
IMPROMPTU: SOFTWARE FRAMEWORK FOR
SELF-HEALING MIDDLEWARE SERVICES

Ella Grishikashvili Pereira

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of

Doctor of Philosophy

May 2006

To My Mother

Abstract

As a result of recent advancements in the fields of computer networks, software and
hardware technology, networked systems and appliances have improved immensely

in terms of performance, reliability and cost of ownership. This undoubtedly has been

a major catalyst for its widespread adoption and interweaving in today's socio-

economic fabric (everyday life). Whilst, such a development has created many

commercial opportunities with slogans including; "anywhere anytime" and "always

on", it has engendered a range of technical challenges including: how to ensure

systems' lifetime dependability and high-availability.

This has driven research and development to exploring new generations of networked

software systems' design, management and maintenance along a number of directions

including: component-based and service-oriented models. Where software is no
longer developed as large monolithic systems, but rather they are assembled from

Commercial Off The Shelf (COTS) or Services Of The Server (SOTS).

Whilst, COTS and SOTS approaches have improved software design, maintenance

and evolution, however, they have engendered additional challenges - as distributed

applications are notoriously difficult to develop and manage due to their inherent

dynamics, and heterogeneity of their implementation, topology, deployment and

network requirements. Middleware technology has come to the rescue by facilitating

the development and interoperation of distributed applications. Though, much more

research is required, for instance, to support On-demand self-assembly and healing of

software application, which is the main focus of this work, that is, to investigate the

fundamental requirements for a software framework and associated middleware

services to develop on-demand application services.

This work makes a number of contributions towards a better understanding of

software self-healing requirements for autonomic distributed software engineering,

including: on-demand service assembly and delivery.

iii

Acknowledgements

I would like to thank all those people who have supported me throughout this PhD.

Firstly I wish to express my gratitude to my supervisor Professor A. Taleb-Bendiab

for his valuable guidance, advice, significant feedback and criticism. I also would like

to thank to the director of the school Professor Madjid Merabti for giving me the

opportunity to come to Liverpool to carry out my PhD studies.

Many thanks to my second supervisor Mr. Andy Laws and colleague Mr. Denis

Reilly for their assistance, useful guidance and numerous discussions that clarified

many aspects of this work. Also, my thanks to all colleagues, academic staff,

administration staff, technicians and research students in the School of Computing

and Mathematical Science for creating a friendly and supportive environment during

these years.

My special thanks and gratitude to my friends Brian and Jeni Fogg for their warmth,

special friendship and encouragement since I first came to England.

I would like to express many thanks to my husband Rubem for his patience,

continuous help and support and to my son Nicholas Alexander for being an indirect

inspiration to complete this work.

Last but not least I would like to thank all my family for their strong support and

encouragement.

IV

ABSTRACT .. III
ACKNOWLEDGEMENTS .. IV
LIST OF FIGURES ... IX
LIST OF TABLES ... XI
CHAPTER 1 ... 1
INTRODUCTION .. 1
1.1 MOTIVATION: HIGH-AVAILABILITY CONCERNS OF DISTRIBUTED
APPLICATIONS 1
1.2 CHALLENGES: ON-DEMAND SERVICE DELIVERY AND
MANAGEMENT .. 2
1.3 RESEARCH HYPOTHESIS 3

1.4 APPROACH 3
1.5 CONTRIBUTIONS 5

1.5 SCOPE 6

1.6 THESIS STRUCTURE 7

CHAPTER 2 9

BACKGROUND 9

2.1 INTRODUCTION 9

2.2. DISTRIBUTED SYSTEMS: BASIC CONCEPTS AND PRINCIPLES 9

2.3 MIDDLEWARE BASED DISTRIBUTED SYSTEMS 13

2.3.1 Categories of Middleware .. . 14
2.3.2 Jini Middleware Technology .. . 15
2.4 Service-Oriented Software Development .. . 18
2.4.1. Service-Oriented Architectures 19

2.5 COMPONENT-BASED DEVELOPMENT .. . 21

2.5.1 Components and their Interactions 21

2.7 AUTONOMIC COMPUTING 24

2.7.1 Architectural Concepts of Autonomic Computing 27

2.8 SUMMARY ... 28

CHAPTER 3 .. 29

LITERATURE REVIEW ... 29

3.1 INTRODUCTION ... 29

3.2 Self-Healing Systems ... 29

12 SERVICE-ORIENTED ARCHITECTURES AND FRAMEWORKS 35

V

3.3 DISTRIBUTED COMPONENT-BASED FRAMEWORKS
......................... 37

3.4 REQUIREMENTS .. 41
3.5 SUMMARY ... 43
CHAPTER 4 .. 46
IMPROMPTU: SOFTWARE FRAMEWORK FOR ON- DEMAND SELF-
HEALING MIDDLEWARE SERVICES ... 46
4.1 INTRODUCTION ... 46
4.2 THE OVERALL DESIGN OF THE FRAMEWORK 46

4.2.1 Components, Frameworks and Patterns
... 47

4.3 SOFTWARE DEVELOPMENT MODEL ... 49

4.4 On-Demand Service Assembly and Delivery Model 54
4.4.1 Basic Services in the OSAD Model ... 57
4.4.2 Service Description Model .. 58

4.5 SELF-HEALING IN THE OSAD MODEL ... 61

4.6 SUMMARY ... 63

CHAPTER 5 .. 65

THE ARCHITECTURE ... 65

5.1 INTRODUCTION ... 65

5.2 THE BIG PICTURE .. 65

5.2.1 First Layer - Platform Services .. 66
5.2.2 Second Layer - Framework Components .. 67
5.2.3 Third Layer - Distributed Applications and Application Services............ 68

5.3 THE ARCHITECTURE OF THE OSAD MODEL 68

5.6 SUMMARY ... 69

CHAPTER 6 .. 71

IMPLEMENTATION OF IMPROMPTU FRAMEWORK 71

6.1 INTRODUCTION ... 71

6.2 IMPLEMENTATION REQUIREMENTS ... 72

6.2.1 The Choice of Jini Technology .. 72

6.3 IMPROMPTU COMPONENT SERVICES ... 73

6.3 ASSEMBLY SERVICE ... 74

6.3.1 Task Submission ...
76

6.3.2 Registration/Discovery ..
77

6.3.3 Configuration ..
78

6.3.4 Service Description ... 78
6.3.5 Service Invocation .. 79

6.4 OPERATIONAL ENVIRONMENT ... 81

6.5 SYSTEM MANAGER ... 82

vi

6.5.1 Monitoring .. 83
6.5.2 Recovery and Reconfiguration

.. 84
6.6 ILLUSTRATIVE EXAMPLE APPLICATIONS ... 85

6.6.1 Application 1: Home Appliances
.. 85

6.6.2 Application 2: Software Services
.. 90

6.7 SUMMARY ... 92

CHAPTER 7 .. 94
ON-DEMAND SERVICE DELIVERY AND SELF-HEALING SOFTWARE
PATTERN LANGUAGE .. 94

7.1 INTRODUCTION ... 94

7.1 VIABLE SYSTEM MODEL - TO MODEL AUTONOMIC SYSTEMS 95

7.1.1 VSM model: a Brief Overview
.. 95

7.1.2 Viable Pattern Language
.................... 99 ... 7.2 Pattern-Oriented Software Architectures for Concurrent & Distributed

Systems 100
7.2.1 OSAD PATTERN LANGUAGE .. 101

7.3 Lookup Service (1) .. 102
7.4 Registry and Discovery (2)

... 104
7.5 Service Invocation (3)

.. 105
7.6 Control/Monitoring Service (4) .. 107
7.7 Self-Healing Mechanism (5)

.. 108
7.8 Task Assignment (6)

.. 110

7.8 SUMMARY ... 111

CHAPTER 8 .. 112

CHAPTER 8 .. 112

EVALUATION .. 112

8.1 INTRODUCTION ... 112

8.2 METHODOLOGY .. 112

8.2.1 Objectives ...
112

8.2.2 Approach ..
113

...
114 8.2.3 Overall Settings

8.2.3.1 Example Applications ..
114

8.2.5 Environment ...
116

8.3 THE QUANTITATIVE EVALUATION .. 116

8.3.1 The Sorting Algorithm Services Scenario .. 116
8.3.2 The Experimental Results ...

120
8.3.3 Home Appliances Scenario ...

125
8.3.4 The Experimental Results ...

127
8.3.5 Performance of Failure Detection Mechanism 129

...
131 8.3.5.1 The Experiment

8.3.5.2 First Scenario ...
132

8.3.5.3 Second Scenario ...
134

V11

8.3.5.4 Evaluation of the experiment .. 135

8.4 THE QUALITATIVE EVALUATION .. 135
8.5 MEETING THE REQUIREMENTS AND HYPOTHESIS OF THIS WORK

.. 136

8.6 DISCUSSION .. 138 ..
8.6 SUMMARY ... 139 ..
CHAPTER 9 .. 140 ..
CONCLUSIONS .. 140 ..
9.1 MOTIVATIONS AND APPROACH .. 140

9.2 ACHIEVEMENTS .. 140

9.3 THESIS SUMMARY ... 141

9.4 PROPOSED FURTHER WORKS .. 143

APPENDIX A .. 144

DISTRIBUTED MIDDLEWARE .. 144

C ORBA .. 144

DCOM .. 147

The Jini Lookup Service .. 149

APPENDIX B .. 151

WORLD WIDE WEB ... 151

XML Technology ...
152

Web Services ...
153

The Language of Web Services ..
153

Publications by the Author ...
157

REFERENCES ..
159

Vlll

List of Figures

Figure 1.1: Impromptu Components
... 7

Figure 2.1: A client-Service interaction [12]
.. Figure 2.2: A Distributed System organized as a middleware [12]

.........................
.. 12

.. 14
Figure 2.3: Jini components and their interaction

... .. 17
Figure 2.4: Jini Architecture

.. Figure 2.5: The major components and operations of a SOA
.................................

.. 18

.. 20
Figure 2.6: Diagram of Component connector, etc 22
Figure 2.7: Four fundamental features of Autonomic computing [39]

.................... .. 26
Figure 2.8: Control loops for autonomic computing system management [39].......

.. 27
Figure 2.9: Hierarchy of autonomic computing technologies [39]

.......................... .. 27
Figure 3.1 The autonomic middleware control service architecture [8]

.................. .. 30
Figure 3.2: Framework Services [43]

... .. 33
Figure 3.3: Adaptation Framework [44]

... .. 34
Figure 4.1: Self-Assembly Process .. Figure 4.2: Application Services and tools ...

.. 50

.. 50
Figure 4.3: High-level view of application development using distributed services .. 52
Figure 4.4: O SAD Model .. Figure 4.5: Service Description Model ..

.. 55

.. 58
Figure 4.6: Task Description Model 59
Figure 4.7: Operational Space Description

... .. 61
Figure 4.8: The lifecycle of self-healing behaviour in OSAD 62
Figure 5.1: The overall architecture of the framework

.. .. 66
Figure 5.2: OSAD Architecture 69
Figure 6.1: Impromptu Component services 73
Figure 6.2: The UML Class Diagram for Assembly Service 76
Figure 6.3: Implementation of registration sub-service 78
Figure 6.4: Simple service description

... .. 79
Figure 6.5 Service Attributes 80
Figure 6.6: Parser 80
Figure 6.7 Service Location 81
Figure 6.8: Description of the state of container 1 84
Figure 6.9: Home Appliances scenario 86
Figure 6.10: The Jini StartService Application [22]

... .. 87
Figure 6.11: The Main GUI of the example application 88
Figure 6.12: Defining the dependences 88
Figure 6.13: Service Invocation 89
Figure 6.14: the GUI for Monitoring Service 89
Figure 6.15: Service failure detection 89
Figure 6.16: The GUI for Task Assignment 90
Figure 6.17: The GUI for software services application 91
Figure 7.1: An illustrative example of Alexander's Pattern 95
Figure 7.2: Patterns used in Distributed Middleware Frameworks [102] 100
Figure 7.3: OSAD Pattern Language ... 102
Figure 8.1: The architecture of the OSAD model ... 114

........................ Figure 8.2: The registration method for sorting services 117
Figure 8.3: The initialisation process of the array size.. 118

ix

Figure 8.5: An example of calculating the elapsed time for the service invocation and
the sorting algorithm 119

Figure 8.6: The elapsed time for the Bubble Sort Service
....................................... 121

Figure 8.7: The elapsed time for the Quick Sort Service
............. 121

Figure 8.8: The elapsed time for the Insertion sort Service
.................................... 122

Figure 8.9: Retrieving the location of the XML service descriptional document
.... 123

Figure 8.10: An example of getting the invocation method name from an XML
document 123 Figure 8.11: Comparison of the time performance profile in the application with and
without Self-healing behavior

.. 125
Figure 8.12: Comparison of the elapsed time for service delivery with and without

self-healing .. 127
Figure 8.13: Elapsed time for the application to be executed 128
Figure 8.14: The average latency for self-healing processes in Home Appliances

example ... 129
Figure 8.15: The failure rate of a component over its lifecycle

............................... 131
Figure 8.16: The ratio, in percentages, of failed service invocation to total number of

service invocation, as a function of the MTBF, for a system with pre-emptive
failure detection (monitoring period =1 minute) and on-use failure detection. 133

Figure 8.17: The ratio, in percentages, of failed service invocation to total number of
service invocation, as a function of the MTBF, for a system with pre-emptive
failure detection (monitoring period = 2.5 minutes) and on-use failure detection.

..
133

Figure A. 1: The OMA Reference Model [9] ..
145

Figure A. 2: The Structure of CORBA, Object Request Broker
146

Figure A. 3: COM Interaction ...
148

Figure A. 4: The overall architecture of DCOM [9] ..
149

X

List of Tables
Table 3.1: Requirements for Impromptu software framework for on-demand service

assembly and delivery and self-healing Middleware Services 43
Table 3.2 Assessment of related work against Impromptu framework

...................... 44
Table 7.1: The major systems of Viable Systems Model .. 98
Table 8.1: The calculated elapsed time for three different services 121
Table 8.2: The sorting process is performed with the Service manager invoking

different services at run-time .. 124

xi

Chapter 1

Introduction

1.1 Motivation: High-availability Concerns of Distributed

Applications

As a result of recent advancements in the fields of computer networks, software and
hardware technology, networked systems and appliances have improved immensely

in terms of performance, reliability and cost of ownership. This undoubtedly has been

a major catalyst for their widespread adoption and interweaving in today's socio-

economic fabric (everyday life).

While such a development has created many commercial opportunities with slogans
including; "anywhere anytime" and "always on", it has also engendered a range of

technical challenges including: how to ensure systems' lifetime dependability, high-

availability and assurance. This has driven research and development to explore new

generations of networked software systems' design, management and maintenance

along a number of directions including: component-based and service-oriented

models [3]. Here, software is no longer developed as large monolithic systems but

rather from Commercial Off The Shelf components (COTS) [4] or Services Of The

Server (SOTS). Such application services make use of infrastructure software that has

also been decomposed into discrete system services. These discrete services can be

deployed across any number of physical machines that are interconnected. By

reassembling a few services into a new configuration, a user can create a new service.

Whilst, COTS and SOTS approaches have improved software design, maintenance

and evolution, however, they add additional challenges - as distributed applications

are notoriously difficult to develop and manage due to their inherent dynamics, and

heterogeneity of their implementation, topology, deployment and network

requirements. Middleware technology has come to the rescue by facilitating the
development and interoperation of distributed applications. Until recently however,

little attention has focused on combining an assembly concept in conjunction with
middleware technologies to understand dynamic behaviour and assist with the

runtime management of distributed applications.

1.2 Challenges: On-Demand Service Delivery and Management

One of the challenges in distributed systems development is the concept of on-
demand service delivery and management. It is a foundation for modular, flexible,

and automated access to digital assets, including computing resources, from virtually

anywhere. The vision of on-demand services is a framework, encompassing

networked services such as: services registry, lookup, and discovery, along with more

advanced capabilities, such as virtualised containers (storages), composite services
(created by combining separate services) and behaviours such as self-adaptation and

self-healing.

It is challenging to create a system that gives the user the ability anytime, from

anywhere to access over the local or global network services that are dynamically

discoverable, reusable and re-configurable into flexible, interoperable, innovative

applications. The creation of this kind of system involves a range of technical issues

to be addressed and requires the development of:

" Reference models: including software design patterns, design models and

architectures to aid developers in the design, development and management of

self-managing software, thus enabling systems to monitor their behaviour and

performance, to reconfigure when required and determine that any proposed

software composition is compliant with its design and requirements.

" Mechanisms: to be used for rapid assembly of distributed components to form

a trusted service that can still be analysed to determine that it meets its

requirements. To this end, other facilities and utilities need to be developed,

including:

2

 How to access and reason about functionalities that distributed

services offer: the distributed services that run in different

locations and are developed by different individuals.

 How to create a common understanding between these service

providers and clients.

 How to teach a system to find and invoke the service the user

requires.

 How to teach a system to monitor the behaviour of each

composition and repair it in case of failure.

" Experimental insight: demonstrating that this type of mechanism enables

computers, software components and devices to plug together quickly to form

impromptu, networked applications assembled with less human intervention

and moreover to make them self-organising and self-healing.

1.3 Research Hypothesis

Influenced by the service-oriented programming [11,12], and the IBM autonomic

computing blueprint [13], this work proposes that autonomic computing capabilities

including: self-healing, self-optimisation, self-configuration and self-protection to be

provided as middleware services.

Hence, with specific focus on self-healing capability only, the hypothesis for this

study can be formulated as:

Practical self-healing properties can be incorporated in distributed

services-based applications through the extension of existing middleware

technologies.

1.4 Approach

The work described in this thesis aims to investigate the fundamental requirements of

a software framework and associated middleware services to develop on-demand

3

application services. The software framework is intended to enable user to access
over the local or global network, services that are dynamically discoverable, reusable
and combinable into flexible self-adaptive applications.

To build such a system requires encompassing networked services, such as registry,
lookup and discovery along with more advanced services, including:

" The assembly service: containing the service description, service

configuration and service execution functionalities.

" The system manager service: containing monitoring and self-healing

(recovery and reconfiguration) capabilities.

For theoretical support this work draws on a number of research results emerging
from related fields including:

9 Advanced software engineering: using middleware services to bridge the

gap between the network layer and the application layer [5]. The services

such as lookup, registry or discovery. The remote event notification

concept [6] to enhance the communication between the system and

services and remote method invocation techniques for service invocation

[7]

" Self-healing systems: using proposed models, requirements and theories to

enable software to use real-time monitoring, diagnosis, repair and control

[8].

In addition, this work follows an experimental research approach aimed at the design,

build and test of a framework for on-demand service delivery software with self-

healing behaviour.

The well-established Viable Systems Model provides a design blueprint and system

taxonomy to guide the specification and design of the intended autonomic

middleware services and associated reference architectural model.

4

Furthermore, it this work aims to document a pattern language for on-demand service
delivery and management software by testing the existing framework with different

application scenarios.

1.5 Contributions

This work makes a number of contributions towards a better understanding of self-
healing software requirements for autonomic distributed software engineering. Such

contributions are summarised below:

"A software architectural model: motivated by and grounded in a range of
current research on distributed middleware, service-oriented architectures,

service on demand concepts and part of autonomic computing for its support

of self-healing and self-awareness. In particular, this work contributes to the
development of an architectural model for a middleware-based on-demand

self- servicing software framework. The framework described in this thesis is

developed based on a proposed architectural model and unites a number of

components including: service description, discovery, invocation,

configuration, monitoring and response to events, such as failure of the

service.

"A mechanism for assembling distributed services regardless of their location -
is a representation of how a single functionality provided by one service can
be combined with the functionalities provided by another service to form a

required composite service. As a part of the Impromptu framework this

mechanism contains a number of novel components including:

- The Service Description Model: providing a meta description of a

given software service. The development of such a model was

motivated by the lack of uniform description of software services.

- The Service Invocation Model - based on the above service meta

model, it facilitates the invocation of a discovered, distributed

service. The service invocation model is responsible for parsing the

5

service description document, then via the reflection API, the

service is assembled and invoked.

- The Operational Service - is a novel element of the framework

referred to here as a virtual container. This was introduced to

provide support for application services development and provides

a virtual environment where the services are grouped and executed

according to users' requirements. Such an environment helps the

monitoring and management of applications, so that the system
knows where to look for a particular service assemblage.

" An Adaptation model that is responsible for providing self-healing
capabilities. For instance, the system responds to a detected service failure by

searching for an alternative service in a local or global network. System self-
healing is performed when the new service is found and invoked.

9A Design Pattern Language focused on on-demand software service assembly

and delivery to support software self-healing behaviour. The design pattern
language includes patterns for ad-hoc service discovery, invocation and

monitoring.

1.5 Scope

This research proposed a new software framework and associated autonomic

middleware services that enable the development of distributed applications, on
demand, according to user's requirements. Furthermore, the system is able to perform

runtime self-healing when a failure of one or more components has been detected. In

particular, this work focuses on:

9 The development of a generic model for distributed services to be discovered,

invoked and monitored throughout their lifetime. A self-healing process is

triggered if and when a system failure has been detected.

9 The development of a software framework that offers a number of middleware

service that perform the activities described above (discovery, invocation

monitoring, recovery, etc.)

6

" The development of a service description model that helps the client to obtain
the service signatures described in the service interfaces by the service
providers.

" The development of a design pattern language for On-demand Service
Delivery and Assembly of software.

Furthermore, in a constantly changing environment where services come and go,

using our software model the developers will be able to search for, discover and bind

to a service matching their required service profile. If no match is found or available
the framework enables the selection of the closest match, and/or activating a required

service from the code base 1. In addition, the Impromptu framework enables the

generation and publication of new application services for other users and

applications to use.

The main building blocks of the Impromptu architecture are shown in Figure 1.1.

Applications

'M

Assembly Service

Operational Service

Impromptu II Impromptu
Services u Services

Impromptu
Services System Manager

Service
Distributed Middleware

os os os

Figurel. l: Impromptu Components

The approach for developing the generic model described in this thesis has been

tested in two different example applications. One example application was developed

for a home appliances scenario in order to test the simple services. And the other

example application is based on more complex software. In both cases the

applications were tested.

1.6 Thesis Structure

'A full description of the software development model adopted for the proposed On-demand Service

Assembly Delivery (OSAD) is given in Chapter 4

7

This thesis consists of nine chapters and is organized as follow:

In this chapter we have discussed the main motivations for the work, challenges,

contributions and thesis outline.

Chapter 2 introduces the relevant background theories, principles and technologies

that are used or considered important for the development of the proposed work. The

survey covers the basic concepts and principles of distributed systems including:

Distributed Middleware technologies, Service-oriented and Component-oriented

Developments. We also review Autonomic Computing and its architectural concepts.

Chapter 3 provides a literature review of related work covering a range of fields,

including: Self-healing Systems, Service-oriented architectures and frameworks as

well as Component-based frameworks. At the end of this chapter we list the main

requirements for the proposed framework development.

Chapter 4 describes the overall design of the proposed On-demand Service Assembly

and Delivery (OSAD) model and consequent framework services as well as the

concept of self-healing in the OSAD model.

Chapter 5 presents the architecture of the model, describing where the framework

middleware services fit.

Chapter 6 provides a prototypical implementation of the model based on the Java

programming language and Java-based Jini middleware technology. This chapter also

contains the description of two illustrative example applications, the first based on

one of the well-known connected homes scenarios and the second, a Software

services example.

Chapter 7 documents a pattern language for distributed self-healing applications

development.

Chapter 8 describes an evaluation of our work, giving the assumptions of the previous

chapters and using example applications such as sorting algorithm services and the

home appliances application.

Chapter 9 presents a summary, concluding remarks and proposed future work.

8

Chapter 2

Background

2.1 Introduction

Distributed applications are difficult to develop and manage due to their inherent
dynamics, the heterogeneity of component technologies and the possibility of
different network protocols. Distributed component-based software applications often
consist of a collection of software components that communicate via distributed

middleware. The distributed middleware, or simply middleware plays a crucial role
by providing APIs and support functions to bridge the gap between the network

operating system and distributed components and services.

This chapter provides an overview of existing supporting technologies for distributed

self-adaptive applications development. This starts with a brief description of the

basic concepts and principles of distributed systems (Sec. 2.2), and distributed object-

oriented programming and middleware including; CORBA technology, DCOM (Sec.

2.3.1) and Jini technology (Sec. 2.3.2). The chapter concludes with an overview of

the principles and mechanisms to support the design, development and management

of autonomic computing (Sec. 2.6).

2.2. Distributed Systems: basic concepts and principles

Much research work related to the design and development of distributed systems and

their underlying principles has been performed. The development of distributed

systems followed the emergence of high-speed, local area computer networks at the

beginning of the 1970s. More recently, the availability of high-performance personal

computers, workstations and server computers has resulted in a major shift towards

distributed systems and away from centralized and multi-user computers. This trend

has been accelerated by the development of distributed system software, designed to

support the development of distributed applications.

9

Different definitions of distributed systems have been given in the literature. One

defines it as:

"... a collection of independent computers that appears to its users as a

single coherent system. " [9]

Another as:

"... one in which hardware or software components located at networked

computers communicate and coordinate their actions only by passing

messages" [10].

The definitions may be as different as the individuals that define them, but the goal is

the same: to make it easy for users to access remote resources and to share them with

other users in a controlled fashion. Resources can be anything, but typical examples
include computers, printers, storage facilities, data, files, Web pages and applications

to name but a few. The key characteristics of distributed systems can be summarised

as follow [11]:

9 Heterogeneity: distributed systems should be constructed from a variety of

different networks, operating systems, computer hardware and programming

languages.

0 Transparency: is an ability for the system to present itself to users and

applications as if it was only a single computer system. Transparency deals

with hiding the fact that its processes and resources are physically distributed

across multiple computers.

" Openness: distributed systems should be extensible. An open distributed

system is a system that offers services according to standard rules that

describe the syntax and semantics of those services.

" Scalability: a system can be scalable with respect to its size, meaning that we

can add more users and resources to the system, or it can be geographically

scalable in which the users and resources may lie far apart.

9 Fault-handling: any process, computer or network may fail independently of

the others. Therefore, each component needs to be aware of the possible ways

in which the components it depends on may fail and be designed to deal with

each of those failures appropriately.

10

" Concurrency: the presence of multiple users in a distributed system is a source

of concurrent requests for its resources. Each resource must be designed to be

safe in a concurrent environment.

