 

conditions, it was not possible to collect a full data set. This was primarily due to the 

morphology of the crystals, tiny plates clustered together into groups of varying size. This 

made separation of individual crystals impossible and despite extensive optimisation of the 

conditions, no alternate crystal morphology has been observed. The large conformational 
changes which may occur during substrate binding may affect crystal morphology, and so 
crystallisation of a substrate-free molecule would be of interest. The inclusion of such a 
high concentration of imidazole, needed to displace the substrate, is likely to interfere with 
crystallisation (Li and Poulos, 2004), however a number of P450 structures have been 

successfully determined in the presence of azole compounds (Yano et al., 2000, Scott et al., 
2004, and Verras et al., 2006). 

Although the weak diffraction from multiple crystals, described in section 6.6.2d, could not 
unambiguously establish unit cell parameters, the presence of diffraction up to 3A is 
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promising. Since the functional annotation of Mtb-CYP125 has been confirmed through 

spectroscopic analysis, a structure would provide significant information, particularly in the 

presence of azole inhibitors. 
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ChaiDter 7- Overall conclusions and future work 

The aim of the research presented in this thesis was to overproduce a number of 

uncharacterised metalloproteins from Mycobacterium tuberculosis, and to provide 

structural information regarding these targets. Initially, a cell-free system was exploited to 

express multiple targets, primarily for its high-throughput capabilities, and was performed 

at the RIKEN Yokohama Institute due to their continued success in this area (Kigawa, 1999 

and 2002, Yokoyama, 2003, and Matsuda et al., 2006). This method was used to express 

milligram quantities of soluble protein for 9 out of the 28 targets, in six weeks. It is 

unlikely that comparable results would have been obtainable using an in vivo system in the 

short timeframe, unless a high-throughput system was in place (Murthy et al., 2004). 

Limited optimisation of the reaction conditions, for targets which did not express or were 

insoluble, were also performed, however no improvements were identified. 

A second 12 week visit to RIKEN focused on the expression of 8 new targets, together with 

a more thorough optimisation of expression conditions for several insoluble targets. 

Soluble expression was obtained for four of the new targets, two predicted zinc-binding 

proteins, one iron-binding protein, and one unknown metalloprotein. Optimisation of the 

remaining targets proved highly successful, with partial solubility obtained for all proteins 

upon addition of detergents or molecular chaperones, to the cell-free reactions. However 

the yield of soluble protein in these cases was often low and problems arose during removal 

of these additives. It seems that where possible, it is beneficial to express protein without 

the inclusion of such additives. 

Expression of four targets using the in vivo E. coli method gave similar results to those 

obtained by the cell-free method, however solubility of Mtb-CYP125 (Rv3545c) was 

significantly improved. Negligible levels of soluble protein were obtained for this target 

using in vivo expression conditions similar to those used to express homologous 

cytochrome P450s, whereby soluble protein was obtained 6 to 24 hours following induction 

(Bellamine et al., 1999 and McLean and Cheesman et al., 2002). Increased incubation 

times of 72 hours were required to produce significant quantities of soluble Mtb-CYP125, 

however the reason for this remains unknown. 
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The success rate of synthesising soluble haem. proteins using the cell-free system is 

reported to be low, due to problems associated with the incorporation of the large prosthetic 

group (Matsuda, personal communication). Due to the presence of whole cells within the 

in vivo system, it was possible to include a smaller precursor within the expression media, 

which was then converted to the functional haem group. 

The cell-free system described in this thesis provides a rapid method for the high- 

throughput identification of target solubility. For structural genomics projects, this is 

clearly advantageous as soluble targets can quickly be identified and progressed into large- 

scale synthesis, in preparation for downstream applications. A turnover of less than two 

days can be achieved from target isolation to analysis of protein expression using this 

system, whilst a typical (non-high-throughput) E. coli in vivo method would require 

approximately double this. However, negative aspects associated with the cell-free system 

include the potential high cost to set up and the requirement for high-grade reagents and 

cell extracts (Murthy et al., 2004). Commercially sourced plasmids and host cells, together 

with standard molecular biology laboratory equipment, can be used to set up an in vivo 

system with little complication. 

