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Abstract 

Container shipping lines are exposed to various risks in their internal operations and 
external interactions with the upstream transportation suppliers and downstream 
demanders, whether these risks are recognised, managed and addressed in a cursory 
manner, or altogether ignored. In order to allow better understanding and control of the 
risks that exist in container supply chains (CSCs, the chain aggregations of the lines and 
their suppliers/demanders), the stakeholders/organisations can proactively assess their 

reliability and robustness in advance, or reactively discover risks after a detrimental 

event occurs. 

The purpose of this study is to explore and analyse various CSC risks, derive their 

common themes, deal with the corresponding uncertainties and develop a proactive and 
advanced risk assessment methodology with novel and flexible modelling techniques. 
However, the literature review in the context of CSC risk research has indicated that 

such a task is not straightforward considering the facts that a) the chains are 
characterised as having the nature of complexity, uncertainty and dependence, which 
may constrain the applicability and practicability of traditional risk assessment methods 
in the chains and b) compared to the nuclear, chemistry, aerospace and marine 
(including shipping and offshore) industries, there is a significant gap between academic 
research and industrial safety and reliability demand in the logistic field, particularly in 
the post-9/1 I era. 

Starting with the development of a conceptual risk assessment model based on a 
modified Formal Safety Assessment (FSA) methodology, this study focuses on the 
research of novel and effective risk analysis and risk based decision making techniques 
using various uncertainty treatment theories and methods. They include: 

"A discrete ftizzy set technique. 

"A continuous fuzzy set technique. 

" An evidential reasoning (ER) approach. 
"A belief fuzzy rule-based approach. 
"A fuzzy link-based approach. 

A Bayesian network (BN) model. 
An ER based Bayesian probability distribution model. 
A hybrid decision making method of combining fuzzy logic, BN, ER and 
multiple attribute utility theory (AM U7). 

A considerable body of high quality publications and reference materials is produced to 
support the methods and techniques developed. 
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The methodological view to the risk assessment adopted in the thesis is based on a 
requisite logical modelling, where risk and decision models are first generated to support 
risk assessment and decision making under uncertainty in a specific analysis constraint, 
and then refined when more generic and wider analysis contexts are provided and 
incorporated. Such a process keeps being conducted until the risk assessors and decision 

makers have confidence and satisfaction with the results and prescriptions obtained from 
the modified and upgraded models. Consequently, the models developed can be well 
suited to dealing with different risk assessment and decision making problems, generic 
or special and objective or subjective, in CSCs. 

Findings from this research imply that the conceptual risk assessment methodology and 
its attached unique risk analysis and decision making techniques have provided a way of 
presenting the organisations in CSCs with a consistent way of making a comprehensive 
assessment of the factors associated with complex risk and decision modelling. The 

approaches described will, based on a thorough and detailed analysis of the possible 
uncertain contexts, present the results of the analysis in a simple, transparent and 
justifiable way that could be understandable by the assessors or decision makers not 
versed in dealing with the complexities and uncertainties of the chain systems involved. 
Although the risk assessment and decision making approaches are presented on the basis 

of the specific context in CSCs, they can also, with domain-specific knowledge, be 
tailored to facilitate risk and decision modelling in other application areas where a high 
level of uncertainty is involved. 
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Chapter 1- Introduction 

SUMMARY 

This chapter gives a brief introduction and essentially "sets the scene "for the thesis by: 
making key definitions used in the study; giving a background analysis (understanding 

research necessity ftom a practical viewpoint); demonstrating the challenges of 
conducting the research byfollowing the explanation of the research objectives, either 
primary or subsidiary; presenting andjustifying the methodology employed, stating the 
hypothesis and discussing how it is to be examined, tested or addressed and where this 
appears in the thesis; describing the layout and scope of the thesis and summarising the 
deliverables, contributions to knowledge and achievements against objectives. 

1.1 Definitions for Typical Terms Used in CSC Risk Assessment 

Accident: An unintended event involving fatality, injury, property loss or damage, and/or 
environmental damage (Wang and Trbojevic, 2006). 

Container SuPpIv Chains (CSCs): A natural process of evolution of liner shipping 
services in the era of containerisation. CSCs can be defined as one logistics distribution 

service that extends liner shipping services, which are provided on a regularly scheduled 
basis to the pre-determined ports, to inland transport services to complete efficient flow 

and storage of container cargoes, information and related value added services from 

point of origin to point of consumption for the purpose of conforming to customers' 
requirements. 

Decision Making: The process of sufficiently reducing uncertainty and doubt about 
alternatives to allow a reasonable choice to be made from among them (Harris, 1998). 

Fonnal SafetE Assessment (FSA): FSA is based on the principles of identifying hazards, 

evaluating risks and cost benefit analysis (CBA), and has as its objective the 
development of a framework of safety requirements for shipping in which risks are 
addressed in a comprehensive and cost effective manner (MSA, 1993; MCA, 1996). The 
FSA methodology comprises five inter-related steps as follows (MSA, 1993): 

1. Identification and ranking of hazards. 
2. Quantified assessment of the risks arising from the hazards identified in Step 1. 
3. Identification of regulatory options for controlling the risks defined in Step 2. 
4. CBA of the risk control options (RCOs) identified in Step 3. 
5. Recommendation for decision making, based upon the information derived in 

the preceding steps. 

The research necessity from an academic viewpoint is illustrated in Chapter 2. 
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Judizement: In the context of risk assessment, judgement is not simply the final decision 
but is an integral part of the whole risk assessment progress with the essential nature as 
the ability to make a critical assessment of evidence (Chicken and Posner, 1998). 

Hazard: A physical situation with a potential for human injury, damage to property, 
damage to the environment or some combination of these (Henley and Kumamoto, 
1992). 

frobabilioý distribution: The characteristic of an item expressed by the probability that it 

will perform a required function under stated conditions for a stated period of time 
(Henley and Kumamoto, 1992). 

Reliabilitv: Reliability can be defined either as the probability that a system or a 
component performs its specified function as intended within a given time horizon and 
environment, or in other words as the probability of the absence of failures affecting the 
performance of the system over a given time interval and under given environmental 
conditions (Kuo and Zuo, 2003; Andrew and Moss, 2002). 

Risk. - A combination of the probability of occurrence of an undesired event and the 
degree of its possible consequences (Wang and Trbojevic, 2006). 

Risk assessment: A comprehensive estimation of the probability and the degree of the 
possible consequences in a hazardous situation in order to select appropriate safety 
measures (BS 4778,1986; Wang and Trbojevic, 2006). 

Robustness: Robustness can be defined as the extent to which a system is able to 
perform its intended function relatively well in the presence of failures of components or 
subsystems (Santa-Fe institute, 2001). 

LaLety: Freedom from unacceptable risk or personal harm (Wang and Trbojevic, 2006). 

Threat: An action or a potential action likely to cause damage, harm or loss (Bums et aL, 
2003). 

Uncertainoý:. A situation in which a person does not have the quantitatively and 

qualitatively appropriate information to describe, prescribe or predict deterministically 

and numerically a system, its behaviour or other characteristics (Zimmermann, 2000). 

Vulnerability: In a CSC context, vulnerability can be defined as an exposure to serious 
disturbances, arising from a hazard or a threat (Also see Section 3.2.2). 

1.2 Background Analysis 

Globalization and containerization processes have been the impetus behind the 
significant advances in the world prosperity and economic development experienced in 
the last twenty years of the 20'h century. They have caused many transformations within 
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the world economy and their consequences are extending to all sectors of commercial 
and industrial activities, including the liner shipping envirom-nent. Responding to the 
new trends and increasingly considering the requirements of commercial partners, 
suppliers and customers throughout the globe, liner container shipping is undergoing an 
evolution from an original transport service of shipping lines to an advanced CSC 
system. The CSC system integrates the services of shipping lines, ports and inland 
transport, and consequently extends from port-to-port to door-to-door services. One 
most obvious property of this evolution is that the port and inland transport services are 
effectively integrated rather than simply physically combined with the shipping lines by 

many value added services and exchange of information. The integration provides the 
ability of a "one stop shop" service for the chains. The emerging paradigm for the "one 

stop shop" service has been predicated on a near-frictionless international transport 
process. The paradigm has allowed, however, the CSCs to contribute to economic 
prosperity and also rendered them uniquely vulnerable to many risks, which range from 
the possibility of physical breaches in the integrity of shipments to the interruption of 
information communication. The stakes of these risks are extremely high, as any 
important breakdown in the chains would fundamentally cripple the world and/or 
regional economy. 

Modem CSCs are very complex, with many parallel physical and information flows 

occurring in order to ensure that products are delivered at the right time, in the right 
place, at the right cost and at the right quality (Rushton et aL, 2000). Thus, supply 
networks may be a more accurate term than supply chains (Chapman et aL, 2002). The 

cooperation and dependence among the entities in the container supply networks 
increase their interdependent and cooperating risks. Furthermore, the other drives 

towards more vulnerable supply chains mainly include many uncertainty related factors 
(i. e. the unavailability or incompleteness of historical failure data) resulting from more 
volatile markets and less predictable economic operating rules, the widespread adoption 
of Just-in-Time (JI7) rather than just-in-case practices, and the physical extension of 
supply chains originating from a global sourcing strategy, etc. 

1.3 Research Objectives and Their Hypothesis 

The primary purpose of this research is to generate a conceptual risk assessment 
methodology for CSCs based on a modified FSA framework that takes risks from 

vulnerability (fuzziness and incompleteness) rather than hazards into account and 
considers the relationships between risk factors as networking instead of hierarchical 

structures (randomness). Providing such a methodology for the companies involved in 
CSCs enables them to identify, manage and control the vulnerability of the chains and to 
support the safety planning for both mitigating and continuity actions. 
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In order to achieve this aim, some subsidiary objectives need to be carefully addressed. 
They are: 

Developing novel fuzzy based models to analyse and rank the threat-based risks. 
Generating a non-linear and non-additive utility synthesising function using an 
evidential reasoning (ER) algorithm to make the risk-based decisions with a 
dynamic nature. 

" Producing an advanced dynamic risk assessment technique using Bayesian 
Networks (BNs) to deal with the dependence between risk factors. 

" Using fuzzy logic and ER to assist in the appropriate distribution of Bayesian 

prior probabilities. 
" Creating a new hybrid decision-making approach to carry out the risk-based 

decision analysis based on multiple uncertain attributes. 

The hypothesis that the objectives depend on is that the most widely used uncertainty 
treatment theories such as fuzzy logic, Bayesian probability and Dempster-Shafer (D-S) 

can be the foundation of and have significant contribution in developing novel and 
advanced risk assessment and decision making models in the context of CSCs. 

1.4 The Challenges of Conducting the Research (The Statement of 
Problem) 

Modem CSCs are complex. The complex CSCs are closely associated with the 

complexity of their risks, but this is absolutely not one single contributing factor. The 

complexity of the risks can also be observed by investigating many different risk forms, 

which can be defined using diverse categorising methods. Cavinato (2004) categorised 
the risks and vulnerability in supply chains into five different networks - physical, 
financial, informational, relational and innovational. LCP consulting and the Center for 
Logistics and Supply Chain Management (CLSCAl) (2003) analysed the risks in supply 
chains through investigating their six drivers - demand, supply, environmental, process, 
control and the lack of mitigation/contingency. Still being the study of CLSCM (2003), 
the risks of supply chains have been further investigated from four interlocking levels - 
process/value stream, assets and infrastructure dependencies, organisations and inter- 

organisational networks as well as the environment. Chapman et al. (2002) defined the 
vulnerability of supply chains and differentiated their risks into two types - the ones 
within supply chains and external to supply chains. Yang et al. (2005a) discussed the 
risks in CSCs from four aspects -process, person, organization and environment. The 

work by Christopher and Lee (2004) hinted that the risks could be classified to be 

expected and non-expected. 
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Furthermore, the complexity of CSCs' risks arises when it messes with the other two 

risk characteristics - uncertainty and dependence. This fact can be explained through 

constructing a risk spiral, which is developed on the basis of the risk spiral model of 
Christopher and Lee (2004) and shown in Figure 1.1. The above analysis has shown that 
CSC structures contribute to the complexity of the CSCs' risks. Such complexity 
immediately leads to the lack of visibility to monitor the safety performance of CSCs. It 
is often the case that one member of a supply chain has no detailed knowledge of what 
goes on in other parts of the chain, e. g. adopting or not adequate risk mitigation/control 
measures for keeping the reliability and continuity of the chain. Because there is no 

visibility of upstream and downstream flows and stocks, confidence declines and 
decisions are made to apply safety control measures to the individual sections/sub- 

chains of the supply chain for preventing/mitigating risks. The lack of confidence also 

means that it is difficult to make optimal safety control measures at each stage of the 
CSCs. The risks of making wrong or ineffective decisions become an inevitable 

consequence. Thus, it will be possible to produce overreactions, unnecessary 
interventions, second guessing, mistrust and distorted information throughout the supply 

chain. These overreactions are time-consuming and then serve to ftirther obscure supply 

chain visibility because CSCs are now more complex as a result of the build up of the 
longer end-to-end chains involving many unnecessary interventions. Consequently, an 
internal self-perpetuating risk spiral is formed and a new intangible risk is produced due 

to the lack of confidence. 

Intangible 
risks 

of CSCS, 
, risks , 

ýack of erreactiv Intangible? 

con risks visibility 

Loss of -,. N 
confidence; 

rTa-ngible ýctive 

ri s Intera risks 

Figure 1. l. The risk spiral of CSCs 

Such an internal risk spiral is still quite frail and easily broken by the improved 

confidence, given some effective countermeasures, such as the introduction of shared 
information. However, the entry of uncertainty and interactive dependence makes the 

spiral stronger and its running speed faster, an external risk spiral comes into shape to 

5 



support the internal one. Obviously, uncertainty makes it nearly impossible to clearly 
identify the vulnerability of CSCs and assess their risks. Interactive dependence 

significantly discounts the effectiveness of risk control. This risk spiral exists 
everywhere and the only way to break the spiral is to understand and appropriately deal 

with the uncertainty and interactive dependence in the CSCs. 

The uncertainties associated with the CSCs' risks have different sources and diverse 
forms. Figure 1.2 summarises the types of such uncertainties. Not all of them are 
reducible or equally amenable to analysis. Therefore, only three principal types of 
uncertainties are explained and analysed. They are related to epistemic domains, 

measurement parameters and risk factor relationships. 

Uncertainties associated with CSCs' risks 
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Figure 1.2. Uncertainties associated with CSCs'risks 

An important source of uncertainty in CSCs' risks is our incomplete understanding of 
CSC systems that are being modelled from the viewpoint of safety. This has been termed 
fundamental or epistemic uncertainty (Pate-Comell, 1996). Epistemic uncertainty 
expresses itself as model error, which occurs in the boundaries, structure and 
components of a system safety model (Hayes, 1998). Model error can also be affected 
by the complex risk classifications and interactive dependent relationships in CSC 

systems and be further complicated by contradictory data sets. The best way to reduce 
such epistemic uncertainty is to compare the model's predictions with reality. However, 

analysts are generally aware, before the fact, that models are maximal approximations of 
reality. This error is only apparent after the fact and cannot usually be addressed in a 
proactive manner. Hence, either comparing the results of multiple models that use 
different methods and assumptions, or constructing a self-promoting mechanism that has 
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the capability of automatically checking and modifying the model to maximally simulate 
reality enables the selection of a suitable model alternatively. 

Although the epistemic uncertainty is considered to be fundamental, this research is 
primarily concerned with the uncertainties regarding the measurement parameters of 
CSCs' risks and their factor relationships. This is because they are concerned with the 
types of uncertainties that can be expressed in probabilistic/possibilistic terms, and only 
probability and possibility are appropriate mediums to the effective risk assessment of 
CSCs. In many typical risk analysis approaches, risk measurement parameters are 
represented by empirical quantities. To be empirical, these quantities must be 

measurable, at least in principle. In other words, they must have a correct value, as 
opposed to an appropriate or good value (Morgan and Henrion, 1990). This is, however, 

not straightforward, and frequentists recognise that empirical quantities may be random 
and incomplete in some conditions and thus, require disparate data sources to be 
incorporated. The randomness depends on the variations between observations and the 
number of observations, and is usually expressed in terms of a sample variance or 
confidence intervals around the sample mean. The incompleteness indicates the 
unavailability of historical data. Consequently, subjective interpretations are incorporated 

using linguistic assessments. However, such linguistic descriptions defte risk 
measurement parameters to a discrete extent so that fuzziness can at times be produced. 

The factors/components of the CSCs' risks being considered are exhibiting dynamic 
behaviour and interactive dependence that lead to the high level uncertainty involved. 
The complex dynamic behaviour of the risk factors significantly increases the 
randomness of risk probability distributions. Any spatial or temporal component may 
result in the change of the risk probability distribution of one risk factor, and fin-ther lead 
to the alteration of other relevant risk factors and the whole system in terms of safety 
levels. Additionally, the risk factor relationships are also incomplete. They may be fully 
dependent, partially dependent or independent. The uncertainty of the dependence 
degree between risk factors will be reduced with the entry of more and more evidence. 
This will be given more explanation in the following context. 

There are two other potential sources of uncertainty associated with the risks of CSCs: 

Risk acceptance criteria - used to represent the preferences of decision makers, 
stakeholders or the general public. For example, the risk preferences to different 
chains or even the different sections in the same chain are changeable according 
to their individual circumstances. 
Index variables - used to describe spatial or temporal components of a risk, such 
as a particular location, voyage, month or year. 

None of these, however, are amenable to analysis using either probability or possibility. 
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At first sight, CSC risks can be considered to arise from a series of adverse events along 
the chain between point of origin and point of destination. The raw materials contained 
in containers may be hazardous or special attention needs to be paid to items such as 
frozen cargoes, the handling and treatment of the containers during transportation may 
be inaccurate, the transfer between different transport modes may not be smooth and 
connected closely, and finally the consignees may be unaware of a potential 
informational or financial problem and miss the collections. This scheme, whilst over 
simplified, can illustrate the complexity of inferring quantitative assessment of the CSC 

risks, because it is clear that, even in this case, a simple product 

p(raw material) x p(transportation) x p(transfer) x p(collection) 

is not a useful quantitative representation of the risks because the individual probabilities, 
p, are not independent. In this expression several of the component probabilities may 
change in response to a single alteration in operating conditions and therefore, the terms 
in the product cannot be evaluated in isolation. For example, using reefers may reduce 
the value of p(raw material) when they carry frozen foods. However, they require 
careful electric supply and may affect other factors (possibly increase the value of 
p(transportation) and p(transfer)). Equally, this representation of the risk strength does 

not allow for a straightforward expression of uncertainty because the direction 

associated with the evaluation of the produce cannot be simply responded by the trend 

associated with the evaluation of each component probability. Contrarily, computing the 

risk strength and capturing the conditional uncertainty requires using causal inference. 

CSC systems suffer from high levels of dependence between their risk factors/ 

components. In order to stay competitive, maintain cost-effectiveness, and achieve 
reasonable safety and reliability, the systems have to take into account such risk 
dependence. Recently, the popularity of researching risk dependence as a concept has 
been increasingly growing (Vaidya and Kumar, 2003; Boudali and Dugan, 2005). Many 

of the discrepancies in the classifications of dependence, however, arise from different 

epistemological orientations. This point can be verified by the analysis and explanation 
in Table 1.1. In a CSC context, risk dependence can be studied from two aspects - 
dependence degrees (full or partial) and dependence characteristics (time, functional or 
relational). 

Most of available methods in system reliability analysis, for example, series/parallel 
configurations, cut-set, tie-set and Fault Tree Analysis (FTA), etc., only consider 
independence and full dependence (Shrinath, 1991) and assume that partial failures of 
the components do not affect the performance of other components though it is often not 
the realistic case (Vaidya and Kumar, 2003). Moreover, the techniques, which do not 
consider the partial dependence, are approximate methods. For safety critical CSC 
systems, the risks with the nature of dependence may become more inaccurate or even 
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conflicting with the reality as the approximation at a microscopic concern is 

accumulated and magnified to a macroscopic level. 

Table 1.1. Classifications of dependence 

Vaidya and Kumar, 2003 
Extrovert If one or many components depend on the host component then it is termed as extrovert 
dependence dependence. 
Introvert If the host component depends on one or many components then it is termed as introvert 
dependence dependence. 
Self dependence The dependence of the host component on itself Is termed as self dependence. 
Vaidya and Kumar, 2003 
Functional If component *A* depends on component *B* or vice-versa in order to fulfil its task or a function to 
dependence be executed, then the dependence Is termed as functional dependence. 
Design If component "A" depends on component "B" or vice-versa for its design (estimation of shape and 
dependence size, and material selection) then it is termed as design dependence. 
Performance If the performance of component "A" is affected by the variations caused in the performance of 
dependence component "B" or vice-versa, then it is termed as performance dependence. 
Shrinath, 1991 
Full dependence If the conditional probability value between components "A" and "B" is equal to *1', then it is 

termed as full dependence. 
Partial If the conditional probability value between components *A* and "B" lies between '0" and "I", then 
dependence it is termed as partial dependence. 
Independence If the conditional probability value between components 'A' and 'B" Is equal to '0", then it is 

termed as independence. 
Boudali and Dugan 2005; 
Svensson, 2004 
Time A category, which comprises explicit reference to time plans, delays, lead time, delivery schedules 
dependence and prognoses in the companies' upstream and downstream supply chains. 
Functional A category which comprises corporate functions, such as upstream and downstream Inventories, 
dependence production, products, transport, third party logistics, maintenance, capacity and preventive 

activities. 
Relational A category which comprises Issues of contingency plan such as economics, legal aspects, 
dependence technology, knowledge, social aspects, the market, IT, Information, communication, variability and 

planning. Suppliers and customers, as well as staff Issues, belong to this category. 
Svensson, 2002 
Vertical The vertical dependence refers to the incorporation between companies' business activities in 
dependence marketing channels. 
Horizontal The horizontal dependence refers to the competition between marketing channels. 
dependence 
Direct If business activities affect each other directly, then the dependence is direct. 
dependence 
Indirect If business activities affect each other through the changes of other middle activities, then the 
dependence dependence Is indirect. 
Unidirectional All upstream components In supply chains will affect the host component, since the host 
dependence component Is unidirectionally dependent on its upstream components. 
Bi-directional The Interpretation of unidirectional dependence Is reversed, running from the point of consumption 
dependence to the point of origin. Supply chains have emphasized bi-directionality, taking Into account both 

supply and demand chains In marketing channels. 
Hammarkvist et, al., 1982 
Technical This refers to the instance when two companies use compatible equipment and adapt their mutual 
dependence business activities to each other in a technical sense. 
Time This refers to the instance when two companies have a time-based need or synchronization of 
dependence their mutual business activities. 
Knowledge This refers to the Interaction processes between two companies, leaming from each other's 
dependence strengths and weaknesses. The Interaction creates knowledge about each other's ability to solve 

problems. 
Social This refers to the Interaction between two companies, which Is often based upon personal 
dependence relationships. This means that the social atmosphere and the personal chemistry between the 

involved executives affect the business activities In the relationship between two companies. 
Economical/judic This refers mostly to the formal dependence that may exist between two companies, such as 
laldependence written agreements. These strengthen the dependence between the business activities of two 

companies in an economic and judicial sense. 
Mattsson, 2000 
Market TEis refers to a company's Image and status that may positively Influence another company's 
dependence image and status. It may also improve the other company's goodwill In the marketplace. 
IT dependence This refers to two companies that may invest In a common IT standard, e. g. In terms of EDI 

(Electronic Data Interchange). This means that the hardware and software to communicate 
between the two companies are compatible. 



Many logistics philosophies, such as supply chain management (SCM, JIT, quick 
response (QR) and efficient consumer response (ECR), take into consideration time, 
functional and relational dependence in supply chains. This also tends to happen in 
supply chain safety management. It has been a widely accepted fact that there is 
dependence between risk factors in CSCs. Previous studies (Svensson, 2002; 2004) 
hinted that time, functional and relational dependence directly results in the vulnerability 
in supply chains. As far as CSCs are concerned, time dependence means explicitly time 
issues. Functional dependence includes technical adoptions and coordination. Relational 
dependence comprises knowledge links, social bonds and economic as well as 
environmental ties. Nevertheless, it is noteworthy that there is implicitly an aspect of 
time dependence in all these other dependencies (Svensson, 2004). These dependencies 
can become crucial from the perspective of an overall supply chain network structure 
(Lambert et al., 1998). 

1.5 Research Methodology and Scopes of the Thesis 

The methodological view to risk assessment adopted in the thesis is based on a requisite 
logical modelling, where risk and decision models are first generated to support risk 
assessment and decision-making under uncertainty in a certain analysis scope/constraint, 
and then refined when more and wider analysis contexts are provided and incorporated. 
Such a process keeps being conducted until the risk assessors and decision makers have 
confidence and satisfaction with the results and prescriptions obiained from the modified 
and upgraded models. Generally speaking, the methodology consists of six interrelated 
essential steps of realising the research objectives as follows: 

1. Research challenge identification. 
2. Critical review of the CSC operation, accidents and literature related to the 

challenges identified in Step 1. 
3. The development of a conceptual framework using a modified FSA methodology 

based on the review in Step 2. 
4. Fuzzy risk assessment and decision making modelling for providing a more effective 

technique to deal with the fuzziness and incompleteness involved in the framework 
developed in Step 3. 

5. BN based risk assessment and decision making modelling for overcoming the 
weakness of the modelling generated in Step 4 and making the framework in Step 3 
more powerful in terms of dealing with dependence between risk factors. 

6. The validation of the hypothesis by comparing and analysing the modelling produced 
in Steps 4 and 5, particularly the consistent results obtained in risk prediction. 

A graphical flowchart is presented in Figure 1.3 for clarifying the logical backbone of 
the complex methodology. More detailed explanations to the figure (the interrelated 
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relationship between the steps of the methodology) are unified together with the study of 
the thesis layout and given in the following. 
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Figure 1.3. The structure of the thesis 
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The research scopes are set up to surround the core of the thesis, which is risk 
assessment and decision making of CSCs. The intention is to emphasize the application 
of some fundamental uncertainty treatment theories to the development of novel risk and 
decision modelling techniques and their potentialities to offer attractive features not 
always achievable by traditional means. The document therefore only explains the 
relevant theories and methods up to the level at which they are used to suit the 
objectives and aims clarified above instead of proving an in-depth theoretical and 
mathematical treatise of the theories themselves. The fundamental uncertainty theories 
originally step from and are mainly developed within such fields as human activity and 
Artificial Intelligent (Al) communication. This research is thus also deemed as an effort 
and contribution to a desirable technology transfer and communication from such areas 
to a modem risk assessment domain. 

The thesis is complied in ten chapters. Following the description of the research scene in 
Chapter 1, Chapter 2 reviews the important literature influencing the current study. It 
includes the demonstration of the operation processes of CSC systems, the analysis of 
historical failure data, the review of risk assessment methodologies and approaches 
related to CSCs and the prior studies of using uncertainty treatment methods to risk 
assessment and decision making. The emphasis and kernel of the thesis start with 
Chapter 3 and end with Chapter 9. They are presented as follows in a detailed and 
interrelated manner. 

The concept of quantitative risk analysis (QRA) has evolved during the last decades, 

starting with the safety analysis of nuclear power plants and the chemical industry and 
going through the risk assessment of the aerospace and marine (offshore and shipping) 
industries. Only quitexecently, the supply chain industry has started using and further 
developing the methodology. In Chapter 3, a conceptual methodology for CM based 

on a modified FSA framework is generated. Following the analysis of three major 
challenges, such a study defines an interactive five-step framework, in which some 
novel techniques are developed to rank risks with unavailable/incomplete historical 
failure data and make decisions with imprecise CBA. 

Historical data is not always available and its collection consumes cost, time and effort 
and depends on many uncertainties. For example, in the process of conducting FSA of 
CSCs, the threat-based risks are normally ruleless and unpredictable in terms of either 
their risk likelihood or consequence. Also, the single consideration of historical statistics 
from previous cases, which may not be well suited to the current context without any 
adjustment, may easily cause academic bias. Under these circumstances the analysts 
may be able to use inductive assessment methods, in which possibilistic risk assessment 
is widely applied, and may also be forced to seek alternative (i. e. subjective linguistic) 
interpretations of probability. To deal with subjective linguistic interpretations fuzzy set 
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theory (FS7) (Zadeh, 1965) can be appropriately used. The theory describes a 
humanistic problem mathematically (Zadeh, 1985) and therefore, can model such 
subjective risk linguistic variables and deal with their discrete characteristics (Wang et, 
al., 1995; Wang et al., 1996; Yang et al., 2004). Unlike the risk evaluations in QRA, 

which are precisely expressed by some numerical values (i. e. potential loss of life (PLL)), 
the risk evaluations using ftizzy sets are impossibly synthesized by using normal 
mathematical logical operations. The ER approach is well suited to modelling subjective 
credibility induced by partial evidence. Consequently, a subjective risk assessment 
method based on a discrete fuzzy set technique is first developed in Chapter 3 to deal 

with the incompleteness and unavailability of historical threat-based failure data. 

The above research has greatly increased our understanding that a) the risks in CSCs 

originate from vulnerability, which can be considered as the marriage of hazards and 
threats; and b) the combination of the ftizzy set and ER approach can produce an 
appropriate method to deal with highly uncertain situations resulting from those threats. 
However, an important consideration of the effectiveness of the subjective risk 
assessment method is related to its capability of combining objective hazard-based risk 
evaluations. The risk assessment of CSC systems is highly possibly dependent on both 
hazard-based and threat-based risk implications simultaneously in a particular situation. 
Thus, it will be desirable that the subjective method can be used to carry out a 
unification of the two different risk implications in order to avoid loss of useful 
information. However, as the hazard-based risks may be described using objective 
precise quantities and the threat-based risks may be described using subjective fuzzy 

sets, it is not convenient to directly implement such a synthesis using either a normal 
mathematically logical operation or the ER approach. It is therefore necessary to develop 

a new continuous ftizzy set technique in Chapter 4 to define a utility space for evaluating 
and synthesising objective and subjective safety expressions on the same scale. 

The studies in Chapters 3 and 4 using discrete and continuous membership functions to 
characterise the linguistic variables to a set of categories may restrict the flexibility of 
experts' assessment. Furthermore, complex fuzzified and defuzzified operations are at 
times inadequately friendly to mathematically unsophisticated users. Consequently, 

more powerful possibilistic methods are incorporated into and developed to the risk 
assessment fields involving a high level of uncertainty. Chapter 5 extends a Belief 
Fuzzy Rule Based (BFRB) expert system to risk and decision modelling with 
comparison of a new ftizzy link-based (FLB) decision modelling. A fuzzy rule-based 
(FRB) risk assessment technique (Sii et al. 2001; Pillay and Wang, 2003b; Liu et al., 
2004) unifying fiizzy logic theory and rule-based decision-making systems produces one 
feasible way to deal with imprecision on the basis of fuzzy production rules in fuzzy 
inference systems. However, in dealing with multiple hierarchical attribute decision 
making problems, the fuzzy rule-based method may produce an undesirable complex 
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calculation process, which includes the construction of multiple hierarchical Rizzy rule 
bases and inference between fuzzy input and output. The process can be simplified using 
a FLB method. Based on a linked belief structure between the linguistic variables 
expressing different level attributes, the method can unify all hierarchical fuzzy rule 
bases and transform the fuzzy input associated with the lowest level attributes to the 
corresponding fuzzy output on a common utility space constituted by the linguistic 

variables of the highest level attribute. 

One major disadvantage of the BFRB approach is associated with accurately 
determining the parameter values (belief degrees) of the rule base entirely subjective, in 

particular for a large scale belief rule base with hundreds of rules. Furthermore, it is 
highly possible for many realistic BFRB systems to have different antecedent attribute 
weights and a change in an attribute weight may lead to significant changes in the 
performance of the BFRB systems. As such, Chapter 6 presents a novel and generic 
fuzzy ER method (FER) for constructing BFRB expert systems. The new method is 

proposed for effectively dealing with the difference among the antecedent attribute 
weights and rationally producing and judging the belief degrees related to the conclusion 
parameters. The main feature of the new method is to consider the conditional belief 
degree distributions of the conclusion parameters given the individual antecedent 
attribute in a BFRB as partial conditions and then synthesise all partials using the ER 

approach to obtain comprehensive belief degree distributions. 

Despite showing much attractiveness, the BFRB and FLB method discussed still reveals 
some application problems. The principal limitation is that adding/removing risk factors 

or their linguistic variables may significantly affect a FRB system (i. e. its size may 
significantly be increased/reduced). Moreover, the method can be very difficult to address 
the interactive dependent features of the risks in CSCs, although employing If-Then rules 
is arguably able to describe the intercausal relationship between the risk factors to a 
certain degree. In other words, the interactive rather than intercausal. risks in the chains 
require an effective solution to have the inherent ability to reverse inference logic, 
however the rule-based tool cannot realise the exchange from the output to input parts of 
one rule without redeveloping the rule base. Chapter 7, therefore, proposes a BN-based 

risk assessment model for assisting the CSCs' managers to check, predict and improve 
the safety and reliability performance of the chains. For any CSC safety-critical 
application, the methodology demonstrates how the BN technique can be used in 
formalizing the reasoning of systematically interactive dependence and incorporating 

subjective expert judgements to compensate for the absence of objective statistical data. 

BNs provide a unified and consistent framework for analysing and expressing risks and 
thus, have been broadly analysed and applied to safety studies. Yet, the research above 
focuses on using the advances of Bayesian theorem and posterior probabilities to risk 
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prediction and diagnosis (forward and backward inference) and assumes that the risk 
related prior probabilities could be easily obtained from subjective expert judgements if 
the associatedobjective historical failure statistics is incomplete or unavailable, although 
in many circumstances this is realistically not the case. Chapter 8, therefore, discusses 

and deals with some of the practical challenges of implementing Bayesian reasoning in 

relative risk analysis (from the Bayesian view), which corresponds to those positivism 
risk analyses from a classical perspective, including the risk ranking in a networking 
environment using the sensitivity analysis (SA) of BNs. It emphasizes the introduction of 
a novel "Noisier or" approach on the basis of an ER algorithm for obtaining the 
Bayesian prior probability distributions conditioned on multi-state parents. 
Consequently, analysts can assign subjective probabilities with single condition and 
synthesise them using the ER algorithm (and its attached computing software - IDS) 

without adopting the somewhat mathematically sophisticated procedure of specifying 
prior distributions with multiple parents. 

After the updating and modification by the approaches introduced in Chapter 8, the BN 

model of risk assessment created in Chapter 7 can provide a more powerful risk 
assessment support tool and be used in a range of practical applications connected with 
CSC systems. In most of these applications, the interests are, however, only focused on 
the single attribute of the systems, safety or reliability. Although such networks provide 
important support for risk based decision making, in many circumstances decisions need 
to be made on the basis of multiple attributes, such as safety, cost, techniques, politics 
and environmental factors, etc. BNs do not allow for the incorporation of the notation of 
preference, which is necessary in such cases. Because they cannot, alone, provide a 
complete solution for the kind of wider decision problem in which a systematic safety 
assessment exercise inevitably fits, the BNs must be complemented by other decision 

making techniques (Fenton and Neil, 2001) such as those associated with Multiple 
Attribute Utility Theory (MU7) (Keeney and Raiffa, 1976). In Chapter 9a heuristic 
two-stage methodology that enables the quantification of the uncertainties related to the 
risk attributes based on BNs and then uses the fuzzy logic theory to generate novel utility 
representation functions for selecting the "optimal" safety solution is outlined as an 
effective and realistic alternative. 

Chapter 10, the conclusion chapter of this thesis, distils the evidence and the arguments 
presented in the previous chapters, and from the distillate, a novel and sound risk 
assessment methodology with many original and advanced risk analysis and decision 
making methods and techniques can be clearly displayed. The hypothesis can be 
validated by comparing and discussing ftizzy and BN related modelling. The results of 
the study will be emphasised by demonstrating their academic and practical 
contributions of assessing risks and making decisions inherently having an uncertain 
nature as well as facilitating the recommendation of future work. 
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1.6 Conclusion 

The basic concepts, ideas and conditions of developing a novel risk assessment 
methodology and the relevant risk and decision modelling to facilitate the CSC risk 
assessment in various situations have been put forward. The main problems are 
identified, the research objectives are targeted,, the hypothesis condition is stated, a 
logical research structure and scope is represented and a considerable body of 
publications (See Appendix 1) is achieved to validate the accuracy and reliability of the 
deliverables against the objectives. 
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Chapter 2- Critical Review 

SUMMARY 
The critical review of CSC systems taken in this chapter is broad, embracing all 
processes that are associated with container cargo flow and its value-added services. 
Equally wide is the range of the review associated with the risks considered which cover 
not only the historical failure data analysis and literature review of risk assessment 

methodologies and technologies related to CSCs, but also the presentation of the prior 

contributions of uncertainty treatment methods to risk and decision studies. 

1. Introduction 

Over the last five years there has been growing international recognition that the safety 
performance of CSCs needs to be reviewed on an urgent basis. Three serious accidents - 
the 9/11 terrorism attacks in 2001, the lock-out of the American West Ports in 2002 and 
the breakout of SARS disease in 2003, closely related to the chains in particular have 

prompted this urgency whilst they shocked the whole international shipping and 
logistics industries. Both the public and political authorities have woken up to the 

situation that the evolution of liner shipping from the original general-cargo liner service 
to the current complex CSCs, together with the increasing dependency of the world 
economy to them, has virtually increased its risk stake and categories. The risks 
occurring in modem CSCs not only range from the possibility of physical breaches in 

the integrity of shipments to the interruption of information communication, but also 
come from the vulnerability in wider levels that may be personal, managerial or 
environmental. Furthermore, academies and industries have initiated research and 
adopted more systematic and effective safety methods to assess and manage their CSCs. 
Therefore, in order to ensure the significance of this research, it is necessary to give an 
overall and detailed review of the operational processes, historical failure data, historical 
development of risk assessment research related to CSCs and the prior studies of using 
uncertainty treatment to risk assessment. This chapter just focuses on this point and 
demonstrates and highlights the necessity and motivation of this research. 

2.2 The Operational Process of CSCs 

Modem CSCs are very complex. A typical door-to-door journey using a shipping 
container will involve the interaction of approximately 25 different participants, 
generate 30-40 documents, use 2-3 different modes and be handled at as many as 12-15 

physical locations (OECD, 2003). Compared to other logistics systems, CSCs have two 
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distinctive features. One is that both physical and infon-nation flows move in the same 
direction, although the information flow should always be ahead of the physical flow. 
The other is that another sub-flow - custody flow is identified under the urnbrella of the 
physical flow in order to attempt critical assessment of the risks/vulncrabillty in the 

system as comprehensively as possible. 

2.2.1 Phvvical Carf,, o Flow 

A physical cargo flow means the physical movements of cargo from place to place and 
from mode to mode. Cargo originates from a manufacturer's place where it is palletized 
and/or packed into a container and transported by road/rail either directly to a port, or to 

an intermediary's premises. In the latter case, the shipment will be consolidated with 
others and transported to a multi-modal stacking area or to a port. While ill transit, the 

container may be stationary for various periods of time as trucks are stopped on the 

roadside and/or container-carrying trains are being assembled in freight yards. Once in 

ports, the container is sent to a stacking area before it is placed immediately next to the 

vessel on the quay. Even within the port area, a container may be moved several times 

as required by port operators and/or the Customs. After being placed oil board, the 

container can be removed and trans-shipped through another port onto another vessel 
before arriving at its destination port. Here again, the container may be moved several 
times for Customs clearance and temporary storage while waiting to be picked up. 
Carried by road or rail to its final destination, the shipment may again transit several 
intermediaries' facilities where the container is unpacked and the palletised shipments it 

contains are distributed to the final consignees (OECD, 2003). Such a cargo flow 

process can be visually presented in Figure 2.1. 

Figure 2.1. The physical flow of a CSC 

2.2.2 CustodtE Flow 

With the physical container flow, the movements of the custody of containers from 

person to person, which are presented in Figure 2.2, should be carefully studied. Every 
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Figure 2.2. The custody flow of a CSC 

CSC includes dozens of stakeholders who can physically come into contact with 
containers and their contents or are potentially related with the container trade and 
transportation. At the beginning of every container journey there is an originating 
shipper -- most often a manufacturer. There are hundreds of thousands of manufacturers 
around the world and many of them are active in international trade. These 

manufacturers may produce high enough volumes that they can ship full container loads 
(FCL) directly. Most, however, produce less than container load (LCL) shipments that 
must be consolidated before being shipped by sea. Buying agents and/or freight 
forwarders serve as the most common intermediaries between originating shippers and 
ocean carriers. While many freight forwarders handle FCL shipments for their clients, 
their principal task revolves the assembly and consolidation of LCL shipments into full 

containers. They also facilitate the entire international trade transaction by serving as 
agents with other transport intenriediaries, the Customs and other government agencies, 
banks and consignees. In some cases, the forwarders will negotiate each transaction on 
behalf of shippers while in other cases, the forwarders will be the principal agents 
contracting with the shippers. When forwarders offer multiple services in a logistics 

chain, other parties also offer these individually - i. e. customer brokers, truckers/rail 
carriers, warehouse agents, etc. Furtherrnore, when containers are in transit or in port 
areas, they may be associated with hundreds of warehouse/stacking yard/port workers. 
Each service offered along a supply chain implies the involvement of a company or an 
organization with several to several hundred people, any one of whom may potentially 
affect the chain's operation or be affected by an accident or by the cost effectiveness of 
either any proposed new regulatory requirement set by authority departments or a new 
insurance rule issued by underwriters (OECD, 2003). The principal stakeholders of a 
CSC have been identified and their interrelationships considered as shown in Figure 2.3. 
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Figure 2.3. Stakeholder influence map 

2.2.3 Information Flow 

The information transmission is required to comply with the physical cargo flow of a 
CSC, but be ahead of it. When shippers sign contracts with their freight forwarders, the 
information about cargoes can be transmitted and keyed to forwarders' information 

management systems with certain editions and amendments. Considering the 

requirements of shippers and the vessel schedules of shipping lines, the forwarders make 
bookings for the cargoes and distribute the information to the liner shipping information 

networks, which are supported by new information technology and can provide help to 
realise the instantaneous communication and information share between shipping lines, 

ports, container terminals and stevedores (internal network), even freight forwarders and 
shippers to a certain degree (external network). After confirming the bookings, the 
shipping lines pass the information to inland transport companies in order to arrange the 
collection and delivery of the container cargoes. At the same time, the information 
flowing in the network will be updated according to the loading and discharging of the 
cargoes during the lines' voyages. Those later ports of call will receive updates as the 
information is changed as a result of the operation in the previous ports. When the 
cargoes finally arrive at their destination ports, the information will be passed to notify 
parties/consignees by shipping lines' agencies so that they can make full preparation for 

accepting the cargoes. Simultaneously, it is noteworthy that the information flows may 
trivially change depending on different operations. Figure 2.4 shows a comparatively 
popular information flow model. 
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Figure 2.4. The infonnation flow of a CSC 

2.3. Historical Failure Data of CSCs 

In order to carry out any kind of safety analysis, either qualitative or quantitative, it is 

essential to obtain reliable failure data. The amount of data available will determine the 

choice of risk analysis methods and the relevance and accuracy of data used will 
increase confidence in risk assessment (Wang and Foinikis, 2001). There are several 
databases available at international, national and company levels. However, the various 
data and databases are usually collected and designed on different bases using changing 
risk criteria according to individual research interest and perspectives. Therefore, the 

accident statistics for this study may have to be judged by experts when necessary. The 
following are some typical accident databases associated with CSCs: 

* Data collection programmes by IMO and United Nations (UN). 

41 Data collection programmes by British Department of Transport (BDT) and the 
UK Health & Safety Executive (HSE). 
Data collection programmes by Lloyds Register, P&I Clubs and DNV. 
Data collection programmes by the Institute of Shipping and Logistics (ISL) and 
many relevant research groups. 
Data collection programmes by international ports (i. e. Shanghai and Liverpool). 
Statistics maintained by private shipping and logistics companies (i. e. COSCO). 

The Lloyds Maritime Information Services (LMIS) casualty database is a sophisticated 
one, recognized as one of the most reliable existing databases (Lloyds Register, 1978- 
2004). The database compares the analysis of accident statistics of tankers and bulk 
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carriers with containerships in the period from 1983 to 1993 to describe the 

quantification of the total safety levels of containerships, as shown in Figure 2.5. 

12 
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0A 

e. 

Figure 2.5. Distribution of annual average rate of the initial event by ship types 

Although containerships keep good safety records in all international trading cargo ships, 

their risk problems are still worrisome, especially considering the high value of their 

cargoes. The Sub-Committee on Flag State Implementation (FSI) of IMO used the data 

received from Rescue Co-ordination Centers (RCO) (FSI of IMO, 1999-2002) to 

provide the casualty comparison between contamership and other ship types in the 

period of 1998-2000. This is shown in Table 2.1. 

Table 2.1. Distribution of casualty statistics by ship types 

General Bulk 
Year Container Tanker Passenger Reefer Ro/Ro Others Total 

cargo carrier 

1998 124 52 16 35 4 6 19 31 297 

1999 223 75 20 56 9 10 14 109 516 

2000 185 89 22 45 17 16 39 85 498 

Total 532 216 58 136 30 32 72 225 1301 

Percent 41% 17% 5% 10% 2% 2% 6 %o 17% 100% 

In terms of casualty categories, Figure 2.6 with reference to the statistics obtained from 

RCCs shows six principal risk areas for containerships. It describes these with reference 
to four parameters, which are defined as very serious casualties, serious casualties, loss 

of life and total loss of containerships. Observing the figure, one result found is that 

contact/collision, with 8 very serious and 9 serious casualties is on the top of the list of 

casualty categories and the three most significant categories resulting in the loss of life 

are the failure of hull/watertight doors (with 13 lives), contact/collision (with 10 lives) 

and fire/explosion (with 8 lives). 
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Figure 2.6. Statistics on very serious and serious casualties of containerships 

The data only associated with casualties is not enough for risk assessment so that the 
investigation of incidents is also required. As one of the largest shipping insurance 

companies, P&I Clubs can be a very useful source of failure data mainly because of the 
large amount of vessels they represent. Compared with Lloyds Register who tends to look 
into safety from the viewpoint of compliance with the various sets of rules in force, P&I 
Clubs tend to deal with the risks from the aspect of financial losses due to lack of safety. 
Therefore, their database also includes the statistic of all incidents for claims. A research 
project carried out by the UK P&I Club (1999) shows that for the 10-year period from 
1989 to 1999 incidents involving containerships account for up to 7% of the total and 
these incidents with 273 claims of USD 110 million in total are distributed between the 
different categories as shown in Figure 2.7 (as far as the number of claims is concerned). 
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Figure 2.7. Distribution of incidents per ship type and incidents involving containerships 

Apart from containership failure statistics, a database from the Major Hazard Incident 
Data Service (MHIDS) (HSE, 2003), which is developed and managed by the safety and 
reliability directorate of the UK HSE, has been used to carry out this study and provide 
port accident data. The database includes accidents occurring in 95 countries. In 

comparison to the shipping industry, the frequency of accidents in the port industry 
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shows a significant increment year after year. It may possibly be the result that the port 
industry presently attracts comparatively less attention than the marine industry in terins 
of safety consideration. From the statistics of 1940-2002,83% of the accidents took 
place in the last 20 years and 59% in the past decade. It makes things more worrisome 
that there is no obvious sign that the frequency will decrease any time soon. Such a trend 

can be clearly shown in Figure 2.8. 

Figure 2.8. Distribution of annual average accident number in ports 

As far as the cause categories of port accidents are concerned, they differ from those in 
the marine categories because most accidents associated with ports only arise from a few 

general causes. Figure 2.9, which is developed on the basis of the MHIDS database, 
indicates that 94.4% of port accidents were due to four causes: impact, mechanical, 
external and human. Furthermore, approximately 50% of them were concentrated in the 

category of impact. 
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Figure 2.9. The general causes and consequences of port accidents (Darbra and Casal, 2004) 

Further analysing the 471 port-related accidents in the MHIDS, almost half of them, 234 

accidents are related to ocean going vessels in port areas and the remaining 237 
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accidents are "pure" port accidents. Having researched containership accident and 
incident statistics above, the emphasis will be focused on the confined container accidents 
occurring in the scope of those "pure" port accidents. Unlike the good safety record kept 
by containerships in the marine industry, the accidents related to containers in the port 
industry account for a high failure rate of 18.6% with 44 accidents in total. 

In terms of the origin of accidents, five different categories are considered to designate 

the places or activities in which the accidents occurred: load/unload, process plant, 
transport, storage and others. Following that, it is revealed that 67% of container 
accidents originated from transport activities, 13% came from load ing/un loading 

activities, and 20% happened in storage areas. Simultaneously, Figure 2.10 also shows 
the rate of container-related accidents within every place or activity in ports. 

Figure 2.10. Distribution of container accidents in ports in terms of origin 

When the risks are considered from a wider viewpoint (i. e. organizational or 
environmental), the work of collecting accident data will be exceptionally difficult. Such 
difficulties not only result from the simple extension of searching scopes, but also 
originate from the uncertainties of the risks. Usually, the risks in the organizational or 
environmental levels tend to be threat-based instead of hazard-based. Compared with 
hazards, threats contain a lack of periodicity and their consequences are various and 
unpredictable as well. This point has been further proven in the process of data 

collection and quite limited databases associated with the threats in CSCs are available 
so far. Thus, one realistic and flexible way to obtain an appropriate amount of datathat 

enables a determination of the risk levels of threats is to use human knowledge and 
experience. Consequently, a research project funded by the BDT has been conducted by 
Cranfield University to investigate those risks carried by leaner, faster and more 
efficient supply chains through a survey of 137 senior supply chain managers (Peck and 
RIttner, 2002). One of the findings has revealed that the most widely catered for risks in 
supply chains are focused on ten scenarios, as shown in Figure 2.11. 
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Figure 2.11. The top ten risk scenarios in supply chains 

2.4. Historical Developments and Prior Studies Related to Risk 

Assessment of CSCs 

CSO are vulnerable to many risks. The fact that a modem CSC is highly risky and 

vulnerable has been observed and the risks related to supply chains have been studied 

since the 1970s. Most of them focused on the research of vulnerability and disturbances 

in the chains. Disturbances in supply chains are a common phenomenon (Bruk and 
El'Yanov, 1975; Drucker, 1990; Hammer, 1992; Hay, 1987) and preventative actions 

may significantly reduce the frequency and damage of disturbances. Therefore, a variety 
of concepts and methods have been developed to reduce vulnerability and prevent 
disturbances in supply chains. These include Kaizen (Cheng, 1990; Imai, 1990), Jidoka 

(Sugimori et al., 1977), Andon (Monden, 1994), the Seven Q: s and the Seven Nevi, Q: s 
(Ohno, 1988), Autonomation (Monden, 1994; Carr, 1992), Five wh_v (Ohno, 1988), Total 

productive maintenance (TPM) (Nakajima, 1989), Single-minute exchange of die 

(SMED) (Shingo, 1985) and 5S (Monden, 1994). Furthermore, much research about the 

vulnerability in supply chains has been conducted and positioned under the concept of 
contingency planning (CP). Ballou (1987) and Johnson and Wood (1993) identified two 

sub-groups of CP, namely system breakdown and product recall. Principally, 

vulnerability research belongs to the category of system breakdown. Thus, in order to 
better review the risk research in supply chains, the studies about CP, especially the sub- 
group of system breakdown studies, are important information resources. Coyle et al. 
(1996) stated that CP considers preparing to deal with calamities (i. e. flood) and non- 
calamitous situations (i. e. strikes) before they occur. Many risk/uncertainty models 
(Knight, 1921; Ganesan, 1994) and reliability analyses (Sandler, 1963; Frankel, 1988; 
Evans, 1993) under the umbrella of CP are closely related to the vulnerability research 
in supply chains. 

The attention paid to and research conducted on the risk studies of supply chains are 
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increasingly growing as time goes on. Although today in many industries the risk 
management regime is being transferred from a reactive mode to a proactive route, for 
the supply chain sector, the drivers for risk assessment and management still originate 
from some impacts of specific events. In the past decade, it is worth noting the following: 

e The total loss of dozens of containerships, such as CN Pioneer Container due to 
a collision in 1994. 
The significant port accidents (probably leading to the shut down of container 
terminals), such as the Visahapatnarn port huge fire in 1997. 
The Kobe earthquake which affected supply chains across the globe in 1995. 
The Asian economic crisis in 1997 affecting world trade and container transport. 
The Toyota fire which forced a component supplier to shut down its production 
in 1997. 
The Y2K-related IT problems at the end of the 20'h century influencing the 
information flow of CSCs (1998-2000). 
The fuel protest of September 2000 across Europe. 
The spread of foot and mouth disease throughout the UK early in 200 1. 
The British transportation infrastructure failures. 
The terrorist attacks of I Ph September 2001 in USA making more container 
security issues to be considered. 

9 The lockout of American West Ports of October 2002. 

* The breakout of SARS disease in the world in 2003. 

These events have stimulated discussions more than ever on the need to find ways to 
avoid potential vulnerability and thus improve the reliability of supply chains. People 

started to adopt more systematic and effective methods to assess and manage their 
supply chains. A method of quantifying the reliability of supply chains for contingent 
logistics systems was developed based on a reliability interference theory (Thomas, 
2002). Some of the strategies for risk management were presented and applied to assess 
and mitigate the risks in inbound logistics (Siferd and Smeltzer, 1997). Introducing the 
concept of Six Sigma into the context of supply chains, Narahari et al. (2000) and Garg 

et aL (2003) developed and applied an innovative approach for designing a Sbc Sigma 
supply chain network to qualify supply chains in terms of synchronized delivery. After 
reviewing existing techniques used in decision making for risk analysis, Pai et al. (2003) 
presented a modelling and analysis framework for assessing logistics risks and 
evaluating safeguards to secure supply chains. Svensson (2000,2002) generated a 
framework for managing vulnerability in supply chains and analysing it from firms' 
inbound and outbound logistics flows. Chapman et al. (2002) identified supply chain 
vulnerability and used an advanced "3-Y' approach to manage risks in logistics supply 
chains. Peck and Juttner (2002) further identified the vulnerability in logistics supply 
chains and gave its failure modes in detail by a survey to 137 senior supply chain 
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managers. Wang and Foinikis (2001) used a FSA methodology to give an overall 
analysis of the risks of containerships. Ronza et al. (2003) and Darbra and Casal (2004) 
carried out risk assessment in the subject of ports through a historical analysis of 
accidents. Responding to increasing terrorism attacks in the globe after 11 Ih September 
2001, many efforts were made to enforce the security of international ships and port 
facilities against terrorism risks. Many authorised regulations, reports, papers and books 
came out, such as those produced by IMO (2002), Organisation for Economic Co- 
operation and Development (OECD, 2003), and Bums et al. (2003), etc. Apart from 
such risk studies, some thoughts from previous scholars were also made to the field of 
logistics information risks, especially the Y2K crisis and information security in 
logistics supply chains. Labib (1998) applied a logistics approach to manage the 
millennium information system problem. Golter and Hawryl (1998) illustrated the 
serious harmfulness of the Y2K issue to logistics outsourcing in the fifth circle of his 
study -- "Circle of Risk7. The works of De Jager and Bergeon (1997), Keogh (1997), 
Murray and Murray (1996), Ragland (1996) and Ulrich and Hayes (1997) also addressed 
the millennium problem. Since logistics have been increasingly dependent on new 
information technology, information security becomes the key and foundation to 
guarantee the success of logistics businesses. Hence, the research in this field ranging 
from information security policies (i. e. the works of Parker, 1998; Perry, 1985; Warman, 
1992) to the concrete technical methods of managing information systems (i. e. the 
works of James, 1996; Siponen and Baskerville, 2001) has been conducted by many 
scholars, with promising results achieved. 

Although the studies about risks or safety have attracted unprecedented attention from 

academic researchers and the public, the current research has revealed that there are few 

support tools that provide conceptually analytical or methodological support for risk 
research in supply chains in general, in CSCs in particular like the Probabilistic Risk 
Assessment (PR, 4) in the unclear area and FSA in the marine and shipping field. 
Simultaneously, the research also found that few previous risk studies for supply chains 
were conducted from both the engineering and managerial viewpoints. Instead, some of 
the former works concentrated on the components in the system (i. e. information 
security studies) and others that focused on risks or vulnerability from a whole logistics 
managerial perspective, were mostly related to how to practically reduce risks and 
prevent vulnerability. One major reason resulting in this phenomenon is that CSCs are 
the growing systems made up of many sub-systems and sub-fanctions, each of which has 
been, and may still be treated as a distinct management operation. For example, previous 
attempts to address container liner shipping safety in the international framework have 
focused on the containership itself and, at most, the immediate area surrounding the 
vessel in container ports/terminals. This focus was an outgrowth of the ship-focused 
mandate given to the IMO. 
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2.5. Risk Assessment Techniques 

Risk assessment has been part of decision analysis since human was able to reason. 
However, the formalised process of making decisions about risks was formed much later 

and began with probability theory. Probability theory, the foundation of contemporary 
risk analysis, was based on the discoveries in the 16th and 17th centuries by no table 
scholars, such as Girolamo Cardano, Galileo Galilei, Blaise Pascal, Pierre de Fermat, 
and Chevalier de Me're' (Garrick et aL, 2004). 

Although such pioneers made important contributions on probability and frequency 

expressions of past events, statistical inference and the concept of the number theory 
about the same time etc., until the middle of the 18th century, Thomas Bayes with his 
Bayesian probability theory was first considered as the real father of contemporary risk 
assessment (Garrick et aL, 2004). The greatness of the theory lies on the Bayesian 
theorem rooted in the fundamental logic that enables the combination of old information 

with new information for the assignment of probabilities. Such an advantage was made 
use of in the subjects of early analytical explorations and precursors to the new science 
of risk assessment, such as gambling strategies, military strategies and determining 

mortality rates. Typical scholars in the period included Jeffreys, Raiffa and Jaynes. 

The widespread, formal application of the PRA to critical infrastructure began in earliest 
in the late 1900s. Some typical safety analysis techniques developed and applied in that 
period include: the Risk Matrix Method (Halebsky, 1989; Tummala and Leung, 1995), 
Preliminary Hazard Analysis (PHA) (Military Standard, 1969,1999; Henley. and 
Kumamoto, 1992), What If Analysis (Pillay and Wang, 2003a), HAZard and OPerability 
(HAZOP) Studies (Bendixen et al., 1984), FTA (Ang and Tang, 1984), Event Tree 
Analysis (ETA) (Henley and Kumamoto, 1992), Markov Chains (MCs), (Norris, 1998), 
Failure Mode, Effects and Criticality Analysis (FAECA) (Andrews and Moss, 2002) and 
other analysis methods such as Diagraph based Analysis (DA) (Kramer and Palowitch, 
1987), Decision Table Method (Dixon, 1964) and Limited State Analysis (Bangash, 
1983), etc. 

According to different application contexts, such traditional safety analysis techniques 
may expose disadvantages. For example, FTA and ETA are the most widely used 
modelling methods for risk analysis. FTA and ETA are popular because they are easy to 
use, present the designer with an intuitive high-level abstraction of the systems, and can 
be efficiently applied to reasoning and inference using techniques such as Binary 
Decision Diagrams (BDD). However, traditional hierarchical fault and event trees 
themselves are lack of the capability in handling partial dependence between components. 
MCs and their extensions have proven to be versatile tools for modelling complex 
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dynamic component behaviours (Modarres, 1993). However, MCs present two main 
shortcomings: a) manually generating an MC describing the system's behaviour is an 
error prone task (Boudali and Dugan, 2005); b) MCs are faced with the infamous state 
space explosion problem (De Souza and Pedro, 1992). For this reason, a class of tools 
such as the Galileo tool (Sullivan et aL, 1999) provides a higher-level description of a 
system model, which is then automatically converted into an MC (Boudali and Dugan, 
2005). Also, Bouissou and Bon (2003) have extended traditional fault trees by combining 
them and Markov processes into a new formalism called Boolean logic Driven Markov 
Processes (BDAP). FMECA has been a well-accepted safety analysis method. The 
traditional FAIECA employs Risk Priority Numbers (RM), a merit for simplification, 
to evaluate the risk level of a component or process and achieve a risk ranking. However, 
it is due to such a "merit" that FAIECA suffers from several weaknesses. One of the 
critically debated weaknesses is that equal aggregate RPN values, obtained by the simple 
multiplication of the individual scores of the three safety parameters, possibly generate 
different risk implications (Gilchrist, 1993; Ben-Daya and Raouf, 1993). The others 
include the ignorance of the relative importance among the three safety parameters when 
multiplied. Therefore, the method may in a certain level lose important information and 
worsen an already critical situation. To reflect the problem, a series of variations of the 
traditional FAIECA have been developed, such as the use and incorporation of ftizzy 

theory and grey theory for FIECA discussed by Pillay and Wang (2003b). 

With the further development of the probability theory in risk assessment in the 20th 

century, many had indicated that the applications in the behavior-based or management- 
based fields (i. e. economic, financial and commercial) were more possibilistic than 

probabilistic, more experience-based than analytical and more qualitative than 

quantitative. It has been stated that safety analysis can be generally divided into two 
broad categories namely quantitative and qualitative analysis (Wang and Ruxton, 1998). 
Depending on the safety data available to the analysis, either a quantitative or a 
qualitative safety analysis can be carried out to study risks. In the studies of qualitative 
(possibilistic) risk analysis, the most popular methods are developed on the basis of the 
ffizzy logic theory into two main categories, fuzzy arithmetic calculation based or filzzy 
knowledge rule based. 

Fuzziness is an aspect of vagueness and possibilistic uncertainty, which is indeed 
different from probabilistic one. Briefly, probability is a measure of the undecidability in 
the output of clearly defined and randomly occurring events, while Rizzy sets are 
concerned with the ambiguity inherent in the description of the event itself (Pan and 
McMichael, 1998). Informally, it can be said that the nature of possibility differs from a 
numerical variable and its values are not expressed using numbers but words in a natural 
or artificial language. Therefore, possibility theory, which emerged in the 1970s' (Zadeh, 
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1965), was developed quickly and became one of the most popular approaches in expert 
decision systems. Simultaneously, its uniqueness in dealing with vagueness, which 
differentiates with probability theory, leads to the inevitability of being widely applied 
in risk assessment. Jenson (2001) stated that except for probability theory, the most 
prominent approach to reasoning under uncertainty is possibility theory, which in certain 
contexts is called fuzzy logic*. Fuzzy logic is an extension of classical Boolean logic 
from crisp sets to ftwzy sets. As a logic for reasoning, there is nothing fuzzy about ftizzy 
logic. Zadeh conceived the notion of fuzzy logic in 1965, the first new method of 
dealing with uncertainty since the development of probability (Zadeh, 1965). Since then, 
ftizzy logic has been a user-friendly profitable tool for analysing and controlling 
complex engineering systems and industrial processes (Deshpande, 1999) as well as 
knowledge-based expert decision systems (Bordogna et al., 1997). As a theoretical 
framework of expert decision making under uncertainty, fuzzy logic has been widely 
applied in the context of risk assessment (Wang et al., 1995; SH et al., 2001; Andrews 

and Moss, 2002; Pillay and Wang, 2003a). 

The significance of fuzzy sets is that they facilitate gradual transition between states and 
consequently possess a natural capability to express and deal with observation and 

measurement uncertainties (Pillay and Wang, 2003b). Such a capability proves FST to 
be a useful tool in risk analyses as these analyses often require the use of subjective 
judgement and uncertain data. In principle, FST can restore integrity to the risk analyses 
by allowing uncertainty and not forcing precision where it is not possible. However, the 
theory can be difficult to apply without using linguistic variables as mediums. Since 

words in general are less precise than numbers, the concept of a linguistic variable 
serves the purpose of providing a means of approximate characterisation of phenomena, 
which are too complex or ill defined to be amenable to description in conventional 
quantitative terms (Schmucker, 1984). The linguistic variables representing risk 
parameters are connected with fuzzy membership functions. Due to the advantage of 
simplicity, straight-line membership functions, especially triangular and trapezoidal 

membership functions have been commonly used to describe risks in safety assessment 
(Wang, 1997b). After defining the membership functions of the risk related linguistic 

variables, the risk parameters can be assessed using subjective judgements. They can be 

expressed by either a complete linguistic term (a specific pre-defined fuzzy number), 
multiple linguistic terms with partial confidence or a new independent fuzzy number (i. e. 
approximately 20 percent). Furthermore, various fuzzy arithmetic calculations (i. e. the 

combination of Cartesian operation and decomposition operation, a-cuts and interval 

arithmetic, etc. ) or rule-based definitions can be performed to obtain the fuzzy safety 

* Conceptually, FST is much broader than fuzzy logic and contains the latter as one of its branches. 
Practically, the general tendency today, however, is to use term fuzzy logic in its broad sense, also 
including FST as its foundation. 
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possibility estimations of the interested risk focuses. Finally, such fuzzy safety 
possibility estimations can be duffuzified to a crisp value, which can make more sense in 

risk ranking and SA. 

In order to avoid the loss of useful information, a sign of attempting to synthesise 
possibilistic and probabilistic theories emerges as the direction of more scientifically 
based ways to assess risks. Recently, BNs* have led to many new applications of 
uncertainty modelling, in particular to very complex problems where a large of number 
of variables contribute to overall uncertainty. Such success of applying BNs stimulates 
and inspires researchers' interest of using BNs in system risk and reliability studies. 
Within risk analysis and safety decision management, the research related to BNs has 
been largely dominated in the scope of their practical applications. Faber and his 

colleagues (Faber et aL, 2001) have proposed a formalism that uses BNs to assess the 
risks associated with the decommissioning of offshore facilities. Friis-Hansen (2001) in 
his PhD thesis has considered a number of problems in the marine industry to which 
BNs can be fruitfully applied. Hudson et aL (2001) have used BNs to assist military 
planners in determining the level of risks related to their antiterrorism system networks 
and King (2001) has presented BNs as a solution for operational risk management. 
Considering them in higher level risk industries, Kardes and Luxhoj (2004) have 

extended BNs to the risk assessment of the aviation industry and Fullwood (2000) has 
discussed the probabilistic safety assessment in the chemical and nuclear industries 

using BNs. Extending their popularity to medicine and pharmacy, Lovell and his 

coworkers (Lovell et aL, 1997) have constructed a systematic model on the basis of BNs 
to develop risk prediction systems in obstetrics and Barker et aL (2002) have discussed 
how BNs can help to deal with risks stepping from clostridium botulinum. Studying 
from the viewpoint of risk categories, Garrote et aL (2003) have applied BNs to real- 
time flood risk estimation and Holicky and Schleich (2000) have estimated risks under 
fire design situation. Moreover, Marsh and Bearfield (2000) have successfully applied 
BNs to model accident causation in the UK railway industry and He et aL (2002) have 

explored the possibility of using BNs to assess credit guarantee risk. 

Whilst such studies focus on the practical application of risk-based BNs, another 
emphasis associated with BNs in the risk context has mainly been placed on their 
combination with traditional risk assessment methods to form more powerful analysis 
tools from the point of theory research. Bobbio et aL (200 1) have mapped fault trees into 
BNs for improving the effectiveness of risk analysis of dependable systems. Combining 
BNs and Failure Mode and Effects Analysis (FMEA), Lee (2001) has conducted a BN- 
FA1EA model to provide a basis for improving the safety perfon-nance of design and 
diagnostic modelling of mechatronic systems. The synthesis of Analytic Hierarchy 

* More details about BNs can be found in Section 2.6 and Chapter 7. 
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Process (AHP) and BNs was originally introduced to the field of risk assessment through 
the work by Cagno et aL (2000) and Ha and Seong (2004). Furthermore, applying BNs 
into the research of reliability also enables the exploration and development of novel 
reliability analysis models. Some typical studies in this category include the work by 
Boudali and Dugan (2005) and Langseth (2002). 

A common criticism of the Bayesian approach is that it requires too much information in 

the form of prior probabilities, and that this information is often difficult or impossible 
to obtain in risk assessment. In practice, therefore, it is often necessary to rely on 
subjective probability estimates provided by expert judgements. It has been reported that 
linguistic expressions of probabilistic uncertainty may be more accurate than numerical 
values in estimating risk variables (Wang et al., 1995) and that forcing the input of a 
crisp non-overlapping subjective probability is in many circumstances misleading and 
likely to lead to instability of the Bayesian system performance (Pan and McMichael, 
1998). Consequently, an interesting circle (defimed as FBNs) connecting FST with BNs 

may be formed. The use of ftizzy sets requires the support of BNs to deal with 
interactive dependence between risk variables (randomness of uncertainty) and BNs rely 
on FST to cope with haziness of prior subjective probability (fuzziness of uncertainty). 

To address this issue, earlier work has indicated that there are many challenges in 
developing the concepts of ftizzy probability or the models related to FBNs. Zadeh 
(1975; 1984) has first used the term "fuzzy probability" and defined the ftizzy 

probability of a fuzzy event in terms of its ftizzy cardinality with respect to some 
universe of discourse. Whilst Zadeh's approach may be useful for data-centred 

applications, it is somewhat dubious as it seems to rest on the assumption that the set of 
outcomes consists of a finite number of elements having equal probability (Halliwell, 
2003). The work by Jain and Agogino (1990) has arguably been the most influential of 
publications in unifying the concepts of Bayesian probability and fuzzy possibility. 
However, it has not possibly given significant contributions to this research because for 
technical reasons the theory it presents cannot provide a satisfactory model for 

qualitative probability assessments. The typical studies by Pan and McMichael (1998) 

and Pan and Liu (2000) have successfully developed a complete formalism for inference 
involving fuzzy random variables (RVs) in fuzzy causal probabilistic networks. 
Unfortunately, the failure of dealing with the overlapping of the states of ftizzy R Vs puts 
them on a conflicting point, where the arguments of the "mutually exclusive" 
characteristics of the states as the foundation of the Bayesian approach harass the 
inference formalism. The linguistics probability theory by Halliwell et aL (2002) might 
be the first attempt to use fiizzy numbers as a substitute for real numbers distributed into 

various states. Although showing much attractiveness such as effective qualitative 
probability assessments and a reasonable inferring mechanism, such a theory has still 
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been found to have some theoretical and applicable problems, in which typical ones 
include the ignorance of the requirement of "completeness" of states and the complexity 
of computing algorithms. More effective and novel models are required. 

2.6. Decision Making Techniques 

BNs, ftizzy logic and AL4UT have proven to be powerful tools for decision making. 
While BNs and fuzzy logic deal with the decisions under uncertainty, M4 UT focuses on 
the problems with multiple attributes or criteria. In complex safety critical systems, 
decisions are usually made on multiple uncertain attributes. Therefore, it is possible to 
consider the synthesis of BNs, fuzzy logic and AMUT (or its extension - Multiple 
Criteria Decision Making (MCDM) together in the forming of a more powerful risk 
based decision support tool. Although the work by Fenton and Neil (2001) has provided 
a theoretical foundation for the combination of BNs and MCDM, it uses subjective point 
estimation to define attribute states, which may not be well suited to modelling the 
safety attribute, and thus, cannot be appropriately applied to the risk domain without 
ftirther research. Actually, the attempt to synthesise these techniques can be better 

considered as an alternative explanation to simple influence diagrams (IDs) including 

one decision node (Howard and Matheson 1981). In order to make use of the advantages 
of BNs, ftizzy logic and MCDM in risk based decisions, the relevant literature needs to 
be reviewed in the following context. 

BNs and Influence iajzrams 
A BN (also called belief network, or probabilistic network) is a graphical presentation of 
probability combined with a mathematical inference calculation. It is used to represent 
dependencies between M. Each variable represented as a node, is connected by 
directed links, represented as arrows or arcs, with conditional probability table (CPT) 

values assigned to the variables making up a BN. The nodes in a BN are called chance 
nodes. Chance nodes represent uncertain events or variables. They can be a continuous 
or discrete RV, or a set of events. A deterministic node is a special case of chance nodes, 
which operates deterministically on other nodes. The arrows are the directed links 
between nodes and this direction represents the conditional dependent relationship of 
these nodes. 

The graphical representation makes BNs a flexible tool for constructing the models of 
causal impact between events, in particular when the causal impact has a random nature. 
Also, the specification of probabilities is focused on very small parts of the model (a 
variable and its parents). Having constructed the model, it can be used to compute 
effects of information as well as interventions from deterministic nodes. When the states 
of some variables are fixed, the posterior probability distributions for the remaining 
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variables can be computed. Algorithms based on the Bayes' rule and Chain rule (Jensen, 
2001) are developed for probability updating, and they perform very efficiently on a 
large variety of models. This makes BNs well suitable for forecasting and diagnosing. 

A BN serves as a model for a part of the world and the relations in the model reflect 
casual impact between events. The reason for building these models is to use them when 
making decisions. In other words, the probabilities provided by the network are used to 
support some kind of decision making (Jensen, 2001). 

It is often said that "Decision Theory = Probability Theory + Utility Theory" (Murphy, 
1998). BNs have outlined how joint probability distributions are modelled in a compact 
way using sparse graphs to reflect conditional independence relationships. Therefore, it 
is possible to decompose multi-attribute utility functions in a similar way: a node is 

created to represent the attribute of interest, which has as its parents all the other 
attributes on which it depends. Furthermore, the utility node(s) will be created to have 
decision/deterministic and chance node(s) as parents, since the utility depends both on 
the state of the world and the actions performed by decision makers. The resulting graph 
is called an ID. 