There are different types of distributed system. A distributed operating system

manages the hardware of tightly coupled computer systems, which include

multiprocessors and homogeneous multi-computers. These distributed systems are

good at providing a single-system view, but do not support autonomous computers. A

network operating system, on the other hand, is good at connecting different

computers, each with their own operating system, so that users can easily make use of

each node's local services. However, network operating systems do not offer a single-

system view the way that distributed operating system do. Neither a distributed

operating system nor a network operating system can really support the development

of a distributed system that has the best of both worlds: the scalability and openness

of network operating systems and the transparency of distributed operating systems.

The solution was found in an additional layer of software that is used in a network

operating system to more or less hide the heterogeneity of the collection of

underlying platforms but also to improve distribution transparency. Modem

distributed systems are constructed by means of such an additional layer of what is

called Middleware [12]: the layer that is placed between network operating systems

and the application layer. Middleware with real case examples of existing distributed

systems constructed, as middleware will be described in detail in Section 2.3.

An important issue with a distributed system is its organization. The most widely

applied model is that of client processes requesting services at server processes (Fig.

2.1). A client sends a message to the server and waits until the latter replies. This

client-server interaction, also known as request-reply behaviour, is strongly related to

traditional programming, in which services are implemented as procedures in separate

modules. A further refinement is often made by distinguishing a user-interface level,

a processing level, and a data level.

11

Wait for result
Client ------------

Request \/ Reply

Server ------------- I,,,,.,. MM4-_-_------------
Provide service Time ýý'

Figure 2.1: A client-Service interaction [121

The user-interface level contains all that is necessary to directly interface with the

user. The processing level contains the applications and the data level contains the

actual data that is being acted on.

Distinguishing three logical levels suggests a number of possibilities for physically
distributing a client-server application across several machines. The consequence of
this division was the creation of multi-tiered client-server architectures [9]. The

different tiers correspond directly with the logical organization of applications. There

is vertical distribution that can be characterized as: the server is generally responsible
for the data level, a processing level and the user-interface level is implemented at the

client side. The processing level can be implemented at the client, server, or split
between the two.

For modem distributed systems, this vertical organization of client-server applications
is not sufficient to build large-scale systems. What is needed is a horizontal

distribution by which clients and servers are physically distributed across multiple

computers. This type of distribution has been successfully implemented in the World

Wide Web (App. A).

In a peer-to-peer distribution with one user seeking contact with another, both can

launch the same application start a session. A third client may contact either of them,

and subsequently also launch the same application software. One of the essential

issues, after organization, is the communication between processes in a distributed

system. In traditional network applications, communication is often based on low-

level message-passing primitives. In modem distributed systems, the widely used

communication models are: Remote Procedure Call (RPC), Remote Method

Invocation (RMI), Message-Oriented Middleware (MOM), and streams.

12

The essence of an RPC is that a service is implemented by means of a procedure, of

which the body is executed at a server. When the client calls the procedure, the client

side implementation, called a stub, takes care of wrapping the parameter values into a

message and sending that to the server. The server calls the actual procedure and

returns the results, again in a message. The client's stub extracts the result values
from the return message and passes it back to the calling client application.

A Remote Method Invocation (RMI) is similar to an RPC in terms of parameter

passing. Though, an essential difference between them is that RMI supports system

wide object references to be passed as parameters. RPC and RMI offer synchronous

communication facilities, by which a client is blocked until the server has sent a

reply. In this sense, the message-oriented models (that underpin MOM) offer more

convenient inter process communications as they offer asynchronous communication;

that is, the sender is allowed to continue immediately after the message has been

submitted for transmission. MOMs are used to assist the integration of (widely

dispersed) collections of databases into large-scale information systems2.

2.3 Middleware Based Distributed Systems

To support heterogeneous computers and networks while offering a single-system

view, distributed systems are often conceptually organized into a layered topology of

software, which are logically placed between a higher-level layer consisting of users

and applications, and a layer underneath consisting of network operating systems

(Fig. 2.2). Such a layer is often referred to as middleware.

Middleware is a class of software technologies designed to help manage the

complexity and heterogeneity inherent in distributed systems. It is defined as a layer

of software above the operating system but below the application program that

provides a common programming abstraction across a distributed system, as shown in

Figure 2.2. In doing so, it provides a higher-level building block for programmers

than Application Programming Interfaces (APIs) such as sockets that are provided by

the operating system.

2 Streaming is a completely different type of communication and is used mainly for video and audio streaming.

13

Network

Figure 2.2: A Distributed System organized as a middleware [121

Middleware frameworks are designed to mask systems' heterogeneity providing

distributed systems developers with convenient programming models for distributed

object-oriented programming including support for: location transparency,

concurrency, replication, failures and mobility.

2.3.1 Categories of Middleware

Many types of middleware now exist, which can be grouped according to the

programming abstractions they provide:

" Distributed Tuple Space Middleware: this is based on a distributed

relational database offering the abstractions of distributed tuples. Its

Structured Query Language (SQL) [13] allows programmers to manipulate

sets of these tuples (a database) with intuitive semantics and rigorous

mathematical foundations based on set theory and predicate calculus. A good

example of this type of middleware is the Linda framework [14], which offers

a distributed tuple abstraction called Tuple Space (TS) [15].

" Remote Procedure Call Middleware: this extends the procedure call

interface to offer the abstraction of being able to invoke a procedure whose

body is across a network. Remote Procedure Call systems are usually

synchronous, and thus offer no potential for parallelism without using

multiple threads, and they typically have limited exception-handling facilities.

" Distributed Object Middleware: this requires that each object implements

an interface that hides all the internal details of the object from the users

(remote object). Thus the only thing that a process sees of an object is its

14

Machine A Machine B Machine C

interface, that is, the set of method signatures that the object implements. The

best known example of such a middleware are; Common Object Request

Broker Architecture (CORBA) [16], Jini [5] and DCOM [17). CORBA is a

standard for distributed object computing proposed and developed by the

Object Management Group (OMG) [OMG, #24]. CORBA automates many

common network programming tasks such as object registration, location, and

activation; request demultiplexing; framing and error-handling; parameter

marshalling and demarshalling; and operation dispatching. CORBA offers
heterogeneity across programming languages and vendor implementations. Its

standards are publicly available and well defined. DCOM is a distributed

object technology from Microsoft that evolved from its Object Linking and

Embedding (OLE) approach [18] and Component Object Model (COM) [19].

DCOM's distributed object abstraction is augmented by other Microsoft

technologies, including Microsoft Transaction Server [20] and Active

Directory [21]. DCOM provides heterogeneity across the programming

language but not across operating system or tool vendor.

9 Message-Oriented Middleware (MOM): provides the abstraction of a

message queue that can be accessed across a network. It is a generalization of

the well-known operating system construct. It is very flexible in how it can be

configured with the topology of programs that deposit and withdraw messages

from a given queue. MOM offers the same kind of spatial and temporal

decoupling as in Linda model [14].

A detailed description of both CORBA and DCOM can be found in Appendix A. The

next section will provide a detailed description of another widely used middleware

technology called Jini, as this was chosen to support the development of the software

framework described in this thesis. Jini is categorized as service-oriented middleware.

2.3.2 Jini Middleware Technology

From the official Jini architecture specification [22], Jini is defined as:

"A Jini system is a distributed system based on the idea of federating groups

of users and the resources required by those users. The focus of the system

is to make the network a more dynamic entity that better reflects the

15

dynamic nature of the workgroup by enabling the ability to add and delete

services flexibly. "

A Jini system uses the network as a foundation to enable service discovery and
execution. Traditional systems attempt to mask the appearance of the network; in

contrast, Jini uses the dynamic, flexible nature of the network to form communities,
register services, discover services, and invoke services. Jini attempts to address the

problem of the assumptions of reliability, the network does not change, and the

administrator will perform the majority of maintenance functions.

To address the assumption that the network is reliable, Jini systems are self-healing.
Jini services will repair themselves by using the concept of leasing. Jini ensures that

services are removed from the community automatically at a given time by using a

concept called leasing, without the need for an administrator to perform the

maintenance. The network can change but Jini will continue to work without the need
to update a URL in the software, properties file, or an administrative interface. Jini

services are able to respond to such changes automatically. Communicating with a
Jini service occurs through service proxies that are downloaded to the client machine

without the need to have an administrator to install the code, a practice that is normal
in traditional architectures.

The Jini architecture is based on the principle that the system is dynamic, and is

closely related to Service-Oriented programming [23], in contrast, other technologies

such as J2EE [24], NET [25], and CORBA have their foundation in a static world.

These technologies use a static approach to installing the software with its appropriate

stubs and skeletons. One of Jini's strongest points is downloadable, service-proxies

that communicate with the Jini service. Jini has the same concept of a service registry,

a service provider, and service requestor. The technologies previously mentioned

force the SOA model to fit a static architecture that was not designed for this purpose.

The Jini architecture compromises of three main components (Fig. 2.2). There is a

Service, such as printer, a toaster, a spellchecker, etc. There is a Client, which would

like to make use of this service. Thirdly, there is a Lookup Service (service locator),

which acts as a broker/trader/locator between the service and the client. There is also

an additional "hidden" fourth component, which is a network connecting the previous

16

three together, and this network will generally be running TCP/IP (although the Jini

specification is independent of network protocol).

Lookup Service

7Service
Service

.,.

1:..,
Service

Prox r 4., Proxy ý., "'" Proxy

Sc rvice Client

Figure 2.3: Jini components and their interaction.

TC P/IP

Jini's API provides code mobility in that code can be moved around between these

three components, over the network, by marshalling the objects. This marshalling

involves serializing the objects (using Java's Serialization API) in such a way that

they can be moved around the network, stored in a "freeze-dried" form, and later

reconstituted by using included information about the class files as well as instance

data. This marshalling is represented in Figure 2.3 using the block arrows with broken

lines. Two events must take place in order for the client to use the application service:

9 First the service, which consists of an implementation and a proxy, must

register with a Jini lookup service. Sun Microsystems Jini implementation

provides a lookup service (called reggie), which "listens" on a port for

registration requests. When a request is received, a dialog between the

application service and lookup service takes place after which a copy of the

service proxy is moved to and stored in the lookup service.

" Second, the client must find the service. This again involves the lookup

service, which also listens for incoming requests from clients that want to use

services. The client makes its request using a template, which is checked

against the service proxies that are currently stored on the lookup service. If a

match is found, a copy of the matching service proxy is moved from the

lookup service to the client.

At this stage there are three copies of the service proxy in existence (Fig. 2.2), one in

the service, one in the lookup service and now one in the client. Jini service proxies

17

are implemented as Java interfaces that specify the signatures of methods, which are
implemented by the service implementation. The client can interact with its copy of
the service proxy by invoking any of the specified methods. These method
invocations are then routed back to the service implementation, typically using RMI,

resulting in the invocation of a method in the service implementation. The overall
effect of this routing is that the client "thinks" that it has its own local copy of the
service implementation and proceeds to use the service by invoking its methods being

unaware of the physical location of the service within the network.

The following diagram shows (Fig. 2.4) the overall architecture of the Jini technology
that is very close to Service-Oriented Architecture. The Jini architecture has a
foundation that is rooted in the dynamic principles of Service-Oriented Architecture.

Lookup Service

Find the Service

Client downloads

proxy object for

service

Service Discovers and
Register with the
Lookup Service

Client Service
Communicates

with the service via
Proxy

Figure 2.4: Jini Architecture.

2.4 Service-Oriented Software Development

Service-Oriented Programming (SOP), as a relatively new paradigm, builds on
Object-Oriented Programming [26] by adding the abstraction that objects
(components) provide and use services. In other words, where Object-Oriented

Programming (OOP) focuses on what things are and how they are constructed, SOP

focuses on what the things can do. A service itself is a contractually defined

behaviour that can be implemented and provided by any component for use by any

other component, capable of meeting the contract [3].

Component models prescribe that programming problems can be seen as

independently deployable black boxes that communicate through contracts. The

18

traditional client-server model often lacks well-defined public contracts that are
independent of the client or server implementation, which renders the client-server

model "brittle". Through the service-oriented model, components may
interchangeably provide and use services in a peer-to-peer manner, thereby

eliminating the brittleness of the client-server model.

The new concepts of the SOP paradigm have been widely adopted and implemented

within the industry, including Sun's Jini, Openwings [27] [28] and Microsoft's NET

[25]. The analyses of these technologies have yielded a set of common architectural

elements that make up Service-Oriented Programming. The elements of SOP are:

9 Contract - An interface that contractually defines the syntax and semantics of

single behaviour.

" Component -A third-party deployable computing element that is reusable due

to independence from platforms, protocols, and deployment environments.

9 Connector - An encapsulation of transport-specific details for a specified

contract. It is an individually deployable element.

" Container - An environment for executing components that manages

availability and code security.

" Operational Space -A virtual environment containing one or more virtual

containers [29].

" Context - An environment for deploying plug and play components, that

prescribes the details of installation, security, discovery, and lookup.

2.4.1. Service-Oriented Architectures

Service-oriented architectures provide a standard programming model that allows

software components, residing on any network, to be published, discovered, and

invoked by each other. SOA software programmers can build services that are offered

as components to anyone, anywhere via a computer network. This means that any

distributed service application can interact with any other service-based application

regardless of either's network location. Service-Oriented Architecture is defined as

[30]:

19

"SOA takes the existing software components residing on the network and

allows them to be published, invoked and discovered by each other. SOA

allows the software developers to model programming problems in terms of

services offered by components to anyone, anywhere over the network. "

There are essentially three components and three operations to a SOA (Fig. 2.5). The

components are:

" Service Provider: Typically the owner of the service, the service provider is

responsible for publishing a description of its service to a service registry. The

provider also hosts the service and controls access to it.

" Service Requestor: The service requestor is a software component in search

of a service to invoke. The service requestor finds the service by discovering

(through the Service Registry) the set of available services that meets some

pre-defined criteria. Once a suitable service is discovered, the service

requestor will bind to the service publisher to actually invoke the service.

9 Service Registry: The service registry is a central repository that facilitates

service discovery by service requestors. This component is optional in an

SOA because it is possible for service requestors to obtain service descriptions

from a variety of other sources. This includes getting it directly from the

Service Provider via FTP, a URL, or some other discovery service.

Figure 2.5: The major components and operations of a SOA

The major operations of a SOA are:

 Find a Service: An operation performed by the service requestor to locate a

service. The find operation is initiated by a user through a user interface or via

another service.

20

 Publish a Service Description: The service provider publishes a description

of the service that is available. This description details everything necessary to
interact with the service, including specific network location, transport
protocols, and message formats.

 Bind to the Service: Once the service requestor finds an appropriate service,
it will invoke the service directly at runtime using the binding information

provided in the service description.

Jini middleware technology (described in the previous section) has been recognized
as one of the most promising middleware technologies for implementing SOA

software as Jini's architecture promotes the concept of dynamic registration,
discovery, and execution. For this reason Jini was chosen as the supporting
middleware for the Impromptu framework.

The next section explores the concept of service in relationship to the more
established concept of software components, and it describes how current component-
based development practices provide a tried and tested foundation for the
implementation of service-oriented architecture.

2.5 Component-Based Development

There is growing interest in the notion of software development through the planned
integration of pre-existing software components. This is often called Component-

Based Development (CBD) [31], which is based on software development practices

using standard components. Its origins perhaps date back to the early sixties
following the publication of the "Software Crisis" report [2] and the start of the

software reuse research trend [32]. The basic idea was simple: when developing new

systems use components that are already developed. When we develop the specific

functions that we need in our system, we should develop it in a way that allows this

function to be used by other systems in the future. Although the idea and the

principles are quite simple, it has been shown that the implementation is quite hard.

2.5.1 Components and their Interactions

The meaning of the term "component" has been changed many times during this

development period. Different individuals have tried to use the word and definition

21

for different problem domains, relating to the technologies used at that time. The

following are a selection of the definitions found in the literature today:

"... A component can be considered as an independent replaceable part of
the application that provides a clear distinct function

... ". [33]

According to [33], a software component is a unit of composition, with pre-defined
dependencies on other components. In the world of business systems, business

components represent reusable conceptual artifacts that can be implemented and
deployed in large business systems. Components may also be regarded as coherent

packages of software that can be independently developed and delivered as a unit.

The functionality of a component is accessed via an interface and interfaces may also

be used to plug components together in order to construct a larger system [34].

Components can provide services or components can use services.

For the purpose of our work, in conjunction with distributed object systems, we adopt

the physical view of a component as: "a self-contained binary implementation, which

consists of one or more objects ". These objects occur as instances of the classes that

make up a component. Components communicate with each other through connectors

that are implemented via software interfaces, thereby providing a component-

connector abstraction (Fig. 2.6).

Connector

Figure 2.6: Diagram of Component connector, etc.

The Architecture Description Language (ADL) [35], which is a modelling language

for Service-Oriented software development is based on this type of component-

connector abstraction. Consequently, components may provide services and/or use

services provided by other components in a peer-to-peer like regime thereby

providing a federation of services, which forms the basis of the alternative service-

oriented abstraction, which we regard as:

22

"... A collection of application services spread over networked computers,
which clients use remotely via distributed middleware services. " [36]

A service represents contractually defined behaviour that is provided by a specific
component for use by any other component, capable of meeting the contract. The
description of connectors and contract is provided in section 2.4, while the next
section defines the Autonomic Computing principles and describes the architectural
concepts of this type of system.

2.6 Extensible Markup Language (XML)

Since its introduction in late 90s, Extensible Markup Language has become

ubiquitous. It is used as a base format for everything from configuration files to
document management or to messages sent between computers [O'Reilly, 2006
#131]. XML combines the power and extensibility of its parent language, SGML
(Standard Generalized Markup Language) [114], with the simplicity demanded by

the rapid development of Web based technologies. XML is the first language that

makes the data description documents both human-readable and computer-

manipulable.

The essential characteristics of XML are the data independence, the separation of

content and its presentation. Because an XML document describes data, it can

conceivably be processed by any application. The absence of formatting instructions

makes it easy to parse. This makes XML ideal framework for data exchange.

Integration of XML to any applications makes applications more dynamic and

interoperating. Because XML's semantic and structural information enables it to be

manipulated by any application, much of the information and the operations that were

limited only to servers now it can be reachable and performable by client.

There are some alternative markup/document description languages to XML, such as:

SGML, JSON (JavaScript Object Notation) [JSON, #132], SMEL (Some Modest

Extensible Language) [Carlier, 2003 #139], ONX (Open Node Syntax) [Jacobs, 2005

#140], or SSYN (Structured Syntax) [Diamond, #141].

SGML was designed to be a flexible and all-encompassing coding scheme. Like

XML it is a toolkit for developing specialized markup languages. But SGML is much

bigger and complex than XML and it requires very complex software to process it.

23

Therefore its usefulness is limited to large organizations that can afford both the

software and the cost of maintaining SGML environments.

JSON is a data-interchange language that is easy not only for humans to read and
write, but also for machines to parse and generate. JSON is a text format that is

completely language independent, but it is not as widely used, known and understood

as XML.

SMEL is another XML like language that provides a method for structuring and
documenting data. So is the ONX, the markup language that is designed to be data-

oriented instead of document-oriented and is intended for use in platform-independent
transfer of data over distributed systems, though it can be used for non-networked

applications just as effectively.

The SSYN specification defines a set of both abstract and syntactic rules designed for

the interchange of structured information. SSYN has been designed as an alternative

to XML for the increasing number of cases where XML is currently used to store
information in a rigidly structured manner. SSYN is simple and flexible language for

the developers to read and write structured documents readable for both humans and

machines.

Even though the number of alternatives to XML is increasing XML remains the most

widely used due to its flexibility, simplicity and platform and language independence.

Many leading technology developer companies such as IBM, Microsoft or Sun

Microsystems use XML technology for developing frameworks that support

development of services on web and message-based communication between them.

XML was chosen to support IMPROMPTU framework. The XML based service

description model is one of the notions that will be described in this thesis. The

service description is used for passing some necessary data from service side to client.

2.7 Autonomic Computing

The proliferation of Internet technologies, services and devices has made the current

networked system designs and management tools incapable of designing reliable,

secure networked systems and services. In fact, the development of computing

systems has reached the complexity, heterogeneity, and rapid change rate. The

24

information infrastructure is becoming unmanageable and incapable of handling the

complexity, heterogeneity and uncertainty requirements. On other hand, biological

systems have developed successful strategies and techniques to handle these issues.

To solve the problems created by the complexity of existing Information Technology

IBM, in 2001, started a new trend of research called "Autonomic Computing" [37].
The term Autonomic is derived from human biology. The autonomic nervous system

monitors our heartbeat, checks the blood sugar level and keeps the body's

temperature close to 98.6 °F, without any conscious effort on our part. In the same

way, autonomic computing components anticipate computer system needs and

resolve problems - with minimal human intervention.

However, there is an important distinction between autonomic activity in the human

body and autonomic responses in a computer system. Many of the decisions made by

autonomic elements in the body are involuntary, whereas autonomic elements in

computer systems should make decisions based on tasks the user chooses to delegate

to the technology. In other words, an adaptable policy - rather than rigid hard coding

- determines the types of decision and actions autonomic elements should make in

computer systems.

According to IBM, any autonomic system can be characterized as follow [38]:

" To be autonomic, a system needs to "know itself' - and consist of

components that also possess a system identity

9 An autonomic system must configure and reconfigure itself under varying and

unpredictable conditions

" An autonomic system never settles for the status quo - it always looks for

ways to optimize its workings.

9 An autonomic system must perform something akin to healing - it must be

able to recover from routine and extraordinary events that might cause some

parts to malfunction.

" As a virtual world is not less dangerous than the physical one, an autonomic

computing system must be an expert in self-protection.

" An autonomic computing system knows its environment and the context

surrounding its activity and act accordingly

25

" An autonomic system cannot exist in a hermetic environment (and must
adhere to open standards).

" And a most important aspect for the user, an autonomic computing system
should anticipate the optimized resources needed to meet a user's information

needs while keeping its complexity hidden

Figure 2.7: Four fundamental features of Autonomic computing [39]

According to these characteristics, future autonomic computing systems should have

one or all of the following fundamental features: self-configuring, self-optimizing,
self-protecting and self-healing (Fig. 2.7).

9 Self-configuring - Systems adapt automatically to dynamically changing

environments. When hardware and software systems have the ability to define

themselves "on-the-fly, " they are self-configuring.

0 Self-healing - systems discover, diagnose, and react to disruptions. For the

system to be self-healing, it must be able to recover from a failed component

by first detecting and isolating the failed component, taking it off line and

fixing or isolating this component and reintroducing the fixed or replacement

component into service without any apparent application disruption.

9 Self-optimizing - Systems monitor and tune resources automatically. Self-

optimization requires hardware and software systems to efficiently maximize

resource utilization to meet end-user needs without human intervention.

0 Self-protecting - Systems anticipate, detect, identify, and protect themselves

from attacks from anywhere. Self-protecting systems must have the ability to

define and manage user access to all computing resources within the

enterprise, to detect against unauthorized resource access, to detect intrusions

and report and prevent these activities as they occur, and to provide backup

and recovery capabilities.

26

2.7.1 Architectural Concepts of Autonomic Computing

A standard set of functions and interactions govern the management of computing
systems and their resources, including a client, server, database manager or Web

application server. As shown in Figure 2.8, the loop represents these functions and
interactions and acts as a manager of the resource through monitoring, analysis and
taking action based on a set of policies.

Control

Decide Resource

Measure

Figure 2.8: Control loops for autonomic computing system management [391.

These control loops can communicate with each other in a peer-to-peer context and

with higher-level managers. For example, a database system needs to work with the

server, storage subsystem, storage management software, the Web server and other

system elements to achieve a self-managing environment. The pyramid below

represents the hierarchy in which autonomic computing technologies will operate.

Figure 2.9: Hierarchy of autonomic computing technologies [39]

The bottom layer of the pyramid consists of the resource elements of an enterprise -

networks, servers, storage devices, applications, middleware and personal computers.

Autonomic computing begins in the resource element layer, by enhancing individual

components to configure, optimise, heal and protect themselves.

The middle layer of the pyramid is where the resource elements are grouped into

composite resources, which begin to communicate with each other to create self-

27

managing systems. These can be represented by a pool of servers that work together
to dynamically adjust workload and configuration to meet certain performance and
availability thresholds. It can also be represented by a combination of heterogeneous
devices that work together to achieve performance and availability targets.

And at the top layer of the pyramid composite resources are tied to business

solutions, such as a customer care system or electronic auction system. Autonomic

activity occurs at this level. The solution layer requires autonomic solutions to

comprehend the optimal state of business - based on policies, schedules, services
levels and so on, and drive the consequences of process optimisation back to the

composite resources and even to individual elements.

2.8 Summary

In this chapter we have given an overview of existing supporting technologies for

distributed applications development. The basic concepts and principles of the

distributed systems were described together with a brief description of middleware

and common types of middleware. In addition, the Jini technology was described with

reference to the services-oriented paradigm as Jini and Java used to implement the

research prototypes.

28

Chapter 3

Literature Review

3.1 Introduction

The development of the Impromptu framework presented in this thesis was inspired

by previous works and based on a number of paradigms, concepts and technologies

existing in software development. Thus as a convenient approach to present the

landscape of previous and related work the literature review is structured into three

main areas including:

9 Autonomic computing: focusing on the work addressing the self-healing

features of systems.

0 Service-oriented architectures and frameworks.

0 Component-based frameworks, with a focus on those related to self-adaptive,

self-healing, and self-organising software.

The Chapter concludes with an outline of the main requirements for an on-demand

self-healing framework development.

3.2 Self-Healing Systems

Self-healing is one of the four features that characterize autonomic computing

systems. Self-healing systems form an area of research that is gathering increased

research attention, but, as yet, it is not well defined in terms of scope, architectural

models and/or support. Still, there is a growing body of knowledge related to the

general topic of dependable systems, and on techniques that can reasonably be

considered to comprise "self-healing". The general view of self-healing systems is

that they perform a reconfiguration step to heal a system that has suffered a

29

permanent fault [40]. Moreover, self-healing systems should have the ability to

modify their own behaviour in response to changes in their environment, such as

resource variability, changing user needs, mobility and system faults. The lifecycle of

self-healing systems consists of five major elements:

0 Runtime monitoring of a given target, be it the system itself or its system parts

or others

" Exception Event detection including: an event arising from a deviation from a

given model, normal system states and/or behaviour.