Overall, the cell-free system was extremely successful at producing soluble protein for the 

metalloproteins targeted. However similar results were obtained, albeit on a smaller scale, 

using the in vivo system. In the absence of a dedicated in vitro protein expression facility 

and a constant supply of high-grade cell-free components, the in vivo system appears to be 

preferential but time-consuming. It would be useful to express a larger number of targets 

using the in vivo system, in order to provide a more detailed comparison. Of particular 
interest would be a detailed comparison of the timescales required, number of soluble 
targets produced and purification steps required, yield following purification, and biological 

activity. 

The 2.7 A resolution structure of Mtb-PPase: (Rv3628) showed an overall monomeric fold 

characteristic of prokaryotic type I PPases. Despite intra-trimer interactions involving 

poorly-conserved residues, the oligomeric form also remained conserved. 
Substrate/product and metal binding is well documented in Y-PPase (Harutyunyan et al., 
1996 and Heikinheimo et al., 1996) and E-PPase (Harutyunyan et al., 1997 and Samygina 
et al., 2001), with little variation exhibited between the two enzymes. Although no metal 
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ions were identified within the Mtb-PPase structure, one phosphate group was modelled at 

site PI, forming bonds with Arg37, Tyr133, and Lys134. Homologous interactions exist in 

both the yeast and E. coli structures. The conservation of all 17 active site residues (Sivula 

et al., 1999) and the similarity in overall structure and PI binding site of Mtb-PPase with 

homologous structures, suggests metal coordination and the P2 binding site will also be 

similar. 

Superimposition of key active site residues of Mtb-PPase with the calcium-inhibited E- 

PPase structure (Samygina et al., 2001) showed a marked difference in the position and 

orientation of Glu25, Asp59, and Asp96. Since the calcium ions in E-PPase locate the 

activating metal sites, such differences are expected as these residues are known to 

participate in metal coordination. Also, Lys23 was found to adopt a more extended 

conformation in the E-PPase structure, forming a hydrogen bond with the P2 site. 'Mis 

phosphate group was not present in the Mtb-PPase structure and so explains this structural 
difference. 

Comparison with two recent Mtb-PPase structures, both in space group P6322 

(Tammenkoski et al., 2005 and Benini and Wilson, to be published), highlighted a possible 

pH-dependent role of His93 within the active site. Mutation of this residue was found to 

only hamper activity in the presence of magnesium (Tammenkoski et al., 2006) and so 

whether His93 is of catalytic importance, in the presence of other activating metal ions, 

remains unclear. 

Evidence for a critical role of PPase in both E. coli (Chen et al., 1990) and S. cerevisiae 
(Lundin et al., 1991) suggest Mtb-PPase may be an attractive target for therapeutic 
intervention and future development of specific inhibitors. Although three structures of 
Mtb-PPase now exist, none represent the catalytically active enzyme, and so crystallisation 
in the presence of activating metals and phosphatelpyrophosphate, would be of interest. It 

also remains of high priority to determine the H-PPase structure in order to identify 

structural differences between the two enzymes, so that therapeutic Mtb-PPase inhibitors 

can be realised. Potential inhibitors may target non-active site residues which have 
essential catalytic roles in Mtb-PPase, but are not required in H-PPase. 
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Characterisation of the Rv3545c gene product (Mtb-CYP125) confirmed its functional 

annotation as a cytochrome P450. This target was chosen for expression and 

characterisation studies because of its essential nature during the in vivo infection of mice 

with M. tb, together with our group's ongoing interest in cytochromes. Sequence homology 

searches identified only two further non-Mycobacterial CYP125s in the UNIPROT 

database and no crystal structures currently exist for this protein. Alignment of Mtb- 

CYP125 with P450 homologues of known structure identified a number of conserved 

residues within the Cys-loop, including the explicitly conserved cysteine residue, which 

provides the proximal thiolate ligand to the haem. iron. Also of interest is the identification 

of a threonine residue (Thr272) within the probable I-helix, which suggests Mtb-CYP125 

does not require a water molecule to stabilise the oxy-ferryl bond, as is the case for 

P450eryF (Cupp-Vickery and Poulos, 1995 and Poulos et al, 1995). 