An ID was originally developed to substitute conventional decision trees in modeling 
and solving real world symmetric decision problems. Nowadays, it can be considered as 
a BN augmented with decision variables and utility functions and provides a language 
for dealing with both simple decision problems (only one decision node (action)) and 
sequential decision problems (more than one decision node and utility node), which are 
also known as dynamic decision modelling. An ID is solved by computing a strategy 
yielding the highest expected utility. A strategy is a set of functions; to each decision 

variable, a function, which from the relevant path returns a decision, is specified. The 
BN algorithms for probability updating can be modified to solve IDs. The framework of 
IDs (Howard and Matheson, 1981) provides a natural representation for capturing the 
semantics of decision making with a minimum of clutter and confusion for decision 

makers (Shachter and Peot, 1992) and offers comparative advantages of easy numerical 
assessment and effective representation of independencies between variables over trees. 
These factors contributed to the wide spread use of IDs as a tool for representing and 
analysing complex risk related decision problems in recent years (Willems et aL, 2005; 
Diehl and Haimes, 2004). 

Although considered as the extension of BNs in the decision making context, an ID is 

still a type of causal model that differs from a BN. They indicate different meanings in 
different studies. For example, Kjxrulff and Madsen (2005) concluded that a BN is a 
model for reasoning under uncertainty, whereas an ID is a probabilistic network for 
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reasoning about decision making under uncertainty. From the viewpoint of analysing 
decision support tools' capability, BNs and influence diagrams can be respectively 
defined as single attribute and multiple attribute decision making (AMDM techniques in 
this study. In order to clarify the difference, the definition of an ID is provided as 
follows (Kjxrulff and Madsen, 2005): 

An ID N= (X, G, P, U) is a four-element collection consisting of a set of random and 
decision variables X, an acyclic directed graph G, a set of conditional probability 
distributions P and a set of utility functions U. The acyclic directed graph G= (V, E), 

contains the nodes V representing M, decision variables, and utility functions (also 
known as value or utility nodes) and directed links E including precedence links 
between decision nodes and information links from change nodes to decision nodes. 
Each decision variable D r= X, includes the decision options or alternatives represented 
by the states (di, ..., d. ). The decision options are mutually exclusive and exhaustive. 
The usefulness of each decision option is measured by the local utility functions 

associated with D or one of its descendants in G. Each local utility function u(Xmý, )) c= 
U, where pa means the parents of v and ve Vu is a utility node, represents an additive 
contribution to the total utility fimction u(X) in N. Thus, the total utility function is the 

sum of all the utility functions in the ID, i. e., u(X) =EP,, vu xu (Xpa(, )). When making 

decisions, each action will influence the probabilities of the configurations of the 
network. Consequently, Avu changes to respond to various decision actions and the 
total utility values associated with all the actions (called expected utility EO are 
different. The decision alternative with the highest expected utility is chosen; this is 
known as the maximum expected utility principle (AEO. 

Given their general information above, some special structural properties still need to be 

emphasised in order to better understand the meaning of IDs as follows (Jensen, 200 1): 

0 There is a directed path (ordered combination of all precedence links) 
comprising all decision nodes. 
The utility nodes (Vu) have no children. 
The decision nodes (VD) and the chance nodes (Vc) have a finite set of mutually 
exclusive states. 

0 The utility nodes (Vu) have no states. 
To each decision node (VD) and the chance node (Vc), there is an attached 
conditional probability table P(VLDa(k)). 
To each utility node (Vu), there is an attached real-value function u(Xp4,, )) c= U 
overpa(Vu). 

As one kind of uncertainty treatment techniques, BNs have characterised significant 
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strengths in the risk based decision making, which may be not always shown in the other 
decision making techniques such as M UT and fuzzy logic. They are shown as follows: 

The graphical nature of BNs allows risk variables to be added or removed 
without significantly affecting the remainder of the networks because 

modifications to the networks may be isolated. 

" The BNs have the capability of adjusting risk variables to be risk input or output 
without redesigning the system. In other words, they can accept risk evidence at 
any point in the system and likewise, provide output at any point in the system. 

" The comparison between Bayesian prior and posterior probabilities with 
flexibility enables the conduction of the SA in BNs, which can be used to rank 
the importance of risk variables. 

" The concept of d-separation in BNs provides a basis for overall improvement in 

computation; once conditionally independent due to some blocking nodes, the 
probability of one node can be evaluated without consideration of the others. 

" As one kind of expert system, BNs like fuzzy rule based systems, may be 
developed using expert opinions instead of too much objective data. 

However, on the other side, BNs have also exposed some weaknesses when applied to a 
risk domain, as follows: 

The general lack of understanding of probability definitions leads to failing to 
precisely probabilistically estimate subjective ftizziness, which widely exists in 

representing risk variables. 
As acyclic graphs, BNs require that all arrows in the networks must not form a 
directed cycle or loop, which constrains the construction of the qualitative 
structure associated with risk variables to a certain degree. 
Most importantly, BNs themselves, having no incorporation with utility theory, 
cannot deal with multiple risk attribute decision problems. 

As the extension of BNs, IDs succeed in their advantages in dealing with risk based 
decision problems and simultaneously, equipped with decision nodes and utility 
fimctions, they obtain a solution to overcoming the partial disadvantages discussed 
above. The utility functions allow IDs to incorporate the notation of preference, which is 
necessary to wider risk decisions with multiple attributes. The precedence links attached 
in the diagrams make it possible to take decisions or perform actions in a sequential 
order. This point has a significant sense in engineering risk control areas, where an 
interruptive action will normally not be performed until its antecedents fail to work. 
However, similar to the other disadvantages of BNs described above, the chance and 
utility nodes in IDs are incompatible with fuzziness. Furthermore, the NIEU principle 
requiring linear additive functions may also hinder the application of the diagrams in 
risk based AMDM. 
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Fyza Logic and ER 
Fuzzy logic is a superset of conventional Boolean logic with extensions to account for 
imprecise information. Fuzzy logic permits vague information, knowledge and concepts 
to be used in an exact mathematical manner. Linguistic variables such as "definite", 
"likely", "average", "unlikely" and "impossible" are necessary media used to describe 

continuous and overlapping states. This enables qualitative and imprecise reasoning 
statements to be incorporated with fuzzy algorithms or fuzzy rule bases producing 
simpler, more intuitive and better-behaved models. Fuzzy logic is based on the principle 
that every crisp value belongs to all relevant flizzy sets to various extents, called the 
degrees of membership. 

Pure fuzzy logic has extremely limited applications (the only popularised application is 
the Sony Palmtop) and the main use of fuzzy logic is as an underlying logic system for 
ffizzy expert decision making systems (Pai, et aL, 2003). Roubens (1996) described a 
typical fuzzy decision making problem as follows. Considerj (i eQ as one of given 
criteria C upon which the alternatives A are evaluated. A fuzzy objective may be 

characterised on this criterion by a fuzzy set pj(x), xe Xj, where Xj represents the 
evaluation scale on the dimensionj. The next step is to associate an evaluation with each 
alternative i (i (=- A) on dimension j. III-known or ill-defined evaluations can be 

represented by a possibilistic distribution 
jgu(x), which represents the fuzzy consequence 

of alternative i for criterion j. Based on fuzzy knowledge bases, such possibilistic 
distributions on various criteria can be unified and transferred to one common space 
Py(x), the preferences of decision makers. Sonmez (2002) indicated that the preferences 
of decision makers are very often represented by a "Preference structure", which can be 
displayed according to different guidelines such as graph, numerical or functional 

representations. In nature, it is a problem of the exploitation of preference models. After 
the preference structure analysis, Herrara and Verdegay (1997) suggested that another 
(the last) main problem using a fuzzy decision making tool is associated with the 
aggregation of preferences, which can be given more detailed discussion in the 
following context related to an ER approach. 

Fuzzy logic has been successfully applied for a wide range of single and MCDM 
problems. Yager (1981) proposed a fuzzy logic based methodology for qualitative 
multicriteria decisions. Shipley et aL (2001) described a multiple criteria linguistic 
decision model to satisfy goals for successful product/service introduction. A fuzzy 
logic based methodology for qualitative multicriteria decisions in facilities planning has 
been proposed by Kapoor and Tak (2003). Singh and Tiong (2000) described a multiple 
criteria linguistic decision model using FST to evaluate the capability of a contractor to 
deliver projects as the owner's requirements. Chen (2001) used a new multiple criteria 
decision-making method to solve the distribution center location selection problem 
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under ftizzy environment. Fuzzy discrete MCDM algorithms for optimising the cost of 
steel structures have been developed and studied by Sarma and Adeli (2000). Khouja 

and Booth (1995) applied a fuzzy cluster analysis to choose industrial robots. Wang and 
Lin (2003) produced a ftizzy logic approach for configuration item selection in software 
development based on multiple qualitative criteria. A multicriteria port competitiveness 
evaluation problem was solved by Huang et al., (2003) using a ftizzy multicriteria grade 
classification approach. Liang (1999) combined the idea of the Technique for Order 
Preference by Similarity to an Ideal Solution (TOPSIS) with FST to propose a novel 
ftizzy MCDMbased on the concepts of ideal and anti-ideal points. 

The theory of evidence was first generated by Dempster (1967) and further developed 
by Shafer (1976). As such, the theory is often referred to as Dempster-Shafer theory of 
evidence or D-S theory. The D-S theory was originally used for information aggregation 
in expert systems as an approximate reasoning tool (Buchanan and Shortliffe, 1984; 
Lopez de Mantaras, 1990) and then used in decision making under uncertainty and risk 
in contrast to Bayes decision theory (Yager, 1992; 1995). ER is developed on the basis 

of the D-S theory. The use of ER as a decision making tool has been widely reported in 

the literature. Some typical studies making useful contributions towards the use of ER 
for representing and managing uncertainty in decision analysis include the works 
produced by Yen (1990), De Korvin and Shipley (1993), Xu (1997), Denoeux (1999), 
Murphy (2000) and Vourous (2000). Through the studies, it is concluded that when 
using ER to design a decision making model, the following items are noteworthy (De 
Korvin and Shipley, 1993): 

To simplify complex systems. 
To incorporate subjective factors in a systematic way. 
To combine evidence from independent sources of information. 

e To account for the uncertainty inherent in complex decision making processes. 

An important achievement of applying ER to decision analysis is to incorporate it into 
traditional MCDM methods, which has been claimed by Beynon et aL (2000). MCDM 

problems with both qualitative and quantitative attributes are sometimes called hybrid 
MCDMproblems (Sonmez, 2002). When faced with a hybrid MCDMproblem, the first 
thing to tackle is how to measure the qualitative criteria (Yang and Sen, 1994). An ER 
based decision making approach for MCDM problems with both qualitative and 
quantitative criteria under uncertainty was developed in the early 1990's (Yang and 
Singh, 1994; Yang and Sen, 1994). The major contribution of the approach lies in that it 

uses a distributed evaluation framework to overcome the inability of the D-S theory 
when conflicting evidence exists in MCDM problems. In the framework, assessments 
provided in terms of degrees of belief at lower level criteria are aggregated through their 
weightings. The kernel of such an approach is an ER algorithm, which was generated by 
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Yang and Singh, (1994), later updated by Yang and Sen (1994) and further modified by 
Yang (2001). The approach is continuously regenerated and the newest algorithm can be 
found and fully explained in Yang and Xu (2002). The phrase "ER approach" 
throughout this thesis refers to the algorithm. Several applications of this approach can 
be addressed in the literature (Wang et aL, 1995,1996; Yang and Sen, 1996,1997; 
Graham et aL, 2000; Yang, 2001; SH et aL, 2002; Yang et aL, 2004). Consequently, the 
process of applying the ER approach to MCDM can be concluded and briefly described 

as follows (Sonmez, 2002): 

Display a decision problem in a hierarchical structure. 
Assign weights to each criterion and also to their sub-criteria. 
Choose a method for assessing a criterion weight quantitatively or qualitatively. 
Evaluate each alternative based on the lowest level criteria in the hierarchical 

structure. 
" Transform assessments between a main criterion and its associated sub-criteria if 

they are assessed using different methods (i. e. qualitative and quantitative). 
" Generate an overall distributed assessment for each alternative at the top level 

and quantify it if necessary so as to determine an average value for the alternative. 
" Rank alternative and choose the one with the highest average value. 

The ER approach developed particularly for MCDM problems with both qualitative and 
quantitative criteria under uncertainty utilises individuals' knowledge, expertise and 
experience in the forms of belief functions. The major advantages of ER are: 

To handle incomplete, uncertain and vague as well as complete and precise data. 
To provide its users with a greater flexibility by allowing them to express their 
judgements both subjectively and quantitatively. 
To accommodate or represent the uncertainty and risk that is inherent in decision 
analysis. 
As a hierarchical evaluation process, to offer a rational and reproducible 
methodology to aggregate the data assessed. 
To easily obtain the assessment output using mature computing software, IDS. 

AM UT and TOPSIS 
M UT is an application tool for estimating the utilities of multiple objectives, which are 
under study by decision makers. In other words, decisions on different problems or 
situations are taken after the careful analysis of the utilities that are given a set of well- 
defmed objectives. AM UT shares the same philosophy as AHP. It is a decision making 
tool, which assists in the solution of problems where a plethora of factors are involved 
and their assessment is essential to the final outcome. Edwards (1954,1961), Fishburn 
(1968), Feridman and Savage (1952) and Keeney and Raiffia (1976) have been among 
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the first to develop this methodology. According to Edwards and Newman (1982), a 
seven-step AM UT framework can be represented as follows: 

Identify objectives and functions. 
Identify stakeholders. 
Identify attributes and construct value trees. 
Assess relative importance of attributes. 
Ascertain location measures. 
Aggregate weights and utilities. 
Perform SA. 

AM UT has been used in a serial of cases and in a variety of contexts depending on the 
scientific fields in which it has been applied. In the business field the research of Zhang 

et aL (2003) studying the applicability of utility and decision theory at a managerial 
level is presented. At a strategic level, the studies of Min (1994) and Talluri and 
Narasimhan (2003) on supplier selection and Platts et aL, (2002) on making against 
buying decisions are found in the literature. In the risk sector, the studies include the one 
of Khan et aL (2004) on the risk-based inspection and maintenance of oil and gas 
installation and operations, the work by Wang et aL (1996) dealing with subjective 
safety and cost assessment and the research of Linares (2002) using MCDM and risk 
analysis for power system planning, etc. A number of studies have also taken place in 
the fields of energy (von Winterfeldt, 1982), fishery (McDaniels, 1995), and hazardous 

materials (Erkut and Verter, 1998), etc. 

Compared to other decision analysis tools, AM UT has its own superiority or robustness, 
which can be defined as the ability to analyse and formulate problems with imprecision. 
This robustness appears in three key areas: problem formulation, preferences and 
probabilities, 

" Problem formulation is associated with the set of available alternatives, which 
are not fixed but can be extended (Korhonen, et aL, 1986). 

" Preference can be expressed in an imprecise and intransitive way, which gives 
the scope for more in depth analysis of the plausible scenarios under study 
(Fishburn, 1991). 

" Probabilities provide decision makers with the ability to conduct robust analysis 
and facilitate the creation of a set of alternatives which will determine the future 

course of actions depending on the assumptions made and prevailing conditions 
at the time the actions need to be taken (Keeney and Raiffa, 1993). 

Three critical assumptions related to MCDM have been studied and described to be 
associated with well defined, certain and independent relevant attributes. When MCDM 
is applied to solve a realistic risk based decision problem, such assumptions have 
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possibly been confirmed not to be true. Consequently, they are considered as the 
limitations that must be improved. More details about them are discussed to represent 
how significantly BNs and fuzzy logic can function in terms of the effectiveness of 
improving the limitations. 

In most realistic risk decision problems, the attributes interested/chosen are not 
necessarily well defined in sense of MCDM. There are two kinds of such attributes: one 
can be called "synthetic", which can normally be decomposed into lower level attributes 
that are assumed to be well defined (Roberts, 1979) and the other can be defined as 
"fiazy", which is caused from the lack of objective real numbers/values to support its 

meaning (quantitative description). For example, for the "synthetic" attributes, in the 
FAECA method, safety can be decomposed into occurrence likelihood, consequence 
and the probability of consequence. Using the SERENE approach (SERENE, 1999), such 
decompositions can be part of a class of BNs. It is noteworthy that the decomposition 

alone is not sufficient to define the higher level attributes (Fenton and Neil, 2001) 
because there may be many ways to define the safety in FMECA as a combined measure 
of the lower level attributes such as PRAT methods and -ER approaches (Li and Liao, 
2004). In other words, the BN technique is a key here. On the other hand, the "fuzzy" 

attributes can be defined using linguistic variables (qualitative description) based on the 
fiizzy logic theory. When utility values/functions are considered, the linguistic variables 
can be expressed by fuzzy numbers. For instance, one of the lower level attributes of 
safety, occurrence likelihood can be defined using "highly likely", "likely", "average", 
"unlikely" and "highly unlikely", if it has no objective information support in the form 

of "occurrence frequencies/time". In such a process, one must not confuse the definition 

of fiizzy numbers of the linguistic variables with the requirement of mutually exclusive 
states in BNs. If the attribute occurrence likelihood becomes the node of a BN with the 
five states expressed by the linguistic variables above, then such five states can still keep 

a mutually exclusive relationship although they will be endowed with overlapped fuzzy 
numbers when the corresponding utilities are needed. This point can be further 
demonstrated using a real-world example. The variable, a person's height is considered 
as a node in a BN with five mutually exclusive states, " 180-175", " 174-170", "169-165", 
"164-160" and "159-155"(cm). Now, although a special decision making scenario may 
require assigning the utility value "I" to the states with the height no less than 165cm 
and "0" to the others, three inclusive (completely overlapped) "I" and two "0" do not 
influence the mutually exclusive relationship of the five states. 

It is true that most risk attributes/criteria are uncertain so that risk research is usually 
closely connected with probability theory. For example, given an event "fire", the 
consequence of the fire is highly possibly stochastic rather than deterministic. Such 
uncertainty is called randomness and the definition of the R Vs in BNs can well model the 
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randomness using prior probability distributions to various states. The assumption that 
the risk attributes/criteria are independent of each other is not valid in many risk based 
decision analyses. For example, a classical MCDM problem may be to assess the 
navigation safety of ships based on the attributes: ship structure, ship speed, ship 
manipulability and location. Such attributes may be both well defmed and certain, 
however they are not independent; ship speed will depend on ship structure and its 
location (i. e. possibly related to traffic intensity) and affect ship manipulability. BNs 

precisely provide the necessity for dealing with the dependency between risk attributes 
when their qualitative graph structures and quantitative conditional probability 
distributions are concerned. 

Hwang and Yoon (198 1) developed the TOPSIS method based on the intuitive principle 
that the chosen alternative should have the shortest distance from the positive-ideal 
solution and the longest distance from the negative-ideal solution. TOPSIS is quite 
effective in identifying the best alternative quickly. The underlying logic premise of the 
TOPSIS method is that an alternative that is more like an ideal alternative (the best that 
could be imagined) and more unlike a negative-deal alternative (the worst that could be 
imagined) should be preferred. In the TOPSIS method, the ideal alternative is 

constructed out of exclusively the best attribute values attainable and therefore it is 

usually an invented alternative. The negative-ideal alternative is also usually an invented 

alternative that is constructed out of exclusively the worst attribute values attainable. 
The relative closeness (similarity) of each alternative to the ideal alternative is rated on 
the basis of its distances from both the positive-ideal and the negative-ideal alternatives 
simultaneously. Finally, the preference order of the alternatives is obtained by their rank 
on a descending order of those ratings. The computational procedure of the TOPSIS 

method is straightforward and its framework can be described as follows (Olcer and 
Majumder, 2006): 

Calculate normalised ratings. 
Calculate weighted normalised ratings. 
Identify positive-ideal and negative-ideal solutions. 
Calculate separation measures. 
Calculate similarities to the positive-ideal and negative solutions. 
Rank preference order. 

The TOPSIS method as a modified form of MCDM methodology does not require 
attribute sets to be independent as the ER approach does. It can also be easily 
incorporated with the fuzzy logic theory to combine Rizzy and crisp attribute values 
(Chen and Huang, 1992) and with the entropy theory (Zeleny, 1976) to deal with context 
dependency (i. e. the influence of constraints to risk attributes) (Rillet and Park, 2001). 
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2.7. Conclusion 

The operational process of CSC systems including physical cargo flow, information 
flow and custody flow has been reviewed, followed by a careftil analysis of some typical 
historical failure data in the process. In order to ensure the origination of the study, this 
chapter has also given a comprehensive literature review associated with the risk 
assessment of CSCs. It emphasizes the explanation of applying uncertainty treatment 
methods and techniques to risk assessment and decision making in previous studies. 
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Chapter 3- Formal Safety Assessment of Container Supply Chains 

SUMMARY 
Yhis chapter develops a conceptual safety assessment methodologyfor CSCs based on a 
modified FSA framework that takes risks from vulnerability rather than hazards into 

account. Five interlocking steps are described to construct a safety model including 
novel risk analysis and decision-making approaches. Yhe advantages of the 
vulnerability-based risk analysis approach over the hazard-based one are clarified and 
the aggregation of engineering-based and managerial risk analysis is also discussed An 

anti-terrorism case study is finally carried out to test the feasibility of the proposed 
methodology. 

1. Introduction 

CSCs have made significant contributions in facilitating the world prosperity and 
economic development experienced over the past twenty years. However, based on a 
near-frictionless international transport belief, the chains have exposed themselves 
uniquely vulnerable to various risks. Some special events such as the 9/11 terrorists 
attacks and the lock-out of American West Ports have gradually shown that a) the safety 
and reliability in the chains are facing an unprecedented challenge and b) traditional 
engineering-based risk assessment methods and safety protective measures are 
inadequate to deal with the threats from variational environments, especially in the era 
of terrorism rampancy. Born in the 90s of the 20'h century, Safety Case and FSA 

approaches attempted to develop a broad regime to cope with marine related risks 
against international shipping and offshore safety. However, with the outgrowth of the 
ship-focused mandate given from the IMO, such frameworks can only be competent to 
the containership itself and, at most, the immediate area surrounding the vessel in 
container ports/terminals. Thus, there is a need to develop a framework to address the 
safety requirements of CSCs as a whole appropriately. 

Evolving from the multi-purpose general-cargo liner, modem CSCs have more and more 
vulnerability by many diversiform. risks. These risks not only range from the possibility 
of physical breaches in the integrity of shipments and the interruption of information 

communication, but also come from the vulnerability in wider levels that may be 
personnel, managerial or environmental. Obviously, it will be very difficult for the 
classical approaches aiming at hazard-based risks to deal with the wider vulnerability- 
based risks in CSC systems. Thus, a subjective risk analysis approach combining FST 
and the ER approach is generated to deal with the highly uncertain situations resulting 
from threat-based risks. A techno-economic modelling technique is applied to construct 
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a novel multi-attribute decision-making model to cope with the evaluation of benefits of 
RCOs under uncertainty. 

The current study aims at examining the application of a modified FSA framework to a 
CSC system from both engineering-based and managerial viewpoints. In order to 
achieve this aim, the chapter discusses CSC vulnerability; demonstrates the proposed 
methodology by unifying the traditional FSA framework and the special safety 
requirements and economic consideration of the chains; generates an unique subjective 
risk analysis approach for managing vulnerability in the chains; develops a novel 
decision-making technique for selecting the most effective RCOs in terms of safety and 
cost; and validates their feasibility by a case study related to a terrorism threat. 

3.2. Major Problems in the Application of FSA to CSCs 

The proposed FSA methodology consists of the solutions of three major problems, 
which outline the necessary steps required for risk and economic analysis using fuzzy 

set and ER methods. 

3.2.1 Complex CSCs 

The generic model of a CSC has been enlightened by the IMO FSA Guidelines and 
developed by following the processes of CSC operations. It as far as possible describes 
the functions, features, characteristics and attributes, which are common to all CSCs. 
The generic model is therefore not a 'typical' container transport chain considered in 
isolation but the hub of a chain of systems -- with a physical cargo flow system at the 
centre, following an information flow system at the beginning and deciding a custody 
flow system at the end (see Figure 3.1). Each of these systems interacts dynamically 
with the others at and across all levels to constitute a comprehensive picture of the CSC 
operation process. Therefore, the generic model has been developed by considering the 
systems and characteristics required to transport containers in supply chains. The 
functions and systems of CSCs are broken down to appropriate levels and the 
interactions of functions and systems are investigated as well. 

3.2.2 Definition of Vulnerability 

Although the vulnerability concept has been in use for more than twenty years since 
Timmerman's conceptualisation (Timmerman, 19 8 1), presently, there is still no common 
defmition of vulnerability, and the meanings of vulnerability are still ambiguous and 
ftizzy (Weichselgartner, 2001). Many of the discrepancies in the meanings of 
vulnerability arise from different epistemological orientations and subsequent 
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Figure 3.1. The generic model of CSCs 

methodological practices. Nevertheless, one can find three distinct themes in vulnerability 
studies: vulnerability as risk exposures, vulnerability as social responses, and vulnerability 
as places (Cutter, 1996; Weichselgartner, 2001). The third one, vulnerability as places, 
combines elements of the former two and is conceived as both a biophysical risk and a 
social response within a specific area (Weichselgartner, 2001). In a supply chain context, 
logistics internal risks and external risks together endangered the continuity and 
reliability of the supply chain operation. Thus, the supply chain vulnerability can be 
defined as 'an exposure to serious disturbances, arising from risks within the supply 
chain as well as risks external to the supply chain (Chapman et al., 2002). However, the 

current research has indicated that either internal or external risks would originate from 

a hazard or threat. Thus, the vulnerability will be considered from another viewpoint -- 
its nature and consequently is defined as 'an exposure to serious disturbances, arising 
from a hazard or threat'. Compared with Chapman et al. 's concept, the analysis from 

vulnerability nature will more redound to risk analysis. After all, the first step to achieve 
any effective risk analysis is to better understand the true nature of those risks. 

Further studying the definition of the vulnerability of the chains, one will appreciate the 
distinction between hazards and threats. Differing from the definition of a hazard, a 
threat can be defined as an action or a potential action rather than a physical situation 
likely to cause damage, harm or loss (Bums et al., 2003). It means that the hazard-based 

vulnerability is more likely to perform mechanistic probability distributions, while the 
threat-based vulnerability is closely connected to behavioural probability distributions. 
Thus, the understanding of the hazard-based vulnerability may come from objective 
historical accident statistics as well as subjective judgements if necessary, while threat- 
based vulnerability may better be described and presented using expert judgements based 
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on human knowledge and experience. Additionally, it is noteworthy that the threat-based 
risks are potentially greater than hazard-based risks because they are often not within the 
focal companies' direct control. Furthermore, they may be expressed in vague or 
qualitative terms, but it is inherently difficult to quantify them. 

3.2.3 Application ofFTA 

FTA is a diagrammatic method used to evaluate the probability of an accident resulting 
from sequences and combinations of faults and failure events (Pillay and Wang, 2003a). 
Because of its many advantages, especially in combining qualitative and quantitative 
analysis to provide decision makers with an objective means of measuring the risk levels 

of a targeting system, FTA has been widely applied to the risk analysis of various 
industries, including logistics chains. The application of FTA to the current study, 
however, is worth noting the following: 

i) The qualitative FTA diagram is considered as a hierarchical structure to apply the 
ER approach. 
The hierarchical structure should be a qualitative FTA diagram, which means that the 
fault tree has been reduced to a logically equivalent form (minimal cut sets) by using 
the Boolean algebra in terms of the specific combination of basic events sufficient 
for the undesired top event to occur (Henley and Kumamoto, 1992). 

ii) The weights of all events are distributed according to a specifically defilned rule. 
The weights of all events in applying the ER approach are determined considering 
that the fault tree, which can be considered as a hierarchical diagram, consists of 
many 'OR' and 'AND' gates. Therefore, a specific rule is required to assign the 
weights on a rational basis and defined as "all input events of an 'OR' gate are given 
the same weight equal to that of the output event of the gate, and the weights of all 
input events of an 'AND' gate are assigned through dividing the weight of the output 
event of the gate by the number of the input events". 

3.3. The Proposed FSA Methodology 

FSA, as a rational and systematic methodology for assessing risks and evaluating the 
costs and benefits of different options for the reduction of those risks, has been 
successfully applied to various types of ships and some marine related areas. Trial 
applications include bulk carriers (IACS, 2001), passenger vessels (IMO, 1997; IMO, 
1998a; Lois et al., 2004), high-speed catamaran ferries (Vivalda, 2000), and fishing 
vessels (Loughran et al., 2001; Pillay et al., 2003). In addition, other developments in 
specific FSA projects include those in ballast water management (DNV, 2000), 
helicopter landing areas on passenger vessels (Spouge, 1998; IMO, 1998b), and life 
saving appliances for bulk carriers (IMO, 2001; Skjong and Wentworth, 2000). 
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According to the benefits of adopting FSA for a marine related system described by the 
UK Maritime and Coastguard Agency (previously known as Maritime Safety Agency) 
(MSA 1993), together with the outcomes of prior FSA related studies, the application of 
a modified FSA framework for CSCs will a) effectively address all aspects of safety in 

an integrated way under the condition of cost effectiveness; b) present a proactive 
approach to consider the vulnerability that is full of the whole system operational 
processes that have not led to the rise of accidents; and c) provide a rational basis for 
recognising new risks posed by ever changing technology. 

Judging from its development process, FSA originated from the marine industry and was 
also applied to marine and marine related areas. Although CSCs operate mainly based 

on maritime liner shipping services, they are constitutionally different according to the 
previous discussion. Therefore, in the context of CSCs, the FSA methodology will be 

modified to consider more elements like threats for the feasibility and reliability of its 

application. The methodology for the current study can be formulated to include the 
following five steps: 

1. Identification of vulnerability. 
2. Quantified assessment of the risks arising from the vulnerability identified in Step 1. 
3. Development of safety options for controlling the high level risks estimated in Step 2. 
4. Economic analysis associated with the RCOs identified in Step 3. 
5. Recommendation for decision making, based upon the information derived in the 

preceding steps. 

Established techniques are employed at each step of the FSA process. These include, for 

example, brainstorming, risk matrix, analysis of historical accident data, FTA and ETA, 

net present value calculations of costs and benefits, techno-economic modelling and 
AMDM, etc. Simultaneously, some new techniques like subjective risk analysis and 
fuzzy cost and benefit analysis (FCBA) are also developed in this chapter. The modified 
FSA methodology designed for CSCs is described in detail in the following discussion. 

3.3.1 Identification of Vulnerabili 

The first step in achieving any effective risk assessment or management is the better 
understanding of the true nature of those risks. The vulnerability in the chains comes from 
many guises and operates at several different levels. They are inextricably linked, but for 

clarification purposes are described here within four interlocking levels of analysis: 

Level I- Process (assets, infrastructures and supporting facilities) 
Level 2- People 
Level 3- Organisation and management 
Level 4- Environment 
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At level 1, the CSC vulnerability is examined from a prevailing engineering-based 
process perspective, seeing the chains as a linear pipeline flowing through and between 
assets, infrastructures and supporting facilities. The emphasis is firmly on the efficient 
and continuously operating facilities and assets, which can be connected with the "links 
and nodes" of CSCs. The links are trucks, trains, containerships, information 
transmission facilities (e. g. computers) and also their infrastructures - roads, rail, inland 

waterways, liner shipping lanes and cables/satellites. The nodes are warehouses, LCL 
premises, rail termini/stations and ports. From a purely process-based viewpoint, CSC 
risks are principally the damage or loss of the links, nodes and other essential operating 
facilities and assets. The popular analogy of a supply chain as a seamless pipeline is a 
useful metaphor. However the realistic CSCs are rarely fixed, discrete, self-propelling or 
self-protecting. Therefore, except for the damage or loss of links or nodes, the 
combination points of them - transhipments from link to node or from node to link - are 
also the main points of vulnerability existing in the chains and need to be given more 
attention in risk assessment. Basically, the vulnerability in Level I belongs to a hazard- 
based scope considering the fact that the vulnerability resulting from any element discussed 
in this level can only be associated with a situation rather than one kind of behaviour. 

Level 2 represents the vulnerability in CSCs in terms of people dependencies. No links 

or nodes will fimction without the people who understand how to run and maintain them. 
Therefore, any deviating activity coming from such persons may lead to a severe 
disruption in the chains. The vulnerability related to working employees mainly 
originates from a) human errors, which include wrong doing and negligence; b) 
deliberate risk-taking, such as putting late arriving containers on a vessel that is ready to 
sail under the insistence of shippers; c) employee health and safety scare, which have 
been considered as the fourth most important scenario covered by Formal Business 
Continuity Planning (FBCP) (Peck and Rittner, 2002) d) deliberate destroying, which 
can be evidenced by many cases of careless loading/unloading of stevedores. The fatal 
vulnerability of the chains in this level may also be driven by the balefiil attacks of 
external people, such as terrorist attacks and hacker activities, which are beyond the 
chains' direct control. Naturally, this category is in the field of threat-based vulnerability. 

At level 3, the CSC is reviewed as an inter-organisational network and the assessment of 
the chain's vulnerability is moved up to the level of business strategy and 
microeconomics. The principles of an integrated CSC aspire to seamless flows of 
information and materials, facilitated by all supply chain partners thinking and acting as 
one. To achieve this objective, close cooperative partnering relationships Ileed to be 
established and monitored. However, it is resource-intensive and thus, the organisations 
in the chains begin to reduce the number of their direct suppliers so as to adopt a single 
sourcing for keeping the lowest cost to develop and manage their supply chain 
relationships (CLSCM, 2003). One of the most widely considered vulnerability factors 
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of supply chains can be identified as the disruptions caused by the failure of a single (or 

a few) source supplier(s) from the organisational point of view. For example, the loss of 
a single discharging port leads to the total failure of all CSCs in the destination country. 
Obviously, this kind of vulnerability results directly from the organisational activities 
and thus it is dealt with as a kind of threat-based vulnerability. 

The vulnerability of CSCs is explained at level 4 with respect to the macroeconomic and 
natural environment within which organizations do business, people operate physical 
and infon-nation flows, and facilities and assets are positioned. Factors for consideration 
are the political, economic, social and technological elements of the operating 
environment, as well as natural phenomenon -- geological, meteorological and 
pathological (CLSCM, 2003). Therefore, major and familiar environmental vulnerability 
steps from a) socio-political reasons, such as wars, regulatory changes and protests; b) 

geo-political reasons, such as the consolidation or disorganisation of countries union; c) 
economic reasons, such as economic crisis, currency fluctuation and other cyclical 
downturns; d) technological reasons, such as new technique flaws and new substitute 
transport modes; e) natural reasons, such as earthquake, flood and diseases. The nature 
of environmental vulnerability may be arguable, mainly because it includes not only 
operating environmental vulnerability that is obviously threat-based but also natural 
phenomena that many people consider as situations rather than actions. In this study, the 

natural disasters can be considered as "Act of God" and be categorised into the threat- 
based vulnerability. Actually, it can be more clearly seen from the ensuing analyses that 
it is difficult to define the frequency and consequence of the natural vulnerability in 

many situations so that the application of subjective assessment may be preferred. 

The vulnerability in a CSC results from two distinctive resources (hazards and threats) 
and four levels (process, people, organization and environment). Vulnerability 
identification can be based on historical accident data, expert judgments and some 
typically established identification techniques. Historical failure statistics are associated 
with many available databases analyzed in Section 2.3. Expert judgments are provided 
by multiple experts based on their knowledge and experience in order to compensate the 
absence of objective statistical data and deal with uncertainty caused by incompleteness. 
The techniques used include brainstorming, HAZOP study and FAIEA, etc. 

To review all the vulnerability existing in the chains, by setting professional and 
disciplinary boundaries in both time and space, is usually difficult. Therefore, only the 
descriptions of the potential hazards identified with regard to the containerships and 
ports and some typical threats in the chains are given in the following: 

Containerships: Threats: 

0 Contact and/or collision 0 Human errors 
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0 Explosion and fire (including flame and heat) * Deliberate risk-taking 
Flooding 0 Employee health and safety 
Grounding and/or stranding scare 
Loss of hull integrity 0 Pressure group protest/strikes 
Machinery failure 0 Terrorist damage 
Cargo damage 0 Loss of suppliers 
Hazards related to hazardous cargoes 0 Wars/society turbulence 

Ports: 0 Economic crisis and currency 
impact (including collision and contact) fluctuation 
Machinery failure 0 Bad weather 
Loss of containment/release 0 Diseases 
Fire and explosion (including gas cloud) 

Once the vulnerability is identified with respect to each of the compartments in the 
chains, it is essential to carry out the screening of the risks associated with the 
vulnerability in order to rank their importance and exclude the trivial ones from further 
investigation. The screening is only a preliminary estimation and thus the parameters of 
evaluating the risks, both hazard-based and threat-based, can be defined as failure 
frequency "F' and consequence severity "S". Using the "Risk Matrix" approach (Wang, 

et aL, 1999), the rankings of occurrence probability and consequence are combined to 
obtain the "Risk Ranking Number" (RRN), which can categorise the risks according to 
their importance. 

3.3.2 Risk Estimation 

Following the application of the "Risk Matrix" approach, those important risks arc 
forwarded for farther analysis while trivial ones can be disregarded. The objective of the 
second step is to evaluate the factors contributing to the important risks on a prioritized 
list. Following the study of the escalation of the initiating events to accidents and their 
final outcomes, it is necessary to construct a risk contribution tree. Generally speaking, a 
hazard-based contribution tree is the combination of a fault tree, which looks at the 
circumstances and failures leading to an accident event, and an event tree that 
investigates all possible outcomes from the accident while a threat-based contribution 
tree is constructed by a single qualitative fault tree diagram, which is considered as a 
hierarchical structure to apply the ER approach. 

For the hazard-based risk assessment, F-N curves and PLL are calculated by following 
the hazard contribution tree. Each F-N curve determines the PLL for a particular sub- 
category so that the final PLL for the whole accident category can be estimated. 
Simultaneously, those basic events and sub-categories can also be ranked with reference 
to their frequency values. 
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However, in the realistic life of CSCs, it is not easy to produce the F-N curves and PLL 
for those threat-based risks. Differing from the hazard-based risks, the threat-based ones 
are more ruleless and unpredictable in terms of failure likelihood and the severity of 
consequences so that it may be difficult to define them precisely in numerical terms. 
One realistic way to cope with imprecision is to use linguistic assessments. However, 

such linguistic descriptions define risk assessment parameters to a discrete extent so that 
they can at times be inadequate. FST is well suited to modelling subjective linguistic 

variables and dealing with discrete problems (Wang et al., 1996). In the theory, 
linguistic variables can be characterised by their membership functions to a set of 
categories, which describe the degrees of the linguistic variables. From the viewpoint of 
risk analysis, a CSC can be regarded as a complex engineering system, which is 

constructed by some subsystems (i. e. ports and containerships) with the support of many 
components (i. e. cranes and engines). In such a hierarchical structure, it is usually the 
case that safety analysis at a higher level makes use of the information produced at 
lower levels. It is therefore extraordinarily important to synthesise the risk evaluations of 
the components in a rational way in order to obtain the risk estimations of the 
subsystems and the whole system. Actually, the importance of such a synthesis means is 
further enforced by the requirements of combining all judgements of multiple experts on 
either one component or the whole system. 

Unlike the risk estimation in QRA, which is precisely expressed by some numerical 
values (e. g. PLL), the risk analysis results using ftizzy sets are impossibly synthesized 
using normal mathematical logical operations. The ER approach is well suited to 
modelling subjective credibility induced by partial evidence. The kernel of this approach 
is an ER algorithm developed on the basis of the D-S theory, which requires modelling 
the narrowing of the hypothesis set with the accumulation of evidence (Yang and Xu, 
2002). Consequently, a subjective safety modelling tool using the combination of the 
FST and the ER approach is proposed to deal with threats and to provide a basis for 
assigning priorities for corrective actions. 

After the study of traditional quantitative safety methods like FAECA, it can be seen 
that there are three basic parameters -- failure likelihood, consequence severity and 
failure consequence probability (i. e. the probability that possible consequences happen, 
given the occurrence of the failure), which are used in assessing the safety associated 
with each failure mode of a component and in determining safety level through "Safety 
scores" (Wang et al., 1996). Given that the consequence severity of a threat is 
determined by its own damage capability and external recall ability, four new 
parameters are proposed to carry out threat-based risk estimation. They are "Will 
(Intention)", "Damage capabiliV', "Recall(Recovery) difficulV' and "Damage 

probabiliV'. "Will" decides the failure likelihood of a threat-based risk. The 
combination of "Damage capabilijy' and "Recall dijji'culV' responds to the 
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consequence severity of the threat-based risk. "Damage probability" represents the 
failure consequence probability of the risk. 

In FST, linguistic variables that are used to describe the probability of the four 

parameters can be characterised by their fuzzy set membership functions to a set of 
categories which describe the degrees of "Will", "Damage capability", "Recall 
difficulty" and "Damage probability" and which are usually graduated from low to high. 
The typical linguistic variables and their membership functions for the four parameters 
of a threat may be defined and characterised as shown in Tables 3.1-3.4. It is obviously 
possible to have some flexibility in the definition of membership functions to suit 
different situations. 

Table 3.1. The linguistic variables and their membership functions of Will 

Linguistic variables Caýqopes 
0 1/6 [ 1/3 1/2 5/6 1 

Lxtrernely strong 0 0 0.75 1 
Strong 0 0 0 0.75 1 0.25 

Moderately strong 0 0 0 0.75 1 0.25 0 
Average 0 0 0.5 1 0.5 0 

Moderately weak 0 0.25 1 0.75 0 0 0 
Weak 0.25 1 0.75 0 0 0 0 

Extremely weak 1 0.75 0 1 () , () , () . 

Table 3.2. The linguistic variables and their membership functions of Damage capabilitv 

........... Linguistic variables 
---....... 

Catepries 
0 1/6 1/3 1/2 2/3 5/6 

F, xtremely big 0 0.75 1 
Big 0 0 0 0 0.75 1 0.25 

Moderately big 0 0 0 0.75 1 0.25 0 
Average 0 0 0.5 1 0.5 () , 

Moderately small 
-0 

0.25 1 0.75 0 0 0 
Small 0.25 1 0.75 0 0 0 0 

Extremely small 1 0.75 0 01 () () 0 

Table 3.3. The linguistic variables and their membership functions of Recall dýl '1111 . 
fi( 

Linguistic variables Categories 
0 1/6 1/3 1/2 2/3 5/6 1 

Very difficult 0.75 1 
Difficult 0 0.75 1 0.25 

Moderately difficult 0 0 0 0.75 1 0.25 0 
Average 0 0.5 1 0.5 0 0 

Moderately easy 0 0.25 1 1 0.75 0 0 0 
Easy 0.25 1 0.75 0 0 0 0 

Very easy 1 1 0.75 1 0 0 o o 
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Table 3.4. The linguistic variables and their membership functions of Damage probability 

Linguistic variables Categories 
0 1/6 1 1/3 1/2 2/3 5/6 1 

Dcfinite 0 0 0.75 1 
I lighly likely 0 0 0 0 0.75 1 0.25 

Reasonably likely 0 0 0 0.75 1 0.25 0 
Average 0 0 0.5 1 0.5 0 

Reasonably unlikely 0 0.25 1 0.75 0 0 
Unlikely 0.25 1 0.75 0 

Absolutely unlikely 1 0.75 0 

Once W, D, R and P represent respectively "Will", "Damage capability", "Recall 

difijiculty" and "Damage probability", the fuzzy safety score S can be defined using the 
following ftizzy set manipulation, which is developed on the basis of Karowski and 
Mital's fon-nula (Karowski and Mital, 1986 and Wang et al., 1996): 

S= (R x D) '(P x W) 

where the symbol ""' represents the composition operation and "x" the Cartesian 

product operation in FST. The membership value of S is thus described by: 

JIS ýP (R x D) '(P x W) (3.2) 

Judging from the above fon-nula, the membership function of S is denoted by the 

membership values of four parameters (R, D, P and 41 respectively. Suppose the 

membership values for the elements in S, R, D, P and W can be expressed as follows: 

ps = (p S, p S, . --, p S) 

, 
UR (P R, U Ri ... 5 /1 R) 

/10 (PID, 112 1), 
7 
1)) 

, 
up 01 1" p 1" . -., p I) 

PW= 01 1 
W, p2W, 

7 
W) (3.3) 

Then, those fuzzy operations in Equation (3.2) can be analysed and described as follows: 

i). Cartesian product. Two Cartesian product operations can beseparalely dqfined b. v. - 

PR - /) (PyRxD)7x7 

pp -w (P 4Px 
W) 7 x7 (3.4) 

wherepy Rx Dý mm( /11R, 1/0, /PP, If- rnm(p'p, 11w), both i and. j -- 1,2, 

ii). Composition. The composition operation can he doined b-v: 

IIS ý II(R x D) " (P x IV) (JiS) /x7 (3.5) 

where lis = max( max (min( u 
li 

R 11 
ii 
1, .w )), max (mM( p 

2i 
RxW 

J<i757 I<i<7 

max (min (, U 
7iR 

x D5 Pýjp . w))), forj 2,..., 7. 
I<i<7 

55 



However, the ps obtained only presents a relative safety level. A safety value can be 

measured in terms of the defined fuzzy safety expressions (i. e. "Poor", "Fair", "Average" 

and "Good'). In other words, the risk of a threat requires to be expressed by degrees to 

which it belongs to the safety expressions. The safety expressions defined on the basis of 
Tables 3.1-3.4 can be shown in Table 3.5 through satisfying the following conditions: 

The expressions are exclusivejbr each category by normalizing the membership 
values (? I'Ihe variables. 
SPoor (R Veo, difficulf x bid 0 WDefinife X WEvremely 

strond- 

. 
7icult x DAloderately big) 0 (PReasonahl. likelý, X WAfoderafelv 

stronj. 
SFair (RModerafelv dif V 

SAverage ý (RModeratellveasy x DAloderafelYsmaid 0 (PReasonablY 
unlikely X WModeralch, 

weelk). 

SGood ý (R Ve, e,,, -,, 
x DExtrernely 

smaid 
0 (PAbsolutely 

unlikely X WErtremely 
wead- 

Table 3.5. The linguistic vanables and their membership functions of Safely Eyressions 

Linguistic variables Categories 
0 1/ 1/3 1/2 2/3 5/6 

Poor 0 0.75 
Fair 0.5 1 0.25 

Average 0 0.25 1 0.5 0 
G od 1 0.75 0 01 01 

Using the Best-Fit method (Wang el al., 1996), the obtained fuzzy safety score 
description Si of a threat judged by assessor i can be mapped onto one (or all) of the 
defined safety expressions. The method uses the distance between Si and each of the 

safety expressions to represent the degree to which Si is confin-ned to each of them. For 

example, the distance between Si and the safety expression "Poor" can be shown as 
follows: 

72 
L (PSki k, 

()( dil(Si, Poor) =_ /I/ 
)r (3.6) 

The analyses for other distances between Si and other safety expressions can be 

conducted in a similar way. The smaller the distance, the closer Si is to the 

corresponding safety expressions. When the distance dýi(j=], 2,3 or 4) is equal to zero, 
Si is just the same as the Jth safety expression in terms of membership functions. 
Because each di, is an unscaled distance, in order to more clearly express the safety level 

of Si, the reciprocals of the relative distances between Si and each safety expression dýj 

are normalised into a new index (xii, (i=], 2,3,4). If dýj= 0, it follows that aij is equal to I 

and the others are equal to 0. The aýj can be defined as follows in other situations: 

j=1,2,3,4 (3.7) 
yd 
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Each aij 6=1,2,3,4) represents the extent to which Si belongs to thejth defined safety 
expression. Thus, the safety levels of the threat-based risks determined using a fuzzy set 
can be expressed as follows: 

S(Si) ý ffaii, "POOIý"), (au, "Fair"), (aa, "Average"), (ai4, "Good')} 

To produce the risk degree of a threat for ranking purposes, it is necessary to describe 
the four safety expressions using numerical values. The numerical values associated 
with the defined safety expressions can be calculated by studying the categories and 
membership values in Table 3.5. Suppose Wp, W' W,,, and V represent the unscaled fi 9 
numerical values associated with "Poor ", "Fair ", "Average " and "Good ", respectively. 
W'S, W'MI W' and W' can be calculated as follows: p9 

W'p = [0.75/(0.75 + 1)] x 5/6 + [1/(0.75 + 1)] xI=0.927 
W' = [0.5/(0.75 +1+0.25)] x 1/2 + [1/ (0.75 + 1+ 0.25)] x 2/3 + [0.25/(0.75 +I+ f 
0.25)] x 5/6 = 0.644 
W'a = [0.25/(0.25 +1 + 0.5)] x 1/6 + [1/(0.25 +I+0.5)] x 1/3 + [0.5/(0.25 +I+ 
0.5)] x 1/2 = 0.356 
W'9 =[ 1/(l +0.75)] x0+ [0.75/(l + 0.75)] x 1/6 = 0.073 (3.8) 

The above values give numerical relations between the safety expressions. The 

reciprocally normalized vector [wp, wf, w,,, wg] is then obtained as follows, where 
"Good" takes the largest value of I (i. e. wg = 1): 

[wp, wf, w,,, wgl= [0.079,0.384,0.695,1] 

Naturally, a numerical risk degree of the threat can be obtained by the following 

calculation: 

Ps(s, ) = ail x 0.079 + ai2 x 0.384 + a13 x 0.695 + ag x1 (3.9) 

The S(Sj) obtained represents the piece of estimation from one assessor. When more 
pieces of estimation from different assessors emerge, they can be effectively synthesized 
using the ER approach. The approach has been widely applied to risk and safety 
assessment (Wang et al., 1996; SH et al., 2001). In continuously researching and 
practicing processes, the ER algorithm has been developed, improved and modified 
towards a more rational way (Yang and Xu, 2002). The algorithm can be analysed and 
explained in this study as follows. 

Let A represent the set of the four safety expressions, which has been synthesized by two 
subsets A, and A2 from two different assessors. Then, A, Al and A2 can separately be 

expressed by: 

AýI Cý "Pool", a" "Fair", a3 "Average", d4 "Good') 
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A, ý (d, "Poo? ', a2l "Fai? ', a 31 "Averag6", cýj "Good) 

A2 ýI d2 '6POO? 'g W2 " Failý". d2 " AVerage". 4 "Good'} 

Suppose the normalized relative weights of two safety assessors in the safety evaluation 
process are given as co, and C02 (O)l + C02 ý 1) and col and C02 can be estimated by using 
established methods such as simple rating methods or more elaborate methods based on 
pair-wise comparisons (Yang et al., 2001). 

Suppose Arl and Ar2 (m = 1,2,3 or 4) are individual degrees to which the subsets A, 

and A2 support the hypothesis that the safety evaluation is confirmed to the four safety 
expressions. Then, Af, and Nf2 can be obtained as follows: 

, ýf1 . ��In, 

A1r2 ý (02dn2 

where m=1,2,3,4. Therefore, 

m11ý coiwi Alf12 ý 032aj2 

11,121 = 0) , a2, A122 = 0)222 

ii?, a)ja31 A132 = CO2a32 

Al42 ý CVW2 

Suppose H, and H2 are the individual remaining belief values unassigned for Al', and 
Af2 (M = 1,2,3,4). Then, H, and H2 can be expressed as follows (Yang and Xu, 2002): 

H, =H, +Hl 
H j7 -2 

2=2+ 'ý' (3.12) 

where 17,, (n =I or 2), which represents the degree to which the other assessor can play 

a role in the assessment, and R, (n =I or 2), which is caused by the possible 
incompleteness in the subsets A, and A2. can be described as follows respectively: 

Hl=I-coiýce2 

H2 -ý I- C02 ý CO I 

21 + a3l + d1l)] H, = col(l - a, ') = to, (cýj +a 
M=l 

'a' C02 P- (4 +a234 H2 ý C020 
2. 

d 2 2+ a 2+ a 2)] 
M=l 

(3.13) 

Suppose e'(m = 1,2,3 or 4) represents the non-normalized degree to which the safety 
evaluation is confinned to the four safety expressions as a result of the synthesis of the 
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judgments produced by assessors I and 2. Suppose Hu' represents the non-normalized 

remaining belief unassigned after the commitment of belief to the four safety 
expressions as a result of the synthesis of the judgments produced by assessors I and 2. 
The ER algorithm can be stated as follows (Yang and Xu, 2002): 

a" =K (Arl Af2 + Arl H2 + H, Ar2) 

! 7u'= K (WI 172) 

flu K( fli 
1ý12 + fll H2 + HI 

'Fl2 
44 

K= [I-L 2ýMIW2 

T=IR=l 
R*T 

(3.14) 

After the above aggregation, the combined degrees of belief are generated by assigning 
Hu' back to the four safety expressions using the following normalization process: 

am = amlll-Hu' (m = 1,2,3,4) 

Hu = Hu'll-Hu' (3.15) 

where HU is the unassigned degree of belief representing the extent of incompleteness in 
the overall assessment. 

The above gives the process of combining two fuzzy sets. If three fuzzy sets are required 
to be combined, the result obtained from the combination of any two sets can be further 

synthesized with the third one using the above algorithm. In a similar way, multiple 
ffizzy sets from the judgements of multiple assessors or the safety evaluations of lower 
level risks in the chain systems (i. e. components or subsystems) can also be combined. 
The two different and noteworthy points are that the relative weights of every assessor 
will be normalized first; and the relative weights of the lower level risks should satisfy 
the requirements of the specific rule in Section 3.2.3. 

3.3.3 RCOsIRisk Control Measures (RCMs) 

RCOsIRCAls are selected to manage the high-risk areas identified in the previous step. 
At this stage the implementation costs and potential benefits of RCM are not of concern 
and attention is only focused on how to avoid or lessen the impact of the potential risks. 
In general, three main characteristics according to which RCM are evaluated can be 
summarised as follows (MSA, 1993): 

Those relating to the fundamental type of risk reduction like the preventative and 
mitigating measures. 
Those relating to the type of action required (i. e. engineering or procedural). 
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Those relating to the confidence that can be placed in the measure (active or 
passive, redundant or auditable). 

In order to achieve risk reduction, a list of countermeasures based on human, procedure 
or equipment solutions can be applied to reduce either the likelihood of occurrence or 
the severity of the consequences of hazards or control the four parameters of threat- 
based risks. Human managerial solutions aim at dealing with more effective 
organisational management and fewer emergences of human errors in operations. The 
best way to achieve this is to develop a safety culture, in which the key factors for their 
success are effective human communication and training. Operational procedure 
solutions mean the introduction and development of appropriate procedures for carrying 
out risk-critical tasks and thus, include safety procedures, safe -working practices, CPS 

and safety exercises. Engineering equipment solutions involve the design and/or 
construction of containerships, ports, inland transport tools & infrastructures and 
corresponding supporting facilities (i. e. continuously updated X-ray scanners for 

checking containers). Equipment solutions have inherent advantages that can be clearly 
identifiable and relatively easily address vulnerability at the starting point of a CSC 

cycle. Nevertheless, large-scale engineering solutions suffer from lack of historical data 

on design aspects, inability of fiill-scale experimentation and difficulty of modification 
or replacement once in operation (Wang and Ruxton, 1998). 

In order to accurately and effectively take RCMs, one way is to create a "Causal Chain" 
(Passenger Vessel Association (PVA), 1997; Lois et al., 2004) through which a 
hazard/threat or an initiating event can be controlled not to be developed into final 

accidents or serious disasters. The philosophy of this method is to display the causal 
development of an accident from its initial stage to final serious consequences and then 
use various intervention or barriers to as early as possibly block the development. 

3.3.4 Economic Analysis 

The aim of this step is to identify those cost-effective RCMS and ensure that the benefit 

gained will be greater than the cost incurred as a result of the adoption (Kuo, 1998; 
Wang et aL, 1999; MSA, 1993). The economic analysis in the risk assessment of CSCs is 

not straightforward, mainly because of the following reasons: 

The estimation of the benefits obtained for the reduction of some threat-based risks 
(i. e. terrorism attacks) is usually difficult. The calculation of such benefits will be 
influenced by not only direct and indirect factors but also some additional impacts, 

which may not be associated with the original task of RCM at all. Hence, it will be 

more feasible and reasonable that the economic analysis for the RCMS of some 
threat-based risks focuses on single cost analysis. 
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U). The choice of a common unit of measurement is required. In order to give the 
conclusion of taking one RCM or not, a common measure unit must be expressed as 
a bottom line. The most convenient common unit is money. This means that all 
benefits and costs of an RCM for CSCs should be measured in terms of their 

equivalent monetary values. 
M). The relationship between those situations with and without RCM is often complex. 

Judging the effectiveness of one R CM to a CSC system, its influence can be defined 
by considering the difference between the situations with and without this RCM. 
Therefore, a base is required to incorporate the comparisons and normally the 

situation without the RCM is chosen as such a base. 

iv). The CBA in FSA is an imprecise science in nature due to many unclear benefits and 
costs, such as the cost of time and the value of human life. One limitation for using 
CBA in FSA is how to measure the valuation of life and time, in other words, how to 

change their valuation into the common unit of measure - monetary value. This 
limitation will undoubtedly lead to the emergence of imperfect data and uncertainty. 
Thus, it must be pointed out that CBA, as suggested for use in FSA is not a precise 
science, but only a way of evaluation. It cannot be used mechanistically, but only as 
a consulting instrument in making decisions (Wang and Foinikis, 200 1). 

The evaluation of costs and benefits can be carried out by subjective methods. One 

subjective CBA technique used in the case of the North Ferry Company (PVA, 1997) 

offers a useful tool for the development of a generic CBA framework. The theory of this 
technique is to compare the benefit and cost estimates of countermeasures and choose 
the countermeasure with the biggest gap between the benefit and cost estimates as the 
best RCM. However, there is a limitation in this technique, which can be identified as 
the discrete scales of estimates of benefits and costs. The situation where realistic cost or 
benefit evaluations belong to certain values between two discretely defined 

neighbouring values may greatly discount the accuracy of such a technique. Although 
the use of CBA in FSA surely does not require precise estimations and calculation, this 

method will still not be competent under certain situations. For example, the emergence 
of thousands of RCAfs for a very complex system may lead to that many RCMs have the 

same gaps between the benefit5 and costs estimated. More precise estimations are 
required. 

A new technique for the use of CBA in the CSC risk assessment framework is produced, 
namely FCBA. The development of this technique is based on the aforesaid FST, which 
is well suited for handling discrete estimates of costs and benefits, and the ER approach, 
which is capable of conducting the incomplete assessment of uncertainty so as to 

synthesise the flizzy estimates of costs and benefits together. Having introduced them in 
Section 3.3.2, a generic FCBA framework can be generated in a similar manner as 
follows: 
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i). Separately defining cost expressions and benefit expressions using FST 
The costs and benefits incurred for one R CM can be described using linguistic variables 
such as "Very low', "Low', "Moderately low', "Average", "Moderately high", "High" 

and "Very high", which are referred to as cost and benefit expressions. Such linguistic 

variables can also be described using ftizzy set membership functions to a set of 
categories, which describe the degrees of the cost and benefit expressions. 
ii). Separately describing the RCM's costs and benefits infuzzy sets. 
In such a procedure, the membership values describing the costs and benefits incurred 
for the RCM may be given by assessors with reference to the defined ftizzy set 
membership functions. Of course, each assessor has some flexibility in the formulation 

of membership values to reflect his own option. 
iii). Mapping the estimates ofcosts and benefits onto utility expressions. 
it can be noted that the costs and benefits of an RCM are described separately in terms of 
the cost and benefit expressions. It is necessary to define a utility space to evaluate the 
RCMs benefits and costs on the same scale. Like the common unit of measure - money 
existing in CBA, utility expressions are required in FCBA to define the utility space. 
Seven utility expressions - "Extremely subsidiai)ý', "Subsidiai), ý', "Moderately 
Subsidiaoý', "Average", "Moderately preferred', "Preferred' and "Extremely 

preferred', which can be considered to be matched with the cost and benefit expressions 

simultaneously, are defined using fuzzy set membership fimctions. Given the 

membership values of the ffizzy cost and benefit sets of an RCM, the Best-Fit method 
described in Section 3.2 can be used to map the fuzzy cost and benefit sets onto the 
defined utility expressions. 
iv). Using the ER algorithm to synthesize the estimates of costs and benefits expressed 

by the utility expressions and obtain the synthesizedpreference estimate of an RCM. 
Assessors can regard the utility estimates of an RCM as a hypothesis and consider the 

estimates of costs and benefits as two pieces of evidence. Given that the fuzzy estimates 
of costs and benefits in FCBA are considered to be equally important, they can be 

synthesised using the ER approach to obtain a preference estimate in terms of the utility 
expressions. 
v). Production of the preference degree of an RCM. 

To produce the preference degree of an RCM for ranking purposes, it is necessary to 
describe the four utility expressions using numerical values. The numerical values 
associated with the defined utility expressions can be calculated in a similar way to that 

used to obtain the preferred numerical values of the safety expressions in Section 3.3.2. 

However, the described FCBA method is not a panacea. Having analysed the difficulties 
faced in the economic analysis, it can be clearly noted that even the fuzzy benefit 

estimation of some threat-based RCMs may be very difficult. Under such a situation, 
only the cost analysis of the RCM, either precise or ftizzy, can be considered to be the 
single reference for adopting the RCM from an economic perspective. Actually, such a 
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consideration may be especially meaningful since the cost analysis can still fimction as a 
supporting parameter on making decisions. The specific operations will be described in 
Section 3.3.5. Additionally, the economic analysis of CSCs needs to be paid particular 
attention to their operational procedure, where the evaluation of costs and benefits 

should be carried out for both the overall situation and each particular accident category 
and should be fair enough for every stakeholder. 

3.3.5 Decision Ma 

Following the economic analysis of all RCM, decisions should be made in the final step 
of the risk assessment framework. Decision making aims at giving recommendations 
and making decisions to improve the safety of the whole operational processes of CSCs. 
Thus all pieces of information generated in the previous steps are collected and used in 

selecting the RCOs which best balance the reduction of risks with cost effectiveness for 
the whole situation as well as the particular stakeholders. 

The task of picking up the RCOs for those hazard-based or threat-based risks, in which 
CBA or FCBA can be carried out, seems to be relatively straightforward. Under this 
situation, the benefits (including the risk reduction) and costs can be effectively 
evaluated and expressed by a common unit. This demonstrates that the two decision 

making parameters (the reduction of risks and the corresponding economic 
considerations) have been ably integrated into one attribute, through which risk ranking 
can be conducted and the best RCO can be selected. 

However, it is usually not easy to efficiently estimate the benefits of RCMs for some 
threat-based risks, which means that the two decision parameters -- the reduction of 
risks and its economic factors cannot be united into one with confidence. Therefore, here 
a techno-economic model is formulated to simultaneously consider the two parameters 
(Yang et aL, 2005a). It includes safety and economic models. The safety model can be 
constructed as follows: 

Max: the reduction ofrisks 
subject to: risks > negligible risks 

where the risks may be denoted by the "Will", "Damage capabilivI, "Recall djfjj*cujV, 

and "Damage probabiliV' from a threat. The value of the reduction of risks can be 

calculated by the ftizzy safety evaluation, which can be obtained by using the FST and 
ER approach described previously. In terms of the economic model, the costs of the 
RCO consist of the first time investment costs (CI) and the operational costs (C,, ) 

normally. Thus the economic model can be constructed as follows: 

Min: Costs = Ci + C, 

subject to: risks > negligible risks 

63 



Once the techno-economic model is constructed, all RCMIRCOs can be effectively 
expressed in two attributes, through which decisions can be made. Generally speaking, 
safety is closely related to cost, which means high cost should achieve a big reduction of 
risks. Therefore, assessors will ignore those RCOs, by which high cost only limitedly 

plays the level of risks down, and fully concentrate on the others, from which the 
decision makers can select appropriate ones with respect to particular requirements on 
safety and costs. An ideal RCO, which can be represented by the maximized safety and 
minimized cost simultaneously is not feasible. Therefore, only a compromise one can be 

obtained. If the safety and cost objectives are of equal importance, the best compromise 
option can be obtained using a minmax approach. When the requirements of safety and 
costs change, some neighbouring RCOs of the best compromise one defted above can 
be appropriately considered. 

The results produced from the techno-economic model can be used to assist decision 

makers in understanding the interaction between safety and economic considerations 
and consequently, balance and best utilize resources in the risk assessment process. 
However, the techno-economic decision-making method is firmly based on the precise 
calculation of costs. Although the costs of RCOs, not like the benefits, in most cases, can 
be estimated, the decision makers may not know or possibly calculate the accurate costs 
of RCOs due to their complexity under some particular situations. Alternatively, fuzzy 

sets can be used to estimate costs incurred in the reduction of risks using linguistic 

variables. Once the costs occurred for the Rý70s are defined using fuzzy sets, there are 
two methods to synthesise them and the reduction of risks for making decisions. One is 
to defiizzify the ftizzy cost estimation, obtain the different quantitative cost expressions 
for various RCOs and then use the techno-economic method above. The other is to 
fuzzify the reduction of risks based onto a utility space of cost and safety, transfer the 
cost fuzzy estimation on the utility space and then use the ER approach. The philosophy 
and methodology of the method is similar to the FCBA approach. The difference lies in 
the ftizzy benefit estimates that are substituted by the ftizzy estimates of risk reduction. 

3.4. Case Study 

Immediately after the devastating terrorism attacks on the World Trade Centre on the 
Ilfl' September 2001, people recognised that the risk of mega-terrorism extremely 
possibly and suddenly became very real. Governments, organisations and companies 
around the globe scrambled to assess their vulnerability to highly organised terrorist 
groups willing to sacrifice thousands of lives or billions of dollars to achieve their aims. 
CSC systems have loomed large in the eyes of security agencies worldwide as a prime 
target and/or vehicle for future attacks. 
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The world has thankfully not experienced a major terrorist attack on the chains using 
containers or their supporting infrastructures. This status may be easily changed, 
however, in one horrible day like I Ith September of 2001. Many accidents from the 
other relevant areas have driven the chains to enforce their safety consciousness. In 
October 2002, a single attack happened on a tanker - Limberg. Despite AI'Qaeda's claim 
of responsibility for the attack, the accident generated relatively little disruption of 
global oil trade. This may be due to a perception that the risk to tankers is extremely 
localized and therefore easily mitigated (OECD, 2003). If the terrorist attacks were 
combined with shipping containers, their consequences would be extremely serious and 
not limited in the local region any more. The American west coast port 11 -day lockout 
in October 2002 provided an ideal supposition platform, on which one can judge how 

serious the impacts of a major sophisticated attack related to container ports can be. The 
losses resulting from the II -day lockout were approximately USD 19.4 billion, which 
would increase exponentially as time went on (Patrick, 2002). This estimate did not 
cover costs bome by non-American ports and manufacturers faced with container 
backlogs and increased warehousing costs. This figure would be dramatically increased 

given the loss of lives and property damage costs imposed by a shutdown of the same 
ports from terrorist attacks. The marriage of inland transport to container chains enables 
terrorism attacks associated with container shipping emerging in any comer of the world. 
A more recent terrorist attack occurring in the Madrid train station in March 2004 
further offered people a bigger image of how likely and serious an attack can happen 

using the inland transport links of the container chains. Furthermore, because of the 
uncertainty of container cargo, CSCs surely easily offer many opportunities for terrorists 

-- just as they currently do for drug, stowaways and contraband smugglers. 

One fortunate thing is that people have. focused their minds on finding ways to avoid 
potential vulnerability of a terrorist attack in the chains. Today, the US government 
reports that it inspects roughly 5.5-6% of all inbound containers (roughly 550,000 

containers/year), using either X-ray or gamma ray technology (or both) or by physical 
devanning of the container (Christopher, 2005). Customs and Border Protection (CBP) 

of America has deployed radiation scanning equipment at all major American container 
ports with the objective of being able to check every container entering the U. S. for 

radiation by the end of 2005 (Christopher, 2005). Cargo Security International reported 
that more than a fifth of containers through the Port of Fremantle, Australia can be 

checked by the fourth generation of X-ray container scanners. People have also 
recognized that the effectiveness of CSCs must be balanced with tightened security 
measures that address the chains' vulnerability and weaknesses. The newly developed 

measures related to CSCs have mainly emerged from two sources. One came from the 
International Ship and Port Facility Security (ISPS) code, which was produced by the 
IMO in December 2002 and incorporated into the Convention on the Safety of Life at 
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Sea (SOLAS). The other originated from the USA and EU security measures, which 
include the United States Maritime Transport Security Act of 2002,96-hour advance 
notification of arrival and 24-hour advance manifest rules, CSI (Container Security 
Initiative) and C-TPAT (Customs-Trade Partnership Against Terrorism), etc. These 

regulations are largely supplementary to the ISPS and have been developed in response 
to the more and wider vulnerability in CSCs. 

However, all anti-terrorism measures are cost-based but not all of them are mandatory. 
The adoption of such measures for the entities related to CSCs should be diverse enough. 
The selection of the most effective RCOs will be carried out with the full consideration 
of both safety and cost factors. Therefore, the case study will provide its two core 
contributions -a test of the feasibility of the generated FSA methodology and a 
guideline for the anti-terrorism operati6ns in CSCs, through addressing the following 

specific questions: 

Which sectors in CSCs are vulnerable facing a terrorism attack? 
What are those major factors that lead to the emergence of such vulnerability? 
What kinds of measures can be effectively adopted to prevent the vulnerability? 
Are these measures cost-effective? 
How these measures are ranked with reference to the different requirements of 
safety and cost? 

3.4.1 The Vulnerable Sectors of CSCsFacinz A Terrorist Attack 

The sectors in CSCs where a terrorism attack possibly occurs can be identified as follows: 

" Containerships - Warehouses/intermediate premises 
" Ports - Information control centers 
" Trains - Shipping lanes 

" Trucks - Railways 

" Employees - Roads 

" Cargoes - Cables/satellites 

In these sectors, tens of thousands of vulnerabilities exist. Some major ones can be 
described to demonstrate their wide distribution scopes and expressional modes. 
Containerships may transit through various routes and make multiple stops at diverse 

ports posing different levels of security risks. Port/terminal operators may not 
adequately screen their employees for criminal backgrounds. Some containers may be at 
significant risk given that they will stay in ports for a period before loading onto a 
containership. Between the ports and containerships, containers experience loading and 
discharging processes, which may be vulnerable because the containers are not carefully 
and routinely inspected. On the other end of the chain, warehouses may have weak 
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controls and very dangerous personnel practices. For example, the access to container 
storage is not secure and no countermeasures for checking employee and visitor 
backgrounds are taken. Furthermore, the trucking connections between warehouses and 
ports may be invisible in transit activities and the locations of trucks and containers may 
be not known and tracked. 

Despite these facts, it is noteworthy that a) not all of such sectors will become 

vulnerable facing a terrorism threat; and b) not all components in the vulnerable sectors 
contribute to their vulnerability. For example, a terrorism attack influences a 
containership's survivability through only two key ways: attacking the engine room or 
hitting a bulkhead between two compartments, both of which require design knowledge 

and the ability to get onboard the vessel (Noble, 2004). Therefore, in order to understand 
the vulnerability of CSCs in a terrorism attack, it will be essential to investigate the 
major reasons/factors (including those vulnerable components) resulting in the 
emergence of the vulnerability and to carefully analyse risk contributing factors using 
the FTA technique. The screening technique based on the "Risk Matrix" approach is 

used to obtain the important risks in such five sectors as ports, containerships, 
employees, trains and trucks. 

3.4.2 Risk Factors and Estimations 

CSCs, by their nature as complex and international open distribution networks, pose a 
great challenge from a security standpoint. Such a challenge can be evidenced by the 
multiplicity of risk factors associated with a terrorist attack. Facing a terror threat, the 
chains can be the vectors for, or targets of attacks, as well as a vehicle to other attacks 
organised by terrorists. The principal risk factors related to the chain in a terrorist attack 
stem from cargoes, containerships, ports, trucks, trains and people. Simultaneously, 
these risk factors should be considered in an integrated way so that governments, 
organisations and companies can address the threat with broad-based security policy 
responses, since simply responding to risk factors in isolation to one another will be both 
ineffective and costly. 

Cargo: Most of the world's non-bulk cargo travels in marine shipping containers. These 
standardized boxes have revolutionized the transport of goods by sea since their first 

appearance in 1956 (Chadwin et al., 1999) and have given rise to a multitude of 
specialized road and rail carriers, a fleet of 2,905 modular container vessels (ISL, 2003) 

and the emergence of a global network of over 430 highly automated port handling 
facilities (Fairplay, 2004). In 2002, the Bureau International des Containers estimated 
that approximately 15 million containers were in circulation (OECD, 2003). Data from 
ISL indicates that 250 million containers were moved through container ports in 2002 
(ISL, 2003). 
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In considering a terrorist attack using containers, it is very easy to imagine that a sealed 
container fully equipped with global positioning satellite-enabled bombs can remotely 
detonated when arriving at the heart of a major population center. The likelihood of 
success of such an operation would increase, considering the fact that only a small 
number of containers can be physically examined in practice in order to maintain the 
container flow speed. Containers also pose a threat when they carry legitimate cargo that 
can be used by terrorists for nefarious purposes. Many containers or tank-containers are 
used to ship hazardous cargoes. It may be safe to keep separately some hazardous 

cargoes in normal situations. However, a huge explosion may occur, if they access each 
other. This phenomenon has been evidenced by thousand of accidents. The serious 
consequences resulting from the accidents have no doubt urged terrorists to recognize 
that it is feasible of adopting hazardous cargoes to carry out a terror attack. The fact that 
some unscrupulous shippers and careless carriers sometimes mask the true identity of 
hazardous cargoes emphasises the ease with which terrorists could do the same for more 
sinister purposes. 

Vessel: The above discusses the dangers posed by cargoes. These dangers highlight the 
potential for an entire vessel to be used as a weapon in a terrorist strike just as jet aircraft 
were used in the 2001 World Trade Center attacks. In such cases, containerships can be 

used against a population center adjacent to port facilities or shipping channels, to 
damage port or bridge facilities or to sink themselves and block the access to a port 
facility. While the potential damage from such an attack is great, previous terrorist 
incidents involving ships have tended to target vessels rather than use them. The 
terrorism attacks against the cruise vessel Achille Lauro, the USS Cole and the oil tanker 
Limberg, and the discovery of an AI'Qaeda linked plot to attack vessels passing through 
the straits of Gibraltar, all point to the risks of attacks faced by vessels (OECD, 2003). If 
this tendency is extended to containerships, an engine room and a bulkhead between two 
compartments are considered as the most vulnerable components in an attack. 