" Diagnosis including: identification of events and the right course of action.

" Generating a plan of change such as architectural transformation during a

software reconfiguration process.

" Validation and enactment of a given change plan.

System Controller
1

ztc, ILfy Distributti Senk, "

, -. _dýrvýrýr Mt rr

Eý - C

ry 'p
'Q

.1
yýyf)i'.. fill 1`

Sy
tt. M RC-pair btr Fi0 f"gi

J
C+

rt

.
Y`l7tiC m4ifdcjý t

tegtstr tion

interpret 3 react 2 store

Lýyýatým Ira. EiýrrGFZ -r. e, ý,., "ý--ý

a
,z

2YIL
fý °'ý

Figure 3.1 The autonomic middleware control service architecture [8]

The topic of self-healing systems has been studied in a many areas including:

robotics-planning software, control systems, programming language design, fault-

tolerant computing and software architecture. However, in this section we mainly

focus on those areas related to software engineering and software architecture,

highlighting how existing research relates to and has influenced the development of

the Impromptu software framework.

30

A research group from the University of Southern California provides a well-defined
architectural style and requirements for self-healing systems [41], namely:

" Adaptability - the style should enable the modification of the system's static
(i. e., structural and topological) and dynamic (i. e., behavioural and
interaction) aspects.

" Dynamicity - encapsulates system adaptability concerns during runtime (e. g.,
communication integrity and internal state consistency).

" Awareness - the style should support reflection i. e., monitoring of a system's
own performance and recognition of anomalies in the performance. The style
should also support observability i. e., monitoring of the system's execution
environment.

9 Autonomy - the style should provide the ability to address the anomalies
(discovered through awareness) in the performance of a resulting system
and/or its execution environment. Autonomy is achieved by planning,
deploying and enacting the necessary changes.

9 Robustness - the style should provide the ability for a resulting system to

effectively respond to unforeseen operating conditions. Such conditions may
be imposed by the system's external environment (e. g., malicious attacks,

unpredictable behaviour of the system) as well as errors, faults and failures

within the system itself.

9 Distributability - the style should support effective performance of a resulting

system in the face of different distribution/deployment profiles.

" Mobility - the style should provide the ability to dynamically change the

(physical or logical) locations of the system's constituent elements.

0 Traceability - the style should clearly relate a system's architectural elements

to the system's execution-level modules in order to enable change enactment
in support of the above requirements.

It must be mentioned that additional requirements may be relevant to certain classes

of self-healing systems as they evolve; however, the above listed requirements are
likely to be relevant to most self-healing systems. The author of this work hopes that

the selection of specified requirements will help to identify specific, self-healing

31

architectural styles. However, much work remains to be done including: detailed

development of the architectural styles (or models) and gaining theoretical and/or

empirical experience of how to design and evaluate the applicability of such
architectural styles for self-healing systems.

While the above listed requirements are increasingly accepted as essential for self-
healing system development, other researchers like Gross and colleagues from

Columbia University [42] offer "An Active Event Model for Systems Monitoring".

This work presents a framework for communication between data-source probes and

action-based gauges. It is based on an intelligent event model called ActiveEvent

(ActEvents). ActEvents build on conventional event concepts by augmenting raw and

structural data with semantic information, thereby allowing recipients to be able to
dynamically understand the content of new kinds of events. Two submodels of
ActEvents are proposed: SmartEvents, which are lightweight XML structured events

containing references to their syntactic and semantic models, and GaugeEvents,

which are heavier but more flexible mobile agents. By classifying the events as
lightweight and sophisticated it becomes easer to deal with system monitoring.

The idea of distributed object system monitoring and supervision of a self-healing

process is shared and extended in Reilly and colleagues work [43] , in which an

architecture and associated middleware services were developed to support dynamic

instrumentation to detect abnormal systems' states (events) and trigger and control a

self-healing process thereby ensuring safety. The approach focuses on ad-hoc

instrumentation; that is, dynamic software instrumentation rather than the traditional

static instrumentation. The approach used in this work makes use of instruments such

as gauges, probes and monitors that can be dynamically attached to application

components to measure specific runtime parameters and monitor their behaviour (Fig.

3.2). To fulfil the requirements of adaptive software development they also introduce

a software control mechanism, where the control services are based on the two tasks

of monitoring and diagnosis:

" The monitoring task uses a set of control rules against which monitored

behaviour and architectural configuration are checked to detect conflicts.

32

0 The diagnosis task involves the execution of control rules, activated by

conflicts, which identify the causes of conflicts and provide the basis for the

selection of conflict resolution and adaptation strategies.

ENTATION SERVICES

MONITORING DIAGNOSING ADAPTATION
STRATEGIES

CONTROL SERVICES

Figure 3.2: Framework Services [43]

The framework developed based on these services operates in a feedback controller

regime in that adaptation strategies, to be performed by control services, are checked

against the dependency diagraph to assess their validity. Adaptations are performed as

architectural reconfigurations (i. e. diagraph modification), to the control services.

Through this feedback regime the framework behaves as a self-monitoring system,

the performance and behaviour of which are continually monitored to facilitate the

stable operation of the application.

Garlan et al. [44] developed another architectural model for self-healing systems,

based on monitoring, problem detection and repair. The use of architectural models

as the centrepiece of model-based adaptation has been explored by a number of other

researchers [45], but in this particular approach the architectural models are used for

the runtime system's monitoring and reasoning; for instance, to understand what the

running system is doing in high level terms, detect when architectural constraints are

violated, and reason about repair actions at the architectural level. The approach of

self-adaptation is illustrated by the following diagram (Fig. 3.3).

33

Figure 3.3: Adaptation Framework [441.

An executing system (1) is monitored to observe its run time behaviour (2).

Monitored values are abstracted and related to architectural properties of an

architectural model (3). Changing properties of the architectural model trigger

constraint evaluation (4) to determine whether the system is operating within an

envelope of acceptable ranges. Violations of constraint are handled by a repair

mechanism (5), which adapts the architecture. Architectural changes are propagated

to the running system (6).

One of the main premises of this approach is that considerable benefit can be obtained

by using style-specific models within this framework. The use of style provides a

focused context through which to identify conditions for repair and strategies to carry

them out.

However, one style does not fit all. For different properties and different kinds of

system, different styles will be relevant. This particular research focuses on

distributed client-server architectures, but other applications, such as information

management systems will be using different styles with associated repair policies.

There are a number of areas related to self-healing systems development such as

Diagnosis and Detection, Recovery and Repair but it is not possible to cover all the

works done in these areas. In the next two sections we review the work done in the

areas of Service-Oriented and Distributed Component-based Architectures and

34

Frameworks development, respectively. In each section we review the work that is

relevant to self-healing and self-adaptive software.

3.2 Service-Oriented Architectures and Frameworks

The Rio project [46] [47] is perhaps one of the earliest large-scale implementations

of a Service-Oriented Architecture. The Rio project was supported by Sun
Microsystems and based on Jini middleware and the service-oriented programming

model [48]. To support Quality of Service (QoS), Dynamic Development and Fault

Detection and Recovery, the Rio project introduced a number of innovations

including: Jini Service Beans (JSBs), Monitor Services and Operational Strings. Each

of this is used to represent a collection of services and infrastructure components
described in an XML-based metamodel. Operational String provides a ready-made

specification that can be used by tools to deploy the services on the network. It also

provides the capability to view, monitor and determine the availability of the

aggregated collection.

For the purpose of this research, the evaluated early release of Rio software and

service showed (leaving errors and bugs aside) that it supported the static service

assembly process well: that is, the design-time assembly of application services from

available networked services, and has not the support for runtime and self-healing of

assembled services.

Sun ONE [49] [50] provides a comprehensive platform that includes the tools and

technologies to create, assemble and deploy network-based services that are designed

to support business needs - Service on Demand. The Service on Demand concept

offers the creation and assembly of new services as needed. The tools used to develop

systems are based on the Web services model. Web services are viewed as

combinations of discrete service components that instantiate various bits of content,

business logic, and applications. Therefore, the service development process involves

two steps. The first step involves creating discrete services, which the ONE

architecture refers to as `micro services'. The second step involves assembling the

micro services into composite services, or macro services. Developers create micro

services using integrated development environments, code generators, XML editors

and other tools. Service assemblers use business process modelling tools, workflow

tools, scripting engines and other types of "glue" tools to assemble macro services.

35

Once tested and complete, the Web services are ready to be delivered to a deployment

platform, and the policies and rules are ready to be deployed to an open directory that

manages identity, security, and policy. However runtime monitoring and

reconfiguration are not the target of this project.

The "Service and Contract language" [51] defines an architectural style for

dynamically discovering and assembling services into "workflow" style service

architectures. A core feature of its design is to use feedback from DASADA gauges
to adapt workflow service selections. Gauges and Services are treated alike - as

means of representing, adding to, and adapting workflows, on-the-fly. The Service

and Contract (S + C) workflow mediates the interactions between components,
DASADA gauges and tasks. Tasks are user or application requests for services; they

are the stimulus for creating/using dynamic service workflows. This was used by the

Cognitive Agent Architecture (Cougaar) [52], which is a Java based open source

architecture for the construction of large-scale distributed agent-based applications.

The role of Service and Contract workflow is to coordinate the invocation of software

components and services within a dynamic multi-node environment via a blackboard

architecture.

Service Providers are discovered, assembled and invoked by request. An incoming

task is the stimulus by which a distributed "chain of events" is started, leading to the

composition and invocation of a distributed workflow. An "S + C" workflow is a

network of services (committed to achieve "a job") combined by task. Services are

assembled via a "bid" process - services requested are matched to Service Providers

and accepted. Acceptance depends on "Assessor". The Assessor is the part of

"Service and Contract" workflow with the "Executor". The Assessor translates the

output of ServiceProvider Pluglns and gives "Contracts". The Executor invokes the

Contracts. When assembling services over distributed nodes, an additional

infrastructure Plugln (Service and Contract Router) is required, the Service and

Contract Router loosely coordinate the workflow between nodes.

All the elements of presented architecture are the building block workflow patterns by

which peer-to-peer applications can be flexibly composed. However, it can be used

only with conjunction to Cougar that represents the distributed agent architecture.

36

3.3 Distributed Component-Based Frameworks

Many distributed component-based frameworks and systems already exist, each of

which defines its own component model and incorporates different composition

mechanism. For instance, the Openwings consortium established by Sun

Microsystems and Motorola developed an architecture, standards and a framework

for networked systems of software and hardware components [53]. The Openwings

framework adopted the component-connector-port view of a distributed application
through which components are connected together, or assembled, using protocol

specific connectors that plug into ports within the components, to facilitate

synchronous and asynchronous communications between components.

The Java Service Framework (JSF) [54] is an open standard, component framework

that facilitates the development of servers from a set of independent but cooperating

components and services. The framework defines the life cycle of these services and

the ways they may locate and interact with each other. By applying Java standards in

a layered infrastructure, basic components are separated and managed in a modular,

controlled fashion. Using several new concepts to Java Technology, such as

embeddors, a kernel and partitions, JSF supports the run-time configuration and

management of services, but run-time assembly and service on-demand concepts are

not the target of this framework.

The Possession System [55] is an application framework supporting component-

based system reconfiguration and code migration and adopts a high-level abstraction

based on the analogy that a soul possesses a body. It incorporates application-level

runtime adaptation based on scripting support along with an event-notification

mechanism between Soul and Body components. The Improvised Assembly

Mechanism, a component of the Possession system, offers a method for finding and

combining distributed resources. The basic system interaction is as follows: Body

components make queries to the directory services in order to obtain identifiers of

available Body components necessary to construct an application. The directory

service returns available entries either synchronously or asynchronously, as well as

sending asynchronous notifications when the state information on queried Body

components changes. The implementation of the system is based on Jini middleware

technology.

37

Herring describes a class of software systems as being "complex systems" [56].

Examples of complex systems include Smart Environments [57], Multi-Agent

Systems [58], Adaptive/Intelligent User Interfaces [59] and Business-to-Business e-
Commerce. He characterises complex systems by large numbers of heterogeneous

components with a high degree of interconnection, relations and dependencies. To

build this type of system he proposed a new architecture based on a cybernetic

management model called the Viable System Model (VSM) [60]. This new

architecture is called the Viable System Architecture [61] and defines a unique set of

component interfaces that in turn defines the framework itself. It is believed that the

special nature of the framework will permit development of protocols for dynamic

assembly of systems from sub-system frameworks. The author of this work also

proposes a new design pattern language for Viable Systems development. This work

is very close to the work described in this thesis with its nature and targeted problem,

but at the same time it should be noted that this work does not take under

consideration the systems, or sub-systems failures and does not target recovery and

reconfiguration issues. Although the variable system architecture does consider

adaptation issues as complex systems existing in a dynamically changing

environment and these types of environment demand dynamically responsive

behaviour. Therefore adaptation in this work addresses the requirements that a system

must adapt to its environment.

Self-adaptation in complex systems is widely addressed in the J-Reference model

[62] [63]. The authors of this work describe the Viable System Model [60] as

specifically attempting to imbue the system with the ability to adapt to circumstances

not foreseen by the original designer. The model identifies the necessary and

sufficient communication and control systems that must exist for any organization to

remain viable in a changing environment. In doing so, the model does not attempt to

specify the activities that must occur in each system. Instead, activities are typified by

a cybernetic rationale to allow either the design of the activities to match the

cybernetic criteria or for actual activities to be identified by their system type and

hence assigned to the appropriate element of the model. The six major systems

described by the VSM are as follow:

0 System one (S 1) - Operations

38

" System two (S2) - Coordination

9 System three (S3) - Control

" System Three * (S3*) - Audit

0 System four (S4) - Intelligence

" System five (S5) - Policy

Such a generalized approach allows the model to be applied to any organization
regardless of size, and guarantees monitoring, diagnosing, re-planning and hence
"perfect" management of the systems, providing both self-awareness and self-
adaptive behaviours.

As was mentioned previously, multi-agent systems can be categorised as "complex"

systems. A relatively simple software entity may be considered as an agent,

consequently a software agent can be defined as:

"... software components that communicate with their peers by exchanging

messages in an expressive agent communication language. " [64]

More typically, however, agents are larger entities that exchange information and

provide services either to other agents or human users. Such interoperation allows

communities of agents to address problems too extensive for a single software entity.

M. Williams and A. Taleb-Bendiab [58] used the software agent model to develop an

agent-based reconfiguration framework, which provides computational constructs to

facilitate functional, structural and behavioural flexibility, which enables multi-agent

systems to adapt to arrange changes. The framework and its associated toolkit have

been developed as a multi-agent system using the Python programming language.

In order to provide the necessary runtime adaptive behaviour and system self-

awareness, two meta-languages were developed:

0 Agent Definition Language - at the definition level, agents are viewed as

service providers and/or consumers. Agents are therefore defined in terms of

the services they provide. The services, in turn, are defined in terms of that

agent. If it uses a service then it will tend to be a service provided by another

agent. Thus an agent is defined by listing the services it will potentially

provide or use and by listing all resources it requires.

39

9 Agent Re-Configuration Language - at runtime, agents are also given the

ability to re-configure themselves. This allows them to be much more

adaptable to their environment.

This work can be viewed as a good foundation for not only multi-agent development

but also the component-based development area. It offers all the architectural

concepts of the above mentioned systems development, but the work itself was
implemented in Python a few years ago and requires updating to comply with new

technologies.

Olan [65] is an experimental language and runtime system, which supports

connecting distributed application components. The easy construction of applications

and reuse of components are mainly supported. Communication between objects is

achieved using an RPC-based CS paradigm. The functionality of adaptation,

however, is not targeted in the system.

In the Quality Object (QuO) framework [66], applications can be explicitly

programmed with different levels of performance (i. e., different contract regions) and

performance requirements by remote method invocations. It provides a QoS

Description Language (QDL) and Configuration Setup Language (CSL) components

to support the development of distributed applications with QoS requirements. The

former associates QoS constraints to function calls and permits remote method

invocations to be dispatched to alternate remote objects. The latter permits application

execution to switch between different contract regions based on dynamic system

conditions.

Most of the approaches described above focus on the assembly of applications or

systems from distributed components and the services provided by components or

agents. Others address adaptation and runtime configuration problems. However,

there are many remaining questions to be addressed including;

9 Is there anything new about building architectures and frameworks for service

delivery, lookup, execution, assembly, or adaptation?

" What are the best approaches for delivering service on-demand and

improvising applications in an ad-hoc manner?

What if one of the components of the new assembled application fails?

40

Motivated by these questions, in next section we specify the requirements for the

work we describe in this thesis, which we believe contributes to the development of
middleware services for on-demand service delivery and self-healing systems.

3.4 Requirements

In line with the VSM model (Sec. 3.3) a set of design requirements are identified as

necessary for the development of the proposed Impromptu framework for on-demand

service assembly and delivery with self-healing capabilities. These requirements are
detailed below and summarised in Table 3.1.

The IMPROMPTU Framework is based on Service-Oriented Paradigm (SOA) [30].

As such a number of requirements can be identified which are common to the systems
that are using Service-Oriented concepts. Firstly, it is important that the framework

complies with existing service-oriented standards (R. 1). This ensures a general

coherency of approach to service distribution and delivery. Currently SOA is the most

convenient architecture for a highly networked, dynamically changing environment.

When we talk about on-demand service delivery, it means that services should be

found runtime according the user requirements. In order to do so the Framework

shall allow services to be provided, located and used by user or software

components over both local and wide area networks (R. 2).

To locate the service Framework shall provide ability to discover and lookup services

without being dependent on any specific service location (R. 3).

After service is found and located user/ or software component needs to make use of

this service. One of the major requirements for this framework is to provide

mechanism for service invocation (R. 4).

When service is found in wide area network it is obvious that service provider and

service user are different individuals. However using any existing invocation

mechanism based Jini or other middleware architectures the Client is required to

know how the service was designed. In particular using any middleware technology

based on Java RMI [7] the client should know the Invocation Method described in

service interface. In order to do so there is need for some mechanism that will provide

the client side with the additional information about service, describing the method

for invocation or the location of the class file that can be reflected using Java

41

reflection [67]. Service signatures can be described in XML format, since XML has
become ubiquitous and is used as the base format for everything from configuration
files to information exchange between devices, moreover, the power of XML lies in
its extensibility, and allowing developers to create their own custom XML based
languages. (For more about XML see Section 2.6 and Appendix B).

For this reason in our particular case Framework shall provide XML based service
description in order to use/ invoke the service (R. 5).

To make a new application that is a combination of different services discovered in
local or wide area network there the Framework shall provide mechanism for

Service Assembly (R. 6) and it shall support dependency definition between the

services (R. 7). At the same time the Framework shall provide a virtual space for

the services to be executed and to live (R. 8).

After the assembly takes part Framework shall supply the management mechanism

with a document describing the assembly (R. 9).

In order to perform self-healing the Framework must provide the system manager that
detects the service failure (R. 10).

When the failure is detected the System must respond by finding an alternative

service for the failed one (R. 11) and the System must perform Reconfiguration in

terms of placing the service instead a failed service (R. 12).

Table 3.1 summarise the requirements for Impromptu: Software Framework for On-

Demand Service Delivery and self-healing Middleware Services.

Requirements Ref

1 The Framework shall be compliant with existing Service- R-1
Oriented standards.
The Framework shall allow services to be provided, located

2 and used by either a user or software components over both R-2
local and wide area networks.
The Framework shall provide the ability to discover and

3 lookup services without being dependent on any specific R-3

service location.
The Framework shall provide a mechanism for service R 4 4 invocation. -

The Framework shall provide an XML based service R-5 5 description in order to use/ invoke the service.
The Framework shall provide the mechanism for service R-6 6
assembly.

42

7 The Framework shall support a dependency definition
between the services. R'ý

g The Framework shall provide a virtual space for the services
to be executed and to live. R'g

9 The Framework shall supply the management mechanism with
a document describing the assemblage.

R-9

10 The Framework must provide a system manager that detects a
service failure. R-10

11 The System must respond by finding an alternative service for
the failed one. R-11

12 The System must perform Self-Healing in terms of replacing a
failed service

R-12

Table 3.1: Requirements for Impromptu software framework for on-demand

service assembly and delivery and self-healing Middleware Services.

3.5 Summary

This chapter has presented an overview of relevant research areas to this work. These

can be categorised in terms of three research areas: (i) Autonomic Computing

focusing on the self-healing features of systems, (ii) the service-oriented architectures

and (iii) frameworks and distributed component-based frameworks. We discussed

how different researchers or commercial bodies addressed similar problems and what

techniques and approaches they use to solve existing problems.

Considerable research has been undertaken in the area of distributed systems

development, using service-oriented concepts and architectures [68]. These model

software components as service providers or service users and divide the software

into small reusable components and services and provide the means to construct

systems using those distributed components.

We also described some closely related work on self-healing and self-awareness.

Most of this work is concentrated with how to provide software with self-adaptation,

self-control and self-management.

Table 3.2, outlines the results of a comparative review of the Impromptu framework

against published related frameworks (references are provided below). For the

illustrative purposes 8 most related works were selected for the table, the rest of the

related work is reviewed in main text of this chapter. The review was conducted

along the general requirements defined for Impromptu software framework.

43

Requirements 1 Impromptu

The Framework shall be compliant with existing
Service-Oriented standards.

R-1

The Framework shall allow services to be

2 provided, located and used by either a user or
software components over both local and wide

R-2

area networks.
The Framework shall provide the ability to

3 discover and lookup services without being R-3 --- --- __- ___ ___ f f f
dependent on any specific service location.

4
The Framework shall provide a mechanism for
service invocation. R-4

--- ___ ___ ___ ___
The Framework shall provide an XML based

5 service description in order to use/ invoke the R-5 --- --- --- --- ___ ___ ---
service.

6 The Framework shall provide the mechanism for
service assembly.

R-6
___ --- --- --- if if if if

7
The Framework shall support a dependency
definition between the services.

R-7
--- i --- --- --- ---

8 g
Framework shall provide a virtual space for

the services to be executed and to live. R-g
--- --- --- --- f --- --- ---

The Framework shall supply the management
9 mechanism with a document describing the R-9 --- --- --- --- i --- --- ---

assemblage.

10
The Framework must provide a system manager R-l0
that detects a service failure. --- --- ---

II
The System must respond by finding an R-1 1
alternative service for the failed one. --- --- i% --- --- --- --- i%

12
The System must perform self-healing in terms R-12
of replacing a failed service if ___ ___ ___ ___

Table 3.2 Assessment of related work against Impromptu framework

Key:

1- An Active-Event Model for System Monitoring 5- Rio Project [69].

[42].

2- An Instrumentation and Control-Based 6- Sun ONE [49];

Approach for Distributed Application

Management and Adaptation [43].

3- An Investigation into Autonomic Middleware 7- The Service and Contract (S + C) [70].

Control Services to Support Distributed Self-

Adaptive Software [9];

4- Model-Based Adaptation for Self-healing 8- The Possession Systems [13].

Systems [15].

44

As it is illustrated by, Table 2.3, few frameworks have considered runtime service

discovery and invocation requirements to support self-healing and self-adaptation

capabilities.

The following chapters will describe how the above listed requirements were met,

implemented and tested.

45

Chapter 4

Impromptu: Software Framework for On-
Demand Self-Healing Middleware Services

4.1 Introduction

This chapter presents the overall design of Impromptu: Software Framework for On-
Demand self-Healing Middleware Services. The framework supports both on-demand
distributed service discovery and assembly, and self-healing in terms of discovery and
replacement of a failed component. This chapter starts with an introduction of the
fundamentals, concepts and approaches used in the process of design and
development of the system. This will be followed by a description of the software
development model assumed by the research and the main component services of the
framework.

4.2 The Overall Design of the Framework

In recent years, much attention has been focused on design approaches, processes,

and tools to facilitate the development of large software systems through the

assembly of Commercial Off The Shelf (COTS) software. If we consider the fact that

operating systems are distributed across many machines to improve performance,

availability and scalability, such a system can be considered to be composed of
distributed services that offer different functionality. Exposing functionalities as

services is the key to flexibility. This allows other pieces of functionality,

implemented as services, to make use of other services in a natural way regardless of

their physical location. A system evolves through the addition of new services. In

order to design and develop such systems, specific architectures and approaches are

needed. This thesis explores software services in relation to the concept of software

46

components, and describes how current component-based development practices
provide a tiered foundation for the implementation of a service-oriented architecture.
In simple terms, a service-oriented architecture provides a standard programming
model that allows software components, residing on any network, to be published,
discovered, and invoked by each other. A Service-oriented approach, in conjunction
with component-based development, provides the basic building blocks for the
Impromptu framework. The next section describes, in more detail, the framework

approach with components and patterns.

4.2.1 Components, Frameworks and Patterns

The last decade has shown that object-oriented technology alone is not enough to

cope with the rapidly changing requirements of present day applications [71]. One

reason is that, although object-oriented methods encourage one to develop rich

models that reflect the objects of the problem domain, this does not necessarily yield

software architectures that can be easily adapted to changing requirements. In

particular, object-oriented methods do not typically lead to a design that makes a clear

separation between computational and compositional aspects [72].

As early as 1969, Mcllroy [73] proposed an alternative to software development

called component-oriented software construction. However, in the last few years,

component-based software development has become very popular. Component-based

systems achieve flexibility by clearly separating the stable parts of the system (i. e.

components) from the specification of their composition. Components are black box

entities that encapsulate services behind well-defined interfaces. These interfaces tend

to be very restricted in nature, reflecting a particular model of plug-compatibility

supported by a component-framework, rather than reflecting the rich, real-word

complexity of the application domain. Components are not used in isolation, but

according to a software architecture that defines the interfaces that components may

have and the rules governing their composition. Also, the architecture and rules are

defined by the framework. These two terms: Component and Framework are closely

related as Markus Lumpe et al. define [74]

"A software component is a composable element of a component

framework"

47

Although this definition seems to be circular, it captures the essential properties of
components: components are designed to be plugged together with other components.
A single component that does not belong to a component framework is a
contradiction in terms. Furthermore, a component can, in general, not function

outside a well-defined framework. Therefore, a component framework can be defined

as follows:

"A component framework is a collection of software components with a

software architecture that determines the interfaces that components may
have and rules governing their composition ". [75]

This definition closes the loop. The essential point is that components are not used in

isolation, but in accordance with a software architecture that determines how

components are plugged together. In contrast to an object-oriented framework, where

an application is generally built by subclassing framework classes that respond to

specific application requirements (also known as hot spots [76]), a component
framework primarily focuses on object and class composition (i. e. blackbox reuse).