Bioinformatics and circular dichroism (CD) were used to calculate the secondary structural 

elements of Mtb-CYP125. CD measurements showed the enzyme to contain 33 % a-helix 

and 14 % P-sheet. The a-helical content deviates somewhat from the expected value for 

P450s of > 40 % (McLean and Cheesman et al., 2002 and Maves and Sligar, 2006). The 

low ionic strength at which Mtb-CYP125 CD data were collected may account for this 
(Yun et al., 1996) and so further experiments conducted at varying salt concentration would 
be useful. The prediction software, PredictProtein, estimated Mtb-CYP125 to contain 41 % 

a-helical structure, further suggesting that the CD-derived value may be inaccurate. 

Routine spectroscopic analysis of the protein following affinity chromatography and gel 
filtration identified an interesting Soret shift between the two purification steps. Further 
investigation found this shift to be caused by the reversible dilution of the inhibitor, 
imidazole, during gel filtration. The resulting spectrum after gel filtration was 
characteristic of P450 in a high-spin system, with substrate blocking the access of water to 
the distal haem iron ligand (Li, 2001), and was confirmed by subsequent EPR 

measurements. A physiological substrate of Mtb-CYP125 remains unknown and due to the 
vast number of substrates metabolised by the P450 superfamily, no compound has yet been 
inferred from sequence homology. Unless a native substrate was encountered in the cell 
during expression and remained in the system throughout purification, it remains unclear 
why this shift is observed. There is clearly a necessity to determine the crystal structure of 
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this enzyme to determine what, if any, compound is bound to the active site. A successful 

method for the expression and purification of Mtb-CYP125 is documented in this thesis and 

further optimisation of the crystallisation conditions may produce crystals suitable for high 

resolution X-ray diffraction. Also of interest, given the potential of Mtb-CYP125 to act as 

a novel drug target, would be a crystal structure complexed with inhibitors such as azole 

compounds. 

Tuberculosis is a devastating disease and much remains unknown about its pathogenicity 

and how it evades the host immune system with such efficiency. Given the current reliance 

on five chernotherapeutics and the resultant widespread resistance, it is crucial that new 
drug targets are identified and characterised. The high-throughput cell-free expression 

system described in this thesis proved highly successful for the rapid identification of 

soluble targets, which could then be synthesised on a large-scale to produce milligram 

quantities of protein. This may represent a viable option for the production of multiple 
targets in preparation for downstream applications, enabling the characterisation of 
potential drug targets, and ultimately leading to the production of novel antimycobacterials. 
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Appendix 1- Additional gel electrophoresis PhotoaraiDhs from cell-free expression 
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Figure Al: Examples of gene targets successfully amplified by 2-step PCR, visualised by I% agarose gel 

electrophorcsi% (section 4.2.3a). V3 and 2d PCR products for: Rv2718, lanes I-2; Rv2776c, 3-4; Rv2986c, 

5- 6-. R0042c, 7-8. 
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Figure A2: 10 % SDS-PAGE from cell-free time-course expression study of targets which were not 

expressed correctly (section 4.2.3c). Total extracts (T) and soluble fractions (S) from small-scale reactions 
incubated at 37 *C over 0 to 24 hours. Rv0359: 0 hours, lanes I-2; 2 hours, 3-4; 4 hours, 5-6; 6 hours, 7 

- 8; 8 hours, 9- 10; 24 hours, 11 - 12. Rv2718: 0 hours, lanes 13 - 14; 2 hours, 15 - 16; 4 hours, 17 - 18; 6 

hours, 19 - 20; 8 hours, 21 - 22; 24 hours, 23 - 24. Molecular weight markers in lane M. Target proteins 
highlighted in red and unknown contaminants in yellow. 
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Figure A3: 10 % SDS-PAGE from optimisation of cell-free expression conditions by the addition of 

detergents (section 4.2.5c). Total extracts (T) and soluble fractions (S) from small-scale reactions incubated 

at 30 *C for 4 hours. (A) Rv0185, (B) Rv2776c, (C) Rv3717, (D) Rv3915, (E) Rv2388c, and (F) Rv0247c: 

No detergent in lanes I-2; Brij-35,3 -4 (0.5 %) and 5-6 (1 %)-, Digitonin, 7-8 (0.5 %) and 9- 10 (1 

Molecular weight marker in lane M. Target proteins highlighted in red. 
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Appgndix I- Additional gel clec"o horesis photop-rgphs from cell-free expression 
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Figure A4: 10 % SDS-PAGE from optimisation of cell-free expression conditions by the addition of 

detergent% (%ection 4.2.5c). Total extracts (T) and soluble fractions (S) from small-scale reactions incubated 

at 30 *C for 4 hour%. (A) Rv3534c and (B) Rv3545c: No detergent in lanes I-2; Brij-35,3 -4 (0.5 %) and 5 