The consideration of bulk carriers as a risk factor for CSCs is because it is possible that 
one bulk vessel ftilly loaded with highly dangerous cargoes could be used in a "suicide" 

operation aimed at targeting a container port facility or containership so as to break the 
chains. Unlike container shipping, bulk shipping has generally received less attention 
from security authorities. This sector is divided into bulk liquid carriers (their cargoes 
ranging from crude oil, distilled oil derivatives, LPG and LNG to molasses and 
vegetable oils) and bulk solid carriers (i. e. fertilizer carriers). By the explosive nature of 
these bulk cargoes, the carriers and their cargoes can be deemed as legally mobile and 
natural bombs in some situations. The configuration of international ports further 

contributes to making these shipments a prime terrorist vehicle. For example, in 1997, 

over 400,000 tonnes of ammonium nitrate (one kind of explosive fertilizer) were 
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shipped along the winding 235-mile-long lower Mississippi waterway, the world's 
largest bulk commodity port area (OECD, 2003). 

The risks to shipping from terrorist attacks are highlighted by the persistent problem of 
modem day piracy. Recently, some scholars (Ong, 2002; Raymond, 2005) pointed out 
that it would be a bigger challenge for maritime security to consider the emergence of 
the cooperation between the terrorism groups and traditional pirates. Given the relative 
difficulty in triggering a major explosion through an attack on a vessel, it is more likely 
that terrorists attack a containership principally by piracy, through which they would 
hijack its cargoes, hold its crew as hostages for ransom or political purposes, sink the 
vessel and cause as much loss of life as possible, or cripple trade by threatening to close 
down access to ports and/or valuable trade routes. 

Port: The World Trade Center attacks revealed that one of the terrorism groups, 
principal motivations was to inflict massive economic losses on their targeting countries, 
such as the United States and its allies. Given the facts that a) most of the world's trade 
travels by sea, b) most seabome trade (by value) travels in containers, and c) most 
containers are operated through relatively few international transfer terminals due to the 
concentration of liner shipping and ports, one can easily see the potential for major 
economic disruption following a terrorist attack on ports, which undoubtedly attracts 
terrorists to select them as an ideal vehicle to achieve their aims. The attacks on major 
international transfer ports such as Hong Kong, Singapore, Long Beach/Los Angeles, 
Rotterdam or Antwerp could have devastating impacts on both the regional and global 
economy. Such a horrible disaster would be highly likely to happen through two ways: 
to attack the channel/waterway or bomb the quayside infrastructures/facilities (i. e. 
cranes) of the terminals. The waterway/channel design structures and their arrangements 
are the most important risk factors contributing to the vulnerability of ports. The narrow 
access channel of Rotterdam port is a typical representative with the vulnerable feature. 
The quayside infrastructures/facilities (i. e. cranes) of the terminals are also vulnerable 
components in ports. Approximate construction costs for a modem 16 hectares container 
terminal are $32 million, which has not included land acquisition costs and container 
handling equipment including several cranes at $4.7 million per piece (OECD, 2003). 

Train and trunk: The container-carrying trains and trucks in CSCs, unlike the 
containerships or ports, are not capital-intensive or people-intensive sectors. If the aim 
of a terrorism attack is to maximize the damage of the property or the losses of lives, 
either the trains or trunks are obviously not an ideal choice as the target of attacks. 
However, given their abilities to easily access a business or population center, especially 
the flexibility of the trucks in the chains, they will be greatly preferred by terrorists as 
vehicles of attacks. The fear that terrorists could exploit the container-carrying trains or 
trucks as a mobile bomb into a business or population center can be highlighted by the 
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accidents of Madrid train station bomb attacks and uncountable Middle East or Iraq 
terrorism attacks using car bombs. Additionally, the experience absorbed from those 
accidents shows that the damage capability of train/truck-related attacks is closely 
associated with the explosive ability of container cargo carried by trains/trucks rather 
than themselves. This also proves the above point that the risk factors should be treated 
in an integrated way and not considered in isolation. 

People: There are approximately 1,227,000 officers manning the merchant fleet (OECD, 

2003). Not all of these seafarers operate on international liner containerships but a 

significant portion does. The terrorism-related risks involving this vast labour force are 
two-fold. As seen in the previous section, seafarers are often directly targeted (in many 

cases of piracy) and/or indirectly suffer from terrorist attacks targeting vessels (as in the 

case of the Limberg). The second risk factor is that some seafarers may actually be 

accomplices of members of the terrorist groups. The latter is especially worrisome given 
that seafarers have traditionally been granted relatively liberal travel rights by 

governments through non-immigrant crew list visas, or simply upon presentation of their 

seafarer identity documents (OECD, 2003). Furthermore, such seafarer identity 

documents are relatively easily forged and falsified and can be bought on black markets, 

which has been evidenced by several recent high-profile cases involving major registries 

and seafarer-supplying nations. 

Compared to the crew on the sea, staff working on the shore sectors in the chains face 

relatively less personal risks. The terrorism-based risks related to the shore working staff 
are mainly focused on the fact that some of them have a terrorism background or 
cooperate/work with terrorism groups. This point can be emphasised by the fact that the 
losses of container cargo in the main Western European ports are a result of the 
cooperation between internal staff and external thieves. If unscrupulous persons are 
already aware of these facts and are already operating in the chains, it is not 
unreasonable to assume that terrorist groups have also recognised these possibilities and 
are planning to exploit them. 

Having analysed the risk factors in CSCs with their causes and results, a fault tree can be 

constructed to further assess the potential risk factors in Figure 3.2. 

Following the fault tree, the basic events can be synthesised using the ftizzy set and ER 

approaches and the risk level of the top event can be calculated. However, it is 

noteworthy that the weights of all basic events in applying the ER method are different 
because the contribution tree, which can be considered as a hierarchical diagram, 

consists of many 'OR' and 'AND' gates. The estimation and calculation of the risk levels 

can be conducted as follows. 

70 



,N ATTACK N 
CONTAINER 

CHANS 

AS VEHCLES 

INLAND 

PEOPLE BOMBS OR COESSIBLITY 
CONTROL _ARDOUS 

IM 
S A7 10 TARGETS RDOLJ 

JINLAND TOOLS 0 CARGO 

CARGO 

F- 77 
TERRORISTS 11 TERRORISTS ATTACKING 
UNDER GUISE HAJACK BULKHEAD 

S 1 INIý7ýCýKs 

INTERNAL 

-Fl-ý Z 60ARI) I YESSEL 
SEL DESIGN 

JKNOVLEDGE 

BOARD 

PORTS AS 
TERRORISM 
TARGETS 

SHPSAS 
&RGETS AND 
VBICLES 

CONTANER 
SHIPS 

CREW 

ATTAQ(INO 
OTHER 

TARGETS 

VEHICLE 

ROOM VEHICLES I SHP AS I 
VEHICLE 

BOMB CfeAGAS 110FATTACKING11 VESSEL DESIGNOE II UNDER OUSE I ITRAVEL RIGHT II TERRORISM WITH OTHER 
ATTACKS 

II 
HOSTAGES VESSELS 

II 
KNOV*ED TARGETS VESSELS 

TER-Rorksm 
TARGETS 

CAES 

I 

TERMNAU 

BOIL'S 
A= A4A 

9-Ks 

ss 

ATTACCX A4ý-N%CKS 

EX7ERNl Z, VIESSE. vess ý 

50hAaS OIR TERRORSTS 
st tv%, ZAR=0US Ulý--ERGV, 

CARGO 

Figure 3.2. A terrorism attack contribution tree 

71 



Step 1 assigns the weights of basic events by the rule introduced in Section 3.2.3. The 
weight assigmnents of the events in Figure 3.2 can be obtained in Table 3.6. 

Table 3.6. The weight assigments of all events 

-Gates Weights Basic events Weights 
TERRATTACK I VESSEL I 
PORT I EXTERNAL I 
SHIP I CARGO (under'CONTAINER' gate) 0.5 
INLAND I EMPLOYEE (under'CONTAINER' gate) 0.5 
PEOPLE 0.3333 HOSTAGE I 
CHANNEL I TARGET I 
TERMINAL I BOARD 0.5 
TARGET I KNOWLEDGE 0.5 
VEHICLE I VISA 0.5 
CONTAINER I SHIP I 
BULK-HEAD I CARGO (under 'INLAND' gate) 0.3333 
CREW I ACCESSIBLE 0.3333 
ENGROOM I TERRORIST 0.3333 
INTERNAL I EMPLOYEE (under 'PEOPLE' gate) 0.3333 
CREWIVEH 

ICONVEH 

Step 2 calculates the risk scores of the basic events on the basis of the fuzzy estimations 
of the four parameters from Tables 3.1 - 3.4. The risk scores are calculated by using the 
ftizzy operations of the formula 'jus =y (R . D) . (p . a)' and the Best-Fit method in Section 
3.3.2. The ranking of the basic events can be clearly obtained using the method of 
studying the fuzzy membership values and categories, and shown in Table 3.7. 

Table 3.7 The risk estimations of all basic events 

Parameters 

Basic events Will Damage Recall Damage Risk scores 
Risk I 

(W) 

ý 
capability 

(D) 
difficulty 

(R) 

I 
probability 

(P) 
rank 

VESSEL W= (0,0,0,0,0.75,1,0.25) D- (0,0,0,0,0,0.75,1) S- 10.02 1, 'Toor ", 0.934, "Fair", 0.31 
R- {O, 0,0,0,0,75,1,0.25) (P) - (0,0,0,0.75,1,0.25,0) 0.027, "Average", 0.018, "Good"j 2 

EXTERNAL W- (0,0.25,1,0.75,0,0,0) D- (0,0,0.5,1,0.5,0,0) S- (0.1, "Poor", 0.128, Yair", 0.613 
R- (0,0,0.5,1,0.5,0,0) (P)- (0,0,0,0.75,1,0.25,0) 0.664, "Average", 0.108, "Good") 11 

CARGO W= (0,0,0,0,0,0.75,1) D- (0,0,0,0,0.75,1,0.25) S= (0.444, 'Toor ", 0.199, Yair", 0.412 
R- (0,0,0.5,1,0.5,0,0) (P) - (0,0,0.5,1,0.5,0,0} 0.184, M ", 0.173, "Good") 5 

EMPLOYEE W- (0,0,0.5,1,0.5,0,0) D= 10,0.25,1,0.75,0,0,0) S- (0.139, "Poor", 0.361, "Fair", 0.44 
R= {O, 0.25,1,0.75,0,0,0) (P) - (0,0,0,0.75,1,0.25) 0.361, "Average", 0.139, "Good") 8 

HOSTAGE W- 10,0,0,0.75,1,0.25,0) D- (0,0,0,0.75,1,0.25,0) S- (0.102, 'Toor ", 0.686, Yair", 0.373 
R- JO, 0,0,0,0,75,1,0.25) (P) - (0,0,0,0,0,0.75,1 j 0.116, Mverage ", 0.096, "Good") 4 

TARGET W (0.25,1,0.75,0,0,0,0) D 10.25,1,0.75,0,0,0,0) S- (0.183, 'Toor ", 0.195, Yair ", 0.536 
R (0,0,0,0,0,75,1,0.25) (P) {O, 0,0,0.75,1,0.25) 0.337, M ", 0.285, "Good") 12 

BOARD W (0,0,0,0,0,0.75,1) D= (0,0,0,0,0.75,1,0.25) S- {0.444, 'Toor ", 0.199, Yair ", 0.412 
R- {O, 0,0.5,1,0.5,0,0) (P) - (0,0,0.5,1,0.5,0,0) 0.184, Mverage ", 0.173, "Good"1 5 

VISA W- (0,0,0,0,0,0.75,11 D- (0,0,0,0.75,1,0.25,0) Sm (0.274, 'Toor ", 0.367, "Fair", 0.426 
R= (0,0,0,0.75,1,0.25,0) (P) - (0,0,0,0,0,0.75,1) 0.184, Mverage ", 0.175, "Good"1 7 

KNOWLEDGE W- (0,0,0.5,1,0.5,0,0) D- (0,0,0,0,0.75,1,0.25) S- {0.165, "Poor", 0.335, Yair", 0.452 
R= (0,0,0.5,1,0.5,0,0) (P) - (0,0,0,0,0.75,1,0.25) 0.335, "Av ", 0.165, "Good") 9 

SHIP W= 10,0,0.5,1,0.5,0,0) D= (0,0,0.5,1,0.5,0,0) S= (0.165, "Poor", 0.335, "Fair", 0.452 
R- 10,0,0,0,0,75,1,0.25) (P) - {O, 0,0,0,0,0.75,1) 0.335, "Average", 0.165, "Good"1 9 

ACCESSIBLE w= {o ' 0,0,0,0.75,1,0.25) D-- (0,0,0,0,0.75,1,0.25) S= {0.686, 'Toor ", 0.119, Yair", 0.324 

1 

R- f0,0,0.5,1,0.5,0,0) (P) - (0,0,0,0,0.75,1,0.251 0.10 1, M verage ", 0.094, "Good") 3 
TERRORIST W-fO, 0,0,0.75,1,0.25,0)D-(0,0,0,0.75,1,0.25,0) S- (0, "Poor ", 1, YaV, 0, 0.249 

R= {O, 0,0,0.75,1,0.25,0) (P) - (0,0,0,0.75,1,0.25,0) Mverage ", 0, "Good"1 1 
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Step 3 applies the ER approach and its attached software IDS to calculate risk scores of 
the 16 Gates in Figure 3.2 and finally the safety level of the top event can be expressed 
by its risk score shown as follows: 

Stop 
event ý (0.2086, "Poor "1 0.5266, "Fair", 0.1756, "Average ", 0.0892, "Good") 

The above gives an overall picture of the safety estimate of this top event*. The risk 
score representing the safety level of the top event can be seen as a reference for 

considering the effectiveness of the RCOs discussed later and compared with other 
hazardous events for making decisions if necessary. 

3.4.3 The Adoption ofRCMs and Development ofRCOs 

Soon after the World Trade Centre attacks, attention shifted from aviation to maritime 
security, especially to CSC security as it becomes evident that the vulnerabilities 
detailed earlier could potentially and positively be targeted by organised terrorist groups. 
Following the unprecedented maritime security measures generated by IMO, it is 

necessary to develop a strategy to reduce the danger from terrorism attacks on CSCs. 
Four principal elements require consideration: the need to ensure the integrity of 
containerized cargo, the need to address the security of containerships and ports, the 
need to track containerships and trains and to restrict the access areas and time of trucks, 
and the need to verify and authenticate the identity of working staff. In order to develop 
the strategy, a review has been given to analyse some major anti-terrorism RCMS 

associated with CSCs. They include (See Appendix 2 for their security functions): 

1) Automatic identification systems (AIS) 2) Ship identification number 
3) Ship security alert system 4) Security officer 
5) Security assessment and plan 6) Security training and drills 
7) Security equipment and security guards 8) Record-keeping 
9) IMO ISPS code voluntary measures 10) Advance notification of arrival of vessel 
11) Advance manifest rule of container cargo 12) CSI 
13) C- TPA T 
Using the casual chain method, the security measures related to CM can be adopted as 
shown in Table 3.8. 

Facing different degrees of terror threats, an assessor or a safety designer can select 
appropriate RCOs by adopting different RCAIs. When the threat of terrorist attacks 
becomes higher, more and more strict and effective measures require application. Some 
relatively loose safety measures are considered as the response to the low level threats. 
Another point needed to be mentioned is that the RCOs should be considered to have a 

* More detailed analysis of the application of the subjective risk analysis method to a case study is 
described in Section 4.4.1. 
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capability to deal with the risk factors in an overall rather than individual perspective. 
Three RCOs are developed according to the requirements of different safety levels and 
countermeasures as shown in Table 3.9. 

Table 3.9. The development of RCOs against a terrorism attack 

I-, 
_ RCOs Option I Option 2 Option 3 

R 
Human 1. A designated person in a human resource department who 1. The identification of all 1. More frequent and 
managerial will pay more attention on the selection of staff, including employees, visitors and vendors. detailed checks of 
measures the consideration of the background of employees or the 2. Security training and drills. people and personnel 

reputation of the tabour agencies. 3. Designating specific security effects. 
2. Security awareness education. officers. 
3. Rescue trainixig and drills. 4. Employment periodic 

background checks. 
Engineering 1. Adequate perimeter fencing, lighting and locking, 1. Adequate security equipment. 1. Developing and 
equipment defending and cargo scanning devices. 2. More cargo scanning facilities. using IT-enable and 
measures 2. Emergency substitutes of monitoring devices. secure containers 

3. AIS. 2. Increasing the 
4. Automatic monitoring systems for trains. frequency of 
5. Ship identification number. waterside boat 
6. Security alert systems on ships and trains. patrols 

1 7. Lifesaving and fire extinguishing equipment. 
Operational 1. Supervising the transfer of container cargo. 1. Challenging all unauthorized/ 1. Fully or partly 
procedure 2. Properly marked, weighed, counted, and documented unidentified persons. closing related 
measures products 2. Intensified checks of cargoes 'nodes' or 'links' to 

3. Verifying seals on containers. and seals. avoid further 
4. Detecting and reporting shortages and overages. 3. Lintiting the number of access terrorism attacks. 
5. Proper storage of containers to prevent unauthorized points to containers. 2.24-hour advance 

access. 4. Establishing security criteria to manifest rule. 
6. Verifying the inventory of dangerous goods and hazardous identify high-risk containers. 3. Adopting measures 

substances carried on board, and property manifesting and 5. Pre-screening the containers to increase 
stowing the hazardous cargoes. from loading ports. managers' 

7. Cooperation between those intelligent networks from 6.96-hour advance notification of confidence of 
different countries. arrival of vessels. resuming operation. 

8. Formulating a special hazardous cargo office in a company 7. Crew visa requirements. 4. Performing a 
for the responsibility of the transportation of hazardous 8. Regular inspection of key areas. comprehensive self- 
cargoes. 9. Regular inspection of assessment of supply 

9. Restricting access to some key areas on board. surveillance equipment. chain security using 
10. Carrying out ship and port security assessment. 10. Redesigning the supply chain the C-TPAT security 
11. Developing ship and port security plan. to keep it productive as soon as guidelines 
12. Restricting the access time and points of container- possible. 5. Suspension of the 

carrying trucks to a population or business area. 11. Using technological means to loading or unloading 
13. Constructing an emergency response authority track the high-risk containers of cargoes 

department and arranging a special emergency telephone in the whole flow process. 6. Control of the high 
number. 12. Regular security patrols. risk ships 

14. Evacuation. I II 

ysis of The RCOs Desi-aned 3.4.4 The Cost Anal 

The benefit analysis of a terrorism attack threat is difficult and thus, the economic 
analysis of the three RCOs can concentrate on their cost analysis. The costs incurred for 

the reduction of the terrorist attacking risk associated with the three above design 

options are usually affected by many factors. Classical ones include the investment and 
maintenance costs of the options. Considering dozens of various measures included in 

each option and the limited experience with so many measures, it may be very difficult, 
if not impossible, to give precise assessment and calculation of the relative costs. 
Therefore, as described in the generated framework, the fuzzy set and ER approach may 
be appropriately applied to the cost analysis. 
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Although fuzzy cost assessment requires less detailed data to a certain degree, compared 
to precise CBA, a certain amount of relative data as references is still necessary to 
determine the cost levels. Thus, appropriate measures need to be carefully analysed to 
define the references for the cost levels of the RCOsIRCMS. Some typical cost analyses 
of the RCMs related to CSC security are provided in Appendix 2. 

Using the cost analyses of the corresponding RCMs and the ER approach, the costs of 
the three RCOs can be estimated and calculated as follows: 

C01= (0.2513, "Very high", 0.0902, "High", 0.2640, "Moderately high", 0.1072, 
"Average", 0.1471, "Moderately low", 0.0329, "Low", 0.1073, "VeryLow"I 
C02 = 10.2843, "Very high ", 0.1125, "High ", 0.3292, "Moderately high "9 0.0842, 
"Average ", 0.0853, "Moderately low ", 0.0203, "Low ", 0.0842, "Very Low "} 
C03 = {0.3227, "Very high '% 0.1717, "High ", 0.2717, "Moderately high "1 0.0709, 
"Average ", 0.0746, "Moderately low ", 0.0 176, "Low ", 0.0708, "Very Low "} 

3.4.5 Rankinz the RCOs 

In Section 3.3, four different decision making approaches have been introduced and 
shown their individual advantages and disadvantages. The CBA method is 

straightforward and easily operational, but it simultaneously requires that the costs and 
benefits of one RCO can be precisely estimated. Although the FCBA method may not 
require the precise estimations of costs and benefits, its operation is more complex. The 

precondition to apply both CBA and FCBA methods is that the benefits of the 

corresponding RCOs can be effectively estimated, either precisely or subjectively. The 

techno-economic modelling approach can cope with the limitation of estimating the 
benefits and help decision makers to select appreciated RCOs through considering their 

costs and the reduction of risks. One shortcoming of this approach, however, is lack of 
the flexibility to consider the adoption of different RCOs when the importance ratio of 
their costs and reduction of risks changes. The marriage of fuzzy set and ER methods 
can effectively deal with such a problem and therefore, it is desirable to apply it in this 

case study, where the benefits of the ROCs for a terrorism attack are difficult to measure, 
and the importance ratios of security levels and their corresponding costs are changeable 
under different situations. 

Using the fuzzy sets and ER method, the decision making process can be detailed into 

the following steps: 

1) Obtaining the fuzzy safety level (Sbf,,, ) of a CSC under a terrorism attack before 
taking any measure, as demonstrated in Section 3.4.2. 

Sb, fo, = (0.2086, "Poor ", 0.5266, "Fair ", 0.1756, "Average ", 0.0892, "Good") 
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2) Redefining the four risk parameters of 12 basic events and calculating their risk 

scores after adopting each of the three RCOY in a similar way to obtaining the ones 
in Table 3.7. 

3) Using the ER method to obtain three new safety levels (SR('01, SI? CO2, 
SRC03) 

corresponding to the three RCOs as follows: 

SRcol = 10.1073, "Poor 0.2082, "Fair 0.2379, "Average 0.4576, "Good "ý 
SRC02 = 10.0998, "Poor 0.1032, "Fair 0.2684, "Average 0.5286, "Good" ý 
SRC03 = 10.0628, "Poor", 0.0847, "Fair", 0.3154, "Average", 0.537 1, -Good"ý 

4) Calculating the reduction of the risk. The numerical values of the safety expressions 

are described as [wj,, w,, w,,, wj, = [0.079,0384,0.695,1] in Section 3.3.2. The 

reduction of the risks can be obtained as follows: 

SR(, Ol --- Shýlj,, -, = (0.1073 x 0.079 + 0.2028 x 0.384 + 0.2379 x 0.695 + 0.4576 x 1) - 
(0.2086 x 0.217 + 0.5266 x 0.294 + 0.1756 x 0.455 + 0.0892 x 1) = 0.3401 

SRC02 - Sbffiwe = (0-0998 x 0.079 + 0.1032 x 0.384 + 0.2684 x 0.695 + 0.5286 x 1) - 
(0.2086 x 0.217 + 0.5266 x 0.294 + 0.1756 x 0.455 + 0.0892 x 1) = 0.3935 

SRC03 - Shelbre = (0.0628 x 0.079 + 0.0847 x 0.384 + 0.3154 x 0.695 + 0.5371 x 1) - 
(0.2086 x 0.217 + 0.5266 x 0.294 + 0.1756 x 0.455 + 0.0892 x 1) = 0.4246 

Obviously, the minimum crisp risk reduction value can be equal to 0, which means 
that the corresponding RCO cannot improve the safety level of the top event. The 

maximum crisp risk reduction value can be equal to 0.6308 (0.6308= (0 x 0.079 +0 

x 0.384 +0x0.695 +Ix 1) - (0.2086 x 0.079 + 0.5266 x 0.384 + 0.1756 x 0.695 + 

0.0892 x 1)). This indicates that the corresponding RCO improves the safety level of 
the top event to "Good" with a 100 percent degree. Based on such an interval 10, 

0.631], the three crisp values can be reassessed and expressed by risk reduction 
related linguistic variables. 

5) Developing the fuzzy membership functions of the risk reduction expressions in 

Table 3.10 and fuzzifying the three crisp risk reduction results in Step 4 as follows: 

The fuzzy set of the risk reduction of RCOI is 10,0.25,1,0.5,0,0, Oý 

The fuzzy set of the risk reduction of RC02 is 10.1,0.5,0.75,0.25,0,0,0 

The fuzzy set of the risk reduction of RC03 is 10.15,0.7,0.9,0.3,0,0,01 

Table 3.10. The expressions of risk reduction 
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The risk reduction from RCOI, RC02 and RC03 can be individually mapped onto 
the risk reduction expressions by using the Best-Fit method: 

Rol = 10, "Very unsatisfied", 0, "Unsatisfied", 0, "Moderately unsatisfied", 0, 
"Average ", 1, "Moderately satisfied", 0, "Satisfied", 0, "Very satisfiled"} 
R02 ý (0.0828, "Very unsatisfied". 0.0818, "Unsatisfied", 0.0928, "Moderately 

unsatisfied", 0.1216, "Average", 0.2914, "Moderately satisfied", 0.2238, 
"Satisfied", 0.1058, "Very satisfied"I 
R03 = 10.0773, "Very unsatisfied", 0.0765, "Unsatisfied", 0.0857, "Moderately 

unsatisfied", 0.1122, "Average", 0.2543, "Moderately satisfied". 0.2894, 
"Satisfied", 0.1046, "Very satisfied"} 

6) Mapping the risk reduction estimates and the corresponding cost estimates onto a 
utility space, which is generated in Table 3.11. This is shown as follows: 

Table 3.11. The matches between the expressions 

Utility expressions Risk reduction expressions Cost expressions 
Extremely subsidiary Very unsatisfied Very high 

Subsidiary Unsatisfied High 
Moderately sUbsidiary Moderately unsatisfied Moderately high 

Average Average Average 
Moderately preferred Moderately satisfied Moderately low 

Preferred Satisfied Low 
Extremely preferred_ Extremely satisfied Very Low 

URI = 10, "Extremely subsidiary", 0, "Subsidiary", 0, "Moderately subsidiary", 0, 
-Average ". 1, "Moderately preferred", 0, "Preferred ", 0, "Extremely preferred") 
UR 

,2= 
{0.0828, "Extremely subsidiary", 0.0818, "Subsidiary", 0.0928, "Moderately 

subsidiary", 0.1216, "Average". 0.2914, "Moderately preferred", 0.2238, 
"Preferred", 0.1058, "Extremely preferred"} 
UR3 = {0.0773, "Extremely subsidiary". 0.0765, "Subsidiary", 0.0857, "Moderately 

subsidiary", 0.1122, "Average", 0.2543, "Moderately preferred", 0.2894, 
"Preferred", 0.1046, "Extremely preferred") 
Ucl = {0.2513, "Extremely subsidiary", 0.0902, "Subsidiary", 0.2640, "Moderately 

subsidiary", 0.1072, "Average", 0.1471, "Moderately preferred", 0.0329, 
"Preferred", 0.1073, "Extremely preferred"} 
UC2 = 10.2843, "Extremely subsidiary", 0.1125, "Subsidiary", 0.3292, "Moderately 

subsidiary", 0.0842, "Average", 0.0853, "Moderately preferred", 0.0203, 
-preferred", 0.0842, "Extremely preferred"I 
UO = {0.3227, "Extremely subsidiary", 0.1717, "Subsidiary", 0.2717, "Moderately 

subsidiary", 0.0709, "Average", 0.0746, "Moderately preferred", 0.0176, 
"Preferred", 0.0708, "Extremely preferred") 

7) Assigning an importance ratio between risk reduction and cost estimations. 
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8) Synthesising the risk reduction and cost with different importance ratios. For 

example, when the important ratio between the risk reduction and cost is 2: 1, the 
synthesis Ulul of the risk reduction estimation UR, and cost estimation Ucl of RCOI 
is obtained as follows: 

Ulu, = (0.0475, "Extremely subsidiary "1 0.0 17, "Subsidiary ", 0.0499, "Moderately 

subsidiary", 0.0202, "Average". 0.8389, "Moderately preferred", 0.0062, 
"Preferred'% 0.0203, "Extremely preferred") 

9) Using the categories and memberships values to calculate the numerical utility value 
of each tYuj, where i indicates the categories of different importance ratios andj (=I, 
2,3) means the categories of the three RCOs. The numerical values of the seven 
utility expressions can be obtained using the method of calculating the numerical 
values of the four safety expressions and shown as follows: 

[0.217,0.248,0.294,0.357,0.455,0.635,1] 

For example, the preference degree related to Ulul can be obtained as follows: 

Ulu, = 0.0475 x 0.217 + 0.017 x 0.248 + 0.0499 x 0.294 + 0.0202 x 0.357 + 0.8389 

x 0.455 + 0.0062 x 0.635 + 0.0203x I=0.4442 

in a similar way, the numerical utility values of the RCOs with different importance 

ratios can be obtained and shown in Table 3.12. 

Table 3.12. The ranking of RCOs 

-------ýituations 
Options 

Situation I (SI) 
(Safety: Cost--2: 1) 

Situation 2 (S2) 
(Safety: Cost--I: I) 

Situation 3 (S3) 
(Safety: Cost--1: 2) 

RCOA 0.4442 0.4238 0.4044 
RC0112 0.4607 0.4190 0.3799 
RC0113 0.4671 1 0.4166 0.3682 
Ranking RCOs RCO#3>RCO#2>RCO#l I RCO#I>RCO#2>RCO#3 RCO#I>RCO#2>R 

10) Producing the ranking of RCOs. The result in Table 3.12 shows that when the risk 
reduction is twice as important as the cost, the strictest option (RCO#3) is the best 

choice; when the importance of risk reduction is reduced (which means that the level 

of the realistic threat may be decreased), the relatively loose option (RCO#l) 
becomes more preferred. Simultaneously, such a result is also in harmony with the 

realistic situation in terms of dealing with security problems (i. e. the three security 
level requirements in the ISPS code). 

3.5. Conclusion 

The safety consciousness in the supply chain industry has been significantly growing 
over the last several years and becomes one of the most important criteria for supply 
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chain management decisions. This chapter generated a conceptual risk assessment 
framework for improving the safety performance of CSCs enabling the possibility of 
assessing the vulnerability of the chains and supporting the safety planning for both 

mitigating and continuity actions. Such a methodology is designed and generated on the 
basis of the concept of FSA in the shipping industry, but extends the FSA framework 
from a shipping domain to a wider supply chain area closely related to container 
shipping. To address the special safety requirements and economic considerations, the 
new framework employs many well established techniques (i. e. FTA & ETA) in the 
traditional FSA methodology and also develops some novel risk and economic analysis 
methods as well as decision-making approaches (i. e. subjective safety model and FCBA). 

In the process of attempting to obtain the reliability of the chains, the conceptual 
methodology also provides new insights that should be of particular interest to 

academics and practitioners. Firstly, it is desirable to identify the vulnerability in the 

chains from two different views of threats and hazards. Traditional single hazard 

analysis may not be suitable for dealing with complex CSCs. Also, those threat-based 

risks widely exist and attract more attention from the managers of the chains because 

they are usually beyond the chains' direct management and control. Next, the marriage 
of ftizzy sets and ER to deal with uncertainty resulting from threats can facilitate risk 
assessment and be tailored to be applied to more management-related industries, where 
risks usually arise from threats rather than hazards. Furthermore, use of the framework 

enables the assessment of the risks from both the engineering-based and managerial 
viewpoints. It can thus be seen as a flexible unifying tool, which makes it possible to 
benefit maximally from the strengths of the individual risk assessment and safety 
management. 

Although the methodology does provide a comprehensive view of safety assessment for 
CSCs, it by no means is meant to be perfect. One significant characteristic of the chains 
is a close collaboration between the entities involved. While such a close cooperation 
(interactive relationship) ensures effective cargo and information flows, it can also 
redound to risk free flows. It may be difficult to use traditional risk analysis methods 
with a hierarchical structure such as FTA to deal with the risks with an interactive nature. 
Therefore, new models need to be constructed. 
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Chapter 4- An Advanced Fuzzy Based Risk Assessment Technique 

SUMMARY 
After the 9111 terrorism attack, the lock-out of the American West Ports in 2002 and the 
breakout of SARS disease in 2003 havefurtherfocused the minds of both the public and 
industrialists to take effective and timely measures to assess and control the risks related 
to CSCs. Achieving such a functionality requires enabling the possibility of combining 
the objective and subjective risk estimations in view of the challenges and uncertainties 
posed by the unavailability and incompleteness of historicalfailure data. However, due 

to the complexity of the risks in the chains, either conventional QRA methods or the 
subjective safety assessment method introduced in Chapter 3 may not be capable of 
providing sufficient safety management information. This chapter, as the extension of 
Chapter 3, combines the FST and the ER approach and presents an advanced 
continuous fuzzy set method to deal with the risk assessment based on both objective 
failure data and subjective expert judgements, which are more functional in the safety 
management of the chains. 

1. Introduction 

An important consideration of the effectiveness of the subjective risk analysis approach 
discussed previously is related to its capability of combining objective hazard-based 

safety evaluations. The risk assessment of CSC systems is possibly highly dependent on 
both hazard-based and threat-based risk implications simultaneously in a particular 
situation. Thus, it will be desirable that the subjective approach can be used to carry out 
a unification of the two different risk implications in order to avoid loss of useful 
information. However, as the hazard-based risks may be described using objective 
precise quantities and the threat-based risks may be described using subjective fuzzy 

sets, it is not convenient to directly implement such a synthesis using either a normal 
mathematical logical operation or the ER approach. It is therefore necessary to define a 
utility space to evaluate objective and subjective safety expressions on the same scale. 
This chapter uses the concept of continuous fiizzy sets to fazzify the numerical hazard- 
based risk attributes, transfer the risk estimations into a form, which can be mapped onto 
the four safety expressions defined in Chapter 3 and then realise the synthesis of the 
hazard-based and threat-based risks. 

4.2 The Review of The Discrete Risk Analysis Approach 

A subjective safety modelling method is proposed in Chapter 3 to deal with threats and 
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to provide a basis for assigning priorities for corrective actions. For the purpose of 
comparison and combination, the framework of this method is reviewed and expressed 
using the six interlocking steps in the following context: 

Step 1. Identify the risk parameters for measuring threat-based risks as "Will M", 
"Damage capability (D)", "Recall difficulty (R)" and "Damage probability (P)". 
Step 2. Define discrete fuzzy set membership functions for the risk parameters 
identified in Step 1. 
Step 3. Calculate fuzzy risk scores using the ftizzy sets of the four safety parameters 
defined in Step 2. 
Step 4. Transform the risk scores obtained in Step 3 to the defted fuzzy safety 
expressions (i. e. "Poor". "Fair". "Average" and "Good') to obtain safety 
estimations. 
Step 5. Synthesise the safety estimations in Step 4 from different assessors or 
components using hierarchical ER. 
Step 6. Rank the synthesised safety evaluations obtained in Step 5. 

4.3. Combination of the Hazard-Based and Threat-Based Risk 
Estimations 

In comparison to the difficulty of precisely defuzzifying a fuzzy set to a crisp number, it 
is reasonably easy to fuzzify a numerical objective hazard-based risk parameter to 
appropriate linguistic terms described by fuzzy membership sets using some pre-defined 
categories. Taking into account this fact, the utility scale in this study is selected as the 
four fuzzy safety expressions in Table 3.5. Note that the categories in Tables 4.1 and 4.2 

provide engineers with measures with which a linguistic variable can be modelled. A 
linguistic variable may be modelled in terms of membership values with respect to more 
than one probability related category. For example, in Table 4.1, "Extremely Remote" is 

modelled by membership values 0.5 and I with respect to the two categories, which are 

respectively related to Y6 and 0. 

Risk is traditionally characterised by the occurrence of accidental events and their 
undesired cffccts. In traditional engineering risk assessment approaches, risk is often 
described in terms of the frequency of consequences, such that 

Risk = Failureftequency x Consequence severity 

However, different from the quantitative numerical means in QRA by which the 
frequency and severity are determined, here they are expressed using fuzzy membership 
sets and calculated using fuzzy algorithms. 
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Table 4.1. An example of fuzzy frequency index of containership accidents 

Frequeng Definition Per ship - year 
Extremely Frequent -Likely to occur once per year for a containership 0.1< I-' 

-Likely to occur once in the lifetime ofa -- 
' Frequent 

containership 
0.0 I< P :ý0.1 

-Likely to occur 10 times per year for all cellular Likely 0.001< /"! ý 0.01 
containerships 

-Likely to occur once per year for all cellular 0.000 I< 1" < 
Occasional 

containerships 0.001 

-Likely to occur once times in 10 years for all 0.0000 I< F: 5 Remote 
cellular containerships 0.0001 

-Likely to occur once in the lifetime of all cellular Extremely remote containerships 
F<0.00001 

Mem bership sct, 
Category 

Extremely Frequent 0 1/6 1/3 1/2 2/3 5/6 1 
Frequent 0 0 0 0 0 0 1 

Likely 0 0 0 0 0.5 1 0 
Occasional 0 0 0 0.5 1 0 0 

Remote 0 0 1 0.5 0 0 0 
Extremely remote 0 1 0.5 0 0 0 0 

Extremely Frequent 1 0. 0 0 0 0 0 

Table 4.2. An example of fuzzy severity index of containcrship accidents 

Severity Definition Number of 
fatalities 

-The total loss ofa containership Catastrophic 
-Many fatalities or the severe pollut on to the environment 

I<S 

_ 
-Major casualties including the severe damage to the 

Critical containership 0. I< S 
-! -, 

I 

-Severe injuries or the significant pollution to the environment 
-Failure that requires professional repair 

Severe -injuries requiring first aid or the pollution to the environment in 
0.01< S:! ý 

a small scope 
0.1 

-Minor failure that can be easily repaired 
Trivial -injuries not requiring first aid or the slight pollution to the 

0.00 I< S: ý 

environment 

-Failure that can be readily compensated bv the crew of the 
containership 0.000 I< S 

Marginal 
-injuries not requiring first aid or the slight pollution to the 0.00 1 

environment 
-'rhe cosmetic damage to the containership S: ý 

Negligible 
-No significant harni to pcople, property or the environment 0.0001 

Catastrophic 0 1/6 1/3 
Category 

1/2 2/3 5/6 1 
Critical 0 0 0 0 0 0 1 
Severe 0 0 0 0 0.5 1 0 
Trivial 0 0 0 0.5 1 0 

Marginal 0 0 1 0.5 0 0 0 
Negligible 0 1 0.5 0 0 

Catastrophic 1 0.5 () 0 
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In the fuzzy theory, given any set, it is possible to perform a similar fazzification. The 
Extension Principle (EP) in the theory identifies a natural way to extend maps on 
classical sets to maps on their fuzzy extensions. It can be described in the following: 

EP: Given a map, f (XI 9 X21.... x,, ) =y, then, the natural fuzzy extension, ý, is given 
by: 

U7(a1, 
a2 .... oan) 

(y) ý sup min[u, (XI)'Ua2 (X2)Y***9Uan (XA 
f(XI, x2, ---, 7cn)ýY 

which means that the degree of y being a fuzzy set under an extended function, 

f (a,, a2,..., an), is the maximum of the minimum of the membership values, u, (xi), 

i= (1,2,... n), of elements, xj, i= (1,2,... n), mapped to the original ftizzy set functions, aj, 

i= (1,2,... n) , by ordering all elements, xi ,i= (1,2,... n) to follow the function, 

f(XllX2)--Xn)ýY* 

In the context of fuzzy risk assessment, the EP may be used to define fuzzy counterparts 
of standard arithmetic operations. If the standard arithmetic operators are considered as 
maps from FxS --> R, then the straightforward application of the principle yields, 

U, Ob(R)= sup min(u. (F), Ub(S)) (4.2) 
FxS=R 

where a and b separately represent the fi=y functions of two risk parameters, frequency 

and severity; F and S individually mean the categorised probabilities of the two risk 
parameters in membership sets; and R indicates the categorised probabilities of risk 
itself in the sets. 

Consequently, the risks can be easily expressed using a ftizzy set. For example, if one 
particular kind of hazard related to containerships occurs 0.01 times per ship - year and 
it will lead to the loss of I life, the risk is then calculated as follows: 

Risk = "LikeV'x "CriticaP' 

R=FxS= 
1(0�V6, ý13, ý12, ý13, ý16 Jx (0, ýi ý/3, ý/2, ý/3 

IX6J1 

uL, kly c,, ii,,,, 
(R) = sup min [uLik,, Ily (F), uc,, iic,,, (S)] 

FxS=R 

sup min[(0,0,0,0.5,1,0,0), 
(0,0,0,0,0.5,1,0)1 
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In the first matrix above, the elements of the odd rows represent "R", which can be 

calculated using 'T x S" (for example, the fifth element 'Y3 ' of the seventh row is 

obtained using the fourth element 'Y2 " in F to multiply the fifth one ' Y3 ' in ý). The 

elements of the even rows indicate the membership values of "R", 

Y(F), uc,, jtjc,, j(S)] (Bor example, the fifth element '0.5' of the eighth row is Min[ULikell 

obtained by comparing the fourth element '0.5' in uLjkjjY(F) and the fifth one '0.5' in 

uc, j1j,,, j (S) ). In the second matrix, the first row shows all possible values of "R" obtained 

from the odd rows in the first matrix and the second row gives their corresponding 

membership values, ULikelyOCritical (R), which can be computed using 

sup min [uLik, 11Y (F), uc,, jjj,,, j (S)]. For example, 
FxS=R 

ULlkely(&Crifical(Y3) = sup {min[uL! 
kllly(I'13), UCritical(l)]I 

FxS=R 

If 1/1], 
min[ULikelly(Y2)'UCritical(y3)], min[uLik,, lly(y3), UCritical"12-, 

min[uLjk, jjy(1), UCrilical(y3)1} = sup [min(0,0), min(O. 5,0.5), min(1,0), 
FxS=R 

min(0,0)1 = sup (0,0.5,0,0) = 0.5. 
FxS=R 
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Like us obtained from Equation (3.5), Uagb (R) acquired only represents a relative 

safety level and requires to be mapped onto the four linguistic safety expressions in 

Table 3.5. Due to the different probability categories between the fuzzy sets representing 

ULikelyOCrftical(R) and the safety expressions, the Best-fit method may not be directly 

applied to deal with the mapping problem. Therefore, a transferring tool for extending 
the probability categories of the fuzzy sets of the safety expressions is needed. Because 

the belief degrees to the safety expressions have a characteristic of classical linear 
distribution, the extension is straightforward. For example, the ftizzy set of one of the 

safety expressions, "Pooe' from Table 3.5 can be extended as, 

X6 Yl 8 Yl 2 Y9 X6 Y6 Y9 X Yl 8X Yl 2 Y9 Y2 Y9 Y3 2Y3 6 Y6 1] 
0000000 000 00 00000.75 1 

Furthermore, the objective numerical risks can be expressed by the subjective safety 
expressions using Equations (3.6) and (3.7). Using the ER approach, the combination of 
objective hazard-based and subjective threat-based safety evaluations can be 
implemented. It is noteworthy that the set represented by the letter "k" in Equation (3.6) 

should be equal to [ 1,2, ..., 19] rather than [ 1,2, ..., 7] here. 

Despite fimctioning on the synthesis, such an approach still reveals certain application 
problems. The principal limitations include that the complex ftizzy arithmetic operations 
are not friendly enough to mathematically unsophisticated users; that the accuracy of 
extending the fuzzy sets of the four safety expressions may be arguable and that the non- 
linear membership value distribution of the fuzzy risk sets acquired (i. e. the zero 

membership value corresponding to the risk probability category denoted by ' Y2 ' in the 

second matrix on Page 85) is difficult to explain and justify. A novel combining tool is 
thus generated using continuous fuzzy sets. Note that the term "continuous" can be 

graphically explained. Considering the fact that triangular and trapezoidal membership 
functions have been commonly used to describe risks in safety assessment (Wang, 
1997b), the membership functions represented by the discrete membership sets in Tables 
4.1 and 4.2 can be approximately graphically described using continuous ftizzy sets in 
Figure 4.1. In a similar way, the membership functions represented by the discrete 

membership sets in Table 3.5 can also be approximately described as 9a, (i = 1,2,3, or 
4) in Figure 4.2. Consequently, the tool can be presented as follows: 

Let Fj (i = 1,2, ... or 6) represent the continuous fuzzy sets of the frequency linguistics 

terms and Kj(j = 1,2, ... or 6) be the continuous ftizzy sets of the severity linguistics 

terms. Given the characteristics of their triangular membership functions, P, and S-j can 

be assigned triangular fuzzy numbers, F, and Y,. 
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Degrees 

Extremely remote Occasional 
or Negligible or Trivial 

Remote or Marginal 

Likely or Extremelyfrequent or 
Severe Catastrophic 

Frequent or Critical 

0 1/6 1/3 1/2 2/3 5/6 1 

Figure 4.1. Graphical explanations of the fuzzy frequency and severity linguistics terms 

Degrees 

I 

Figure 4.2. Graphical explanations of the safety expressions 

Let T, =-- (Al I A2 1 A3) and 9, (SjI / SJ2 Sj3), then, 

Fj [01 = Ifil 
9 
A31 

P 
Fi [I] = V121 

9 [01=[Sjl93j3]9 Yj[l]=[Sj2] (4.3) i 

Following the solution of fiazy EP equation in Equation (4.2), the product of 17, 

and S,, R., representing the triangular ftizzy risk numbers can be obtained as follows: 

Ry ! --- 
Mil X SjO IV2 X Sj2) I(A3 X SJ3)1 (4.4) 

where i andi = (1,2, ... or 6). 

Obviously, the Best-fit method may not effectively map continuous fuzzy sets onto the 
four safety expressions and thus, a new approach is employed. It is related to the 
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distance measurement between continuous ffizzy sets (a fuzzy Best-fit method). The 
distance measurement between two continuous fuzzy sets is developed on the basis of 
the Best-fit method and thus they have many common characteristics. However, the 
major difference exists and lies on the distances obtained using two distinctive methods. 
The distances obtained using Equation (3.6) depend on the degrees (real numbers) 
distributed to the discrete probability categories, while the new fuzzy Best-fit method 
aims at investigating the distance between two continuous ftizzy sets (ftizzy numbers). 

Given k and ga, sets with their (x-cut representations, k[a] = [R, (a), R2 (a)] and 

Sa, [a] =-- [Sad (a), Sa, 2 (a)], 0: ý a: 5 1. Define K(a)=IRI(a)-Sq., (a)l and 

L(q) = JR2 (a) -S'1'2 (al. Then (Buckley and Eslami, 2002), 

d(k, ga) = max {max[K(a), L(a)]10 : ýýa Q) (4.5) 

Since K(a) and L(a) are continuous, the term "max" instead of "sup" is used. 

Having analysed the Best-fit method, the other steps of the new approach can be carried 

out in a similar way (i. e. after d(, W,, Yai) is calculated, Equation (3.7) can be used to 

calculate au). However, it is particularly noteworthy that the four safety expressions 

obtained and used in linguistically expressing relative safety scores of threat-based risks 
may not be well suited to the hazard-based risks without appropriately defining specific 
situations of the distance between two ftizzy sets. For example, from a realistic 
viewpoint, if the frequency of a hazard is "Extremely Remote", represented by 

and its consequence is "Negligible", expressed by FExtre. 
elyR emote = (0 /0 IS )' 

then the risk ought to be "Good' with one hundred percent SNegligible = (0 /0/ )ý) 
I 

certainty, symbolised by AGood 
= (0 /0/ )ý) 

. However, using the fiizzy EP method the 

risk with the filzzy membership function can be calculated as 
jF = (0 /0/ Y9) 

, which means the risk acquired has a better ExtremelyR emote 
0 37Negligible 

safety level than the one expressed by "Good' in terms of fiizzy safety numbers. Under 
this circumstance, still using the fiizzy Best-fit method will easily lead to conflict in 

calculation (i. e. the risk expressed by R= FExtremelyR 
emote 

0 SSevere = (0909 
18) Wil 

have a higher degree to the "Good' linguistic safety term than that represented by 
!ý 

: -- 
FExtremelykmote 0 YNegligible 

= (0 /0/ Y9 ), although it is not a realistic case). Therefore, 

the definition of fiizzy orderings is introduced to avoid such conflict and justify the use 
of the four safety expressions as the common space of combining hazard-based and 
threat-based risks. 
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Definition: Fuzzy orderings 

On real numbers, a : Eýb if and only if a= min(a, b). Following this observation, the EP 

in Equation (4.1) may be used to induce a natural partial order, c-:, on the fuzzy numbers 
as follows (Halliwell and Shen, 2002): 

a9; bOa='m'Tn(a, b) 

<=>u,, (z)= sup min(u,, (X)'Ub(Y)) 
min(x, y)=z 

(4.6) 

Another partial order on the fuzzy sets can be generated by the fuzzy subset relation, i. e. 

(4.7) ýb <=>u, (x) : 544b (X) 

Applying such a definition to the context of mapping the hazard-based safety score to 
the four pre-defined safety expressions, Ka, 

. the following can be reasonably given: 

If and only if k 9: 9a, (i =1,2,3 or 4), then d(k, gaj) = 0, which means the 

safety score represented by k belongs to the safety expression expressed by ga, 

with one hundred percent degree and belongs to the others with zero degrees. 

If, ka 9a, (i = 1,2,3 or 4), then four d(, k,, §a, ) require to be calculated and the 

degrees to which the risk belongs to the four safety expressions can be obtained 
using the previous discussion. 

Using such a method, the objective hazard-based risks can be successfully mapped onto 
the four safety expressions and further synthesised with the subjective threat-based risks 
with the assistance of the ER approach. 

4.4. Case Study 

, 4.4.1 A Risk Analvsis of Terrorists Attackluk Ports 

The American West Coast Ports 11 -day lockout in October 2002 has caused a growing 
concern on how serious the impacts of a major sophisticated attack related to container 
ports can be. Such a concern has further been highlighted by progressive terrorism 

groups' activities. Therefore, in this section, risk analysis is carried out to assess the 

safety level of ports in CSCs and identify the major factors causing the risk on a 
prioritised list. 

As described previously, terrorists attacking ports would most likely occur through two 
ways: to attack the channel/waterway or bomb the quayside infrastructures/facilities of 
the terminals. Using the FTA method, a fault tree related to a terrorism threat in ports 
can be constructed in Figure 4.3. 
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TARGETS 

CHANNEL 

CýýL 

MISSILE OR II VESSEL I 
BOMB 'SUICIDE' 

ATTACK ATTACK 

ATTACKING 
TERMINAL 

CONTAINER Mi SSEL 
BOMB BOMB 'SUICIDE' 

ATTACK ArrACK 

BOMB OR TERRORIST 
HAZARDOUS AS 

CARGO EMPLOYEE 

Figure 4.3. A fault tree of terrorists attacking ports 

Following the fault tree, the basic events can be ranked in terms of their risk levels using 
the fuzzy set approach described. The risk level of the top event can be calculated using 
the ER approach. The estimation and calculation of the risk levels can be conducted as 
follows: 

Step I assigns the relative weights of the events in Figure 4.3 using the rule in Section 
3.2.3, where the top event is assigned value I as its weight. The results of the 
assigmnents are shown in Table 4.3. 

Table 4.3. The weight assigrunents of all events 

Events Weights Events Weights 
PORT I CONTAINET I 

CHANNEL I EXT-TER I 
TERMINAL I VES-TER I 

M 

EXT-CHA I CARGO 0.5 
1 VES-CHA I EMPLOYEE 

Step 2 calculates the safety scores of the basic events on the basis of the ftizzy 

estimations of the four parameters from Tables 3.1-3.4. The safety scores are calculated 
by using the ftizzy operations of the formula 'ps -= ju (R x D) - (p x gg' and the Best-Fit 

method in Section 3.3.2. The ranking of the basic events can then be obtained using the 
method of studying the fuzzy membership values and categories. For example, the 
subjective risk parameters of the basic event "EXT-CHA" are initially assessed as 
moderate weak "Wiff', average "Damage capabiliV', average "Recall difficulty" and 
reasonably likely "Damage probability", respectively. Consequently, the fuzzy 

estimations of the four parameters can be obtained as using Equation (3.3): 
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pw= (0,0.25,1,0.75,0,0,0) 

ßD = (0,0,0.5,1,0.5,0,0) 

. uR = (0,0,0.5,1,0.5,0,0) 

. up = (0,0,0,0.75,1,0.25,0) 

Using Equations (3.2) - (3.5),, us can be calculated as follows: 

jUR xD ý (ß uR 
xD) 7x7 

=(0,0,0.5,1,0.5,0,0) x (0,0,0.5,1,0.5,0,0) 

00000 0 0 

00000 0 0 

000.5 0.5 0.5 0 0 
000.5 1 0.5 0 0 
000.5 OS 0.5 0 0 
00000 0 0 

-0 
0000 0 0- 

PP x Wý (P ij 
Px W)7x7 

= (0,0,0,0.75,1,0.25,0)x (0, 0.25,1,0.75,0,0,0) 

0000 0 0 0 

0000 0 0 0 

0000 0 0 0 
0 0.25 0.75 0.75 0 0 0 
0 0.25 1 0.75 0 0 0 
0 0.25 0.25 0.25 0 0 0 

Lo 
000 0 0 0- 

, USýß(R x D) '(P 
x i0-WS)I x7 

= (0,0.25,0.75,0.75,0,0, 0) 

Using Equations (3.6) and (3.7), the safety score of the basic event "EXT-Clu" can be 

obtained as follows: 

7 1/2 
E (juk k )2 di(S, Poor) s- PP.. 

r 

]=1.658 

7 ]1/2 

d2(S, Fair) 1: (Pk _, Uk )2 
= 1.299 s Fair 

k=l 

[7 1/2 

d3(Sý Average) E(Ilk 
_Ijk )2 

k=l 
s Average 0.25 

7. ]1/2 

d4(S, Good) = E(JUk 
_jUk )2 s Good = 1.541 
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SFAT-CHA = 10.1, "Poor ", 0.128, "Fair ", 0.664, "Average ", 0.108, "Good"I 

Using Equation (3.9), a numerical risk degree based on the safety score can be 

calculated as: 
PSEXT-CHA ý 0.1 x 0.079 + 0.128 x 0.384 + 0.644 x 0.695 + 0.108x 1=0.613 

The results of the calculations associated with other basic events are shown in Table 4.4. 

Table 4.4. The risk estimations of all basic events 

Parameters 
Basic Damage Recall Damage Risk 

will Safety scores 
events capability difficulty probability rank (W) (D) (R) (P) 

EXT- W - ffl, 0.25,1,0.75,0,0,0 D ffl, 0,0.5,1,0.5,0, Oý S=ý0.1, -Poor ", 0.12 8, , Tair ", 0.613 

CHA R -j0,0,0.5,1,0.5,0,0 ý P 10,0,0,0.75,1,0.2 5,0 0.664, M verage 0.108, "Good 6 

VES- W -ý0,0,0,0,0.75,1,0.25 D ffl, 0,0,0,0,0.75,1 ý S=ý0.02 1, -Poor -, 0.934, 'Tair 0.31 

CHA R = 10,0,0,0,0,7 5,1,0.2 5 P ffl, 0,0,0.75.1,0.25, Ot 0.027, -Average 0.018, "Good"ý 1 

W - ffl, 0,0,0,0,0.75,1 D 10,0,0.5,1,0.5,0,0 S=ý0.444, "Poot- ", 0.199, 'Tair 0.4115 
CARGO 

R = ffl, 0,0.5,1,0.5,0,0 P 10,0,0.5,1,0.5,0,0) 0.184, -A verage ", 0.173, - Good " 3 

EMPLOY W - ffl, 0,0.5,1,0.5,0, Oý Dý 10,0.25,1,0.75,0,0,0) S=ý0.139, -Poor -, 0.36 1, "Fair ", 0.44 

EE R 0.25,1,0.75,0,0,0 ý P-ý0,0,0,0.75,1,0.25 ý 0.361, "At, ep-age", 0.139, "Good"ý 4 

W 0,0,0.75,1,0.25, Oý D- ý0.25ý 1,0.75,0,0,0, Ot S= ý0.139, "Pooi-", O. 361, -Fair", 0.44 
EXT-TER 

R 0,0,0.5,1,0.5,0,0 ý P '0,0,0,0.75,1,0.25,0 t 0.361, "Aý, erage", O. 139, "Good"ý 4 

W -ý0,0,0,0., 0.75,1,0.25 ý D ffl, 0,0,0,0.75,1,0.25) S=ý0.686, -Poor -. 0.119, -Fair ", 0.324 
VES-TER 

R = ffl, 0,0.5,1,05,0,0 ý P-ý0,0,0,0,0.75,1,0.25 ý 0.10 1, M verage ", 0.094, - Good -t 2 

Step 3 applies the ER approach and its attached software IDS (Yang and Xu, 2000) to 

calculate the safety level of the top event which can be expressed by its safety score 
shown in Figure 4-4: 

STerrorism ý 10.276, "Poor", 0.46 1, "Fair", 0.17, "Average", 0.093, "Good") 

Mrst aft'emative on the risk score of terrorists attacking ports 

100001. 

441 

9000'. 

4) ýo 00o , W 

5000'. 

0.00'. 

CO 30 00. b 

lu. LKYIý 

LO 00'. 

000'. 

4b. UU% 

Evaluation grades 

Figure 4.4. The safety level expressed by safety scores 
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From the above results, it is obvious that the six basic events (i. e. EXT-CHA and VES- 
CHA) have been assessed as 'Good' to a quite small extent. For example, the event 
EXT-CHA has been assessed as 'Good' with a belief of 10.8 percent; the event VES- 
CHA has been evaluated to a significantly smaller extent as 'Good' with 1.8 percent. 
Since the safety of the top event is determined by the safety of each basic event, the top 

event safety should be evaluated as 'Good to a small extent. This is in harmony with 
the results obtained above as the safety of the top event has been assessed as 'Good' to 
the extent of 9.3 percent. 

The above gives an overall picture of the safety estimate of this top event. The safety 
score representing the safety level of the top event can be seen as a reference for 

considering the effectiveness of RCOs and the comparison with the other hazard-based 

risk analysis in Section 4.4.2. 

4.4.2 A Risk Analysis ofSerious Container Ship Collision 

The risk related to ship collision has been actively investigated for a long time. 
However, with the extension of world merchant fleets, the associated hazards still need 
to be carefully investigated to improve human safety, shipping economy and ocean 

environment. The problem is particularly prominent in the context of containerships 
considering their significant contributions to the international trade. A research project 
carried out by the UK P&I Club (1999) shows that for the 10-year period from 1989 to 
1999 incidents involving containership collision accounted for up to 7% of the total 

containership incidents. The situation is more awful and worrisome given the statistics 

provided by the IMO (1999-2005) that in the period of 1998-2003,24 serious 
containership collision accidents with the loss of 21 lives accounted for 25.3% of the 
total serious containership accidents. Given this fact and considering the possibility of 
comparing or combining with other threat-based risk evaluations, it is meaningful to 

conduct such a risk analysis. 

The 24 collision accidents in 6 years for the whole containership fleet mean that the 
frequency of accidents can be subjectively expressed using the linguistics term "Likely" 
(See Table 4.1). The serious consequence with the loss of 21 lives and 2 injures in 24 

accidents can be described by the term "Critical" (See Table 4.2). 

Furthermore, according to Figure 4.1 and Equation (4.3), the following is acquired: 
125 

FLikely ý (ý/ 
3V 

15 
2/6 
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Using Equation (4.4), the risk evaluation, R, expressed using ftizzy numbers can be 

calculated as: 
R= FLikly 0 Sc,. 

ilk,,, 

I/5/ 5) 
696 

Mapping k back to Figure 4.2 (See Figure 4.5), the un-scaled similarity degrees 

between the ftizzy risk evaluation and the four safety expressions can be calculated 
using the fiizzy Best-fit method and its corresponding Equation (4.5). 

Degrees (a) 

I 

0 0.17 0.33 0.5 0.67 0.83 1 

Figure 4.5. Mapping the risk evaluation onto the safety expressions 

Probabilities 
(, W[a] orgaja]) 

The ftizzy Best-fit method is then employed to map the ftizzy risk evaluation onto the 
four safety expressions. Observing Figure 4.5, the following is obtained, 

7155 K[al =[- a+ý-), (--a+ý)] ( T, 8 18 

gaGood [a] [(0), 
1 

a+ 
I )l 0: 5 a<1 33 

Then, 

K(a) = 
la 

+1 
118 

61 

L(a) = 
la 

+I0:! ý a<1 
118 d2l 

d(R, SaG,, d) = maxfmax[ K(a), L(a)]10 *--z., a Qj = -5 9 

where max[K(a), L(a)l (0: 5 a: 5 1) a+ and max 
1 

a+- 
I 

18 2 
(-F8 i 9. 
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In a similar way, one can easily acquire the following: 

2 
d(R, SaA verage 9 

d(R, SaFair 
9 

d(, R, gaPoor )=1 

2 

Nonnalising d(R, Sap,,,,, ), d(R, SaF,, i,. ), d(R, SaAyerage) and d(R, SaG,,, d) enables the 

risk evaluation to map the safety expression as follows: 

Sc,, Ili., i = (0.116, "Poor", 0.52, "Fair", 0.26, "Average", 0.104, "Good") 

4.4.3 Svnthesis of the Risk A nalEses with Different Natures 

The two case studies above individually contribute two different risk analyses of both 
hazard-based and threat-based risks using the subjective risk assessment method. 
Validating the feasibility of the subjective risk assessment method, they enable the rank 
of the risks on a prioritised list and combining them with a distinctive nature as shown in 
the following. 

Using Equation (3.9), the numerical values of ST,,,, i,. and SC,, 11jj... can be obtained for 
ranking purposes as follows: 

ST,,,,.,, &. = 0.276 x 0.079 + 0.461 x 0.384 + 0.17 x 0.694 + 0.093 xI=0.41 

Sc. Iiiý, ü. = 0.116 x 0.079 + 0.52 x 0.3 84 + 0.26 x 0.694 + 0.104 x1=0.494 

Therefore, from the viewpoint of risk assessment, the risk related to terrorists attacking 
ports is categorised to a relatively lower safety level compared to the risk associated 
with containership collision and may require more attention. For a whole supply chain 
risk analysis, risk evaluations at a higher level may need to be carried out, where 
containerships and ports may only be considered as subsystems. It is noted that the risks 
terrorist attacks and containership collisions are often connected with their higher level 

event using a OR gate in a hierarchy. Therefore, according to the weight distribution 

rule in Section 3.2.3, the combination of ST,,, i,. and &, 11j. 'jý,, can be expressed using the 
ER approach as: 

ST,, i,. +Wli, i,,. = (0.182, "Poor", 0.525, "Fair", 0.204, "Average", 0.089, 
"Good") 
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The result of such a combination can effectively respond to the safety levels of its 
individuals (i. e. Sr,,,, i,. and Sc,, IIui,,,, ). To test the safety evaluation associated with 
terrorists attacking ports, the subjective safety assessments of the two subsystems. have 
been observed to a large extent as 'Fair' and to a small belief degree as 'Good' 

respectively. For example, the risk associated with terrorists attacking ports has been 

assessed as 'Fair' with a belief of 46.1 percent and as 'Good' with 9.3 percent; the risk 
associated with containership collisions has a larger extent (52 percent) evaluated as 
'Fair'. Such distribution trends of subjective safety beliefs are well reflected in the 
combination result ffair" with 52.5 percent belief degrees and 'Good' with 8.9 percent). 

4.5. Conclusion 

This chapter provides a subjective risk assessment method for the organisations involved 
in CSCs. It enables the assessment of the vulnerability based risks of the chains and to 
support the safety planning for both mitigating and continuity actions. The marriage of 
fuzzy sets and ER to deal with uncertainty can also facilitate risk assessment and be 
tailored and applied to more management-related industries, where risks usually arise 
from both threats and hazards. However, the simplification of the complex fuzzy 

operations and the permission of more risk parameters involved require to be considered 
in order to facilitate the application of the fiizzy set theory in risk assessment. 
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Chapter 5-A Risk-Based Decision Making Framework Using 
Fuzzy Evidential Reasoning Approaches with Belief Structure 

SUMMARY 

The chapter illustrates a subjective risk-based decision making framework using the 
combination of two fuzzy ER approaches. The framework includes three interactive 

es UZZY ru parts. The first one is for risk estimation and synth is including fi le-based risk 
estimation using afuzzy rule-based ER (FRB-ER) approach, as well as the risk synthesis 
using the ER approach. Considering the other decision attributes such as the cost and 
time associated with the risk reduction in RCO: s, the secondpartfocuses on Synthesising 
the risk and other decision attributes using afitz; y link-based ER (FLB-ER) approach to 
obtain the overall evaluation of a whole CSC system for each RCO. The thirdpart is to 
apply the overall evaluationfor the best RCO selection. The major contributions of the 
study are to simplify the complex fuzzy calculations and extend the capability of 
accommodating more riskparameters. 

1. Introduction 

Developing a highly capable risk-based decision support tool in the context of CSCs 
depends on the techniques, which enable the accurate assessment of risk priority and 
effectively address potential decision attributes, particularly in the absence of precise 
CBA. The previous studies have been generated to deal with the threat-based risk 
estimation with unavailable or incomplete historical data, the combination of the threat- 
based and hazard-based risk estimations and safety-cost based decision making. 
However, the studies may often expose some disadvantages in practical applications and 
fall short in their ability to permit the simplification of complex ftizzy operations, 
incorporation of more risk parameters and synthesis of various decision attributes with 
different amounts of linguistic variables, when a wider analysis is required. This chapter, 
therefore, establishes a general framework with novel risk and decision methods to 
provide a basis and tool for risk analysis and synthesis with multiple decision attributes 
in complex CSC systems. 

One realistic way to replace the complex ftizzy operations in the discrete and continuous 
ftizzy set risk assessment methods and deal with the inference between fuzzy risk input 
and output is to employ fuzzy IF-THEN rules in fuzzy logic theory. The approach based 
on the fuzzy rules, where conditional parts and/or conclusions contain linguistic 
variables (Zimmermann, 1991) can model the qualitative aspects of human knowledge 
and reasoning process without employing precise quantitative analysis. It does not 
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require an expert to provide a precise point at which a risk factor exists. This actually 
provides a tool for working directly with the linguistic information, which is commonly 
used in representing risk factors and carrying out safety assessment (Karwowski and 
Mital, 1986; Keller et al., 1989; Duckstein, 1994; Bell and Badiru, 1996; Bowles and 
Petaez, 1995; An el al., 2000; Wang et al., 1995 and 1996; Wang, 1997a; SH et al., 2001; 
Liu et al. 2004). In this context, a risk analysis model using a fuzzy rule-based inference 
system can be appropriately used to conduct the threat-based and hazard-based risk 
assessment and synthesis in CSC systems. 

The purpose of analysing risks is to estimate those high-level ones in a prioritised list so 
as to ensure the correct decisions to be made and appropriate RCO(s) to be selected. 
However, realising such an objective requires other factors or constraints from 
economical, technical and environmental considerations to be satisfied. The factors can 
be defined as multiple decision attributes in analysing a complex decision making 
problem and normally investigated by the rules of a knowledge base in a hierarchical 
structure, in which the sub-criteria of the attributes can be further developed. In general, 
a bottom-up approach can be used to solve such a problem. Pieces of evidence from the 
lowest level criteria are aggregated as evidence for the second lowest-level criteria/ 
attributes, which is in turn aggregated to produce evidence for higher-level attributes. 
The ER approach has presented the superiority in dealing with the synthesis of various 
pieces of evidence obtained/evaluated based on the same universe. The FRB-ER 
inference mechanism is able to transform the different linguistic variables associated 
with the lower-level criteria/attributes to the unified linguistic expressions at higher- 
level ones. However, the complex processes of both constructing ftizzy rule bases and 
conducting inference reasoning are not desirable in multi-level hierarchical decision 
analysis. Necessary simplification is required to facilitate the development of the 
method. 

A fuzzy link-based method, which is based on a linked belief structure between the 
linguistic variables expressing the attributes at different levels, can unify all hierarchical 
ftizzy rule bases and transform the fuzzy input associated with the lowest level attributes 
to the corresponding fuzzy output on the highest level attributes without employing 
multiple FRBs. Next, the ER approach can be used to synthesise all output on the 
common space and obtain the overall scores of decision options. 

In the following, Section 5.2 outlines the risk analysis and synthesis framework using a 
FRB-ER approach. The framework of synthesising risk estimation and other multiple 
decision attributes is provided in Section 5.3, where the synthesis result can be used to 
produce the preference estimates associated with RCOs for ranking purposes. An 
illustrative example is used to demonstrate the application of the proposed framework in 
Section 5.4. Section 5.5 concludes this chapter. 
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5.2. Fuzzy Rule-based Risk Analysis Framework 

The proposed framework for modelling CSC system risks consists of six major components, 
which outline all the necessary steps required for risk estimation at the bottom level of a 
hierarchical system (i. e. the basic events in a FTA) and synthesis from the bottom level 
to the top level using the ER approach proposed in Chapter 3. 

5.2.1 Identify Risk CauseslFactors 

In this component, all anticipated causes/factors to failure of a CSC system are identified. 
This can be done by a panel of experts during a brainstorming session using a FTA 
technique. The identification of the factors and the construction of the hierarchical 

structure will follow the rules established in Section 3.2.3. 

5.2.2 Identt: & and Define FigzE Input and Output Variables 

The threat-bascd risk parameters used to define the subjective risk estimates include 
those at both the senior and junior levels. The senior parameter is "Safety estimate (SE)", 
the single fuzzy output variable, which can be defuzzified to prioritise the risks. The 
variable is described linguistically and is determined by some junior parameters. In risk 
assessment, it is common to express a safety level by degrees to which it belongs to such 
linguistic variables as "Poor", "Fair" , "Average" and "Good" that are referred to as 
safety expressions (Wang et al., 1995 and 1996; Yang et aL, 2004). 

In Section 3.3.2, the four junior/fundamental risk parameters used to subjectively assess 
the safety level of a CSC system have been identified and defined as "Will" M, 
"Damage capabiliV' (D), "Recall difficu! V' (R) and "Damage probabiliV' (P). W 
decides the failure likelihood of a threat-based risk, which directly represents the 
degrees that one tries to take a certain action. To estimate W, one may choose to use 
such linguistic terms as "Very weak7. "Weak", "Average", "Strong" and "Very strong". 
The combination of D and R responds to the consequence severity of the threat-based 
risk. Specifically speaking, D indicates the destructive force/execution of a certain 
action and R hints the resilience of the system after a failure or disaster. The following 
linguistic terms can be considered as a reference to be used in subjectively describing 
the two sister parameters: "Negligible", "Moderate", "Critical" and "Catastrophic" for D 

and "Easy", "Average". "Difficult" and "Extremely Difficult" for R. P means failure 

consequence probability and can be defined as the probability that damage consequences 
happen given the occurrence of the event. One may choose to use such linguistic terms 
as "Unlikely", "Average", "Likely" and "Definite" to describe it. 
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Fuzzy logic, based on FST, accommodates such linguistic terms through the concept of 
partial membership. In FST, everything is a matter of degree. Therefore, any existing 
clement or situation in risk assessment could be analysed and assigned a value (a degree) 
indicating how much it belongs to a member of the five sets of the risk parameters. 
Furthermore, five sets of membership functions can be defined as five curves to describe 
how each point in the input and output spaces is mapped to a membership value (or 
degree of membership) between 0 and 1. Due to the advantage of simplicity, straight- 
line membership functions, especially triangular and trapezoidal membership functions 
have been commonly used to describe risks in safety assessment (Wang, 1997b). 
Consequently, the fuzzy membership functions in the risk analysis of CSCs, consisting 
of five sets of overlapping triangular or trapezoidal curves, are generated using the 
linguistic categories identified in knowledge acquisition and the ftizzy Delphi method 
(Bojadziev and Bojadziev, 1995), which are described in the following context. They are 
shown in Figures 5.1 - 5.5. Although it is possible to have some flexibility in the 
definition of the five membership functions to suit different situations in various supply 
chains, the reasonable changes are required by the support of multiple experts, who 
should be appropriately chosen so as to ensure realistic and non-biased membership 
functions (Kuusela et. aL, 1998). 

+Veryweak(M) 
Weak(W) Average(A) Strong(S) Very strong(VS) 

ol'ý 
0 0.2 0.4 0.6 0.8 1 

Figure 5.1. Membership function for Will 

AIL 
Negligible(N) Moderate(M) Crifical (Cr) Catastrophic(Ca) 

0 0.2 0.4 0.6 0.8 1 

Figure 5.2. Membership function for Damage capability 
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tEasy(E) 
Average(A) Difficult (D) Extremely difficult(ED) 

III 

V/\j /I\ I/ \1 
0.0.2 0.4 0.6 0.8 

Figure 5.3. Membership function for Recall difficulty 

tnlikeVU) 
Average(A) Likely(L) Definite(D) 

0 0.2 0.4 0.6 0.8 1 

Figure 5.4. Membership function for Damage probability 

jL 
Poor(P) Fair (F) Average(A) Good(G) 

0 0.2 0.4 0.6 0.8 

Figure 5.5. Membership function for Safety Estimation 

The membership degrees (or the fuzzy membership fimctions) of the risk parameters can 
be assigned (subjectively decided) by multiple experts. The fiizzy Delphi method 
(Bojadziev and Bojadziev, 1995) can be employed in this process of achieving the 
consensus condition. The process of determining membership function pi is described 

as follows (Cheng and Lin, 2002; Li and Liao, 2005): 

1) Suppose each expert EI, 1=1,2, ..., n, provides the membership finiction pil with 
their knowledge in various fields, which can be presented in the form of a 
trapezoidal/triangular fiizzy number lif = (a,,, a, 12, ai'3, ai'4), I= 1,2, ..., n. 