Another definition of the term component framework is given by Szyperski [33]. He

describes a component framework as a set of interfaces and rules of interactions that

govern how components plugged into the framework may interact. He also points out

that an overgeneralization of that scheme has to be avoided in order to keep actual use

of frameworks practicable.

Naturally, it is not enough to have components and frameworks for building real

applications, there is also a need for a mechanism to wire components together (i. e. to

express compositions). The idea behind component-based development is that an

application developer only has to write a small amount of wiring code in order to

establish connections between components. It can also be built by defining the

patterns that describe the structure of the framework. Such patterns can guide the

application developer to the solution of a particular problem.

Patterns have recently become a popular way to reuse design information in the

object-oriented community [77]. A pattern is an essay that describes a problem to be

solved, a solution, and the context in which that solution works. Patterns are supposed

to describe recurring solutions that have stood the test of time.

48

Since some frameworks have been implemented several times, they represent a kind

of pattern, too. Gamma describes patterns as very closely related to frameworks [77].

Such patterns were discovered by examining a number of frameworks, and were
chosen as being representative of reusable object-oriented software. In general, a
single framework will contain many of the patterns, so these patterns are smaller than

a framework. On the other hand, patterns are more abstract than frameworks. They

describe solutions without being tied to one specific programming language, whereas
frameworks are implemented in one and only one programming language. Still design

patterns represent the architectural elements of the framework.

The framework described in this thesis is implemented in one specific language

although the concepts are generic and it can be implemented using different

languages and techniques, as long as this language or technique provides necessary

tools to solve this specific problem. For this purpose, we describe the kind of patterns

that should be used to develop a system for "on-demand service delivery" assembly

with self-healing behaviour.

The next sections will describe the model of an on-demand service assembly and

delivery mechanism with self-healing behaviour. Further description of the pattern

language will be provided in Chapter 7.

4.3 Software Development Model

The software development model assumed by this research is based on a service-

based development paradigm [23], also referred to as the service model [116] in

which services are viewed as an abstraction or virtualisation of software components.

In such a model, software services are provided by software components, and interact

with each other to provide or use (consume) data and behaviour. One of the benefits

of service-oriented approach to software development is that at any given time, a

wide variety of alternative services may be available that meet the needs of a user.

49

--

Requirements º

List of Services User needs:

Service I
Assemblin

SI -> S2 -> S3
make Communicati g on

Execution ---ýý run it

Configuration » give the place to live

Deploy use for nex time as one
service(run forever)

L-
---------------I

Figure 4.1: Self-Assembly Process

As illustrated by Figure 4.1, the design process can be seen to start from level one
where the user requirements are defined in this approach as a list of required services.
These services will be discovered and activated (via dynamic service invocation).

Figure 4.2: Application Services and tools

For example Figure 4.2 shows what services and tools are required for an application

to be composed of distributed services. A discovery mechanism is needed to find

distributed services that match to user's requirements. Distributed services that

compose a distributed application may fail unpredictably, for this reason other

mechanisms like self-healing including failure detection and recovery are needed in

line to discovery properties. Using all these properties software will be able to self-

heal (complete the given task) by detecting the failure of the services and rediscovery

of the component that was providing the service, or other components that provide

similar services.

50

Runtime service delivery, integration and management properties to some extent are
achievable by using existing middleware technologies. Jini is one of the technologies
that provide the necessary support for developing service-based distributed

applications. The software development model assumed by this research enables the
incorporation of self-healing properties in distributed service-based applications
through the extension of middleware technology.

Jini middleware technology provides a number of distributed system services,
including discovery, lookup, remote event management and service registration.
When a service is plugged into a Jini network, it becomes registered as a member
(service) of the network by the Jini lookup service. When a service is registered, a
proxy is stored by the lookup service. The proxy can later be transported to the clients
of the service. Other network members can discover the availability of the service via
the lookup service. When a client application finds an appropriate device, the lookup

service sets up the connection. In our approach to component integration, we use Jini

to provide a standard method for registering and connecting a client to corresponding

software components that are acting as services. One of the advantages of using this

Jini-based integration technique is that it facilitates construction of applications "on-

the-fly" whereby components can be used on an as-needed basis. One of the

disadvantages is that clients of services must have some prior knowledge about how

to use each respective service. To overcome this disadvantage of Jini, using our

software model services are registered with the additional information. In other words

service providers register services with a document describing all the necessary

information (service signatures). Hence, a service user has a prior knowledge about

how to use a particular service.

51

In service-based distributed systems, new services may be added or removed from the
network, this leads to the need for applications to reconfigure themselves. Therefore,
it is necessary to incorporate self-healing properties in applications, which are built
by integrating distributed services. Service-based distributed applications developed

with the support of the framework described in this work will have self-healing
properties, as the framework provides service monitoring and recovery services that

act as middleware service in extension of existing middleware services. The
following figure shows the IMPROMPTU framework services as extension of Jini

middleware technology in relationship with distributed services that are provided and

used by distributed software components.

IMPROMPTU Services

Service ________ -----i-F

as v

N
M
H
CL
2
0
W
CL
2

Service Service

Service

Service

Service ------------

Service -----

Service --------------

ýý
Service r----

----- -------------

Figure 4.3: High-level view of application development using distributed services

The Impromptu framework consists of a collection of services that can be added to

Jini services in order to enhance service registration and discovery, assemble

applications by incorporating the discovered services and add self-healing properties

through monitoring and failure detection of assembled services. As such, Impromptu

middleware supports the software development model described in this section.

The development of an IMPROMPTU application can be described as follows: a user

registers service into a lookup service, which can be achieved in two different ways:

(i) if the location of the lookup service is known, then service provider can use

52

unicast TCP to connect directly to it. (ii) If the location is unknown, the service
provider will make UDP multicast request, and lookup service may respond to these
request. Service needs to be implemented with pure Java code, but for registration it
is necessary to create Java Interface to invoke method on an object. To make easier
for user to convert pure Java code to Jini code toolset provides some kind of template
that helps user without any knowledge about Jini use the toolset.

In order to manage services it is necessary to monitor them. Services will start and
stop. When they start they will inform the lookup services, and sometime after they

stop they will be removed from the lookup services. But very often other services or
clients want to know when services start or are removed. Monitor service that part of
the framework is the service itself and gets registered on the lookup service. The

availability of the service is known for the System manager/user through the

monitoring service. The system manager is also responsible for recovery of the failed

services by replacing it with the closet alternative service.

The sequences of the steps for a user's job could be classified as three different

scenarios:

" Case I: The user has a set of Java-based services and wants to use the

Impromptu framework to assemble new services from them. Using the Java-

based templates provided with the framework the user can modify the Java

code, and then register the newly assembled service with its local lookup

service, this way the new services will also become available for other users.

" Case II: The user has no available services, in such case he looks for them on

different lookup services. When found the service assembly as in Case I

continue takes place.

" Case III: The user modifies existing code using the template but for

completion of a new application he needs the other services. He finds it on

any lookup service that is available in network at that time. Thus combining

case I and II.

53

In the remainder of this chapter, we describe the various components of the
Impromptu framework.

4.4 On-Demand Service Assembly and Delivery Model

Service on-demand is derived from the recognition that many different types of
services will be delivered over electronic networks, including a new breed of
applications that extend well beyond the tightly coupled services available today. The

service on demand concept is the foundation for modular, flexible, automated access
to any digital device, including computing resources, from virtually anywhere.

The On-demand Service Assembly and Delivery (OSAD) model provides an abstract
view of the relationship of distributed components and services. The objective of the
OSAD model is to organize the following issues in a uniform framework;

" on-demand service delivery and invocation regardless of the location of the

service,

" the automatic assembly of the application in an ad-hoc manner based on the

user's requirements,

" the ability of self-healing at runtime in terms of replacing the failed

component of an Impromptu application.

The Impromptu application is basically a composition of different services invoked

from different locations3 and interacting with each other using remote event

notification. These applications can be formed in local or wide area network,

depending on the tools and technologies that will be used for implementation of

Impromptu model. In this work Jini middleware was chosen to support the

development of Impromptu model, therefore network coverage for Impromptu

applications should be used for Wide Area Network services [78].

As previously mentioned all services are provided or used by distributed software and

hardware components. One of the tasks of the model is to find distributed components

offering specific functionality (called offering the service). After the component is

found the next task is to use this functionality.

3 Mainly designed and tested for Local Area Network services. Though, it can be used for Wide Area

Network services.

54

To describe these events, we use the term `on-demand service delivery'. The OSAD
model can be described as a combination of different building blocks - component
services. Figure 4.4 shows the generic model, including all of the building blocks and
functionalities.

ý'ý

Figure 4.4: OSAD Model

The starting point for the model is the user defining the requirements as a task. A user

enters the names of desired services and defines the dependencies between them. This

will be documented and saved for further use.

The Lookup service is one of the major components of the model. This is where

distributed components register the services they provide. On the other hand, the

same services should be discoverable from the client side. After discovery, service

invocation should take place. Invoked services require a place to "live". The

Operational Space is a virtual space with Containers and the Containers are virtual

places where the services live during their life cycle.

Control and monitoring is needed to identify failure and alert the system to find a

replacement for the failed service, so the control mechanism is implemented with

self-healing behaviour.

Based on this model, three main services were designed for the further development

of the framework. These services are:

55

" Assembly Service - this is the core service of the framework and it combines
a number of functionalities of the model. The Assembly service is

combination of different sub-services and modules. It contains:

A Task Definition service - that enables the user to define and submit a
task. In this work we define a task as the requirements of the user. In

other words, the user makes a request for the services s/he requires.
With the user requirements in place, the system will begin to function.

This means that the system will start looking for services to invoke and

provide the service functionality to the user.

Registration and Discovery Services - although these services are not new

concepts and are provided by a number of existing technologies, it

must be mentioned that these services are major building

blocks/components of the model. Without this service in place, no

distributed service can be registered on the network, therefore no

services could be discovered and used.

Service Invocation Service - is responsible for invoking any discovered

service regardless of the provider and location. To implement this

service we have proposed and developed a new service description

mode, which is described further in Section 4.4.2.

" Operational Service - is the virtual space containing a number of containers.

The services must be executed and assembled in these virtual containers.

Having virtual containers in this type of framework enables the system and

user to monitor and manage the new Impromptu applications.

" The System Manager - the concept of a system manager is very widely used

and therefore dose not respond to one definition. In this work, the system

manager represents a combination of two services:

Monitoring service - is responsible for monitoring, in other words, look

after the new applications.

Recovery/Reconfiguration service - is responsible for recovering the

application from failure. This means finding an alternative service to

replace the failed service, that is, the system will search for an

56

equivalent service - hot swapping. The replacement process involves
reconfiguration functions.

Adaptation is provided to the system by self-healing behaviour and is described
further in Section 4.5. The next section defines the concept of the Impromptu service
and includes the basic service of the OSAD model.

4.4.1 Basic Services in the OSAD Model

The OSAD model concentrates on two types of services: Software services provided
by distributed software components and hardware services provided by network
appliances.

"A service in general represents physical and logical concepts such as a

printer (hardware service) and a Calculator, Text Editor (software

service) "

For effective use of services, two main characteristics of the OSAD model services

are:

" Interface based design - Services implement separately defined interfaces.

The benefit of this is that multiple services can implement a common interface

and a service can implement multiple interfaces.

" Discoverable - Services need to be found at both design and run time, by

unique identity, interface identity and also by services kind.

In both component and service development, the design of the interfaces is performed

so that a software entity implements and exposes a key part of its definition.

Therefore, the concept of "interface" is the key to a successful design in both

component based and service-oriented systems [68].

The interface defines a set of public method signatures, logically grouped but

providing no implementation. An interface is a contract between the requestor and

provider of the service. Moreover, the Published Interface is uniquely identifiable and

available through the registry.

Using existing middleware technologies, it is already possible for service providers to

publish interfaces on some shared space in a local or global network, and for the

client to discover these interfaces. But getting the set of method signatures from the

57

interfaces remains the problem. The next section describes the notion of a service
description model.

4.4.2 Service Description Model

Recently, many different service description languages and models have been

proposed. Web services offer an XML-based service description language, describing

networked services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information [79]. The Rio project tends to

use the same XML format to describe the aggregation of services rather than the

individual service [80]. All of these were described in previous chapters. This section

revisits the XML based service description mode that was developed for the OSAD

model. Our Service description model was motivated by a problem that has not been

addressed in previous works.

As previously described, to make use of a distributed service, discovery of the

services is not enough. When we talk about distributed services, it is obvious that the

service provider and client of the same service are different individuals. So it is

impossible for the client to know the method signatures defined in the interface of the

service. Without knowing this, it is also impossible to implement the interface. To

solve this problem, we offer a very simple model for service description, formatted in

XML, that describes the method signatures with the name and interface name of the

specific services. This information will be saved on the server and the location can be

passed to the client as an attribute of the service registered in the lookup space. The

client can discover the service using this additional attribute.

The basic format of the service description is illustrated in the Figure 4.5.

ServiceName

eLocation

InterfaceLocation

MethodName º

Figure 4.5: Service Description Model

58

As shown in Figure 4.5, every service should be described using the following

attributes:

9 Service Name, a required attribute, providing a human and computer

readable identifier for each service.

" Service Location, the actual physical location of the service.

" Interface Name, a required attribute, providing a human and computer

readable identifier for the service interface. The interface where

service signatures are described.

" Interface Location, the actual physical location of the service interface

file.

" Method Name, a required attribute, providing a human and computer

readable identifier for service execution.

This is the basic model for service description that is needed to pass invocation

method names from the provider to the executor (human or computer).

A similar type of description is used to describe and document the task the user

defines (Fig. 4.6).

Figure 4.6: Task Description Model

59

The main attributes the user needs to define in order to submit his/her requirements
are:

" Service Name, the attribute that is required for the system to make
discovery and service matching.

9 Dependency, the user is required to differentiate between the main

service and the dependent service.

A task described and submitted in this format is readable by the system. According to

the information specified in the task description, the system manager is able to
identify the main service from dependent service. Making a decision about finding

the new service to replace a failed one will be dependent on this information. If the

main service fails, then the alternative service should be found immediately.

The distributed application can be assembled according to the task description

provided by the user, so the system does not require further input from the user.

Alternatively, the user can interact with the system in order to find the desired

services, invoke them and place then in specific containers. Although these steps

could be done manually, in terms of application monitoring and control, the users'

interaction is no longer required. However, the user should submit some kind of

description of the current state of the application. From this description, the system

will know what services were executed and in which location. The format of this

application description model is shown in Figure 4.7.

60

-. did

ý1iº CowAainer I

Port
-H-0 ßt

S& r iceLaca

ýn r ac-eNamý

De x dencyf rk23ry, r

C-e- p r: r e r?

Sir ! eiy.?
ý-art

Hast
I .e 1V C&L0C. 9 b. * I

irrte rFac&iv. 2 re
Amte rrG ceL0c 'tk? n

MethodNane I
D&pe rtc exrcy r, rr

e

'+ ' Con#dir er ti

Figure 4.7: Operational Space Description.

The operational space is a virtual space where the services run. It can contain one or

more virtual containers. The container is the virtual environment where groups of

services are executed and live during their life cycle. Each container can contain one

or more services. As illustrated in Figure 4.7, the service description itself is based on

the service description model that was described at the beginning of this section.

All of these description models were implemented using an XML format. The

description of implementation is provided in Chapter 6. The next section describes

the self-healing capabilities of the system, and how the OSAD model makes use of

this behaviour.

4.5 Self-Healing in the OSAD Model

Self-healing systems must have the ability to modify their behaviour in response to

changes in their environment, such as resource variability, changing users' needs,

61

mobility and systems faults [81]. In our model, we concentrate on system fault

responding behaviour. According to Oreizy et al. [45], the lifecycle of self-healing
systems must consist of four major activities.

9 Monitoring the system at runtime

" Planning the changes

" Deploying the change descriptions

" Enacting the changes

Based on these activities and the existing architecture of the OSAD model we
identified and implemented the self-healing behaviour in our model as the set of the
following activities:

1. Monitoring the application

2. Failure/change planning (not implemented)

3. Discovery of alternative component.

4. Implementing the change/ replacement of failed component with alternatives

ý- Appi.
Monitoring

Appl. Description

Failure Detection/
Change Planning

Invoke the
alternative/ make

changes/replace the
falle service

Lookup for
Alternative service/

for Changes

SOS ýS D
Shared Space

0

Figure 4.8: The lifecycle of self-healing behaviour in OSAD

62

The lifecycle of self-healing behaviour in the OSAD model, according to these
activities, is demonstrated in Figure 4.8.

Having a defined place such as virtual container for a group of services, makes
monitoring possible. As the new application is running in a virtual container,
monitoring is required to detect changes or failure. Initially, the monitoring system
obtains information about each container. The information is generated after the

application lifecycle starts in a particular container and contains information about the
location of the application, the number of the services that make this particular

application and information about the dependencies between services. Having this

type of application description allows the monitoring system to continue monitoring
the container. As soon as one of the components of the application fails the system

starts the recovery operation. Knowing the name of the failed component, the system

starts looking for a replacement and the changes are planned. After the lookup and
discovery of alternative components and knowing the location of the failed

component, the system installs the newly discovered component and replaces the

failed one. Consequently, the system performs recovery during runtime, "on the fly".

In other words, the self-healing behaviour of the system is activated.

These functionalities are encapsulated in the System Manager, the one of the

framework components. The System Manager contains two sub-services:

9 Monitoring: is the service that is responsible for monitoring new applications

to detect failure. It should be able to identify the failed service and send a

request for an alternative service.

0 Recovery and/or Reconfiguration: is the service is responsible for notifying

the Assembly Service of a new request. From the new requirement, the

assembly service can discover an alternative service without human

intervention. Part of the recovery process is the reconfiguration of the

application. This means that a new service will replace the failed service.

4.6 Summary

Distributed applications are difficult to develop, and hard to connect and manage.

Furthermore, current software architectures are not yet up to the challenge of a large

scale networked, dynamically changing environment. The client/server model is too

63

static and brittle for the new generation of networked systems. Rather than creating

monolithic, client/server applications, there is a need for new technologies, designs

and architectures that will enable developers to create systems with new
functionalities.

This work explores services in relation to the concept of software components, and
describes how current component-based development practices provide a tiered

foundation for the implementation of a service-oriented architecture. The design

model of the system described in this chapter is built using both service-oriented and

component based development concepts.

The OSAD model encapsulates a number of functionalities such as service discovery,

registration, lookup, invocation and assembly. Furthermore, it is designed and

implemented with a self-healing behaviour that makes the system adaptable and

reconfigurable.

64

Chapter 5

The Architecture

5.1 Introduction

Current software architectures are not up to the challenge of a highly networked,
dynamically changing environment. The client/server model prevalent today is too

static and brittle. Typically, clients only communicate with the servers they were

originally written for, using specific protocols, under specific deployment conditions.

The interface between client and server is private, leading to a collection of closed

"stovepipe" systems. Most of these implementations assume that the underlying

network is static, reliable and trustworthy. However, with the advent of Personal Area

Networks, such as Bluetooth, the network is very dynamic. As a person moves the set

of devices and services visible to them changes. The network revolution has left

software lagging behind, however, a service-oriented, discovery-based component

architecture [30] is anticipated to provide a solution for new networked autonomic

systems.

In this chapter we describe the overall architecture of our system, which will be

followed by the architecture model of the On-demand Service Assembly and Delivery

(OSAD) (Sec. 5.3).

5.2 The Big Picture

As illustrated in Figure 5.1, OSAD is a service-oriented architecture, which is, for

convenience organised in a three-layered model;

0 First layer represents the application development support environment that is

a collection of Platform Services.

65

0

0

cd
u

ý"
a

an

00
ä F-'

vd e

oe
ü

a vý a Q

ec
ov

ME
Möi

G ä+
aýo
QA

Second layer, called application supporting services and tools, represents all
services and tools that were developed as the Impromptu Framework
Component Services.

Third layer is the representation of what the framework offers. The third layer
is called the Application Layer and shows the assemblage of distributed

services. In other words, it shows the federations of distributed services. Each
layer is described in detail below.

- --
r--- ----------- ---,

°'

a
öä

" äo ý i
I

IQ ýQ ö

Assembly Service

--- ---------- ----

II

II

äIä WU

ö --- ö E. >
pg

ZW
I vD

Operational I System

L__ Serv_ice___I L___ Manager
--_

J

- ---

Figure 5.1: The overall architecture of the framework

5.2.1 First Layer - Platform Services

In software system development, software components and services need a

supporting running environment to execute the functionality they offer. For instance,

66

-. dd

as shown in Figure 5.1 the Impromptu framework requires a network layer, OS layer
and a Java Virtual Machine [82] and Jini core services [83] (Sec. 2.3.2).

5.2.2 Second Layer - Framework Components

The second layer represents framework components. The core components of the
system are:

" Assembly Service that is a combination of sub services including;

Task Assignment - enables the user to assign the task to the system.
Using this service, the user will be able to submit the query for the
desired services that will make the application.

Configuration Service - places application services into containers and

auto-generates application service proxies.

Service Description Model - enables the client side (human or system)

to get the method signatures of the service.

Service Invocation - based on the method signatures that client gets
from the service meta-description; this service performs the actual
invocation of the service.

9 Operational service: is a combination of virtual containers where the services

are executed. This service maintains the support environment required by

certain application services.

" The System Manager: is responsible for monitoring the applications,

detecting failure and performing the recovery. Therefore the system manager

contains two sub-services:

Monitoring service - monitors the applications in different containers

and detects a failure

Recovery/Reconfiguration - performs the recovery based on the

discovery of an alternative service and replacing the failed service with

the new one.

The details of implementation of these services are provided in Chapter 6.

67

5.2.3 Third Layer - Distributed Applications and Application

Services

The third layer represents the applications (assemblies) developed using the
framework. Thus, as shown in Figure 5.1, this layer contains the Impromptu

distributed application. As defined by Emmerich, [36], a distributed application is:

"... a collection of autonomous hosts that are connected through a

computer network with each host executing components and operating a
distributed middleware to enable components to coordinate their activities

giving the impression of a single, integrated computing facility ".

Based on this and many other service-oriented distributed application definitions

offered in literature, we describe distributed applications as:

"A collection of application services spread over networked computers,

which clients use remotely via middleware services" where "Application

services represent physical and logical concepts such as a printer

(hardware service) and a calculator, text editor (software service). "

5.3 The Architecture of the OSAD Model

The On-Demand Service Assembly and Delivery (OSAD) architecture has been

designed based on emerging design principles from, for instance; service-oriented

architectures, distributed object systems and component-based middleware (Fig. 5.2).

68

Idw

Figure 5.2: OSAD Architecture

The Operational Service is a Virtual Space containing one or more Service

containers, where each is a virtual environment in which one or more services are

assembled (composed) ready for incorporation into a new application. A Component

is the set of all necessary class files for a given software component together with the

required implementation of service publication, discovery and service invocation via

RMI. Components are typically stored in a Java archive (Jar) files.

A Service is a logical concept that may be a hardware service, a software service or a

combination of the two. A Service can be implemented and provided by a specific

component for use by any other component. Services may be distributed across

several different machines and accessed through Jini's discovery/lookup mechanism

and used through Java's RMI protocol. Discovery allows Service-Oriented

applications to dynamically find and publish services. Discovery is a core concept

that allows service-oriented applications to adapt to their environment. The

implementation of this architectural model is detailed in Chapter 6.

5.6 Summary

The client-server architectures of the last decade are simply not flexible or scalable

enough to build distributed services and applications that satisfy users' needs in this

69

-An

new era of networking. Instead, researchers in academia and industry are looking to

service-oriented architectures to solve design problems. This chapter described the

service-oriented architecture designed and implemented (Chap. 6) to address the

problems existing in this area.

The overall architecture of the framework was presented as a three-layered model,

containing: (1) the layer of platform services supporting the development and

maintenance of framework services; (2) the layer of framework component services

and (3) the layer of distributed applications and application services.

The architecture of the On-demand Service Delivery and Assembly (OSAD) model

was also described in this chapter. The OSAD model is a representation and union of

the framework component service, which was described as the second layer of the

overall architecture.

The following chapter presents an in-depth description of the implementation issues

associated with the second layer of the above described three layered architecture,

including an in depth description of each component and service of the framework

70

Chapter 6

Implementation of IMPROMPTU Framework

6.1 Introduction

In this chapter we describe the prototype implementation of the On-Demand Service

Assembly and Delivery (OSAD) model presented in Chapter 4. The prototype is

called "Impromptu". The OSAD model aims to organize the following issues in a

uniform framework: (1) on-demand service delivery and invocation regardless of the

location of the service, (2) the automatic assembly of the application in an ad-hoc

manner based on the user's requirements, and (3) the ability of self-healing at runtime
in terms of replacing the failed component of an impromptu application.

The Impromptu system was written in the Java programming language [82]. The

choice of the implementation language is based on a number of reasons. The

mechanisms provided in Java such as dynamic class loading, object serialization,

remote method invocation and reflection allow the flexibility required for runtime

adaptation and invocation. Also the wide deployment of JVM is appropriate for

experimental and evaluation purposes.

This chapter will provide a detailed description of the three core services of the

Impromptu Framework namely:

0 Assembly service, which implements the first two concepts of the OSAD

model - on demand service assembly and delivery.

0 Operational service, which provides a virtual platform for Impromptu

services.

" System Manager Service, which brings the self-healing behaviour to the

framework.

71

In addition, this chapter will provide a description of two example applications
namely: Home Appliances and Software Services scenarios.

6.2 Implementation Requirements

An Impromptu application is a combination of distributed services provided by
distributed components over a local or global network. A component in a distributed

application is a self-contained binary implementation, which consists of one or more

objects. These objects occur as instances of the classes that make a component.
Components communicate with each other through connectors that are implemented

via software interfaces and distributed applications are often described using a

component-connector abstraction.

Components also require and provide application services to other components and/or

users. These services form the basis of an alternative service-oriented abstraction of a

distributed application [3]. In this abstraction an application is considered as a

federation of services distributed over a network. A service represents a logical

concept such as a printer, or chat service that can be discovered dynamically by

clients and used according to a mutual contract of use. This service-oriented

abstraction forms the basis of the developed framework, which provides a set of

services that can be used to discover, assemble and manage the application services of

a distributed application.