-60 %). Digitonin. 7-8 (0.5 17t) and 9- 10 (1 %). Molecular weight marker in lane M. Target proteins 

highlighted in red 
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Figure A5: 10 % SDS-PAGE from optimisation of Rv0185 expression conditions by the addition of 

molecular chaperones (section 4.2.5c). Total extracts (T) and soluble fractions (S) from small-scale reactions 
incubated at Yr C for 4 hours. No chaperones in lanes I-2; with dnaj-dnaK-grpE-groEL-groES, 3-4; 

groEL-groES, 5-6. dnaJ-dnaK-grpE, 7-8; groEL-groES-trigger factor, 9- 10; trigger factor, 11 - 12. 
Fractions from affinity chromatography of Rv0185 synthesised in the presence of dnaJ-dnaK-grpE: Total, 13; 
Soluble, 14, Flow-through, 15; Wash, 16; Elution, 17. Molecular weight markers in lane M. Rv0185 
highlighted in red and chaperones in blue. 
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AMndix I- Additional gel electr9phoresis photographs from cell-free expression 
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Figure A6: 10 % SDS-PAGE from optimisation of expression conditions by the addition of molecular 

chaperones (section 4.2.5c). Total extracts (T) and soluble fractions (S) from small-scale reactions incubated 

at 30' C for 4 hours. (A) Rv0247c, (B) Rv2776c, and (C) Rv3717: No chaperones in lanes I-2; with dnaj- 

dnaK-grpE-groEL-groES, 3-4; groEL-groES, 5-6; dnaj-dnaK-grpE, 7-8; groEL-groES-trigger 
factor, 9- 10, trigger factor, II- 12. Fractions from affinity chromatography of target protein synthesised 
in the presence of dnaJ-dnaK-grpE: Total, 13; Soluble, 14; Flow-through, 15; Wash, 16; Elution, 17; Flow- 

through after ATP incubation, 18; Elution after ATP incubation, 19. Molecular weight markers in lane 

M. RvOI85 highlighted in red and chaperones in blue. 
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Appgndix I- Additional gel electrolphoresis photographs from cell-free expression 
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Figure A7: 10 % SDS-PAGE from optimisation of expression conditions by the addition of molecular 

chaperones (section 4.2.5c). Total extracts (T) and soluble fractions (S) from small-scale reactions incubated 

at 30' C for 4 hours. (A) RQ915, (B) Rv2388c, (C) Rv3534c, and (D) Rv3545c: No chaperones in lanes I- 
2, with dnaj-dnaK-grpE-groEL-groES, 3-4; groEL-groES, 5-6; dnaj-dnaK-grpE, 7-8; groEL- 
groES-trigger factor, 9- 10, trigger factor, 11 - 12. Fractions from affinity chromatography of target 
protein synthesised in the presence of dnaJ-dnaK-grpE: Total, 13; Soluble, 14; Flow-through, 15; Wash, 16; 
Elution, 17. Molecular weight markers in lane M. Target proteins highlighted in red and chaperones in blue. 
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6qWndix 2- Buffer and media comMsitions 

AiDiDendix 2- Buffer and media compositions 

1x Rvl25-GF 
50 mM Potassium phosphate pH 7.4 

500 mM KCI 

I mM dTT 

Ix 125-K 
50 mM Tris-HCI pH 7.4 

Ix 125-Lysis 

500 mM Potassium phosphate pH 7.4 

10 mM Imidazole 

5 mM MgSO4 

10 mM P-mercaptoethanol 

1/1000 diluted protease inhibitor complex III 

(Calbiochem) 