2) The meanui' of all membership functions Iii', p12, ..., pi" is calculated as follows: 

M"M, ' 0") 
. p, =(a,, ', a, 2 a, 3, a, 4 
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(IRIInII Pt II Pr I 
-y-ail, -F-al2 , -Fa13 -y aA 

nmni. i n i-i n i=i 

Then for each expert El, H, 2, ..., n, the differences (or, ) between pil and pi' 

(a,, -a,,, a, 2- a, 2, a, 3- 
a, 3, a, 4- a, 4) 

"I-II of I-II of I-II"I-I Ll: 
a, l a,, ,-2: a, 2 a, 2 ,-1: a, 3 a, 3 ,-F. a, 4 a, 4 (5.2) 

(n 

mn i-i n i=i nw 

arc computed and sent back to the experts El for reassessment. 
3) Each expert El, 1=1,2, ..., n, presents a revised trapezoidal/triangular fuzzy number, 

which goes to Equations (5.1) and (5.2). The process is repeated until successive 
means become reasonably close to individual estimations made by the experts. Note 
that the term "reasonably" can be made precisely by selecting a threshold 0 and 

requiring that any element of ai , 
11 j 

a,,, -a, ',, <0 Y= 1,2,3,4). (5.3) 
n i-i 

I 

5.2.3 Constnict a Fuzzv Rule-Base with the BeliefStructure 

Fuzzy logic systems are knowledge-based or rule-based ones constructed from human 
knowledge in the form of fuzzy IF-THEN rules (Wang, 1997b). An important 

contribution of the fuzzy system theory is that it provides a systematic procedure for 
transforming a knowledge base into a non-linear mapping (Sii and Wang, 2002). A 
fuzzy IF-THEN rule is an IF-THEN statement in which some words are characterised by 

continuous membership functions. For example, the following is a fuzzy IF-YHEN rule: 
IF IV of a threat is "Very strong" AND D is "Catastrophic" AND R is "Extremely 
difficult" AND P is "Definite", THENSE is "Poor". The descriptions of W, D, R, P and 
SE are characterised by membership functions. A fuzzy system is constructed from a 
collection of fuzzy IF-THEN rules from human experts or based on the' domain 
knowledge and is then completed by combining these rules into a single system. 

Obviously, the IF-THEN rules in this study can have two parts: an antecedent that 

responds to the ftizzy input and a consequence, which is the result/ftizzy output. In 

classical fuzzy rule-based systems, such input and output are usually expressed by single 
linguistic variables with 100% certainty and the rules constructed are also always 
considered as single output cases. However, when observing realistic supply chain 
situations, the knowledge representation power of the fuzzy rule systems will be 

severely limited if only single linguistic variables are used to represent uncertain 
knowledge. Four fuzzy input parameters include 17 (=5+4+4+4) linguistic variables, 
which can be assembled to produce 320 (=5x4x4x4) antecedents. Given a combination 
of input variables, SE may belong to more than one safety expression with appropriate 
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belief degrees. For example, a fuzzy rule with certain degrees of belief can be described 

as: IF IV of a threat is "Very strong" AND D is "Catastrophic" AND R is "Extremely 
difficulf 'AND P is "Likely", THEN SE is "Poor" with a belief degree of 0.9, "Fair" 
with a belief degree of 0.1, "Average" with a belief degree of 0 and "Good" with a 
belief degree of 0. 

In order to model general and complex uncertain problems in safety analysis of CSCs, 
the classical fuzzy rule-based systems are extended to assign each consequent variable a 
degree of belief Assume that the four antecedent parameters, UI=W, U2=D, U3=R and 
U4=P can be described by linguistic variable Aj,, where t--I, 2,3, or 4 respectively and 
J, = 1, 

... ' or 5, J2, J3 and J4 = 1, 
..., or 4. One consequent variable SE can be described 

by 4 linguistic terms, DI, D2, D3 and D4. Let Ai ýji be a linguistic term corresponding to 

the th parameter in the kh rule, with i--I, 2,3 and 4. Thus, the generic e rule in the rule 

base can be dcf ined as follows: 

Rk: IFJVisAý ANDDisAk ANDRisA k AND Pis Ak, THEN SE is D, u, 2J2 M3 4J4 

with a belief degree Offilk, D2 with a belief degree of, 82k, D3 with a belief degree of 

, 
fl3k and D4 with a belief degree Offi4k. 

4 
where Eflik = 1, ke 11, ..., 320). 

i=l 

It is noted that all the parameters and the belief degrees of the rules are usually assigned 
at the knowledge acquisition phrase by multiple experts on the basis of subjective 
judgements. A rule base including 320 rules with a belief degree structure is listed in 
Appendix 3 (of course, such belief degrees listed can be reassigned with some flexibility 
to consider different applications in various supply chains). 

5.2.4 Ap j2lication ofA FRB-ER Apj2roach 

Once a rule based system is established, it can be used to perform inference for given 
ftizzy or incomplete observations to obtain the corresponding ftizzy output, which can be 

used to assess the safety of CSCs. The inference procedure is basically composed of four 

steps, summarized in the following sub-sections. 

5. Z4.1 Observation Transfonnation 

Before starting the inference process, observations available should be analysed to 
determine their relationship with each junior risk parameter in the antecedents. Four 
kinds of possible observations may be represented using membership fimctions to suit 
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conditions under this study. They are either a single deterministic value with 100% 
certainty, a closed interval, a triangular distribution or a trapezoidal distribution (SH and 
Wang, 2002). Having defined the four junior risk parameters in Figures 5.1,5.2,5.3 and 
5.4, a matching function method (Liu et aL, 2004) can be employed to perform the 
observation transformation and determine the belief degrees to which actual 
observations, which have been numerically described, match to each linguistic variable 
in the antecedent. 

The matching function method chooses the Max-Min operation to show the similarity 
between the real input fuzzy set A" and the corresponding ftizzy linguistic variables Aj, , 
because it is a classical tool to set the matching degree between ffizzy sets (Zimmermann, 
199 1). Therefore, the similarity degree between Xand Aj, can be defiried as follows: 

a�, =Af(A, Aijl)=max[min( u�r (x), pA� (x»] (5.4) 

where x covers the domain of the input A". Each aj, represents the extent to which A" 

belongs to the defined linguistic variables in the Ih risk parameter in the antecedents. 
The observation transformation to the risk parameters with the similarity degrees using a 
matching function method can be expressed as follows: 

7TArjjj) ý ffall, "Ve? Y SIrOng`% (012, "StrOng"), (a]3, "Average"), (a]4, "Weap), 
(a, 5, " Very weaV)j 
J(A'"2j, ) = f(a2l, "Catastrophic"), (a22, "Critical"), (a23, "Moderate"), (a24, 
"Negligible")) 
7TA'3j, ) = ((a3l, "Extremely Difficult") (032, "DiffICUIt"), (033, "Average"), (a34, 

"Easy")) 
7TA Wý ffa4l, ' Defilnite')9 (a42, LikelY)p (a439 'Average'), (a44, "UnlikelY)) 

It is noteworthy that the fuzzy input may directly be judged and expressed by experts 
using linguistic variables without the requirements of observation transformation. 

5. Z4.2.4ctivation ofRule Weights 

The aim of the observation transformation to the risk parameters is to obtain the 
corresponding safety levels for further evaluating the priority of risks. Tbus, the 
introduction of the risk parameters with some similarity degrees transformed from the 
realistic observations into the rule-based inference system constructed in Section 5.2.3 is 

necessary. An activating rule weight method is used to implement such an introduction. 
In other words, the distributions of different weights to all rules can be used to describe 
the relationship between the risk input transformed from observations and the rules in 
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the system. In order to obtain an appropriate weight for the k'h rule, the similarity 
degrees related to tile k"' rule are required to be synthesised in a logic way that can 
reflect the AAD connective between their representing safety parameters. LiLi ct al. 
(2004) recommended using the Prothict operator as the logical tool to synthesise the 
degrees and deal with tile dependencies of the antecedent parameters in a belief rule 
base. Consequently, since the fourJunior risk parameters have the sarne importance, the 

,A eight ofthe k"' nile can be calculated as follows: 

OA I (xLli 
(i 1,2,3 or 4-, . 11 1, ..., or 5; J4 - 1, 

..., or 4) (5.5) 
\ý120 4 "1 
--ýll 

(III 
lao, 

Note that the situations where some of cr, ",, arc equal to zero will genninatcly simplify 

the calculation through the ignorance of the rules including those linguistic variables 
with a zero similarity degree. 

5.2.4.3 Rule lqfi, rt, ncc fi)i- the Calculation ol'Saktv Levels Using the ERApproach 

Use ofthe rule weight method can successfully distribute different weights to all related 
rules to connect the fuzzy input with one part of the whole rule base and thus, enable the 

establishment ofa new rule-based system, which can be summarized using the following 

rule expression matrix shown in Table 5.1. 

Table 5.1. A ne", rule expression matrix for the introduction of observations 

Consequence 
7Aýnteccdenf Bellet, 

Poor Fair Average Good 

A'u, . 4,. 1., 4u; 
. 
414.1, 01 fill 

'621 
fiý I fl4l 

k A o, A 21, A A 4ýi, o4 lqlk fl2k fl--, k 84A 

A"1.1, A"2.1-, A"3. i, A"4.1, 011 p2n fi3n fi4n 

In the matrix, n represents the number (? I'all rules whose weights are not zero. 

Having represented each rule using the rule expression matrix, the ER approach (Yang 

et a/., 2001, Yang and Xu, 2002) can be used to combine the rules and generate a final 

conclusion, which is a belief distribution on the safety expressions and will also give a 
panoramic view about the safety level for a given observation. The kernel of this 

approach, an ER algorithni has been analysed in Section 3.3.2. Therefore, in this chapter, 

if B represents tile combined final Output set consisting of the four safety expressions 
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with belief degrees, which is the synthesis of BI and B2 in a rule expression matrix, then 
A BI and B2 can separately be expressed by: 

B= Ifli "Poor", #2 "Fair". #3 "Average", fl4 "Good") 
B, = fflll "Poor", #21 "Fair", #31 "Average', fl4l "Good") 

B2 = 012 "Poor", #22 "Fair", #32 "Average", fl42 "Good") 

where. 8 is a belief degree measuring the subjective uncertainty that "SE belongs to each 
linguistic variable" and fl'(i = 1, ..., 4) can be calculated using a group of equations 
similar to Equations (3.10) - (3.15), in which a is replaced by, 8. 

5.2.5 LaLety Svnihesis in a Hierarchy 

The discussion above focuses on the risk estimation of basic events at the bottom level 
of a hierarchical fault tree done by an expert. The safety of a CSC system is often 
determined by all the associated failure events of their individual components, which 
make up the structure. Therefore, it is necessary to conduct: 

The synthesis of risk estimates of a specific failure event for a component done 
by a panel of experts. 
The synthesis of safety estimates of various failure events for each component, 
for each sub-system and finally for the system being investigated. 

Consequently, the multi-expert, multi-attribute and multi-level safety synthesis can be 

carried out to obtain the safety estimate of the system using the ER approach introduced 

previously. 

Simultaneously, it is noteworthy that the above inference process can be slightly 
changed to adapt the hazard-based risk analysis and synthesis. The change is mainly 
associated with the identification of fuzzy input, which is defined as "Likelihood' (L) 
and "Consequence" (C) in the context of the hazard-based risks (it is also possible to 
identify other parameters like "Probability of consequence"). The following linguistic 
terms can be considered as a reference to be used in subjectively describing the two 
parameters: "Extremely frequenf', "Frequent", "Likely". "Average", "Occasional", 
"Remote", and "Extremely remote' for L and "Catastrophic", "Critical", "Severe" , 
"Trivial", "Marginal" and "Negligible" for C The associated inference process can be 

very similar to the one described above. 

5.2.6 Rankinz Safety Estimates 

In order to rank the safety estimates expressed by ffizzy sets, the fiuzy linguistic 

variables require to be defuzzifted by giving each of them an "appropriate" utility value 
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(U, ). There are many dcfuzzification methods available. However, every method has its 

pitfalls in some aspects, such as inconsistency with human intuition, indiscrimination 

and difficulty of interpretation, implying the non-existence of a unique or best 
defuzzification method (Zhang et aL, 2004). Therefore, some previous studies (Bortolan 

and Degani, 1985; Chen and Hwang, 1992) have suggested the evaluation criteria of 
defining the term "appropriate", including complexity, robustness, flexibility, 
transitivity, and ease of interpretation. 

The defuzzification operation is not easy. Many deftizzification algorithms have been 
developed, of which the weighted mean of maximums QVMom (Andrews and Moss, 
2002) is probably the simplest. The IVMoMmethod gives a best-estimate of the average, 
weighted by the truth degree at which the membership functions reach their maximum 
values. However, based on the above criteria such a simplified transformation from 
fuzzy numbers to crisp numbers may lose much fuzzy information and lead to serious 
deviation, especially when many trapezoidal membership fimctions exist. When ftizzy 

numbers transformation requires more accuracy, not only D. (Dmi and Dm2) but also D, 

and D2 in Figure 5.6 must be considered. Chen and Klien (1997) proposed an easy 
defuzzification method for reasonably obtaining the crisp number of a Rizzy set and this 
method is shown as follows: 

D, + D., 
(Di + DO + KI - 

Dm2) + (I - D2A 

Figure 5.6. The deviation of the WMOMmethod 

(5.6) 

Consequently, the four safety linguistic expressions of the senior risk parameter can be 
defuzziffied as the set of [0,0.3125,0.5926,1]. The index value (N, ) for ranking the 
safety estimates can be calculated as follows: 

N, =fl'xO+#2xO. 3125+#'xO. 5926+fl4x 1 (5.7) 
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5.3. Fuzzy Link-Based AlA'DMFmmework 

The study of this section is to synthesise the safety estimates acquired above with other 
associated decision attributes (i. e. cost and time) and obtain the overall performance scores 
for each RCO. The steps used in the framework are outlined in the following context. 

The analysis of a complex risk-bascd decision making problem can be carried out using 
a hierarchical structure, where the top decision making issue is often determined by 

multiple attributes. Each attribute usually has several parameters and the parameters 
may be further decomposed into more detailed sub-parameters. Such a top-down 
hierarchy can be kept under analysis until the lowest level factors can be effectively 
assessed by domain experts using their subjective knowledge possibly based on 
objective information. The generic model of the hierarchy is shown in Figure 5.7. 

RCOS 

Attributes ( 
Safcty 

)( 
cost 

) 
***"***"*'*'**'* 

( 

Parameter Parameter Parameter 
Parameters sets for ets for c for A. 

safety 

/Attnbut-/Ir-N /A ama /Attributes/Par 
'Su b- an 

c iti') 

Lowest-level factors u an 'C"'S 
P, 

C Omn 6 sition dec posi on 
Lr P4 araý 

7pte; ý: u 

for 
nety, 

for cost W -1 ý, %_ror 1 for A. 
-,,, 

Decision makers ( 
DMI 

)( 
DM2 

) 
.................. 

( 
DM. 

Figure 5.7. A generic model of risk-based decision making hierarchy 

Once the hierarchy is constructed, the next step is to synthesise all evaluations from the 
experts to obtain the overall performance score of the top level event based on a bottom- 

up analysis. Let the estimation of the lowest-level factors based on all expert judgements 
be the inference input with fuzzy expressions (i. e. linguistic variables) and the overall 
performance scores be the output expressed by linguistic variables with belief degrees. 
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Then, the calculation of the input is straightforward and can be obtained by combining the 
expert judgements using the ER approach. Here, the ER approach rather than the ftizzy 
Delphi method introduced above is used to appropriately incorporate and present the 
different weights of various decision makers. The transformation from the input to output 
is usually complex and requires careful analysis of appropriate synthesising approaches. 

A traditional safcty-cost based decision making method has been developed using the 
ER approach to provide a possible basis for the synthesis (Wang et aL, 1996). However 
the applications of such a conventional method requires many assumptions such as the 
same amount of decision attribute linguistic variables and the unilateral-order 
relationship between the linguistic variables. For example, it will be very difficult to 
incorporate a new bilatcral-ordcr decision attribute "time" expressed by five linguistic 
variables, "Too long", "Long", "Appropriate", "Short" and "Too short" into the safety- 
cost decision making model. 

Having given the risk analysis framework in Section 5.2, the FRB-ER method can be 

repeatedly used for the transformation from fuzzy input to ftizzy output when more 
decision making related attributes (i. e. cost and time) are required. It requires 
establishing multiple fiazy rule bases by following the top-down hierarchy, which 
can be produced by investigating individual family branches including a parent variable 
and its attached children. In the fuzzy rule bases, the linguistic variables used to express 
children constitute the antecedent part and the ones used to describe parent make up the 
consequence. This method can function very well on dealing with risk based MADM 

problems, although the construction and calculation associated with multiple fuzzy rule 
bases may sometimes be time consuming. 

A fuzzy link-based method is developed for risk-based multiple attribute decision- 

making analysis in CSC systems based on the work by Sonmez (2002). The ER 

approach has proven to be an effective tool to deal with multidisciplinary information 

and data. However, the application of the approach requires the assumption that all 
information and data is assessed or obtained on the basis of the same universe (one 

common utility space), which is often not the case in MDM. Therefore, the information 

and data needs to be transformed before being aggregated using either the rules based on 
fiizzy logic theory (which is related to the FRXER method) or the belief distributions 
based on the utility theory (which is associated with the FLB-ER) by decision makers. 
By taking the attribute "cost" in one AL4DM analysis as an example, the FLB-ER 

approach can be introduced in the following context. 

Assume the attribute "Cose' has its parent event "RCO" and children parameters 
"Investmene' and "Maintenance" in a decision-making hierarchy. The top level event 
"RCO" can be expressed using such linguistic variables as "Slightly preferred", 
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"Moderately preferred", "Average", "Preferred" and "Greatly preferred". The attribute 
"Cosf'is described linguistically as "Very High", "High", "Average", "Low" and "Very 
Low". The linguistic variables used to assess the parameters "Investmenf' and 
"Maintenance" are individually the sets of C'Substantive", "Large", "Moderate", "Little") 

and ("Excessive", "Reasonable', "Marginal", "Negligible"). Then, a belief structure link 
between the linguistic variables expressing different three-level attributes can be 

generated for the transformation from ftizzy input to output and shown in Figure 5.8. 

A-S. P-F. -. d 
fý'wm 

X, 

ý ý 1 J 1 

10 10 -. 1 10 
V-7 H'sh Mah A. V. " I. - 

M. dr- 

Figure 5.8. An example of transforming ftizzy input to output 

In Figure 5.8, w represents the relative (normalised) weights of each attribute/parameter 
(same-level factors) under the same parent. The values attached to the arrows are the 
belief degrees P distributed by experts for indicating the relationships between 

linguistic variables of different-level decision factors. Note that the sum of the belief 

values from one linguistic variable is equal to one. For example, the parameter 
"Investment" with "Large" expression indicates that the level of the attribute "Cost' 'can 
be believed as 80% (fli-2 c-2 ) "High" and 20% (fli-2 c-3 ) "Average" without the presence 
of other evidence. As far as selecting the best "RCO" is concerned, the "High" cost 

evaluation can support "RCO" to 100% (#c=2 r-2) "Moderately preferred" and the 
"Average" cost evaluation can be transformed into 100% Vc-3 r-3 ) "Average" on the 

universe expressing "RCU'. Such a linked belief structure can be used as a channel to 

transform the fi=y input to ftuzy output by aggregating all values of fuzzy input, factor 

weights and belief degrees. The transform process and aggregating calculations can be 

described as follows. 

Suppose f (i = 1,2,3,4) represents the ftizzy input (subjective assessment) associated 
with the parameter "Investmenf', which can be obtained using a similar philosophy to 
the Max-Min operation in Equation (5.4), if directly assigning a belief function is 
impossible; I' (c = 1,2, ..., 5) stands for the corresponding ftizzy input of the attribute 
"Cost7' transformed from the "Investment" related fiizzy input /; and 0' (r = 1,2, ..., 5) 
indicates the fuzzy output transformed from 1. Then, 
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L54 
01' = Elcpc" = X( Y-I', 8, c )pc' (r = 1,2,..., 5) (5.8) 

C-1 C. 1 1-1 
5 

where ZO" = 1. 
r-I 

Assume that W indicates the relative weight associated with the fuzzy output 
transformed by the fuzzy input associated with the parameter "Investment". Then, 

W ýý Winvestement e Wcwt (5.9) 

Note that the sum of the relative weights of the ftizzy output transformed by the input 

associated with all the lowest level factors is equal to one. 

Suppose there arc p RCOS, which arc studied using s lowest-lcvcl factors and assessed 
by q experts. For ther RCO (i = 1,2, ..., p), the ftizzy input of the e factor (I = 1,2, ..., 
s) can be obtained by combining its t assessments from all experts on the basis of the ER 
approach. In a similar way, the weight wl of the e factor can also be calculated. 
Furthermore, using the fuzzy link-based approach, all ftizzy input estimations can be 
transformed into their corresponding fiizzy output 01" with the individual weights wl'* 
based on the same space, the utility expressions of RCOs. Then, all 01' can be ftn-ther 

synthesiscd using the ER approach to obtain a preference estimate associated with thej" 
RCO in terms of the utility expressions. The synthesised preference estimate Uj for the 
j4 RCO can be expressed as follows: 

Uj = (uj, "Slightly preferred ", uj2, "Moderately preferred ", uj3, "A verage ", ujý 
"Preferred", uj-, "Greatly preferred "I 

where qj" (r = 1,2, ..., 5) is a belief degree used to measure the degree to which the j1h 
RCO belongs to the five linguistic variables. Preference degree Pj associated with thejm 
RCO can be obtained by: 

5 
P= Zu'K 
i t-I j (5.10) 

where the numerical values of K, Q=1,2, ... ' 5) are assigned to describe the five utility 
expressions. To calculate the values, the membership functions of the preference 
estimate require to be decided by experts using many techniques such as the ffizzy 
Delphi method *. Then the defiazification method associated with Equation (5.6) is used 
to obtain the numerical values expressing the parameter preference as follows: 

Ki = 0, K2 = 0.3, K3 = 0.5, K4 = 0.7, Ki =1 

RCO selection can therefore be carried out on the basis of the preference degrees 

associated with the s RCOs with regard to the particular considerations of safety and 

0 More details will be displayed in Figure 9.2. 
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other decision attributes. It is obvious that a larger Pj means that the fh RCO is more 
desirable. The best RCO with the largest preference degree may be selected on the 
magnitudes of Pp 

5.4. An Illustrative Example 

The case introduced in Section 4.4.1 is extended to illustrate the applicability of the 
proposed framework in RCO selection and the inference reliability of the ffizzy rule-based 
approach in risk assessment by comparing it with the result obtained in Section 4.4.1. 

It has been described that a port is highly likely to be attacked by attacking the 
channel/waterway or bombing the quayside infrastructures/facilities of the terminals. 
Either of them can be associated with several attacking modes (See the analysis related 
to Figure 4.3 and Table 4.3). Suppose there are four safety analysts. There are four 
RCOs, which are described as follows: 

RCO# I: Using AIS to monitor the movement of ships. 
RCO#2: Security awareness education as well as security and rescue training and drills. 

RCO#3: Adequate perimeter fencing, lighting and locking, defending and cargo 
scanning devices and security equipments as well as supervision of transferring 
container cargo. 
RCO#4: A security officer designated in the selection of staff (including the 
consideration of the background of employees or the reputation of the labour agency) as 
well as the positive identification of all visitors and vendors. 

5.4.1 Rankine Basic LaLety Events and Calculating Prior LaLetv Estimate of Top Events 

Suppose four safety analysts make the judgements on each attacking mode for the 
calculation of the prior safety level of a target port. The judgements are assessed on the 
basis of the four defined junior safety parameters. For example, the mode of "Using a 
missile or bomb to attack the channel" (EXT-CIL4) can be analysed in Table 5.2. 

Table. 5.2. An example of the subjective assessment of the junior safety parameters 

Expert Will 
- - - - 

Dama ecapability 
_ 

Recalldifficul P! DamqAe Probabilitv 
EWI T, ,, w cW(W 

- 

0.5, "M crate(M)", 0.5, 
"Critical( r)" 

1, "Average(A)' -- 1, "Likely(L)" 

E#2 70 2.1 (0 2,01,0.4) 
. 3,0.5,0.7) 0' (0.3,0.5,0.7) (0.7,. 0810.9) 

E#3 (0.2,041 - 
hO, 

0.61 [0.4,0.61 10.6-0-81 
E#4 0.3 

_ _10.3,0.4,0.6,0.71 
10.3,0.4,0.6,0.71 10.5,0.6,0.8,0.91 

Using Equation (5.4), the input (observations) in Table 5.2 can be transformed and the 
judgements can be uniquely expressed by linguistic variables in Table 5.3. Then the 
fuzzy input based on all expert judgements can be obtained using the ER approach. 
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Table. 5.3. The unique linguistic variable expressions of the junior safety parameters 

Will Damage capability Recall! ýLicujo: 
- - 

Damage Probability 
- - I... Wvq 0.5, "M". 0.5, "Cf ' 

- 
r U6 "E", U. 82 "A", U. 12 ; 'L) * F= 

- T 
0.21"Ww"'O. 33, 
"W'. 0.26. "A" 

0.5, "M", 0.5, "Cr U. 14: "*h", U. 37 -A", U. 29: 'JY' - - U. U/, -A", U. 93, "L" 

1w, r I L" 
- -- E#4 w 0.5, "M-, 0.5, --Cr I, T. rvý 

Fuzz 
lnpuý 

0.04 "VW'j 0.92, 
-W-ý. 0.04, A" . 5, "M-', U. 5, "U" "E", 0.5 "A", 0.33, "D" U. 43, "A", 0.57, "L" 

I 

Having known the fuzzy input, the evaluation of the senior risk parameter, SE can be 

performed using the proposed FRXER method. In the rule base, 320 rules have been 

established, of which only 36 rules are fired in this particular case, i. e. Rules #18, #19, 
#22, #23, #26, #27, #34, #35, #38, #39, #42, #43, #82, #83, #86, #87, #90, #91, #98, #99, 
#102, #103, #106, #107, #146, #147, #150, #43, #82, #83, #86, #87, #90, #91, #98, #99, 
#102, #103, #106, #107, #146, #147, #150, #151, #154, #155, #162, #163, #166, #167, 
# 170 and # 17 1. These rules are all listed in the complete rule base given in Appendix 3. 
Based on the individual matching belief degrees, the activation weight 0k (k = 1, ..., 36) 

of each rule in the fired sub-rule base is calculated using Equation (5.5). The fuzzy rule 
expression matrix for the sub-rule base with the employed 36 rules is shown in Table 5.4. 

Tablc 5.4. The fuzzy rulc exprcssion matrix of the EXT-CHA risk analysis 

Rule Antecedent attribute iniDut Sa etv es te outiDut 
No W D R D 

_ 
0 Poor Fair Average Good 

18 Very we oderate asy ; Ue rage 0.000084 0.5 0.5 
-Tý- Very wea Moderate Eas Likely 0.001116 0.55 0.45 

22 Very wea 

1perate 

verage Average 0.001148 0.7 0.3 
Very weak ra Moderate verage Likely 0.015252 0.75 0.25 

_T6, _ Very wea ra N erate I ICU t Average 0.000168 0.75 0.25 
27 Very wea 1 oderate Difficult Likely 0.002232 
34 Very wea Critical asy Average 0.000084 0.2 0.7 0.1 
35 Very weak C tical asy Likely 0.001116 

- 
0.35 0.65 

_T9- Very weak Cn-t-Icar- Average Average 0.001 148 0.3 0.7 
ST_ Very weak ý 1 Cri! iS Average Likely 0.015252 0.5 0.5 
4T VeRy weak 1 Tri Ditticult Average 0.000168 0.5 0.5 
47- Very weak itical I Difficult Likely 0.002232 0.6 0.4 

= Weak oderate Easy Average 0.002016 0.6 0.4 
83 Weak TRUFrate Easy Likely 0.026784 0.75 0.25 

- 86 Weak Moderate Average Average 0.027552 0.8 (72 
--97- -W-eaF- -WoU-erate Average Likely 0.366048 0.9 0.1 
_7ýý -W-ea-W- 'Moderate Difficult Average 0.004032 0.9 0.1 

§T_ Ve-ak- -Moderate 'U17fil-cult Likely 0.053568 1 
-VT_ Ve-ai- 

- 
Critica 

- 
Easy Average 0.002016 1 0.2 0.8 

WT_ Weak Critical Eas Likely 0.026784 0.4 0.6 
102 Weak Cntical verage Average 0.027552 0.25 0.75 

= Weak CH-Mca-1- -A-verage Likely 0.366048 0.45 0.55 
F6; 7- Weak Critical Ditticult Average 0.004032 0.5 0.5 

_TOT_ Ve_aK_ _C_ntI-c_aT_ Ditticult Likely 0.053568 0.6 0.4 
T49'- Average erate asy Average 0.000084 0.9 0.1 
f TI- Average oderate Eas Likely 0.001116 0.05 0.95 
TSU_ Average oderate e e Average 0.001148 11 

Average Moderate ? NMrUge 
- 

Lik -eTy- 0.015252 0.1 0.9 1 
r3: r Average mrid-- Ulp ficult Average 0.000168_ 0.1 0.9 

733- Average oderate Difficult Likely 0.002232 0.25 0.75 
= Average Critica sy Average 0.000084 0.35 0.55 0.1 

f6'r Average CQtical E! S Likely 0.001116 
_1 

0.55 0.35 0.1 
77- Average ritici vera e Avera e 0.001148 1 0.3 0.7 

r6-F- 
_ 

Avera e ntica verage i ey 0.015252 1 1 0.5 0.5 
TT6_ Average Critical 1 I Difficult 1 Average _ 0.000168 1 0.5 

v vera e era e I Critical 1 Ditb icult Likel y A 
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In Table 5.4, the ER approach is used to implement the combination of the 36 rules and 
generate the safety estimate of the EXT-CHA threat. The final assessment result can be 

computed as follows and is shown in Figure 5.9. 

The prior SE of the EXT-CHA threat: 10, "Poor", 0.1884, "Fair", 0.7706, "Average", 

0.0410, "Good" ý 

The L--XT-C"A thrl&at &-stimate on Me- Jý#I-cw --;; 4? pA&tv le-vol 

100.00'. 

8000'. 

CD 

2 -, Oý-. 

43 

0 C,, , 

Evaluaticm grades 

Figure 5.9. The safety estimate of the EAT-CHA threat 

This result can be interpreted in such a way that the safety estimate of the EXT-CHA 

threat is "Poor" with a belief degree of 0, "Fair" with a belief degree of 0.188, 

"Average" with a belief degree of 0.77 1, and "Good" with a belief degree of 0.04 1. 

Next, Equation (5.7) can be used to calculate the index value of the safety estimate 

obtained for a ranking purpose as follows: 

N�= 0x0+0.1884 x 0.3125 + 0.7706 x 0.5926 + 0.0410 x1=0.5566 

Similar computations are performed for the other five basic events in Figure 4.4. The 

safety estimates generated for the VES-CHA, CARGO, EMPLOYEE, EXT-TER and 
VES-TER threats are summarised in Table 5.5. Since the FRB-ER and discrete fuzzy set 

approaches have the same fuzzy input (subjective judgements), the fuzzy output should 
be kept in harmony to a significant extent in order to validate the reliability of the two 
different inference engines. The results have shown that the six basic events have been 

assessed with defuzzified values and ranked in a quite similar order compared to the 

results obtained in Section 4.4.1. The slight output difference in terrns of defuzzified 

values and ranking order is partly because of the applications of different defuzzification 

methods and partly due to the accuracy of entirely subjective belief degree distributions 

in the rule bases*. 

. More details about belief assignment will be addressed in Chapter 6. 
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The ER approach can be used not only to aggregate fuzzy rules for the safety 
estimation of the basic events in the FRB-ER framework but also to assess the safety 
of the whole system (top level event) as well. According to the rule introduced in 
Section 3.2.3 and Table 4.8, the weights of the basic events can be appropriately 
distributed and obtained. Consequently the prior safety estimate of the top level event 
can be calculated by synthesising all ftizzy input of the basic events in Table 5.5 with 
their individual weights as follows: 

The prior SE of the threat of terrorist attacking the port: {0.12, "Poor", 0.37 1, 
"Fair", 0.501, "Average", 0.008, "Good") 

5.4.2 Making Safety-Based Decision Making and Selecting the Best RCO 

The FRB-ER approach contributes itself to the subjective safety assessment and also 
exposes its weaknesses such as the complexity of inference. When more elements 

require to be considered in a wider context such as the safety-based AMDM, the FLB- 
ER approach proposed in Section 5.3 can be used. 

In this example, suppose there are four criteria chosen to decide the preference of the 
four RCOs. They are separately Safety Change (SQ, Cost (C), Technique Requirement 
(TR) and Implement Time (IT). Some criteria have their sub-criteria. For example, the 

prior and posterior safety estimations are developed as the two sub-criteria of SC, to 
demonstrate the safety level changes after the implement of the RCOs (i. e. the prior 
safety estimation with a high level "Good" indicates that SC will have a large extent 
evaluated as "Small" and furthermore, RCOs will be assessed as "Slightly Preferred" 

with a high belief degree). Such a hierarchy can be constructed in Figure 5.10. 

RCOs 

Safety -cc c mplemen Cost ectaeln) 
quý 

ý 
Time Change 

ýRlq, 

R) 
(C) 

(SC) (TR) (IT) 

Prior safety Posterior Investment Maintenance 
esti= safety cost cost 

( 

estimation 

) 

Figure 5.10. The hierarchy of safety based decision making 
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Suppose the four safety analysts make their judgments on the lowest level criteria, 
which have been synthesised using the ER approach and shown in Table 5.6. Note 
that the judgements associated with the posterior safety estimates are obtained using 
the FRB-ER approach in a similar way in which the prior safety estimates are 
calculated. The linguistic terms used to express TR and IT are separately the sets of 
C'Very high(VE)", "High(H)", "Average(A)", "Low(L)", "Very low(VL)") and 
("Very long(VL)", "Long(L)", "Average(A)", "Short(S)"). 

Table 5.6. The decision making attribute assessments 

Lowest level RCO#l RCO#2 RCO#3 RCOM 
eriteria 
Prior safety 0.008, *U', 0.501, 0.008, "G", 0.501, 0.008, *'G", 0.501, 0.008, "U', 0.501, 

estimate "A", 0.371, "F", O. 12, "X', O. 371, "F'10.12, "A", 0.371, "F", O. 12, "A", 0.371, "F", 0.12, 
.. p" .. p" .. p» p. 

Posterior 0, "P", 0.221, *'F', 0, "P", 0.033, "F"p 0.04, "P", 0.288, "F", 0.012, "P", 0.35, "F", 

safety 0.236, "A", 0.543, 0.247, "A", O. 72, "G" 0.433, "A", 0.239, 0.534, "X'l 0.104, 
estimate "G" VI .. ul 
Technical 0, "VH", 02, "H", 0.5, 0, "VH", 0.7, "H", 0, "VH", 0, "ff', 0, 0, "VH", 0, "H", 0, 

requirement "A", 0.3, 'V', 0, "VL" 0.3, "A", 0, "L", 0, "X, 0, "L", 1, *'VL" "X', 0.2, *L", 0.8, 
"VL" 

Implement 0.9 "VI!, 0.1, "L", 0, 0, "VL", 0.4, *V', 0.6, 0, "VL", 0, "L", 0.2, 0, "VL", 0, "L"$ 0, 
time "A", 0, "S" "A", 0, "S" "A", 0.8, "S" "A", 1, "S" 
Invesünent 0, "S", 0.75, "La", 0.4, *'S", 0.6, "La", 0, 0, "S", 0.2, "La" - 0.7, 0, "S", 0, "LW'$ 0, 

cost , 0.25, "M"l 0, "Li" «I%f', 0, "Li" "NI", 0.1, -Li" "NC', 1, "Li" 

Maintenance 1 0, 'V', 0, *'R! ', 0.9, 0.2, *E", 0.8, "W, 0, 0, "F', 0.45, IV', 0, 'V, 0, --w, 0.25, 
cost "M", 0.1, "N" .. iw" 0.55, "M" 0, "N" *'M", 0.75, "N" 

In order to obtain the best RCO, the judgements and estimates associated with each 
RCO require to be considered, combined and then defuzzified. However, as the fuzzy 

sets used to describe the judgements are defined on the basis of different universes, it 

may not be convenient to directly implement such a synthesis using the ER approach. 
it will be desirable that the FLB-ER approach can be used to carry out a unification of 
the different decision making attribute estimates in order to avoid loss of useful 
information. Next, using the transforming graphic technique introduced in Figure 5.8 
and Equation (5.8), the judgements listed in Table 5.6 can be transformed and 
expressed on a unified space, the preference of decision makers, as shown in Table 
5.7. 

Suppose the weights of decision making attributes and sub-criteria have been 
distributed in Table 5.8 by the four experts using the AHP method and Equation (5.9). 
Although the attributes SC, TR, IT and C have been given the same weights here, it 

can be noted that different weights can be judged and assigned according to various 
decision making requirements in practice. Then, the judgements produced in Table 
5.7 can be synthesised to obtain the utility description on the each RCO using the IDS 

software, which can be further defuzzified as a crisp value for ranking the RCOs using 
Equation (5.10) as follows: 
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The preference assessment of the RCO#I: P, 

"A", 0.194, "P", 0.10 1, "GP") = 0.44 

The preference assessment of the RCO#2: P2 

"N', 0.119, "P", 0.119, "GP") = 0.471 

The preference assessment of the RCO#3: P3 

"A", 0.13 1, "P", 0.514, "GP"} = 0.836 

The preference assessment of the RCO#4: P4 

"N', 0.106, "P", 0.72 1, "GP"} = 0.969 

{0.21, "SP", 0.222, "MP", 0.273, 

10.076, "SP", 0.373, "MP", 0.313, 

(0.009, "SP", 0.081, "MP", 0.265, 

{0.002, "SP", 0.05 8, "MP", 0.113, 

Table 5.7. The unified decision making attribute assessments 

Lowest level RCO#I RCO#2 RCOO RCO#4 

criteria 
Prior safety 0.008, "SP", 0.375, 0.008, "SP", 0.375, 0.008, "SP", 0.375, 0.008, "SP", 0.375, - 

estimate "MP" , 0.311, "N' "MP", 0.311, "A", "MP" 0.311, "A", ' "MP", 0.311, "A", 
0.21, "P", 0.096: 0.21, "P", 0.096, "P", 0.096, 0.2 1, 0.21, "P", 0.096, 
'GP" "GP" "GP" "GP" 

- Posterior 0, "SP", 0.177, "MP", 0, "SP", 0.026, "MP", 0.04, "SP", 0.23, 0.012, "SP", 0.2g , 
safety 0.257, "A", 0.159, 0.229, "A'% 0.205, "MP", 0.447, "A", "MP"V 0.551, "A", 

estimate "P"I 0.407, "GP" 'T"I 0.54, "GP" 0.103, "P", 0.18, 0.079, "P", 0.078, 
'GP9' "GP' 

Technical 01 "SP"O 02, "MP", 0, "SP", 0.7, "MP", 0, -'SP", 0, "MP", 0, 0, --SP", 0, .. MP", 0, 
requirement 0.5, "N', 0.3, 'T", 0, 0.3, "N', 0, 'T", 0, "A", 0, "P", 1, "GP" "N', 0.2, "P", 0.8, 

L"GP" "GP" "GP" 
_ Implement 0.9, "SP", 0.08, 0, "SP", 0.32, "MP", 0, SP11,0, -'MP'-, 0.1, 0, -'SP", 0, -'MP", 0, 

time "MP", 0.02, "A7,0, 0.38, "A", 0.3, "P", 0, "A", 0.18, "P", 0.72, "A", 0.1, "P", 0.9, 
P", 0, "GP" "GP" "GP" 'W" 

Investment 0, "SP", 0.6, "MP", 0.4, "SP", 0.48, 0, "SP", 0.16, "MP", 0, "SP", 0, -MP'-, 0, 

cost 0.338, "N', 0.062, "MP" 0.12, "N', 0, 0.565, "N', 0.185, "N', 0.1, "P", 0.9, 
P", 0, 'W" ", ý, "GP" 1 . 09, *, GP" I 

Maintenance 0, "SP11,0, "MP", 0.2, "SP", 0.16, 0, "SP", 0.09, "MP", 0, "SP", 0, MP", 

cost 
1 

0.09, "N', 0.81, '79, "MP" 0.64, "A", 0, 0.415, "A", 0.495, 0.025, "N', 0.225, 
0.1, "GP'9 'P", 6, "GP" "P9', 0, "GP" "P", 0.75, "GP" 

Table 5.8. The weights of decision making attributes 

Prior safety 
estimate 

Posterior safety 
estimate 

Technical 
requirement 

Implement 
time 

Investment 

cost 
Maintenance 

cost 
Weight ratio 0.1 0.9 1 1 0.6 0.4 

Normalised weights 0.025 0.225 0.25 0.25 0.15 0.1 

It can be noted that in this case, RCOA is ranked first, RCOO second, RCO#2 third 

and RCO#1 last. This implies that safety and other decision making attributes are 

considered equally important while carrying out the risk control evaluation, the best 

selection is RCO#4- When the relative importance of safety against other attributes 

changes, there may be different ranking orders of the RCOs. Figure 5.11 shows the 

preference degrees associated with the four RCOs at different values of relative 
importance of safety and the other attributes (TR, IT, Q. For example, when the 

relative importance of safety against the other attributes increases by 400%, the 

ranking of the four RCOs is SCO#2>SCO#4> SCO#3>SCO#I. 
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Ranking RCOs 

1.2 

1 

0.8 

0.6 

0. -1 

0.2 

0 

Weight rates between safety and other attributes 
(safety/other attributes) 

Figure 5.11. Ranking of the RCOs 

5.5. Conclusion 

RCOI 

RC02 

RC03 

RC04 

This chapter outlines and explains a philosophy of subjective risk based decision 

making modelling for CSC risk control and management using fuzzy logic and ER 

approaches. For each RCO, the prior and posterior safety estimates of each basic event 
are first carried out using the risk analysis model based on the application of the FRB- 
ER approach. Then the ER approach is used to synthesise the prior/posterior safety 
estimates to obtain the safety estimates of the top level event as the safety attributes of 
the RCOs. Finally, the synthesis of safety and other decision making attributes are 
performed using MADM modelling based on a FLB-ER approach and mapped onto a 
common utility space before proceeding to the preference estimation and ranking of 
RCOs. 

Different from most conventional risk based decision making methodologies, the 
framework introduced is characterised with a unique feature associated with 
unification of input and output data. In risk modelling, each input can be represented 
as a probability distribution on linguistic values for the antecedent using a belief 

structure. The main advantage of doing so is that precise data, random numbers and 
subjective judgements with uncertainty can be consistently modelled under a unified 
form. In decision making modelling, the input data transformed by the linked belief 

structures can be unified and take into account subjective experts judgements with 
uncertainties having both probabilistic and possibilistic nature. Moreover, the ER 

approach provides a novel procedure for aggregating calculation, which can preserve 
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the original features of multiple attributes with various types of information. This 
provides a solution for solving the difficulty of subjective risk assessment involving 
academic bias resulting from various options from different individuals. Although two 
kinds of combination of the fuzzy logic and ER approaches offer great potential in 

risk based decision making, the belief degrees (subjective probabilities) distributed in 
both FRB-ER and FLB-ER methods on the basis of entirely subjective judgements 

may reduce the accuracy and reliability of the proposed framework. Therefore, more 
discussions related to the reasonable distributions of the belief degrees need to be 
considered. 
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Chapter 6-A Fuzzy Evidential Reasoning Method for 
Constructing Belief Rule Based Expert Systems 

SUMMARY 
This chapter presents a novel and generic FER method for constructing belief rule 
based expert systems in risk assessment. It has been developed on the basis of the FRB- 

ER approach (introduced in Chapter 5), where a belief rule representation scheme is 

proposed to extend traditional IF-THEN rules and express the conclusions in the rules 

using subjective belief degrees. The belief rule expressions in FRB-ER can provide a 
better compact framework for representing expert knowledge than the traditional JF- 

THEN rule systems. However, it is difficult to accurately determine the parameter 

values (belief degrees) of a belief rule base (BRB) entirely subjectively, in particularfor 

a large scale BRB with hundreds of rules. Furthermore, it is highly possible for many 

realistic risk based BRB systems to have different antecedent attribute weights and a 

change in an attribute weight may lead to significant changes in the performance of the 
BRB systems. As such, the new method is proposedfor effectively dealing with the 
difference among the antecedent attribute weights and rationally producing andjudging 
the beliefdegrees related to the conclusion parameters. 

6.1 Introduction 

The process of making cost-effective, timely and acceptable decisions associated with 
increasingly complex and large CSC systems has been the subject of considerable debate 
in recent years. It is due to the fact that modelling and analysing complex risk based 
decision problems increasingly needs to acquire the historical failure data/ information 

as sufficient and precise as possible and to train the decision makers' performance as 
skilful and knowledgeable as possible. However, in realistic CSCs, the risk based 
decision making is often associated with uncertainty. Little numerical data of any 
statistical significance may be available to support traditional 46 objective" decision 

analysis. For example, to analyse system safety in the design and operation of large CSC 

systems with a high level of innovation, it is highly possible that there is a lack of 
historical failure data. On the other hand, analytical techniques and scientific procedures 
that standardize a human being's performance should always be employed to support 
effective, consistent and informative decision making and avoid making costly 
inappropriate decisions. 

in recognition of the need to handle the hybrid of both uncertain/incomplete input and 
effective decision analysis techniques, a novel rule based method designed on the basis 

of a belief structure, called BRB, has been researched previously. A BRB functions on 
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the solutions of the non-linear causal relationships as well as incompleteness and 
vagueness associated with risk parameters/decision attributes. It can be represented as a 
belief rule expression matrix, which forms a basis in the inference mechanism of FRB- 
ER and provides a framework for representing expert knowledge in a compact format 
(Yang et aL, 2006). The feature of the BRBs (the difference from the original IF-THEN 

rule bases) lies in the fact that the rules include various belief degrees (subjective 

probabilities) distributed into the multiple linguistic variables of the conclusion 
parameters. However, it is difficult to accurately deter-mine such probabilities in a BRB 

entirely subjectively, in particular for a large scale scheme with hundreds of rules. The 

main reason is related to the confused situations resulting from the term of "subjective 

probabilities" (one should be very careful when such a term is used in a fuzzy expert 
system). It is almost impossible for different decision makers to provide exactly the 
same belief degrees when faced with one same antecedent input (with many various 
attributes) out of hundreds of rules. The result using a BRB (based on subjective 
probabilities) in a complex system may easily conflict with the principle* of using the 
fuzzy logic theory in rule based expert systems. Furthermore, a change in an attribute 
weight may lead to significant changes in the performance of the BRB systems. Thus, 
the relative importance among the antecedent attributes in the process of developing a 
rule representation should be appropriately considered. 

In order to ensure appropriate and rational distributions of the subjective belief degrees, 

a generic FER method is proposed for logically constructing risk based BRB expert 
systems in this chapter. The new method is generated on the basis of the combination of 
several different theories and techniques, such as the fuzzy logic theory (Zadeh, 1965), 

an AHP (Saaty, 1980) technique and the ER approach (Yang and Singh, 1994; Yang and 
Xu, 2002), etc. The main feature of the new method is to consider the conditional belief 
degree distributions of the conclusion parameters given the individual antecedent 
attribute in a BRB as the conditions and then synthesise all conditional belief degree 
distributions using the ER approach. In this process, all antecedent attribute weights can 
be obtained using an AHP technique. Also, using a transforming function based on the 
fuzzy logic theory, input information (antecedent attributes) in a belief rule 
representation can be skilfully mapped onto the output (conclusion parameters). The 

method makes the process of judging subjective belief degrees more objective and 
moves the subjective judgements to the earliest stage of inference. The method can be 

therefore used to train a BRB whose internal structure is decided by experts' knowledge 
in a meaningful and consistent way, thereby facilitating the construction of BRB systems. 
Contributions drawn from such a generic method are examined by a numerical study 
associated with risk estimation. 

0 The nature of the principle is to avoid using point estimations in dealing with imprecision. 
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The remaining part of this chapter is organised as follows. In the subsequent section, a 
generic BRB representation scheme is reviewed and introduced. The methodology for 
developing the FER method and distributing subjective belief degrees is presented in 
Section 6.3. Section 6.4 presents a risk related numerical case study to illustrate the 

methodology. The chapter is concluded in Section 6.5. 

6.2. BRB Expert System Structure and Representation 

The generic structure and representation of BRBs are summarized in this section. More 
details have been introduced in Chapter 5 (which however only focuses on the 

application of BRB in the CSC risk assessment) and the work by Liu et aL (2005) from a 
general decision making viewpoint. The starting point for constructing a rule based 

system is to collect fuzzy JF- THEN rules from human experts. A knowledge base and an 
inference engine are then designed to infer useful conclusions from rules and 
observation facts provided by decision makers. This section concentrates mostly on the 

collection of the IF-THEN rules and the generation of the knowledge base, in part 
because they are the relatively unsatisfactorily developed in the literature. 

A FRB model can be established to deal with imprecision using linguistic assessments 
instead of numerical values. Fuzzy logic approaches (Zadeh, 1965) employing ftizzy IF- 
THEN rules where the antecedent and conclusion parts contain linguistic variables 
(Zimmerman, 1991), can model the qualitative aspects of human knowledge and 
reasoning process without employing precise quantitative analysis. T'he model can be 
formally represented as follows: 

<X, A, D, F, w> 

where X={Xi, i=], ..., M is the set of antecedent attributes, with each of them taking 

values from an array of ftizzy sets A= {A1, A2, ..., Am). A, represents a set of fiizzy values 
(linguistic variables) used to describe the attribute X, (i=], ..., M. The array {X1, X2, ..., 
Xm) defines a list of finite conditions, representing the elementary states of a decision 

problem domain, which may usually be linked by the "AND" connective. D= (Dj, 
j=], ..., NJ is the set of all consequences, which can be conclusions or actions, 
representing a utility decision space. F is a logical function, representing the relationship 
between conditions and their associated conclusions. w={wi, i=1, ..., M is the set of 
antecedent attribute weights, which has actually been subjectively incorporated into F in 

the process of developing a classical fuzzy IF-THEN rule base. More specifically, the Ph 

rule in a conventional JF- THEN rule base can be written as: 
kkk Rk: IF Ai and A2 and ... and Am ý THEN Dk (6.1) 

where Aj k (r=Ai, i=], ... M is the fuzzy value of 1h antecedent attribute X, used in the 1ýh 
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rule and Dk (cD) is the consequence in the k th rule expressed by one single linguistic 

variable. 

A basic rule base is composed of a collection of such simple IF-THEN rules. To take 
into account a belief degree (fi) distribution in a conclusion, attribute weights (aý-) and a 

rule weight (0), a simple IF-THEN rule is extended to a belief rule with all possible 
consequences associated with belief degrees. A collection of belief rules consists of a 
BRB defined as follows (Yang, et al., 2006): 

Rk: IF Al k 
and A 'k and ... and A k, THEN I( '81 

k, DI), (fl2 k, DA (flNA, DN) m 

Nk 
A with a rule weight 6k, and attribute weights vv, 14', ..., wmk, k cz 11, ..., L 

(6.2) 

)qk where (jell, ... ' 
Nj) is the belief degree to which D, is believed to be the 

consequence if in the k'h rule the input satisfies the antecedent fuzzy value vector 

Ak= JA Ik ,A 'k, ..., 
AA4 k It is also the main research target of this chapter. a is the 

relative weight of the k th rule and Wik (j=l' 
... ' 

M) are the relative weights of the 

antecedent attributes used in the 1ýh rule. L is the number of all belief rules used in the 

If (N k' k1h rule base. 1] A =I ), the belief rule is said to be complete; otherwise, it is 
H 

incomplete. 

Suppose all L rules are independent of each other, which means that the antecedent 
2L 

fuzzy value vectors A, A,..., A are independent of each other. A BRB given by 

Equation (6.2) can then be extended using a belief rule expression rnatrix as shown in 
Table 6.1. 

Table 6.1. Belief rule expression matrix for a BRB 

elieLdegree Consequence 

D, 
... 

Di 
... DN 

Rule Antecedent 

I A, A2 
... Am 

1 
01 

- 
Pý ýOý _BN 

kkkKKk 
KA1A2... Am aVUMAA... BN__ 

LLLI 
=LA 

11A21... AmIo. P; 
WýM - 

A, 
.... ---IN 

A BRB given in Equation (6.2) represents functional mappings between antecedents and 
conclusions possibly with uncertainty. It provides a more Informative and realistic 
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scheme than a simple IF-THEN rule base for uncertain knowledge representation. 
However, it is noteworthy that a) the degree of belief (fl) and the attribute weights (W) 

could be assigned initially by experts and b) the attribute weights (w) and the rule weight 
(0) are only considered and activated when BRB systems are used to conduct inference 

and reasoning, and thus, have not been quantitatively and rationally incorporated into 
the assignment of belief degrees in the process of the generation of the knowledgeable 
BRB. Consequently, the BRB with the subjective belief degree distributions may easily 
be arguable and a new update and development towards more objective inference is 
desirable. 

6.3. Using a FER Method to Develop A BRB Expert System 

The proposed FER method consists of four major steps, which outline the necessary 
steps required for developing a risk based BRB expert system. Prior to the presentation 
of the FER methodology and how it actually assists in this process, it is worth making 
clear that a) the aim of the method is to construct a new risk based BRB rather than 

using a developed BRB expert system to conduct inference and reasoning, which has 
been well studied in Chapter 5, the work by Liu, et al. (2005) and Yang et al. (2006); 

and b) the focus is to make the process of distributing subjective belief degrees more 
objective. Having said that, the new risk based BRB expert system will be related to all 
the parameters described in Section 6.2 except 0, which is obviously used and activated 
in the inference process of using BRB expert systems. Consequently, the new risk based 
BRB model established on the basis of the FER method can be represented as follows: 

<X, A, D, F, 

where all the symbols have the same meaning as indicated in Section 6.2. The 

methodology is therefore developed in the process of analysing such six parameters. 

63.1 Define XandD andAssi-an w Using an AHP Technique 

In making complex risk based decisions, a hierarchical structure is usually given to 
break down a decision problem into its elementary states. These elementary states may 
play different roles in making appropriate decisions and thus, require some quantified 
criteria to measure. The term "weights" is usually used to 'represent their relative 
importance. AHP can be used to obtain the relative weight of each attribute based on a 
pair-wise comparison matrix. It is a powerful and flexible decision making process to 
help set priorities and make the best decision when both qualitative and quantitative 
aspects of a decision need to be considered (Pillay and Wang, 2003a). By reducing 
complex decisions to a series of one-to-one comparisons then synthesising the results, 
AHP not only helps decision makers arrive at the best decision but also provides a clear 
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rational pathway that demonstrates the relationship between a problem domain and its 

elementary attributes. This is useful in describing the clusters (or levels of a decision 

analysis hierarchy) for effectively defining X and D in constructing BRBs. Considering 
that the size of the developed BRB expert systems will exponentially increase with the 
number of X, the definitions of X and D are strictly limited in the scope of two 
neighbouring levels (a defined branch (see Figure 6.1)) in a hierarchy. For example, 
taking the hierarchical structure presented in Figure 6.1 as an example, if X is defined as 
all attributes in Cluster 3 and D is defined as the attributes in Cluster 1, then the number 
of the rules in a BRB could arrive at 29 (even if every attribute has only two ftizzy 

numbers). However, if the X and D are defined in four individual branches in Figure 6.1 

and BRBs are constructed on the basis of them, then the number of the rules included in 
the BRBs will be reduced from 29 to 25 (2 3+23 +2 3 +2 3). This requirement (the definition 

of X and D) shares the same philosophy as the divorcing method used to construct BNs 
(Jensen, 2001). 

Cluster 2 

Cluster 3 

Figure 6.1. An example to illustrate the defmition ofX and D 

Using an AHP technique to calculate the relative importance (w) of each attribute (X) 

requires a careful review of its principles and background (Saaty, 1987). When 

considering a group of attributes for evaluation, the main objectives of the technique are 
to provide judgements on the relative importance of these attributes and also to ensure 
that the judgements are quantified to an extent, which permits a quantitative 
interpretation of the judgement among these attributes (Pillay and Wang, 2003a). 

The quantified judgements on pairs of attributes A and Aj are represented by an n-by-n 
matrix. 

M= (a#), where Q=1,2,..., n. (6.3) 
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The entries ay are defined by the following entry rules: 

Rule 1. If ay = (x, then aji = 1/a, a: p, - 0. 
Rule 2. If A1 is judged to be of equal relative importance as Aj, then ay = aji 
Obviously aii =I for all i. Thus the matrix Mhas the following form: 

a12 ..... aln 

Ila, 2 I ..... 
a2n 

_I 
/ a,,, I/ a2n 

(6.4) 

where each ay is the relative importance of attribute Ai to attribute Aj. Having recorded 
the quantified judgements of comparisons on pair (Ai, A) as numerical entry ay in the 

matrix M, what is left is to assign to the n contingencies A,, A2, A3, ..., A, a set of 
numerical weights wl, w2, w3, ..., w,, that should reflect the recorded judgements. One of 
the approximation calculation algorithms to get the weight of each factor in the pair- 
wise comparison process is mathematically described as follows (Pillay and Wang, 
2003a): 

I al 
n a,, 

(6.5) 

In general, weights wl, w2, w3, ... ' wn can be calculated using the following equation: 

=I:, =I( 
akj 

(k= I....... n) (6.6) Wk J 77L7) 
n Ei=l ay 

where ay is the entry of row i and columnj in a comparison matrix of order n. 

The weight vector of the comparison matrix provides the priority ordering. However, it 

cannot ensure the consistency of the pair-wise judgements. Thus, AHP provides a 

measure of the consistency for the pair-wise comparisons by computing a consistency 

ratio*. This ratio is designed in such a way that a value greater than 0.10 indicates an 
inconsistency in the pair-wise judgements and the decision maker should review the 

pair-wise judgements before proceeding. Thus, if the consistency ratio is 0.10 or less, 

the consistency of the pair-wise comparisons is considered reasonable, and the AHP can 

continue with the computations of the weight vectors, (Andersen et aL, 2003). 

63.2 De ermine the Fuzzj Membership Functions of A and D Using the Fuzz Delphi 
Method 

After the hierarchical structures of decision problem are created, the next task is to 

* An approximate approach of computing the ratio, has been provided by Andersen et aL (2003). 
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measure the value of each elementary attribute. Due to the highly subjective nature and 
lack of information, it is usually difficult to measure these attributes precisely. A 
feasible and convenient way to describe the attributes is to use verbal expressions (i. e., 
linguistic variables). These linguistic variables can be ftirther defined in terms of ftizzy 

membership functions. A fuzzy membership function is a curve that defines how each 
point in the input space is mapped onto a membership value between 0 and 1. An 
example is given to represent the membership function of a supposed elementary 
attribute with seven linguistic variables, as shown in Figure 6.2. Observing Figure 6.2, it 

can be obtained that a) a trapezoidal fuzzy number can be represented in the form of 

pi =(aiI, ai2, aI3, aA) i=1,3,5,7, where a,, denotes the lower bound, (ai2, a, 3) denotes 

the most plausible rating and ai4 denotes the upper bound; b) a triangular ftizzy number 
is the special case of a corresponding trapezoidal fivzy number, which can be explained 
in symbol as, p, = (ail, ai2 , a, 3, a, 4) , a, 2 = ai3 .i=2,4,6. 

Figure 6.2. The membership functions of linguistic variables 

Membership degrees (or ftizzy membership functions) of the elementary attributes of a 
decision problem can be assigned (subjectively decided) by multiple experts. The fuzzy 
Delphi method (Bojadziev and Bojadziev, 1995) can be employed in this process of 
achieving the consensus condition. Generally, the conclusion of a belief rule D may be 
described by linguistics variables and thus can also be defined in terms of 
trapezoidal/triangular Rizzy numbers using the same process. 

ý and Calculate the Conditional Subiective Belief Degrees'a. 6 3.3 Break Down F into F 

Given Individual Attribute Ai 

After the fuzzy membership functions associated with all antecedent attributes A and 
decision conclusion D are obtained, the subjective belief degrees distributed on the 

0 F, represents the logical relationship between the individual antecedent attribute and conclusion of a belief rule 
without knowing more information (other attributes). 
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conclusion can be theoretically assessed/calculated using the information of these 
attributes and a logical function F connecting the attributes and conclusion. However, in 
dealing with realistic decision problems, if too many antecedent attributes are 
considered as conditions, the corresponding suýjective belief degree distributions on the 
conclusion may be too specific for any expert. Consequently, the assumptions, which 
reduce the amount of distributions to specify, are required to investigate. One effective 
simplifying assumption to deal with this situation is a) to break down F into Fi and 
calculate the conditional subjective belief degrees 8i given individual attribute Aj; and b) 
to consider each conditional subjective belief degree distribution as one piece of 
evidence to support decision conclusions and synthesise them using the ER approach. 
This section focuses on Step a and discusses how to transform the fuzzy membership 
functions into belief structures with the same set of fuzzy membership functions of a 
utility decision conclusion space. The next section will be associated with Step b and 
cope with the synthesis of the results obtained in Step a. 

In order to evaluate fli in terms of the linguistic variables presented in a conclusion, it is 

necessary to develop an effective method to infer Fi. From a generic viewpoint, F, may 
be judged by experts using a rule base or utility base. For example, in the work by Wang 

et aL (1996), the ftizzy variables related to the attribute "safety" can well be mapped to a 
utility decision space, where each fuzzy variable can have its counterpart in the decision 

space based on an easily observed transforming function, such as "good" to "highly 

preferred" and "poor" to "slightly preferred", etc. However, in some specific cases (i. e. 
different amounts of linguistic variables involved), a new fuzzy mapping approach is 

proposed to complete this transformation and make the expert judgements more accurate. 
This mirrors the normalisation process in traditional AMDM methods to transform 
attributes to the same space to facilitate trade-off analysis among attributes. 

Suppose the trapezoidal ftizzy numbers of Dj, (j=I, ..., N) are UD11 UD20 **'P UDN9 

respectively. The similarity degrees between uj and uDj can be calculated as follows 

(Li and Liao, 2005): 

SK 
9 UDi) 2-- 

f: (min {UI (X»UDj (X)lbX 

Z. u, (x)dx 
(6.7) 

if two membership functions are the same, that is ui= UDj 
9 

S(Ui9UDj) =I- If tWO 

membership functions do not have any overlap, the similarity degree is zero. For other 
situations, the higher the percentage of the overlap, the higher the similarity degree. 
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After all the similarity degrees between ui and uDj are computed, a similarity vector F, I 

can be constructed as follows: 

F.. ' ý(S(U'2UDI)9S(Ui, UD2)2*"2S(Ui2UDN» (6.8) 
19 

Furthennore, S(ui, uDj) can be nonnalised by: 

A. 
- 

S(Ui 
9 

UDi) 

j 1,2,... N (6.9) 
yN ES(UOUDj) 

j=l 

From Equations (6.7) - (6.9), it can be noted that the more similar u, is to uDj , the 

closer Aj is to Dj and the bigger 8, is and that the sum of fl., j=1,2,... N is equal to 1. 

Thus, 8, may be viewed as a degree of confidence that Ai belongs to Dj. In this way, 

most fuzzy membership functions of the antecedent attributes can be transformed into 

the belief structures with the same fuzzy set of a utility decision conclusion space, which 
is expressed in the following form: 

F, = (6.10) 

6 3.4 Synthesise the Conditional Subjective BeliLefDearees to Form F and Obtain 

Having obtained all Fi, the next task is to calculate F and obtain fi. Before that, decision 

makers may need to clearly know that any Fj represents multiple conditional belief rule 
expressions, because Ai used to describe one of elementary states X, is represented using 
multiple linguistic terms with their fuzzy membership ftmctions. When Ai is given a 
fixed fuzzy value, one corresponding belief rule expression is formed. Thus, it can be 

noted that the total number of Fj is decided by the number of the linguistic variables 
associated with A rather than the number of A. Furthermore, observing Equation (6.2) 

and Table (6.1), the principle of constructing a BRB is to require the comprehensive 
combination of the fuzzy values of different antecedent attributes. Consequently, to 
develop a BRB with logical 6 distributions is transferred to the problem of how to 

reasonably combine all Fi. The ER approach introduced in Chapter 3 can be effectively 
used to deal with such a combination. Using such an approach, together with the weights 
of all related attributes obtained from Section 6.3.1, the conclusion part (fl) of each rule 
in the expression matrix can be easily obtained and the relationship between input and 
output (F) can be logically confirmed. 
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6.4. A Risk Based Numerical Case Study 

The risk assessment of a CSC system is a typical multi-attribute decision making 

problem. In such an assessment process, there are multiple risk factors involved and the 

measures of some factors may possibly be vague due to the highly subjective nature and 
lack of past experience. Hence, it is difficult to use traditional AMDM approaches to 
deal with such problems with uncertainty. In this respect, the combination of the FRB 

and ER approaches shows significant potential. Such a combination method has been 

widely used in the safety research associated with the marine and offshore industries (Sii 

and Wang, 2002; Pillay and Wang, 2003b; Liu et aL, 2005). However, in all related 

studies, the belief degrees of the output of the rules, either full or partial, are assigned on 
the basis of entirely subjective expert judgements. This may introduce bias to the studies 

and easily result in academic arguments. In this section, a decision support framework 

based on the FER method developed above is used for constructing a risk based BRB 

system and capturing non-linear relationships between risk parameters used to measure 

risk levels. 

64.1 Identify Risk Parameters Affecting Risk Levels, Construct their Hierarchical 

Structure and Calculate their Relative Weights 

The first step is to define all kinds of risk parameters that are used in developing a risk 
based BRB. There are many parameters that may affect risk levels, such as risk 

occurrence likelihood and consequence severity. Risk occurrence likelihood (L) 

describes the frequency of risk occurrence in the life span of a targeting CSC system. 
Consequence severity (C) represents the magnitude of possible loss when risk happens. 

After the study of traditional quantitative safety methods like FIECA, it can be seen 

that there is the third basic parameter -- failure consequence probability used in 

assessing risk levels. Failure consequence probability (E) refers to the probability that 

possible consequences happen given the occurrence of a failure event*. Since the risk 
levels are decided by three basic risk parameters simultaneously, their hierarchical 

structure can be simply considered as a single branch, which includes two clusters, a top 

parameter and three paralleling basic parameters. Consequently, the AHP method 

(Equations 6.4 - 6.6) can be used to calculate their relative weights (in an order of WL, 

&)C, coE) as follows: 

0 Here, the purpose of using three new risk parameters (L, C, E) instead of the classical two (F, S) or four parameters 
(W, D, p, R) introduced previously to define the safety estimation of CSC systems is to compare the result obtained 
using the proposed framework in this chapter with those in the prior studies in a convenient and feasible manner. 
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12 

M= 111.98 

_0.5 
0.505 1 

[o)L, wc, cofl = [0.4,0.399,0.201] 

64.2 Use the Luzz ethod to Detennine the Eyzu Numbers of All Linguistic .1 Delphi M 
Terms Associated with Each Risk Parameter 

After the hierarchical structure of risk parameters is created, the next task is to 

appropriately describe such parameters in order to measure their risk levels. Objective 
failure data has been widely used to describe these parameters in some traditional QR, 4 

approaches. However, such historical data is not always available, and its collection is 

time-consuming and expensive as well as depending on many uncertainties. 
Consequently, they may not be well suited to dealing with the situations of having a 
high level of uncertainty. One realistic way to cope with imprecision is to use linguistic 

assessments (Wang et aL, 1995 and 1996). In risk assessment, four to seven linguistic 

variables can be used to describe risk parameters. To estimate the risk occurrence 
likelihood, for example, one may often use such variables as "very low", "low", 
"reasonably low", "average", "reasonably frequent", "frequent" and "highly frequent"; 

to estimate the consequence severity, one may choose to use such linguistic terms as 
"negligible", "marginal", "moderate", "critical" and "catastrophic"; To estimate the 
failure consequence probability, one may use such variables as "highly unlikely", 
"unlikely", "reasonably unlikely", "likely", "reasonably likely", "highly likely" and 
"definite". An example of the definitions of the linguistic variables is given as a 
reference in Tables 6.2 - 6.4. 

Table 6.2. Risk occuffence likelihood (Sii and Wang, 2002) 

Rank Risk occurrence likelihood Meaning (generic marine system interpretation) 

1,2,3 Very low Failure is unlikely but possible during lifetime 

4 Low Likely to happen once during lifetime 

5 Reasonably low Between low and average 
6 Average Occasional failure 

7 Reasonably frequent Likely to occur from time to time 
Frequent Repeated failure 

Highly frequent Failure is almost inevitable or likely to exist 
repeatedly 
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Table 6.3. Consequence severity (Sii and Wang, 2002) 

Rank Consequence Meaning (generic marine system interpretation) 
severity 

I Negligible At most a single minor injury or unscheduled maintenance required 
(service and operations can continue) 

2,3 Marginal Possible single or multiple minor injuries or/and minor system 
damage. Operations interrupted slightly, and resumed to its normal 
operational mode within a short period of time (say less than 2 hours) 

4,5,6 Moderate Possible multiple minor injuries or a single severe injury, moderate 
system damage. Operations and production interrupted marginally, 

and resumed to its normal operational mode within a period of no 
more than 4 hours. 

7,8 Critical Possible single death, probable multiple severe injuries or major 
system damage. Operations stopped. 

9,10 ý Catastrophic Possible multiple deaths, probable single death or total system loss. 
Very high severity ranking when a potential failure mode. 

Table 6.4. Failure consequence probability (Sii and Wang, 2002) 

Rank Failure Meaning (generic marine system interpretation) 

consequence 
probability 

I Highly unlikely The occurrence likelihood of possible consequence is highly 

unlikely given the occurrence of the failure event (extremely 

unlikely to exist on the system or during operations). 
2,3 Unlikely The occurrence likelihood of possible consequences is unlikely 

but possible given that the failure event happens (improbable to 

exist even on rare occasions on the system or during operations). 
4 -ieasonably The occurrence likelihood of possible consequences is reasonably 

unlikely unlikely given the occurrence of the failure event (likely to exist 
on rare occasions on the system or during operations). 

5 Likely It is likely that consequences happen given that the failure events 
occur (a programme is not likely to detect a potential design or 
operation's procedural weakness). 

6,7 --ieasonably likely It is reasonably likely that consequences occur given the 
occurrence of the failure events (i. e. exist from time to time on the 
system or during operations, possibly caused by a potential design 

or operation's procedural weakness). 

8 Highly likely It is highly likely that consequences occur given the occurrence of 
the failure events (i. e. often exist somewhere on the system or 
during operations due to a highly likely potential hazardous 

situation or design and /or operations procedural drawback). 

9,10 Definitely Possible consequences happen given the occurrence of a failure 

event (i. e. likely to exist repeatedly during operations due to an 
anticipated potential design and operation's procedural drawback). 
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These subjective linguistic variables can be further defined in terms of their fuzzy 

membership functions. Membership degrees of the three risk parameters can be assigned 
by experts using the ftizzy Delphi method (Equations (5.1) - (5.3)), with reference to 
Figures 6.3 - 6.5. The result is described in Table 6.5. 

Figure 6.3. Fuzzy risk occurrence likelihood set definition (Sii and Wang, 2002) 

Figure 6.4. Fuzzy consequence severity set definition (Sii and Wang, 2002) 

Figure 6.5. Fuzzy failure consequence probability set definition (Sii and Wang, 2002) 
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Table 6.5. Risk linguistic variables and their ftizzy membership functions 

Risk occurrence 
likelihood 

Membership 

function 

Consequence 

severity 

Membership 

function 

Failure consequence 

probability 

Membership 

function 

Very low LI(0,0,0.1,0.2) Negligible CI(0,0,0.1,0.2) Highly unlikely EI(0,0,0.1,0.2) 

Low L2(0.1,0.2,0.3,0.4) Marginal C2(0.1,0.2,0.3,0.4) Unlikely E2(0.1,0.2,0.3,0.4) 

Reasonably low L3(0.3,0.4,0.4,0.5) Moderate C.; (0.3,0.4,0.6,0.7) Reasonably unlikely E3(0.3,0.4,0.4,0.5) 

Average L4(0.4,0.5,0.5,0.6) Critical C4(0.6,0.7,0.8,0.9) Likely E4(0.4,0.5,0.5,0.6) 

Reasonably frequent Ls(O. 5,0.6,0.6,0.8) Catastrophic cs(0.8,0.9,1,1) Reasonably likely Ej(0.5,0.6,0.7,0.8) 

Frequent L6(0.6,0.8,0.8,0.9) Highly likely E6(0.7,0.8,0.8,0.9) 

Highly frequent LAO. 8,0.9,1,1) Definitely E7(0.8,0.9,1,1) 

In a similar way, the linguistic variables (Dj, j = 1,2,3,4), "Good", "Average", "Fair" 

and "Poor", presenting risk levels and their fuzzy membership functions (, UDj, j = 1,2,3, 
4) can be obtained and described in Figure 6.6, with reference to the work by Li and 
Liao (2005). 