6.2.1 The Choice of Jini Technology

As a proof-of-concept, Java and Jini middleware were chosen for the implementation

of the proposed framework and associated architecture. Essentially, Jini enables

distributed applications to be developed as a series of clients that interact with

application services. Clients use stubs or proxies, implemented as Java interfaces, to

remotely invoke application service methods (specified by the proxies) relying on

Java's RMI to route the invocations over a network. Jini applications consist of a

federation of application services and middleware services (e. g. lookup) and a series

of clients and Java Virtual Machines (JVMs) distributed across several computing

platforms.

Moreover Jini was chosen due to its rich support for service-oriented development

and support for a variety of services that may be hardware-based, software-based or a

72

combination of both. Jini does present some limitations, the main being its Java
dependency, whereas technologies such as CORBA [16] and DCOM [17] offer
greater support for development in heterogeneous environments through their
language independence. However, with some extra effort, Jini may also support
heterogeneous components through Java's native code methods, which act as
wrappers around non-Java objects.

6.3 IMPROMPTU Component Services

The Impromptu system described in this chapter is an implementation of the On-

Demand Service Assembly and Delivery Model (OSAD). As described in Chapter 4,

the OSAD was developed for distributed applications. A distributed application is the

collection of distributed services provided by distributed components. To implement

the main objectives of the OSAD model, the prototype component services were
developed: (i) Assembly Service; (ii) Operational Service; and (iii) System Manager

(Fig. 6.1).

SYSTEM MANAGER

OPERATIONAL
SERVICES

TASK ASSIGNMENT

Figure 6.1: Impromptu Component services

Each component service consists of sub-services/components (Fig. 6.1). The

Assembly Service contains: a task submission, registration/discovery and

configuration services as well as the Service Description and Execution models.

73

The Operational Service supports the system with the environment where the services
are executed. In other words, it is a virtual environment containing a number of
virtual containers.

Finally, the System Manager consists of Monitoring and Recovery/Reconfiguration

services and provides the self-healing behaviour for the system.

The rest of this chapter will provide a detailed description of the implementation of
the OSAD model services.

6.3 Assembly Service

In line with the service-oriented architecture, each service assembly (or Impromptu

application) is developed as:

"... independent sets of interacting services offering well-defined interfaces

to their potential users. Similarly, supporting technology must be available

to allow application developers to browse collection of services, select those

of interest, and assemble them to form or create the desired functionality

[84]

Researchers and application developers describe service composition, assembly or

aggregation in different ways. In [85] assembly of service is interpreted and

implemented as an assembly of Body and Soul components (Sec. 3.3), where Soul

components are mapped onto Jini clients and as Body components onto Jini services

Body components register their attributes with the directory service when they are

instantiated. Soul components make enquires to the directory service in order to

obtain identifiers of available Body components necessary to contract an application.

In the Rio project [47] (Sec. 3.2), an Operational String describes an aggregated

collection of application and/or software assets that when put together provide a

specific coarse grained service on the network. The software assets are envisioned as

being Java service objects.

In this work, the assembly service is defined as the process of composing a required

distributed application as a set of interacting services, offering the desired

functionality (e. g. the functionality of a heating system integrated with the

functionality of a timer can offer new functionality). At the same time, this work does

not claim to perform the assembly of functionality at software component integration

74

level (e. g. assembling the components of the software developed by different
individuals using different technologies). The assembly Service is the implementation

of the service assembly approach used in this work.

The Assembly Service is the core component of the OSAD model. It was designed

and implemented for the on-demand service discovery, invocation and automatic
assembly of services in an ad-hoc manner. In the process of creating a distributed

application, the user should somehow specify the requirements of the services. The

match between users requirements and available on-demand candidate services is
determined dynamically at runtime. Creation of the new application can be done by

manual configuration or users might like to leave it to the system to configure

automatically.

The Assembly Service consists of the following sub services and models:

" Task submission - to configure a new application automatically, the

system must know about the users requirements. The task submission

service enables the user to input requirements. These requirements are

saved as an XML document.

9 Registration/discovery - these are Jini core services but to make them

more generic than those offered by Jini, Registration/ Discovery services

were modified. Both of these services are separate reusable components of

the Assembly service implemented in Java as stand alone classes.

0 Configuration service - is used for placing the discovered service in the

virtual containers, where the service invocation takes place.

" Service description model - is used for passing information about the

service from the service developer to a client. Service descriptions are

documented as an XML document. Each Impromptu service is registered

and discovered with an attribute pointing to the location of the description

file.

" Service invocation model - is based on Java Remote Method Invocation.

For service execution, the client side should know the name of the method.

To understand the structure of the service is not an easy task, but by

75

ým

parsing the XML based service description documents it becomes easier
for the invocation service to get the name of the invocation method.

The interaction between these components is shown in the UML class diagram in
Figure 6.2

Parser [

getLocationo : String

parsO : void

TakSubmission

Invocation [

getMethodNameQ : void

getServiceNameQ : void
invokeO : void

Discovery [

I Configuration

seruiceName : String

containerName : String

containerLocation : String

getServiceo : String

setServiceß : String

serviceName : String
simpleService : SimpleService

dependency : String
lookup : LookupLocator

quantity : int
attribute : Entry

«Interface»

_ SimpleServicelmpl
getNameo : void matchQ : void
getDependencyo : void

Figure 6.2: The UML Class Diagram for Assembly Service

6.3.1 Task Submission

The task submission sub-service enables the user to submit requests for particular

services to the system. In other words, using the task submission sub-service, a user

can create a desired application scenario.

The implementation of the task submission sub-service is based on the task

description model described in Chapter 4. There are two main attributes a user is

required to define. These attributes are:

0 Service Name, the attribute that is required for the system to make a service

discovery and match.

0 Dependency, the attribute that tells the system which service is dependent on

which.

Each task scenario described and submitted by the user is formatted as an XML

document and saved with a unique version number. These documents are saved so

76

that a new user has the ability to use it if his requirements match the task defined by

another user.

6.3.2 Registration/Discovery

The most important feature of the distributed service is to be discoverable. In order to

make the service discoverable, it should be registered with some middleware service
that gives the opportunity to client services to lookup and locate a desired service.

The registration and discovery sub-services in the Impromptu Framework are the

components of the Assembly Service. The implementation of these services is based

on Jini registration and discovery services. But for the purposes of making the system

generic we separated them from the Jini service and made as independent reusable

components.

The service is registered by calling register O, which returns a

Servi ceRegi s tra ti on object. A service can announce a number of entry

attributes when it registers itself with a lookup service. Each service can include a

number of attributes. It is the choice of the service developer and provider, but the

Impromptu service has to have two attributes always defined. These attributes are the

name of the service and the location of the service description file. The Impromptu

client chooses the appropriate service by the name of the service.

public void register()
SimpleService simpleService;
LookupLocator lookup;
Entry [2] attributes;
JoinManager joinmanager;

try {

; attributes = new Entry[1]

attributes[1] = new Name("SimpleService");

attributes [2] = new Comment
("http: //crosegris: 8080/userdoc/SimpleServiceDiscription. xml");

simpleService= new SimpleService(;
joinmanager = new JoinManager

simpleService,
attributes,
simpleService,
new LeaseRenewalManager ()

);
}catch (Exception e)

I
System. out. println("server: MyServer. main(): Exception "+ e);
}

77

Figure 6.3: Implementation of registration sub-service

Discovery is also based on the Jini discovery service and is used in two slightly
different ways. Calling the ma tchi s. to ta1Ma tchi s method the user is able to

obtain the complete list of available services that are registered in the network at that

particular moment.

The other method is when the assembly service needs to perform a discovery

according to user requirements. In this case, the discovery is based on the attribute
Name . For instance, if the user requires a service called "Calculator", the system

will match according to the name and will discover only available calculators

6.3.3 Configuration

Configuration for management purposes consists of setting particular attributes before

an execution, as well as defining the policies that drive their utilization. In this work,

we have focused on one aspect of the configuration, namely the placement of the

services in virtual containers.

The Configuration service is responsible for placing the service in its new location.

The new location can be any container that is available at that time. However, there

must not be another set of services running in that particular container. The

Configuration service also understands the task submitted by the user, so that all

services included in the defined task will be placed in the same location. This makes

the task of the monitoring service easier, as the monitoring service monitors the

containers individually.

6.3.4 Service Description

The reason for the service description model development was the limitations

inherent in Jini technology. The invocation of the service is based on Java RMI, in

most cases the method name is not known on the client side, as only the service

provider knows about it. Therefore, there was need for a technique that would make it

clear to the client the method of invocation for a discovered service. For this purpose,

as described in chapter 4, we developed the Service Description Model.

We implemented this model in XML format. As shown in Figure 4.2 (Chap. 4), each

service is described with the following attributes:

78

9 Service Name, a required attribute, providing a human and computer
readable identifier for each service.

" Service Location, the actual physical location of the service.

" Interface Name, a required attribute, providing a human and computer
readable identifier for the service interface. The interface where the

methods of invocation are described.

" Interface Location, the actual physical location of the service interface
file.

" Method Name, a required attribute, providing human and computer

readable identifier for service execution.

The service description document for a simple service is presented in the Figure 6.4.

<? xml version=111.0" encoding="UTF-8"? >

<! -- Simple Description of Service -->
<! DOCTYPE ServiceDescription SYSTEM 11 ServiceDescription. dtd">

<ServiceDescription>

<ServiceName>simpleService</ServiceName>

<ServiceLocation>http: //crosegris: 8080/userdoc/SimpleService</Servi
ceLocation>

<InterfaceName>SimpleServiceInterface</InterfaceName>

<InterfaceLocation>http: //crosegris: 8080/userdoc/SimpleServiceInter
face</InterfaceLocation>

<MethodName>seyHello</MethodName>

</ServiceDescription>

Figure 6.4: Simple service description

6.3.5 Service Invocation

Service Invocation takes place after all the services requested by the user are

discovered and placed by the configuration service in a suitable virtual container.

Service invocation was implemented using Java RMI. Each discovered service has an

additional attribute pointing to the location of the service description file.

79

Entry entries = matches. items[l]. attributeSets;

String entryl_name = entries[1]. toString();

String entry2_locatiol = entries[2]. toString();

Figure 6.5 Service Attributes

The entry2_location parameter is passed to the Parser. class and the service
description document is parsed (Document document = builder. parse(new
File(entry2_location))).

The parser. class passes the following parameter to the
invocation. class.

NodeList mNameNodes =
ServiceDescriptionNode. getElementsByTagName(

"MethodName");

if (mNameNodes. getLengthO !=0){

Node MethodName = mNameNodes. item(0);

String methodOfInvocation = MethodName. getChildNodes(). item (0
). toString());

}

else
Node ServiceLocation = mSLocationNodes. item(0);

String serviceLocation = MethodName. getChildNodes(). item(0
). toString());

Figure 6.6: Parser

After getting the methodofInvocation parameter, the Invocation class invokes the

service. This describes the simplest case, when each service offers only one function.

An example of such simple services are networked appliances such as a printer,

scanner, or home appliances such as networked clock, heating system, camera and so

on.

80

0

public class GetMethod() {

System. setProperty("java. rmi. server. codebase"
"http: //crosegris: 8081/11);

Class c= Class. forName(serviceLocation);
System. out. println("Class 11 + c. toString());

ao

Method m[] = c. getDeclaredMethods(;
for (int i=0; i<m. length; i++)
String methodName = m[i]. toString(;

Figure 6.7 Service Location

A distributed service can also be complicated, such as a software service (e. g.
calculator). In this case, the invocation can be implemented in different ways. If the

service invocation method name is not known, in other words - if
(mNameNodes . get Length () = 0) then the parameter that the parser class passes is

the location of the service class file.

The name of the invocation method can then be obtained by using the Java reflection

method. The se rv ice Lo cati on parameter is passed in the same way to the
invocation class as in simple case described earlier.

6.4 Operational Environment

The Operational Service maintains the support environment required by certain

application services. The operational service is a virtual environment containing a

number of virtual containers. This is the environment where services are executed

after the system performs discovery. The point of having a number of virtual

containers is that a user can have a different assemblage on different containers at the

same time. When a service is executed, a remote message is sent to the monitoring

centre with the description the location of the service. This information is

documented as an XML document. When the System Manager detects a failure, a

check can be made on what was running in that particular container and plan a

strategy for recovery.

81

6.5 System Manager

Application management is based on the use of a combination of a middleware-based
instrumentation monitor and control services to monitor runtime behaviour and adapt
behaviour in response to runtime conflicts. Controller concepts and control services
have recently gained popularity amongst the self-adaptive software community,
typified by [86], who use control services to adapt the structural configuration and
dynamic behaviour of an application. Structural components can evaluate their
behaviour and environment against their specified goals with capabilities to revise
their structure and behaviour accordingly.

Traditionally, service management approaches involved either the insertion of
additional software constructs at design time via compiler directives, or when the

system was off-line, during maintenance to manage specific events and/or control
certain parameters. Manual management can be used with a distributed application,
but only with limited success, because of the disturbance and possible shut down of
the whole system. For this reason, dynamic autonomic management, applied at

runtime, has recently attracted the attention of researchers concerned with distributed

applications development and management [87].

Described by [8], the system manager consists of three main processes to control

service behaviour: report the notification of failure, find an appropriate alternative

and to recover the system from failure. These processes are specified as: a Service

Monitor, the Service Diagnosis and a Service Self-Repair.

In the process of the implementation of the system manager, all of the processes

described above are important. But as the work described in this thesis is aimed at the

development of a framework for on-demand service delivery and assembly with self-

healing behaviour, the concentration on developing the system manager was

relatively low. For the purpose of detecting failure in one of the services of the

Impromptu application, the Monitoring service was developed and implemented.

Without identification of the reason or course of conflict, the system manager is able

to recover the system from that conflict. For this purpose, the recovery and

reconfiguration services were developed and implemented. In this stage of developing

this work, the main goal of the work was to test the reaction of the system if the

82

conflict was detected. Is it able to bring the assembly service, namely discovery and
invocation services, into action again in order to perform recovery.

6.5.1 Monitoring

As described in [88], the monitoring service receives messages such as remote events

concerning failure and/or conflict from an instrumentation service [43] (responsible

for monitoring service performance and process the measurement) and indicating the

service behaviour or failure state or by remote event to activate the diagnosis model.

For the purpose of this work, the monitoring service carries slightly less responsibility
than in [43]. The monitoring service, in the Impromptu prototype monitors the

operational service and consequently each virtual container is monitored.

The monitoring service is active during the whole life cycle of the Impromptu

application. When a service is invoked, the remote event is sent to the monitoring

service with the parameter showing the name and location of the service. Location in

this case means the location in the operational environment; for instance, service 1 is

running in container 1.

In case of manual configuration of a new application by the user, he/she decides if all

of the required services are found and invoked and an XML based description

document is generated about the current state of the operational environment

essentially which container contains what services.

There can also be a case of dynamic configuration. A user can specify the

requirements and assign a task to the system. The system finds requested services

automatically, instead of the user doing it manually.

In both cases, the output of the system is a description of the current state of the

applications. The descriptions are produced for further use by the System Manager,

described in [8], for detecting failure and planning recovery. An example of a

description document generated by the monitoring service is shown in Figure 6.8.

83

<? xml version=uº1.0rr encoding= "UTF-8" ?>

-<! --
Z

-->

<! DOCTYPE NewApplication (View Source for full doctype...)>
- <Containerl>

- <Service ServiceID="s1">
<ServiceName>Ca1Lcu1Lator</ServiceName>
<Port>4061</Port>
<Host> ansegris</Host>

<ServiceLocation>http: //crosegris: 8080/userdoc/Calc
ulator</ServiceLocation>

<IiiterfaceNan)e>CalcInterface</ InterfaceNatne>

<InterfaceLocation>http: //crosegris: 8080/userdoc/Ca
lcInterface</ InterfaceLocat. ion>

<Method>getCalcInterface</Method>
<Dependency>Antecedent</Dependency>

</Service>

- <Service Service ID= "s2">
<Serviceldame>DialogWindow</ ServiceNdame>
<Port>4061</Port>
<Host>emsegris</Host>

<ServiceLocation>http: //crosegris: 8080/userdoc/Dial
ogWindow</ServiceLocation>

<IntertaceNarae>DWIn</ InterfaceNarne>

<Interf a.. eLocat. ion>http: //crosegris: 8080/userdoe/Di
alogfindow</InterfaceLocation>

<Ilethod>getDWlnt</Method>
<Dependency>Dependent<, /Dependency>

</Service>
</Container1>

Figure 6.8: Description of the state of container 1

6.5.2 Recovery and Reconfiguration

As earlier described, this work does not address software instrumentation based

monitoring, diagnosis and recovery planning issues, but provides a systematic scheme

in the case of a service failure.

After a conflict is identified by the control mechanism, a resolution is made for

recovery. The recovery process involves:

1. Notifying the assembly service about the resolution. Sending a remote event

notification with the request for a new service to be discovered .
2. The Assembly service repeats the actions of discovery and invocation.

3. Reconfiguration of the application takes place. The new service replaces of

the failed one.

84

6.6 Illustrative Example Applications

In the following sections, we will describe two example applications that were
designed and implemented using Jini middleware with Impromptu Framework

services. These prototypes were developed to illustrate the use of the framework and
at the same time, test and evaluate the various features of the developed framework.
In order to test different use of the framework services, we have developed two
different example applications namely: the home appliances and software services
example applications. Each application will be described in the following sections.
The applications were developed using Java JDK 1.4 and Jini 1.1 and tested on a
Windows XP platform.

6.6.1 Application 1: Home Appliances

More and more researchers are getting involved in the area of networked appliances

as mobile devices become more and more ubiquitous through the use of wireless

connectivity. As they connect to wide or home networks, then the easier it becomes

for users to utilise the services such networks provide. Moreover, these devices are

smart enough to understand each other, to communicate and share information in a

networked environment [89]. We have used a typical example scenario of networked

appliances that is widely used in the area of distributed, networked services [90] [91].

The application described in this section is a basic example of the initial

implementation and use of the Impromptu Framework. Here the home appliances

scenario is used to demonstrate the use of the Assembly Service and the System

Manager with its self-healing feature.

Before describing the application scenario, it is necessary to give a definition of the

network appliances we adopted from existing work and extended it for the purpose of

our application. A Networked Appliance is:

"... a device that has the capabilities of delivering certain services that have

been specified by the provider and can be accessible via a network. "

The application scenario is as follow:

85

"The user has home appliances connected to the web. Before she leaves

work, remotely from her office she decides to assemble an Impromptu

application in order to make her appliances work together (Fig. 6.9). Using

the registration service she registers the service in order to make them
interactive and discoverable. She knows she needs to wake up at 8 am and
have breakfast before leaving home. So she needs a clock, lamp, toaster and

a kettle to work together. The new application should be monitored and

managed by the system. "

As there is dependency between these services, if the clock fails then the whole

application will go wrong. In this case, the system takes care of this federation of

services and without user intervention, (the user is supposed to be sleeping) finds

another clock on the lookup service and replaces the failed one. As a result, the

system makes changes and reconfigures itself.

Corniected H, oine

I PRO MP TAI
App#gM ,

By implementing this scenario we have tested the following services of the

framework:

" The Assembly service, including the Registration, discovery and invocation

sub-services, which provide the functions for finding and invoking services

that are available in the network in that particular moment. Also for service

invocation purposes, the additional service description documents were

developed and tested.

86

Figure 6.9: Home Appliances scenario

" The System Manager, including Monitoring and Recovery/Reconfiguration

sub-services, monitor the applications in order to detect a failure and through
the recovery/reconfiguration sub-service, implements the self-healing feature

of the system.

" The Graphical user Interface (GUI) of a prototype application is shown in

Figure 6.11. The application itself can be activated and run in a following

manner:

Run the Jini core middleware services including: RMDI, Web Server and the Reggie

services (Fig. 6.10).

LII,
IC31 X1

As shown in Figure 6.11, all framework services can be executed from the main GUI,

which contains three main sections (Fig. 6.11):

" The Service tree; showing all the services that were developed for the

evaluation the framework. These services were developed to implement

different application scenarios. This means that they are Jini services with

additional XML descriptional documents attached to them. By selecting each

service and activating the registration button (bottom of the service tree)

chosen services can be registered with the Lookup Service.

" The toolbar; provides Icon-based access to all home appliances service

registered and available on the home network.

87

Figure 6.10: The Jini StartService Application [221.

" The Virtual Container; providing container utilities for services assemblies
including execution and life-time management.

FN SoMm L40'wMordrnf Help

Somces
's J SaAwýe Ser+itaa ý,

ý I_ýiY. rý
iý II1ýIý

f11'/ F Home Appliances äat ^ý. ýýy

Toealer
" �P Cýirýºnar 1 ICorAalrier 21 C4" Mar 31 Contr IMr4 " Konle
º Healing
f Frldgo

Tbn
/ I USer lerY1c

mLj Baring MgaNIhnns

F'solotar -t

J Dc *r

3

As shown in Figure 6.12, for simplicity, the definition of service dependency

including execution order, is done manually through the graphical user interface.

However, other approaches as described by Reilly et al. [43] can be achieved

automatically through the use of a Dependency Graph Service, which makes use of

Java Reflection API.

Figure 6.11: The Main GUI of the example application

Figure 6.12: Defining the dependences

A service can be manually (or automatically) activated through service execution.

This is done via the GUI by the "Invoke the Service" (Fig. 6.13).

88

, r+

ýpttA

RemoteEvent Registration
Dependency º
Dependency Graph

Figure 6.13: Service Invocation

The Monitoring service is used to monitor and display the list of running services in

each virtual container (Fig. 6.14).

(nera1e i.

t 10

EMPTY

EMPTY

rvr)er*3e 4&

Generalei ..
E3

Figure 6.14: the GUI for Monitoring Service

If the monitoring service detects a failure of one of the services, for instance, the

clock has failed, then the system starts recovery by sending a remote event to the

assembly service in order to rediscover and re-invoke the failed service (Fig. 6.15).

c. Service: Lamp One of ti* Ssrvkss ha$ failed I

1. Service: Tot ter

t service: Kettle

Cvice - Clock H&S Failed

Figure 6.15: Service failure detection

89

All of the steps described above for example application to run and function could be

done automatically by assigning a task to the system. For this purpose, we have

created an additional GUI (Fig. 6.16), where the number of services can be chosen
from a drop down menu. The names of the services can be entered into text boxes. By

submitting the requirements, the system will automatically look for the services,

generate the XML document and will invoke the services and place them in an

available virtual container. The monitoring and recovery tasks will be performed in

the same way as described above.

ö a.
r ti

the New Applicatom Is COrnb itl: r, or s Barces

t'týrt 4' I¬°¬t; k, , , ̀fit
(ep

eroce:

Service

A "It ?k ep

Ani IDep

Verstun Number submit Camel

Figure 6.16: The GUI for Task Assignment

6.6.2 Application 2: Software Services

The second example application was designed and implemented to test the same

features of the Impromptu Framework as in the previous example. The difference

between these two example applications was in the complexity of the services as

networked appliances are considered as simple services. For a software services

example we have chosen services such as a Calculator, Dialog Window and Text

Editor.

Figure 6.17 shows a screenshot of the GUI of an application that was developed to

test the relatively complex software services scenario and concentrating on the

invocation of this type of service. The screenshot illustrates a similar GUI to that used

90

in home the appliances scenario, but in this case it supports the runtime discovery of
published software and an assembly utility to compose a new application.

*f; f liiis*r * CnrM ira 1$
"

Alfýl+AAfk i

j- fin Ser'vixernt ýYwfs Li___.

IA

vow Ck
cl Ntb/ iii

-'[f ýp

"". ~,

ik

{L1

I1. Of ý, ýrý. s 1ý ýClk , -a .. trrcü!
RNtbiýt'14º_

Eli 1,1,

01,
E: P' TY

fývrK

ý. 4ttFt_=err saEý,
ý., ýmý _

>. t ýswrw° t. ksrXý¬. r. ý. a 4 "E. s t. crrtrar5! L. ý1ý_ ý. ýII

_-.
ti Ic0 1I , t., ttAU :4 4(11)4 J'r. r(Hitrý, ýIes t', n ;ý iit

"Os*-, 7-14r, I-, t sCtt1'7a, 2974 40 toi : rtgif§StAi, ýtiý i4[f{

Figure 6.17: The GUI for software services application

The service tree here also presents the user with a list of all the services that are

available on a lookup service at a particular instant in time. The user can choose the

service that s/he wants to use, but in order to invoke the service, the client-side (in

this case the invocation sub-service of assembly service) needs to know the method

signatures. Unfortunately these are only known to the service developer who is

responsible for implementing the service. To address this dilemma, we use XML-

based service descriptions that specify method signatures as mentioned previously.

To explain the use of XML and the difference between the scenario described in a

previous section and this, we reconsider the calculator that may specify add, subtract,

divide and multiply methods. Although similar to the home appliances application, the

calculator can have a single method get Ca 1cInterface that displays the

calculator GUI by returning a Java JFrame object. For this particular application, we

consider both cases. One of the novel aspects of our approach, as described before, is

that of the XML meta-representation, which is attached to a service as an attribute

and passed to the client component via a lookup service. Moreover, this document

91

contains not only a description of single methods of the services, but also the
description of the location of the service interface file. For instance, in case of the

calculator, instead of describing the methods the calculator provides (add, subtract,
multiply, divide), when the XML document is parsed by the client side, the location of
the service the interface can be obtained from InterfaceLocation tag
(<InterfaceLocation>Http: //crosegris: 8080/userdoc/calcInterface</Inter

faceLocation>). An assembly service, namely the invocation sub-service, receives
information about the location of the actual class file using Java's reflection API [67].

This is used to acquire the structural contents of a Java class including the list of

methods implemented by the class.

When one component requires a service provided by another component to deliver its

prescribed functionalities then there is a dependency relationship between the two

components [92]. Conceptually, a dependency is a directed relationship between a set

of components, which can be represented using the ideas of [93]who define the

relationship based on two roles: the dependent component (a client) and the free or
independent component(s) (service provider(s)). Using this representation, we are

able to maintain the dependencies that exist for each service within a virtual container
(Sec. 6.6.1 and Fig. 6.13). Dependencies may also be dynamic, changing in

accordance with different user tasks and these dependencies are represented within

the XML descriptions associated with each application service as shown in Figure 6.9

(Sec. 6.5.1).