I gg/ml DNAsel 

Ix 125-NIA 

500 mM Potassium phosphate pH 7.4 

10 mM Imidazole 

10 mM P-mercaptoethanol 

Ix 125-NiB 
500 niM Potassium phosphate pH 7.4 

20 mM Imidazole 

10 mM P-mercaptoethanol 

1x 125-NIC 

500 mM Potassium phosphate pH 7.4 

300 mM Imidazole 

10 mM ý-mercaptoethanol 

1x 125-NI-I 

500 mM Potassium phosphate pH 7.4 

1x PBS 
8g NaCl 
0.2 g KCI 
1.44 g Na2HP04 
0.24 g KH2PO4 

To IL in H20 adjusted to pH 7.4 

1x ppa-AxA 
50 mM Tris-HCI pH 8.0 

50 mM NaCl 

I mM dTT 

1x ppa-AxB 
50 mM Tris-HCI pH 8.0 

1M NaCl 

I mM dTT 

1x ppa-Lysis 
50 mM Tris-HC1 pH 8.0 
750 mM NaCl 

I niM dTT 

I/ 1000 diluted protease inhibitor complex III 
(Calbiochem) 

1 gg/ml DNAseI 

Ix ppa-NiA 
50 niM Tris-HCI pH 8.0 

750 rnM NaCl 

1 rnM dTT 

1/1000 diluted protease inhibitor complex III 
(Calbiochem) 

1x ppa-NiB 
50 mM Tris-HCI pH 8.0 
300 mM NaCl 
750 mM Imidazole 
I mN4 dTT 
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Appgndix 2 -. Buffer and media compositions 

1x 125-P 

50 mM Tris-HCI pH 7.4 

500 mM KCI 

1x 125-S 

50 mM Potassium phosphate pH 7.4 

1x CF-A 

50 mM NaH2PO4 pH 8.0 

750 mM NaCI 

1/1000 dilution Complete protease inhibitors (Roche) 

I mM DTT 

Ix CF-B 

50 mM NaH2PO4 pH 8.0 

300 mM NaCl 

500 mM Imidazole 

1/1000 dilution Complete protease inhibitors (Roche) 

I mM DTT 

1x CF-C 
50 mM NaH2PO4 pH 8.0 

50 mM NaCl 

I mM dTT 

Ix CF-D 

50 mM NaH2po4 pH 8.0 

IM NaCl 
I mM dTT 

Ix CF-E 
50 mM NaH2PO4 pH 8.0 

150 mM NaCl 

I mM dTT 

1x CF-F 
20 mM Tris-HCI pH 8.0 

10 mM NaCl 

I mM dTT 

1x S30 

10 mM Tris-acetate pH 8.2 

6OmM potassium acetate 

SOC medium 

2% Tryptone 

0.5 % Yeast extract 

0.4 % glucose 

10 rnM NaCI 

2.5 mM KCI 

5 MM MgC12 

5MM MgSO4 

50 x TAE 

242 g Tris base 

57.1 n-d Glacial acetic acid 
18.6 g EDTA 

To I Lin H20 

10 x TBE 
108 g Tris base 
55 g Boric acid 
9.3 g Na4EDTA 
To IL in H20 (end pH 8.3) 

Terrific broth (TB) 
12 g tryptone 
24 g yeast extract 
4 n-A glycerol 
To 900 ml in H20 

2.31 g KH2P04 monobasic 

12.54 g K2HP04 dibasic 

To 100ml in H20 

Autoclave separately and add phosphate 

solution once cooled below 60 *C. 
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Appgndix 2- Buffer and media compositions 

1x CF-G 
20 mM Tris-HCI pH 8.0 

IM NaCl 

I mM dTT 

1x CF-H 

20 mM Tris-HCI pH 8.0 

150 mM NaCl 

I mM dTT 

6x Loading dye solution 
10 mM Tris-HCI pH 7.6 

0.03 % bromophenol blue 

0.03 % xylene cyanol FF 

60 % glycerol 
60m M EDTA 

Luria-Bertani (LB) broth 

10 g Bacto-Untone 

5g Yeast extract 

10 g NaCl 

To IL in H20. Autoclave. 

1x Na-Lysis 
50 mM Sodium phosphate pH 8.0 

750 mM NaCl 

I mM dTT 

I/ 1000 diluted protease inhibitor complex III 

(Calbiochem) 

I gg/ml DNAsel 

10 x TES 

108 g Tris base 

55 g Boric acid 
9.3 g Na4 EDTA 

To IL in water. Do not adjust pH (pH 8.3). 

1x TES 

10 niM Tris-HCI pH 7.4 

5 mM EDTA 

I% SDS 

Autoclave. 

10 x Tris-glycine running buffer 

30.3 g Tris base 

144 g Glycine 

10 g SDS 

To IL in H20 
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