Figure 6.6. The membership functions of linguistic variables for risk levels 

64.3 Transform the Fuzzy Sets of All Risk Parameters into Belief Structure with the 
Same Set ofRisk Levels - 

After the ftizzy numbers of all linguistic variables associated with a risk parameter are 
acquired, the risk level of the parameter may be calculated using the information of 
these variables. Generally, the evaluation of the risk level may be conducted in a utility 
decision space, the sets described by the linguistic variables in Figure 6.6 in this case. 
Consequently, the conditional subjective belief degree distributions (the risk level 

expressions) given the fuzzy numbers (linguistic variables) of a risk parameter can be 

expressed as follows: 

Fj = ((flil, "good"), (fli2, "average"), (fld, "fair"), (fli4, "poor")} 
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In order to evaluate Fj in terms of the four risk level linguistic variables, it is necessary 
to map the ftizzy numbers associated with the three basic risk parameters onto the risk 
level expressions. The approach to compute the fuzzy similarity functions between two 
fuzzy sets (Equations 6.7 and 6.8) enables this mapping. For example, the similarity 
degree between C2 and pDj, (i = 1,2,3,4) (see Figure 6.7) is calculated as follows: 

Areal 
S(FC2 UDI) = 

Areal + Area2 + Area3 
0.125 

S(FC2 UD2) = 
Area2 0.5 

Areal + Area2 + Area3 

S(FC29UD3) =00 
Areal + Area2 + Area3 

S(FC2 9 UD4) =00 
Areal + Area2 + Area3 

Figure 6.7. Example of the similarity degree between C2 anduDj, (I = 1,2,3,4) 

Furthermore, using Equation (6.9), S(FC2,1 UDj) can be normalised as follows: 

S(FC29UDI) 
= 

0.125, 
= 0.2 4 

I S(FC2 9 
UDj) 0.625 

j=l 

j6i2 . 
S(FC29UD2) 

= 
0.5 

= 0.8 4 
I: S(FC29UDj) 0.625 
i=l 

p3 = 
S(FC29UD3)_ 

=0=0 4 
ES(FC22UDj) 0.625 
j=l 

S(FC29UD4) 
=0=0 4 

YwS(FC2'UDi) 0.625 
j=l 
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In this way, the fuzzy number C, can be transformed into the belief structure with the 
risk level expressions (Dj, j = 1,2,3,4) and shown in the following form: 

FC2 ý ý(0.2, "good"), (0.8, "average"), (0, "fair"), (0, "poor") I 

where FC2 presents the conditional risk evaluation given that in three basic risk 
parameters, only consequence severity is known as "marginal" and no more information 
is available for the other two parameters. 

Using a similar process, FLj (i =1,2, ..., 7), F(- 
ýj 

(i = 1,2, ... ' 5), FEk (k = 1,2, ..., 7) can 
be obtained respectively in Table 6.6. 

Table 6.6. The conditional risk evaluation given individual basic risk parameter 

Condition-] Conclusion 
Fl- I I, (], "good"), (0, "average"), (0, "fair"), (0, "poor")! 
FL2 ý(0.2, "good"), (0.8, "average"), (0, "fair"), (0, "poor")l 
FL3 1(0, "good"), (1, "average"), (0, "fair"), (0, "poor")l 
FL4 ftO, "good"), (0.5, "average"), (0.5, "fair"), (0, "poor")l 

FL-, ý(O, "good"), (0, "average"), (1, "fair"), (0, "poor")l 
FL6 t(O, "good"), (0, "average"), (0.73, "fair"), (0.27, "poor")) 
FL7 1(0, "good"), (0, "average"), (0, "fair"), (1, "poor")) 
F(,, ý(I, "good"), (0, "average"), (0, "fair"), (0, -poor")) 
FC2 ý(0.2, "good"), (0.8, "average"), (0, "fair"), (0, "poor-)) 
Fc3 1(0, "good"), (0.5, "average"), (0.5, "fair"), (0, -poor")ý 
Fc4 ý(O, "good"), (0, "average"), (0.8, "fair"), (0.2, "poor")) 
F(. i (0, "i,, ood"), (0, "m crage"), (0. "fai r"). (1, -poor-): 
FE, l(l, "good"), (0, "average"), (0, "fair"), (0, "poor")ý 
FE2 1(0.2, "good"), (0.8, "average"), (0, "fair"), (0, "poor")) 
FE3 1(0, "good"), (1, "average"), (0, "fair"), (0, "poor")) 
FE4 1(0, "good"), (0.5, "average"), (0.5, "fair"), (0, "poor-)ý 
FE5 1(0, "good"), (0, "average"), (1, "fair"), (0, "poor")) 
FE6 1(0, "good"), (0, "average"), (0.5, "fair"), (0.5, "poor")) 
FE7 

11(0, "good"), (0, "average"), (0, "fair"), (1, "poor") ýI 

6.4.4 Use the ER Approach to Capture the Non-linear Relationships between Three Risk 
Basic Parameters and Construct the Risk Based BRB 

The comprehensive risk evaluation of an event is determined by the three basic 

parameters (risk occurrence likelihood, consequence severity and failure consequence 
probability) together. Therefore, if the rating on a basic parameter is to some extent 
evaluated as the risk grade Dj, (i = 1,2,3,4), then the comprehensive risk evaluation 
would be to some extent estimated as the D.. Furthermore, the three parameters play 
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different roles in risk evaluation. In order to represent the relative importance of these 

parameters, the weights of the parameters, wLi (i =1,2, ... ' 7) = 0.4, cog (i = 1,2, ..., 5) 

= 0.399 and cpEk (k = 1,2,..., 7) = 0.201 require to be incorporated into the evaluation. 

Taking such ideas into account, the ER approach introduced in Section 3.4 can be used 
to obtain the comprehensive risk evaluation by synthesising the conditional risk 
evaluation given the individual risk parameters. For example, 

IF L is "very low" AND C is "negligible" AND E is "highly unlikely", THEN the 

comprehensive risk evaluation is "good" with a belief degree of 611, "average" with 
a belief degree Of 812, "fair" with a belief degree Of 613 and "poor" with a belief 
degree Of fl]4. 

p1j, (i = 1,2,3,4) can be calculated as follows: 

FLI = f(l, "good"), (0, "average"), (0, "fair), (o,,, pooe, )l with coLl = 0.4 
Fc, = f(l, "good"), (0, "average"), (0, "fair"), (0, "pooe')) with O)CI = 0.399 
FE, = ((I, "good"), (0, "average"), (0, "fair"), (0, "poor")) with wEl = 0.201 

Using Equations (3.10) - (3.15), each fly, (i = 1,2,3,4) is computed as the set of (1, Oj 0, 
0). Thus, the rule can be formally expressed as follows: 

IF L is "very low" AND C is "negligible" AND E is "highly unlikely", THEN the 
comprehensive risk evaluation is "good" with a belief degree of 1, "average" with a 
belief degree of 0, "fait" with a belief degree of 0 and "poor" with a belief degree of 
0. 

In a similar way, the 
I 
other rules can be obtained and the risk based BRB including 245 

rules (245 ý C71 X C5 X C71) can be constructed and shown in Appendix 4. 

64.5 Analysis ofResults 

The results obtained for the risk based BRB using the proposed FER approach are 
collated with the results obtained from the traditional subjective expert judgement 
(knowledge based) method (Liu et al., 2005 and Yang et al., 2005) and are given in 
Appendix 4. From the above results, it is obvious that the subjective belief degrees 

related to risk evaluation can be reasonably assigned without logical conflicts in the 
newly constructed BRB. This point can be further validated using the analysis associated 
with specific individual rule, generic grouped rules and the compared rules between the 

new and old BRBs. 

For the study of the specific cases, Rules 1,123 and 245 in Appendix 4 can be chosen to 
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conduct the analysis. For example, in Rule 1, the risk occurrence likelihood has been 

assessed as "very low" with a creditability of 100 percent; the consequence severity has 
been evaluated as "negligible" with complete confidence; and the failure consequence 
probability has been estimated to a 100 percent belief degree as "highly unlikely". Since 
the risk evaluation is determined by the information of its three basic parameters, the 
result of the risk evaluation should be in the best safety situation to a maximum extent 
according to experts' knowledge. This is in harmony with the result obtained in Rule I 

as follows: 

Rulel: IF "very low" and "negligible" and "highly unlikely", THEN ((I, "good"), (0, 
"average"), (0, "fair"), (0, "pooe')) 

Similarly, the following results have also been acquired to prove the accuracy of the 
developed BRB: 

Rule123: IF "average" and "moderate" and "likely", THEN {(O, "good), (0.5, 
44average"), (0.5, "fair"), (o,,, pooe, )l 

Rule245: IF "very high" and "catastrophic" and "definite", THEN 1(0, "good'), (0, 
"average"), (0, "fair"), (i, , pooe, )} 

As far as the analysis related to the generic grouped rules is concerned, the theoretical 
basis of the "Risk Matrix approach" (Wang et aL, 1999) may be well employed. In risk 
assessment, it is crucial that important risks can be identified while trivial ones can be 
disregarded before both of them are forwarded for further complex analysis. The "Risk 
Matrix approach" just uses quantitative rating of risk parameters to estimate the "Risk 
Ranking Number" for categorising risks according their importance. An example of the 
"Risk Matrix approach" and its associated explanatory nodes are given in Figure 6.8, 

where the categories of three parameters (L, C and E) may be easily connected with the 
linguistic variables used in the antecedent attributes of the BRB and the types of risk 
levels in the, 4L4RP (as low as reasonably practicable) principle may be linked with the 
linguistic variables used in the conclusion part of the risk evaluation of the BRB. For 

example, Li (i = 1,2, ... 7) can be considered as "very low", "low", "reasonably low", 
66average", "reasonably frequerif', "frequent" and "very frequerif', respectively. The 
"Insignificant" risks can be connected with the risks with the "good" evaluation. The 
term, "ALARF' may be used to represent the linguistics variables "average" and "fair" 

and the , Intolerable" is associated with "poor". 

Consequently, such an approach can support the validation of the developed BRB. For 

example, observing Figure 6.8, if the risk occurrence likelihood is Li and the 
consequence severity is C1, then no matter how the failure consequence probability E 

varies, the risk is in the "insignificant" region. Extending such a statement (fact) to the 
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E5 

E4 

E3 

Ei 

Ei 

x 

Insignificant (the 
nodes %-,, ith the values* 

A77 
Vj 

A LARP (the nodes " ith 
the values* 5! ý V! ý 10) 

1EA Ej 
Intolerable (the nodes 

" ith the values* I ]! ý- I) 

*The values can be calculated using the equation V- i +j + 0.5k - 1.5 (((')) ý 1.2. - 5, (L)i ý 1.2. 
- 7, and (L)k -- Iý2, - 7). , %here 0.5 means that the importance ofthe failure consequence probability in determining risk evaluation is hall'ofthe 

other two risk parametem and the airn of "minus 1.5" is to keep the value of the note %Nith best risk evaluation as 1. 

Figure 6.8. Proposed example of -Risk Matrix approach- 

development of the risk based BRB. if the risk occurrence likelihood has been assessed 
as "very low" and the consequence severity evaluated as "negligible", then no matter 
which fuzzy number the failure consequence probability belongs to, the risk should be 

estimated as -good" to a great extent. The distribution trends of subjective risk beliefs in 

grouped Rules I-7 (-good- with 88 percent at least) are well reflected with such a 
result (however, it is not the case of the old BRB systems). Compared with the example 
above, if the consequence severity is evaluated as "marginal" and the other conditions 
keep unchangeable, then the extent of risk evaluation estimated as -good- should be 

reduced (because the volume associated with LI, C2 and Ek (k ý 1,2, ..., 7) has less 

"Insignificant" nodes than the one related to L1, C/ and Ek (k = 1,2, 
..., 7) in Figure 6.8). 

The results from the BRB can effectively respond to such a tendency. Comparing Rule I 

with Rule 8, the extent that the risk evaluation is assessed as "good" has been reduced 
from 100 percent to 72 percent and the extent that risk evaluation is estimated as "good" 
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in Rules 7 and 14 has declined from 88 percent to 53 percent. 
The BRB constructed using the traditional subjective judgement method has been 

provided in Appendix 4 in order to conduct the compared analysis with the newly 
developed BRB as a reference. The reference functions have two aspects, positive and 

negative. The positive function means that the old BRB can support the construction of 
the new one. It is obvious that many rules have the same or similar belief degree 

distributions in both BRBs (i. e. Rules 243,244 and 245, etc). Considering that the risk 
based BRB can be developed on the basis of three basic parameters, experts may 
therefore, appropriately exert their knowledge to relatively accurately assign their 

subjective beliefs to a certain extent. However, the reference also has its negative 
function, the inconsistency of a rule base, which just addresses the objective of this 

study. Using expert subjective judgement to distribute belief degrees easily enables the 

occurrence of conflicting rules, although only three parameters are taken into account. 
For example, comparing Rule 85 and Rule 86 in the old BRB, both rules have the 

"reasonable low" risk occurrence likelihood and "moderate" consequence severity, the 
difference lies in that the failure consequence probability has been assessed as "highly 

unlikely" in Rule 85 and "unlikely" in Rule 86. According to expert knowledge and the 
discussion of the "Risk Matrix approach", Rule 85 should have a better risk evaluation 
in terms of safety levels than Rule 86. However, in the old BRB, Rule 85 with its risk 

evaluation as {(0.5, "good"), (0.5, "average"), (0, "fait"), (0, "poor")) actually has a 

worst safety level than Rule 86 with its risk evaluation as {(0.6, "good"), (0.4, 

66average"), (0, "fair"), (0, "poor")). Similar situations happen between Rules 127 and 
128, Rules 182 and 189, etc. Furthermore, when grouped rules are concerned, some 
belief distributions in the old BRB may be arguable. For example, the extents assigned to 

"good" in Rules I-7 may reduce too fast according to the "Risk Matrix approach". 
These limitations are only observed in a three-parameter case study. If the parameters go 
to ten or more in other decision making problems, the accuracy of the BRBs will be 

arguable and thus, the subjective expert judgement method in the development of BRBs 

based on entire expert judgements is error-intended. Simultaneously, these analyses 

show that a more accurate and reliable BRB can be achieved by the application of the 
FER method. 

6.5. Conclusion 

The research of using BRB expert systems to infer risk based decision making has been 

widely investigated in recent years and obtained significant academic and industrial 

achievement. However, few studies have considered the problem of how to develop a 

rational BRB representation system as the reference of such inference. An FER method 

to deal with the inconsistent problem of a BRB (for instance, rules are regarded to be 

inconsistent if they have very similar antecedent parts but possess significant different 
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consequent parts that conflict with expert knowledge) is promoted in this chapter. In 

such a method, the expert subjective judgements have been moved to the earliest stage 
of constructing a BRB system, which ensures that the belief degree distributions in the 
system are as objective as possible and maximally reduces the uncertainties encountered 
in developing the system. In the methodology, the linguistic variables and their fiizzy 

membership functions to represent the knowledge of multiple attributes in risk based 
decision making were first investigated and a new transformatioil technique was then 
proposed on the basis of a fuzzy similarity function to assist in connecting each attribute 
with their utility space. Consequently, the conditional belief degree distributions in the 
space given the individual antecedent attribute were obtained. The ER algorithm was 
fin-ther used to synthesise such conditional belief degrees in a hierarchical order to form 

rational and consistent BRBs. 

The results generated from a case study on risk assessment have demonstrated that such 
a methodology can provide decision makers in CSCs with a convenient tool that can be 

used to deal with the uncertainties resulting from "entirely subjective data". In 

conclusion, the proposed framework offers great potential in risk based decision making 
and the method provides both a flexible way to represent and a rigorous procedure to 
deal with the rational subjective probability distributions in the context of ftizzy expert 
systems. 
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Chapter 7 -A Proposed Bayesian Network Model to Risk 
Assessment 

SUMMARY 
The problem ofdeveloping and sustaining a highly capable risk assessment technique to 

meet the diverse needs of sophisticated CSCs is extremely onerous and arduous, 
particularly in view of the plethora of challenges and uncertainties posed by the 

unavailability and incompleteness of historical failure data, the interaction and 
dependence of risk factors and the relatively modest level offunding available. One 

realistic and reliable way to deal with such a situation is to effectively and accurately 
assess the riskpriority so as to ensure that the limited resources and assets are capable 
of cooperating cohesively together and being distributed to those key risk factors for 

safety improvement. This goal may be fostered through adopting an appropriate BN 

approach. This chapter, therefore, proposes a BN-based risk assessment methodology 
for assisting the CSCs'managers to check, predict and improve the safety and reliability 
performance of the chains. For any CSC safety-critical application the methodology 
demonstrates how the BN technique can be used in formalizing reasoning of 
systematical interactive dependence and incorporating subjective expert judgements to 

compensate the absence of any objective statistical data. In such a logical framework; 

adopting BN is shown to realistically deal with the encountered uncertainties whilst at 
the same time making risk assessment modelling easier to build, check and certainly 
update. To validate the feasibility of the methodology developed, the risk of terrorists 

attacking CSCs is studied as an applicable case of interest. 

7.1 Introduction 

Nowadays, safety is becoming one of the important criteria measuring the efficiency of 
the design, control and management of CSC systems. It is therefore crucial to select a 
suitable safety policy against the potential vulnerability of the systems. However, such a 
selection is not straightforward and assessors are often required to contribute to the 
difficult process of safety management and decision making by providing a predictive 
link between RCOs and system safety response. Furthermore, this link may be a complex 
causal chain, the entirety of which rarely falls within a single, coordinated research 
project, considering that CSCs are growing systems made up of many sub-systems and 
sub-functions each of which has been, and may still be treated as a distinct management 
operation. 



Some supply chain risk management models represent attempts to combine the 
understanding gained from multiple studies into a single framework. Most models do 
this by endeavouring to simulate all of the physical and managerial processes occurring 
in the chains at a pre-determined model scale (Chapman et al., 2002; Peck and Rittrier, 
2002; Pai et al., 2003; Yang et al., 2004). However, depending on the nature of these 

processes, the most predictable relationships among different risk variables may emerge 
at a variety of spatial, temporal or functional scales. Therefore, current safety knowledge 

might be better represented if each relationship were described at or between the 
dynamic and interactive levels of detail at which the key risk variables could be 
identified, rather than at a static and steady scale that is identical for all processes. 

Given the diversity of scales at which risks may occur, a serious challenge for risk 
analysts is to integrate quantitative descriptions of these risks into coherent assessment 
models. Methodologies are required that allow representation at multiple scales and in a 
variety of forms, depending on available information. There is also a need to assess how 

uncertainties in each component of the models translate to uncertainty in the final safety 
predictions. Finally, such models must be able to be easily updated to reflect evolving 
safety knowledge and policy needs. 

BNs, based on the marriage of a well-defined theory of Bayesian probabilistic reasoning 
and a networking technique, provide a strong framework for handling uncertainty 
problems. The networks constitute a class of probabilistic models with strong 
connections to graph theory (Jensen, 2001), which can be considered as a realistic way 
of structuring a situation for reasoning uncertainty with an interactive feature. The use of 
BNs may also be capable of combining various pieces of information and making use of 
expert judgements to compensate the absence of historical statistics and deal with 
incomplete uncertainty. Since the core technology of BNs is maturing and becomes 

generally available in inexpensive software systems, they have been successfully applied 
to a variety of problems. Recently, their popularity started to grow among system risk 
assessors and reliability analysts. Earlier work has examined the parallels between BNs 

and other QRA approaches and indicated the potentials of BNs in terms of modelling and 
analysis capabilities (Cagno et al., 2000; Mahadevan and Rebba, 2005). 

This chapter proposes a novel BN-based risk assessment methodology to investigate the 
feasibility of applying BNs to the risk assessment of CSCs and contributes itself to the 

absence of using BNs in the literature of supply chain safety and reliability research. The 
intention is to emphasize their application as an intuitive risk modelling technique and 
their potential to offer attractive features not always achievable by other means. The 

remainder of the chapter is organised as follows. The ensuing section introduces the 



background information of BNs and their applications in the risk and reliability fields. 
Section 7.3 examines the development of the novel BN-based risk assessment 
methodology and their specialty in the CSC systems. Section 7.4 presents a case study 
for testing the methodology generated. Finally, Section 7.5 concludes the chapter and 
indicates the areas for future work. 

7.2. Review of BNs 

7.2.1 Historical Development ofBNs 

BNs, also known as "Directed acyclic graphs (DAGs)", "Bayesian belief networks 
(BBNs)", "probabilistic networks", "causal nets" or "belief nets", constitute a 
mathematically sound method for representing and reasoning uncertainty with an 
internally consistent manner. BNs initially arose from an attempt to incorporate the 

probability theory into expert systems, and have an origin and long history in decision 

analysis (Neapolitan, 1990). In decision theory, the idea of considering the entire model 
as a construction subject to uncertainty and subjectivity stepped from the game theory of 
the 1930s and '40s (Shafer, 1990). Games evolved into sequential games against 
uncontrolled 'nature' and abstractions, such as decision trees were developed. Thus, 
Bayesian decision theory gained increasing notice and emphasis (Wald, 1950) in the 
1950s. The basic Bayesian theory was developed into more applicable level towards the 
late 1960s (Howard, 1968; North, 1968; Raiffa, 1968). 

BNs, the marriage of the Bayesian probability theory and networking techniques, were 
first developed at Stanford University in the 1970s (McCabe et al., 1998). They fell out 
of popularity during the 1980s and have experienced resurgence in the 1990s. 
Conventionally, one of the bottlenecks to practical applications of Bayesian approaches 
has been the high amount of computation required. However, powerful numerical 
techniques were not available until the 1980s. According to Shafer and Pearl (1990), the 
relatively new developments in decision analysis approaches including BNs were linked 

with advances in related computational mathematics available from twenty years ago. 
The availability of good computing facilities stimulated the fast developments of the BN 

approach and took the focal role for updating the probability information in conditioned 
networks. In the first half of the 1980s, the concept of BNs was originally introduced to 
the field of expert systems through the work by Pearl (1982) and Spiegelhalter and 
Knill-Jones (1984). The first real world application of BNs was Munin (Andreassen et 
aL, 1989). Since then, BNs have spread quickly and been used extensively to model 
many real world problems (Oliver and Smith, 1990; Ottonello et aL, 1992; Bumell and 
Horvits, 1995; Szolovits and Pauker, 1993; Russell and Norvig, 1995). In particular, 
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they have been used very successfully in building expert systems to help Artificial 

Intelligence analysis*, medical diagnosis (Spiegelhalter et aL, 1993) and software 
development (Heckerman et aL, 1995). Recently, BNs have also led to many new 

applications of uncertainty modelling, in particular to very complex problems where a 
large number of variables contribute to overall uncertainty. 

7.2.2 Definition ofBNs 

A complete and rigorous definition of BNs can be shown in some of the literature cited 
(Pearl, 1988; Neapolitan, 1990; Jensen, 1996). This definition focuses on the contents of 
the networks and describes a BN as a DAG consisting of nodes, arcs and an associated 

set of probability tables. Nodes represent M whose states are usually expressed in 

discrete numbers or ranges. Directed arcs between pairs of nodes represent dependence 

between the R Vs. A CPT associated with each node denotes the strength of such causal 
dependence. The concept is classical and generic, but may need more explanation in this 

study with just enough rigour and detail that will enable the possibility of easily applying 
these networks to CSC risk assessment problems. 

A BN model for the CSC risk assessment can thus be defined to consist of the following: 

a) Qualitative relationships: 
a set of riskfactors as RVs (Xj, which can assume discrete values (e. g. false and 
truth states, soundness and weakness states, etc. ); 

a set of directed edges or arcs (Ed, between node pairs, which indicate the existence 

ofdirect influences between the riskjactors, combined in such a way as toform a 
DAG structure. 

The qualitative relationships can be explained as that given a risk scenario, a BN 
describes graphically the causal relationship between the causes and effects of the 

scenario. In doing so it also demonstrates conditional independence as to which risk 
factors are relevant and directly affect a given event and which risk factors are irrelevant 

- irrelevant in the sense that knowledge regarding these factors becomes redundant once 
the direct causes are known. , 

b) Quantitative relationships: 
a set of root and conditional probabilities (Pj, representing root node andparent- 
child node conditional probabilities, respectively. The precise strength ofeach 
parent-child influence relationship is specified in the CPT attached to the child. 

* The best general references for the application of BNs in the field of AI may be the proceedings from the 
annual Conference on Uncertainty in Artificial Intelligence (www. auai. org). 
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The quantitative relationships enable BNs to update the probability distributions. Given a 
risk situation in CSCs and prior probability distributions over the associated risk factors 

that represent the potential causes resulting in the risk situation, BNs provide the 

capability to update these probability distributions when fresh safety observation is 

obtained. 

c) Combination relationships: 
a Joint Probability Distribution (JPD), on the basis of which any riskprobability 
query can be answered The JPDs can be obtained using the combination of 
qualitative and quantitative relationships. 

When nodes are assigned to each risk factor related to the risk scenario and arcs are 
drawn toward each node Xj from a select set of "parent" nodes PXi perceived to be direct 

causes ofXi, the strengths of these direct dependence can be quantified by assigning each 
Xj a CPT P(Xi I PXd, which depends on subjective judgemental estimation or statistical 

evidence of the conditional probability of the event Xi = <x>. The conjunction of these 
local estimations across the full DAG specifies a complete and consistent JPD, which 
over the set of variables {X,,..., X,, ) is given by the product: 

nI 
P(Xig 

... qXn)'ý-- 
IIP(xi Pxi) 

i=l 

72.3 Characteristics ofBNs 

(7.1) 

As one kind of expert system, BNs, like rule-based systems, may be developed using 

expert opinion instead of requiring historical data (Charniak, 1991). This is not always 
the case for all expert systems. For example, historical data is required to train neural 
networks, which means that although data is not required for generic algorithms, the 
development of generic objective functions needs significant resources (McCabe et al., 
1998). The major disadvantage of incorporating expert judgements into BNs is the 

general lack of understanding of probability theory so as to fail to precisely 
probabilistically estimate sub ective fuzziness. Such inaccurate subjective estimates of j 

the certainty of an event have been claimed as an unwanted introduction of bias into BNs 
(Tversky and Kahneman, 1974). Research has also shown that significant errors result 
from the perception of risk depending on the risk-aversion characteristics of the 
individual (Tversky and Kahneman, 1990). 

BNs have a built-in independent characteristic that permits evaluation and propagation of 
evidence in the networks. Consider nodes A and C in a serial connection of BNs. The 

nodes are obviously connected and therefore have a dependent relationship. However, if 

the value of the node B between them is known, and there is no other path, then the two 
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become direction-dependent separated (d-separate), or conditionally independent of each 
other given the blocking node(s). Once conditionally independent, the probability of one 
node can be evaluated without consideration of the others, thus providing a basis for 

overall improvement in computation. As acyclic graphs, BNs require that all arrows in 
the networks must not form a directed cycle or loop. This does not imply that there can 
only be one path between any two nodes, but it does mean that the path can never be 

circular when the direction of the arrows is considered. This may constrain BNs to model 
the reality to a certain degree. 

BNs are capable of making an intercausal inference operation (Henrion et aL, 1991). It is 

used for updating beliefs with the entry of additional evidence. In the intercausal 
inference operation, new evidence may be entered at any point in the networks, and the 

probabilities of the remaining variables are updated. Consequently, the changes from the 

corresponding marginal probabilities without the new evidence are observed. This 

enables BNs to provide the basis and backing of the SA of the influence of any single 
risk factor to the others or the overall safety system. 

Providing great flexibility for accepting input and delivering output, BNs have the ability 
to allow the value of a variable to be entered as a known input or to evaluate the 

probability of the variable as an output of a system. Consequently, they may accept 
evidence at any point in the system and likewise, provide output at any point in the 

system. The ability to adjust variables to be input or output without redesigning the 

system is not a common characteristic for other expert systems, such as rule-based and 
neural network systems. 

During the development of a knowledge base, the ease of altering variables or states to 

an existing network is extremely important. The graphical nature of BNs allows 
variables to be added or removed without significantly affecting the remainder of the 

networks because modifications to the networks may be isolated. Contrarily, additions to 

neural networks require retraining the networks. It has been also indicated that BNs are 
more effective than rule-based expert systems for capturing knowledge when exceptions 
to the rules are too important to exclude, but too numerous to express explicitly (Chong 

and Walley, 1996). 

72.4 Inference Formulism ofBNs 

Tle basis of reasoning under uncertainty in BNs is called Bayesian inference formulism, 

which is developed for the task of computing the probability of each value of a node in a 
BN when other variables' values are known (Jensen, 1996). Bayesian inference can be 
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defined in the following manner (See Figure 7.1): in building an understanding of 
some portion of reality, models are created, which consist of simplified 
representations of situations, in terms of a limited number of variables, representing 
distinct aspects of the situation, and (probabilistic) dependencies between those 

variables (Groen and Mosleh, 2001). Suppose one new observation related to one (or 

more) variable(s) in the models has been obtained from the realistic observable 
situation. Then the other variables need to be revised and the probabilities or belief 

values of those variables representing the unobservable situation will happen to 
change according to their dependent relationships. The reasoning and calculation of 
the updated probabilities for the system variables based on the new evidence is 

precisely what Bayesian inference is. The reasoning process relies on the use of 
Bayes' theorem as its fundamental rule of inference, which makes BNs powerful to 

allow the users to apply their knowledge towards forward or backward reasoning. 

Observable 
situation 

situation 

Figure 7.1. Idealised view of Bayesian inference process 

Bayes' theorem describes the way that analysts can update their subjective beliefs 

when new facts are uncovered. The theorem can be stated in words as (Hayes, 1998): 

"The probability distribution of a model parameter, after observation, is 

proportional to the likelihood of the observation, assuming that the parameter 

value is true, times the prior probability distribution of the parameter. " 

or 
Probabilitv ofthe Prior probabilitv o observation given the V 

Probability ofa parameter value 
the parameter value 

parameter value given 
the observation Total probabililY ofthe 

observation 

The probability of a parameter value given the observation is refereed to as the 

posterior probability. This distinguishes it from the prior probability held by the 

analyst prior to the collection and analysis of the observation. 
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If the model parameter is a discrete variable, then the formal definition of Bayes theorem 

can be symbolically given as follows: 

P(mx) = 
P(Xlo) x P(O) 

(7.3) 
P(X) 

where: "I" symbolises conditional probability, 

P(OjAq represents the posterior probability of 0 occurring given the condition that X 
has occurred, 
P(O) denotes the prior probability of 0 occurring, and this is what causes all the 

arguments, 
PM denotes the marginal (total) probability of X occurring, and is effectively 
constant since the obtained data is at hand, and 
P(Al 0) refers to the conditional probability of X occurring given that 0 occurs too (It 
is often viewed in this sense as the likelihood distribution). 

P(Aq does not change over the values of 0 and can be viewed as a normalizing constant 

needed to scale P(AJO) x P(O) from sum to unity over all outcomes of 0. Thus, the 

posterior distribution of 0 is proportional to the product of the prior distribution of 0 and 
the probability of the data X given 0, 

P(OM oc P(AJO)x P(O) (7.4) 

Similarly, the probability that an event B given the condition that an event A occurs is 

given as: 

P(B I A) = 
P(AIB) x P(B) 

OcP(A I B) x P(B) 
P(A) 

(7.5) 

A key aspect of Bayesian inference is the ease with which previous knowledge may be 

updated as new datafinformation becomes available. Given a prior probability P(B) and 
an initial observation A,, Bayes theorem states that 

P(BIAI) oc P(AiIB)P(B) (7.6) 

If a second observation A2 is made independently of the first then 

P(BI A29 Al) OCP(A21B) P(A]IB)P(B) 

LIC P(A21B) P(BIAI) (7.7) 

The expression (7.6) is the same as (7.7) except that P(BlAd, the posterior probability 
for B given A, plays the role of the prior distribution P(B) for the second sample. This 

process can be repeated any number of times, with the posterior probability playing the 
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role of the prior for the next set of calculations - such that "today's posterior probability 
is tomorrow's prioe, (Lindley, 1970). Furthermore, it can be concluded that the posterior 
probability of unobservable variables can be continuously updated using the prior 
probability of all observable ones available. The theorem, therefore, is particularly useful 
in estimating knowledge about the probability distribution of variables of interest or 
making reliable predictions where direct observations are unavailable or too complex to 
be collected. 

7.3. CSC Risk Assessment with BNs 

The risk assessment of CSCs in essence is a decision making (priority setting) process, 
in which all potential hazards/threats are identified, the associated risks analysed, 
calculated and finally presented in terms of importance. Hence, the precise theoretical 
framework of the decision theory also forms the theoretical methodology for the risk 
assessment. BNs just belong to such a decision theoretical framework, and hence can be 

used as a risk analysis method and may readily substitute bothFTA and ETA in logical 

tree analysis. It is noteworthy that the term "'important risks" in BN-based risk 

assessment will not mean those risks with high values calculated using some traditional 

risk analysis methods such as those QRA approaches, but represent those risks 
significantly contributing to the safety level of a whole CSC system. in other words, 
minor changes of the important risks may produce major influences to the system safety. 
Attention then shifts from an individual viewpoint to an entire perspective. The risk 
priority assessment, thus, depends on the combination of all risk parameters introduced 

previously (i. e. W, P, R, D) and weight contributing to the safety levels of the whole 
system. Consequently, an effective assessment can be reduced to two problems on how 

to improve the judgement accuracy of the likelihood and severity with the uncertainty 
and how to appropriately reason such dynamic weights for measuring the complex 
interactive dependence in the system. 

In the realm of risk assessment studies, sourcing the most comprehensive historical 
failure data that can accurately represent the risks estimated is very desirable. However, 

to realise such desirability is time-consuming, expensive and even unachievable in many 
circumstances. For example, solely depending on historical failure data makes it 
impossible to assess the safety and reliability of a modem CSC system, where many 
risks newly emerge from complying with the ever-increasing exploration and application 
of the latest techniques. As a result, quite a number of risk assessments require to be 

conducted by the support of human knowledge and experience. Naturally, the research 

reasonably combining subjective expert judgements and objective statistical data attracts 
more and more attention from both academic and industrial areas of safety and 
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reliability. After the introduction of the concept of subjective belief to Bayesian 
probability theory, BNs have been paid particular emphasis on the simultaneous analysis 
of expert and statistical information, which shows quite attraction to CSC risk 
assessment. 

For complex and costly risk management, it is beneficial that all relevant risks are 
estimated and analysed on an overall basis, treating and assessing them within the same 
theoretical framework. Following that, different RCOs may be consistently compared 
and the risks can be demonstrated and documented to all stakeholders. This no doubt 
requires a well-matched solution to deal with the interactive dependence among the risk 
factors. It is often the case that the interactive dependence concept is neglected in risk 
assessment studies in order to simplify the analysis that leads to the "satisfying" results. 
For the sophisticated systems like CSCs, where such negligence may cause significant 
deviations from their realistic safety requirements, more complex interactive dependence 

expressions such as network structures have to be accounted for. Employing graph and 
probability theories, BNs enable the possibility of the risk analysis with the 
characteristics of complex interactive dependence using both qualitative and quantitative 
networking methods. They essentially provide a framework for graphically representing 
the logical relationships between the risk variables using directed acyclic graphical 
structures and capturing the uncertainty in the interactive dependence between the 
variables using the concept of conditional probability. 

Proper BN structures may result in a reduction of the number of probabilities required 
initially and at evaluation time, may result in better representations of a true system. 
Poole et al. (1998) have outlined the necessary steps for the development of a well- 
designed belief network. They include the definition of the relevant variables, the 
definition of the relationship between the variables, the definition of the states of the 
variables and the definition of the conditional probabilities of the relationships. 

However, such a methodology is too generic to be applied to the current study. Aiming 
at addressing the characteristics of the risks in CSCs, a new risk assessment model is 
built up on the basis of BNs, shown in Figure 7.2. Compared to the generic framework 

mentioned above, the model has many specialties and merits in the context of risk 
assessment. They can be concluded as follows: 

1. A monitoring system to optimise the BN structure to match the reality (qualitative 
model). 

2. A novel hybrid approach of combining fuzzy possibility and Bayesian probability 
theories to attempt a more accurate probability guess of subjective expert 
judgements. 

152 



3. Two new ranking parameters generated for appropriate decision-making in 
different risk situations in which the original systems may require to be improved 
or maintained. 

4. A dynamic model for connecting root risk causes and decision support under 
uncertainties. 

All the details associated with the first and second specialties will be explained in this 
chapter and those related to the third and fourth ones will be described in the next 
chapter. All of them provide the framework of applying BNs to CSCs'risk assessment. 

Historical and experimental Prior probability distribution of risk variables 
data (quantitative network) 

Collect data and Subjective expert Data processing by fuzzy 
Bayesian inference 
(combination network): information judgement rule-based methods 0 Key nodes diagram 
0 Evaluation of system 

Define discrete states BN models safety performance 
of the variables (qualitative netmork) F 0 Risk variables ranked 

by posterior 
t Structured knowledge 

probabilities to handle 
ldentifý risk F 

tio r Variables relation 
I Safety performance 

Modification & uncertainties 
riformation variables i information Checking by d- Recommendation for 

separation safety performance 
I improvement or 

Set a research . ........................................... maintenance 
domain Operator feedback system 

RCOs Root cause analysis 
Users 

w 
by SA 

Figure 7.2. The CSCs' risk assessment model using BNs 

7 3.1 Settinz the Domain ofRisk Assessment (Generating Hyj2othesis) 

The initial research into the CSCs risk assessment with BNs is to set the domain of risk 
assessment, in which the targeting events or the variables of interest can be identified and 
locked. It may be either a kind of risk, such as a fire or transport delay in the chains, or 
one individual chain including many sub-chains and components. Setting such risk 
domains is usually difficult considering the risk characteristics, especially the interactive 
dependence. Therefore, a set of hypotheses is required to make out a specific analysis 
space. This will be particularly meaningful in collecting historical failure data and 
developing the conditional probability distributions of the risk variables later. Although 
it is true that the hypotheses may restrict the simulation of the risk assessment model of 
real systems, the restriction caused may be reduced because of the fact that in BNs, new 
variables can be allowed for the incorporation into the original model established. 
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Hypotheses can be built up using brainstorming techniques. Brainstorming is regarded as 
an essential step in the design of effective simulations of the hypotheses. Through 
brainstorming sessions, clear statements of the problems are established, the objectives 
and the desired output characteristics are designed. The techniques themselves strongly 
depend on the knowledge and expertise of the people involved in the "brainstorming" 

process, who usually are considered to be the experts in the corresponding areas. This 

research does not prescribe a standard method of brainstorming as applicable to all risk 
situations possibly occurring in CSCs. The nature and content of the brainstorming 

session will vary widely on different problems. However, it is particularly noteworthy 
that in the brainstorming process related to risk assessment, certain safety aspects may 
be overlooked or overemphasized by the experts as they might be considered "natural" 
from professional viewpoints, while to a person outside the profession they might be 

something completely new, thus causing concern. Since by definition the "brainstorming 

session" ought to be structured to encourage the unfettered thinking and participation of 
the people involved, the contribution by people with less expertise in the subject would 
be a positive one, as they might bring up safety issues, which otherwise would have been 

overlooked (Pillay and Wang, 2003a). 

7.3.2 Deflninz Risk Information Variables 

The targeted events represented and supported by hypotheses are usually not directly 

observable. Therefore, a range of information variables have to be devised which can be 

observed and which will provide sufficient details to assign the likelihood to the set of 
hypotheses. In the study of the risk assessment of CSCs, such information variables are 
usually defined as risk causes. In order to better identify the risk causes, one effective 
way is to simulate the operation of the chains in the domain developed. A HAZOP study 
has great potential in addressing this kind of requirement. It is an inductive technique 

which is an extended FMECA and which can be applied by a multidisciplinary team to 

stimulate systematic thinking for identifying potential hazards and operability problems, 
particularly in the process industries (Henley and Kumamoto, 1992). The use of the 
HAZOP study can break down the targeted event system to its identified, logical and 
manageable levels such as the sub-chain systems, component levels and risk causes for 

efficient studies, and simultaneously, further confirming that the domain of the study has 
been correctly set. 

7.3.3 Constructing a Qualitative Network Rfpresenting the Dependence ofthe Variables 

BNs provide a direct model of the real world environment rather than a model of the 

reasoning process carried out in many knowledge representation schemes, e. g. neural 
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networks. After identifying the variables of interest and their corresponding risk 
information variables, one starts confirming the relationships between them and 

constructing a qualitative network to represent all M and their dependencies. The 

knowledge about the system and intuitive understanding of the various dependencies are 
then used to construct the causal structure of the CSC system. Here the graphical 

representation becomes very handy. It permits users to directly express the fundamental, 

qualitative relationships of direct or indirect influence. 

A process for obtaining an initial graph can be along the following lines. In the first 

stage each variable can be found if it is a root cause, which is not directly influence by 

any other variables. All root causes are then assigned a node each. Because the risk 

variables are identified in an almost hierarchical way - from a higher level of sub-chains 

to the component level, the graphical structure will unavoidably have a hierarchical 

feature. Consequently, the nodes associated with root causes can be defined as level-I 

nodes at the first stage. All the variables that are directly influenced by the variables in 

the level-I nodes can be discovered and the nodes associated with them can be assigned 

and defined as level-2 nodes at the second stage. A given node at level-2 has as its 

parents all those nodes in level-I that directly influence this particular node. A set of 

parent-child links is then drawn, which now serve as edges of the graph. In the i th stage 

all the variables that are directly influenced by variables in the preceding (i-1)h level can 
be identified as the level-i nodes to be added. The parents of these nodes are identified 

and the corresponding parent-child links are given. This hierarchical process continues 

until all the variables have a place in the graph and all parent-child links are accounted 
for by edges of the graph. 

it must be stressed that the nodes in the level-i at the i th stage may simultaneously be the 
level-(i+j) nodes at the (i+fith stage. For example, node A represents a root variable, 

which directly impacts nodes B and C At the first stage, node A is a level-] node and at 

the second stage, nodes B and C belong to level-2. At the third stage, the variable 

represented by node B directly influences the variable related to node C. Therefore, the 

level-2 node C at the second stage becomes the level-3 node at the third stage. Another 

noteworthy point is that the whole process is subjective, because the parents are 
identified through the subjective judgements of the individuals constructing the graph. 
The procedure is, however, consistent because in the BN formalism, for any node, once 

the direct influences on it are known, all other potential influences are irrelevant as far as 

constructing the network is concerned (Das, 2000). The network can then augment these 

with derived relationships of indirect influences in a consistent manner. To do this, it 

must be assumed that the subjective judgements of the relationships do not lead to a 

cycle of influences. 
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7.3.4 Checking and Modi&ing the QualitatiVe Networks 

In Section 7.3.3, there are no more considerations of the accuracy in establishing the 
links and their directions. However, one cannot expect this part of modeling always to 

go smoothly and right. The initial networks may need some careful verification and 

modifications. Some links may appear superfluous and some directions may be totally 

wrong. For this purpose, the concept of d-separation has been developed and introduced 

for systematic updating of the structure of the networks to ensure that the knowledge of 

experts can reflect the real world. 

The parent-child relationships are identified by the individuals constructing the graph 

using very simple semantics, namely causality. However, this does not mean that 
"causality" is an easy concept. It may be very difficult to experience causality and 

philosophically the concept is not fully understood (Jensen, 2001) so that many humans 

cannot sensibly organize causal relationships in a knowledge domain. For example, the 

relationship between "fire" and "temperature" often leads to the debate of whether "fire" 

causes the increment of "temperature" or vice versa. "Causality" is obviously not a good 

criterion to measure the effectiveness of the models. When building the structure of BN 

models, assessors need not insist on having links going in a causal direction. On the 

other hand, they need to check its d-separation properties to ensure that the properties 

correspond to their perception of the world (Jensen, 2001). Consequently, some possible 

arguments such as whether various risks favour the less reliable design of logistics units 

or the vulnerability of the design results in the emergence of the risks, are no longer 

worrisome. Furthermore, some scientists take the point of view that the networks are not 

causal models, but models for how information may propagate between events (Jensen, 

1996). This, from a foundational viewpoint, might be valid for the way in which the 

anti-casual links exist in risk based BNs. 

D-separation (conditional independence) is a very important concept in the Bayesian 

probability theory, because not only it does assist in modifying the initial networks 
towards more effective models, but also it provides the basis of inferring the quantitative 

calculation and combining the probabilities representing uncertainty in BNs. It can be 

well explained by means of the "Bayes Ball" algorithm (Shachter, 1988). Two (sets of) 

nodes A and B are d-separated (conditionally independent) given a (set of) node(s) C if 

and only if there is no way for a ball to get from A to B in the graph, where the 

allowable/unallowable movements of the ball are shown in Figure 7.3. Hidden nodes are 

nodes whose values are not known, and are depicted as unshaded; observed ones, which 

are conditioned, are shaded. The dotted arcs indicate the directions of flow of the ball. 
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Converging Diverging Serial Serial 
connections connections connections connections 

Figure 7.3. The diagram of explaining the concept of D-separation 

Firstly consider the first column of Figure 7.3, the converging connections in BNs, in 

which two converging arrows from the nodes A and B point. to the node C. If C is hidden, 

then A and B are conditionally independent, and hence the ball does not pass through, 

which is indicated by the curved arrows; but if C is observed, then A and B become 
dependent, and the ball does pass through. Furthermore, other graphs can be analysed in 

a similar way. In the diverging or serial connections, if C is observed, all balls cannot get 
though, which indicates that A and B become conditionally independent. Use of the 

concept of D-separation to check the accuracy of a qualitative BN in presenting a 
realistic situation can be demonstrated in the following example. 

Suppose the engine of a containership does not work. The engineers on board analyze 
two potential reasons - the engine breakdown or lack of fuel. To disclose the truth, the 

storage of the fuel naturally requires to be checked using two parameters - the record of 
fuel loaded at the last calling port and fuel tank gauge reading. For this special case, an 
initial BN is built up as shown in Figure 7.4a. Now use the d-separation concept to verify 
the network. The relationship between nodes B and C is first investigated. Node A is 

observed (the engine does not work). If node C is found with a new piece of evidence, 
such as no fuel in the tank, then node B will be affected with a lower probability of 
breakdown. Tberefore, they are dependent and suit the concept of d-separation. The links 

and directions are sound. However, when a similar analysis is employed to investigate 

the relationship between nodes D and E, the result is different. With the evidence of 
node C, the dependent connection between nodes D and E cannot be constructed, which 
means that there is something wrong with the links and directions. Further careful 
analysis will assist in identifying their right family relationship shown in Figure 7.4b, in 

which node C is the parent of node E because the situation of the fuel in the tank decides 

the fuel tank gauge reading. 
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Figure 7.4. An example of using D-separation to check qualitative BNs 

7.3.5 Defining the Discrete States ofRisk Variables 

A random risk variable representing an uncertain quantity in a BN requires a finite 

number of possible values or states. If the variable is denoted with an uppercase letter 

(X) and the specific states that the variable might take on are denoted with lowercase 

letters <x>, then the variable states must satisfy the following two criteria in order to be 

admissible under the BN formalism: 

'Completeness of states. For any given RVX, the set of variable states {<xi>) 

must be probabilistically complete, that is, LN< x, >) = 1, for all i. 

Mutually exclusive states. For any given RVX, its variable states <xj> must be 

mutually exclusive (no overlapping between the member set states), which can 
be described as P(X= <xj> orX= <x, >) = P(X= <xj>) + P(X= <xj>) 

An additional criterion in analyzing the states of M is to require them to be in discrete 

states'in order to simplify the practical operations of using BNs to risk assessment, 
although continuous-state variables are certainly allowed by the BN mechanism in 

theory. This may be considered as a drawback of BNs, but neither other risk analysis 
methods such as ETA or ETA can offer any better alternatives. A consequence of the 
discretisation is that the result of BNs may be sensitive to the selected discretisation, and 
that the calculations and propagations involved in the evaluation of BNs grow 
exponentially in the number of states of the nodes. 

Although variables can be assigned to various states according to their individual 

characteristics, it is an incontestable fact that in 4 BN for assessing the risk of CSCs, 

many nodes have a common feature, namely risk-based. The criteria used to choose the 
risk-based nodes are that their conditions can be described using safety degrees and the 
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use of the safety degree expressions can simultaneously facilitate the simplification and 
application of risk assessment. Consequently, it is possible to uniformly define the risk- 
based nodes in a BN constructed using two exclusive states, "Soundness" and 
"Weakness". The "Soundness" represents the probability of being safe of the related 
nodes and contrarily, the "Weakness" responds to the probability of being unsafe of the 

corresponding nodes. Using such states in a risk-related BN is an original and reasonable 
attempt. Previous work in the risk assessment of using BNs has indicated that the most 
popular states used to define the corresponding risk-based nodes are developed on the 
basis of the frequency of event occurrence. This is possibly caused by the fact that the 
"likelihood" nature of the event occurrence frequency well matches the probability 
requirements in BNs. However, the unilateral consideration of the occurrence likelihood 

as the single criterion of measuring the risk priority could discount the accuracy of 
making correct decisions. 

7 3.6 Determining the Prior Probabilities ofthe Risk Variables 

Once the states of the risk factors are identified, the attention shifts to determining the 

prior probabilities for specifying the strengths of the direct influences among them. To 

provide an ordering, the root nodes (the nodes in level-I described in Section 7.3.3) are 
initially serialized as X1, X2, ..., Xi. After all the variables in level-I are exhausted, the 

nodes in level-2 are taken up from X1+1 to Xj. Such a hierarchy is proceeded down until a 
complete ordering of the form X1, X2, ..., X, is obtained. Given any node X., let PX. 
denote its parents. The prior probabilities are only required locally to be assigned to the 
bunch of PX. ->X. (parents-), child) links as conditional probabilities P(X. I PXm). For 

consistency with the axioms of probability one has to ensure that these probabilities 
address the relation associated with the "Completeness ofStates". 

The network formalism then provides the JPDs over all the variables through the 

relation, which is called the chain rule in BNs: P(X,,. Xn) ý-- rI P(X,, IPX,, ). These 
m 

joint probabilities provide the quantitative assessment of the problem domain that has 
been modelled. In fact, on the basis of the joint probabilities, any P(SI I S2), where S, 

and S2 individually represent a conjunction of a number of instantiated variables, can be 
inferred. 

However, it is often not straightforward to obtain P(X. I PX. ). The Bayesian approach 
requires much information in the form of prior probabilities. In principle, most values 
could be acquired through failure database or experimentation. However, the 

experiments may be difficult to design and conduct correctly and historical data is often 
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not specified enough for the requirements of the Bayesian approach. In practice, 
therefore, it is often necessary and important to rely on subjective probabilities provided 
by expert judgments. Although probability is difficult to define beyond what one might 
intuitively understand of the term "probable" (likelihood or frequency), the subjective 
definition can interpret probability as a rational expression of an individual's degree of 
belief. One argument about this from frequentists is to question the objectivity of the 

value of assessment because it will be largely impossible to give a same degree-of-belief 
interpretation for different experts facing a certain problem. However, this does not 
mean that the classical or frequentist approaches can provide compelling evidence for 

the objectivity in the risk assessment. Actually, most practical applications of probability 
entail some form of subjective input. The classical and frequentist notions of probability 
require a subjective choice of null hypothesis and significant levels (Ludwig, 1996), 
"plausible symmetries" and "repeated iterations" (Smith, 1984). The traditional QRA is 

therefore no more objective than a BN approach. On the other hand, the real strength of 
one-beautiful risk assessment method, as in science, lies not in its objectivity but rather 
in the way it exposes subjective input (Hayes, 1998). 

Because subjective probabilities (beliefs) are based on informed guesses, serious 
deviations could happen if they are accurately expressed with precise . numbers. The 
difficulty of obtaining point estimates of probabilities in general has been reported 
(Kahneman et al., 1985; Zimmer, 1983). Moreover, it has been discovered (Zimmer, 
1986) that linguistic expressions of probabilistic uncertainty were more accurate than 

numerical values in estimating the likelihood of multiple attributes through experimental 
studies. FST has been widely used to model such subjective linguistic variables and deal 

with discrete problems using ftizzy numbers, which more faithfully reflect expert 
opinion. Actually, a number of psychometric studies have evaluated the claim that fuzzy 

sets may be used to model qualitative probabilities with generally positive conclusions. 
Yet, conventional BNs can only employ probability expressed as real numbers. To 

address this issue, the following context presents a novel extension of Bayesian 

probability approach, which allows subjective probabilities to be appropriately expressed 
using the combination of fuzzy logic and D-S theory. A novel framework for providing 
logical prior subjective belief degrees is, therefore, developed based on the fuzzy logic 

and ER approaches in Section 5.2. It includes the five steps as follows*: 

Step 1. Identify influence parameters of risk variables with subjective input. 
Step 2. Deflne the linguistic terms and fuzzy memberships of all influence parameters. 

0 Possible major arguments might come from Steps 3 and 5. The problems on how to effectively assess the 
influence parameters under multi-state parent conditions and how to ensure the accuracy of subjective 
probabilities and validate the reliability of transformation functions can be finiber discussed and dealt with 
in Section 7.3.8 and Chapter 8. 
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Step 3. Assess the influence parameters based on multi-state parents and multiple 
expert judgements. 
Step 4. Calculate the possibilities of the risk variables using the FRB-ER approaches. 
Step 5. Transform the fuzzy possibilities to subjective probabilities using deffiazified 

methods. 

Taking the prior probability analysis of risk-based variables as an example, the 
framework can be demonstrated using Figure 7.5 in the following context. 

ObservationMudgements 
Maxmin fuzzy op,: er: at: iion 

w 
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Brainstorming L, (' Parent nodes 

ObservationsrJudgements 

Fuzzy safety sets 

Defuzzification 
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FD-1 rR7 F"P7 [2ayes' rule 

Fuzzy safety sets 

Child nodes 

Figure 7.5. An approach to assign conditional probabilities to risk-based nodes 

Observing Figure 7.5, it can be shown that it is usually difficult to directly obtain the 

prior probabilities of the parent and child nodes using Bayesian probability theory. Thus, 
fuzzy possibility theory is incorporated into the estimate of the prior subjective 

probabilities of nodes in BNs. Having studied the techniques and methods described in 

Chapters 5 and 6, the influence parameters of risk variables, namely junior risk 
parameters can be identified as "W', "Y', "R" and "Y', whose indications, linguistic 

terms and membership functions have been defined and presented in Section 5.2.2. Such 

risk parameters can be assessed by multiple experts with/without parent conditions and 
then used to calculate fuzzy safety estimations using the FRB-ER approach. The safety 

estimations are deftizzified to obtain the safety belief degrees distributed to the 
"Soundness" state using the defuzzification method introduced in Section 5.2.6. Here, all 
observations/judgements from multiple resources can be synthesiscd to avoid the loss of 
important information. 
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7.3.7 Performiniz the Networks for Risk Diagnosis and Prediction 

Once the prior probabilities are appropriately distributed, the next task is to analyse the 
network constructed to obtain the posterior probabilities of the interested nodes. The 

objective of using BNs is to make the right decision depending on the corresponding 
posterior probabilities, which can also be explained as the inference of unobservable 
situations using observable reality. In the context of risk assessment, inferring the 

posterior probabilities is called risk prediction and diagnosis. Specially, performing a 
risk-based BN is concerned with revising probabilities for a set of risk variables (called 

the unobserved risk query) when an intervention fixes the values of another set of risk 
variables (called observed risk evidence). Any risk variables in the network can serve as 
a query or a piece of evidence under different circumstances, thus allowing forward 
inference from causes to effects (risk prediction) or backward inference from effects to 

causes (risk diagnosis). The simplest type of intervention is where a single risk variable 
is forced to take on a fixed value. The posterior probabilities for the query variables 
provide the estimates of the casual effects of the evidence. 

The state of a risk evidence variable is assumed to be known with certainty and is often 
termed as an instantiation of the variable. Prior to instantiation, the propagation process 
yields the marginal distributions (pre-posterior analysis), whereas the query posterior 
probabilities are calculated with the instantiation of evidence. The magnitude of an 
effect from an intervention may be viewed as the change from the pre-posterior to 

posterior probabilities of the query for evidence in terms of their marginal distributions. 

For a binary variable, the effect can be expressed as 
IP(Query= YeýEvidenco - P(Query= Yes)l. 

Conceptually, the pre-posterior analysis of a query variable Qj and its posterior 
distribution given evidence E, can be found by exploiting the proportionality 

relationship, P(Qj JE) oc P(Qj, Ei) , in which, the joint probability can be computed 

using the chain rule. However, the required effort of this procedure increases 

exponentially with the number of variables, which may make the results computationally 
intensive. Thus, effective inference assisting tools are necessary to perform 
computations in any work with a large number of risk variables. One of the most popular 
inference tools is Hugin software (Andersen et aL, 1990). 

The Hugin software comes with an easy to use graphical user interface (GUI) and 
provides an applicable programmer's interface (API), and hence, it can be used as a 
robust BN programming environment for modelling and inference. The software allows 
for interactive creation of the network, maintenance of the knowledge bases and 
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incorporates efficient calculating algorithms such as a junction-tree approach (Jensen et 
aL, 1990) to support the execution of probability calculations. In fact, the adoption of the 
BN approach does not necessarily require the users to have a Bayesian orientation 
toward statistical analysis (Anderson and Lenz, 2001). While Hugin makes it easy to key 

the input and read the output of the network by providing a graphical representation of 
the probabilities of each node as a bar graph, the general strategy of using a Hugin BN 

model must be obeyed. It can be given as follows (Wang and Trbojevic, 2006): 

" Initially, the nodes of BNs must be mapped out (enter evidence for some 
variables). 

" Secondly, the states of the nodes must be defined (observe the effect of the 

evidence on other variables). 

" Thirdly, the probabilities of each state must be determined (explain the new 
probabilities). 

In order to explain the network inference process in a CSC setting, a simplified example 
(Figure 7.6) is given to represent a generic scenario for a queuing problem in container 
terminals. Most importantly, the aim of this scenario is to clarify how a BN actually 
infers and to demonstrate how the Hugin software can be incorporated and assist in 

simplifying the calculations and making appropriate decisions. 

P(TFSC = Yes) - 0.5 P(TMCT a Yes) - 0.5 

Too few straddle Too many container 
carriers (rFSC) trucks (rMCT) 

P(AQ - YesITFSC - Yes, 
TMCT Yes) - 0.05 
P(AQ - YesITFSC - Yes, 
TMCT No) = 0.35 
P(AQ - YesjTFSC - No, 
TMCT Yes) z 0.35 Acceptable 
P(AQ = Yesi TFSC m No, queuing (AQ) 
TMCT No) - 0.9 

Figure 7.6. A BN of analysing a queuing problem in container terminal s 

Considering the model from the viewpoint of "pure" queuing, the productivity of 
straddle carriers will not affect the quantity of container trucks, unless the queuing 

situations are observed. Observing Figure 7.6, the prior probabilities distributed to the 

variables of "TFSC" and "TMCr' indicate that the situations associated with such 
events are totally vague so that they provide almost no assistance in making decisions. 

The conditional probabilities associated with variable "AQ" are somewhat different from 
the ones associated with "TFSC" and "TMCI" in nature. This binary node has two 
binary parents and consequently, there are 8 (2 3) probabilities required and listed. Such 
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values in the figure suggest that the probability of "AQ = Yes" ranges from unlikely (5%) 
increasingly to very likely (90%) when conditions change. Such a situation is obviously 
not beneficial for decision makers to understand the nature of "AQ", especially with the 

emergence of more parents. An unconditional probability of "AQ" must be obtained 

using the values of these conditional probabilities. The calculation of the unconditional 

probability is called marginal probability distributions. To compute marginal probability, 
the corresponding JPT is required. According to the chain rule in BNs, the JPT of this 

case can be obtained in Table 7.1. 

Table 7.1. The joint probability table of the variables "TFSC", "TMCr' and "AQ" 

TFSC = Yes TFSC = No AQ marginal 
AQ TMCT = Yes TMCT = No TMCT = Yes TMCT = No probability 
Yes 0.05xO. 5xO. 5 0.35xO. 5xO. 5 0.35xO. 5xO. 5 0.9xO. 5xO. 5 0.4125 

No 0.95xO. 5xO. 5 0.65xO. 5xO. 5 0.65xO. 5xO. 5 O. IxO. 5xO. 5 0.5875 

The process of computing "AQ" marginal probabilities is called pre-posterior analysis. 
Given such an analysis, the BN can now be used to conduct various types of risk 

analysis, including risk diagnosis and prediction analysis. 

The risk diagnosis analysis is to compute the probabilities of the interested causes in the 
light of observable evidence of other causes and/or effects. In this case, it can be 

explained as the calculations of P(TFSC I AQ), P(TMCT I AQ), P(TFSC I TMCT, AQ) 

and P(TMCT I TFSC, A Q). The Bayes' foundational rule can be used in the calculations. 
For example, 

P(TFSC = Yes AQ= Yes) = 
P(A Q= Yes, TFSC = Yes) 

P(AQ = Yes) 
ZP(A Q= Yes, TFSC = Yes, TMCT = Yes) 

TMCT=Yes 

P(AQ = Yes) 
(0.05 x 0.5 x 0.5) + (0.35 x 0.5 x 0.5) 

0.4125 

= 0.2424 

All the other calculations can be carried out in a similar way. 

The risk prediction analysis is to calculate the probabilities of interested cffects in the 
light of observable evidence of causes and/or other effects. Here, the risk prediction 

analysis in Us case means attempting to obtain P(AQ I TFSQ and P(AQ I TMC7). For 

example, 
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P(AQ = Yes TMCT = Yes) = 
P(A Q= Yes, TMCT = Yes) 

P(TMCT = Yes) 
(0.05 x 0.5 x 0.5) + (0.35 x 0.5 x 0.5) 

(0.05 x 0.5 x 0.5) + (0.95 x 0.5 x 0.5) + (0.35 x 0.5 x 0.5) + (0.65 x 0.5 x 0.5) 
0.2 

However, the nature of "TMCT' is ftiz-zy and its definition is relative so that it is usually 
difficult to be directly observed. Therefore, a new risk variable "Sound Road Surface 

(SRS)" is incorporated to provide evidence for "TMCI". The real aim of the 
incorporation lies in not repeating the risk prediction analysis, but demonstrating how 

BNs can continue performing themselves when new nodes (evidence) enter into the 

model without significantly changing the original constructed model. The new BN after 
the entry of the node SRS is shown in Figure 7.7. 

P(TFSC - Yes) = 0.5 P(TMCT - Yes) - 0.5 

Too few straddle Too many container 
carriers (TFSC) C trucks (TMCT) 

P(AQ-YesITFSC=Yes, P(SRS m Yesl TMCT - Yes) - 0.15 
TMCT - Yes) - 0,05 P(SRS - YesITMCT - No) a 0.9 
P(A Q- Yesl TFSC = Yes, 
TMCT - No) = 0.35 
P(AQ = YesITFSC - No, 

s 
qu 

TMCT - Yes) - 0.35 

CAcecueptable 
Sound road urface 

P(AQ z Yesl TFSC , No, queuing (AQ) (SRS) 
TMCT = NO) z 0.9 

Figure 7.7. The updated BN when new nodes are incorporated 

In the new BN model, the situation of "SRS" is obviously easy to be observed and the 

node 11SRS" is closely related to the variable "TMCI". Therefore, when the evidence is 

entered into "SRY', "TMCI" can obtain certain information for further predicting the 

probability of "AT. If the "SRY' observed is in the state "Yes", then the new probability 
distribution of "TMCT" can be calculated using a risk diagnosis analysis. 

P(TMCT= YeISRS= Yes) = 
P(SRS = Yeý TMCT= Yes) x P(TMCT= Yes) 

P(SRS = Yes) 

P(SRS = Yeý TMCT= Yes) x P(TMCT= Yes) 
p(SRs= ye4TMCT= Yes) x P(TMCT= Yes) +P(SRS= NdTMCT= No) x P(TMCT= No) 

0.15x0.5 
0.15x0.5+0.9x0.5 

= 0.1429 
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The probability of P(TMCT- Yes) reduces from 50% to 14.29%. Such a change will no 
doubt all'ect the probability of P(AQ). 

P(A Q= Yes) = P(A Q= Yes I TMCT = Yes, TFSC = Yes) x P(TMCT = Yes) x 
P(TFSC' = Yes) + P(A Q= Yes TMCT = Yes, TFS( No) x P(7M('T = Yes) x 
P(TFSC = No) + P(A Q= Yes TMCT = No, TFSC Yes) x P(TMC7' = No) x 
P(TFSC = Yes) + P((A Q= Yes I TA4CT = No, TFSC = No) x P(7Af('7' = No) x 
P(TFSC = No) = 0.0 5x0.142 9x0.5 + 0.3 5x0.142 9x0.5 + 0.3 5x0.9 5 71 x 0.5 
0.9 x 0.8571 x 0.5 = 0.5643 

Consequently, it can be predicted that if the road surface is sound. then the probability of 
queuing being acceptable will be increased from 0.4125 to 0.5643. 

It is obvious that even for such four binary variables, the risk diagnosis and prediction 

analyses have been quite complex and time-consuming. Thus, the Hugin sol'tware wIII 
be applied to compare how effectively it can assist in the simplification ofthc problem. 
For example, the risk prediction analysis given that "SRV' is true is provided in Figure 

7.8. 

queuing 
........ ... . .......... . ............ ......................................................... ........... . ............................................................ .. 

Rc 

. 
D, Iý,, ") : 1, : 111,1 TF--I 

-, o ou ýe5 
50 00 no 

ToomanycAacel truas TO'Ai 

14 29 yeýs 
85 71 no 

. ýME 

..... ..... ............. - 

=110.4 3 

Figure 7.8. The risk prediction analysis of"'AQ" given -SRS Yes" 

7.3.8SA 

The final step is to evaluate the findings and test whether the results and the models call 
meet the initial objectives or not. SA is the process of' examining the assumptions and 
parameters of' the models and checking the robustness of' the solution to those 
assumptions. it can be described as "what if analysis" by academics wlicrc the 
implication ol'alternative conditions to the assumptions is investigated (Sarnsoll. 1988). 
There are two kinds ofSA proposed in this study, which are individually related to single 
and multiple risk input prior probability changes. The single risk input related SA assists 

166 



in this process by slightly changing the probabilities of the risk input nodes in order to 

observe the state that the model responds to these changes so as to judge the accuracy of 
the model applied to risk assessment. The range of the lowest and highest possible 
changing values that each input node can take can be subjectively chosen and the values 
are considered as the thresholds of the slight probability variation of the risk input nodes. 
The SA associated with multiple risk input prior probability changes is not used for the 

validation of the model established. It mainly functions on the ranking and prioritization 
of those key risk factors of influencing the interest node(s) of the research. This will be 

analysed in the next chapter in detail. 

SA is carried out to find the errors made during the risk assessment process. The errors 
are usually associated with the database, the assessors' probabilistic judgements, the 

modelling effort and the risk prioritising process itself. 

7.4. A Case Study of the Terrorism Threat in CSCs 

As described previously, there is widespread concern in the international society that a 
terrorism organisation capable of the suicide hijackings of airliners could readily adapt 
these capabilities to major shipping targets. However, maritime security experts believe 

that the biggest threat comes not from terrorists taking direct control of ships, but from 

adapting a standard shipping container as a weapon. It is not difficult to imagine that in 

the worst case scenario, terrorists could load a nuclear device, most likely a "dirty bomb" 

made of nuclear material wrapped around conventional explosives, onto a cargo ship and 
detonate it in a major port, especially under the cover of containers which with the 

circling quantity of around 350 million can be flowing to any comer in the globe. 

Consequently, * maritime security and its extension to CSCs attract unprecedented 

attention from international organizations and national authorities to industry, academics 

and even the public. Since the ISPS code was issued by the IMO in 2002, the American 

government has published two container transport security regulations, CSI and C-TPAT 
(OECD, 2003). Recently, due to the geopolitical climate requirement the EU pushed an 
urgent security regulation to expand the ISPS to further discussion, which aims at 
ensuring the highest possible levels of security for seamen, ships, ports and the whole 
intermodal transport chains (EU, 2003). 

Some risk assessment and management experts have attempted to use traditional risk 
assessment approaches to deal with the terrorism threats to CSCs. Unfortunately, many 
of such approaches suffer two difficulties. One is related to the quantitative assessment 
of the risks, more precisely speaking, the challenge lies in failing to obtain information 
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in an appropriate form (combining the subjective and objective data) suitable as input to 

a QRA. The other is associated with the assessment feasibility and flexibility aiming at 
dealing with dynamic situations in the chains. Assessment tools are required to have the 

capability of responding to the terrorism threats (emergency) instantly or at least in a 
short time constraint and considering (admitting and deleting) different risk information 
(observations) or parameters to a well suited variety of chains facing different terrorism 
threats. This case study, using the BN-based risk assessment methodology developed in 
Section 7.3, can deal with such problems and provide a significant contribution in 

assisting people to better understand the risks and make appropriate anti-terrorism 
decisions. BNs, with their foundational inference rule (Bayes' theorem) and modem 
computing software (i. e. Hugin) make it possible to instantly and dynamically assess the 
terrorism threats in a friendly interface. Following on from this case is an organization of 
eight steps closely connected with the methodology. 

Step 1: The domain ofthe terrorism risk research 
The interest of this study is focused on one kind of risk, terrorism attacks on physical 
cargo flows of an assumed targeting CSC in its operational process. Therefore, the lines 

to constrain the research scope are clearly drawn. Firstly, the interest of focus is not a 

whole supply chain. Secondly, the risk is related to the physical cargo flow of CSCs, 

then those terrorism attacks on the other flows such as the information flow are beyond 

the research scope. Thirdly, the study only cares about the attacks or threats in the 

operational process. Finally, any influence resulting from terrorism in economic and 
managerial'aspects will not be admitted here. 

Step 2: The risk variables identification 
To identify the risk variables related to the tefforism threats in the CSC, one analysis of 
the operational procedure of a container cargo physical flow is required. The nonnal 
functioning of the procedure has been reviewed in Section 2.2.1. 

A IL4ZOP team formulated can break the process down into appropriate subsystems 
(nodes). In this study, they are associated with cargo, people, ship, -port and inland 

transportation (See Section 3.4.2). From the viewpoint of security, the five nodes will be 
further analysed to identify the corresponding risk variables in Table 7.2. 

Step 3: Construct a qualitative network 
Having analysed the risk factors in the CSC with their causes and effects, a qualitative 
BN representing the terrorism threats in the CSC can be constructed. Firstly, the root 
causes in the scenario are identified from Step 2. They include "Intelligence networks", 
"Checking and supervision", "External", "Internal", "Missile" and "Accessibility-, 

which are not influenced by other risk factors. These root causes are then assigned a node 
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Table 7.2. The risk factors related to terrorism threats and their causes and results 

Risk factors Causes, effects and their relationships 
Cargo The safety degree of "Cargo" is directly decided by two causes 

"Intelligence networks" and "Checking and supervision". It will affect 
the "Containership", "Port" and "Inland transportation". 

People The safety degree of "People" is influenced by "External" and "Intem; P 
persons. It can affect the safety of "Containership", "Port" and 'ýInland 
transportati n". 

Containership The terrorism threats related to "Containership" will mainly come from 
two causes: attacking "Bulkhead" and "Engine room". Furthermore, 
terrorists will use "Missiles" or "haza dous cargo" to carry out the 
attacks on "Bulkhead" and the attacks on "Engine room" may be 
im lemented by terrorists' hijacking actions. 

Port The combination of "Cargo" and "People" as well as "Containership" 
can be used to attack valuable port facilities on "Terminal". 
"Containership" can also take suicide actions to block its "Channel". 
"Inland transportation" can attack the "Port" directly. 

Inland The "Inland transportation" depends upon its "Accessibility", "Cargo" 
transportation carried and the "People" driving it. 
Supply chain The risk factors "Containership", "Port" and "Inland transportation" 

to ether influence the safety of "Supply chain". 

each, and are considered as the level-I nodes. Secondly, in Table 7.2, the risk factors, 

which are directly influenced by the root causes, aie identified as "Cargo", "People", 

"Bulkhead" and "Inland transportation". They can be assigned as the level-2 nodes. A 

series of links are drawn from the level-I nodes to the level-2 nodes regarding the direct 

influence relationships. Thirdly, such a process continues until the risk factor "Supply 

chain" is assigned a node and the links from the nodes "Containership", "Port" and 
"Inland transportation" are connected. Finally, the qualitative BN representing the 

terrorism threats in the CSC is constructed in Figure 7.9. 

Figure 7.9. The original qualitative BN representing the terrorism threats in the CSC 
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Step 4: Check and modify the qualitative network 
Using the concept of d-separation to check the network built in Figure 7.9, it is necessary 
to investigate one node after another starting from the level-I nodes. Having given an 
example to demonstrate the practical usage of the concept in checking the accuracy of 
the network in the methodology, each node with its links in Figure 7.9 is carefully 
analysed. For example, if the node "Cargo" is given evidence, then the change of the 

probability distribution of the node "Intelligence network" will affect the node 
"Checking and supervision" but not affect the nodes "Bulkhead", "Terminal" and 
"Inland transportation". Such analysis can go smoothly on until the investigation of the 

nodes "Terminal", "Bulkhead" and "Inland transportation" starts. Such three nodes have 

a common characteristic, conditional on the nodes "Cargo" and "People". Given 

evidence to the nodes, the probability distribution changes of the other parent nodes of 
the three nodes, such as "Missile" and "Accessibility" will directly affect neither the 

probability of the node "Cargo" nor the one of "People" but the combination of the 

nodes. Therefore a new node, namely "Car-ple", is incorporated to deal with such a 
situation, shown in Figure 7.10 (the new node is also called "intermediate variable" in 

BNs). This can be explained using the fact that in normal situations, "Cargo" seldom has 

the capability to complete a terrorism attack without the assistance of "People". 

Figure 7.10. The new qualitative network checked using the D-separation concept 

Step 5: Define the states ofthe nodes 
This step describes the actual states of the nodes in the network established for the 
analysis of the terrorism threat associated with the CSC. The objective of defining the 
states of the nodes is to appropriately assign the prior probabilities. In the process, the 
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modelling aspects of the nodes and the qualitative description of the network through the 

causal relationship among the variables can also be further consolidated. 

The network presented in Figure 7.10 aims at describing the terrorism risks. The nodes 
in the network can thereby only be explained under the circumstance of terrorism. In 

other words, the nodes and network can only be properly modelled and understood when 
a terrorism threat emerges or prepares to emerge. Thus, the threat or attempt of the threat 

will become the premise for defining the actual states of the nodes. 