6.7 Summary

This chapter is divided into two main sections. The first section presents the

prototypical system implementation called Impromptu. The second is the

implementation of the OSAD model. Therefore the architecture of this application is

prototypical of the OSAD model containing three main services and consequential

sub-services.

The Assembly service was described with its sub-services using a UML class

diagram. We explained how the on-demand service delivery and assembly could be

implemented using specific programming language and middleware technology. We

92

also explained why Java was chosen for the implementation of the OSAD model and

how Jini middleware technology supported development of this application.

The second section contains the description of example applications that were

developed to test and evaluate various features and functionalities of the Impromptu

prototypical system. We have described two example applications namely: Home

Appliances and Software Services. We categorised the home appliances as a simple

service and the software services as relatively complex.

93

Chapter 7

On-Demand Service Delivery and Self-Healing
Software Pattern Language

7.1 Introduction

This chapter describes the on-demand service assembly and delivery model as a

pattern language with the goal of making the model accessible to software designers.

The pattern language we introduce can be used for distributed application
development with self-awareness and self-healing capabilities.

The pattern language template is based on Alexander's original pattern language

template [94], which has the benefit of generality and independence from any

implementation choice including; domain details, context and programming language

[77]. The Gamma design pattern [77] style would require tying the patterns to a

particular programming language, which was not the purpose of this work.

Alexander's original pattern format is as follows (Fig. 7.1): each pattern starts with a

picture to provide an architectural impression of the pattern. The picture has a

description. The next few sentences provide the context of the pattern and relate it to

the larger patterns in the language. Three diamonds mark the beginning of a section.

The problem is stated and highlighted in bold text; and then specific examples and

descriptions of the problem are given. The purpose of the problem statement is to

show what it would be without having the solution for this problem. One common

example will be used for every pattern. Then the solution is stated in bold text as an

instruction. A diagram is given to summarize the main idea of the pattern. Three

diamonds mark the end of the body section and a paragraph relates this pattern to the

other "lower" patterns in the language that are needed to complete it.

94

I

Picture

Architectural.
I rmassioax of the

Pzn

Picture Description

...
C4c)nteXt of the Pattern, relating

this pattern to the larger one

fýi
The Problem

Examples and the description of the pnablerm
Solution

Diagram

Premds tit rn t ideiofthe
Pattena

ff+

Description oft b* r eat o rship of this pattern oath the
lower' patterns

Figure 7.1: An illustrative example of Alexander's Pattern

Our pattern language presented in this chapter was implemented in Java and Jini

(distributed object and service oriented programming) and tested with different

application scenarios, and described in Chapters 6 and 7.

7.1 Viable System Model - to Model Autonomic Systems

The proposed On-demand Assembly and Self-Healing software pattern language

including the design of the Impromptu Framework have been influenced by Beer's

Viable System Model [95] [96] -a general cybernetic management model. Thus it is

important to give a brief overview of the model before describing our pattern

language.

7.1.1 VSM model: a Brief Overview

Beer's Viable System Model identifies the five systems that must exist for any entity

to survive in a changing environment. It appears to offer a conceptual blueprint for

the design of self-healing, autonomic software. The model explicitly incorporates

dynamic planning and self awareness systems, while the classical cybernetics that

underpin the model are closely related to control systems theory, so in some respects,

the approach lends conceptual support to the guiding metaphors of current efforts in

95

self-adaptive, autonomic software. A detailed description of the Viable system model
and its relationship with self-healing, autonomic software is described in next section.
That will be followed with the description of each new pattern in relationship to the
Viable System Model.

Beer describes the management of knowledge as follow [60]:

"You must learn to manage yourself and your formal and informal

exchanges and interactions with others. This must be done in the context of
your understanding of who you are: your goals, your capabilities, your
knowledge of your own strengths and weaknesses; and your appreciation of
your social, technical and business environments. Individuals must be able
to engage in activities in different `markets', keep them from interfering

with each other, manage them together, focus an eye on the future, and

assess their different aspects from the perspective of the `big picture' of
their whole life's narrative. "

Although Beer was talking about individuals, computing systems also have the

challenge of maintaining continuity and identity over time - sometimes with minimal
infrastructure. They too must integrate and manage their knowledge and information

and their exchanges with their environments to perform effectively. The VSM is a

powerful descriptive and diagnostic tool to map management capacities to promote

viability.

The model identifies the necessary and sufficient communication and control systems

that must exist for any organization to remain viable in a changing environment. In

doing so, the model does not attempt to specify the activities that must occur in each

system, instead activities are typified by cybernetic rational [95] [2] to allow either

the designer of activities to match the cybernetic criteria or for actual activities to be

identified by their system type and hence assigned to the appropriate element of the

model. Such a generalized approach allows the model to be applied to any

organization regardless of size.

The six major systems advocated by the model are detailed in Table 7.1 below:

96

System Identifier System Type

System One (S1) - System One performs the productive operations of the organization. An
Operations organization may be composed of a number System Ones, each providing

a distinct product or service. Each Si consists of an operational element
controlled by a management process and in contact with the operational
environment and is in some respects is similar to the plant/management

arrangement adopted by control system theory.

System Two (S2) - System Two is concerned with coordinating the activities of Si units. It is

Coordination essentially anti-oscillatory in that it attempts to contain or minimize inter-
fluctuations. This is achieved by the provision of stabilizing,

coordinating facilities such as scheduling and standardization information

that is disseminated over all System Ones, but tailored locally to suit
individual Si needs.

System Three (3) - System Three is concerned with the provision of cohesion and synergy to

Control a set of System One units. The management processes contained within

this system will be concerned with short term, immediate management
issues, such as resource provision and strategic plan production, although 2

strategic in this context refers to planning with existing resources rather Z
than the normally accepted sense.

System Three* (S3*) - System Three * provides facilities for the intermittent audit of System One

Audit progress and provides direct access to the physical operations of the

particular Si allowing immediate corroboration of that progress. This

essentially provides additional data over and above that provided by 00

normal reporting procedures.

97

System Four (S4) - System Four is concerned with planning the way ahead in the light of
Intelligence external environmental changes and internal organizational capabilities.

S4 `scans' the environment for trends that may be either beneficial or
detrimental to the organization and constructs developmental

organizational plans accordingly. To ensure that such plans are grounded
in an accurate appreciation of the current organization, the intelligence
function contains an up-to-date model of organizational capability.

System Five determines the overall purpose of the organization i. e. defines

the activities that are performed by Si as such S5 represents the policy-
formulation or normative planning function. Policy formulation is
informed by a "world-view" provided by S4 and models of current

organizational capability populated by data flowing from the lower level

systems in the organization.

System Five (S5) -
Policy

Table 7.1: The major systems of Viable Systems Model

The major systems (Si, S3, S4 and S5) are structured hierarchically and connected by

a central `spine' of communication channels passing from the higher-level systems

through each of the S1 management elements. These provide high priority

communication facilities to determine resource requirements, accounting for allocated

resources, alerts indicating that a particular plan is failing and re-planning is

necessary and the provision of the "legal and corporate requirements" or the policies

of the organization.

The systems described above concern the management structure a one level of the

organization, and consequently specify the communication and control structures that

must exist to manage a set of S1 units. However the power of model derives from its

recursive nature. Each Si consisting of an operational element and it's management

unit is expected to develop a similar VSM structure, consequently, the structure of the

systems is open ended in both directions and may be pursued either upwards to ever

98

wider encompassing systems or downwards to ever smaller units. However, at each
level the same structure of systems would occur although their detail would
necessarily differ depending on context. This recursivity allows each level in the

organization relative autonomy bounded by the overall purpose of the system as a
whole.

As mentioned before, the VSM identifies the necessary communications, control and
management required for any type of system to remain viable. However, the concept

of autonomic computing is to make systems viable without human intervention,

which means that systems should manage themselves. This also means that systems

should know how to react to changing environments and failures, how to recover
from these failures and heal themselves. Therefore from the autonomic software

viewpoint, the VSM should serve as a model or type of pattern language for

autonomic software development.

7.1.2 Viable Pattern Language

In order to express a Viable System as a pattern language, Herring proposed nine

patterns that form the viable pattern language [61]. He classifies these patterns as

general patterns: Separate Control (1), Recursive Compositions (8), and

Homeostatic Loop (9), and behavioral- structural patterns: Operational Control (2),

Regulatory Centre (3), Sporadic Audit (4), Adaptive Control (5), Supervisory

Control (6), and Alerts (7). The motivation behind this work is the need to design,

and maintain a broad class of software systems, namely, those that must operate in a

dynamic environment and interact with humans. The overall goal of using the VSM is

to achieve the quality of software viability. Viability is the quality a system has if it

can maintain a separate existence - survive -within its environment.

Implementation of these patterns does guarantee the viability of the system, but to

build an autonomic system with self-organizing, self-healing features requires more

than that. The next section describes how our pattern language contributes to the

development of such systems.

99

7.2 Pattern-Oriented Software Architectures for Concurrent &

Distributed Systems

Many pattern languages exist today. Some support the creation of specific types of

software, such as pattern languages for networked and concurrent computing [97] and

enterprise application architectures [98]. Others focus on a particular problem area of

relevance in software, such as handling erroneous user input [99], designing user-
friendly interfaces to computer and information systems [100], or to make systems

viable as described in a previous section [61]. Yet there are other key areas where

software researchers and developers expect future pattern languages will be

published. One of the areas where the new wave of the patterns are developed and

published is in the area of distributed systems development, such as developing

service-oriented architectures for web services [101] and flexible self-service

applications [69].

An increasing number of patterns are associated with middleware frameworks for

distributed services and flexible distributed applications have been documented

during the past few years [102] [103]. The next key step is to document the patterns

that will come as an additional layer of the existing middleware frameworks (Fig: 7.

2).

0

COMP'ONENT

Figure 7.2: Patterns used in Distributed Middleware Frameworks [1021

100

Taking existing work under consideration, the aim of our work was to document such
a language that would help software developers to create the additional layers
between the middleware and application layers. Some of the patterns described in our
work will match with existing patterns for middleware frameworks, and also with the
patterns that were documented for viable systems. But we believe that this new
pattern language will give general guidelines to autonomic software developers, as it
describes all the necessary components for a framework that offers not only viability
and self-healing of the system but also the ability to discover and assemble distributed

services on demand according to a user's requirements.

7.2.1 OSAD Pattern Language

Any computing system that has one, or all of the following features: self-configuring,

self-optimising, self-protecting and self-healing can be characterised as an autonomic

computing system (Sec. 2.6). Self-healing behaviour is the one that the On-Demand

Service Assembly and Delivery (OSAD) model currently implements. Therefore this

work contributes to the development of autonomic software.

To do so, the system should have some built-in knowledge or the ability to monitor
the operational environment and to learn, to recognise changes and plan how to react

to those changes in the environment.

We have used the VSM as a design blueprint for the Impromptu framework including

the middleware application services, that is, for creating the On-Demand Service

Delivery, as evidenced by the proposed Self-Healing software pattern language that

will contribute to the development of autonomic computing systems. Viability can be

defined as the quality an autonomic system should have to maintain a separate

existence and to survive in a changing environment. To achieve this, in Impromptu

software framework development the software should have the ability to Lookup (1)

the required services in the surrounding environment. It also should have a function

for Registering (2) itself and services in this environment and Discovering (2) those

services that are offered and registered in the lookup service at the current time. The

system should know how to Invoke (3) the services that were discovered. All the

events and functions should be monitored and managed by a Control and

Monitoring Service (4). In addition, to make the system autonomic means

implementing it with Self-Healing (5) behaviour and consequently the system should

101

have some intelligence. Intelligence can be obtained from the Meta Information

submitted by users or generated by the system itself during its life cycle. Finally, the

system should have the Task Assigned (6) to perform the way the user wants the

system to perform.

All the above listed patterns correspond to the system types that guarantee system

viability. Therefore, we merged each of them to a particular system type of the Viable

System Model. The figure below shows the pattern language for On-Demand Service

Delivery and Self-Healing software based on the VSM. Each pattern with its

corresponding system type will be described separately in the following sections.

/ Task
Assignme

nt
Poll

/ Healing
(Intelligenc

/e

// c\

2
Control

II

\\ /Iw
Q
:3 Monitod

/\10 ng 0
\\ 1J /

\\i Registration I // \\I
Discovery

Invocatlon /

N

Figure 7.3: OSAD Pattern Language

7.3 Lookup Service (1)

...
Any organisation that consists of an operational element

controlled by management process is in contact with the

Operational Environment.

fff

The service provider advertises the service and the client requests the

service. Therefore, the middleware service or "broker" requires the

102

provider to publish the service and for the client to discover the

required service and use it.

The Problem:

It is now clear that any organization, or in this case, computing system should have an

operational element in contact with an operational environment controlled by a

management entity to remain viable. In addition, for on-demand and self-healing

software, the operational environment requires has access to, a Lookup service. The

latter will form a registry service for all published and available software services (be

it centralised or decentralised), from which clients can look up (search for required

services).

The Solution:

When building an application or middleware service to support

Impromptu on-demand discovery and delivery of services, use an

existing or develop your own, lookup and broker service.

Examples:

Good examples of such a Lookup service are the Reggie service found in Jini

middleware [22], and the Naming Service from CORBA services [16].

The diagram shown below illustrates the Viable system one (S 1), which consists of an

operational element controlled by a management process and in contact with an

operational environment that consist of a number of Lookup Services.

Y'
C^,

WC
CJ

ýC
J2

C
W

C
O

J` (2 J

Q

JO

Operation

Control

103

fff
A Registration (2) and Discovery (2) services are necessary to extend the Lookup
Service.

7.4 Registry and Discovery (2)

... Lookup Service (1) enables service providers to register
the service and for the client to discover the desired one.

fff

All published services should be registered with the lookup service

and clients should be able to discover services by searching the look

up service.

The Problem:

Having the Lookup Service in place, service providers need to implement method

calls to locate a lookup service, both to publish (register) their services and to

discover other registered services from the lookup service. As such, assume that a

service provider can act as a server and a client.

The Solution:

When developing application services and distributed applications

they must implement methods calls for discovery, service registry and

service discovery.

Example:

Examples can be found and supported by both Jini and CORBA middleware.

The diagram below shows the System One of the VSM. The Registration and

Discovery services are presented as operational elements of this system type.

104

fff

After the Services are discovered, the Service Invocation (3) methods are required to

make of use of the services.

7.5 Service Invocation (3)

...
Having Discovered (2) the required services, the

execution of the service should take place.

fff

Services should be invoked in order to make use of them.

The Problem:

After the service is discovered, the main problem the system will face is the

invocation of that service. Although many existing technologies offer this type of

service, it is still difficult to define a generic pattern for Service Invocation for a cross

standard invocation protocol. For instance, for clients to invoke a given service they

need to know the invocation method name and attributes including location. Thus for

ubiquitous and automated on-demand service invocation (see self-healing) a cross-

standard invocation method is required. The most generic way to describe the

implementation of this method will be to request the service provider to register the

service and provide a meta-description of the service. Such a meta-description

105

document should be encoded in an open standard language containing for instance;

the service signatures, such as: port, host and invocation method. With such an open

standard service description can then be automatically used by the Service Invocation

component to invoke the service.

The solution:

When building the Invocation Service for the On-demand Service

Delivery, software needs to implement method calls to access the

meta-description document of a considered service, which can be

parsed and invocation parameters passed to the invocation method

call.

Examples:

Many technologies support the invocation of service like Java RMI, Jini, UDDI, and

Bluetooth SDP, which often provide APIs for the invocation of their native services.

For instance, as Jini service invocation is based on the Java RMI protocol, this

requires a client to know the method name. This requirement is met if the service is

discovered together with its meta-description document encoded in XML. This is

similar to the web services protocol. Though, it requires further development to

support automated service assembly and generation of invocation code to fully

support the on-demand service provision and self-healing [104] [105]. The figure

below illustrate a VSM-style representation of the invocation service.

w (0
E 23

LO CJ
Jý

w1

C
Q

ä
a

J

1

Operation \

Registration

Discovery

invocation

fff

Control

106

As the operational elements of the VSM are in place, the system can maintain its
viability and some level of autonomy. Now the software should Monitor and
Control its Service (4).

7.6 Control/Monitoring Service (4)

Service Invocation (5) brings the service to life in an
Operational Space. They need to be monitored and

controlled.

fff
In order to detect runtime service failure, each service or service
group must be monitored.

The problem:

For the system to maintain its efficient and optimal operation, continuous monitoring

and control is required. The control service should look after the operations of the

process. In biological systems, this is called autonomic regulation and permits living

systems to automatically maintain stability, e. g., to breath, to walk, to maintain heart

rate. However, the Control/Monitoring Service of the autonomic software system

requires more than just autonomic regulation. In biological systems the brain does not

need to know how to plan regulations, but in computing systems this knowledge is

necessary. If the system has meta-knowledge it can monitor and deliberate on the

state and repair of the operational element when required. This will underpin the

support of self-organisation, self-healing and/or self-governance.

The Solution:

Build the software with a control mechanism. Create a process or a

set of processes under this control. Provide specific control knowledge

to monitor and act in the event of any inconsistency that has been

detected, such as failure or performance degradation.

The control mechanism should be responsible for the management of the overall

system including; meta-services and applications. Therefore when designing and

building such a mechanism ensure that this mechanism contains a monitoring

capability or can access monitoring measurements.

107

Example:

A good example of a Control mechanism implementation would be the work done by
Badr [8]. This work described all a details of building the control mechanism for
viable autonomic software.

The following figure shows the S3 of the viable system representing the Control
Mechanism for the autonomic software. The Control system is in relationship with
the present operational elements and the operational environment.

fff
Having the Control Service in place together with its monitoring facility, the system

requires a Self-Healing Mechanism (5) to provide self-adaptive capabilities.

7.7 Self-Healing Mechanism (5)

If the Control/Monitoring Service (4) detects any failure

of the service, the system should be able to recover from the

fault with minimal external intervention.

fff
The system should be aware of its structure in order to perform self-

healing.

The problem:

108

Due to either unexpected changes in the environment or unpredicted systems failure,

the system is required to adapt to changes by, for instance: evolving to match the new

environmental states, or repair its structural model to re-establish lost functions. Not

may software systems can provide such self-healing functions and this is currently

performed by human designers and/or systems administrators. But the purpose of the
language we are offering is to reduce human interaction and to increase the autonomy

of the software by providing self-healing behaviour.

The self-healing mechanism should provide the ability for the software "to scan" the

environment for trends that may be either beneficial or detrimental to the organisation

and construct developmental organisational plans accordingly.

The Solution:

The Self-healing behaviour is implemented by scanning the

environment and the systems behaviour and triggering repair action

when required.

Building a self-healing, adaptive controller has been the subject of some recent

research work such as: Badr [8] and Herring [61]. The figure below demonstrates our

view of the self-healing mechanism fitted as S4 of VSM.

fff

109

Task Assignment (6) serves as a kind of policy-driven job allocation service.

7.8 Task Assignment (6)

... Self-Healing Controller (4,5) can not make the system
autonomic or viable if the system is not aware of the task to
perform.

fff
Even an autonomic system will not start functioning without task

allocation and execution. The system should have access to the users'
requirements model.

The problem:

The problem is to be able to set high-level goals to solve or undertake a specific act.
This is often a difficult task often performed by human users. Thus, human users must

set the goals and directions of the system. Another problem is how to make the

system aware of human needs.

The Solution:

Design a mechanism, language or user interface to enable the dialogue

and/or input of the systems policies including permissions and

authorisation and the specification of goals and tasks.

At the highest level, task assignment is the domain of humans and is accomplished

via a human-computer interface. It can be implemented via an appropriate GUI

including multi-modal user interfaces (eg speech and sentient interfaces).

The diagram below represents the S5 of the VSM that from our point of view matches

the Task Assignment pattern.

110

fff
This pattern completes the sequence of the viable system model. Therefore it

completes the sequence of the On-Demand Service Delivery and Self-Healing

Software Pattern language too.

7.8 Summary

This chapter described six patterns that form a pattern language for autonomic

software development. In addition to this, the Viable System Model was used as a

model to describe the pattern language, as it offers a conceptual blueprint for the

design of self-healing, autonomic software.

Each pattern was described separately using the Alexander pattern description style,

to give software developers a wider choice in the technologies and programming

languages to use in systems development. The widely used Gamma design pattern

style would require tying the patterns to a particular programming language, which

was not the intended purpose of this work.

Chapter 8

Evaluation

8.1 Introduction

This chapter presents an evaluation of the on-demand self-healing software
framework described in this thesis. The evaluation of such a model and associated
software is not an easy task, as there is no straightforward way of evaluating
distributed applications with ad-hoc self-healing capabilities, nor are there any clear
metrics or accepted benchmarks.

The remainder of the chapter outlines the evaluation methodology, before

undertaking a quantitative and qualitative evaluation of the work. Finally, the chapter

concludes with a critical analysis and general discussion of the results.

8.2 Methodology

The evaluation has been designed to demonstrate the use, and effect of the

implemented self-healing capability of the On-Demand Service Assembly and

Delivery (OSAD) model from both qualitative and quantitative perspectives. In other

words, we will analyse the effect of the self-healing behaviour on the prototype

software performance overhead, which is, for convenience restricted to only

processing time.

8.2.1 Objectives

For the purpose of the evaluation, we have developed two test example applications

using the OSAD framework, namely: sorting algorithm services and home appliances.

In each case we compare the prototype software system performance profile with and

without self-healing behaviour. For instance, we use elapsed time taken to sort a

given array and we measure the applications performance profile with and without the

self-healing behaviour [106]. The "performance profile" is here used mainly to

indicate singularity points, for instance, when the autonomic behaviour has taken

place. Hence, the evaluation is not designed to perform a performance analysis or a

112

comparative analysis of the chosen sorting algorithms. To this end, and in line with
the OSAD model, we developed each of the chosen sorting algorithms as a separate
OSAD services that will be discovered and executed at runtime, including after
failure has been detected - the triggering of the self-healing process. Finally, we
describe the evaluation from a qualitative perspective too. This evaluation will use a
set of metrics including:

Stability: this is one of the most important metrics for software with self-controlling
behaviour. The system is stable if its responsiveness to control rules is in a desirable
interval. In our case, the system is stable if its responsiveness to the service failure

and self-healing time is in an allowable time range.

Time Performance Profile: this measures the amount of time taken by the system to

complete the whole process, and in which the value of the self-healing time is within
the desirable range.

Average Latency: this measures the average time required for the system to start up
the self-healing process.

8.2.2 Approach

Although this evaluation is not intended to be a formal performance evaluation of our

OSAD model and its associated software, nevertheless, we use elapsed time as a

performance profile metric to outline the effect and overheads of ad-hoc self-healing

capabilities on systems' performance.

For calibration purposes, prior to the evaluation, a range of preliminary experiments

have been conducted including:

" Running a number of trials to measure and determine the efficient operating

range, tolerance and control rules applicable, for instance, to the sorting

algorithm services.

" Defining upper and lower performance limits for given applications, which

will provide some type of knowledge, for instance, to guide the system to

perform self-healing to maintain a specified overall system performance.

113

" Measure the self-healing latency time, which is used as a nominal time
tolerance measure.

8.2.3 Overall Settings

As described in Chapter 6, the prototype applications used for this evaluation were
designed in line with the OSAD model and extending Jini middleware. So, all of the
OSAD services were developed as an additional layer between the Jini middleware
and the applications layer. The Assembly Service and Operational Service of the
OSAD model guarantees the service on-demand delivery and assembly, but the
System Manager is responsible for triggering or initiating self-healing following
system failure detection (Fig. 8.1). A detailed description of the design and
implementation of the OSAD model is provided in Chapters 5 and 6.

Applications Services

OSAD Srvices

I'l II iýi r_ II

Virtual Container

nll nr. ill n ä
I

Service Description
Virtual Container

Invocation n

JIM Middleware Services

Figure 8.1: The architecture of the OSAD model

8.2.3.1 Example Applications

For this evaluation, two different user applications have been developed, which are

sorting algorithms and the home appliances application. In particular, the sorting

algorithms scenario is based on the use of three main sorting algorithms, namely:

Bubble, Quick and Insertion sorting algorithms [107]. The home appliances and the

software services application are here used specifically to evaluate the performance of

114

the system when it is under high load. Each of the example applications is evaluated

using the following scenario:

9 The user submits a task, which is translated into an XML document by the

system.

" This document is parsed and the information is passed to the Discovery

service, which is one of the sub-services of assembly service. Discovery of the

required services is done by the Discovery service.

" It is assumed that distributed services are registered and discovered with their

additional description files written also in XML. The invocation service can

parse this document thereby providing meta-information about the service and

obtain the invocation method. Then the required service is invocated using

Java RMI. At the same time the service is put into one of the virtual containers

of the Operational service. This procedure will be performed for each required

service.

9A new XML document will be generated by the Assembly service for each

Virtual Container and describes the assembly structural model (composition,

and the list of all the member services (component services)).

" The Monitoring service monitors each virtual container and in the case of a

detected failure in one of the services, sends a failure notification event to the

Service Manager using the Java remote events model.

0 The Service manager triggers a recovery process via the discovery and

binding of an "equivalent" to replace the failed service. The discovery and

invocation are performed by the assembly service as before. Then the service

manager performs reconfiguration of the new application.

The sequence of actions carried out for both of the example applications are as

follows:

0 For each task a user submits for execution, the Assembly service provides the

following services:

Discovery - using the Jini LookuDiscovery method, with the service

name parameter.

115

Invocation - by parsing the meta-information document that comes with
the service. In a simple service case just by obtaining the invocation

method, or in complicated cases by using the Java Reflection API [67]
in order to obtain the invocation method. Finally, the invocation is

performed using Java RMI [108].

Configuration - by placing the services from the same group on one of the
Virtual Containers.

" Each Virtual Container is monitored and in case of the failure of one of the

services the remote event [6] with the name of the failed service is sent to the

System Manager to start the recovery process.

" When the remote event notification of failure is sent, the system starts the

recovery process that evaluates the self-repairing, self-healing process.

9 The elapsed time for each recovery process is measured and compared with

previous measurements (to ensure that all results are in the acceptable range).

The metric unit used to evaluate the self-healing (runtime recovery) process

efficiency in OSAD model was time in milliseconds.

9 The average latency is also used to monitor the system performance as a

whole.