Assuming that terrorists use/attempt to use "Cargo" to attack the CSC, two potential 
factors may counteract their actions or change their decision. They are "Intelligence 

network" and "Checking and supervision7'. If the "Intelligence network7' is consummate, 
the success rate of the terrorism attacks using "Cargo" will be very low. Contrarily, the 
likelihood of using "Cargo" to attack the CSC will significantly increase when the 
"Intelligence network7 is flawed. Thus the "Intelligence network" is modelled as having 

the states "Flawless" and "Flawed". Similarly, "Checking and supervision" can be 

modeled into two states: "Checked" and "Ignored". The safety level of the node 
"People" is affected by the risks of external terrorists' direct attacks and the ones from 
internal terrorists under the guise of employees. The external people cafi be categorized 
into two types, "Friendly" and "Hostile" in the chain. The internal persons may consist 
of normal employees and some terrorists with spurious identification as working staff, 
and thus, can be defined as having two states, "Immune" to terrorists and "Infective" by 

terrorists. The marriage of "Cargo" and "People", "Car-ple", forms the most possible 
threat to the CSC. It may be used to attack the "Bulkhead" of "Containership" when 
"Internal" terrorists plan the position of the containers with hazardous "Cargo" near the 
bulkheads chosen between two compartments. It may be used to attack the valuable 
facilities on container "Terminal" under the assistance of either "External" or "Internal" 

terrorists. It may also be used to attack "Inland transportation" or more likely to use its 
flexibility and accessibility to attack any vulnerable places targeted by terrorists. 
Consequently, the "Bulkhead" can be assigned two states, "Attacked" and "Protected". 
The "Accessibility" to a targeted valuable place can have two states, "Likely" and 
"Unlikely". The "Bulkhead" may be stroked by direct "Missile" attacks, which are 
considered in two conditions, "Yes" and "No". The sinking of the "Bulkhead"-damaged 

"Containership" or the suicide-taken "Containership" controlled by terrorists 
"Hijacking" the "Engine roonf' can threat the "Channel". Thus, the states of the node 
"Engine room7' are "Hijacked" and "Defended". According to the criteria given in 
Section 7.3-5, all other nodes in the network, "Cargo", "People", "Car-ple", 
"Containership", "Terminal" and "Channel", "Porf', "Inland transportation" and "Supply 

chain" are identified as the risk-based nodes with the nature of threats. They can be 
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therefore unifornily defined to have two states, "Soundness" and "Weaknese'. 

Step 6: Assign prior unconditional and conditional probability distributions 
This step assigns prior probability distributions to all the nodes and their states 
introduced above. The prior probabilities of some nodes are obtained based on available 
data or information. However, for the others (i. e. the risk-based nodes) whose prior 
probabilities cannot be directly obtained, the subjective expert judgments using the fuzzy 
logic and ER approaches are employed. For example, the basis of the assigned 
probability distributions of the nodes "Intelligence network7, "Checking and 
supervision", "Engine room" and "Cargo" representing the two different groups above 
can be stated as follows. For the other nodes, the prior probabilities can be analysed in a 
similar way and presented in Appendix 5. 

Intelligence network: Currently some 90 warships from countries including the UK, 
Germany, France, Australia, Italy, Japan and Bahrain - under the command of the US 

Fifth Fleet - are patrolling the waters around the Arabian Peninsula and off the coasts of 
Pakistan and East Africa for cutting off the most likely escape route and gatheri 

, 
ng 

intelligence on the maritime-based logistics network believed to have been developed by 

terrorists (Felsted and Odell, 2002). This display of naval firepower is concentrated on 
just one facet of al-Qaeda! s use of the shipping industry. Western intelligence agencies 
suspect the maritime capabilities of the terrorist organisation extend much further. From 

the viewpoint of securing CSCs, the robust degree of the intelligence networks is not 
perfect. This point can be supported by the facts that a) the phenomenon of stowaways 

and drug smuggling widely exists; b) the control of the vessels owned by terrorism 

organizations is not effective (even the guessing scope of the vessel quantity is between 
10 and 80) (Felsted and Odell, 2002). Thus the probability distribution of the node 
"Intelligence network! ' can be subjectively judged as "Flawless" with 0.8 credibility and 
"Flawed" with 0.2 belief degree. 

Checking and Supervision: Although the American government has attempted to 

supervise containers' contents and integrity as far upstream in a supply chain as possible 
in order to reduce the risks probably emerging in the downstream in the chains using the 
two regulations, CSI and C-TPAT, in most cases in current practical operations 

containers are only randomly checked, either physically or using scanners, by import and 
expert port Customs with a 2-3 percent checking rate individually (normally, import 

checking is stricter than the export one). Thus, it is reasonable to assume the 

probabilities of "Checking and supervision" as "Checked" with 0.05 probability (the 

sum of import and export checking rates) and "Ignored" with 0.95 confidence degree. 
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Engine room: Compared to the direct attacks on vessels, maritime security experts 
claim that it is possible for terrorists to imitate/incorporate/employ pirates for hijacking 

ships to hit other objectives, either ports or vessels. Thus, maritime terrorism alert 
can/should be lessoned from piracy reports published by the International Maritime 
Bureau (IMB). The IMB annual piracy report for 2002 states that in total 370 attacks on 
shipping at sea worldwide - up from 335 in 2001, there are 25 incidents up from 16 ones 
in hijackings, but many involved smaller boats, such as tugs, barges and fishing boats. 
Given this data and considering the amount of containerships sailing in the world, the 

probability, P(Engine room = HUacked I People = Soundness) =0 can be reasonably 
inferred. However, the situation may be significantly altered if the "People" is 

vulnerable. Experts believe that the probability P(Engine room" = Hyacked I People 
Weakness) can at least increase 20 percent up from 0. 

Cargo: The prior conditional probability distributions require to be acquired using 
subjective expert judgements. Differing from the sub ective estimations discussed above, j 

the subjective probabilities associated with "Cargo" are not straightforward to be judged 
directly, especially when its states consist of many sub-parameters and are conditioned 
on two parent nodes simultaneously. Thus, the five-step methodology introduced in 
Section 7.3.6 is used. 

4 

Given the "Flawless" state of the node "Intelligence network" and the "Checked" state 
of the node "Check and supervision", the observations related to "Cargo" can be 
described using fuzzy membership functions as follows: W is a triangular distribution 
defined by a most likelihood at 0.15, with lower and upper least likelihood at 0 and 0.3; 
D is a single deterministic value with 100% certainty at 0.1; R is a trapezoidal 
distribution defined by a most likely range between 0.2 to 0.3, with lower and upper 
least likelihood at 0.1 and 0.4; P is a closed interval defined by an equally likely range 
between 0.2 to 0.5. Consequently, using the FRB-ER approach, the possiblistic safety 
distribution of "Cargo" given the conditions can be calculated as Poss(Cargo I 
intelligence network = Flawless, Check and supervision = Checked) = (0, "Poor", 0, 
"Fair", 0.084, "Average", 0.916, "Good"). Based on Equations (5.6) and (5.7), the 
conditional probability distributions of "Cargo" can be obtained by defuzzifying and 
transforming the conditional possibilistic safety degrees as follows: 

P(Cargo soundness I Intelligence network = Flawless, Check and supervision 
checked) 0.084 x 0.5926 + 0.916 xI=0.96. 
P(Cargo weakness I Intelligence network = Flawless, Check and supervision 
checked) I-0.96 = 0.04. 

In a similar way, the CPT of the node "Cargo" can be computed and shown in Table 7.3. 
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Table 7.3. The prior conditional probabilities of "Cargo" 

Intelligence networks Flawless Flawed 
Checking and 

e isio rvi n 
i -eýision 

Cargo 

Checked Ignored Checked Ignored 

Soundness 0.96 0.44 0.48 0.02 
Weakness 0.04 0.56 0.52 0.98 

Step 7: Peýfbrni analysis qf the network for the posterior probability distributions and 
conduct risk diagnosis and prediction 
The evaluation of the probability of the CSC attacked by terrorists needs complex and 

special calculation and techniques. Thus, the analysis of the BN constructed in Figure 
7.10, with all prior conditional probability distributions assigned above, is perfon-ned 

with the assistance of the Hugin software, as shown in Figure 7.11. 
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Figure 7.11. The pre-posterior probability distributions using Hugin software 

In the "run" mode of the software, the initial unobservable pre I -posterior probability of 
the terrorism risks on the CSC is obtained as "Soundness" with 0.7045 belief degree and 
"Weakness" with 0.2955 creditability. Given such an original risk assessment model, 

any risk diagnosis and prediction in various situations can be inferred. Assume that the 

condition related to "Internal" people alters and the evidence on the state "Infective" is 
obtained, as some employees are found to have a close relationship with a terrorism 

organization. Then the safety level of "Supply chain" can be Immediately updated and 

reassessed as "Soundness" with 0.5915 credibility in Figure 7.12 and a new security 
plan can be made to ensure the exemption of the chain from terrorism attacks. 
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Figure 7.12. Risk prediction analysis of "Supply chain" given "Internal = Infective" 

Similarly, if a containership in the chain is "Hijacked", the corresponding risk diagnosis 

can also be conducted to show that the most probable reason is that there are terrorists in 
"Internal" people through comparing the changes of the probability distributions of all 
the root nodes (See Figure 7.13). 
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Figure 7.13. Risk diagnosis analysis given "Engine room = Hijacked" 
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Step 8: SA 
The objective of this step is to test the sensitivity of the BN risk model output node 
"Supply chain" to the slight probability variation of the input nodes "Missile", 

"External", "Internal", "Check and supervision", "Intelligence network" and 
"Accessibility". If the model reflects the realistic situation, then an increment/decrement 

in the rate or probability at which any of its input nodes may occur would certainly 

result in the effect of a relative increment/decrement in the rate or probability of 

occurrence of its output nodes. Given the same variation of input probabilities, 

comparing their influence magnitudes on the output node enables differentiating the 
importance of the input nodes in terms of the individual safety contribution to the output 

variable. 

For example, a SA associated with the 20% probability increment of the input node 
"Missile" in the state "Yes" can deliver 3.9% probability increment of the output node 
"Supply chain" in the state "Weakness". However, a similar analysis for the state 
"Unlikely" of the input node "Accessibility" can only produce 2.5% probability 

increment of the state "Soundness" of the node "Supply chain". Such a result can prove 
that the output is more sensitive to the input node "Missile" than "Accessibility" and 

therefore, can be considered more important in making decisions. Figure 7.14 shows the 

influences of all the input variation on the output. For each input node, the response of 
the output shows a nearly linear probability distribution with respect to the probability 

changes of the input. Obviously, the output of the model is sensitive to its input and the 

analysIs result keeps harmony with the reality. 

The SA of the BN-based risk model 
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Figure 7,14. The SA of the BN based risk model 
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7.5 Conclusion and Future Work 

This research makes full use of the BNs' advantages and further develops and extends 
the BNs technology to the literature of CSCs by exploiting a conceptual and sound 

methodology for the risk assessment of the chains. It describes a risk assessment BN, a 
tool/model initially built to assist risk assessors at CSC installations and management to 
draw inferences about the risks of the chains. The challenges to appropriately assess 
CSC risks lie in their complexity, uncertainty and dependent relationships. BNs are 

naturally effective tools to deal with complexity and interactive dependencies. Because 

of their flexibility and diagnostic capabilities, BNs have been widely used in the context 

of risk assessment, including broad risk diagnosis and safety based decision making and 

may have many potential applications in the fields of logistics, such as logistics 

management and performance measurement. Research can be undertaken to develop BN 

applications to improve the logistics and safety performance of all other supply chain 

management functions. 

A new way of thinking about subjective probability distributions is introduced. It can be 

necessary and desirable in order to better conduct the risk assessment and safety decision 

supports using BNs, especially in the context of CSCs. The major disadvantage of 
incorporating expert judgements into BNs is the general lack of understanding of 

probability theory so as to result in difficulties of precisely probabilistically describing 

subjective fuzziness. Such inaccurate subjective estimates of the uncertainty of an event 
have been claimed as an unwanted introduction of bias into BNs. Research has also 

shown that significant errors result from the perception of risk depending on the risk- 

aversion characteristics of the individual. Efforts to try to avoid or eliminate such bias 

may be needed through combining fuzzy possibilistic and Bayesian probabilistic 
theories. The FRB-ER approach may provide a solution of dealing with such a problem. 
However, the risk parameters under multi-state and multi-parent conditions may not be 

accurately assessed or estimated even using linguistic variables. It will be desirable if a 

novel function can be generated to aggregate different conditional probabilities under 

single-state conditions. 

The SA is conducted to validate the risk model. The importance of root cause nodes is 

judged by their individual contribution to the model output node. A traditional risk 

priority analysis is to assess the risk values with the combination of likelihood and 

consequence from an individual viewpoint and furthermore, to focus on and control the 

so-called high-risk areas with greater values. However, in both engineering and 

managerial systems, whose subsystems and components have interactive relationships, 

either single consideration of the values of individual risks or their individual impacts on 
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the node(s) of interest may be inaccurate and incomplete, and it needs to be more 
systematically analysed from an overall perspective. A new SA analysis in BNs requires 
to be carried out to observe the influence of the combination of the input nodes to the 

output node and furthermore, more reasonable and generic methods of prioritizing risks 
can be developed. 

Additionally, from a vertical viewpoint, future work can also use an ID technique to 

allow analysis and validation of the networks' ability to predict the most effective CSC 

risk management solutions. The use of ID in BNs can be demonstrated as a decision 

making tool in the application of FSA, either in shipping or supply chain industries, from 

a more dynamic and feasible risk assessment perspective. The optimisation of safety 
based decision making by incorporating ID techniques into the generated BNs can be 

realized and sequentially an opportunity to harmonize BNs with the methodology of FSA 

can be provided. 

178 



Chapter 8- Relative Risk Analysis Using Bayesian Networks 

and Evidential Reasoning 

SUMMARY 
BNs provide a unified and consistentframeworkfor analysing and expressing risks and 
thus, have been widely applied to safety and reliability studies. Yet, most of them focus 

on using the advances ofBayesian theorem andposteriorprobabilities to riskprediction 
and diagnosis (forward and backward inference) and assume that the risk related prior 
probabilities could be easily obtained from subjective expert judgements if the 
associated objective historicalfailure statistics is incomplete or unavailable, although in 

many circumstances this is not the realistic case. This chapter, therefore, discusses and 
deals with some of the practical challenges of implementing Bayesian reasoning in 

relative risk analysis (from a Bayesian view), which is corresponding with those 

positivism risk analysesfrom a classical perspective, including risk ranking using the SA 

of BNs. It emphasizes the introduction of a novel "Noisier or" approach on the basis of 
an ER algorithm for obtaining the Bayesian prior probability distributions conditioned 
on multi-state parents. Consequently, analysts can assign subjective probabilities with 
single condition and synthesise them using the ER algorithm (and its attached 
computing software - IDS) without adopting the somewhat mathematically sophisticated 
procedure of specifyingprior distributions with multiple ones. An example related to the 
terrorism threats in CSCs is presented to illustrate the proposed ideas. 

1. Introduction 

Most safety engineers and risk analysts have been trained to analyse risks using the 
4classical' approaches, where probability exists independent of analysts - as a quantity 
characterising the system being studied. The concept of probability is relative 
frequency-based and the results of the risk analysis provide estimation of objective 
'true' probabilities. This view was challenged about 30 years ago, when the need to 
quantify risks from large technological systems was recognized, resources were 
expended to produce numerical results (Apostolakis, 1988) and the quantification of the 
likelihood of rare accidental events could not normally be calculated without employing 
engineering judgements. It has been evident that the problems of risk quantification 
cannot be effectively handled using traditional risk analysis methods such as QRA in 

some circumstances. 

BNs, as a novel risk analysis-supporting tool, together with its sound fundamental rule of 
inference - Bayesian theorem, can function well on the simultaneous analysis of expert 

179 



and statistical information, an aspect which makes the BN approach and its philosophy 
attractive to risk and reliability studies (Pearl, 1986). Furthermore, the networks 
constitute a class of probabilistic models with strong connections to graph theory 
(Jensen, 2001), which forms a powerful framework to allow risk analysts to apply their 
knowledge towards forward (risk prediction) or backward (risk diagnosis) reasoning. 
Such advances, together with the emergence of computing software like Hugin, 

stimulate and inspire researchers' interest of using BNs in systematical risk analysis 
(Cagno et al., 2000; Boudali and Dugan, 2005). 

Although prior research has greatly increased our understanding that BNs have the 
capability of conducting risk prediction and diagnosis, many of these discussions have 
been made without a sufficient consideration of the challenges faced when BNs are 
employed in the field of risk assessment, such as Bayesian risk nature, the accuracy and 
reliability of subjective prior probability distributions and the risk ranking in a 
networking environment. 

This chapter, therefore, is constructed to deal with such challenges by developing a new 
model for relative risk analysis based on BNs and ER. For this purpose, the remainder of 
the chapter is organised as follows. In Section 8.2, the definitions of risks used in BNs 

are reviewed and a new paradigm is presented. In Section 8.3, a novel "Noisier Or" 

approach is generated for subjective prior probability distributions of the child node 
conditioned on multi-state parents. Section 8.4 demonstrates the necessity of using SA to 
rank risk variables in BNs. In Section 8.5, an example is given to validate the 
methodology. Finally, Section 8.6 concludes the chapter with the main contributions of 
the model. 

8.2. Bayesian Risk Nature 

There exist many perspectives on risks, including safety engineering, social science 
perspectives, risk perception research and economic decision analysis. Traditionally, 

some of different perspectives have been viewed to represent completely different 
frameworks, and the exchange of ideas and results has been difficult. For example, the 
classical view to risks is a positivist view - risk exists objectively and can be measured; 
or the alternative is a subjectivism view, where risk is primarily a judgement, not a fact. 
Thus, Aven and Kristensen (2005) developed a common platform to integrate these 
various perspectives. The basic elements of such a platform are the understanding of 
risks as comprising the two dimensions: (a) possible consequences and (b) associated 
uncertainties. 

As there are many facets of these dimensions, the framework means a broad perspective 
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on risks, reflecting for example that there might be different assessments of uncertainties, 
as well as different views on how these uncertainties should be dealt with. In a Bayesian 

approach, risk is considered as a way of expressing uncertainty. The Bayesian risks 
belong to neither positivism nor subjectivism scopes in terms of the capability of 
evaluating the results of risk assessments. Their position is between the two extremes, 
positivism and subjectivism, which would probably be the position of most analysts 
working with risk analysis in a practical context. The Bayesian risks can be called 
relativism risks. From a networking viewpoint, they are also conditional risks. 

The essential feature of the Bayesian thinking to risk analysis is that probability is a 
measure of expressing uncertainty about the world seen through the eyes of the analysts 
and based on some historical information and knowledge. Complete knowledge about 
the world does not exist in most cases, and the analysis provides a tool for dealing with 
these uncertainties based on coherence using the rules of probability. If sufficient data 
becomes available, consensus in probability assignments may be achieved, but not 
necessarily as there are always subjective elements involved in the assessment process. 
The Bayesian approach means a humble attitude to risk. However, the 'relativism' 

nature of the Bayesian risks does not only indicate that they can be expressed by both 

objective and subjective probabilities, but also mean that the Bayesian probability 
expressing uncertainty can be varied by the entries of different pieces of safety evidence. 

From a wider point of view, there might be two ways of thinking about the relativism 
Bayesian risks: the positivism-relativism Bayesian risks in the sense that there are ways 
of evaluating the 'goodness' of risk and purely-relativism risks, which are only used in 

relative risk ranking or SA. Further studying such two definitions, one can appreciate the 
distinction between them by the following explanation: a probability 80% used to 
express the positivism-relativism Bayesian risks possibly means that failure occurs 8 
times out of 10 experimentations given the knowledge mastered in the current situation, 
while the same probability 0.8 related to the purely-relativism risks may only indicate a 
relative value without more sense of describing uncertainty, which might only represent 
a bigger value than 0.6 and be used to risk ranking. 

8.3. A Novel "Noisier Oil' Approach 

in constructing a BN, the converging connections between nodes are always a headache 
for both Bayesian statisticians and experienced analysts. They are more diff'Icult to be 

appropriately handled compared to the diverging and serial connections in BNs. This 

point can be further explained in the discussion of Section 3.1. Many pioneers in the 

research field associated with BNs have generated some novel and effective methods to 
deal with the problem from both quantitative and qualitative viewpoints, such as "Noisy 
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or" and "Divorcing" approaches (Jensen, 2001). They are very effective in distributing 

subjective Bayesian prior probabilities under the condition of incomplete objective 
statistics. However, some strong assumptions that these methods depend on hinder their 
wider applications to risk assessment. Thus, the following context is constructed to 
explain the necessity of synthesising the amount of incomplete probability distributions; 
to discuss the philosophy of the "Noisy or" approach and its limitations when used to 
risk analysis; and to originally generate a novel "Noisier or" approach to complete the 
synthesis with less constraints. 

8.3.1 The Necessitv of the Svnthesisinjz Methods 

Let A and B be the two children listing all the effects of the single parent C. In order to 
obtain the probability distributions of each state of every node, the joint probability table 
P(A, B, C) is needed. According to the Bayesian theorem, 

P(A, AQ= P(A IB, Q P(B, Q= P(A IB, Q P(B IQ P(Q 

Because of the diverging connections, given C, A and B are d-separated. Then, 

P(AIB, Q= P(AIQ 

Therefore, 

P(A, AQ= P(A I QP(B IQ P(Q 

which is exactly the chain rule for BNs. However, such an inference will not suit the 
case of the converging connections. 

Let A and B be the two parent nodes of their single child C. In order to obtain the joint 

probability table P(A, B, Q, the Bayesian theorem yields: 

P(A, B, Q= P(CIB, A) P(BA) = P(CIB, A) P(A JB) P(B) 

Because of the converging connections, if C is not known, then A and B are d-separated. 
Therefore, 

P(AIB) = P(A) 

and 

P(A, B, Q =P(Cl B, A) P(A) P(B), 

which suits the chain rule of BNs. However in this instance, the rule itself is not friendly 

enough for human knowledge and may be too specific for any expert, because P(CIB, A) 

cannot be further decomposed and connected with P(CIA) and P(CIB), which provide 
more respect to human knowledge or may be easier for historical data collection. This is 

what the synthesising methods attempt to do. 
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8.3.2 The "Noisy Or" Approach and Its Extensions 

One of effective synthesising methods called "Noisy o? ' is generated with the strong 
assumptions revealed by a deterministic OR gate, where the child will be present given 
the presence of any parent and the child will be absent, if and only if all parents are 

absent. The method itself can be interpreted in the following way. A binary node Y may 
be conditional upon n binary parent nodes, X, where r=1,2, ..., n. In order to assess 
the 2" probability values associated with the node Y, a technique called "Noisy o? ' was 
developed (Pearl, 1986) and successfully used in reliability engineering research (Reed, 

1990). In the situation of "Noisy oe', the probability of Y conditional on n nodes, Xr, r= 
1,2, ..., n, is estimated as: 

P(YIXI, X29, 
»*gXn) ý-- 1- rl('-P(YIXI» 

r=l 
(8.1) 

In this equation, P(YWI), P(IIX2), ... ' P()IX,, ), are assessed and then used to estimate 
P(11 X1, X2, ... ' X,, ). Its theoretical base is that if any of the parents is present, then the 

child happens unless an inhibitor prevents it; if all inhibitors are independent, then the 

combined probabilities are easy to calculate as one minus the product of the appropriate 

probabilities for the inhibitors. 

A standard "Noisy &" is correct only if it satisfies the requirement that the possible 

causes are collectively exhaustive, that is, 

p(y = presenIXI, X2,..., Xn = absent) =0 (8.2) 

However, in many real world situations, there are multiple possible causes for the 

presence of Y, some of which cannot be involved in the model. Therefore, a new model 
called leaky "Noisy o? ', which considers the probability of Y presence given the absence 

, o,,, d is produced as follows (Jensen, 200 1; Gerssen, 2004): of X1, ..., X,, as Pbaký, 

n 
(1 - Pbackg P(IX19x29*"9Xn) = 1- 

!, ou�d)fI 
(1 - P(IXI» (8.3) 

r=I 

Furthermore, changing the OR property to MAX property, the constraint of the binary 

states is studied and dealt with by extending the "Noisy o? ' model to a new "Noisy 
M"'method, shown as follows (Gerssen, 2004): 

P(YjXP X2 9-9 
X"') = max P(YIX,, ), re (1, ..., n) (8.4) 

which requires to be conditioned that the nodes are ordinal instead of nominal and the 

nodes have equal amount of states. 
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In the process of synthesising incomplete probabilities, the "Noisy o? ' approach and its 

extensions still reveal certain application problems. For example, the BN in Figure 8.1 is 

established to model the fact that given only food F, the probability distribution of 
people living days, L is the set of (0.01, "4-5", 0.25, "34", 0.62, "2-3", 0.12, "1-2", 0, 
"O-1"days) and given water W, the probability distribution of people living days, L is the 
set of (0.05, "4-5", 0.75, "34", 0.15, "2-3", 0.04, "1-2", 0.01, "O-1"days). 

Figure 8.1 can be assumed to have the characteristics of a classical deterministic OR 

gate, which describes the situation that unless both food and water are not provided, 
people can live more than 3 days. Consequently, P(L=Yes IF = No, W= No) = 0. In a 
similar way, Figure 8.1 can also be assumed to have the characteristics of another 
classical deterministic OR gate, which describes the condition that unless both food and 
water are provided, people can live no more than 3 days. Consequently, P(L=NolF = No, 
W= No) = 1- (1-0.2) x (1-0.74) = 0.792 and P (L=YesIF = No, W= No) =I-0.792 
0.208, which obviously conflicts with the result above. 

Food (F) -\ /' Water (W) 

P(LzYeslW = Yes) a 0.8 

P(L=YesIF z Yes) z 0.26 P(L=NOIW = Yes) = 0.2 
P(L=YeSIW= NO) z 0.26 P(L=NolF z Yes) = 0.74 
P(L=NOIW= No) z 0.74 P(L=YesIF = No) = 0.8 

P(L=NolF = No) = 0.2 
Living days are more the 

(L) 

Figure 8.1. A BN example to illustrate the shortcomings of the "Noisy oe' approach 

Another problem is related to the states of the variable, L. They need to be changed from 
five to two states for the application of the "Noisy o? ' approach (all nodes, either Y or X, 

are required to be binary variables). However, the probability distributions will vary 
according to different dividing ways, which may constrain the application of the 
approach in the context of risk assessment. 

8.3.3 A Novel "Noisier Or" Approach 

In realistic BNs constructed, it is often the case that the parent and child nodes have 

multiple and different amount states and the prior probabilities are provided by multiple 
engineering experts. All of these are beyond the capability of the "Noisy or" method. 
Thus, a novel "Noisier or" approach is developed and well suited to modelling the 
probability distributions based on multiple states and multiple experts. 
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The kernel of this approach is an ER algorithm developed on the basis of D-S theory, 

which has been introduced in the previous chapters. In the context of BNs, the 

probabilities assigned into the states of nodes can be considered as the credibility 
induced by partial evidence. The corresponding uncertainties can be interpreted and 
inferred as follows: 

Let A with L states JAI, A2, 
... ' 

ALI be the common child of parents B with M states (BI, 

B2, 
.... 

BmI and C with N states (Cl, C2, 
..., 

CN}. Assume that B, (i eM represents state 

i of parent B and Cj U E=- N) means statej of parent C. Suppose the set (PýAh PAZ 
... ý 

PAL) 

indicates P(A I Bj) and the set (#A,, YA2, 
---9 

PIAL) be P(A I Cj), then the set jP#A1, 

PijAZ 
... P 

PjjAL) representing P(A I Bi, Cj) can be calculated using the following pathway. 

Assume that P(A I Bj) and P(A I Cj) are with the distributed normalized weights w, and 
w2 (w, + w2 = 1) respectively to represent the relative parent-node importance of B and 
C in determining the combining probability distributions of the child-node, A. Such 

weights can be calculated and estimated using some well-estimated techniques like AHP 

and pair-wise methods. 

Suppose, #Ak and, #Ak (k ýflp Z .... L)) are individually degrees to which P(A I BI) and 
P(A I Cj) support the final conclusion that the combined probability distributions are 

confirmed to the states JAI, A2, ... ' AL). Then,, #Ak and JyAk can be obtained as follows: 

JOA ý Wl PiAk (k ý[Ip 21 ... 9 L)) 

, 
#Ak ý W2 PlAk (k =(I, 2, ..., L)) (8.5) 

Having known thatPij, 4k (k Z represents the new prior probability assigned 
to the sates JAI, A2, ---, ALI as a result of synthesising the P(A I Bj) and P(A I Cj), the ER 

algoridun can be stated as follows (Yang and Xu, 2002): 

jj jj 
PA4k 

K(AkfiýAk +fiAkWl +filWO 

I-K(w, W2) 

LLij4 
P- 1 Zj6ATJqAJRI 

T=IR=l 

. R: W 

(8.6) 

The above gives the process of calculating the conditional probability of one child node 
under two parent nodes. If the situation of having three parent nodes occurs, the result 
obtained from the combination associated with any two parent nodes can be further 

synthesised with the third one using the above algorithm. In a similar way, the 

probabilities of one child node under multiple parent nodes can also be assigned. Note 
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that the "Noisier or" approach requires less constraints than the "Noisy or" approach in 
terms of the assumptions required. The new approach does not need to be constrained by 
the requirements of "a deterministic OR gate" and "independent inhibitors". Its only 
hidden assumption can be described as that when the prior probability of the child 
conditioned on one single parent is estimated, assessors have no idea about the status of 
other parents. In other words, the P(AJB) is evaluated without any knowledge of the 
states of node C. Furthermore, the relative weights of single probability distributions 

will be nonmlized first. If B and C can be considered as two experts and the P(A I Bi) 

and P(A I Cj) indicate their individual subjective judgements, the problem of combining 
single conditional probability distributions from multiple experts can be solved. Such a 
complex calculation has been simplified by the development of commercially available 
software, such as IDS. Using such a system, the conditional probability distributions 

given single parent nodes, together with their individual weights, can be easily inputted 

and transferred into the final synthesised probabilities under multi-state parents 
automatically. 

8.4. A Risk Ranking Technique in a Networking Environment 

The aim of many risk analyses is to rank the risk variables on a prioritized list so that 

assessors can optimize the resource to the key risk areas and maximize the reduction of 
the risk in a limited cost. Traditionally, such key risk areas are defined as those variables 
with high values. However, this might not be true in a BN case, where the single 
measurement of risk priority is the influence magnitude to the nodes of interest. Because 
BNs admit the concept of d-separation, many risk variables may have no influence on 
the probability distributions of the interested variables even if they are in the high-risk 

areas. Having taken the simple risk diagnosis and prediction analysis into account, many 
researchers may wrongly use the instantiation of a single risk variable to observe its 

effect to the nodes of interest and fin-ther calculate its priority in risk assessment. This 

may be very inaccurate, because such analysis obviously ignores the effects of combined 
risk variables. Thus a new analysis technique appropriately considering the question 
above is developed to improve the risk priority assessment in a networking environment. 

The new risk ranking technique is based on the SA in BNs. The SA in BNs refers to 
analyzing how sensitive the conclusions (the probabilities of the hypothesis/interested 

variables) are to minor changes. The changes may be variations of the parameters of the 
model or may be the changes of the evidence (Jensen, 2001). In the context of risk 
assessment, if e represents the safety evidence entered into a network and H, and H, 

separately denote the hypothesis "safety-intended' and "risk-intended' states of the 
focus of interest, SA applied to e gives answers to questions such as: 

186 



Which piece(s) of e is/are in favor of /against/iffelevant for H, and H,.? 

Which piece(s) of e -discriminate(s) H, from H,,? 

The best way to explain the SA is to use an example like the following one. Its generic 
definition is provided later. 

The engineers on a containership find that its engine does not work They 

wonder whether the engine has beenfaulty or whether thefuel is insufficient. 
They observe the fuel meter and the record of pumping the fuel at the last 

calling port. Both results show that the fuel is adequate on board. 
Consequently, they conclude that the engine has broken down. 

The network for the engineers' reasoning is described in Figure 8.2, where all the nodes 
have two exclusive states, "Yes" and "No". 

P(PtF = Yes) = 0.98 

P(EB = Yes) = 0.001 

WE ine breakdown A) 

P(EWS Yes[EB =-YWx< 
= Yes) 0 
p(EWS YesIEB = Yes, F 
=No) =0 
P(EWS YesIEB = No, F 
= Yes) I 
P(EWS YesIEB = No, 
=No) =0 

Pumping the fiiel (PtF) 

P(F = YeslEoFS = Yes) 0.99 
P(F = YeslEoFS = No) 0.1 

Fuel (F) in oil tank 

Engine working 
situation (EWS) 

P(F&B = YesIF = Yes) 0.99 
P(FA, S = YesIF = No) 
0.002 

Fuel meter standing (FMS) 

Figure 8.2. The network for demonstrating the engineers' reasoning in the engine 
breakdown example 

The evidence e consists of the three observations eEws = No, epF = Yes, eFiz = Yes, and 
the hypothesis in focus is HEB = Yes. Performing the network using the Hugin software, 
P(EB = Yes e) = 0.98 is obtained. Using risk diagnosis and prediction analysis, P(EB 
Yes I EWS No)= 0.0348, P(EB Yes I PtF = Yes) = 0.001 and P(EB = Yes FMS 
Yes) = 0.001 can be calculated. Compared to the prior probability of P(EB Yes) 
0.001, neither ePtF = Yes nor eFms = Yes alone has any impact on the hypothesis, but 

eEwS = No is not sufficient for the conclusion. Therefore, the immediate decision that ep, 'P 
= Yes and eFAa = Yes are irrelevant for the hypothesis is not correct. The fact that the 

evidence in combination may have a larger impact than the "sum" of the individual 
impacts must be considered. 
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Further research will consider the influence of the subsets of the evidence. T'heir 

probability computation can be obtained as follows: 

P(EB = Yes EWS = No, PtF = Yes) = 0.091, 

P(EB = Yes EWS = No, FMS Yes) 0.9454, 

P(EB = Yes FMS = Yes, PtF Yes) 0.0 01 

Consequently, it can be concluded that no single observation is sufficient for the 
conclusion. Also although FMS itself has no impact on the hypothesis, this observation 
cannot be removed. Moreover, the subset (EWS = No, FMS = Yes) can account for 

almost all the change in the probability for the hypothesis. 

Now, the SA method to investigate the key risk areas can be defined as follows. Let e be 

evidence for all potential root risk variables (root causes) which affect the probability 
distribution of the focus of interest and H be the safety state of the interested leaf node, 
which may represent a kind of risk or an individual system. Then the analysis of the key 

risk areas means the investigation of how sensitive the result P(H I e) to the particular 
subset e'of e is. The following three rules are used to define the key risk variables: 

Rule 1: (Relevant risk variables) 
If P(H Ie) is approximately equal to P(H I e), then the evidence e' (subset of e) ge is 

sufjlcient and the risk variables associated with them are relevant. Note that the term, 
"approximately" can be made precisely by selecting a threshold 01 and requiring that 
I P(HIe') 

_I< 01. Note that 
P(HIe) 

is the fraction between the two likelihood ratios. 

Rule 2: (Important risk variables) 
If e' is suffi'cient, but no subset of e' is so, then e' is minimal sufficient and ele' (the 

other sets in e except e) is redundant. If e' is the common subset of all minimal 
sujji'cient set, then e' is crucial; if e' is the common subset of all redundant set, then the 

risk variables associated with them are defimed to be irrelevant and have lowest priority 
in risk ranking. 
If the probability of H changes too much without e, then it is important - to be precise, 

if P(HIe \ e') 
-I>0, where 02 is a chosen threshold. 

P(HIe) 

I 

Rule 3: (Key risk variables) 
if the BN is an improvement-needed model, which means the pre-posterior probability 
distribution of the hypothesis is unacceptable in terms of the safety consideration (that 
is, the safety degree of the hypothesis is not good enough), then the key risk variables 
are those related to minimal sufficient subsets. The priority of the key risk variables can 
be obtained through investigating the values of P(I4e ). The higher the value is, the 
more favorable the corresponding key risk variables. 
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If the BN is a maintenance-needed model, which means the pre-posterior probability 
distribution of the hypothesis is acceptable when its safety levels are taken into account 
(that is, the safety degree of the hypothesis is good enough), then the key risk variables 
are those with crucial e' or minimal sufficient e' if crucial e' is not available. The 

priority of the key risk variables can be obtained through investigating the values of 
P(lAe ). The higher the value is, the more favourable the corresponding key risk 
variables. 

8.5. Case Study 

As described previously, there are two difficulties in dealing with terrorism related risk 
assessment. One is related to the quantitative assessment of the risks and the other is 

associated with the assessment feasibility and flexibility aiming at dynamic situations in 

the chains. This case study using the relative risk analysis method can deal with such 
problems and provide a significant contribution in assisting people to better understand 
the threats and make appropriate anti-terrorism decisions. 

Referred to the methodology of using BNs to risk assessment and its corresponding case 
study in Chapter 7, a sound qualitative BN applied to the analysis of terr6rism threats in 
CSCs is cited from Figure 7.5, considering that the focus of this chapter is on dealing 

with some quantitative related challenges. More details about how the qualitative 
network is constructed and what the nodes mean can be obtained from Section 7.4 and 
will not be repeated in this chapter. 

Taking the advantages of BNs into account, the assigned probabilities (See Table 8.1) 

are for some nodes based on available data/information, while for the other nodes like 

the risk-based ones, they can be estimated and obtained on the basis of subjective 
judgements using reliable inference methods such as the FRB-ER approach in Chapter 5. 
However, when subjective judgements are concerned, it may be very difficult for 

experts to estimate the probabilities conditioned on multi-state parents (the FRB_ER 

method can be more effective and accurate for the assessment under certain 
circumstances (i. e. the prior probability judgement given individual parents/conditions)). 
For example, the method can be used to obtain the risk based subjective prior probability 
p(Cargo lIntelligent networks) as follows: 

P(CargolIntelligence network = Flawless) = {O, 

0.18, "Good'. 0.82, "Excellent"} 

p (CargolIntelligence network = Flawed) 

-Average", 0, "Good', 0, "Excellenf'} 

and P(Cargo I Check and Supervision) as follows: 

"Poor", 0, "Fair". 0, "Average'. 

(0.92, "Poo? ', 0.08, "Fai?, 0, 
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Table 8.1. The prior probability distributions of partial nodes in the BN 

I The vrior conditional vrobabilities of "Cargo" 

Intelligence networks Flawless Flawed 

hecking and 
ervision 

Cargo 

Checked Ignored Checked Ignored 

Soundness 0.96 0.44 0.48 0.02 

Weakness 0.04 0.56 0.52 0.98 
The prior conditional probabilities of "Supply chains" 

Terminal Soundness Weakness 

Inland transportation Soundness Weakness Soundness Weakness 

P'---____. 
ýhan I 

ort 

Soundness I Weakness Soundness Weakness Soundness Weakness Soundness Weakness 

Soundness 0.91 0.66 0.65 0.35 0.63 0.34 0.33 0.14 
0.09 0.34 0.35 0.65 0.37 0.66 0.67 0.86 

P(Cargol Check and supervision = checked) = (0, "Poor ", 0, "Fair ", 0, "A verage 
0, "Good" , 1, "Excellent ") 

P(CargolCheck and supervision = ignored) = (0.89, "Poor", 0.11, "Fair", 0, 
"Average", 0. "Good". 0, "Excellent") 

However, the BNs require the prior probability distribution conditioned on multi-states 
parents. Thus, using the "Noisier or" method, the conditional possibilistic safety degrees 

of "Cargo" given "Intelligence" and "Check and supervision" can be calculated in the 
following. 

Suppose P(CargolIntelligence network = Flawless) and P(Cargol Check and 

supervision = checked) to represent P(A I BI) and P(A I Cj) in Section 8.3.3 individually. 

Given that the nodes "Intelligence network" and "Check and Supervisiow' are considered 
to have the same importance to the node "Cargo", CO, = C02 = 0.5. Then, for P(Cargol 
Intelligence network = Flawless, Check and supervision = checked), the following can 
be obtained: 

, 
#A, = wi P'A, = 0.5 X0= OJ9A2 = Wi PIA2 = 0.5 x0=0 

idA3 ý WI PiA3 = 0.5 x 0.18 = 0.09 

, 
ýA4 = 01 PiA4 = 0.5 x 0.82 = 0.41 
0A1 =e PAJ = 0.5 X0=0 flA2 =e lyA2 = 0-5 X0=0 

, 
ýA3 = Oe PiA3 ý 0.5 X0= OJOA4 =e PiA4 = 0.5 x1=0.5 

K= [1-0.09xO. 5]-l =1.047 
PY3 =00,92 Pý 10ý 

PA2 =09ý 08 
p 

Pý4 

p(CargoVntelligence network = Flawless, Check and supervision = checked) = (0, 
"Poor", 0, "Fair". 0. "Average", 0.08, "Good", 0.92, "Excellent'7 
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In a similar way, the following conditional probabilities can be calculated as follows: 

P(CargolIntelligence network = Flawless, Check and supervision = ignored) 
(0.45, "Poor", 0.05, "Fair", 0, "Average", 0.07, "Good", 0.43, "Excellent'ý 
P(CargolIntelligence network = Flawed, Check and supervision = checked) = (0.46, 
"Poor", 0.04, "Fair", 0, "Average", 0, "Good", 0.5, "Excellent") 
P(CargolIntelligence network = Flawed, Check and supervision = ignored) = (0.93, 
"Poor", 0.07, "Fair", 0, "Average", 0, "Good", 0, "Excellent") 

Although such a result has responded to the conditional prioT probability distributions in 
the BN, it can still be not entered into the Bayesian inference without further 

consideration. Obviously, the linguistic terms expressing safety degree function on 
ffizzy sets may not be used as the mutually exclusive states in the node "Cargo". Thus, 
fin-ther transforming them to a probabilistic "legal identification" admitted by BNs may 
be required. 

Having analysed the Bayesian risk nature in Section 8.2, the definition of pure- 
relativism risks can be employed to conduct the risk ranking analysis here. As a result, 
each linguistic term expressing safety estimations can provide a safety preferred value 
according to the defuzzification approach in Equation (5.7) and the combined prior 
probabilities above can be deffizzified as follows: 

P(Cargo soundnesslIntelligence network Flawless, Check and supervision = 
checked) 0.96 1 
P(Cargo soundnesslIntelligence network Flawless, Check and supervision = 
ignored) 0.44 

P(Cargo soundnesslIntelligence network Flawed, Check and supervision = 
checked) 0.48 

P(Cargo soundnesslIntelligence network Flawed, Check and supervision = 
ignored) 0.02 

After assigning all the prior probabilities, the next step is to conduct the SA analysis for 
identifying the key risk variables. Using the Hugin software, the pre-posterior 
probability of the node "Supply chain" facing terrorism threats can be calculated as 0.7. 
Suppose such a safety degree is not good enough, that is, the network belongs to an 
improvement-needed model. Then, all root nodes are given their evidence e, which will 
assist in improving the probability of the "Soundness" state of "Supply chain". Under 

such a circumstance, the posterior probability, P(Supply chainj e) can be calculated as 
(0.89, "Soundness", 0.11 "Weakness"). Next, the influence of the subsets e' of the 

evidence e will be further analysed and their probability distributions can be obtained in 
Table 8.2. A threshold is designed as having the value 0.05 so as to investigate relevant 
risk variables. 
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Table 8.2 Normallsed likelihood for the subset evidence 

Rýo wl 
0) )) (No T Missile X 

0 
External 
Friendly 

Internal 
Immune 

Intelligence 
network 
Flawless 

Check and supervision 
Checked 

Accessibility 
Unlikely 

P(SUPPIY 
chain 
Soundnessl 

P(Supply chain 
Soundnessle') 

P(Supply chain 

1 88.94 

2 84 O. S W945 

3 11 1 1 1 0 1 79.44 0.893 

4 1 1 1 1 
1 

0 0 74.92 0.842 
1 

6 1 1 1 0 1 0 82.30 0.925 

7 1 1 1 0 0 1 77.81 0.875 

8 1 1 1 0 0 0 73.35 0.825 
00 
M I ý, = M 1 0 11 1 0 82.47 0.927 

11 - 
1 0 1 0 1 79.03 0.877 

2 11 01 1 
1 

0 
ý 

01 73.55 0.827 0 

1 4 4 14 1 0- 0- 1 0 80.73 0.909 

15 1 1 0 0 0 1 76.45 0.86_ 

16 1 1 0 0 0 0 72.03 1 

18 0 1 1- 1 0 83.98 0.944 

19 0 1 1 0 1 79.36 0.992 
io- 1 0 1 1 0 0 74.94 0.841 

22 0 1- 0 1 0 82.20 0.924 

23 1 0 1 0 0 1 77.73 0.874 

24 1 0 0 0 73.27 0.924 1 

26 1 0 0 1 1 0 82.38 0.926 

27 1 0 0 1 77.95 0.876 

28 1 0 0 1 0 0 73.48 0.826 
"30 M 

1 0 0 0 1 0 80.65 0.907 

31 U 0 0 0 1 76.37 0.859 
32 1 0 0 0 0 0 71.95 

34 0 1 1 1 1 0 91.96 0,922 

35 0 1 1 1 0 1 77.76 0 874 

6 3 0 1 111 1 
M 

0 
ý 

0 73.27 0.824 
0 

38 0 1 1 1 0 80.27 0.903 

39 0 1 0 1 76.21 O. X57- 
0 1 1 0 0 0 71.78 0.807 

42 0 1 0 1 1 0 80.43 0.904 

43 1 0 
- -- 

1 0 1 76.42 0.859 

44- -6- 1 6 1 0 0 71.97 
T5 0 1 0 0 1 1 93.50 0.939 

46 0 1 0 0 1 0 78.79 0.886 

4 'N 

-T7 

8 
0 1 0 

0 
0 
0 -0 0 

1- 
0 

74.91 
70.52 

O. N42 
0.793 

50 
551 

2 

0- 
0 
0 

0 

U 

1 
1 

0 
0 

-0 1 
0 

91.87 
77.68 
73.19 

0.921 
0.873 
0.823 

54 
555 

0 
0- 

0 

-0 

0 
0 

1 
0 

0 
1 

80.19 
76.14 

0.902 
0.856 

0 0 11 0 0 0 71.10 0.799 

58 0 0 0 1 1 0 80.35 0.903 

0 0 1 0 1 76 14 
ý 0.858 

-7-0- 

T1- -ý2- 
_T3 

64 

0 

0- 7 

0 

0 

0 0 
0 
-- 0 

0 

0 0 
0 

10 

1 

0 0 
0 
0 

0 

1 -_ 
1 
0, 
0 

10 

I] 10 
I1 
10 

q 71.89 
83.41 
78.70 
74.84 
70.45 

0.808 
0.939 
0.885 
0.941 

1 0.79? 

in the fable indicates that the evidenceftom risk variables is provided to improve the probabilit . vo/ *life state "Soundness - a, the "Supph chain 
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The relevant risk variables can be identified and shaded in Table 8.2. According to Rule 
I in Section 8.4, the 14 shaded rows corresponding with the combinations of the 

relevant risk variables can be defined as sufji'cient e'. From Rule 2, minimal sufficient 
subsets of the evidence can be analysed as follows: 

Observing Row 1, all the other 13 shaded rows can be its sufficient subsets and thus, 
Row I is not minimal sufficient. 
Observing Row 5, Rows 13,21,29,37 and 53 can be its sufficient subsets and thus, 
Row 5 is not minimal sufficient. 

Observing Row 29, no other appropriate row(s) can be its sufficient subsets and thus, 
Row 29 is minimal sufficient. 

Such an analysis can be carried out throughout the whole 14 shaded sufficient e' and 
three rows are identified to be minimal sufficient as follows: 

Row 29: (Missile No, Check and supervision = Checked and Accessibility = 
Unlikely). 
Row 53: (Internal Immune, Check and supervision = Checked and Accessibility = 
Unlikely). 
Row 57: (Intelligence network = Flawless, Check and supervision = Checked and 
Accessibility = Unlikely). 

Obviously, there are no common subsets of the three minimal sufflicient sets (no crucial 
risk variable(s)). Furthermore, the redundant sets of the three minimal sufficient sets can 
be identified and the irrelevant risk variable(s) does not exist. 

Because the model is assumed to be improvement-needed, the key risk areas in the 

situation are related to all the minimal sqjfIcient subsets and can be identified as (Rule 3): 

"Missile", "Check and supervision7 and "Accessibility". 
"Internal", "Check and supervision" and "Accessibility". 
"Intelligence network", "Check and supervision" and "Accessibility". 

Obviously, the key risk variables have higher priority than the other ones (i. e. irrelevant) 
in risk analysis. In terms of the key risk variables themselves, the priority can be ranked 
according to their individual contributions to the state "Soundness" of the node "Supply 

chain". Consequently, the risk variables can be prioritised in Table 8.3. 

Table 8.3. The risk ranking using the SA analysis 

Ranks Risk variables 
I "Missile", "Check and supervision" and "Accessibility" 
2 "Intelligence network7', "Check and supervision" and "Accessibility" 
3 "Intemal", "Check and supervisioif' and "Accessibility" 
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8.6. Conclusion 

This chapter generates a novel relative risk analysis model to deal with some practical 
challenges of using BNs to risk assessment. The model applies knowledge-based BN 

construction to allow researchers to appreciate a novel attempt of unifying possibility 
(i. e. fuzzy logic and D-S) and probability (i. e. Bayesian probability) theories by the 
introduction of the nature of Bayesian risks and "Noisier or" approach. The model also 
provides a new way of thinking about risk ranking in a complex system such as CSCs, 

whose subsystems and components have interactive relationships. It uses the SA to 
investigate the combined influence of multiple risk variables and thus, avoid the possible 
inaccuracies resulting from the individual viewpoint in traditional risk priority analysis. 
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Chapter 9- Hybrid Multiple Attribute Decision Making with 
Uncertainty 

SUMMARY 
Safety critical systems often require identifying the "optimal" RCO based on multiple 
uncertain attributes. While a number of utility theory based techniques such MA UT have 
been developed to accomplish such an objective, many problems regarding 
implementation are observed, but not well addressed They, in particular, are: (1) risk 
attributes are not always well defined; (2) for a given risk control action, the attribute 
values may be stochastic rather than deterministic; (3) it is error-intended to assume 
that all relevant risk attributes are independent; and (4) creating an effective utility 
function to simultaneously represent the decision makers'preferences to both linguistic 

and numerical variables may be a difficult task. Consequently, a heuristic two-stage 
methodology that enables the quantification of the uncertainties related to the risk 
attributes based on BNs and then uses the fuzzy logic theory to generate novel utility 
representation functions for selecting the "optimal" safety solution may be an effective 
and realistic alternative. In the first stage, the role of BNs in AM UT is explained in a 
complementary way, in which BNs can avoid their application drawbacks resultingfrom 
the single risk criterion consideration in risk assessment. Furthermore, given any 
potential RCOlaction, all relevant (sometimes conflicting) decision attributes in theform 
of the nodes in BNs will produce certain associated attribute values expressed as 
posterior probabilities, which can be used and combined in a traditional AM UT 
framework as a reference to rank the set of optionslactions. The second step is to focus 

on the development of novel utilityfunctions, which can appropriately represent the risk 
results produced above, additive or non-additive and linguistic or numerical. Fuzzy 
logic is used to take into account crisp values, fuzzy numbers and linguistic variables 
that are common phenomena in a risk based decision problem. The correspondingfuzzy 
inference and synthesis operations can be conducted by some well-established decision 

support techniques such as the ER approach and TOPSIS with the entropy theory, etc. 
The proposed methodology is illustrated using a twntainer transportation delay related 
case study. 

1. Introduction 

The benefits of using BNs to model the domain of uncertainty are well known 
(Heckerman et al., 1995; Jensen, 1996), especially after the breakthroughs in algorithms 
and tools to implement them (Lauritzen, 1988; Pearl, 1988). They also capture non- 
linear causal relationships between various attributes and predict the effect of the causal 
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factor changes to the attributc(s) of interest. Therefore, BNs provide a powerful decision 
support tool and are used in a range of real applications concerned with predicting 
properties of safety critical systems (Faber et aL, 2001; Yang et aL, 2005c). In most of 
these applications, the interests are, however, usually focused on the single attribute of 
the systems, safety or reliability. Although such networks provide important support for 
risk based decision making, in many circumstances, decisions need to be made on the 
basis of multiple attributes, such as safety, cost, politics and cnvirorunental factors, etc. 
BNs do not allow the incorporating of the notation of preference, which is necessary in 
such cases. Because they cannot, alone, provide a complete solution for wider decision 
problems in which a systematic safety assessment exercise inevitably fits, the BNs must 
be complemented by other decision making techniques (Fenton and Neil, 2001) such as 
those associated withXL4 UT (Keeney and Raiffa, 1976). 

If there were only a single attribute with which to make decisions or choose actions, it 
would not be difficult to solve the decision problems, and the action that returned the 
'best' value for the attribute can be chosen. In a risk based decision making context, if 
safety is really the only attribute on which the decision can be made, then the best action 
can be chosen straightforwardly with the highest value of safety. Unfortunately, other 
attributes like cost, functionality and time need to be considered. Inevitably, some of 
these will be conflicting; the safest system may not be either the cheapest or the one 
with most functionality. Generally, it is necessary to optimise a number of possibly 
conflicting attributes. The extensive body of work on AM UT (i. e. AMDM does provide 
concrete help for solving such decision problems (Wang et aL, 1996). AL4DM includes 
such well-known techniques as linear programming, the AHP (Satty, 1980) and the 
outranking approach (Roy and Vincke, 198 1). However, the AMDM method and its 
associated techniques suffer from three critical assumptions (Fenton and Neil, 2001), 
which may seriously constrain their applications in the risk assessment field: 

" The relevant attributes are well defted (for example, for a given action a it is 
obvious how one can compute g(a) for a given attribute g). 

" The relevant attributes are certain (for example, for a given action a and attribute 
g the value g(a) is deterministic). 

" The relevant attributes are independent of each other (for example, for a given 
action a the value g(a) for a given attribute g has no effect on the value f(a) of 
another attributefi. 

From a non-representational viewpoint, these limitations can be defmed as different 
kinds of uncertainties that arise in decision problems and thus, may be complemented 
using some uncertain treatment methods such as those related to BNs and ftizzy logic 
(Zadeh, 1965). 
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A key technical problem to implement the synthesis of BNs and AMDM is how to deal 
with the risk analysis results from Bayesian inference in the framework of AMDM. In 
other words, the kernel of the problem lies in the possibility of developing an 
appropriate non-additive utility function representing the preferences to the risks usually 
expressed by linguistic variables. In the framework of AMUT, several methods (i. e. the 
Utility Additive (UTA)) have been proposed to build decision makers' utility fimction 
representing their preferences. However, such methods can only infer an additive utility 
function from a set of exemplary decisions using linear programming and thus, do not 
allow the inclusion of additional information such as an interaction among attributes. A 
novel method based on the combination of BFRB systems and the ER algorithm has 
been introduced to create a non-additive utility function, which permits the modelling of 
preference structures with interaction between linguistic and numerical variables and 
uses possibilistic fuzzy linguistic terms to avoid exact point estimations. However, the 
ER approach requires the synthesised sets to be independent. This may constrain its 
flexibility in a more generic situation. 

A novel fuzzy TOPSIS method, which can give cardinal order of the RCOs with both 
linguistic and numerical variables, is generated in this study to deal with the problems 
above. Hwang and Yoon (1981) developed the TOPSIS method based on the intuitive 
principle that the chosen option/alternative should have the shortest distance from the 
positive-ideal solution and the longest distance from the negative-ideal solution. 
Although the TOPSIS method uses n-dimensibnal Euclidean distance that by itself could 
represent some balance between total and individual satisfaction, it assumes that there 
always exists a performance matrix obtained by the evaluation of all the options in terms 
of each attribute. Actually, in risk based decision making, such a performance matrix 
may be difficult to obtain considering that the distance evaluation of some attributes (i. e. 
safety) expressed by fuzzy numbers may not be straightforward. Additionally, in a 
Bayesian networking environment, many attributes may have context dependent 
relationships, which have not been well modelled in the original TOPSIS method. 
Therefore, the definitions of fuzzy ordering and fuzzy similarity (distances) are provided, 
with which the positive-ideal and negative-ideal solutions can be identified. The entropy 
theory is introduced, with which the context dependency between attributes can be 
incorporated into the AMUT methodology. Finally, an aggregating function is 
formulated and it is used as a ranking index. 

The remaining part of this chapter is organised as follows. Sections 9.2 and 9.3 are the 
emphasis of this study and describe the first and second stages of the proposed 
methodology respectively. In Section 9.2, a six-step framework is proposed to explain 
the application of BNs in AMUT. In Section 9.3, The BERXER and fiizzy TOPSIS 
methods are considered to implement the combination of the attribute values with 
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various natures obtained from Section 9.2. In Section 9.4 a container delivery delay case 
study is used to illustrate the methodology. Finally, Section 9.5 concludes that 
combining BNs and AMUT with the assistance of fuzzy logic provides a more 
reasonable and powerful solution for risk based AMDMunder uncertainty. 

9.2. Methodology (First Stage): The Application of BNs in AMDM 

The interaction between BNs and AL4DM has been used in dealing with complex 
decision making problems. It may either use the utility theory based on BNs to form IDs 
(Jensen, 2001) or incorporate the uncertainty treatment ability of BNs into the 
framework of AMDAf (Fenton and Neil, 2001). However, a powerful decision making 
tool making use of the advantages of both BNs and AL4DM is relatively novel in the 
fields of risk and safety. Therefore, in this study, a risk based decision making model is 
provided to infer multiple attribute uncertainty and perform risk assessment in a broader 
context. By doing this, the misunderstandings of the important concepts in making 
multiple uncertain attribute decisions (i. e. dependency and fuzziness) can be clarified 
and the limitation of the single risk attribute consideration of BNs can also be avoided. 
The model is the combination of two sub-models: the application of BNs in ALOM and 
fuzzy based utility methods, which are respectively discussed in this section and the next 
one. More elements of the model and their relationships are presented in a graphical 
flowchart (See Figure 9.1). 

Once applied to the risk area, the methodologies of BNs and AMDM have many 
common characteristics. Both studies start with the identification of research objectives 
and then analyse the attributes/factors influencing the objectives. Next, they both 
measure these attributes and calculate the analysis results using the measures when 
actions are taken. Such commonness provides the basis of combining BNs and AIADM. 
The methodology of applying BNs to AMDM shares the similar philosophy with GQM 
(Goal Question Metric) (Basili and Rombach, 1988; Fenton and Neil, 2001) and is 
developed to consist of six steps as follows: 

" Identify risk based decision problems (objectives) and RCOs (actions/functions). 

" Identify decision attributes and constraints and analyse risk factors and their 
causal relationship with the attributes and constraints. 

" Connect all risk factors and attributes to form qualitative BNs. 

" Distribute prior probabilities to model the uncertainties of decision attributes/ 
criteria. 

" Infer the uncertainties given actions and constraints and obtain the posterior 
probabilities of the decision attributes. 

" Construct decision making alternative matrices using the posterior probabilities. 
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Figure 9.1. The methodology of combining BNs, fuzzy logic and A1A'DM 
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9.2.1 Identi: & Risk Based Decision Problems and RCOs 

The first step is concerned with the setting up of clear objectives and functions. The 
objectives are the targets or goals of a study and the functions are the set of actions that 
are required in order to achieve the final aim. Obviously, the objectives of dealing with 
risk based decision making problems are to determine the optimal RCO from multiple 
potential actions or their combinations. Technically, RCOs can be obtained using such 
effective methods as the Chain rule (PVA, 1997). However, the objectives are always 
with respect to particular perspectives. The potential actions are chosen by not only 
decision makers but also all the stakeholders. Since the stakeholders with various 
interests may have different or even conflicting perspectives on the same action, it is 
important to ensure that the stakeholders associated with a particular risk based decision 
problem can be appropriately considered and accounted. It is a crucial step in scooping 
and simplifying the problem. Generally, although affected by the decision, a party still 
ought to be excluded from being considered as a stakeholder if either (Fenton and Neil, 
2001): 

1. Their vicwpoints/nceds arc not relevant; or 
2. Their viewpoints are fundamentally inconsistent with that of the decision makers 

or accepted stakeholders. 

9.2.2 Identi& Decision Attributes and Constraints and A nalyse Risk Factors and their 
Causal Relationship with the Attributes and Constraints 

Although with the identification of the objective and perspective, risk based decision 
problems can be expressed using the kind of summary prose, they will not be truly well 
defined until the following is completely identified and developed: 

The set of possible RCOs, which may be identified after appropriate risk analysis. 
The set of decision attributes, which function to distinguish the options. 
The set of constraints, which are usually considered as some realistic conditions 
and requirements and enter the analysis networks as evidence. 
The set of risk factors, which can connect decision attributes as their media. 
The set of directed acyclic arrows, which. represent the causal relationships 
between the risk factors, attributes and constraints. 

Once the set of possible RCOs are decided by decision makers, the decision attributes/ 
criteria, which can be used to distinguish the options, need to be identified. In the risk 
based decision making context, such attributes often include safety, cost, time, and 
environmental factors, etc. Whereas traditional AMDM assumes that all attributes can be 
measured with certainty and independence, it is clear that any interesting problem will 
involve key attributes with inherently uncertainty and interactive dependence. Even for 
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those so called certain and independent attributes, they may only be relatively certain 
and conditionally independent at one situation and may become uncertain and dependent 
in another situation. For example, time itself can be considered as one kind of cost and 
the delay in time truly belongs to risks. BNs, as an effective uncertainty treatment 
method can model the uncertainty and dependence associated with the decision 
attributes here. 

The BNs include not only the decision attributes but also other factors that can influence 
the value of an attribute for a given action. Such factors can be taken as risk factors, 
which cannot be often controlled by decision makers. These factors, alone with the 
decision attributes will form the set of nodes in a BN, which are connected by the set of 
directed acyclic arrows for predicting the values of the decision attributes. In the process 
of predicting the values of the attributes, the changes or requirements of some realistic 
situations need to be considered as constraints. They may be expressed as the evidence 
used to f ix the state of the nodes in the networks or the changes of structure of the 
networks. For example, a classical constraint may be that the extremely high cost level 
for one action is not acceptable no matter how effective or preferred the risk control 
actions arc in terms of their safety contributions. 

9.2.3 Connect All Risk Factors and A Itributes to Fonn Oualitative BNs 

After identifying all risk factors and decision attributes, one can start to confirm the 
relationship between them and construct a qualitative BN to represent their interactive 
dependencies. The knowledge about the decision problem and intuitive understanding of 
the various dependencies are then used to construct the causal structure. Here the 
graphical representation becomes very handy and permits the decision makers to express 
the fundamental relationships of direct or indirect influence between decision attributes. 
The influence relationships expressed in BNs have a feature with causality. The concept 
of d-separation can be used to ensure that the BN models correspond with a real-world 
situation. The previous studies associated with the combination of BNs and M4DM 

separate certain and uncertain attributes and only consider the latter in a BN inference 

model for simplification (Fenton and Neil, 2001). However, when some constraints are 
given, the certain attributes may change into uncertain ones and thus, it is desirable that 
both certain and uncertain attributes are simultaneously represented in one network. This 

requires the use of the concept of d-separation. Additionally, the definition of d- 

separation also provides the basis for conducting the entropy calculation to measure the 
dependence of decision attributes on constraints in Section 9.3.4. 

9.2.4 Distribute Prior Probabilities to Model the Uncertainties ofDecision Attributes 

When the qualitative BNs have been built and validated, the prior probabilities to all 
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nodes of the networks require to be distributed to model the uncertainties of the decision 
attributes and quantify the BNs. In this process, it is necessary to distinguish the 
different types of uncertainty that arise in decision problems as follows: 

Uncertainty in mndomncss and dependence. 
Uncertainty in incompleteness. 
Uncertainty in fuzziness. 
Uncertainty in inference. 

BNs arc designed and constructed as formal graphical languages for representation and 
communication of decision scenarios requiring reasoning under uncertainty. Their 
strengths are two-sided. They use the concepts of probability, either classical or 
subjective to model the uncertainty in randomness and dependency. Furthermore, handy 
algorithms arc developed for analysis of the models and for providing responses to a 
wide range of requests such as belief updating (uncertainty in inference), which is the 
key notion of the discussion in the next section. However, they have difficulty in dealing 
with the uncertainties in incompleteness and fuzziness due to the various characteristics 
of multiple decision attributes. 

It is highly possible in risk based decision making that BNs include the "synthetic" 
attributes that cannot be properly defined without being decomposed into many new 
converging-connectcd networks. It has been validated that the converging connections 
are always a headache and they are more difficult to handle appropriately compared to 
the diverging and serial connections in BNs (Yang et al., 2005c). For any synthetic 
attribute, it is oflen the case that given each individual lower level attribute, the 
conditional probability of the "synthetic" attribute can provide a closer relationship with 
human knowledge and thus, be relatively easily obtained from either Bayesian 
statisticians or experienced analysts. In other words, complete conditional probability 
distributions of the "synthetic" attributes given their all lower level attributes may be too 
small to be objectively statistic and be too specific to be subjectively judged. 
Consequently, a "Noisier or" approach (Yang el al., 2006) can be used to model the 
prior probability distributions of the "synthetic" attributes based on multiple lower level 
attributes and is well suited to treating uncertainty in incompleteness. 

In terms of dealing with the fuzziness in prior probability distributions, one can use two 
different methods to describe the decision attributes or risk factors with various 
properties. The first method deals with the fuzziness in the meaning of the 
attribute/factors. It uses linguistic terms to defime the states of the nodes representing the 
attributes/factors and then assigns belief degrees (subjective probability) as the prior 
probabilities to such states. For example, the prior probability distribution of the node 
related to the occurrence likelihood (or called TWO of a threat-based risk may be "highly 
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likely" with 0.75 belief degree, "likcly'with 0.25 belief degree, "average" with 0 belief 
degree, "unlikely" with 0 belief degree and "highly unlikely" with 0 belief degree. The 
second method is used to cope with the fuzziness in data/supporting information of the 
decision attributes or risk factors. In this case, the states of the nodes associated with the 
attributcs/factors can be clearly defined using crisp number or intervals. However, crisp 
subjective probabilities (point estimations) cannot be well suited to modelling the prior 
probability distribution with accuracy but the linguistic description with ftizzy numbers 
may be used very well to handle this situation. For example, the prior probability 
distribution of the node related to the occurrence likelihood of a hazard-based risk may 
be "81-100 timcs/pcr ycae'with the belief degree expressed by "high", "61-80 times/per 
year" with the bcl icf degree expressed by "low", "4 1 -60 times/per year" with the belief 
degree expressed by "extremely low" :1 "2140 times/per year" with the belief degree 
expressed by "extremely low" and 1-20 times/per year" with the belief degree 
expressed by "extremely low". In order to update belief and obtain the posterior 
probabilities of all decision attributes, BNs require an effective transformation function 
between such possibilistic linguistic terms and probabilistic crisp numbers. The 
transformation function can be developed on the basis of the defuzzification technique 
such as the one introduced in Equation (5.6). Simultaneously, it is also noteworthy that 
before being used as the prior probabilities, the crisp numbers obtained by the 
defuzzification calculations need to be normalised so that their sum can always be equal 
to one. 

9.2.5 Infer the Uncertainties Given Actions and Constraints and Obtain the Posterior 
Probabilities of the Decision Attributes 

Once the qualitative and quantitative BNs are appropriately constructed, the next task is 
to analyse the networks to obtain the posterior probabilities of the decision attributes 
given risk control actions and constraints from a realistic situation. The objective of 
using BNs in a risk based decision making model is to predict and infer the unobservable 
situations (uncertainties) related to the decision attributes using the posterior 
probabilities when observable evidence (alternative risk control actions and constraints) 
is provided. Such posterior probabilities can be obtained using the Bayes' rule and 
Chain rule (Jensen, 2001) with the assistance of computing software such as Hugin. 

Another key point that needs to be discussed in this section is the definition of 
constraints. The definition of constraints in this newly developed risk based decision 
making model has been extended from a traditional meaning, where a set of constraints 
are normally defined as the properties of decision attributes and can also be thought as 
preferences. For example, one constraint related to one person's height (which is one of 
the attributes of a special decision problem) may be no less than 165cm. In the domain 
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of the novel model, constraints can also be used to describe the properties of the risk 
factors. From the viewpoint of BNs, they, together with the pointed RCO, can be 
considered as the intervention (evidence) for the calculation of the posterior probabilities. 

9.2.6 Consinict Decision A fakjýag A Itemative Matrices Using the Posterior Probabili 

In the traditional AUDAf methodology, decision making alternatives (RCOs) arc 
normally represented by am xn decision matrix, D, where there are m alternatives Aj (i 
r= (1'Z .... m)) which have n attributes Xj (i e (1,2,..., n)), as shown in Equation (9.1): 

X, 
... Xj ... X. 

X1 I ... XQ ... XIM 

D=A, X'j ... XU ... Xi. (9.1) 

A- LXI-1 ... XWj ... X.. j 

It is noteworthy that the attribute value, xy for option i and attribute j requires to be 
certain. Ilowevcr this may not be correct in the risk based multiple uncertain attribute 
decision making modelling. Tlicr6ore, the traditional decision making matrices require 
to be extended to involve more elements (i. e. posterior probability distributions on the 
states of decision attributes) in order to represent the uncertainties. The new decision 
making alternative matrices can be developed as follows: 

Xi 

xiiij 
(X1n1 

Xint X1n4 

xilk, ... xju. 
) 

*** 

ýpl 

- xjikj - xiiii) -( xi? d *** Xin't ... xinL 

't 

I (x. 

I ... 
Xdk. 

--- 
X-A 

)--- ko 

... 
X-i't ... 

X-, 
J 

... 

(X,., 

i ... X.. t ... 
X. L 

(9.2) 

where xy in Equation (9.1) could be any element of the set (x,, 
... X#kj xj,, ) in 

Equation (9.2) with one hundred percent ccrtainty; any element x#k j 
in Equation (9.2) 

can be connected with its corresponding counterpart from the Bayesian exclusive states 
of the decision attribute node (Xj) and thus, has been attached a posterior probability as 
its probabilistic measure; any element xýkj requires to be further analysed in order to 

obtain its location measure; and any decision attribute Xj (I e (1,2,..., n)) needs to be 
given its weight measure by decision makers. 
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Ile three different measures (probabilistic p, location I and weight w) constitute of the 
kernel of the extended decision making matriccs and become important indicators to 
rank decision making alternatives. Having studied the probabilistic measures (posterior 
probabilities) in the previous section, this section focuses on the research of location 
measures I and weight measures w. Location measures I are used to measure the 
performance of the decision attribute nodes based on the preference assignments of their 
exclusive states. 71crc arc four types of location measures: linear, bilinear, non-linear 
and judgemental. In the category of the linear measures, the monotonically increasing 
and monotonically decreasing measures exist. In the former case where more is better 
than less, the location measures can be calculated using Equation (9.3) as follows: 

(V a (9.3) 

where 1. represents the location measure of one state, V. is its state value, Vj. is the 
value of the state with the minimal value and V,,. is the value of the state with the 
maximal valuc. 

In the lattcr case where less is better than more the equation of the location measures is 

(V. V. V (9.4) ý 
(V. - V. 41) 

where all symbols have the same meaning with the ones in Equation (9.3). 

In the case of the bilinear measures, neither maximum nor the minimum is the preferred 
value but some mid-point provides the optimum performance measure. If more is better 
than less, then the equation associated with this kind of measure takes the form of 

I -(V. -V. , (9.5) a 
iY(U. 

- V.. J 

where all the symbols keep the same meanings with the above except U,,., which 
indicates the value of the state with the highest preference. 

On the other hand, if less is better than more, then the function is 

(9.6) 
/(V. 

- U. ) 

where all symbols have the same meaning with the ones in Equation (9.5). 

When the performance of the decision attributes measured is not linear, the 
corresponding location measure function usually adopts a simplified method and can 
have whatever forms depending on the relation of the states of the attributes to the rate 
of the performance. Finally, the judgemental measures are purely based on expert 
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subjective judgement therefore it will be preferred to be expressed using fuzzy numbers 
bascd on linguistic variables. 

In most cases, mcasuring the weights of the decision attributes is relatively 
straightforward considering the fact that many effective weight calculation methods 
such as an A11P tcchniquc arc available to support and simplify the difficulty of the 
subjective judgements of decision makers. However, it is important to note that the 
results obtained (also callcd prior weights) using such methods are certain and fixed. 
They arc analyscd only on the basis of the knowledge, which are mastered by decision 
makers, but without any information of the constraints given such as the chosen actions 
or the obscrvcd evidence of the risk factors. The direct or indirect relationships between 
the decision attributes lead to their weight flexibility (weight dependency) conditioned 
on the constraints. The weight calculation methods cannot explicitly model the 
propensity for the decision makers' wcightings to change once the potential action (RCO) 
is identified. Using the cntropy theory, the problem is dealt with appropriately and is 
detailed in Section 9.3.4. 

9.3. Methodology (Second Stage): Novel Utility Methods 

Once the decision making alternative matrix is constructed, the next step is to combine 
the three measures in order to get an overall performance score for ranking decision 

making alternatives (RCOs). Such a task is not straightforward given the uncertainties of 
location and weight measures. Hence, the following context describes several methods 
produced to deal with various cases with uncertain location and weight measures. 

9.3.1 A Traditional Additive Afethod Based on Crisp Location Measures 

In most applications of the AL4DAf technique, overall performance scores can be 

calculated using a crude multiple attribute utility approach. In such an approach, each 
attribute is assumed to be measurable on a ratio scale, and hence can be mapped onto a 
common interval [0,1], where 0 indicates the "worst" value for the attribute and I 
represents the "best". Consequently, the overall performance scores can be computed 
using the equation as follows: 

si Ivj Ut, 
J. 1 

(9.7) 

where S, is the overall or composite score of the th option; wj is the normalised weight 
assigned to thej"h attribute; uy is the utility measure of the th option on thep attribute. 