8.2.5 Environment

The evaluation is performed using an XP 1800 Athlon (tm) - 1.5 GHz processor with

261 MB of memory, and running MS Windows XP operating system and connected

via Ethernet. The example applications and the OSAD model were implemented

using the Java programming language (JDK 1.4), and Jini 1.1 middleware.

8.3 The Quantitative Evaluation

This section provides a detailed description of the Quantitative Evaluation of two

different example application scenarios, namely: The Sorting Algorithms and Home

Appliances. At the end of each Scenario the evaluation results are presented.

Performance of failure detection mechanism is also described in this section.

8.3.1 The Sorting Algorithm Services Scenario

116

Sorting algorithms are generally recognised as an important benchmark in scientific

and commercial applications [109]. For this evaluation, we have chosen three well
known sorting algorithms namely: Bubble Sort, Quick Sort and Insertion Sort, each of
which is developed as individual Jini software services.

In this experiment, we run the application 15 times for each sorting service
(algorithm), each time we increased the size of the randomly generated arrays. Then

the time for service invocation plus sorting was recorded (Table. 8.1). The experiment
is outlined as follows:

" Each sorting algorithm was implemented as an individual Jini service
(BubbleService, QuickService and InsertionService). All services are

registered in the lookup service.

public void register() {
BubbleService bs; //(QuickService cs, InsertionService ins)
LookupLocator lookup;
Entry[] attributes;
JoinManager joinmanager;

try {

attributes = new Entry[2];
attributes[O] = new Name("BubbleService");

attributes [2] = new
Comment ("http: //crosegris: 8080/userdoc/ServiceDescription. xml");

bs= new BubbleService();
joinmanager = new JoinManager

bs,
attributes,
bs,
new LeaseRenewalManager ()

);
}catch (Exception e)

{
System. out. println("server: MyServer. main():

Exception + e);
}

Figure 8.2: The registration method for sorting services

" The array size was initialised in the experimental application by calling the

getArrSize () method (Fig 8.3).

117

public int getArrSize(){

int array_size = 0;
try{
array-size
integer. parsInt(sortingAlgFrame. jTextFieldl. getText();

}
catch(Exception e)
return array size;

Figure 8.3: The initialisation process of the array size

" The sorting method for each algorithm was implemented as an invocation

method for the corresponding Jini service (BubbleSortO, QuickSortO,

InsertionSort() (Fig 8.4)). A randomly chosen size of array was passed for

sorting and each service was invoked separately. Figure 8.4: Invocation

methods for three sorting services

// Invocation method for Bubble Sort Algori
void

a. length-1; j >3.; j--)
{

?. -, a[j-1] > a[j])
T= a[j -1];

Gj]=T;
}}}

11Invoca Lion method for Quick Sort A1grori thm

pk irr. void -Q313 4ý3r.. a[]. left, 33ý right) {

//implementation of the method

,.
(. left < hi

Q. L{. QýSS a, left, hi);

lo < right
Q'r} Ck. S. g. ,(a,

lo, right j.
}}

void swap (j a[33 J)
{

itT;
T= a[

.
];

[J] = T;

/ Invocdtion method for Insertion Sort Algorithm

void 33r. x 4.. Q 3nß $[]7 {

Pax (1,1m; ,i=1; ,i< .ý 2SCSI? %)
{

tx value =a[7;

j >= 0 && a[J 7> value; j -- }

{

.
gj

}
[j+l] = value;

}?

118

" The time in milliseconds for the service invocation and sorting was measured
in each case. The elapsed time was calculated by the difference between the
initial time and final time measured by the System. currentTimeMillis ()
method of the service invocation and sorting process respectively. Figure 8.5

shows an example calculation of the elapsed time of the BubbleSort service.
The elapsed time for other services is calculated the same way.

long startTime = System. currentTimeMillis();

classifier. BubbleSort(array size);

long endTime = System. currentTimeMillis();

int elapsedTime = (int)(endTime-startTime);

Figure 8.5: An example of calculating the elapsed time for the service invocation

and the sorting algorithm

" The calculated elapsed time is used to identify the boundary range and

algorithm intervals. This is necessary to show the efficiency of those three

services working together and to generate the control rules for the control

mechanism [8]. For each algorithm, the measured elapsed time indicates the

time performance profile and thus the efficiency boundary of each algorithm.

So the measurement of the elapsed time is used as a measurement metric to

generate the time limitation for each sorting process. As soon as one service

reaches the limitation another service is required to be invoked. For the

purpose of the experiment and evaluation it is assumed that the limitation of

one service causes a failure. So, in order for the system to continue

functioning the other service should be found and invoked.

" At this point, the Service Manager is sent an event notification (using a Jini

Remote Event) of which service is required to be invoked. The system does

the service discovery through the service name and then invokes this service.

This process involves the following steps:

* Discover the service by name

* Get the location of the service description XML document

* Parse the document and get the invocation method

119

* Pass this method to the Invocation Service

" The latency (elapsed time) for all these processes is calculated using the same
method as described in step 4, where we were calculating the elapsed time for
each service separately, e. g.:

int latency = (int)(endTime-startTime);

8.3.2 The Experimental Results

The experimental results are presented as follows:

" The number of elements being sorted in a given randomly generated array.

" The same size of array took different time to sort by each sorting algorithm.

The results shown in Table 8.1 illustrate that the processing time increases and the

system slows down as the array size increases. So, we ran the experiment for each
service to find the ideal choice of an array size for each service. During the

experiment we have discovered that when the array size is too small no useful
information is elicited (such as zero or a very small number). With too large array

size the time for the service running is too long. We have picked different sets of

array sizes for each different service. These are the cases when the service running

time is not zero or too long. The results for all services are shown in the following

table:

Bubble Sort
Service

Array
(size)

Time
(ms)

1500 20

3000 31

4500 90

6000 150

7500 200

9000 311

10500 401

12000 541

13500 761

Quick Sort
Service

Array
(size)

Time
(ms)

20000 10

40000 20

60000 30

80000 40

100000 50

120000 60

140000 70

160000 81

180000 90

Insertion Sort
Service

Array
(size)

Time
(ms)

200000 20

300000 50

400000 70

500000 81

600000 90

700000 100

800000 131

900000 141

1000000 150

120

15000 951

16500 1052

18000 1302

19500 1332

21000 1545

22500 1793

1100000 260
1200000 280

1300000 300

1400000 210

1500000 250

1600000 331

Table 8.1: The calculated elapsed time for three different services

The Figures 8.6,8.7 and 8.8 show a linear scale of the time performance profile as a

function of the array size (where the x-axis is the array size and the y-axis is the time

in milliseconds).

2000
1800
1600

1400
d 1200

1000
800 `

E 600
400
200 , --r

0

Array Size

200000 100

220000 151

240000 210
260000 220
280000 260
300000 271

Figure 8.6: The elapsed time for the Bubble Sort Service

Figure 8.7: The elapsed time for the Quick Sort Service

121

Figure 8.8: The elapsed time for the Insertion sort Service

As expected, during the experiment it was noticed that the running time for each

service dramatically changes when the size of the array increases. For instance, for

the Bubble Sort the suitable dataset interval was from 1500 to 20000, for Quick Sort

was from 20000 to 200000 and for the arrays that have more than 200000 elements

Insertion Sort Service running time was the shortest.

This feature is exploited to test the self-healing property, that is, the performance drop

of a given search algorithm will trigger the recovery, i. e. the self-healing process. To

this end, we have implemented a set of QoS rules (policy) to trigger the self-healing

process [8]. This means, for instance, if the size of an array exceeds 20000 elements

then the Service Manager will decide to switch the sort algorithm from the Bubble

Sort to the Quick Sort algorithm by invoking the QuickService, then the system

continues its operation. To measure the system latency due to self-healing, two

starTime and endTime are invoked to measure the start and end clock time

respectively of a given self-healing process. This is implemented as follows:

" The discovery process based on Jini discovery with the extensional method to

find the service description XML document takes place. On top of the

discovery we retrieve the service attributes from the service registry (Fig. 8.9).

Each service is registered on the lookup service with attributes to tell the

system about the location of the XML document.

122

Public String XmlDocLocation(){
try {

entries = new Entry[2]; // set of attributes

entries =template. attributeSetTemplates;

String nameAttribute = entries[0]. toString();
String xmlDocLocation = entries[2]. toString());

return xmlDocLocation;
} catch (Exception e2) {
e2. printStackTrace();
}

Figure 8.9: Retrieving the location of the XML service descriptional document

" The XmlDocLocation () method is called by the java parser class and the

XML document is parsed in order to get the name of the method invocation

(Fig 8.10).

document = builder. parse(xmlDocLocation);

NodeList mNameNodes =
ServiceDescriptionNode. getElementsByTagName("MethodName");

if (mNameNodes. getLength() !=0){

Node MethodName = mNameNodes. item(0);

String methodname =(MethodName. getChildNodes(). item (0

. toString ()) ;
}

Figure 8.10: An example of getting the invocation method name from an XML

document

" The final step is to pass this method name to a service invocation service that

acts as a Jini client [83].

To measure the self-healing process elapsed time, we implemented an example

application as described above and ran it 15 times. Each time we passed a different

size of array for sorting. The results are shown in Table 8.2:

123

Array Size Time (ms) Invoked Service
500 20 Bubble Sort

2500 50 Bubble Sort
5000 70 Bubble Sort

15000 30 Quick Sort
18000 40 Quick Sort
20000 50 Quick Sort
100000 80 Quick Sort
150000 90 Quick Sort
200000 50 Insertion Sort
250000 60 Insertion Sort
300000 80 Insertion Sort
350000 90 Insertion Sort
1000000 180 Insertion Sort
1500000 280 Insertion Sort
2000000 381 Insertion Sort

Table 8.2: The sorting process is performed with the Service manager invoking

different services at run-time

As shown in Table 8.2, using the QoS-like rules when the array size was greater or

equal to 15000 elements, the self-healing middleware switched the sorting algorithm

from bubble sort to the quick sort service. But when the array size was 200000, the

insertion service was activated. Thus, without the self-healing capability the system in

case of overload (reaching each service's limits), would either slow rapidly to a halt

or would crash instantly.

The following diagram shows the sorting process with and without system self-

healing behaviour.

124

B (ý

1800

1600

1400

1200

1000

800

600
fI

400

200 " -_
r

I

-"- -- BubbleSort =B
 " QuickSort =Q

= -ý InsertionSort =I

-a Sorting with Self-healing behaviour

O

0 200000 400000 600000 800000 1000000

Figure 8.11: Comparison of the time performance profile in the application with

and without Self-healing behavior

As can be seen from the diagram, regardless of array size, the system continues to

perform smoothly without failure. Moreover, the overall time of the system self-
healing performance, including the sorting time, is less than 200 ms.

Although this example application does not represent a real case scenario,

nevertheless it still demonstrates that if the system is informed of how to behave in

critical situations, it can perform self-healing and avoid a crash without human

intervention.

8.3.3 Home Appliances Scenario

In this experimental application we evaluate the performance of a system with a

variable scalability profile. Here we increase the number of activated services,

concurrent application services, and different types of applications running in

separate virtual containers. As described in Section 6.6, for the home network

application prototype, four Jini services were developed, which represent four

networked appliances namely: a clock, a lamp, a toaster and a kettle.

For the experiment, the application was run in different situations:

" With self-healing behaviour and without failure of the service in four different

cases:

o Only one service (a clock) was required to be found and invoked.

125

o Two services were required (a clock and a lamp) to be found and
invoked.

o Three services (a clock, a lamp and a toaster) were required to be
found and invoked.

o Four services (a clock, a lamp, a toaster and a kettle) were required to
be found and invoked.

9 To understand how the system would react to service failure and at the same
time how efficient and effective it would be in different scales, we
deliberately forced a failure of one service (say a clock) and measured the
time for recovery for situations when:

o Only one service (a clock) was running in the system.

o Two services (a clock and a lamp) were running in the system.

o Three services (a clock, a lamp an a toaster) were running in the

system.

o Four services (a clock, a lamp, a toaster and a kettle) were running in

the system.

As described in previous chapters, the Impromptu application was developed with the

ability to allow users to run a number of concurrent applications in different virtual

containers. It is predictable that when the load increases the performance will drop.

To assess system scalability in this situation, we have run the home appliances

application and monitored the system performance in five different situations

including;

9 The application in Container 1 when there are no other services running in

other containers.

" The application in Container 1 when there are five services running in

Container 2.

" The application in Container 1 when there are ten services running in

Container 2.

" The application in Container 1 when there are fifteen services running in

Container 2.

126

" The application in Container 1 when there are twenty services running in
Container 2.

8.3.4 The Experimental Results

To evaluate the scalability of the system using the above described experimental
scenario, we compared the time overhead of the software system with self-healing
and without failure (i. e. just discovery and execution for the first time) against the
elapsed time with failure (i. e. time for recovery). Moreover, the elapsed time was
measured for different numbers of services (Fig. 8.13). This means we have
performed the comparison on the same set of experimental values for the system with
and without performing self-healing. Additionally, the measurement is performed
when the applications are running on different virtual containers.

F-

12
11
10
9
8
7
6
5
4
3
2

0

1w

4" , ,...

" Without Self-
Healing

 With Self-Healing

1234

Number of Services

Figure 8.12: Comparison of the elapsed time for service delivery with and

without self-healing

Figure 8.12 shows the experimental results of comparing elapsed times for the system

to perform the discovery and execution of required services and self-healing when the

number of those services increases. The x-axis represents the number of required

services and the y-axis shows the elapsed time in seconds. This is the time that is

taken for the corresponding number of services to be found and executed.

The dotted line represents the time for discovery and execution, initially, without

self-healing, while the solid line represents the same time where the self-healing of

the system is involved. The graphs are almost parallel because they represent the time

127

measured for the same number of services with the same attributes. The difference
between them is the time that the system takes for failure detection and for the
notification to be sent to the services manager to start the recovery process.

4.5
4

3.5
V3
Qi

2.5
au 2 E

I
0.5

Ü

05 10 15 20

Number of Services Running on Container 2

Figure 8.13: Elapsed time for the application to be executed

The results of the experiment for this scenario can be summarised as follows:

" The results show that the system consumes more time in conflict (service

failure) occurrence situations. However, it is possible to manage the actual

recovery time by adding the self-healing feature to the system. It would be

difficult to eliminate the recovery time without this feature.

" The experimental results show that the difference between the calculated time

of the application with and without self-healing is still reasonable. A large

overhead is not added to the running system, as the time increases with

increased number of services with and without the additional self-healing

feature.

" The comparison between the system not performing and performing the

failure detection and self-healing shows that the system continues processing

even in the event of conflict (service failure) by managing itself at run time.

Without such a feature, the system would need to be shut down or could crash.

Conceptually, to measure the effectiveness of our approach, we examined the average

latency (the elapsed time that is required for the system to operate) of the system with

the self-healing feature to determine the length of the delay because of this behaviour.

128

10
9
8
7
6
5
4
3
2

P roc es s Latency for
Self-Healing

0
134567

Number of Processes

Figure 8.14: The average latency for self-healing processes in Home Appliances

example

Figure 8.14 shows the average latency for the self-healing process in the Home
Appliances example. To calculate the average latency different cases of the self-
healing process were run and monitored a number of services, each case was
different, chosen randomly. We measured the time without self-healing and with self-
healing behaviour of the system for the same number of services in seven different

cases. Experiment showed that the time taken for self-healing is between 7 and 8

seconds meaning that latency is not more than 1 second, which is acceptable.

8.3.5 Performance of Failure Detection Mechanism

As mentioned in Chapter 4 for failure detection two mechanisms that we put forward

for consideration are: Pre-emptive detection and On-use detection. With pre-emptive
detection, the system manager checks, on a regular basis, that each of the services

associated with the application is alive. If a service fails to respond to the service

manager, it is assumed that the service has failed and the recovery process is started

and the system manager then notifies the assembly service. With the on-use detection,

the system manager monitors locally the service requests and, if a request times-out,

it is assumed that the service has failed and the recovery process is started and the

system manager then notifies the assembly service.

The performance considerations in this work relates to how these two mechanisms

impact on service replacement waiting time and on network traffic. The notion of

service replacement waiting time is important: It is the amount of time the application

129

is prevented from using the service, because the service is found to have failed and is
being replaced. The main advantage of the pre-emptive detection is that, as the
system manager periodically polls the services, services may be found to be faulty

prior to the moment when the application would wish to use them, therefore they can
be replaced with zero replacement waiting time.

On the other hand, the pre-emptive mechanism, although reducing the replacement
waiting time, generates more network traffic, which may lead to congestion if there

are large numbers of applications and services being used by these applications.
Qualitatively, the relative merits of pre-emptive detection and on-use detection are
quite clear: With pre-emptive detection, services are monitored regularly, potentially

enabling the application to detect a failure prior to the moment when the service

would be invoked: Therefore, replacement of that service can be carried out before

the service is required for use, so no delay is incurred. However, on closer inspection,

the design of such a mechanism is difficult to optimise: If the monitoring frequency is

too high, then the system may generate high overheads and network traffic. If the

frequency is too low compared to the component failure rate, then it may not be

effective, by not detecting faults in time to replace components prior to use. On the

other hand, the on-use detection is a simple model that does not attempt to reduce

component replacement delay: It assumes that the component is alive and working,

and invokes the service when it is required. If the service is down, then the failure is

detected, and the recovery process is initiated, and the full service replacement

waiting time is incurred.

Even though it is easy to argue the merits of the pre-emptive detection mechanism,

quantifying the benefits is not straightforward. In addition to the added complexity of

the system, which increases when there are many services in a network and many

applications using them, and also the fact that services may be scattered across

internetworks, there is the problem of modelling components failure behaviour and

service use behaviour.

According to some well-known models available in the literature, component failure

frequency follow the bathtub behaviour [117], [118].

130

u)
cu of
a) L

LL

Co

L
U
C

The Bathtub Curve
Hypothetical Failure Rate

versus Time

Infant Mortality End of Life Wear-Out
Decreasing Failure Rate Increasing Failure Rate

Normal Life (Useful Life)
Low "Constant" Failure Rate

Time

Figure 8.15: The failure rate of a component over its lifecycle

This is the failure rate through the life cycle of a component. In normal conditions,
we would be considering components with a fixed failure rate, which is often referred
to by its inverse, the Mean Time Between Failures (MTBF). It is at this stage that we
would consider the components of a service-based application to be operating. Failure

can be caused by a variety of events: Machine crash, software error, network
disconnection, device hardware failure, etc.

At the constant failure rate stage, inter failure intervals may be modelled according to
different distributions. The use of the negative exponential distribution has been

proposed in the literature, [117] [118] and we have used it in our model.

8.3.5.1 The Experiment

The experiment consists of simulation of a distributed, service-based application,

where services fail according to some failure rate (different rates for different

services), and following the negative exponential distribution. We make the following

assumptions:

When a service fail, if pre-emptive detection is used, the service is replaced by

another service providing similar functionality, according to the self-healing

behaviour provided in the OSAD model. Overheads are incurred for replacing the

service. Once a service that failed has been replaced, the replacement service is

subject to failure at the same rate.

131

If on-use detection is used, we assume that the service remains down after it fails,

until an attempt is made to invoke it: As the failure has not been detected by the
application until an attempt at using the service takes place, the service is then

unavailable.

In order to understand the type of scenario in which each of the above strategies are
suitable, we selected, for simulation, two scenarios:

The first scenario is the scenario where an application consists of a large number of
services, all of which have a fairly high failure rate. This could, for instance, represent
a network of sensors and similar small devices, interconnected through a combination

of unreliable wireless links and fixed networks.

The second scenario represents a more stable environment where services are more

reliable, having lower failure rate and being connected through a more reliable fixed

network infra structure.

In addition to that, for both scenarios, we assume the application invokes the services

on a regular basis, for instance to monitor temperature, take a pressure reading or

similar action.

8.3.5.2 First Scenario

For this simulation, the following setting was adopted:

Number of Services: 15

Distribution of Interfailure Interval: Negative exponential, with mean values MTBF;,:

MTBF 1: 5 Mins,

MTBF; +1= MTBF; +5 Mins

The simulation was allowed to run for 15 hours.

Service invocation frequency: 1 invocation of each service, every 5 Mins.

For the pre-emptive detection scheme, the service manager monitors each service also

on a regular basis: 2 monitoring periods were chosen: 1 minute and 2.5 minutes.

132

90
0V

80

0 70

C 60 Q With on-use detection
d

50 With Pre-emptive detection(Period: 1 min.) . ii -w 40 - o
30

20

C 10

0 I]. FL
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

MTBF

Figure 8.16: The ratio, in percentages, of failed service invocation to total

number of service invocation, as a function of the MTBF, for a system with pre-
emptive failure detection (monitoring period =1 minute) and on-use failure

detection.

ö 90

80
0

70 Q With on-use detection
C 60
a!

50 [I With Pre-emtive detection (Period: 2.5 mins)

ö 40

30

20
L

10

0 T_ I $_MA__F_h
a

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

MTBF

Figure 8.17: The ratio, in percentages, of failed service invocation to total

number of service invocation, as a function of the MTBF, for a system with pre-

emptive failure detection (monitoring period = 2.5 minutes) and on-use failure

detection.

133

The results indicate the percentage ratio of the number of times the service was down

when invoked, to the total number of service invocation, with both schemes. As

would be expected, for a given invocation rate, the larger the MTBF, the lower the

percentage of invocations that fail. However, it is the frequency of failure monitoring,

relative to the invocation frequency, which determines the percentage of failed

services that are detected successfully. From figures 6 and 7, we see the obvious fact

that, for a fixed invocation rate, the higher the failure rate, the higher the percentage

of failed invocations. The white bars in both graphs show the same values. The black

bar in figure 6 shows the percentage of failures not detected, when pre-emptive
detection was used, with a period of 1 min. The grey bar in figure 7 show the

percentage of failures not detected, when pre-emptive detection was used, with a

period of 2.5 minutes.

8.3.5.3 Second Scenario

For this simulation, the following setting was adopted:

Number of Services: 1

Distribution of Interfailure Interval: Negative exponential, with mean values MTBF1,:

MTBF 1: 300 Mins.

The application was allowed to run for 50 hours of simulated time.

Service invocation frequency: every 5 Mins.

As in the first scenario, the pre-emptive fault detection scheme periods use were: 1

minute and 2.5 minutes.

With on use detection, the percentage of failed invocations were 1.5 %. With pre-

emptive detection, with period 1 min., the percentage was 0.68% and with 2.5 minute

period it was 1.2%.

This reinforces the conclusions from the first scenario: With very low failure rate,

compared to the service invocation rate, it is very unlikely that a service will fail in

the first place, so improvement in failure detection is relatively small by using pre-

emptive detection

134

8.3.5.4 Evaluation of the experiment

The experiment made a number of assumptions:

" Inter-failure intervals distributions were assumed to be negative exponential.
For systems where there are many possible, independent causes of failure,

other distributions may provide closer approximations than the exponential.

" Service invocations were assumed to take place at regular intervals. This

provides a good model in cases such as monitoring physical values, e. g.

temperature and pressure, or any other services that are invoked regularly.

Overall, the experiment provides an approximated understanding of the issue of

failure monitoring, and some guidance as to the range of usability of the different

schemes proposed.

8.4 The Qualitative Evaluation

This section describes a general software evaluation of the On-Demand Service

Delivery (OSAD) model. This was conducted to test and evaluate the general

functional specifications of the prototyped software and associated applications.

To this end, a number of example scenarios were conducted including: Service-

oriented software application example, Home appliances and Sorting Algorithms to

assess the model using a set of qualitative metrics such as:

" Functionality, by enabling the distributed application service to be delivered

on demand, monitored and with self-healing in the case of failure at runtime.

" Generality, by designing a general structural capability that is not bounded or

limited to any specific system or case study and not tied to any specific

programming language or technology. And also, by describing the On-

Demand Service Assembly and Self-Sealing software pattern language

" Flexibility, by reducing the complexity that could be embedded in any running

system for on-demand service delivery, execution and management.

" Extensibility, by referring to the control autonomic middleware, as it can be

combined with the OSAD model to fulfil requirements of autonomic, self-

controlling, self-healing, self-managing systems.

135

8.5 Meeting the Requirements and Hypothesis of this work

Using the stated hypothesis of the research (Chapter 1, pg. 3) and the general
requirements of the Impromptu framework (Chapter 3, pg. 41), this section will
outline the review of the framework against the specified requirements and research
hypothesis.

Req. # Comments

R-1 In chapter 6 and 8 we have demonstrated that the framework is compliant
with existing Service-Oriented Standards.

R-2, R-3 In chapter 6 we described two prototype applications namely: home

appliances and software applications examples, where we have

demonstrated that the Framework allows services to be provided, located

and used by either a user or software components. We have tested these

properties only local area network. However, all described example

applications use Jini as a supporting middleware technology and Jini

middleware services run over wide area network, therefore using our

framework it will be possible for the services to be provided, allocated

and used over the wide area network too.

R-4 In home appliances example we have demonstrated that services are not

only discovered, but also invoked. This property is also well

demonstrated in sorting algorithms example where we measured time for

invocation of each service.

R-5, R-9 The framework provides an XML-based service and application's

assembly service description document, which is automatically generated

for general service self-management purpose that is provided by the

System Manager middleware service (Chapter 6). In this chapter

(Chapter 8) the evaluation indicated a self-healing "latency" value, which

is here limited to service discovery time, meta-model (XML document)

parsing, invocation time, and application service repair - which is limited

136

to hot swapping only, that is replacing failed service by discovered

service.

R-6, R-7, Using two example applications (home appliances and software services)
R-8 in Chapter 6, we have demonstrated that the requirements defined in the

beginning of this work were met, as: the Framework does provide a

mechanism for assembly (Chap. 6); the Framework does support the

dependency definition between the services (Chap. 6); and the framework

does provide a virtual space for the services to be executed to live

(Chapter 6).

R-10, R- In this chapter we evaluated a System Manager's ability to perform a

11, R-12 self-healing process (limited to hot-swapping only), which is triggered

via an embedded failure detection (via heart beat monitor) or a request

for self-healing service often dispatched from the Monitoring middleware

Service [43]. In the current version of the Framework, the self-healing

process includes: (i) service discovery (finding and alternative service),

service hot-swapping, and update of container metamodel.