In the BN based AUDAf model, if all location measures are linear or bilinear (in other 
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words, the location measures can be represented by crisp numbers), then the overall 
performance scores can be obtained using a novel function which is extended on the 
basis of Equation (9.7) and includes the probabilistic measures as follows: 

RRI F-wiuy = F-Ivi 
, P#kjlUkj (9.8) 

J. 1 J-1 kj-1 

whcrc S, is the ovcrall or composite score of the th option; wj is the normalised. weight 
assigncd to the f4 attribute; p,,, is the probabilistic measure of the kjh state of the P 

attribute givcn the f" option; 1,,, is the location measure of such a state; the combination 

of p,,, and I.,, is uscd to rcprcscnt the utility measure of the th option on the P 

attribute. 

The advantage of such an approach lics in its simplicity. However, in terms of accuracy, 
it is worrisome because not all attributes can be measured on a ratio scale. For example, 
the utility measures of the attributes whose states require to be located using judgemental 
measures may be inappropriately represented by crisp numbers. In dealing with a risk 
based decision making scenario, such attributes widely exist and as a result, appropriate 
methods that arc suitable to modelling thejudgemental location measures are required. 

9.3.2 BFRB and ER 

It has been proven that fuzzy numbers based on linguistic variables can give more 
consideration to human knowledge than crisp numbers based on point estimations in 
terms of subjective judgements. Thus, in the risk based multiple uncertain attribute 
decision making modelling, the states of the attributes which require the use of 
judgemental location measures can be modelled using fuzzy membership functions 
(fuzzy numbers). For example, assume the safety attribute Xj (I (-= (1,2,..., n)) has four 
exclusive states -a set of C'poor", "average", "fair" and "good"), whose utility values 
can be modelled using fuzzy membership functions as the set of (0,0,0.3), (0.1,0.35, 
0.6), (0.4,0.65,0.9) and (0.7,1,1)*. 

It is noteworthy that such fiizzy numbers have the difference in nature with the crisp 
ones representing the ratio scales in Section 9.3.1. While the crisp numbers based on a 
common interval [0,1] can be used to represent location measures, the ftizzy ones are 
obtained/dcsigncd from/in different attribute universes (i. e. safety and cost universes) 
and thus they with the same value but from different attribute universes may indicate 
completely different location measures. It is therefore required to standardise all fuzzy 
numbers from different universes onto the same scale. Having known that human 
0 Also see the discussion related to the ftizzy attributes on Page 42. 
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preference is often used to model the utility space in MDM, a fuzzy common scale 
based on the human preference universe is developed in Figure 9.2. Such a scale as a 
generic case can be very suitable to dealing with the difficulties above. For example, if a 
fuzzy number (0,0,0.2) represents the linguistic variable "low" in a cost universe, it can 
be easily transformed into the fuzzy number with value (0.8,1,1) in the common scale 
using Equation (9.4) (if the three elements of the ftizzy number are separately 
considered as crisp numbers and then relocated to an interval [0,1], which is the 
preference universe of the common scale). When all judgemental location measures on 
different attributes obtain their corresponding fuzzy numbers, they can be transformed 
onto the common scale and expressed by the five preference variables using the 
similarity function between two fuzzy sets (Equation (6.7)). Also, the crisp location 
measures can be fuzzi fcd and expressed by the f ivc preference variables. For example, if 
a crisp location measure has been evaluated as 0.4 on the common interval [0,1], then it 
can be equivalently expressed as 0.5 "slightly preferred" and 0.5 "preferred". 

Not Slightly Preferred Reasonably Highly 
preferred preferred preferred preferred 

01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 9.2. The membership functions of the common utility space 

To combine the location measures and weight measures, a BFRB system can be 
established using the methodology in Chapter 6. Then using the FRB-ER approach 
proposed in Chapter 5, the probabilistic measures can be incorporated and the overall 
performance scores can be calculated to rank decision making alternatives (RCOs). 

9.3.3 TOPSIS 

A modified form of the AL4DAf methodology known as TOPSIS can be adopted to 
combine the fuzzy and crisp attribute value (Chen and Hwang, 1992) and thus, be able 
to conduct the aggregation of three measures as an effective tool. The input to the 
process is the decision making matrix D that is represented by amxnx Ij model in 
Equation (9.2), where there are m alternatives with n attributes, which have Ij (I (-= (1, 
Z.... n)) states. However, it is obvious that such a model is not convenient for decision 

makers to identify both positive and negative ideal solutions. Therefore, the probabilistic 
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and location measures attached on the matrices require to be combined into utility 
measures using the following equation: 

POAJ ikki (9.9) 
ki. 1 

Consequently, the matrices can be transferred back to a new model similar to Equation 
(9.1), as shown in Equation (9.10): 

X, 
... X, ... x. 

A, 'Un 
... Uli ... Ul. 

D= A, Uil ... UY Uln 

A- LU-1 ... u"v ... U. i 

Note that the attribute utility values uy, for alternative i and attributej may be crisp and 
fuzzy numbers due to the natures of location measures lukj; the crisp attribute utility 

numbers can be dcf ined as real number W. and the fuzzy attribute utility numbers can be 

def ined as triangular numbcrs W. = (a#, b#, c#). 

In the second step the decision matrix is normalised so that the elements are unit free, 
which allows for easier comparisons across attributes. A linear scale transformation is 
used to normalise crisp utility measures as shown in Equation (9.11): 

Uy 
vy = -+ , when Xj is an increasingly ordering attribute 

Ui 

U 
Vq = 

i7v , when Xj is a decreasingly ordering attribute 

whcre iuT-' = arg max, w, i ,; and W; = argmin, W., i r: (l, Z ..., m). 

The linear scale transformation for fuzzy utility measures is 

i7v a. ýv Y vy = =' .(v 
ýy 

, ), when Xj is an increasingly ordering attribute 
Uj Cj' b, + a. 

W; a; b; - 
v. === (- s- 

f-) 
, when Xj is a decreasingly ordering attribute (9.12) 

UY c. b,, 'a. 

whcre u-, = arg max, Wy; and W; = arg mint W., i r= (1,2, ..., M). 
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71c fuzzy data, D, * = (a,, b, *, cj*) and W; = (a;, b;, c; ) can be obtained through a 
fuzzy ranking technique (Rilctt and Rark, 2001) based on two criteria: the fuzzy mean 
value and the spread of fuzzy numbers (Dubois and Prade, 1987). The underlying 
assumption is that human intuition would favour a ftizzy number with a higher mean 
value and a lower spread (higher overall score with less variation). When the means of 
two fuzzy numbers arc cqual, the fuzzy number with the lower standard deviation would 
be prcferrcd. Given a fuzzy number F, its mean and standard deviation are defined by 
Equations (9.13) and (9.14) (Budois and Prade, 1987; Rilett and Park, 2001), where S(T) 
is the support (range) of the fuzzy number F. 

7. (F) = 
k(F) XI'F (X)dr 

(9.13) k(F) UF (x)dir 
r l(F) X2u (x)d«c 

a. (Fj -[F- [Z. (F) (9.14) 
k(F)xuj, (x)dir 

1 

If all the fuzzy attributes arc represented by a triangular distribution, Equation (9.13) 

and (9.14) can be simplified as follows: 

Z. (F) =1 (a+2b+c) (9.15) 

cr. (F) = -' (3a2 + 42 + 3C2 - 2ac - 4ab - 4bc) (9.16) 
80 

Therefore, for a given attribute j, the value W. which has the largest generalised mean 

and the relatively small spread is defined as U-j'; the value W. which has the smallest 

mean and the relative large standard deviation is defined as W;. 

After applying Equations (9.11) and (9.12) to Equation (9.10), a normalized decision 

matrix V is obtained where the cells vu contain the normalized attribute values for the ýh 

option on the P attribute. vV consists of both ftizzy normalised attribute values V. and 

crisp normalised attribute values V.. 

Next, the positive ideal solution (IS), which is the vector involving the highest 

normalised scores for each attribute and the negative ideal solution (ISN), which is the 
vector involving the lowest normalised scores for each attribute can be obtained. 
Theoretically, either ISP or IS1v containing the best or worst attribute values can be 

achieved from one special decision making alternative. However, in practice such an 
alternative is very unusual and thus, is normally considered as a hypothesis and serves 
as a reference or an anchor point for the decision making comparisons. For both crisp 
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and fuzzy numbcrs thcy can bc dcrined as follows: 

Isp ++ 
Vit ... ov, 

lsiv= (9.17) 

where v)* - arg max, v,,, - and v, - = arg min, v., i r= (1,2, ..., m); if vy is a set of fuzzy 

numbers then vý+ and v, - can be obtained using Equations (9.13) - (9.16). 

The difference between attribute values v. can be measured using their individual 

distances to the best and worst values using D,, + and D,, -. For crisp numbers, they can 
be defined respectively as follows: 

(9.18) 

V; (9.19) 

For fuzzy data, the diffcrencc mcasurcs bctwccn two Rizzy numbcrs Vy(x), which is a 

given RCO's attribute value, and V, * (x) , which is the best attribute value in the 

chosen attribute sct, can be defined as (Zimmemann, 1991; Rilett and Park, 2001): 

Dý (SUP., [Vo (X) A Vj+ (X)]) (9.20) 

Similarly, the distance F); between V. (x) and Vj (x), which is the worst attribute value 
in thefh chosen attribute setý can be dcrincd as follows: 

D- (vj, 7j) =1- Isup�[vy (x) A vj(X)]) (9.21) 9 

Both D-; ' and D; arc real numbers even though their input is ftizzy sets. In general, 

measures how close each decision making alternative's attribute is to the ISP and F),. -. 

measures how close each decision making alternative's attribute is to the ISN. Therefore, 

smaller D+ and larger D; are preferred. 

The next step is to identify the separation measures S, + and S, - for each RCO which are 

related to the difference measures D-; + and D; with the posterior weights wj* (more 

details are provided in the next chapter). The separation measures' can be defined as the 
weighted sum of the difference measures across all attributes for each RCO and thus are 
expressed respectively as follows: 
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S; XD; iv, to the positive ideal option (9.22) 
J. 1 

Sý ! D; it-, to the negative ideal option (9.23) 
J-1 

whcrc for a givcn RCO lowcr value of S, " and higher value of Sý are desirable, 

indicating that the attributcs of the f4 RCO are closer to the ISP and ftuther from the ISN. 

In ordcr to rank the RCOs, a rclativc closcness index based on the separation measures is 
devclopcd as follows: 

ST 

slo 

+ Sý 
(9.24) 

Ilic RCOs can be rankcd in an increasing order of the C, index. The relative closeness 
index is csscntially a mcasure of how close the attributes of a particular option are to 
both the ISF and ISNý The C, has a range of [0, I] where a value of zero would indicate 
that the corrcsponding RCO is the worst and equivalent to the ISN and a value of one 
would rcprcscnt that the corrcsponding RCO is the best and equivalent to the ISP. 

9.3.4 Relative 11'etcht Aleavures Usinje Entropv Calculation 

While the TOPSIS technique deals with utility representations for real and fuzzy 
numbers as well as caters for dependent relationships between decision attributes, it 
does not explicitly model the changing propensity of decision attribute weight measures 
once RCOs or constraints arc identified. Tbeoretically, the weight measures of decision 
attributes can only be precisely calculated and obtained on the basis of the complete 
knowledge of decision makers, both prior (i. e. historical information, which has been 
mastered by decision makers) and posterior (i. e. various RCOs and constraints observed 
from different objective situations). However it may not be the case in many real-time 
applications. Therefore, in this study the definition of prior weight measures is 
introduced first on the basis of the prior knowledge and then they can be developed into 
the posterior weight measures with the updated information representing the context 
dependency of decision attributes using the entropy theory (Zeleny, 1976). Entropy 
theory is ideal for this application because it can be used to measure the amount of 
information in the choice set and this information can be used to identify an attribute's 
relative importance (Rclittc and Park, 2001). 

The first step is to calculate uj, the prior utility measure of the P risk attribute for all 
RCOs. I laving known Equation (9.9), uj can be calculated in a similar way as follows: 
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ui = 
ILI 

Pikiliki (9.25) 
li. 1 

where p,,, is the marginal (prior posterior) probabilistic measure of the kjh state of the 

A attributc without the presentation of any RCO; Ijk, is the location measure of such a 

state; the combination of p,,, and 1,1, is used to represent the prior utility measure of 

thcP attribute. Ncxt, the posterior utility measures uij (i = (1,2, ..., m)) of thep risk 
attribute givcn cach RCO and their corresponding constraints can be computed using 
Equation (9.9). With thcm, a vector A;, which characterises the utility measure changes 

of thcj4 attribute given all the RCOs can be represented as follows: 

A; = 
ju,, 

- u, ju, 
- u, ju., 

- u, 11 (1 E (1,2,..., n)) (9.26) 

where ju, 
-u, 

I can be explained as the distances (difference) between two sets (either 

fuzzy or real numbers) ug and uj and thus, always be represented by real numbers given 
Equations (9.18) - (9.2 1). Its normal ised counterpart is 

Aj = jk1j,..., ku,... kj j (j e (1, Z.... n)) (9.27) 

where k. =. 
It, 

- Uj I. Note that the normaliscd variables ky are used for 
maxlu, - u, I 

comparison purposes, although the entropy calculation allows the existence of non- 
normaliscd values as well. 

The sum of the elements of the normalised vector, S(Aj) is defined as 

m S(Aj) ky (1, Z (9.28) 

The entropy measures of each decision attribute's "contrast intensity" is calculated as 
follows (Rillett and Park, 2001): 

C(S(A, )) =-I FE ln(ýk 
In m i-i (Aj))] 

(9.29) 

(ýJ) 
", 

[Tk (ýk7, 

) where by definition, the maximum value of -Y In is obtained as In m Aj) 

I) when all kv arc identical for a givcn attributcj. 
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The total entropy across all decision attributes E, is 

n 
E=F, e(S(Aj)) (9.30) 

j=l 

The context dependent weight measures of theP attribute, wj' is inversely related to the 

entropy measures of the J 
4h 

attribute, e(S(Aj)) . Given that the sum of all context 
n 

dependent weight equals to one I w) = 1), then the weight of the P attribute can be 
j=1 

computed as follows: 

wic =I- 
e(S(Aj)) 

(I - e(S(Al))) + (I - e(S(Aj))) + (I - e(S(A,, ))) 

I- e(S(Aj)) 
- 

n-E 
(9.31) 

Once the w, ' is identified, the next step is to determine how to combine the prior weight 
measures wj and the context dependent weight measures w, ' to obtain the posterior 

weight measures. The combination usually takes additive or productive operations based 

on different premises and assumptions as well as the characteristics of decision makers. 
For example, in the assumption of the absence of any prior information, it is possible to 

use context dependent weight measures to determine the posterior weight measures. 
Consequently, the posterior weight measures wj can be represented as follow: 

W; wi + wic 
(wr + WO) r=l 

(1,2, ..., or n) (9.32) 

if the basic premise is that once one of the prior and context dependent weight mcasurcs 
is zero, the posterior weight measures will be considered as zero even if the weight of 
the other one is measured as one, then the posterior weight measures can be calculatcd 
as follows: 

wc 
jwj Wi n 

E (wr Wrc 
r=l 

(1,2, ..., or n) (9.33) 

which means that any element (wj or wj) is zero then the attribute it associates with 

will not work for decision making any more. In the risk based decision making model, 
the prior weight measures are normally obtained using historical data and decision 

making requirements. Furthermore, one of the main objectives of using BNs to model 
decision making problems is to emphasise the context dependency between decision 

attributes. Therefore, Equation (9.33) will be chosen to use in this study. 
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In general, as the normalised utility measure changes ky become more distinct and 
differentiated with respect to, the P attribute, the corresponding contract intensity 

e(S(A, )) for the givenp attribute decreases. Consequently, the relative weight measure 

wj' related to ther attribute increases and ftirthermore, it leads to the increment of the 

posterior weight measure wj*. 

9.4. Case Study: A- Container Delivery Delay Analysis 

9.4.1 Analyse the Case to Combine BNs with AMDM 

Container transportation delay is a common problem in supply chain management. It 

may result from various reasons such as transport tool failure, human error, ineffective 

container control, loose connection between multiple transport modes and external 
environment factors (i. e. congestion), etc. This section analyses a typical decision 

scenario for choosing an appropriate container transport mode to prevent a delivery 
delay in order to demonstrate the described methodology. It is described as follows: 

A shipper wants to deliver container cargoes from a place A to their consignee in a place 
B. There are three main modes of transport available between A and B. They arc 
separately container trucks (road), trains (rail) and feeders (shipping). 

For the shipper's reason, the departure time is required to be between Monday and 
Friday. For the consideration of the consignee, the arrival time is as early as possible 
however not later than the Monday in the next week. With the on-time delivery premise, 
the shipper and consignee want the delivery to be as cheap and safe as possible. 
However, simultaneously they also have to take account of certain circumstances and 
external factors like weather, road traffic congestion and train problems. Such a situation 
may vary according to status of the consignee. For example, the aim of transporting the 
containers to B (Situation 1) could be to transfer them on a mother ship for another place C 
(Situation 2). In such a case, the arrival time may require to be as late as possible before 
the loading time of the mother ship, which may be from Thursday to Saturday. Otherwise, 

the consignee needs to pay the port in B more quay rent for storing the containers. 

The objective of analysing the decision scenario is to deliver the containers to B on the 
required time (as early as possible in Situation I and as late as possible (the least waiting 
time) in Situation 2). The RCOs are chosen on the basis of the main transport modes and 
the departure time. In terms of time, the flexibility of three transport modes decreases in 

an order of road, rail and shipping. For simplicity the departure time is considered as 
discrete five days (from Monday to Friday). Consequently, the RCOs can be identif icd as: 
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Container trucks depart on Monday. 
Container trucks depart on Wednesday. 
Container trucks depart on Friday. 
Trains depart on Thursday. 

" Container trucks depart on Tuesday. 

" Container trucks depart on Thursday. 

" Trains depart on Tuesday. - 
" Feeders depart on Wednesday. 

The perspective of the decision problem is associated with not only the shipper but also 
the stakeholders, both the consignee and possible carriers. While the shipper is 
interested in the cost of the delivery with on-time delivery, the consignee on the other 
hand is only interested in not having too much waiting time. Such interests are based on 
the safety consideration of three transport modes. The possible carriers want to be 

chosen in order to make profits. Obviously, the carriers are not important stakeholders in 

this analysis and thus, are excluded from the decision making process. 

Having analysed the objective and perspective, the decision problem can be well defined 

by finther researching the concepts of the decision attributes, constraints, risk factors 

and their causal relationships, as shown in Table 9.1. 

Table 9.1. The key concepts 

Container delivery delay 

Objective To deliver the containers from A to B as early as possible in Situation 1; To 
deliver the containers in good time to catch the mother ship in Situation 2. 

Perspective Decision maker: the shipper 
Key stakeholder: the consignee 

RCOS Container trucks depart on Monday. 
Container trucks depart on Tuesday. 
Container trucks depart on Wednesday. 
Container trucks depart on Thursday. 
Container trucks depart on Friday. 
Trains depart on Tuesday. 
Trains depart on Thursday. 
Feeders depart on Wednesday. 

Decision attributes Arrival time, cost and safety 
Constraints Required time and waiting time 

Risk factors (not Nominal journey time, nominal postponement and adjusted journey time 

controlled by decision 

makers) 
Causal relationship The transport mode will influence the cost, safety and nominal journey time, 

the start time and nominal postponement. The start time will further influence 
the nominal journey time (for example, the traff ic situation on Monday may 
be worse than the one of Friday). The nominal journey time and nominal 
postponement determine the adjusted journey time, which togcthcr with the 
start time affects the arrival time. Based on the required time, the arrival time 
has the waiting time as its child. Such causal relationship will vary in 
Situation 2, where the waiting time is conncctcd wiih the cost since the 
consignee needs to pay for the storage of the containers and the safety 
considering that too short waiting time leads to the failure of loading the 
containers on board of the mother vessel. 
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According to the causal relationship analysis, the qualitative BNs for Situations I and 2 

can be separately developed using the concept of d-separation in Figures 9.3 and 9.4. 

Figure 9.3. The qualitative BN for Situation I 

Figure 9.4. The qualitative BN for Situation 2 

in the analysis of Figure 9.3, once a transport mode is selected, the cost and sallety are 

certain in terms of their utility value - the combination of probabilistic and location 

measures, because they are conditionally independent of any nodes in the networks. 
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Such attributes as the cost and safety are normally defined as certain attributes in the 

previous work and they do not need to be incorporated into the BN for simplification. 
However, in this case, when the situation changes, certain attributes can become 

uncertain. Therefore, they ought to be included in the networks and are defined using the 

concept of d-separation. 

The prior probability distribution depends on the realistic environment that the network 
models. For example, if the assumed places A and B are Wuhan and Shanghai in China, 

then the prior probabilities can be assessed using the database of shipping companies or 
the transport department of government (i. e. the nominal journey time and nominal 
postponement), some mathematical calculation (i. e. for the adjusted journey time and 
waiting time) and subjective judgement (i. e. for the cost and safety). Table 9.2 that is 
elicited from the Hugin software shows the prior probability distribution of the node 
nominal joumey time. 

Table 9.2. The prior probability distribution of the node "nominal journey time" 

When the prior probabilities of the nodes, cost and safety based on subjective judgement 

are concerned, there are two points that are noteworthy. Such nodes as "safety" may be 

synthetic and therefore can be further developed into a local networking graph for more 
accurate subjective probability estimation. The decornposed elements can be modelled 
using fuzzy set modelling. The other is related to the "Noisier or 11 approach. It is 
obvious that in Situation 2, compared to the individual conditional probabilities of' the 
cost given a specific transport mode or waiting time, the conditional probability of the 

cost given both of them has less respect to human knowledge. 

Once the prior probabilities have been appropriately distributed, the next is to use the 
Hugin software to calculate the values of the risk attributes with certain RCOV and 
constraints. In Figure 9.5, a specified BN is provided to represent the probabilistic 
measures of the decision attributes given the RCO that container trucks depart on 
Monday. They are separately (0.035,0.365,0.465,0.135,0,0,0,0,0) for the arrival 
time, (0,0,0,0.8,0.2) for the cost and (0.2,0.4,0.4,0) for the safety. 
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Figure 9.5. The probabilistic measures of one of RCOs 

In a similar way, all the probabilistic measures can be obtained and described in Table 9.3. 

Table 9.3. The probabilistic measures of all RCOs 

------Rýisk attributes 
Risk Arrival time Cost Safety 

control optioýns 
Container Irucks (0.035,0.365,0.465,0.135,0,0,0,0, (0,0,0,0.8,0.2) (0.2,0.4,0.4,0) 
depart on Monday. 0) 
Container trucks (0,0.07,0.38,0.43,0.12,0,0,0,0) (0,0,0,0.8,0.2) (0.2,0.4,0.4,0) 
depart on Tuesday. 
Container trucks (0,0,0.07,0.38,0.43,0.12,0,0,0) (0,0,0,0.8,0.2) (0.2,0.4,0.4,0) 
depart on Wednesdav. 
Container trucks (0,0,0,0.07,0.38,0.43,0.12,0,0) (0,0,0,0.8,0.2) (0.2,0.4,0.4,0) 
depart on Thursday. 
Container trucks (0,0,0,0,0.105,0.395,0.395,0.105, (0,0,0,0.8,0.2) (0.2,0.4,0.4,0) 
depart on Fridav. 0) 
Trains depart on (0,0,0,0.217,0.443,0.2488,0.0228, (0,0.1,0.9,0,0) (0.6,0.4,0,0) 
Tuesdav. 0.0228,0.0456) 

_ Trains depart on (0,0,0,0,0,0.217,0.443,0.2488, (0,0.1,0.9,0,0) (0.6,0.4,0,0) 
Thursday. 0.0912) 

_ Feeders depart on (0,0,0,0,0,0.117,0.2702,0.1532, (0.25,0.75,0,0, (0,0.2,0.3,0.5) 
Wednesday. 

- 
0.4596) 0) 

The next step is to calculate the location measures of the risk attributes. Using Equation 

(9.4), the monotonically decreasing location measures of the arrival time can be 

obtained as (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0), where "Monday" takes a 

value I and then ">(=)Tuesday(next week)" is linearly distributed a value 0. The 

judgemental location measures of the safety are defined as ((0.7,1,1), (0.4,0.65,0.9), 

(0.1,0.35,0.6), (0,0,0.3)). The membership function of the states of the cost can be 

modelled in Figure 9.6 and thus, their location measures are the set of ((0,0,0.3), (0.1, 

0.3, . 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)). 
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If it is dssumed that the prior weight measures are computed as (0.5,0.25,0.25) in an 
order of the, affival time, cost and safety using an AHP method, then the decision matrix 
for this case can be represented in Table 9.4 using Equation (9.2). 

Wool& 

4.. 2.. Niovel,. Ut li ReP. ulating Overall, pqýr q? lc. e S.. c ores.. 9. 
. ... ... I ... .... ....... 

ty r. - e., S,. e., n, , 
t-a, to 0 n. fior Calq 

. ...... . .............. . 

For the purpose of comparison, the traditional utility function of AMDM is used to 

calculate the overall performance values of various RCOs. The point estimations of the 
location measures of the attributes, cost and. safety can be subjectively assessed as (1, 
0.75,0.5,0.3,0) and (1,0.75,0.25,0) at the common scale [0,1]. Using Equation (9.7) 

and ýs extension, E4uation (9.8), the overall performance score of the RCO that 

container trucks depart on Monday can be calculated as follows: 

33 11 
S, = Ew UIJ 5, I 

i 'Wj 'Pljkj ljkj 
J=j J=l kj=l 

=(0.035 xl + 0.365 x 0.875 + 0.465 x 0.75 + 0.135 x 0.625) x 0.5 

+ (0.8 x 0.3) x 0.25 + (0.2 xI+0.4 x 0.75 + 0.4 x 0.25) x 0.25 
0.604 

Similarly, the other overall performance scores of RCOs can be computed as follows: 

S2 = 0.548 
Si = 0,485 
S4 = 0.423 
S. 5 = 0.366 
S6 = 0.584 
S7. = 0.467 
S8 = 0.334 
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Table 9.4. The decision matrix 

Risk 
RCOs (Ai) attributes Measurement values (Xyk 

, 

4ffival p= (0.035,0.365,0.465,0.135,0,0,0,0,0) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 
C t i w=0.5 on a ner 
trucks depart p= (0,0,0,0.8,0.2) 

1 
on Monday 

Cost I= (((0,0,0.3), (0. , 0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 
. w 0.25 01) 

p (0.2,0.4,0.4,0) 
Safety 1 ((0.7,19 1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 

w=0.25 
Arrival p= (0,0.07,0.38,0.43,0.12,0,0,0,0) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 
C i w=0.5 onta ner 
trucks depart p= (0,0,0,0.8,0.2) 

on Tuesday cost I= (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 
. w=0.25 (#2) = (0 2 0 4 0 4 0) 

Safety 
p . , . , . , I= ((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (09 0,0.3)) 
w -- 0.25 

Arrival p= (0,0,0.07,0.3 8,0.43,0.12,0,0,0) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 
Container w=0.5 

' - trucks depart p= (0,0,0,0.8,5 .2 ) 
on Cost I= (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.79 0.9), (0.7,1,1)) 
Wednesday. w=0.25 
(#3) - p= (0.2,0.4,0.4,0) 

Safety I= ((0.7,1,1), (0.4,0.659 0.9)9 (0.1,0.35,0.6), (0,0,0.3)) 
1 w=0.25 

Arrival P= (0,0,0,0.07,0.38,0.43,0.12,0,0) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 
i w=0.5 Conta ner 

trucks depart p= (0,0,0,0.8,0.2) 

on Thursday. 
cost I= (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 

w=0.25 (#4) = (0 2 0 4 0 4 b) 
Safety 

p . , . , . , 1=((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 
w=0.25 

Arrival p= (0,0,0,0,0.105,0.395,0.395,0.105,0) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 

i w=0.5 Conta ner 
trucks depart p= (0,0,0,0.8,0.2) 

on Friday Cost I= (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1.1)) 
. w=0.25 (#5) 0 4 0) = (0 2 0 4 

Safety . , p . , . , I= ((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 
w=0.25 

Arrival p= (0,0,0,0.217,0.443,0.249,0.023,0.023,0.045) 

time I= (1,0.875,0.75,0.625,0.5, Oý375,0.25,0.125,0) 
w=0.5 

Trains depart P= (0,0.1,0.9,0,0) 

on Tuesday. Cost I= (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 
(#6) w=0.25 

p= (0.6,0.4,0, F) 
Safety /=((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 

w=0.25 
Arrival p= (0,0,0,0,0,0.217,0.443,0.249,0.09 1) 

time I= (1,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0) 
w=0.5 

Trains depart P (0,0.1,0.9,0,0) 
on Thursday. Cost 1 (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 
(# 7) w=0.25 

p= (0.6,0.4,0,0) 
Safety I= ((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 

w=0.25 
Arri al p= (0,0,0,0,0,0.117,0.27,0.153,0.46) 

timy I= (1,0.875,0.75,0.625,0.5.0.375,0.25,0.125,0) 

F d w 0.5 
ee ers p (0.25,0.75,0,0,0) depqrt on 

Wednesday. Cost 1 (((0,0,0.3), (0.1,0.3,. 0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,1,1)) 
w=0.25 (#8) 
p= (0 0 2 0 3 0 5) 

Safety , . , . , . I= ((0.7,1,1), (0.4,0.65,0.9), (0.1,0.35,0.6), (0,0,0.3)) 

221 



These scores indicate that the optimal RCO is to use container trucks departing on 
Monday and the second best option is to use trains on Tuesday. 

According to Figure 9.3, given a chosen RCO, three risk attributes form a diverging 

connection and thus, show conditionally independent relationships. Considering that 
using point estimations to deal with the fuzzy nature of the states of the attributes, cost 
and safety discounts the accuracy of the traditional crude AMDM method, the BFRB-ER 

method can be employed to rank the options more reasonably and appropriately. 

Regarding the BFRB-ER method, the first step is to construct a'logical BFRB. In order to 
do that, the location measures of the three decision attributes need to be mapped onto the 
common space, which is the utility function in Figure 9.2. Each measure, either a 
numerical or ftizzy number, can be mapped on the utility membership fiinction and then 
described by five preference expressions with belief degrees. For example, the location 

measure (0-1,0.3,0.5) of the state, "IoW', of the attribute, cost, can be first standardised 
as (0.5,0.7,0.9) and then mapped onto the utility scale (shown in Figure 9.7) as follows 
(using Equations (6.7) - (6.9)): 

Ljo,, = {(O, "not preferred'), (0, "slightly preferred'), (0, "preferred'), (1, "reasonably 

preferred'), (0, "highly preferred')) 

Not Slightly Preferred Reasonably Highly 
preferred preferred preferred prefeAred 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 9.7. Mapping the location measures of the "lovV' state of the cost to the utility scale 

Similarly, other location measures represented by the preferred expressions can be 

computed and obtained as follows: 

Im,, d,, y = ((O, "not preferred'), (0, "slightly preferred'), (0, "preferred'), (0, 
"reasonably preferred), (1, "highly preferred')) 
IT,,,, day = {(O, "not preferred'), (0, "slightly preferred'), (0, "preferred'), (0.177, 
"reasonably preferred), (0.823, "highly preferred')) 
lw, d,,, day = ((O, "not preferred'), (0, "slightly prefer-red'), (0, "preferred), (0.818, 
"reasonably preferred), (0.182, "highly preferred)) 
ln,, 

r, day = {(O, "not preferred), (0, "slightly preferred'), (0.375, "preferred), 
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(0.625, "reasonably preferred'), (0, "highly preferred')) 
IF,, jday = 1(0, "not preferred'), (0, "slightly preferred'), (1, "preferred), (0, 
"reasonably preferred'), (0, "highly preferred') I 
Isal,, rday = ((O, "not preferred'), (0.625, "slightly preferred'), (0.375, "preferred'), 
(0, "reasonably preferred'), (0, "highly preferred')) 
ls,,, day = ((0.1 82, "not preferred'), (0.818, "slightly preferred'), (0, "preferred'), 
(0, "reasonably preferred'), (0, "highly preferred')) 
Im,,, day( .. t,,,, k) = I(O. 823, "not preferred), (0.177, "slightly preferred'), (0, 

"preferred'), (0, "reasonably preferred'), (0, "highly preferred, )) 

1_>T,,, sday(,, t,, eek) = ffl, "not preferred'), (0, "slightly preferred'), (0, "preferred'), 
(0, "reasonably preferred'), (0, "highly preferred')) 
1,, ry k,,,, = 1(0, "not preferred), (0, "slightly preferred'), (0, "preferredg ), (0, 
"reasonably preferred'), (1, "highly preferred')) 
Ia,, rag, (,,, sj) = {(O, "not preferred'), (0, "slightly preferred), (1, "preferred'), (0, 
"reasonably preferred'), (0, "highly preferred')) 
Ihigh = 1(0, "not preferred'), (1, "slightly preferred), (0, "preferred'), (0, 
"reasonably preferred'), (0, "highly preferred')) 
Ive? y high = f(l, "not preferred), (0, "slightly preferred), (0, "preferred), (0, 
"reasonably preferred'), (0, "highly preferred')} 
Igoa = {(O, "not preferred), (0, "slightly preferred), (0, "preferred), (0, 
"reasonably preferred'), (1, "highly preferred')} 
Ifai,. = {(O, "not preferred'), (0.034, "slightly preferred'), (0.307, "preferred, ), 
(0.547, "reasonably preferred), (0.112, "highly preferred, )} 
la, er,, g, = 1(0.1 12, "not preferred'), (0.547, "slightly preferred, ), (0.307, 
"preferred'), (0.034, "reasonably preferred), (0, "highly preferred)) 
lp, o,, = ffl, "not preferred'), (0, "slightly preferred), (0, "preferred, ), (0, 
"reasonably preferred), (0, "highly preferred)) 

Then using the ER approach, together with the weight measures (0.5,0.25,0.25) of the 
three attributes, the arrival time, cost and safety, a BFRB including 180 (9 x5x 4) rules 
can be generated. The first 6 rules in such a rule-based system are shown in Table 9.5. 

Table 9.5. The partial rules of the new developed BFPB 

Rules Risk attribut es Preference estimation (de sion making) 
No Arrival time Cost Safety Not 

prefen-ed 
Slightly 

vreferred 
Preferred Reasonably 

preferred 
Highly 

preferred 
T- Monday Very low Good -- 

Monday Very low Fair 0.006 0.05 0.088 0.856 
Monday 

- 
Very low Average 0.019 0.912 0.051 0.006 0.833 

nday To Very low j Poor 0.167 1 1 1 1 0.833 
Monday Low I Good 

-- 
I 

-I 
1 0* 167-- t 0.833 

Monday Low 
-I 

Fair 
-1 

0.006 - 1- 0.058 1 0.327 1 0.609 
41 1'he wnoie suwciure oi ine nriw is given in Appenaa o. 

223 



Once the BFRB is constructed, the individual overall performance scores of all RCOs 

can be calculated using the FRB-ER approach with the probabilistic measures as input. 
For example, for the RCO#I, its input can be obtained as the set of ((0.035, "Mondcv% 
(0.365, "Tues&V% (0.465, "Wednes&V% (0.135, "ThursdcV)) for the attribute, 
arrival time, the set of j(0.8, "high"), (0.2, "very high")) for the attribute, cost and the 

set of {(0.2, "good), (0-4, '! /ai? '), (0.4, "average") for the attribute, safety. 
Consequently, 24 (4 x2x 3) rules will be combined to calculate the overall performance 
score of the RCO#I. They are Rule 13, Rule 14, Rule 15, Rule 17, Rule 18, Rule 19, Rule 
33, Rule 34, Rule 35, Rule 37, Rule 38, Rule 39, Rule 53, Rule 54, Rule 55, Rule 57, Rule 
58, Rule 59, Rule 73, Rule 74, Rule 75, Rule 77, Rule 78 and Rule 79 in Appendix 6. 
According to the input, their corresponding rule weights can be computed and the 

overall performance score of the RC0#I can be obtained using the FRB approach in 
Chapter 5 as: 

S, = f(O. 04, "not preferred'), (0.204, "Slightly preferred), (0-069, "preferred), 

(0.385, "reasonably preferred'), (0.302, "highly preferred')) 2ý 0.04 x0+0.204 

x 0.3 + 0.069 x 0.5 +0.385 x 0.7 + 0.302 xI=0.667 

where S, means the overall performance score of the RCO#I and the symbol 
indicates the defuzzification operation using Equation (5.6). 

In a similar way, the overall performance scores of the other RCOs can be computed as 
follows: 

S2 = ((0.04, "not preferred'), (0.202, "slightly preferred), (0.2 1, "preferred), 
(0.436, "reasonably preferred'), (0.112, "highly preferred')) z 0.583 
S3 = {(0.039, "not preferred'), (0.25, "slightly preferred'), (0.452, "preferred'), 
(0.212, "reasonably preferred'), (0.047, "highly preferred')) ; ts 0.496 
S4 = I(O. 048, "not preferred), (0.468, "slightly preferred), (0.388, "preferred'), 
(0.058, "reasonably preferred'), (0.038, "highly preferred')) Aý 0.413 
S. 5 = 1(0.1 13, "not preferred'), (0.65 1, "slightly preferred), (0.164, "preferred), 
(0.036, "reasonably preferred), (0.036, "highly preferred)) z 0.339 
S6 = I(O. 036, "not preferred'), (0.082, "slightly preferred'), (0.667, "preferred'), 
(0.115, "reasonably preferred'), (0.1, "highly preferred)) z 0.539 
S7 = ((0.215, "not preferred'), (0.34, "slightly preferred'), (0.269, "preferred'), 
(0.054, "reasonably preferred'), (0.122, "highly preferred')) -- 0.396 
S8 = ((0.549, "not preferred'), (0.207, "slightly preferred'), (0.047, "preferred'), 
(0.155, "reasonably preferred'), (0.042, "highly preferred')l z 0.236 

where each Sj, j = (2,3, ..., 8) represents the overall performance scores of the other 
RCOS- Using the defuzzified values, the RCO#I (container trucks depart on Monday) is 
the optimal decision alternative and the RCO#2 (container trucks depart on Tuesday) 
rather than RCO#6 (trains depart on Tuesday) is the second best option. 
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The discussion above considers multiple uncertain attribute decision making with the 
condition that the relationships between attributes are assumed to be independent. The 

emphasis is focused on dealing with multi II plicity, randomness and fuzziness. However, 

when such a condition is changed and the decision attributes surely have dependencies, 

the TOPSIS with entropy calculation method can be applied and Situation 2 in the case 
study is used to test the method in the following context. 

When container cargos require to be transferred from B to C, Situation I changes to 
Situation 2, which has been modelled using Figure 9.4. Compared to Figure 9.3, Figure 
9.4 has two new nodes, "required time" and "waiting time" and four new links 

connecting "required time" with "waiting time", "arrival time" with "waiting time", 
"waiting time" with "cost" and "waiting time" with "safety", which make the three risk 
attributes not conditionally independent any more even given RCOs. Consequently, 

using Hugin software, the prior posterior probability distributions of the risk attributes 
can be obtained and shown in Figure 9.8. 

Figure 9.8. The prior posterior probability distribution of the risk attributes 

In order to construct the new decision matrix in Situation 2, the probabilistic, location 

and weight measures require to be reassessed. The estimation of the probabilistic 
measures based on Bayesian inference software packages is relatively straightforward. 
For example, given RCO#1, the probabilistic measures can be calculated using 1111gin 

software in Figure 9.9. 
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Figure 9.9. The probabilistic measures of the RCO#1 

The calculation of the location measures becomes complex, because the preference 
degree of the states of the decision attribute, arrival time will be changeable with various 
RCOs and external constraints (however, the location measures of cost and safety do not 
change). For example, the location measures of the "arrival time" may be detennined by 

"transport mode", "required time" and "waiting time" simultaneously. If the "transport 

mode" is feeder ships, then the preferred "waiting time" is less than one day (otherwise, 
for trucks or trains, it will be 1-2 days). Assume that the arrival day of the mother ship 
(required time) is Saturday, then the location measures of the "arrival tirne" are the set 
of (0.2,0.4,0.6,0.8,1,0,0,0,0), which means that Friday is optimal; for the day(s) 
later than that, the location measures are zero, because there is no opportunity to catch 
up the mother ship; and for the day(s) earlier than that, the measures have a linear 

decreasing preferred distribution. In a similar way, if the "transport mode" is trucks or 
trains, then the location measures of the "arrival time" are the set of (0.25,0.5,0.75,1,0, 

0,0,0,0). Furthermore, if the "transport mode" is unknown, then the probability of 
using feeders is 0.125 (1 out of 8 RCOs) and the probability of using trucks or trains is 
0.875. In such a circumstance, the location measures of the "arrival time" belong to the 

set of (0.2,0.4,0.6,0.8,1,0,0,0,0) with a belief degree of 0.125 and the set of (0.25, 
0.5,0.75,1,0,0,0,0,0) with 0.875 credibility. Consequently, the location measures of 
the "arrival time" without the presentation of RCOs are calculated as (0.244,0.488, 

0.731,0.975,0.125,0,0,0,0) (= (0.2,0.4,0.6,0.8,1,0,0,0,0) x 0.125 + (0.25,0.5, 

0.75,1,0,0,0,0,0) x 0.875). 
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The new weight measures (posterior weights) of the decision attributes require 
incorporating the prior weights with the dependent weights resulting from the context 
dependencies between the attributes. The major principle is that given any RCO, if the 

change of the utility measure (the combination of the probabilistic and location 

measures) of one attribute is same as or similar to the ones given the other RCOs, then 

such an attribute has no or limited influence to the final decision making. In the 
following context, the computing process of the posterior weight of the attribute, arrival 
time is described. 

The first step is to calculate the prior utility measure of the "arrival time" 

without the presentation of any RCO using Equation (9.25) with the probabilistic data 
from Figure 9.8 and the corresponding location measure set discussed above as follows: 

1 
Uarrivattime = 

kj =l 
Pikj likj 

0.002 x 0.244 + 0.029 x 0.488 + 0.061 x 0.731 + 0.104 x 0.975 + 0.143 
0.125 + 0.180 x0 +0.202 x0 +0.103 x0+0.176 x0 

= 0.179 

In a similar way, uj,, j,,, jj., , the posterior utility measures of the attribute, "arrival 

time" given the RCO#1 can be calculated using Equation (9.9) as follows: 

I 
Ul, arrivaltime "- kj=l 

Pijkj lykj 

= 0.035 x 0.25 +0.365 x 0.5 + 0.465 x 0.75 + 0.135 xI+0x0+0x0+0x0 
0x0+0x0 
= 0.675 

where Pyk, can be obtained as the set of (0.035,0.365,0.465,0.135,0,0,0,0) using 

the model established in Hugin (see Figure 9.9) and lyk, has been analysed previously to 

be the set of (0.25,0.5,0.75,1,0,0,0,0,0). 

Similarly, uj,,,, j,,, jtj., (i = 2,3, ..., 8) can be calculated and obtained as follows: 

U2, 
arrivattime 0.750 

U3, 
arrivaltime 0.433 

U4, 
arrivaltime 0.070 

U5, 
arrivallime 

0 

U6, 
arrivaltime 0.217 

U7, 
arrivallime 

0 

U8, 
arrivallime 

0 
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Consequently, A' wivaltime 9 which characterises the utility measure changes of the arrival 
time given the each RCO can be represented using Equation (9.26) as follows: 

A,, 
rrival,!,, - = 

ýUl, 

wrlvallinje -Uarrivaltiniel"**ýIU8, arrivaltinie -Uarrivallinwil 

='[10.675 
- 0.1791,10.750 - 0.1791,10.433 - 0.1791,10.070 - 0.1791, 

10 - 0.1791,10.217 - 0.1791,10 - 0.1791,10 - 0.1791 

1 

= [0.496,0.571,0.254,0.109,0.179,0.038,0.179,0.179] 

Next, the nonnalising vector of can be calculated using Equation 

(9.27) as: 

0.496/ 
571 

0.57V 
' /0 571' 

0.25y 
0 0 571' 

o*IO9 9/ 
-1 

e-U. 
A 

i lti . . 0.571 
arr va n 0.179/ 0.038/ 0.179 

571 / U. ' 0.571' 0 1, 0.57 0.571 
[0.869,1,0.449,0.190,0.313,0.067,0.313,0.3 13] 

Then, according to Equation (9.28), the sum of the elements of the vector is calculated as: 

S(A�, 1�itime) ki `ý (0.869 +1+0.449 +0.190 + 0.313 + 0.067 
,. arrivaltime " i=I 

0.313 + 0.313) = 3.514 

The entropy measure of the risk attribute, arrival time can then be computed using 
Equation (9.29) as: 

8 ki 
'arrivallime 

ki, 
arrivallime 

e(S(A,,, iv,, Itime 
)) : -- --Z In( 

In 8 i=i S(Aarrivaltime ) S(Aarrivaltime 

=- 
1- 

x(O. 248x(-1.395)+0.285x(-1.255)+0.127x(-2.066)+0.054x(-2.919) 
2.079 

+ 0.089x (-2.419) + 0.019x (-3.950) + 0.089x (-2.419) + 0.089x (-2.419)] 
Lx (-1.844) 

2.079 
0.887 

Similarly, the entropy measures of the risk attributes, cost and safety can be separately 
obtained as*: 

,. ýt)) = 0.763 e(S(A. 

e(S(A,,, f, o, )) = 0.828 

*The location measures of the attributes, cost and safety are expressed by fuzzy numbers, which arc 
different with the ones of the attribute, arrival time. Thus, the entropy calculation of the risk attribute cost 
is provided in Appendix 7 for demonstrating its operation with fuzzy numbers. 
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Using Equation (9.30) to aggregate e(S(Acost)) and 

e(S(A.,,, f,, y)) enables the acquirement of the total entropy values across all decision 

attributes as follows: 
3 
I e(S(Aj)) = 0.887 + 0.763 + 0.828 = 2.478 
j=l 

According to Equation (9.3 1), the context dependent weights of the three attributes can 
be separately acquired as: 

Wc1- 
e(S(Aý�jali��» 

= 
1-0.887 

= 0.216 
. �ivaltime - n-E 3-2.478 

1- e(S(A, 
WCC. s 1 

�, s, » 
= 

1-0.763 
= 0.454 

n-E 3-2.478 

c e(S(A�, fty» 
= 

1-0.828 
= 0.33 Ws, safety 

n-E 3-2.478 

Finally, since the prior weights of the risk attributes have been identified as wamimiame = 

0.5, w,, Ost '= 0.25 and w,,, f,, y = 0.25, the posterior weights can be computed using 

Equation (9.33) as follows: 
c WarrivaltimeWarrivaltime 0.5 x 0.216 

-=0.355 Warrivaltime 3 0.5 x 0.216 + 0.25 x 0.454 + 0.25 x 0.33 1 (wr Wl- 

r=l 
c wcos t Wýos t 0.25 x 0.454 

0.373 WIlst 3 
(W,. Wc 

.)0.5xO. 
216+0.25xO. 454+0.25xO. 33 

r=l 

W. f-W, 
*ty W. ". f.? ty 0.25 x 0.33 

0.272 3 0.5 x 0.216 + 0.25 x 0.454 + 0.25 x 0.33 E(W,. Wrc) 
r=l 

Having analysed the three measures (p, 1, w) above, one new decision making matrix in 
the form of Equation (9.10) can be expressed as follows: 

Arrivaltime Cost 

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 

0.675 (0.568,0.7,0.934) 
0.750 (0.556,0.897,0.928) 
0.433 (0.547,0.864,0.923) 
0.070 (0.542,0.847,0.921) 

0 (0.54,0.841,0.92) 
0.217 (0.287,0.487,0.687) 

0 (0.28,0.48,0.68) 
0 (0.075,0.225,0.45) 

Safety 

(0.396,0.66,0.841) 
(0.375,0.637,0.826) 
(0.353,0.614,0.81) 
(0.342,0.602,0.801) 

(0.34,0.6,0.8) 
(0.583,0.864,0.961) 

(0.58,0.86,0.96) 
(0.11,0.235,0.51) j 
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where any element u. has been obtained in the process of computing the posterior 
weights using Equation (9.9). For example, Ul, arrivaltime -"ý 0.675 has been obtained above 
and ul,, O, t 

has been calculated to be the set of ((0.568,0.7,0.934) in Appendix 7. 

From the matrix, and can separately be identified as 0.750 and 0. 
UCOSI 

9 UCOSI') Usafety and W-f-ay can be calculated as (0.556,0.897,0.928), (0.075,0.225, I. 
0.45), (0.583,0.864,0.961) and (0-11,0.235,0.51) using Equations (9.13) - (9.16). 

Using Equations (9.11) and (9.12), any u, can be normalised into its counterpart vj. 
For example, because cost is a decreasing ordering attribute, vj'c..,, can be computed as 

Vj, cost = 
ucost 

= 
(0.007ý0.22-ý0.45) 

= (0.08,0.32 tO. 792). The matrix can be normalised as: Wl'Cost (0.56ý0.7,0.934) 

Arrivaltime Cost 

#1 0.9 
#2 1 
#3 0.577 
#4 0.093 
#5 0 
#6 0.289 
#7 0 
#8 0 

(0.08,0.321,0.792) 
(0.081,0.251,0.809) 
(0.081,0.26,0.823) 
(0.081,0.266,0.83) 

(0.082,0.268,0.833) 
(0.109,0.462,1.568) 
(0.11,0.469,1.607) 

(0.167,1,6) 

Safety 

(0.412,0.764,1.443) 
(0.39,0.737,1.417) 
(0.367,0.711,1.389) 
(0.356,0.697,1.374) 
(0.354,0.694,1.372) 

(0.607,1,1.648) 
(0.604,0.995,1.647) 
(0.114,0.272,0.875) 

Next, ISP and ISN are computed using Equations (9.15) - (9.17) as follows: 

ISP = [1, (0.167,1,6), (0.607,1,1.648)] 

IS'V= [0, (0.081,0.251,0.809), (0.114,0.272,0.875)] 

The difference measures between attribute values can be obtained as follows: 

Arrivaltime Cost Safety 

#1 0.1 0.521 0.22 
#2 0 0.538 0.245 
#3 0.423 0.53 0.27 
#4 0.907 0.525 0.285 

D' 
#5 1 0.524 0.287 
#6 0.711 0.277 0 
#7 1 0.269 0.005 
#8 1 0 0.831 
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and 
Arrivaltime Cost Safety 

#1 0.9 0.088 0.515 

#2 1 0 0.485 

#3 0.577 0.012 0.464 

#4 0.093 0.02 0.45 
D- ij #5 0 0.022 0.447 

#6 0.289 0.232 0.731 

#7 0 0.238 0.727 

#8 0 0.538 0 

where any element D, can be calculated using Equations (9.18) - (9.21). For example, 

DI' -. '21- {sup., [/, I, r. st(X) A Pj',,,, sI(x)]j= 
0.521, where both pj,. sj(x) and p, ',, , st . st 

(x) 
'CO 

can be represented by their cc-cuts as [(0.241a+0.08), (-0.471a+0.792)] and 
[(0.833a+0.167), (-5a+6)]. Consequently, based on such a-cut representations, the 

highest degree (a value) of similarity of pj,,, O, j (x) and pi',,; Osl 
(x) is obtained as 0.479. 

Having known the posterior weights of the three risk attributes, the separation measures 

of all RCOs can be calculated using Equations (9.22) and (9.23) as follows: 

#1 0.290 
#2 0.267 
#3 0.421 
#4 0.595 

S+ 
#5 0.629 
#6 0.358 
#7 0.457 
#8 0.581 

and 

#1 0.492 
#2 0.487 
#3 0.336 
#4 0.163 
#5 0.204 
#6 0.388 
#7 0.287 
#8 10.201 
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Finally, combining Sj+ and S, -. enables the calculation of the RCO ranking index C, 

using Equation (9.24). 

#1 0.629 
#2 0.646 
#3 0.444 
94 0.215 

C, 
#5 0.245 
#6 0.520 
#7 0.386 
#8 

_0.257 

9.4.3 Rank R COs and A nalvse the Results 

Compared to all overall performance scores based on the three approaches above, the 
RCOs can be ranked in different orders, as shown in Table 9.6. 

Table 9.6. Ranking RCOs using various utility combination approaches 

Various 
methods 

ý r ý 
.. 'th-- 

Situation 1 (Independent) Situation 2 
(Dependent) 

Ris k 
cot, i controfýoýption 

Traditional crude 
approach___ 

BFRB-ER FuzU TOPSIS and 
entropy 

RCO#1 1 (0.604) 1 (0.667) 2 (0.629) 
RCO#2 3 (0.548) 2 (0.583) 1 (0.646) 
RCOO 4 (0.485) 4 (0.496) 4 (0.444) 
RCO#4 6 (0.423) 5 (0.413) 8 (0.215) 
RCO#5 7 (0.366) 7 (0.339) 7 (0.245) 
RCO#6 2 (0.584) 3 (0.539) 3 (0.520) 
RCO#7 5 (0.467) 6 (0.396) 5 (0.386) 
RCO#8 8 (0.334) 8 (0.236) 6 (0.257) 

RB In Situation 1, the results obtained for the RCO ranking using the BF -ER approaches 
are collated with the results obtained from the traditional crude AIMDM approach. From 
the table, using the traditional approach, the second best option is that trains depart on 
Tuesday (RCO#6) and the option that trains depart on Thursday (RCO#7) is better than 
the option that container trucks depart on Thursday (RC094). However, such 
conclusions are based on the subjective point estimation of location measures. 
Compared to point estimation, the fuzzy linguistic description to location measures can 
be more reliable and accurate in terms of subjective judgement. Using the BFRB-ER 
methods, it can be obtained that the second best option is RCO#2, RCO#4 is better than 
RCO#7. Based on the same departure time, container trucks have priority over trains and 
feeders from an overall decision making viewpoint. 
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in Situation 2, the effects of the dependent relationships established between decision 

attributes and the weighting coefficient introduced by the entropy calculation can be 

clearly seen in the results obtained. The ranking ordering of RCOs #1, #2, #4, #7 and #8 
has been changed. An interesting phenomenon is that the ranks of the train and feeder 

related RCOs move forward. The entropy modification reduces the relative importance 

of the decision attribute, arrival time and increases the one of the cost and safety. This 
has shown that container trucks have more advantage with regard to the arrival time, 

while the trains and feeders have priority on the cost and safety. Additionally, it is 

noteworthy that the rank of RCO#2 is higher than the one of RCO#l. The main reason is 

that compared to RCO#2, RCO#I has less preference in terms of arrival time in this case. 
Furthermore, it is for the first time that RCOs #4, #5 and #8 are ranked in such an order 
as RCO#8>RCO#5>RCO#4. This can be explained as that since the containers cannot 
arrive on time no matter which RCO is chosen from them, decision makers can only select 
the cheapest and safest way to deliver in order to catch the next mother ship available. 

9.5. Conclusion 

BNs enable risk diagnosis and prediction to be made using its sound uncertainty inference 
foundation. However, they cannot be allowable to involve multiple attributes and fuzzy 

uncertainty expressions (the possibilistic concept), which are extremely important to 
make wider risk based decisions. This chapter therefore develops a novel methodology 
by synthesising BNs, AM UT and ffizzy logic to provide a complete solution for AMDM 

under uncertainty. The ftamework consists of two components: the combination of BNs 

and AMDM and the generation of novel ffizzy utility representations. 

The advantages (contributions) of such a methodology focus on the following: 

Extending traditional decision making measures from utility and weight to 
probabilistic, location and weight measures, which are suitable to modelling 
uncertainties, either fuzziness or randomness. 
Using the BN mechanism to infer a probabilistic measure in order to model 
randomness. 

" Using linguistic variables based on fuzzy logic to more accurately describe 
location measures. 

" Using the entropy theory to incorporate dependent weights measures with prior 
weights and obtain the modified posterior weight measures. 

" Using the BFRB-ER approach to unify Bayesian output with fuzzy logic reasoning. 
Using the fuzzy TOPSIS technique to avoid the conflicts resulting from crisp and 
fuzzy location measures and solve the attribute dependence problem. 
Using the combination of the Hugin and IDS software to realise real time 
decision making under dynamic conditions. 
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Apart from such strengths, such a methodology shows some disadvantages, which need 
to be further considered in the future work. In risk assessment and management, the 
occurrence of any disaster requires the experience of certain pathways from incidents to 
accidents. Correspondingly, an effective RCO usually includes several sequential control 
measurement elements. When a hazardous event evolves into an accident like a chain, 
the control measurements are distributed in an order: if the first action does not work 
properly, then the following ones can be activated. Clearly, the methodology is not 
suitable for modelling sequential decision making problems. A modified ID may show 
potentials in dealing with such time sequent problems. Furthermore, more studies such 
as treating different local utility functions and developing an effective additive algorithm 
for the application of the XEU theory require further research. Another important 

consideration is the creation of an adapted computing support toot for the fuzzy TOPSIS 

approach using computing languages, which can be combined with Hugin and IDS and 
help the implement of real-time decision making with dependent attributes. 

234 



Chapter 10 - Conclusions and Future Research 

SUMMARY 
This chapter briefly summarises that the risk assessment and decision making 
approaches and techniques in all previous chapters would be of benefit in CSC safety 
design, operation and management. The areas, which require more effort to be paidfor 
the improvement of the developed approaches, are outlined. 

10.1 Research Contribution 

Containerisation is a necessary trend in the global trade and international transportation. 
CSCs are playing an increasingly important role in the process of facilitating economic 
development. The optimal performance of the chains requires multiple 'success' factors 

to be considered. One of them is safety, which becomes particularly important in the 

post 9-11 era. However, the findings from the literature review have revealed that there 

are few conceptual risk assessment methodologies available in CSC systems and the risk 
assessment of the systems is closely associated with a high level of uncertainty and 
dependency. Thus, the previous chapters of this thesis have described a modified FSA 
framework in CSC safety design, operation and management and also a range of risk 
assessment and risk based decision making approaches. The framework has been 
developed in a generic sense to be applicable to deal with both engineering and 
managerial problems. It provides the basis for the generation of the various risk analysis 
methods and decision making procedures. In summary, these methods and techniques 

can be concluded as follows: 

1) Combining the fuzzy set and ER approaches to analyse the threat-based risks, in 

which safety data is insufficient, incomplete or unavailable (Chapter 3). 
2) Using a novel fuzzy continuous set technique to synthesise the hazard-based and 

threat-based risk estimations (Chapter 4). 

3) Applying the FRB and ER approaches to incorporate more risk parameters into risk 
calculation and estimations (Chapter 5). 

4) Using the FER method to justify the belief degree distributions in fuzzy rule bases 
(Chapter 6). 

5) Generating a BN-based risk analysis model to deal with the dependent relationships 
between risk variables (Chapter 7). 

6) Creating a novel "Noisier or" approach to enable more reasonable subjective 
probability distributions in the BN-based risk model (Chapter 8). 

7) Producing a BN-MUT risk based decision making technique to model multiple 
uncertain attributes in the process of RCO selection (Chapter 9). 
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Obviously, all the approaches and methods proposed in this thesis are developed on the 
basis of certain application (conditional) situations, which means that one has no 
absolute superiority than the others. For example, for only dealing with hierarchical 

threat-based risk analysis, Method I may be the most appropriate and for prioritising the 
interactive risk parameters with sufficient safety data, it will be desirable to use Method 
5. 

Additionally, it is particularly noteworthy that the combination of some methods can 

produce more powerful supporting tools in CSC risk assessment and decision making 

and obtain more appropriate recommendations. For example, the combination of 
Methods 5 and 6 enables the delivery of a new BN-based risk analysis framework and 

can be used to rank the priority of risk parameters from a new perspective using the 

concept of SA. Furthermore, the comparison between Methods 3 and 5 and discussion of 
their individual strengths and weaknesses can demonstrate that any safety model does 

not have the exclusive advantages to describe risks. Of course, such a comparison can 

also help improve the assessors' confidence in terms of obtaining accurate analysis 

results. For example, the two methods have been simultaneously applied to assess the 

risk related to a terrorism threat against port and obtain a consistent result. 

Based on these methods, the major research contributions focus on both academic and 

practical aspects. The challenges to appropriately assess CSC risks are associated with 
uncertainty. The fuzzy logic and Bayesian probability inferences are two major 

uncertainty reasoning theories. Because of their flexibility and prediction capabilities, 
both fuzzy logic and BNs have shown much potential in the field of risk assessment 
including broad risk analysis, risk prediction and risk based decision making. The 

various methods developed on the basis of the two theories can be considered as the 

contribution to the absence of the literature of risk and reliability studies in the context 
of CSCs and the transference of the knowledge of uncertainty treatment to the area of 
risk assessment. Although in certain cases, it could be time consuming to conduct risk 
analysis of CSCs using some of the described methods, it is believed that the methods 

possess enormous potential as valuable aids and effective alternatives to assist the CSC 

managers in developing continuity safety planning and will gain increased usage in CSC 

operation and management. It is also believed that these methods can be tailored to the 

practical applications of dealing with the safety problems in the other industries, 

especially in situations where a high level of uncertainty exists. The implementation of 
the described approaches could have a highly beneficial effect in real life. More specific 
description can be provided as follows: 

The FSA methodology for CSCs provides new insights that should be of particular 
interest to practitioners and academics. The use of the fuzzy set and ER methods in 
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Chapter 3 can effectively help carry out the safety assessment of CSCs particularly 
in those situations where QRA is not applicable due to incomplete data. The fuzzy 

set approach employs ftizzy membership functions to model the uncertainty from 

subjective discrete estimation. Additionally, the application of FTA as a hierarchical 
diagram and the consideration of a new measure parameter "Recall difflculv' in 
fuzzy safety analysis are unique and innovative. 

It is desirable to identify the vulnerability in the chains from two different views of 
threats and hazards in Section 3.3.2. In the use of traditional hazard identification 

techniques, it is very difficult to satisfy the requirements of the threat-based risk 
assessment. Furthermore, these threat-based risks widely exist and attract more 
attention from the managers of the chains. Therefore, the definition of vulnerability 
can provide more effective help to carry out the chains' risk assessment from a 
practical viewpoint. An interesting insight is that although the vulnerability nature is 

not necessarily connected with its origin, they certainly have close relationships: 
most hazard-based risks in the chains originate from the internal vulnerability and 
those threat-based risks are more associated with the external factors of the chains. 

Although the FRB method has been well established in the risk assessment context, 
its applications in analysing threat-based risks, especially with the consideration of 
belief degrees in the conclusion part of rules, are relatively new. Furthermore, in 

order to make fuzzy output more logical and sensitive to its fuzzy input, a reasonable 
belief degree distribution algorithm generated in Chapter 6 on the basis of the 

combination of a ftizzy set mapping technique and the ER approach is desirable. 

There is a common concern in the research associated with BNs that some subjective 
probabilities used, mostly due to unavailable historical data, result in academic bias. 
A BFRB method may be well suited to dealing with subjective guess or judgements. 
However, based on fuzzy logic theory, the method usually provides possibilistic 
output, which is incompatible with BNs. Therefore, it is beneficial to transform the 
ftizzy possibilistic output into the Bayesian probabilistic mode in Chapter 7 using the 
novel state categories "Soundness" and "Weakness" in order to produce more 
powerfid risk based uncertainty treatment and decision making tools. 

In modelling realistic safety scenarios using BNs, the converging connections are 
more popular than diverging and serial connections. This point can be supported by 

many widely used hierarchical risk analysis approaches such as FTA. Thus, some 
Bayesian modelling techniques are developed to try to implement reasonable 
estimations of conditional probability distributions given multiple parents, such as 
the "Noisy or" and "divorcing" techniques. Unfortunately, such methods have many 
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constraints in dealing with the conditional probability combination of multi-state 
parents. A novel "Noisier or" technique has been developed in Chapter 8 to have the 
capability of dealing with such a problem with less limitations and enabled the wider 
applications of BNs in a generic risk mode. 

A new way of thinking about risk ranking is introduced in Section 8.4. In either 
engineering or managerial systems, whose subsystems and components have 
interactive relationships, considering the effect values of individual risk variables as 
the criterion of prioritising their importance may be inaccurate and incomplete. A SA 

analysis in BNs is introduced to investigate the combined influences of the multiple 
attributes thus providing a more systematical analysis from an overall perspective. 

BNs cannot be allowed to incorporate the notation of preference and thus fail to 
involve multiple decision attributes, which are extremely important to make wider 
risk based decisions. MUT is incorporated to implement BN-based AL4DM by 
developing an innovative model with three parameters, probability, location and 
weight measures in Chapter 9. The three parameters extended from the traditional 
decision making measures, utility and weight are more suitable to modelling 
uncertainties from the dependent decision attributes in the networks. The 
incorporation of AM UT into BNs on the basis of some well-established techniques 
such as fuzzy logic, ER, TOPSIS and entropy calculations can deliver a holistic 

solution for AMDM with uncertainty. The utilisation of a fuzzy logic approach in the 
solution may also give a reference to investigate new development directions for the 
combination of the fiizzy possibilistic and Bayesian probabilistic theories. 

10.2 Limitations of Research and Future Research 

Although the research attempts to provide a comprehensive analysis related to the risk 
assessment and decision making of CSCs, due to the time and column constraints, the 
current study does not refer more problem analyses, which may be necessary and 
desirable in further investigation. They can be identified as: 

1) It would be useful if some QRA with objective data from realistic risk scenarios 
could be incorporated, especially in further validating the feasibility of the BN based 

risk model. 
2) it would be useful if more test cases are applied to the described risk assessment and 

decision making approaches in order to further demonstrate their applicability. 
3) It would be useful if more powerful and flexible risk modelling and decision making 

tools based on uncertainty treatment methods are developed to facilitate the modified 
FSA methodology in CSCs. 
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4) It would be useful if more computing software can be developed to simulate the 
calculation process of the described approaches and realise the smooth 
communications from risk input to output. 

Aiming at dealing with the limitations displayed above, the current research can be 

extended in the following directions: 

Collision has been identified as one of the most dangerous risk categories in 

containership navigation. Such a hazard may become more worrisome when it is 

combined with the 'frequent' occurrence of human error on the bridge. The 

emergence of mistakes or wrong behaviours results from multiple factors such as 
complex sea environment, dynamic containership meeting situations and the 

physical and mental status of navigators, etc. Currently anti-collision measures are 
usually adopted on the basis of navigation regulations and navigators' experience. 
Since it is highly possible to take the wrong anti-collision measures when 
containerships meet, it will be beneficial if a risk prediction/RCO optimisation. 
model is designed using the methodology in Chapter 7. This will simulate the ship 
route situations and provide a reasonable anti-collision suggestion. Such a model can 
be developed into a real-time anti-collision control-supporting tool on the basis of 
the Hugin software. When all evidence related to collision is identified as input to 
the tool, it can produce an optimal decision making option as a reference for 

navigators to take suitable anti-collision measures and then, reduce the occurrence 
likelihood of human error. Such a model can be first designed in a limited sea area, 
such as a channel or port and then extended or popularised to a wider domain 

according to a specific requirement. The corresponding data in a limited area can be 

effectively collected or mined using both historical data and simulators. Furthermore, 

such a real case study can facilitate the applications of the approaches introduced in 
this thesis. 

The traditional FRB risk assessment technique has been widely applied due to the 
capability of combining different parameters to obtain an overall risk estimation. 
However, a drawback occurs as the technique is applied in circumstances where 
there are multiple parameters to be evaluated, which are described by multiple 
linguistic terms. This will easily lead to the requirement of constructing an extensive 
rule base and the occurrence of intensive computing. Therefore, a risk prediction 
model incorporating FST and Artificial Neural Network (AAW) capable of resolving 
the problem encountered may be proposed to simplify the FRB related construction 
and calculations in risk assessment. It is believed that the model can provide reliable 
risk prediction results when relatively comprehensive training data is provided to 
cover the potential situations that future risk assessment may confront as much as 
possibly. 
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BNs can be well used to predict consequences of a hazard and diagnose its causes 
based on observable safety evidence. This is an important development as it helps to 

quantify the uncertainties, infer the interactive dependencies of risk factors and 
support safety based decisions in the process of risk assessment. However, the 

conventional BNs established in the field of safety/reliability are usually based on 
the assumption that the probabilities, which enter into their assessments, are known 

as real numbers. In many realistic settings like CSCs, where risks often result from 

threats, this assumption is of questionable validity since the failure data from which 
the probabilities must be estimated is usually incomplete, imprecise or not totally 

reliable. Due to the lack of historical or experimental data, prior input into BNs often 
relies on subjective probabilities based on expert judgements. However, such 
subjective probabilities are based on informed guesses from experts with various 
backgrounds and epistemologies. Thus, it will be very difficult to give a same degree- 

of-belief interpretation with precise numbers for different experts facing a certain 
problem. To address this issue, a novel FBN modelling method, which allows the 

expression of subjective probabilities as ftizzy numbers through combing ftizzy logic 

and Bayesian probability theories may be worth being fin-ther investigated. The new 
method is believed to be able to more faithfully reflect expert opinion so as to 

effectively facilitate the application of BNs in the context of risk assessment of CSCs. 

The risk assessment of complex CSC systems is a process that synthesises many risk 
analyses of subsystems and components. Such a process unavoidably has a 
hierarchical feature. Thus, the combination of hierarchical graphs and BA namely 
hierarchical BNs (HBNs) may be developed through extending the conventional BN 

methodology. It can be hoped to provide an expressive power by allowing a node in 
the network to represent an individual BN. HBNs can describe the knowledge in a 
structured way, leading to more realistic probabilistic models. Furthermore, The 

analysis in Section 1.4 has pointed out that the CSC systems have time-related 
dependency, which means that potential models should discretize the time line and 
associate aRV (node) to each time interval (point). Thus, a Temporal BN (TBN) may 
be obtained by generating a BN for a specific time and repeating the same structure 
for each time over the period of interest. Early work on the TBNs, Dynamic BNs 
(DBNs), Modifiable Temporal BNs (MTBNs), Temporal Node BNs (TNBNs) and Net 

of Irreversible Events in Discrete Time (NIED7) can provide sound literature and the 
development basis of this new proposal. 

Future work may also be able to extend BNs to IDs and further allow analysis and 
validation of the networks' ability to predict the most effective CSC risk 
management solutions. The use of IDs in BNs may be demonstrated, together with 
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the comparison with the CBA and decision-making techniques employed in FSA. It 

may not need to detail a finer quantitative comparison, but rather validates the 
hypothesis that BNs and their practical implications may become a better decision 

making tool in the application of FSA from a dynamic and feasible risk assessment 
perspective. As a result, the optimisation of safety based decision making by 
incorporating ID techniques into the generated BNs is expected to realise and 
sequentially an opportunity to harmonize BNs with the methodology of FSA may be 

obtained. Furthermore, in risk assessment and management, the occurrence of any 
disaster requires the experience of certain pathways from incidents to accidents. 
Correspondingly, an effective RCO usually includes several sequential control 
measurement elements. A modified ID shows potentials in and is also believed to 
have ability to contribute itself to dealing with such dynamic time sequent problems. 

Final but not least consideration may be associated with the development or 

adoptions of some computing support tools using computing languages. Many 

methods and techniques developed in this thesis require the support of a variety of 

software packages. For example, a new computing programme edited to simulate the 

algorithms of the fuzzy TOPSIS approach in Chapter 9 can be combined with Hugin 

and IDS and help to realise real-time decision making/RCO selection with dependent 

decision attributes. A new software tool may be explored on the basis of the FRB-ER 

approach in Chapter 5 and provide a friendly and easily used interface for many 
assessors to automatically obtain risk output, either in a probabilistic or possibilistic 
mode, when input related to the risk parameters in the antecedent part is provided. 
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Appendix 2. References for the Economic Estimation of RCOs* 

Although fuzzy cost assessment (qualitative method) requires less detailed data than 
precise CBA (quantitative assessment), a certain amount of relative data as qualitative 
estimation references is still necessary in order to determine the cost levels of RCOS. 
Thus, the following RCOs are analysed to define the references for their economic 
considerations. 

AIS 
AIS systems can be used to monitor the movements of ships that are suspected. The cost 
for an AIS transponder ranges from $10,000 to 20,000 and therefore the total cost to 
equip the entire current containership fleet (2905 containerships until Jan 2003) is 

approximately $43.6 million. To avoid using a vessel as weapon to attack ports, the total 

cost of AIS systems should be calculated on the basis of the whole international 

commercial fleet with a value about $649.3 million. This amount, however, should not 
be seen as the security cost of taking this measure per se given that AIS requirements 
were already in place for navigation safety before MSC 76. In terms of the security- 
based cost associated with AIS, it only covers the cost for the ISPS-related security 
elements, which can be applied to upgrade the original systems to a more sophisticated 
and advanced level to satisfy the ISPS requirements. Additional AIS-related costs are 
associated with the development of shore-based facilities and the maintenance costs. 
The costs at the associated shore-based facilities are generally built and operated by 

governments as an extension of their navigation roles. The costs are quite different in 
different countries since the facilities are not required under the SOLAS regulations. 
Taking into accounting all such factors, the costs for AIS systems can be estimated as: 

investment costs: "Average" Maintenance costs: "Low" 

Ship identification number 
Although the costs for this measure might be deducted by scheduled re-painting 
operations during the vessels' dry-docking, this expense is still estimated to be around 
$5,000 per ship (OECD, 2003). The total related costs are around $14.5 million for the 
containerships fleet and $216.4 million for the entire commercial fleet, which means the 
costs for this measure can be estimated as: 

Investment costs: "High" Maintenance costs: "Nir' 

Ship alert system 
The USCG estimates that such a system will cost approximately $2,000 a piece and 

* Much information and data related to this cost analysis comes from the report produced by OECD (2003) 
and the research conducted by USCG (httr): //www. uscR. mil/uscjz. sh"). 
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simultaneously, maintenance costs will require $100 per piece per year (OECD, 2003). 
The safety measure investment costs related to containerships arrive at $5.8 million and 
$86.5 million for the international commercial fleet. Yearly maintenance costs spending 
on the containership fleet and total commercial ship fleet are $290,000 and $4.3 million, 
respectively. The investment and maintenance costs for this measure are estimated as: 

Investment costs: "Moderately high" Maintenance costs: "Average" 

Designating speci(ic security ofjlcers 
The USCG assesses the cost for a shipping company security officer (CSO) to be 
$150,000 per year for a large American-based company (controlling 10 or above 
containerships) and $37,500 per year for a small American-based company (owing less 

than 10 containerships) (OECD, 2003). In this thesis, three problems will be considered 
and analysed. One is that a large company in the international liner shipping sector are 
generally competing against each other in the international job market and facing a 
similar labour cost. The second is that the concentrating tendency in liner shipping has 
dramatically increased. Thirdly, precise estimates of the number of container liner 

shipping companies, either large or small, are difficult to make given that, for a reason 
of liability, many vessels are owned by one-ship companies. Many of these companies, 
however, are effectively controlled by the same operator. To the authors' knowledge, it 
is reasonable to assume that there are 30 - 50 large liner shipping lines (for this study, 
the average number - 40 can be taken) acting in the international liner shipping trade. 
Because of this, the costs estimated only for CSOs in large container liner shipping 
companies have arrived at $6 million per year. Furthermore, based on the USCG figure, 

the maintenance costs, namely training fees, of CSOs are $3,500 per person per year and 
consequently the total maintenance costs for large companies are $135,000 per year. The 

costs for this measure will undoubtedly be extremely high if the security ff"I o icers for 

other small liner shipping companies, the 2814 worldwide commercial ports and 
unaccountable inland logistics companies are also taken into account. Therefore, the 
estimation of the costs for this measure can be shown as: 

Investment costs: "Extremely high" Maintenance costs: "High" 

Carrying out containership andport security assessment 
A comprehensive containership security assessment requires to outline preventative 
counter-measures to potential security risks. Such a work can usually be completed by 

classification societies or other security assessment service organizations with a period 
of 3 eight-hour working days. Based on the charging rate provided by the US CG -$ 100 

per hour (OECD, 2003), the total containership fleet for developing security assessment 
can be estimated as about $6.98 million. 

According to the USCG, a high-standard. port facility security assessment requires 
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$8,000 initially and $400 per year thereafter and while the costs for a lower-standard 

port facility are $4,000 and $100, respectively. In terms of the number of port facilities 
in a word-wide scope, many authorities or organizations have made their estimations. 
The World Port Index (National Geospatial-intelligence Agency, (NGA), 2004) pointed 
out that there are more than 6 000 ports in the world. The figure, however, takes both 

commercial and military ports into account and has little significance for this study. The 
US Department of Transport identified at least 3970 ports in the world in the "schedule 
K7 of its USDOT listing of world ports (OECD, 2003). However not all these ports are 
involved in international trade. FairplaylLloyds Register (2004) counted 2814 port 
authorities worldwide, who are operating 6,500 port facilities from a conservative 
estimation perspective. Such a figure is considered to be a more reasonable 
representation of the universe of ports and their facilities involved in international trade. 
Out of this figure, the authors have identified over 430 highly automated container 
handling facilities. Approximately, half of these facilities are controlled by the top 40 

container ports, which handled 63% of total international seaborne container 
transportation in terms of goods loaded in 2001 (OECD, 2003). These facilities are 
global competitors and will seek a high standard of compliance with the ISPS code, 
therefore face higher security assessment costs. On the other hand, the other half of the 
facilities are with a comparatively low standard and as a result pay less security costs. 
Thus the estimated costs of undertaking container port facility security assessment are 
around $2.6 million initially and $107,500 annually. In subjective terms, the investment 

and maintenance costs are estimated as: 
Investment costs: 0.5 "Average" and 0.5 "Moderately IoW' 
Maintenance costs: "LoW' 

Adequate security equipment 
The tasks to estimate the costs of security equipment in a container liner supply chain 
will be extremely complicated given the great variability of their costs from country to 

country and from port to port. The containership security equipment, however, can be 

effectively estimated considering liner shipping as an international industry. Therefore, 

this research will carefully analyse the containership security equipment and provide a 
reference to the estimation of cost level of this measure. 

Complying with the guidance shown in part "B" of the ISPS code, one can get an idea of 
the general equipment that the IMO rules imply. In this study, the security equipment for 

containerships can be listed in Table Al and estimated for each item in terms of both 
initial investment and annual maintenance costs. 

Given the total number of the worldwide containership fleet - 2905 in Jan. 2003 (ISL, 
2003), the total containership security equipment costs $49.1 million initially and annual 
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Table Al. Cost analyses of containership security equipments 

Item Initial investment costs Annual maintenance costs 
Number Cost/itcM 

(USD) 
Sub-total 
cost (USD) 

Cost/item 
(USD) 

Sub-total 
cost (USD) 

Hand-held metal 
detector 

2 200 400 10 20 

Hand-held radio 5 200 1000 10 50 
Lock 10 300 3,000 15 150 

_ Light 5 400 2,000 20 100 
_ Auto-intrusion alarm 5 500 2,500 25 125 
_ Portable vapour 
detector (for 
explosives) 

1 8,000 8,000 400 400 

Total 16,900 845 
Source: UELD Maritime I ransporr i-ommuree 

$2.5 million thereafter. Based on such a reference and also considering more expensive 
equipment required for other sectors in the chain (i. e. CCTV and gatcs for port facilities), 

the entire costs of this measure will be extremely high and arc subjectively estimated as: 
Investment costs: "Extremely high" Maintenance costs: "High" 

96-hour advance notification ofarrival of vessels 
Although the cargo manifest filling requirement involves some data processing time and 
software, overall costs for this measure should not be too significant. The USCGs 

estimate for annual maintenance costs is approximately $6.7 million (OECD, 2003). The 

subjective estimation for this measure can be obtained as: 
Investment costs: "Very loW' Maintenance costs: "Average" 

24-hour advance manifest rule 
The requirements of this rule have imposed costs on carriers who must field sufficient 
clerical/data entry staff to handle bookings. Some carriers have also expressed fears that 
the rule would reduce their flexibility to accept last-minute bookings. The costs 
stemming from the early manifest requirements are also associated with shippers. The 

shippers must pay for port space for containers shipped in advance of the 24-hour 
deadline. Actually, shippers are building buffer periods in their logistics operations to 

account for the rule. The buffer period often extends beyond the 24-hour period given 
that carriers require shippers to provide data even earlier so that they have time to re-key 
and transmit the data to the American customs. All of the above factors have led some 
analysts to predict that the overall cost of the 24-hour rule will be in the order of $5-10 
billion per year. (CI-Online, 2003) The costs are estimated as: 

Investment costs and Maintenance costs: "Extremely high" 
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Appendix 3. Safety Rule-Base with Belief Structure 

-Ibl-. I -C Antecedent ttribute (input) Safetv estimate (Outpu ) I 

No W- 1) R P Poor Fair Average Good 

I Very weak Negligible Easy Unlikely 
- 

I 

2 Very weak Negligible Easy Average 0.1 0.9 

3 Very weak Negligible Easy Likely 0.15 0.85 

4 Very weak Ne fli ible P-- Definite 0.2 0.8 

5 _ Very weak Negligible Average Unlikely 0.1 0,9 

6 Very weak Negligible Average Average 0.2 0.9 

7 Very weak Negligible Average Likely 0.25 0.75 

9 Ve weak Negligible Average Definite 0.3 0.7 

9 Very weak Negligible Difficult Unlikely 0.15 0.85 

10 Very weak Negligible Difficult Average 0.25 0.75 

11 Very weak Negligible Difficult 0.3 0.7 

12 Very weak Negligible Difficult Definite 0.35 0.65 

13 Very weak Negligible Extremely Difficult Unlikely_ 0.2 0.8 

14 Very weak Negligible Extremely Difficult Average 0.3 0.7 

15 Very weak Negligible Extremely Difficult Likely 0.35 0.65 

16 Very weak Negligible Extremely Difficult Definite 0.45 0.55 

17 Very weak Moderate Easy Unlikely 0.3 0.7 

18 Very weak -Moderate Easy Average 0.5 0.5 

19 Ve weak Moderate Easy Likely 0.55 0.45 

20 Very weak Moderate 
_Easy 

Definite 0.6 0.4 

21 Very weak Moderate Average Unlikely 0.5 0.5 

22 Very weak Moderate Average Average 0.7 0.3 

23 Very weak -Moderate Average Likel 0.75 0.25 

24 Very weak Moderate Average Definite 0.8 0.2 

25 Very weak Moderate Difficult Unlikely 0.55 0.45 
_ 26 Very weak Moderate Difficult Average 0.75 0.25 

27 Very weak Moderate Difficult Likely 0,9 0.2 
28 Very weak Moderate Difficult 

- 
Definite 0.9 0.1 

29 Very weak Moderate Extrernely Difficult Unlikely 0.6 0.4 
30 Very weak Moderate Extremely Difficult Average 0.8 0.2 
31 Very weak Moderate Extremely Difficult Likely 0.9 0.1 

32 Very weak Moderate 
- 

Extremely Difficult Definite efinIte I 

33 Very weak T-r itical 
- 

Tasy 
- 

1 Unlikel nlike 0.2 0.5 0.3 

34 Very weak Cr itical Easy Avera e vera 'e 

r E 

0.2 0.7 0.1 
35 Very weak Critical Easy Likely ýl Like I 0.35 0.65 
36 Very weak Critical Easy I Ite i i Definite 0.6 0.4 
37 Very weak Critical Average I. IV 1 ýv Unlikely 0.2 

- 
0.7 

- - 
0.1 

38 Very weak Critical Average Average 0.3 0 7 

39 Very weak Critical Average Likely 0.5 0.5 

40 Very weak Critical Average Definite 0.65 0.35 

41 Very weak Critical Difficult Unlikely 0.35 0.65 

42 Very weak Critical Difficult Average 0.5 0.5 

43 Very weak Critical Difficult Likely 0.6 0.4 

44 Very weak Tritical Difficult Definite 0.7 0.3 
4-5 Very weak Critical Fxtreinely Difficult Unlikely 0.5 0.5 
46 Very weak Critical Extremely Difficult Average 0.55 0.45 
47 Very weak Critical Extremely Difficult Likely 0.6 0.4 

48 Very weak ý7-ritical Extremely Difficult Definite 0.7 0.3 

49 Very we k Catastrophic Easy Unlikely 0.3 0.7 

50 Very weak Catastrophic Easy Average 0.35 0.6.5 

51 Very weak Catastrophic Easy Likely 0.4 0.6 

52 Very weak Catastrophic Easy Definite 0.5 0.5 

53 Very weak Catastrophic Average Unlikely 0.35 0.65 

54 Very weak Catastrophic Average Average 0.4 0.6 

55 Very weak Catastrophic Average Likely 0.5 0.5. 
-- 

56 e weak Catastroph c Average Definite 0.7 0.3 

5 57 57 Very weak Catastrophic Difficult Unlikely 0.4 0.6 
rý 

ý 

58 58 Very we k CatastropEc c 
=cult 

Avera e 9 0.5 0.5 
ý59 9 Very weak IC atastrophic I Difficult Likely 0.7 03 
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60 Very weak Catastrophic Difficult Definite 0.9- (). 1 

61 Very weak Catastrophic Extremely Difficult Unlikely 0.5 0.5 

62 Very weak Catastrophic Extremely Difficult Average 0.7 0.3 

63 _ Very weak Catastrophic Extremely Difficult Likely 0.9 0.1 

64 _ Very weak Catastrophic Extremely Difficult Definite I 

65 Weak Negligible Unlikel 0.05 0.95 
ý6 Weak Ne fli ible Average 0.2 0.9 
-ý)7 Weak Negligible Easy Likely 0.25 0.75 
ý)8 ýWeak Negligible Easy Definite 0.3 

__ 
0.7 

-i)() Weak Ne li ible A Unlikely 0.2 0.8 
To 'Weak Negligible Average Average 0.35 0.65 

--Tl Veak Ne di ible Average Likely 0.4 0.6 

72 Weak Negligible Definite 0.45 0.55 
---ý3 Weak egligible Difficult Unlikely 0.25 0.75 

74 Weak Negligible Difficult Average 0.4 0.6 
--ý-5 Vve-ak Negligible Difficult Likely 0.45 0.55 

-- 76 -- Weak -Kegligible Difficult Definite 0.5 0.5 
ý7- -We a -k -ýýegligible Extremely Difficult Unlikely 0.3 0.7 

78 Weak Negligible Extremely Difficult Average 0.45 0.55 
Veak Negligible ffl cuIt Likely 0.5 0.5 

80 Weak Negligible Extremely Difficult Definite 0.55 0.45 

Vve-, 1K Moderate Easy Unlikely 0.4 0.6 
Veak -Moderate Easy Average 0.6 0.4 
-WeL- ik -Moderate Easy Likely 0.75 0.25 

94 Weak MýOderatc Easy Definite tI It t tI I 0.7 0.3 

85 Weak Moderate 
-Average 

Unlikely l n k 0.6 0.4 

86 Weak Moderate Average Avera e vera 'e (). 8 0.1 

87 ýWeak Moderate Average Likel LIkel 

k 

0.9 

88 Weak Moderate Average fi 1 11 1 te Defini 1 

89 -Weak Moderate Ditficult UI UnlIkel Unlikely 0.65 0.35 
90 Veak Moderate Difficult A ", - ('P Average 0.9 

91 Weak Moderate Difficult Likely I 
-42- -Weak Moderate Difficult Definite 0.1 0.9 

93 Weak Moderate Extremely Difficult Unlikely 0.7 0.3 

94 ýWeak f FV oderate Extremely Difficult Average 1 

95 Weak ýXoderate Extremelý Difficult Likely 0.1 0.9 

Weak Moderate Extremely Difficult Definite 0.2 0.8 
47 eak Critical Easy Unlikely 0.2 0.6 0.2 
ý9 Weak Critical Easy Average 0.2 0.8 

99 Weak Critical Easy Likely 0.4 0.6 
- 100 Weak Critical Easy Definite 0.45 0.55 

101 Weak Critical Average Unlikely 0.2 0.9 
- -102 Weak Critical Average Average 0.25 0.75 

103 Weak Critical Average Likely 0.45 0.55 

I 

rO4 

Weak Critical Average Definite 0.65 0.35 

105 ýWeak Critical Difficult Unlikely 0.4 0.6 

1 106 I t)o Weak ý Critical Difficult Average 0.5 0.5 
-107 

ý _ +; 
Weak-- Citical - Difficult Likely 0.6 0.4 

- FO-g -We-ak Critical Difficult Definite 0.7 0.3 
-TO-9 -ýý-e-ak T7ritical Extremely Difficult Unlikely 0.45 0.55 

I 10 -Te--ak Critical Extremely Difficult Average 0.65 0.35 

ýWeak Critical Extremely Difficult Likely 0.7 0.3 

112 -iýý-eak -Critical Extremely Difficult Definite 0.8 0.2 
71 -3 Weak Catastrophic Easy Unlikely 0.3 0.6 0.1 
--- 114 Weak Catastrophic Easy Average 0.35 0.65 
--Fl 5 NVeak Catastrophic Easy Likely 0.5 0.5 

116 NVeak Catastrophic Easy Definite 0.6 0.4 
T- 17 -Weak Catastrophic Average Unlikely 1 0.35 0.65 
T-1 _8 -Weak Catastrophic Average Average 0.2 0.1 0.65 

119 k. NWe-a Catastrophic Average Likely 0.3 0.2 0.5 

120 Weak Catastrop ic Average Definite 0.2 0.5 0.3 

121 Weak Catastrophic Difficult Unlikely_ 0.5 0.5 

122 NW-ea-k Tatastrophic Difficult Average 0.3 0.2 0.5 

123 Weak Catastrophic Difficult Likely 0.4 0.3 0.3 
124 Weak Catastrophic Difficult 

IV 
0A 0.1 

-12-5 rWeýak:: ýý ýExtrecýml DLifficult I Unlikel Y 0.6 0.4 
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12(, w-eak Catastrophic xtremely Difficult Average 0.2 0.5 0.3 
127 Výcak Catastrophic Extremely Difficult Likely 0.5 0.4 1 
i-2-8 V Vcaký- Catastrophic Extremely Difficult Definite 0.6 0.4 
129 Average Negligible Easy Unlikely 0.3 0.7 
130 Average Negligible Easy Average 0.5 0.5 

131 Average Negligible Easy Likely 
- 

0.55 0.45 

132 Average Negligible Easy Definite 1 0.6 0.4 

133 Average Negligible Average Unlikely 0.5 0.5 

134 Average Negligible Average Average 0.7 0.3 

135 Average Negligible Average Likely 0.75 0.25 
136 Average Negligible 

_ 
Average Definite 0.8 0.2 

137 Average Negligible Difficult Unlikely 0.55 0.45 

139 Average Negligible Difficult Average 0.75 0.25 

139 Average Negligible Difficult Likely 0.2 0.9 

140 Average Negligible Difficult Definite 0.3 0.7 

141 4 1 Average Negligible Extremely Difficult Unlikely 0.6 0.4 

142 42 Average Negligible Extremely Difficult Average 0.8 0.2 

143 4 Average Negligible Extremely Difficult Likely 0.3 0.7 

144 Average Negligible Extremely Difficult Definite 0.4 0.6 

145 Average Moderate Easy Unlike] 0.75 0.25 

r 

146 Average Moderate Easy Average 0.9 

147 Average Moderate Easy Likel 0.05 0.95 

149 Average Kfoýderate Tasy Definite 0.1 0.9 

149 Average Moderate Average Unlikely 0.9 0.1 

150 Average Moderate Average 
- 

Average I 

151 Average Ki-oderate Average Likely 0.1 0.9 

152 Average Moderate Average 
- 

Definite 0.15 0.85 

1 5l Average- Nioderate Difficult Unlikel nlIkel 0.05 0.95 

154 . Average Moderate Difficult Average ver a Ye 0.1 0.9 
r 

155 S5 Average Moderate 
- 

Difficult i1 Likel Like , 

M 

0.25 0.75 

1 156 Average ýýfo derate Difficult De I rute Definite I It fi 0.3 0.7 
17 I 15ý7 Average -ýioderate Extremely Difficult 1 Unlikely 0.1 0.9 
158 1 Averaýe Moderate Extremely Difficult Avera Ye 0.15 0.95 
159 Average Moderate Extremely Difficult Likely 0.3 0.7 
160 Average Moderate Extremely Difficult Definite 0.4 0.6 
161 Average Critical Easy Unlikely 0.35 0.35 0.3 
162 Average Critical Easy Average 0.35 0.55 
163 Average Critical Easy Likely 0.55 0.35 
164 Average Critical Easy Definite 

_ _0.5 
0.5 

165 Average Critical Average Unlikely 0.35 0.55 0.1 
P 

166 66 Average Critical Average Average 0.3 0.7 
1167 6T Average Critical Average Likely 0.5 0.5 
168 Average Critical Average Definite 0.1 0.35 0.55 
169 Average Critical Difficult Unlikely 0.55 0.35 
170 Average Critical Difficult Average 0.5 0.5 
171 Average Critical Difficult Likely 0.7 0.3 
172 Average Critical Difficult Definite 0.1 0.55 0.35 
173 Average Critical Extremely Difficult Unlikely 

. - 
0.5 0.5 

174 Average Critical Extremely Difficult Average 0.1 0.35 0.55 
75 1 Average Critical Extremely Difficult Likely 0.1 0.55 0.35 
76 176 Averag Critical Extremely Difficult Definite 0.3 0.35 0.35 
77 

t 

177 Average Catastrophic Easy Unlikely 0.3 0.7 
78 178 Average Catastrophic Easy Average 0.4 0.6 

! ýq 179 Average Catastrophic Easy Likely 0.55 0.45 
180 Average Catastrophic Easy Definite 0.1 0.5 0.4 
181 Average Catastrophic Average Unlikely 0.4 0.6 
182 Average Catastrophic Average Average 0.3 0.7 
183 Average Catastrophic Average Likel 0.35 1 0.55 
184 Average Catastrophic Average Definite 0.5 0.5 
195 Average Catastrophic Difficult Unlike v 0.55 0.45 
186 Average Catastrophic Difficult Average 0.35 0.1 0.55 
187 Average Catastrophic Difficult Likely 0.35 0.3 0.35 
188 Average Catastrophic Difficult Definite 0.55 0.1 0.35 
189 Average Catastrophic Extremely Difficult Unlikely 0.1 0.5 0.4 
190 Average Catastrophic Extremely Difficult Average 0.5 0.5 
19 Extremely Difficult Likely 0.55 0.1 0.35 
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192 Average Catastrophic Extremely Difficult Definite 0.7 0.3 
193 Strong Negligible Easy Unlikely 0.2 (). 1 0.7 
194 Strong Negligible Easy Average 0.25 0.25 0.5 

195 Strong Negligible Easy Likely 0.4 0.1 0.5 
196 Strong Negligible Easy Definite 0.4 0.2 0.4 

197 Strong Negligible Average Unlikely 0.25 0.25 0.5 

198 Strong Negligible Average Average 0.25 0.4 0.35 

199 Strong Negligible Average Likely 0.45 0.25 0.3 

200 Strong Negligible Average Definite 0.4 0.6 

201 Strong Negligible Difficult Unlikely 0.4 0.1 0.5 
202 Strong Negligible Difficult Average 0.45 0.25 0.3 
203 

K 

Strong Negligible Difficult Likely 0.6 0.1 0.3 

204 Strong Negligible Difficult Definite 0.6 0.4 

20-5 Strong Negligible Extremely Difficult Unlikely 0.4 0.2 0.4 

206 Strong Negligible Extremely Difficult Average 0.4 0.6 

207 _ Strong Negligible Extremely Difficult Likely 0.6 0.4 

209 Strong Negligible Extremely Difficult Definite 0.1 0.6 0.3 

209 Strong Moderate 
- 

Easy Unlikely 0.25 0.45 0.3 

210 Strong derate W 
_Easy 

Average 0.25 0.65 0.1 

211 Strong Moderate Easy 0.45 0.45 0.1 

212 

t 

Strong Moderate Easy Definite 0.4 0.6 

213 Strong Moderate Average Unlikely 0.25 0.65 0.1 

14 2ý Strong Moderate Average Average 0.2 0.8 

215 Strong -Fvlo-derate 
- 

Average Likely 0.4 0.6 

216 Strong -derate W Average Definite 0.1 0.25 0.65 

217 Strong Moderate 
_Difficult 

Unlikely 0.45 0.45 0.1 

219 Strong Moderate Difficult Average 0.4 0.6 

219 Strong Moderate Difficult Likely 0.6 0.4 

220 Strong Moderate 
- 

Difficult 
- 

Definite 0.15 0.4 0.45 

221 Strong FVFod erate Extremely Difficult Unlikely 0.4 0.6 

222 Strong Moderate Extremely Difficult Average 0.1 0.25 0.65 

223 Strong Moderate Extremely Difficult Likely 0.15 0.4 0.45 

224 Strong Moderate Extremely Difficult Definite 0.3 0.25 0.45 

225 

K 

Strong Critical 
- 

Easy 
- 

Unlikely 0.65 0.1 0.25 

26 2 Strong Fr itical Easy Average 0.65 0.2 0.15 
227 Strong T-ritical Easy Likely 0.9 0.1 0.1 

229 Strong Critical 
_Easy 

Definite 0.9 0.2 

229 Strong Critical Average Unlikely 0.65 0.2 0.15 

230 Strong Critical Average Average 0.65 0.35 

231 Strong Tritical Average 
- 

Likely 0.8 0.2 

232 Strong Critical Average 
- 

Definite 0.15 0.65 0.2 

233 Strong Critical Difficult Unlikely 0.8 0.1 

234 Strong Critical Difficult Average 0.8 0.2 
235 Strong Critical Difficult Likely 0.95 0.05 

236 Strong Critical Difficult Definite 0.15 0.9 0.05 

237 Strong Critical Extremely Difficult Unlikely 0.8 0.2 

238 Strong Critical 
- 

Extremely Difficult Average 0.15 0.65 0.2 

239 Strong Cfitical Extremely Difficult Likely 0.15 0.8 0.05 

240 Strong Critical Extremely Difficult Definite 0.25 0.65 (). 1 

241 Strong Catastrophic Easy 0.6 0.4 
242 Strong Catastrophic Easy Average 0,2 0.4 0.4 

243 Strong Catastrophic Easy Likel 0.25 0.55 0.2 
244 Strong Catastrophic Easy Definite 0.4 0.4 0.2 

245 Strong Catastrophic Average Unlikely 0.2 0.4 0.4 

246 Strong Catastrophic Average Average 0.35 0.25 0.4 
247 Strong Catastrophic Average Likely 0.35 0.4 0.25 
248 Strong Catastrophic Average Definite 0.5 0.25 0.25 
249 Strong Catastrophic Difficult Unlikely 0.25 0.55 0.2 
250 Strong Catastrophic Difficult Average 0.35 0.45 0.2 
251 Strong Catastrophic Difficult Likely 0.3 0.6 0.1 
252 Strong Catastrophic Difficult Definite 0.5 0.4 0.1 
253 Strong Catastrophic Extremely Difficult Unlikely 0.4 0.4 0.2 
254 Strong Catastrophic Extremely Difficult Average 0.5 0.25 0.5 
255 tron , Catastrophic Extremely Difficult Likely 0.5 0.4 (). 1 
256 Strong Catastroph c Extremely Difficult Definite ,- ' 0.7 0.2 0.1 

_7 -25 Very strong Negligible Easy 
ýe ýU 

n , 
ý)y 

0.3 0.3 0.4 
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258 Very stroný Negligible Easy Average 0.3 0.5 0.2 
ýS () ._ Very stroný Negligible Easy 

- 
Likely 0.5 0.4 1 

- ý 
260 Very strong Negligible Easy Definite 0.5 0.5 
261 Very strong Negligible Average Unlikely 0.3 0.5 0.2 
262 Very stroný Negligible Average 

- 
Average 0.35 0.65 

263 Very strong Negligible Average Likely 0.5 0.5 
264 Very strong Negligible Average Definite 0.2 0.3 0.5 
265 Very stroný Negligible Difficult Unlikely 0.5 0.4 0.1 
266 Very stroný Negligible Difficult Average 0.5 0.5 
267 Very strong Negligible Difficult Likely 0.65 0.35 
269 Very strong Negligible Difficult Definite 0.2 0.5 0.3 
269 Very strong Negligible Extremely Difficult Unlikely 0.5 0.5 
270 Very strong Negligible Extremely Difficult Average 0.2 0.3 0.5 
271 Very strong Negligible Extremely Difficult Likely 0.2 0.5 0.3 

272 Very stroný Negligible Extremely Difficult Definite 0.4 0.3 0.3 

273 Very strong Moderate 
_Easy 

Unlikely 0.35 0.65 
274 Very strong Moderate Easy Average 0.15 0.15 0.7 
275 Very strong Moderate Easy Likely 0.2 0.3 0.5 
276 Very strong Moderate Easy Definite 0.35 0.15 0.5 
277 Very strong 

Moderate Average Unlikely 0.15 0.15 
- 

0.7 
278 Very stroný W-oderate 

_Average 
Average 0.6 0.4 

279 Very strong Moderate Average 
- 

Likely 0.35 0.15 0.5 

280 Very strong KFo-derate Average Definite 0.2 0.6 0.2 

281 Very strong -Kioderate -Difficult 
- 

Unlikely 0.2 0.3 0.5 

282 Very strong Kioderate Difficult Average 0.35 0.15 0.5 

283 Very strong Moderate Difficult Likely 0.35 0.3 0.35 

284 Very strong Moderate Difficult Definite 0.55 0.15 0.3 

295 Very strong Moderate Extremely Difficult Unlikely 0.35 0.15 0.5 

8 286 

P 

Very strong K oderate -F Extremely Difficult Average 0.2 0.6 0.2 

287 Very stroný ýIoderate Extremely Difficult Likely 0.55 0.15 0.3 

289 Very strong Moderate 
_Extremely 

Difficult Definite 0.4 0.6 

289 Very strong Critical Easy Unlikely 0.7 0.3 

290 Very stroný Critical Easy Average 0.2 0.5 0.3 
291 Very strony, C-n-tical Easy Likely 0.2 0.65 0.15 
292 Very strong Critical Easy Definite 0.4 0.45 0.15 
293 Very strong Critical 

_Average 
Unlikely 0.2 0.5 0.3 

294 Very strong Critical Average Average 0.35 0.35 0.3 
29-5 Very strong Critical Average Likely 0.35 0.55 

296 Very strong Critical Average t Definite 1 t 0.55 0.35 0.1 
297 Very strong Critical Difficult Unlikely 

I 

E 

e 0.2 0.65 0.15 
298 Very stronlý Critical Difficult vre Avera e 0.35 0.55 
299 Very strong Critical Difficult 1 Likel Likely 0.3 0.7 
300 Very strong Critical Difficult f,, t, F) PfInItp Definite 0.5 0.5 
301 Very stronlý Critical Extremely Difficult Unlikely 0.4 0.45 0.15 
302 Very stroný Critical 

- 
Extremely Difficult Average 0.55 0.35 0'1 

303 Very strong Critical Extremely Difficult Likely 0.5 0.5 
304 Very strong Critical 

- 
Extremely Difficult Definite 0.7 0.3 

305 Very strong Catastrophic Easy Unlikely 0.5 0.25 0.25 
306 Very strong Catastrophic Easy Average 0.65 0.1 0.2S 
307 Very strong Catastrophic Easy Likely 0.7 0.2 (). 1 
308 Very strong Catastrophic Easy Definite 0.8 0.1 0.1 
309 Very strong Catastrophic Average Unlikely 0.65 0.1 0.2 
310 Very strong Catastrophic Average Average 0.6 0.4 
311 Very strong Catastrophic Average 0.7 0.3 
312 Very strong Catastrophic Average Definite 0.85 0.15 
313 Ve stron Y Catastrophic Difficult Unlikely 0.7 0.2 0.1 
314 Very strong Catastrophic Difficult Average 0.7 0.3 
315 Very strong Catastrophic Difficult Likely 0.75 0.25 
316 Very strong Catastrophic Difficult Definite 0.9 (), 1 
317 Very strong Catastrophic Extremely Difficult Unlikely 0.8 0.1 0.1 
318 ery strong Catastrophic Extremely Difficult Average 0.85 0.15 
319 Very strong Catastrophic Extremely Difficult Likely 0.9 0.1 
320 Very strong Catastrophic Extremely Difficult Definite ,I i 
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Appendix 4. Risk Based BRB 

Rules Antecedent attributes Risk evaluation (using the 
FER method) 

Risk e%aluation (using 
subjective judgein nt) 

No Risk occurrence 
likelihood 

Consequence 
severity 

Failure consequence 
probability 

Good I Ave 
rage 

Fair Poor Good %ýC 
rage 

I-air Pool 

I very low negligible highly unlikely I- I 
2 very low negligible unlikely 0.91 0.09 0.8 0.2 
3 very 10\', ' 

- 
negligible reasonably unlikely 0.98 0.12 0.7 0.2 0.1 

4 very low negligible likely 0.88 0.06 0.06 0.3 0.7 
5 - 

vcry low negligible reasonably likely 0.88 0.12 0.1 0.9 
6 very low negligible highly likely 0.88 0.06 - 0.06 0.1 0.8 0.1 
7 N, cry low negligible definite 0.88 0.12 1 
8 very low marginal highly unlikely 0.72 0.29 0.9 0.1 
9 very iow marginal unlikely 0.54 0.46 1 0.8 0.1 

10 very low marginal reasonably unlikely 0.49 0.51 0.7 0.3 
11 very low marginal likely 0.51 0.42 0.07 0.5 0.5 
12 very low marginal reasonably likely 0.53 0.32 0.15 0.4 0.6 
13 ý, cry low marginal highly likely 0.53 0.32 0.08 0.07 0.2 0.9 
14 very low marginal definite 0.53 0.32 0.15 0.1 0.9 
15 ., cry low moderate highly unlikely 0.62 0.19 0.19 0.8 0.2 
16 very low Moderate unlikely 0.45 0.35 0.2 0.7 0.3 
17 very low moderate reasonably unlikely 0.4 0.4 0.2 0.6 0.4 
18 very low moderate likely 0.4 0.3 0.3 0.2 0.6 0.2 
19 very low moderate reasonably likely 0.4 0.2 0.4 0.5 0.5 
20 very low moderate highly likely 0.41 1 0.2 0.31 1 0.08 1 0.3 0.7 
21 very low moderate definite 0.42 0.21 0.21 0.16 0.1 0.9 
22 very low critical highly unlikely 0.62 0.3 0.09 1 
23 very low critical unlikely 0.46 0.12 0.33 0.08 0.9 0.1 
24 very low critical reasonably unlikely 0.42 0.16 0.34 0.08 0.7 0,3 
25 very low critical likely 0.4 0.08 0.44 0.08 0.3 0.7 
26 very low critical reasonably likely 0.39 0.53 0.08 0.2 0.8 
27 very low critical highly likely 0.4 0.44 1 0.16 0.4 0.6 
28 very low critical definite 0.41 0.33 0.26 0.3 0.7 
29 very low catastrophic highly unlikely 0.62 0.39 0.8 0.2 

. 
30 very low catastrophic unlikely 0.47 0.12 0.41 0.6 0.4 
31 verv low catastrophic reasonably unlikely 0.42 0.16 0.42 0.3 0.7 
32 very low catastrophic likely 0.42 0.08 0.08 0.42 0.2 0.9 
33 very low catastrophic reasonably likely 0.42 0.16 0.42 1 
34 very low catastrq&ic highly likely 0.4 0.08 0.52 0.4 0.6 
35 very low catastrophic definite 0.38 0.62 
36 low negligible highly unlikely 0.72 0.28 0.8 1 0.2 
37 Tow negligible unlikely 0.54 0.46 0.7 1 0.3 
38 low negligible reasonably unlikely 0.49 0.51 0.6 0.4 
39 low negligible likely 0.51 0.42 0.07 0.3 0.7 
40 low negligible reasonably likely 0.53 1 0.32 0.15 0.2 0.8 
41 low negligible highly likely 0.53 0.32 0.09 0.07 0.1 0.9 
42 low negligible definite 0.53 0.32 0.15 1 
43 low marginal highly unlikely 0.69 0.9 0.2 
44 -Iow marginal unlikely 0.16 0.84 0.7 0.3 

-45 TOýW marginal reasonably unlikely 0.13 0.87 0.6 1 0.4 
46 low marginal likely 0.14 0.8 0.06 0.3 0.7 
47 low marginal reasonably likely 0.15 0.72 0.13 0.2 0.9 

P 

48 low marginal highly likely 0.15 0.72 0.07 0.06 0.1 0.9 
4 49 9 low 

- 
marginal definite 0.15 07/2 0.13 0.1 0.8 0.1 

50 50 _0 -10 w moderate highly unlikely 0.23 : ý: O: -ý58 0-19 0.7 0.3 
51 low moderate unlikely 0.1 0.73 0.17 0.3 0.7 1 
52 low moderate reasonably unlikely 0.07 0.77 0.16 0.6 0.4 
53 low moderate likely 0.07 1 0.67 0.26 0.5 0.5 
54 low 1 moderate reasonably li ey ik 1 007 .1 0.57 0.36 :: 2: 0.9 
55 low I moderate hi&X likely 1 0.07 1 0.58 0.28 0.07 _ 0.1 0.9 
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SO lo\\ moderate definite 0.08 0.59 0.11 0.14 1 
57 low critical highly unlikely 0.26 0.33- -6-3-3 0-08 -0. x 0.2 
58 low------ critical unlikely 0.11 0.5 0.31 0.08 06 0.4 
59 low critical reasonably unlikely 0.08 0.53 0.31 0.08 0.2 0.8 -- -- 
60 low critical likely 0.08 0.42 0.42 0.08 0.6 0.4 
61 low critical reasonably likely 0.08 T3 -I -T5 -3 0.08 0.5 0.5 
62 low critical highly likely 0.09 0.32 0. 44 0.16 0.3 1 0.7 
63 low critical definite 0.08 0.33 0.33 0.26 0.2 0.9 
64 low catastrophic highly unlikely 0.26 0.33 0.41 06 1- 04 
65 low catastrophic unlikely 0.11 0.5 

1 

0.39 1 -0.9 - 
66 low catastrophic reasonably unlikely 0.08 0.53 0.39 0.9 
67 low likely 0.08 , 0.44 0 0. Oý 0.4 0.7 0.3 
68 low catastrophic reasonably likely 0.08 0.34 0.16 0.42 U. 3 0.7 
69 low catastro hic highly likely 0.08 0.32 0.08 0.52 01.3 ýI 0.7 
70 low catastrophic definite 0.09 0.3 0.62 0.2 0.8 
71 reasonably loxN negligible highly unlikely 0.62 0.38 - 0.8 0.2 
72 reasonably low negligible unlikely 0.43 0.57 0.7 0.3 
73 rcasonabý, I oA negligible reasonably unlikely 0.38 0.62 0.6 0.4 
74 reasonably low negligible likely 0.4 

- 
0.52 

- - 
0.08 

-- - 
0.3 0.7 

75 reasonably low negligible reasonably likely 0.42 F 0 . 42 ýO. 1 6 0.1 0.9 
76 reasonably low hi hI likel 0.42 0.42 0.08 6.08 - -1 

77 reasonably low negligible definite 0.42 0.42 0.16 0.9 0.1 
78 : aso 

-rL 
marginal highly unlikely 0.21 0.79 0.8 0.2 

79 reasonably low marginal unlikely 0.08 0.92 0.7 0.3 
80 reasonably low marginal reasonably unlikely 0.06 0.94 0.6 0.4 
Sl reasonably low marginal likely 0.06 0.88 0.06 0.2 -0.8 

82 reasonably low marginal reasonably likely 0.07 08 0.13 1 
93 reasonably low marginal highly likely 0.07 0. 

ý 
0.7 0.06 0.9 0.1 

84 reasonably low marginal definite 0.07 0.8 0.13 0.8 0.2 
85 reasonably low moderate highly unlikely 0.14 0.68 0.18 0.5 0.5 
96 reasonably low moderate unlikely 0.03 0.81 0.16 0.6 0.4 
87 reasonably low moderate reasonabl unlikely 0.84 0.16 0.4 06 - 
88 reasonably low moderate likely 0.75 -ý 2-5 - - 0.7 0.3 
89 reasonably low moderate reasonably likely 0.65 0.35 1 0.4 0.6 
90 reasonably low moderate highly likely 0.66 0.27 0.07 1 
91 reasonably low moderate definite 0.68 1 0.18 0.14 0.6 0.4 
92 reasonably low critical highly unlikely 0.16 0.42 1 0.34 0.08 -1 

93 reasonably low critical unlikely 0.03 0.58 0.31 0.08 0.7 0.3 
94 reasonably low critical reasonably unlikely 0.62 0.3 1 0.08 1 0.5 0.5 
95 reasonably low critical likely 0.5 0.42 0.09 1 
96 reasonably low critical reasonably likely 0.39 0.53 0.08 

-- - 
0.1 0.2 0.7 

97 reasonably low critical highly likely 0.4 
- 

0.44 
- 

ý1 6 - -O. l (). 8 
98 reasonably low critical definite 0.4 1 T-33 0.26 
99 reasonably low catastrophic highly unlikely 0.16 0.42 0.4-2 

100 reasonably low catastrophic unlikely 0.03 0.58 1 0.39 0.3 0.7 
10, reasonably low catastrophic 

_reasonably 
unlikel 0.62 0.38 0.1 0,9 

102 reasonably low catastrophic likely 0.53 0.07 0.4 0.5 0.5 
103 reasonably low catastrophic reasonably likely 0.42 0.16 0.42 0.3 0.7 
104 reasonably low catastrophic highly likely 0.4 0.08 0.52 0.2 0.8 
105 reasonablý low catastro&c definite 0.38 0.62 0.1 
106 average negligible highly unlikely 0.62 0.19 0.19 0.1 0,9 
107 average negligible unlikely 0.44 0.36 0.2 0.8 0.2 
108 average negligible reasonably unlikely 0.4 0.4 0.2 0.7 0.3 
109 average negligib e likely 0.4 0.3 0.3 0.5 0.5 
110 average negligible reasonably likely 0.4 0.2 0.4 03 0.7 
III average negligible highly likely 0.41 0.2 0.31 0.08 1 0.2 0.8 
112 average negligible definite 0.42 0.21 0.21 0.16 0.0 0.95 
113 average marginal highly unlikely 0.23 0.58 0,19 1 
114 average marginal unlikely 0.1 0.73 0.17 0.9 0.2 
115 average marginal reasonably unlikely 0.07 0,77 0.16 0.5 0.5 
116 average marginal likely 0.07 0.26 0.3 1 0.7 
117 1 average marginal reasonably likely 0.07 

l 

0 57 0.36 ý2 0. 8 
Ll 9 =avera ý, marginal highly likely 0.07 7 058 

a 

0.28 0.07 
1 

0. 1 0.1 (- 
ý9 

0.9 
119 1 average I marginal definite 0.08 i 0.08 059 0 
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120 averagc moderate highly unlikely 0.14 0.43 0.43 1 
121 average moderate unlikely 0.02 

_ 
0.58 0.4 0.9 0.1 

122 w, crage moderate___ reasonably unlikely 
_ 

0.61 0.39 0.8 0.2 
123 aN crage Moderate likely 0.5 0.5 0.5 0.5 
124 average moderate reasonably likely 0.39 0.61 1 
125 averagc moderate highly likely 0.41 0.52 0.07 0.9 0.1 
126 a,. erage moderate definite 0.43 0.43 0.14 1 0.8 0.2 
127 werage critical highly unlikely 0.14 0.19 

- 
0.59 

-- 
0.08 0.8 0.2 

128 
, average critical unlikely 0.03 (T3 3 06.5-7 0 0.07 1 

129 awrage critical reasonably unlikely 0.36 0.57 0.07 0.2 0.8 1 
130 a,. crage critical likely 0.26 

dO6 

7 Oý. 07 I 
131 average critical reasonably likely 1 0.16 77 0.77 0.07 0.5 0.5 
132 average critical 

_ 
highly likely 0.18 ý8 0.. 68 ý. 14 0.3 0.7 

133 average critical definite 0.19 0.58 0.23 0.2 0.9 
134 average catastrophic highly unlikely 0.16 0.21 0.21 0.42 0-8 0-2 
135 a\ crage catastrophic unlikely 0.03 0.36 0.2 0.41 0.6 0.4 
136 average catastrophic_ reasonably unlikely 

_ 
0.4 0.2 0.4 0.5 0.5 

137 aN crage catastrophic likely 0.3 0.3 0.4 0.5 0.5 
138 a\ crage catastrophic reasonably likely 0.2 ::: 0.4 0.4 0.4 0.6 
139 average catastrophic highly likely_ 0.2 

__O. 
29 0.51 0.2 0.9 

140 a\ erage catastrophic definite 0.19 0.1 9 0.19 0 0.62 0.15 0.85 
141 reasonably frequent negligible highly unli ely 0.62 0.38 1 
142 reasonably frequeni- negligible unlikely 0.47 0.12 0.41 0.8 0.2 
143 reasonably fr qUent negligible reasonably unlikely 0.42 0.16 0.42 0.6 0.4 
144 reasonably frequent negligible likely 0.4 0.08 0.52 

- - 
0.3 0.7 

145 reasonably frequCrit 
- 

negligible likely 0.38 6.. 6 2 - 0.1 0.9 
146 týrcquent rcasonablý negligible highly likely 0.4 0,52 0&08 1 - 
147 reasonably frequent negligible definite 0.42 0.42 0.16 09 

* 0.1 
148 reasonably frequent margin I highly unlikely 0.26 0.33 0.41 0.8 0 .2 149 reasonably frequent marginal unlikely 0.11 0.5 0.39 1 0.5 0.5 
150 Teasonably frequent marginal reasonably unlikely 0.08 0.53 0.39 0.3 0.7 
151 reasonably frequent marginal likely 0.08 OAT 0.5 0.1 0.9 
152 reasonably frequent marginal reasonably likely 0.08 0.3 0.62 

-- 
1 

153 reasonably frequent marginal highly likely 0.08 0.32 0.52 6-. 08 - - -0 
154 reasonably frequent marginal definite 0.08 0.34 0.42 0.16 0.8 0.2 
155 reasonably frequent moderate highly unlikely 0.14 0.18_ 0.68 0.5 0.5 
156 reasonably frequent moderate unlikely 0.03 

. 
0.32 0.65 0.4 0.6 

157 reasonably frequent moderate reasonably unlikely 0.35 0.65 0.2 0.8 
158 reasonably frequent moderate likely 0.25 

- 
0.75 0.9 

159 reasonably frequent moderate 
- 

reasonably likely 0.16 0.84 1 - 
160 reasonably frequent moderate highly likely 1 0.17 0.77 0.06 0.2 0.7 0.1 
161 reasonably frequent moderate definite 0.18 O 68 0.14 0.8 0.2 
162 reasonably frequent critical highly unlikely 0.13 ý 

.8 0.8 0.07 - 0.7 - 0.3 - 
163 reasonably frequent critical unlikely 0.03 0.10 

4 

0.8 0. 08 0.07 0.5 0.5 
164 reasonably frequent critical reasonably unlikel 0.13 0.8 0 0.8 0.07 0.1 0.9 
165 reasonably frequent critical likely 0.06 0.88 0.06 0.8 0.2 
166 reasonably frequent critical reasonably likely 1 

A A 0.94 "- 006 0.5 0.5 
167 reasonably frequent critical highly likely 0.87 0.13 

- - 
0.4 0.6 

16W reasonably frequent critical definite 0.79 02 1 
- 

0.3 0.7 
169 reasonably frequent ca 0.16 0.42 iý. 42 - - 0.6 0.4 
170 reasonably frequent catastrop ic unlikely 0.03 0.13 0.42 0.42 -0 -5 0-5 - 
171 reasonably frequent catastrophic reasonably unlikely 0.16 0.42 0.42 0.2 0.8 
172 reasonably frequent catastrophic likely 0.08 0.52 

- 
0.4 0.1 -()8 

173 reasonably frequent catastrophic reasonably likely 562 -- F)3- -8 - 

174 reasonably frequent catastrophic highly likely 
- 

0.5 
- 

0.5 0.4 0.6 
175 reasonably frequent catastrophic 1 definite 6-38 -06-2 0.3 0.7 
176 frequent negligi le highly unlikely 0.62 0.28 0.1 0.8 0.2 
177 frequent negligible 

_ 
unlikely 0.46 0.12 0.31 0.11 0.5 0.5 

178 frequent negligible reasonably unlikely 0.42 0.16 0-31 0-11 -0 
.3 

- 07 - 
179 frequent negligible likely 0.4 0.08 04-1 
180 frequent negligible reasonably likely 0.39 0.5 1 0.8 0.2 

-181 frequent negligible hi hl hk 1 gyi ey 0.4 0.4 
. 0.2 0.5 O's 

182 
- 

frequent negligible definite 0.41 0 9 - 0.4 0.6 
-1 83 frequent marginal highly unlikel- 0.26 0,3-3 0.3 01-1 -02 --- 
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14 hequclit marginal unlikely 11 0.49 -- -T29 -0.11 T 0.5 0.5 

- 185 frequent marginal reasonably unlikely 0.08 0.53 0.28 -OVIF 0.3 0.7 
186 

_frequent 
marginal likely 0.08 0.42 0.39 0.11 0.1 0.9 

187 frequent marginal reasonably likely 0.08 0.31 0.5 0.11 0.1 0.8 0.1 
188 frequent marginal highly likely 0.08 0.32 0.4 0.2 0.8 0.9 0.2 
189 frequent marginal definite 0.08 0.33 0.3 0.29 0.6 0.4 
190 frequent moderate highly unlikely 0.14 0.19 0.56 0.11 0,8 0.2 
191 frequent moderate unlikely 0.03 0.33 0.54 0.1 0.4 0.6 1 
192 frequent moderate reasonably unlikely 0.36 0.54 0.1 0.3 0.7 
193 frequent moderate likely 0.26 0.64 0.1 0.9 0.1 
194 frequent moderate reasonably likely 0.17 0.74 0.09 0.8 0.2 
195 frequent moderate highly likely 0.18 0.65 0.17 0.7 0.3 
190 t requent moderate definite 0.18 0.55 0.27 0.5 0.5 
197 frequent critical highly unlikely 0.13 0.69 0.18 0.3 0.6 0.1 
198 frequent critical unlikely 0.03 0.10 0.69 0.18 0.2 0.7 0.1 
199 frequent critical reasonably unlikely 0.13 0.69 0.19 0.9 0.2 
2 frequent critical likely 0.06 0.77 0.17 0.5 0.5 
201 frequent critical reasonably likely 0.85 0.15 0.3 0.7 
202 frequent critical highly likely 0.76 0.24 0.1 0.1 0.8 
203 frequent critical definite 0.66 0.34 0.2 1 0.8 
') 04 frequent catastrophic highly unlikely 0.15 0.28 0.57 0.5 0.5 
205 frequent catastrophic unlikely 0.03 0.12 0.28 0.57 0.2 0.6 0.2 
206 Frequent catastrophic reasonably unlikely 

_ 
0.15 0.28 0.57 0.7 0.3 

'107 frequent catastrophic likely 0.07 0.38 0.55 0.5 - - 0.5 
208 frequent catastrophic reasonably likely 0.47 0.53 0.4 0.6 
209 frequent catastrophic highly likely 0.36 0.64 0.3 0.7 
210 frequent catastrophic definite 0.25 0.75 0.2 1 0.9 
211 highly frequent negligible hi hl unlikel 0.62 1 0.38 0.9 0.2 
212 highly frequent negligible unlikely 0.47 0.12 0.41 0.5 0.5 
213 highly frequent negligible reasonably unlikely 0.42 0.16 0.42 0.3 0.7 
214 highly frequent negligible likely 0.42 0.08 0.08 0.42 0.3 0.5 0.2 
215 highly frequ -fit negligible reasonably likely 0.42 0.16 0.42 0.1 0.6 0.3 
216 highlý frequent negligible highly likely 0.4 0.09 0.52 0.4 0.6 
217 highly frequent negligible definite 0.38 1 1 0.62 0.3 0.7 
218 highly frequent marginal highly unlikely 0.26 0.33 0.41 0.6 04 
119 highly frequent marginal unlikely 0.11 0.5 0.39 0.5 0.5 
220 highly frequent marginal reasonably unlikely 0.08 0.53 0.39 0.4 0.6 
221 highly frequent marginal likely 0.08 0.43 0.09 0.4 01 0.7 0.2 
222 highly frequent marginal reasonably likely 0.08 0.34 0.16 0.42 0.9 0.1 
223 highly frequent marginal highly likely 0.08 0.32 0.08 0.52 0.7 0.3 
224 highly frequent marginal definite 0.08 0.3 1 0.62 0.6 0.4 
225 highly frequent moderate 

- 
highly unlikely 0.16 0.21 0.21 042 0.7 0.3 

'126 highly frequent moderate unlikely 0.03 0.37 0.2 0.5 0.5 
227 highly frequent moderate reasonably unlikely 0.4 0.2 0.4 0.2 0.6 0.2 
228 highly frequent moderate 

- 
likely 0.3 0.3 0.4 0.5 0.5 

129 highly_ frequent moderate reasonably likely 1 0.2 0.4 0.4 0.4 0.6 
230 highly frequent moderate 

- 
highly likely 0.2 0.29 0.51 0.3 0.7 

231 highly frequent moderate definite 0.19 0.19 0.62 0.2 0.8 
232 highly frequent critical highly unlikely 0.15 0.32 0.53 05 0.5 
233 highly frequent critical unlikely 0.03 0.12 0.32 0.53 0.2 0.6 0.2 
134 highly frequent 

- - 
critical 

- 
reasonably unlikely 0.15 0.32 0.53 0.1 0.5 0.4 

235 ghlyfrequent Iýi critical likely 0.07 0.42 0.51 0.6 
---': )736 highly frequent critical reasonably likely 0.51 0.49 0.2 0.8 

-3 
7 
- 

high]), frequent critical highly likely 0.39 0.61 0.1 0,9 
: )71 9 

- - 
highly frequent critical definite 0.29 1 0.72 1 

ý') ý3 9 highly frequent catastrophic highly unlikel 0.12 0.88 0.5 0.3 0.2 
240 
- - 

highly frequent catastrophic unlikely 0.02 0.1 0.88 0.5 0.5 
----: ) 4 1 highly frequent catastrophic reasonably unlikely 0.12 0.89 0.4 0.6 

242 highly frequent catastrophic likely 0.06 0.06 0.99 0.2 0.8 
243 highly frequent catastrophic 1 reasonably likely 0.12 0.88 0.15 0.95 
244 hiýhlv trequent catastrophic I highly likely 0.04 0.96 0.05 0.95 
245 highly trequent catastro hic I definite I I 
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Appendix 5. The Prior Probability Distributions in the BN 

The probability distribution of "Intelligence network" 
State Probability 
Flawless 0.8 
Flawed 0.2 

The probability distribution of "Checking and supervision" 
States Probabilities 
Checked 0.05 (the sum of import and export cFc-cking) 
Ignored 0.95 

The probability distribution of "External" 
States Probabilities 
Friendly 0.99 
Hostile 0.01 

The probability dist ibution of "Internal" 
States Probabilities 
Immune 0.9 
Infective 0.1 

The probability dist ibution of "Missile" 
States Probabilities 
Yes 0.1 
No 0.9 

The probability distribution of "Accessibility" 
States Probabilities 
Likely 0.33 
Unlikely 0.67 

The probability distribution of "En ine room" 

Engine room 
People Soundness Weakness FHflacked 

0 0.2 
Defended 1 0.8 

The prior conditional probabilities of "Bulkhead" 
Missile Yes No 

Bulkhead 
Car-ple Soundness Weakness Soundness Weakness 

Attacked 0.905 0.999 0.097 0.991 
Protected 0.095 0.001 0.903 0.009 

The prior conditional probabilities of "Cargo" 
n ne lnt e Flawless Flawed ý ý 

Checking and 
ervision 

Cargo 

Checked Ignored Checked Ignored 

Soundness 0.96 0.44 0.48 0.02 
Weakness 1 0.04 0.56 0.52 0.98 

The prior conditional probabilities f "People" 
Tx--temal Friendly Hostile 
Peoýleýý Immune Infective Immune Infective 

Soundness 0.99 0.27 0.56 0.11 
Weakness 0.01 0.73 0.44 0.89 

The prior conditi onal probabilities f "Car-pie" 
Cargo Soundness Weakness 

-pie Car pýje 
People 

ý 
Soundness Weakness Soundness Weakness 

_ Soundness 1 0.59 0.56 0.28 
A Weakness 0 0.41 0.44 0.72 

The prior conditional probabilities of "Containerships" 
Bulkhead Attacked I Pr-o-tected. 

room 
n Hijacked Defended Hijacked Defended 
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Co-n-Utnemhtfýs-, I I 
Soundness 1 0.07 0.39 0.12 
Weakness 1 0.93 0.61 0.88 0 

The prior conditional probabilities of "Channel" 
ontaýiný Soundness Weakness 

Soundness 0.99 0.8 
Weakness 0.01 0.2 

The prior conditional probabilities of "Terminal" 
Containcrships Soundness Weakness 

Car-ple : 
T:: 

Qmiýna Soundness Weakness Soundness Weakness 

Soundness 0.95 0.52 0.41 0.01 
Weakness 0.05 0.48 0.59 0.99 

The prior conditional probabilities of "Inland Transportation" 
--Ac-ccssibility Unlikely Likely 
r 

Inlaný 
Car-ple 

sDortatiol transportatioff-,,, 
_,,, 

_ 

Soundness Weakness Soundness Weakness 

Soundness 1 0.56 
-- 

0.62 0.27 
Weakness 0 0.44 

ý0.38 
0.73 

The prior cond itional probabilities of "Port" 
Tcn-ninal Soundness Weakness 

1 rt Inland trans to Soundness Weakness Soundness Weakness 7oý ý 

Pý 0 
Channel 

I 
Sound 
ness 

Weakn 
ess 

Soundn 
ess 

W An 
ess 

Sound 
ness 

Weakn 
ess 

Soundn 
ess 

Weakn 
ess 

Soundness 0.91 0.66 0.65 0.35 0.63 0.34 0.33 0.14 
Weakness 0.09 0.34 0.35 0.65 0.37 0.66 0.67 0.86 

he prior conditional probabilities of "Supply chains" 
-fe-r -mi naI Soundness Weakness 
Inland transportation Soundness Weakness Soundness Weakness 

ýýCh= 
Port 

Sound 
ness 

Weakn 
ess 

Soundn 
ess 

Weakn 
ess 

Sound 
ness 

Weakn 
ess 

Soundn 
ess 

Weakn 
ess 

I Soundness 0.91 0.66 0.65 0.35 0.63 0.34 0.33 0.14 
[ Weakness 0.09 0.34 0.35 0.65 0.37 0.66 0.67 0.86 7 
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Appendix 6. A New Developed BFRB for Decision Making 

Rules Risk attributes Preference estimation (decision making) 
Arrval time Cost Safety 

_ 

Not 
preferred 

Slightly 
preferred 

-)ref'erre( Zeasonabl) 
preferred 

Highly 
preferred 

T- Monday Very low Good I 
Mondav verv I ow Fa ir 0.006 0.05 0.088 0.856 

3 MolidaN ve rv I ow Ave rage. 1 0.019 0.091 0.051 0.006 0.933 
4 Molld; iN Ve I-V low floor 0.167 0.933 
5 5 

L 

kloll(LI\ Low Good 0.167 0.833 
66 Monday Low F'a ir 0.006 0.058 0.327 0.609 
7 Mondav Low Average 0.022 0.109 0.061 0.209 0.599 
9 Molidav Low floor 0.2 0.2 0.6 
9 11 -& Iv Average Good 0.167 0.933 
10 Moridaý Average Fair 0.007 0.27 0.105 0.619 
11 Molidav Average Average 0.22 0.107 0.276 0.007 0.588 1 
12 Mondav Average floor 0.2 0.2 0.6 
13 Motidav High Good 0.167 0.833 
14 o -ý 11dav High Fa ir 0.204 0.06 0.107 0.629 
15 Mondav High Average 0.022 0.334 0.059 0.007 0.579 
16 Monday High floor 0.2 0.2 0.6 

17 Monday Very high Good 0.167 0.933 
18 Monday Very high Fa ir 0.196 0.007 0.06 0.107 0.631 
19 Mondaý, Very high Average 0.228 0.109 0.061 0.007 0.596 
20 Monday Very high lloor 0.437 0.563 
21 1, Uesdav Very low Good 0.073 0.927 
22 TU OS diIv Very low I Fa ir 0.006 0.051 0.193 0.75 
23 'I'Llesday Very low j low Average 0.019 0.094 0.053 1 0.098 0.736 
24 Tuesday Verv low o floor 0.172 1 0.091 0.737 
25 Tueýday ow 1-ow Good 0295 0.715 
26 Tuesday Low Fa ir 0.006 0.055 0.46 0.479 
27 Tuesday ti". Average 0.022 0.105 0.059 0.339 0.475 

-5- Tu es dýiy Low floor 0.193 0.33 0.477 
29 Tuesday Average Good 1 0.172 0.091 0.737 
30 Tuesday Average Fa ir 0.006 0.266 0,222 0.505 
31 ý-Uolsdav Average Average 0.022 0.107 0.276 0.112 0.483 
32 l'uesdav Average l'oor 0.2 0.2 0,106 0.494 

-ý-, 3 Tuesdav High Good 0.172 0091 0.737 
34 Tuesdav High F`a ir 0.201 0.059 0.226 0.514 

-15 
I'Ll ('S diIV High Average 0.022 0.333 0.059 0.11 0.476 

36 Tuesday High lloor 0.2 0.2 0.106 0.494 
37 Tuesdav Verv high Good 0.172 0.09) 0.737 
39 Tuesdav Very high Fa ir 0.193 0.007 0.059 0.226 0.515 
39 Tuesday Very high Average 0.228 0.109 0.061 0.113 

- 
0.41) 

40 T,,,, -, d, iv Vo ry high floor 0.438 OT 0.402 
41 Wednesday Very low Good 0.426 

- 
0.574 

4-2 -Wednesdav Very low Fai r 0.006 0.054 06 06 03-34 
4-3 -Wednesday Very low Average 0.022 0.105 0.059 -0 4-93 
44 Wednesdav Verv low l'oor 0.193 0.474 0.333 
45 Wednesday Low Good 0.712 0.298 

-ý-6 -W-(-, dnvsday Low Fa ir 0.005 0.046 0.846 0.103 
ý7- Wednesday Low Average 0.019 0.093 0.052 0.742 0.694- 
49 wedries(kly Low floor 0.172 0.734 0.094 

-T9 Tdnesdav Average Good 0.193 0.474 0.333- 
-ýO- Wednesday Average Fai r 0.006 0.253 0.619 
51 Wednesday Average Average 0.002 0.107 0.275 0.49 
52 Wedriesdav Average floor 0.2 0.2 0.491 0.109 

-T3 Wedn( sday 
- 

High Good 0.193 0.474 0M 
ý4-- Wedriesday Ifigh Fa ir 1 0.191 0.056 0.029 0.124 

5 Wednesday Ifigh Average 0.022 0.332 0.059 0.483 RIO� 
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10 k Iligh Poor 0.2 0.2 0.491 0.109 

57 A0611c"di1% erv high Good 0.193 0.474 0.333 

58 %ednes(Im Verv hi gh Fai r 0.183 0.006 0.056 0.631 0.124 
59 Wednesda\ Verv high Average 0.227 0.108 0.061 0.497 0.107 

WvdilesdaN Very high Poor 0.438 0.46 0.102 
I hursdio, Very tow Good 0.211 0.352 0.437 

62 I'llursdav Very I Fa ir 0.006 0.282 0.503 0.209 

63 I'llursdav 
_0.022 

0.106 0.301 1 0.376 0.195 

64 J hursda. ý Verv I ow 1 POor 0.2 0.225 0.375 0.2 
_ o6 5 sdav 1111jr Low Good 0.2 0.622 0.178 

W) - I'llursdav Low Fair 0.005 0.243 0.734 0.018 

(" illursdav LOW Average 0.019 0.095 0.267 0.619 
-- I'llursdav LOW Poor 0.178 0.2 0.622 

Average Good 0.465 1 0.349 0.186 

70 Dmrsdil\ Average Fa ir 0.006 0.513 0.463 0.018 

71 Th u rs di tY Average Average 0.02 0.097 0.542 0.341 

72 - MursdaN Average Pool- 0.186 0.465 0.349 
TI- -I'llursdav 11 i gh I Good 0.2 0.225 0.375 0.2 
ý4 ThursdaN High Fa ir 0.191 0.283 0.505 0.021 
ý5 I'llursdaY Iligh Average 0.02 0.325 0.291 0.363 

_ 76 I'llursdaN High Poor 0.2 0.2 0.225 0.375 

77 Thursdaý Very high Good 0.2 0.225 0.375 0.2 
T8 Thursday Very high Fai r 0.183 0.006 0.284 0.506 0.021 

-Thursdav Very high j Average 0.222 0.106 0.299 0.373 
-FF- It r. "ýdav I Ll r. " -Y high Vet Pool, 0.437 0.211 0.352 
Fr i (lily Very tow I Good 0.563 0.437 

82 Fr i (lily Very low I Fa ir 1 0.006 0.676 0.102 0.215 
S3 Fr i 

(JaV Very low j Average 0.021 0.103 0.681 0.006 0.199 
_ý4 -1 1 day Verv low Poor 0.2 0.6 1 0. -) - 

. 17, -d' ýy Low Good 0.6 0.2 0.2 

1-1-117Y Low Fa ir 0.006 0.658 0.315 0.021 
87 Fr i (lily Low Average 1 0.021 0.103 0.68 0.196 

_ý_s T'r i dav Low Poor 0.2 0.6 0.2 
89 Fr i 

(Ij IV Average Good 0.833 0.167 
-4-(-) T Ti _11. y Average Fai r 

- - 
0.005 0.894 0,084 0.017 

ý)_, - T-1 T, i-It V Average Tv (, rag e 0.0 17 0.084 0.894 0.005 

92 Fr i (lav Average Pool- 0.167 0.833 
_ýýI Fridav High Good 0.2 0.6 0.2 
ý4 Tr it (fit Y High Fit ir 0.197 0.68 0.103 0.02 
95 F, day High Average 0.02 0.315 0.659 0.006 
96 ýl Idav High Poor 0.2 0.2 0.6 

97 Friday Very high Good 0.2 0.6 0.2 
_ý_s Fr i dav Very high Fa ir 0,188 0.006 0.681 0.103 0.022 
4-9 FrtdiIy Verv high Average 0.215 0.103 0.6 0.006 
i _() _0 Fr i dav Verv high Poor 0.437 0.563 

_FO -I _" a -tu r (I iIv Very low Good 0.352 0,211 0.437 
102 SiltUrdaV Very low I Fair 0.373 0.299 0.106 0.222 
103 saturdav Very low Average 0.02 1 0.507 0.284 1 0.006 0.183 

T04 saturdav Very low Poor 0.2 0.375 0.225 0.2 
105 Sit tu rdilv LOW Good 0.375 0.225 0.2 0.2 

- OW-_ Sit tu rdav LOW Fait- 0.363 0.291 0.325 0.021 
_0 _7 Saturdav Low Average 0.02 0.505 0.283 0.192 

108 SiItur di iV Low Poor 0.2 0.375 0.225 0.2 

TO-9- SiItu rdi IV Average Good 0.349 0.465 1 0.186 
110 Sat urday Average Fa ir 0.341 0.542 0.097 0.02 

TFI__ Sit tu May Average Average 0.019 0.463 0.513 0.006 
112 '; it tu rdav Average Poor 0.186 0.349 0.465 

113 Saturday High Good 0,622 0.2 0.178 
114 Saturday High Fit ir 0.618 0.268 0.095 0.019 
115 Sit t LI rday Ifigh Average 0.018 0.734 1 0.243 1 0.005 
T-1 _6 ; it tu May High Poor 0.178 0.622 0.2 

TI _7 Saturday Very high Good 0.2 0.375 0.225 0.2 
118 Sit t it 1-dav Very high I Fa ir 1 0.195 0.376 03 () 1 1 0,106 0.022 
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119 Sit turdav Vc ry high Average 0.209 0.503 0.282 0.006 
120 Sit tu I-day Verv high Poor 0.437 0.352 0.211 
121 S1111(fav Very tow Good 0,102 0.46 0.439 
122 S1111dav Verv low Fa ir 0.108 0.497 0.06 0.108 0.227 
123 sujldaý Verv low Average 0.124 0.631 0.056 0.006 0.183 
124 Smldaý Very tow Poor 1 0.333 0.474 0.193 
125 SLIII di IV Low Good 0.109 0.491 1 0.2 0.2 
126 _ smidaý LOW Fa ir 0.105 0.483 0.059 0.332 0.021 
127 Sundav Low Average 0.124 0.629 0.056 0.191 
128 Low Poor 0.333 0.474 0.193 
121) Average Good 0.109 0.491 0.2 0.2 
130 S1111dav Average Fa ir 0.106 0.49 0.275 0.107 0.022 
III Sundav Av(, ritge Average 0.122 0,619 0.253 1 0.006 
132 ý1111dav Average Poor 0.333 0.474 0.193 
133 ". ), kindav High Good 0.094 0.734 0.172 
134 SwIldav High Fa ir 0.093 0.743 0.052 0.093 0.019 
135 SLM(IiIN High Average 0.103 0.846 0.046 0.005 
136 SLIMLIV High Poor 0.288 0.712 
1 ;7 SL111(h1Y Very high Good 0.333 0.474 1 0.193 
138 SLIMIM' 

_ _Very 
high Fa ir 0.332 0.483 0.059 0.105 0.021 

1W Smidaý very high Average 0.334 0.606 0.054 0.006 
140 Sundav Very high Poor 0.574 0.426 
141 Monda. v (nextweek) Very low I Good 0.463 0.1 0.437 
142 Mondav (next week) Very low Fa ir 0.49 0.113 0.061 0.108 0.229 
143 Monday (nex t week) Verv I ow Average 0.515 0.226 0.059 1 0.007 0.193 
144 Momfity (nex t week) Very low Poor 0.737 0.091 0.172 
145 Mondav (nex t week) LOW Good 0.494 0.106 0.2 0.2 
140 Mondaý (nextweek) LOW Fa ir 0.476 0.11 0.059 0.333 0.022 
147 Monday(noxtweek) LOW Average. 0.514 0.226 0.059 0.201 
148 Mondav(nextweek) Low Poor 0.737 0.091 0.172 
149 Monday Oiextweek) Average Good 0.494 0.106 0.2 

- 
0.2 

-150 Monday (n(, xtwe(, k) Average [, it ir 0.483 0.112 5-276 0.107 0.022 
151 Mondav (n(, x t week) Average Average 0.505 0.222 0.266 

- 
0.007 

-15-2 VO-tiday (nex t week) Average Poor 0.737 0.091 17 2 - 

153 Monday(nextweek) High Good 0.477 0.33 0.193 
154 ýio n -da v (n extwee k) High Fa ir 0.475 0.339 0.059 0.105 0.022 

TKýS- Tondav (nex t week) High Average 0.479 0.46 0.005 0-006 
156 Monday (nex t week) High Poor 0.715 0.285 
157 Monday (nex t week) Very high Good 0.737 0.091 0. -172 

158 Mondav (ne xt week) Ve ry high Fa ir 0.736 1 0.098 0.053 0.094 0.019 
159 Monda v (ne xt week) Very high Average 0.751 0.193 0.05 0.006 
160 Monday(nextweek) Very high Poor 0.927 0.073 
161 >Tu(, sdtv (n(, xtw(, (, k) Very low Good 0.563 0.437 

-16ý2 >Tuesday (nex t week) Very low I Fa ir 0.595 0.007 0.061 0.109 0.229 
163 >Tuesday (n(, xtw(, ek) Very low Average 0.631 0.107 0.06 6-. 0-07 - 0.195 
164 >Tu(, sdav (nextweek) Very low Poo r 0.833 0.167 
165 ýýT u esli v (n extw(, E, k) Low Good 0.6 0.2 0*2 
166 ->Tuesday 

(nextweek) Low Fa ir 0.579 0.007 0.059 0.334 0.021 
167 >TLI(,,, dav (n(, xtw(, ek) Low Average 0.629 0.107 T06 0.2(W 
168 ý! Tuesday (nextweek) Low I Poor 0.833 0.167 
169 >Tuesday (nextweek) Average Good 0.6 0.2 0.2 
170 >Tuesday (n(, xtwc,, (, k) Average Fa ir 0.588 0.007 0.276 0.107 0.022 
171 5! fuesday (nextweek) Average Average 0.618 0.105 0.27 0.007 
172 day (nextweek) Average Poor 0.833 0.167 
173 >Tuesday (n(, xtw(, (, k) High Good 0.6 0.2 0.2 
174 ý! Tuesday (nextweek) High Fai r 0.599 0.209 0.061 0.109 0.022 

-175 >Tu(, sdav(nextw(, (, k) Hi gh Average 0.609 0.327 0.058 0.006 
176 ý! Tuesday (n(, xtw(, (, k) High Poor 0.833 0.167 

777 >Tuesday(nextweek) very high Good 0.833 0.167 
179 >Tuesday (ri(, xtw(, t,. k) I uk ' Very high Fa ir 0.833 0.006 

- 
0.051 1 (). ()() 1 0.0 9 ffue 

s-day(nextweek) 
- 

Very high Average 0.857 0.088 0.5 0.005 
180 1 >Tuesdav (nex t week) l Very high l loor II 
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Appendix 7. The Entropy Calculation for the Risk Attribute, Cost 

The prior utility measure of the risk attribute, cost, u,,,,,, can be calculated using 
Equation (9.25) as follows: 

Ucost ý-- 
ýP 

Fk 
1, 

*k 
kj =1 

jjjj 

= 0.083 x (0,0,0.3) + 0.279 x (0.1,0.3,0.5) + 0.3 04 x (0.3,0.5,0.7) 

+ 0.25 x (0.5,0.7,0.9) + 0.085 x (0.7,0.7,1) 

= (0.303,0.47,0.687) 

In a similar way, the posterior utility measure of the attribute, cost given the fh 

RCO can be calculated using Equation (9.9) as follows: 

u#,, cost ý (0.568,0.7,0.934) 

U#2, cost ý (0.556,0.897,0.928) 

U#3, cost ý (0.547,0.864,0.923) 

U#4, cos tý (0.542,0.847,0.921) 

U#5, cost ý (0.54,0.841,0.92) 

U#6, cost (0.287,0.487,0.687) 

U#7, cost (0.28,0.48,0.68) 

U#8, cost (0.075,0.225,0.45) 

I Consequently, Acost 9 which characterises the utility measure changes of the cost given 

the each RCO can be represented using Equations (9.26) and Equations (9.18) - (9.21) 

as follows: 

Acos, = 
ýu#,,, 

ost -u,. tj, ---'ýjU#8, cost -Ucosill 

= [0.659,0.765,0.738,0.722,0.716,0.041,0.024,0.625] 

Next, the normalising vector of A, ', O, i 1. Acos, can be calculated using Equation (9.27) as: 

Acos, = [0.861,1,0.965,0.944,0.936,0.054,0.031,0.817] 

Then, according to Equation (9.28), the sum of the elements of the vector is calculated 

as: 
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8 
S(Acosj) (0.861 +I+0.965 + 0.944 + 0.936 + 0.054 + 0.031 

0.817) = 5.608 

The entropy measure of the risk attribute, cost can then be computed as: 

e(S(A. si)) In 
In 8 i=i 

=- - x[O. 154x(-1.874)+0.178x(-1.724)+0.172x(-1.76)+0.168x(-1.782) 
2.079 

+ 0.167 x (-1.79) + 0.01 x (-4.643) + 0.006 x (-5.198) + 0.146 x (-1.926)] 

=- 
Ix (-1.586) 

2.079 
0.763 
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