The hypothesis stated in Section 1.3 addressed three main aspects:

" Self-healing properties can be incorporated in distributed services-based

applications through a combination of suitable middleware components. The

Impromptu framework was shown to provide self-healing properties to service

based applications: This was reinforced by the case studies discussed in this

chapter, where two different distributed service-based applications were

shown to recover from failure due to the support provided by Impromptu

Framework. The Impromptu service is provided as a combination of core

middleware components (Assembly Service and System Manager), in addition

to base support from existing middleware (Jini).

" These components will provide additional functionalities to existing

middleware components. The core services provided by Impromptu are not

available in other existing middleware technology, therefore Impromptu

137

provides additional functionalities (Failure Detection & Recovery, and
Service Assemblage)

" Jini, as a service-based technology, provides a suitable service set to support
these components, which will be implemented over Jini as a proof of concept.
The Impromptu prototype was developed using the base services provided by
Jini. Jini provided base services such as registration of services, lookup
service discovery and service lookup. In this respect, Impromptu can be seen
as extending Jini capabilities.

8.6 Discussion

It is a significant challenge to produce conclusive evidence of the benefits, merits,
effectiveness, correctness and completeness of the proposed model. However, both
the qualitative and quantitative evaluations provide positive indications that the

proposed model and associated programming model seem to fulfil the defined

requirements, and are generic and flexible enough to support the rapid development

of a range of distributed applications. In particular, in this evaluation, based on a
number of experimental actions, the assembly services succeeded in finding and
invoking a distributed service and moreover the service manager performed the self-
healing of the application in a reasonable time at run time without human

intervention. This clearly indicates a degree of stability and robustness in the

software.

Furthermore, in the current version of the Framework, a basic self-healing process

validation was not provided to monitor the self-healing process itself in case of failure

and/or deadlock. This could be achieved via a dispatch call to the Autonomic Control

middleware service [110] to supervise a given self-healing process in line with

specified self-healing policies. This is an important mechanism to interrupt and/or

adjust a given self-healing process including handing the software control to the

human user in the event of abnormal system's behaviour. These issues will be

addressed in our future work (Section 9.4).

Regarding the experimental exercise in this chapter, we have learned that the self-

healing properties provided by Impromptu services can lead to improved performance

of distributed service based applications through the replacement of slow services.

138

We also showed that Impromptu's ability to provide timely recovery from failure

copes well with an increase in the number of services per application and the total

number of applications, when the total number of services and applications is not very
large. Future work will consider the scalability limitation of Impromptu in more
detail.

The decision regarding the specific failure detection scheme to be implemented by the

Impromptu system manager was also considered: Experiments were set up to

consider on-use detection and pre-emptive detection schemes, showing the relative

advantages of each. The probabilistic model assumed negative exponential
distribution of inter failure times, which has been used by some researchers.
However, future work will include other distributions in order to evaluate the impact

of specific distributions on the results. Another improvement to the experimental

work, which will be carried out as future work, will include the consideration of

variability on the time required to find a suitable replacement to a failed service. This

is relevant to take into consideration the large scale of the Internet and how services

located in very remote networks may take longer to be replaced.

8.6 Summary

This chapter presented an evaluation of the proposed approach for developing a

software framework offering self-healing middleware services. In this evaluation, we

analysed the effect of self-healing behaviour on the prototype software in terms of

processing time.

The measurement results indicated that the performance profile of a system with self-

healing behaviour is more efficient than a system without it. Although the elapsed

time to self-heal (to detect the failure and perform the recovery) the system increased

in some proportion to the number of services in the system, it nevertheless remained

flexible and efficient. Furthermore, the elapsed time in the case of system recovery

with proposed self-healing middleware is higher than the elapsed time without it, but

it guarantees that the system will perform its task without shutting down or disturbing

the system, or incurring costs in the case of outright failure.

139

Chapter 9

Conclusions

9.1 Motivations and Approach

In complex distributed systems environments, middleware technology has become of
vital importance in order to reduce the effort required to develop applications: typical
distributed operations and tasks are provided in middleware modules that can be used
by applications developers. Autonomic properties should be incorporated at
middleware level, so that applications can incorporate such attributes without
excessive effort.

Extending existing works in service-oriented software [30] and autonomic computing
[37], the main focus of this work has been to investigate the fundamental

requirements for a software framework and associated middleware services to
develop on-demand application services. The software framework is intended to

enable users to access, over the local or global network, services that are dynamically

discoverable, reusable and combinable into flexible self-adaptive applications.

9.2 Achievements

This work makes a number of contributions towards a better understanding of

software self-healing requirements for autonomic distributed software engineering.

Such contributions are summarised below: (1) A software architectural model:

motivated by and grounded in a range of current research on distributed middleware,

service-oriented architectures, service on demand concepts and part of autonomic

computing for its support of self-healing and self-awareness. In particular, this work

contributes in the development of an architectural model for a middleware-based on-

demand self- servicing software framework. The framework described in this thesis

unites a number of components including: service description, discovery, invocation,

configuration, monitoring and response to events, such as service failure. (2) A

mechanism for assembling distributed services regardless of their location - is a

140

representation of how a single functionality provided by one service can be combined

with other functionalities provided by other services for the purpose of providing a
new united functionality to the user. As a part of the framework, this mechanism

contains a number of components that represent the novel elements of this type of
system. (3) An Adaptation model that is responsible for providing a self-healing
behaviour to the framework. The system responds to the failure of a service by

searching for an alternative service in a local or global network. The self-healing of
the system is performed when the new service is found and invoked to replace the
failed one. (4) A Design Pattern Language for on-demand service assembly and
delivery of software with self-healing behaviour.

We believe that after the number of tests that took place during the prototype
implementation period, using different application scenarios, we have contributed to

the development of a design pattern language for software that performs service

discovery, invocation in an ad-hoc manner and, by using monitoring and quick

response performs, self-healing. In addition, a full evaluation of the developed

prototype was undertaken using both qualitative and quantitative evaluation, which

indicated the overall benefits of such autonomic services though they added to

overheads and design complexity.

9.3 Thesis Summary

This thesis has offered a new software framework for developing and managing

distributed applications in a manner that has not been described before. The detailed

description of background theories, methods and achievement of this project are

presented as follows:

" Chapter 1 introduced the motivations and technical challenges and outlined

the proposed approach and main contributions of the work.

" Chapter 2 introduced the required basic background concepts and principles of

Distributed Systems including different categories of middleware. Also were

described component-based developments and service-oriented architectures.

It also provided a brief overview of Autonomic Computing and its

architectural concepts.

141

0 Chapter 3 reviewed the state-of-the-art and related work relevant to self-
healing systems development and also reviewed existing service-oriented

architectures and frameworks separate from distributed component-based
frameworks. Then it outlined what further developments are necessary in

these areas and highlighted the requirements for such developments.

9 Chapter 4 described the overall design of the proposed framework and
described the three main services (Assembly Service, Operational Service and
the System Manager) and their sub-services. The self-healing behaviour of the

model was also described in this chapter.

" Chapter 5 presented the architecture of the system as a three-layered model,
indicating that Impromptu middleware services fit between the supporting

technologies and middleware layer and the user application layer. It also

described the main architecture of the On-Demand Service Assembly and

Delivery (OSAD) model.

Chapter 6 presented the prototypical implementation of the model based on

Java API's and Jini middleware. The implementation of three main services:

Assembly Service, Operational Service and the System Manager were

described in detail, including the sub-services provided by each of them. At

the end of the chapter, two illustrative application examples: Home

Appliances scenario and Software Services, were presented.

" Chapter 7 documented six patterns that form the pattern language for

distributed applications developers. To describe the patterns, Alexander's

original style was used. The Viable System Model was described as a model

for the autonomic systems.

" Chapter 8 presented a qualitative and quantitative evaluation of the main

functionalities of the framework services. For the quantitative evaluation we

used two example scenarios, namely Sorting algorithms and the home

appliances scenario. Experimental results showed that the proposed system is

efficient and effective.

" Chapter 9 provided the thesis summary, and suggestions for further work.

142

1 9.4 Proposed Further Works

The thesis detailed a proposed and developed software framework and associated
middleware services for autonomic software development. The framework was
prototyped and successfully evaluated using a number of cases (scenarios), and
highlighted opportunities for further work, including:

" To investigate the integration of the current model of self-healing with a
deliberative control service, which can draw on recent work related to policy-
based management [111], and norm-governed systems [112]. This should
extend the Impromptu framework to support predictable and verifiable self-
healing.

0 To investigate the extension of the self-assembly service to support ubiquitous
services discovery and invocation for not only Java RMI-based (Jini) services,

but also CORBA, Web services and/or JXTA services.

0 To investigate scalability issues of the proposed model using large-scale and

widely distributed applications.

" To investigate the feasibility of adopting a decentralised (P2P) provision of

the basic components of the Impromptu Framework namely the System

Manager and the Assembly Service. These can improve the scalability of

Impromptu Framework and associated middleware services. Hence, its

application widely-distributed application models, and more importantly

studying issues related to distributed versus centralised self-healing models.

This can inform the extended development of a VSM-centric approach to

autonomic computing blueprint.

" To investigate how to identify similarity using case-based reasoning

techniques, and passing context information between similar components of

Impromptu framework

0 To investigate other options for following a component failure, such as

rollback to previous version.

143

Appendix A

Distributed Middleware

CORBA

One of the best example of object oriented distributed middleware is the Common
Object Request Broker Architecture (CORBA) [16]. CORBA is an open, distributed,

object computing infrastructure specified by the OMG [113], a consortium founded in
1989 to promote the adoption of standards for managing distributed objects. Simply

stated, the purpose of CORBA is to provide a simple application programming
environment that hides the details of using the operating system services, and provide
a common application programming environment across multiple computers and
operating systems. CORBA is an open standard, and is not bound to an
implementation. With CORBA, the OMG's ultimate goal is to achieve object-oriented

standardization and interoperability.

The CORBA specification is defined in the context of the Object Management

Architecture (OMA), an architectural framework for building interoperable, reusable,

portable software components, based on open and standard object-oriented interfaces.

The OMA reference model identities and characterizes the components, interfaces,

and protocols that compose the OMA. It forms a conceptual roadmap for assembling

the resultant technologies while allowing different design solutions.

CORBA objects are specified in the OMG Interface Definition Language (IDL). This

language is purely declarative, and provides no implementation details. It is used to

specify the boundaries of a component and its contractual interface with potential

clients. The CORBA specification defines how IDL constructs map to programming

languages, such as C, C++, or Java. Figure A. 1 shows the five major parts of the

OMA reference model:

144

Object Services

a in mg, Events, 7ransaclions, Concnrrancv, Persistence, Extemalization,
Lifecycle, Query

Figure A. 1: The OMA Reference Model [91

¢ The Object Request Broker (ORB), known as CORBA is the communication
heart of the standard. It enables object to transparently and reliably invoke

operations on remote objects and receive replies in distributed environment.
Compliance with the ORB standards guarantees interoperability of objects

over a network of heterogeneous systems.

¢ The Object Services are general-purpose components that are fundamental for

developing useful CORBA applications. A CORBA service is a set of

CORBA objects with their corresponding IDL interfaces that can be invoked

through the ORB. Services are not related to any specific application but are

basic building blocks, supporting basic functionalities useful for most

applications. Several services have been designed and adopted by the OMG.

¢ The Common Facilities provide end-user-oriented capabilities useful across

many application domains that can be configured to the specific requirements

of a particular application. These are facilities that sit close to the user, such as

printing, document management, and electronic mail facilities.

¢ Domain Interfaces represent vertical areas that provide functionality of direct

interest to end-users in specific application domains, such as finance or health

care.

¢ Application Interfaces are interfaces specific to end-user applications. They

represent component-based applications performing specific tasks for a user.

An application is typically composed of a large number of objects, some of

145

which are specific to the application, and others part of object services,
common facilities, or domain interfaces.

The key concept underling the CORBA model is the separation of interfaces and
implementations, making it possible to abstract object location and implementation.

Objects are not tied to a client or server role: they can act both as clients and as

servers. A program is said to be CORBA compliant if it uses only the constructs
described in the CORBA specification. An ORB implementation conforms to the

CORBA specification if it correctly executes any CORBA compliant program. An

application is portable if it can be used with different CORBA implementations (by

simply recompiling the source code). Interoperability is the property of several

applications running on different CORBA implementations to interact. The CORBA

specification defines a standard protocol for ORB interoperability: the Internet Inter-

ORB Protocol (IIOP). ORB implementations that use this protocol can interoperate

with each other, making it easy to integrate heterogeneous components from different

vendors.

The ORB component of CORBA provides more than just messaging mechanisms for

remote object invocations. It also provides the environment for managing objects,

advertising their presence, and describing their metadata. A CORBA, ORB consists

of several pars. These parts are shown in Figure A. 2 and described briefly below.

Figure A. 2: The Structure of CORBA, Object Request Broker

¢ The Interface Repository (IR) stores interface definitions. It allows the user to

obtain and modify the description of component interfaces, the methods that

146

they support, and the parameters that they require. The interface repository
allows CORBA components to have self-describing interfaces.

¢ The client stubs - or Static Invocation Interface (SII) provide an interface

specific API for invoking CORBA objects. A client application can invoke a
server object through a client stub. From the client's perspective, the stub is a
local proxy for a remote server object. Stubs are generated by an IDL

compiler.

¢ The Dynamic Invocation Interface (DII) allows the creation of requests and
invocation of objects at runtime. CORBA defines APIs for looking up the

server interfaces, creating requests, generating parameters, issuing the remote

call, and getting back the results.

¢ The ORB interface defines a few general APIs to local ORB services.

¢ The server skeletons - or Static Skeleton Interface (SSI) provide static

interfaces to server objects. They contain the code necessary to dispatch a

request to the appropriate method. Skeletons are generated by an IDL

compiler.

¢ The Dynamic Skeleton Interface (DSI) provides a runtime binding mechanism

for objects that need to handle requests for interfaces not known at compile

time. The DSI is the server equivalent of the DII.

¢ The Object Adapter (OA) provides the mechanisms for instantiating server

objects, passing requests to them, and assigning them object references. A

standard object adapter called the Basic Object Adapter (BOA) must be

supported by each ORB implementation. The new CORBA 2.2 specification

introduces a new Portable Object Adapter (POA) that overcomes many of the

BOA limitations.

¢ The Implementation Repository stores ORB-specific details about object

implementations, their activation policy, and their identity.

DCOM

147

Distributed COM is also object-oriented distributed middleware [17]. COM standing
for Component Object Model is the technology underlying the various Windows

operating systems produced by Microsoft.

DCOM extends the COM to support communication among objects on different

computers-on a Local Area Network (LAN), a Wide Area Network (WAN), or even
the Internet. Components expose themselves through interfaces and only interfaces.

The interfaces are binary which makes it possible to implement the component in a
variety of programming languages such as C++, Visual Basic, and Java. A COM

component can implement and expose multiple interfaces. A client uses COM to
locate the server components and then it queries for a wanted interfaces. The

following figure shows how COM establishes the connection between client and

server.

Figure A. 3: COM Interaction

By defining interfaces as unchangeable units, COM solves the interface versioning

problem. Each time a new version of the interface is created a new interface will be

added instead of changing the old version. Using DCOM protocol makes COM

locations transparent. A client talks to proxy, which looks like a server and manages

the real communication with the server.

The overall architecture of DCOM in conjunction with the use of class objects,

objects and proxies, is shown in Figure A. 3.

148

Client Machine

SCM
Client Application

Proxy Client
Marshalin Proxy

Registry

COM

Local OS

Network
Microsoft RPC

Object Server

Class Class
Object Object j

Proxy
Marshalin

Client
Proxy

Local OS

SCM
II

COM

1

Registry

Figure A. 4: The overall architecture of DCOM [9]

On the client side, a process is given access to the Service Control Manager (SCM)

and the registry to help look for and set up a binding to a remote object. The client

will be offered a proxy implementing that object's interface.

The object server will consist of a stub for marshalling and unmarshalling

invocations, which are passed to the actual object. Communication between the client

and server is normally done by means of Remote Procedure Call (RPC).

The Jini Lookup Service

Each Jini system is built around one or more Lookup services. The lookup service is

where services advertise their availability so that service clients can find them. There

may be one or more lookup service running in the network. When a service is booted

on the network, it uses a protocol called discovery to find the local lookup services.

The discovery protocol will vary depending upon the kind of network. If network

broadcast is allowed, then the protocol can be outlined as following [5]:

The service sends a "looking for lookup services" message to the local network. This

is repeated for some period of time after initial startup.

1. Each lookup service on the network responds with a proxy for itself.

2. The service registers with each lookup service using its proxy by providing

the service's proxy object and any desired initial attributes.

149

If network broadcast is not possible, then the protocol can be outlined as the

following:

The service sends a "looking for lookup service" message to a specific network

address that is known to have a lookup service running.

The lookup service on the network host responds with a proxy for itself.

1. The service registers with the lookup service using its proxy by providing the

service's proxy object and any desired initial attributes.

150

Appendix B

World Wide Web

The World Wide Web (WWW, W3, the Web) was developed to be a pool of
knowledge, which would allow collaborators at remote sites to share their ideas and

all aspects of a common project [70]. Physicists and engineers at CERN, the

European Particle Physics Laboratory in Geneva, Switzerland, collaborated with

many other institutes to build the software and hardware for high-energy physics

research. The idea of the Web was prompted by positive experience of a small

personal hypertext system used for keeping track of personnel information on a

distributed project. The Web was designed so that if it was used independently for

two projects, no major or centralized changes would be necessary, but information

could smoothly be changed to represent the new state of knowledge. This property of

scaling has allowed the Web to expand rapidly from its origins at CERN across the

Internet irrespective of boundaries of nations or disciplines.

Today the WWW is essentially a huge client-server system with millions of servers

distributed worldwide. Each server maintains a collection of documents; each

document is stored as a file. A server accepts requests for fetching the document and

transfers it to client. In order to transfer these documents a Uniform Resource Locator

(URL) is used. A client interacts with Web servers through a special application

called browser. A browser is responsible for properly displaying the document. Most

Web documents are expressed by using the special language called HyperText

Markup Language, HTML. HTML provides keywords to structure a document into

different sections including simple structure elements, such as several levels of

headings, bulleted lists, menus and com-pact lists, all of which are useful when

151

presenting choices and in on-line documents. HTML is an application of the SGML1
standard [114]. This means that elements used in an HTML document are defined in a
Data Type Definition (DTD) following SGML rules. Several extensions expanded the
complexity of HTML, so that the World Wide Web Consortium W3C started the
XML language initiative.

XML Technology

With the rapid development of the Web, the limitation of HTML eventually became

apparent. The need for a new, standardize, fully extensible, structurally strict
language was growing and as a result the Extensible Markup Language (XML) was

creating by W3C. XML combines the power and extensibility of its parent language,

SGML, with the simplicity demanded by the Web community. The W3C also began

to develop XML-based standards for Stylesheet and advanced hyperlinking, and

called it Extensible Stylesheet Language (XSL).

HTML documents are human-readable but are not optimised for computer

manipulation, whereas most forms of data storage are optimised for computer

manipulation and not for human viewing. XML is the first language that makes it

both human-readable and computer-manipulable. It is a language of intelligent

document that rely on format rather than structure.

The essential characteristics of XML are the data independence, the separation of

content and its presentation. Because an XML document describes data, it can

conceivably be processed by any application. The absence of formatting instructions

makes it easy to parse. This makes XML ideal framework for data exchange.

Integration of XML to any applications makes applications more dynamic and

interoperating. Because XML's semantic and structural information enables it to be

manipulated by any application, much of the information and the operations that were

limited only to servers now it can be reachable and performable by client.

Many leading technology developer companies such as IBM, Microsoft or Sun

Microsystems use XML technology for developing frameworks that support

development of services on web and message-based communication between them.

1 Standard Generalized Markup Language

152

XML is one of the supporting technologies for IMPROMPTU framework. The
service description model developed using XML in purpose to pass some necessary
data from service side to client side is the one of the notions that will be described in
this thesis.

Web Services

The use of Web Services on the World Wide Web is expanding rapidly as the need
for application-to-application communication and interoperability grows. Web

services provide a standard means of communication among different software
applications, running on variety of platforms or frameworks. The most appropriate
definition for web services is believed to be as follow:

"A Web service is a software system identified by a URL, whose public
interfaces and bindings are defined and described using XML. Its definition

can be discovered by other software systems. These systems may then interact

with the Web service in manner prescribed by its definition, using XML based

messages conveyed by Internet protocols. " [115]

A Web service exhibits the following characteristics:

" It is accessible over Web

" It provides an interface that can be called from another program

" It is registering and can be located through a Web service registry

" It communicates using messages over standard Web protocols.

" It supports loosely coupled connection between systems

Obviously Web service itself cannot have all these capabilities and/or functionalities.

A variety of technologies that support Web services have been developed. The

leading candidates include Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL) [79], Universal Description, Discovery, and

Integration (UDDI).

The Language of Web Services

Software or hardware services or components that make these services distributed

across the Web share the same rules for service discovery, description, and

information exchangeability.

Gartner Research has identified five initial requirements for a Web Service platform:

I53

1. Discovery: The mechanism by which services make themselves known and
are discovered.

2. Description: The way in which specifications are made for what information
is passed into and out of the service.

3. Transport: The communication method between the user of the service and
the service itself.

4. Environment: The runtime in which the service executes - the e-business
platform describes the environment.

5. Event Notification: A mechanism by which a service can be invoked as part
of a series of event notification queues.

Different standards have been created to address these requirements.

UDDI (Universal Description, Discovery and Integration) is an initiative proposed by

Microsoft, IBM and Ariba [79] to develop a standard for an online registry, and to

enable the publishing and dynamic discovery of Web services offered by business.

UDDI allows programmers and other representatives of a business to locate potential
business partners and form the relationships on the bases of the services they provide.

The primary target of UDDI seems to be integration and at least semi-automation of

business transactions in B2B e-commerce applications. It provides registry for

registering businesses and the services they offer. These are described according to an

XML schema defined by UDDI specification. A Web service provider registers its

advertisements along with keywords for categorisation. A Web service user retrieves

advertisements out of the registry based on keyword search. The UDDI search

mechanism relies on pre-defined categorisation through keywords and does not refer

to the semantic content of the advertisements. The registry is supposed to function in

fashion similar to white pages or yellow pages, where businesses can be looked up by

name or by a standard service taxonomy as is already used within the industry.

UDDI aims to facilitate the discovery of potential business partners and the discovery

of services and their groundings that are offered by known business partners. This

may or may not be done automatically. When the discovery occurs, programmers

affiliated with the business partners program their own systems to interact with the

services discovered.

154

Currently, UDDI does not provide or specify content languages for advertisement.
Although, the Web Services Description Language (WSDL) is most closely
associated with UDDI as the language for describing interfaces to business services
registered with a UDDI databases. WSDL is technology also developed by Ariba,
IBM and Microsoft. It defines services as collections of network endpoints or ports.
In WSDL the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of
abstract definitions of messages, which are abstract collections of operations. The

concrete protocol and data format specifications for a particular port type constitute a
reusable binding. A port is defined by associating a network address with a reusable
binding; a collection of ports define a service. And, thus, a WSDL document uses the
following elements in the definition of network services:

¢ Types -a container for data definitions using some type system.

¢ Message - an abstract, typed definition of the data being communicated

¢ Operation - an abstract description of an action supported by the service

¢ Port Type - an abstract set of operations supported by one or more endpoints

¢ Binding -a concrete protocol and data format specification for a particular

port type.

¢ Port -a single endpoint defined as a combination of a binding and a network

address.

¢ Service -a collection of related endpoints.

To this and WSDL is a template for how services should be described and bound by

clients.

Simple Object Access Protocol (SOAP) is a lightweight, extensible, XML-based

protocol for information exchange in a decentralized, distributed environment.

Primarily, SOAP defines a framework for message structure and a message-

processing model. SOAP also defines a set of encoding rules for serializing data and a

convention for making remote procedure calls. The SOAP extensibility model

provides the foundation for a wide range of composable protocols running over a

variety of underlying protocols like HTTP. SOAP has been designed to be simple and

155

extensible. It defines a message-processing model but does not itself define any

application semantics, such as programming model or implementation-specific

semantics. Although SOAP may be used as a foundation for building complex

systems, most features from traditional message systems and distributed object

systems are not part of the core SOAP specification.

156

Publications by the Author

2001
I. M. Allen, E. Grishikashvili, N. Badr, A. Taleb-Bendiab, "Adaptation Engine:

an Agent-Based Framework for ad-hoc Service Life-Cycle Management for Meta-Computing", Proceedings of the AISB '02 Symposium on AI and Grid Computing, Imperial College of Science, 2001.

2002

2.
_

E. Grishikashvili, M. Allen, A. Taleb-Bendiab, "IMPROMPTU: On-Demand
Self-Servicing Software Framework", Proceedings of 2nd International Workshop
on intelligent Systems Design and Applications, ISDA 2002, Atlanta - USA, August
2002.

3. E. Grishikashvili, N. Badr, M. Yu, D. Reilly, A. Taleb-Bendiab, "Autonomic
Computing: A Service-Oriented Framework to Support the Development and
Management of Distributed Applications", Proceedings of 3rd Annual
Postgraduate Symposium on the Convergence, Telecommunication, Networking and
Broadcasting. PgNet, Liverpool, June 2002.

2003

4. E. Grishikashvili, N. Badr, A. Taleb-Bendiab, "Service-Oriented Approach for
Distributed application Assembly and Management", Proceedings of 4`h Annual
Postgraduate Symposium on the Convergence, Telecommunication, Networking and
Broadcasting. PgNet, Liverpool, June 2003.

5. E. Grishikashvili, N. Badr, D. Reilly, A. Taleb-Bendiab, "From Component-
Based to Service-Based Distributed Applications Development and Life-Time
Management ", Proceedings of 29th Euromicro Conference - "Component-Based
Software development ", Antalya - Turkey, September 2003.

6. M. Yu, E. Grishikashvili, D. Reilly, A. Taleb-Bendiab "Polyarchical

Middleware for On-Demand and Multi-Standard Services' Composition for

Ubiquitous Computing", UNITN2003 The New Computing Paradigm for the

Networked World. Trento - Italy, December 15-18,2003.

2005

7. E. Grishikashvili-Pereira, R. Pereira, A. Taleb-Bendiab, "Performance

Evaluation for Self-Healing Distributed Services", Proceedings of the First

International Workshop on Performance Modelling in Wired, Wireless, Mobile

Networking and Computing (PMWMNC-2005), with IEEE International Conference

on Parallel and Distributed systems, Fukuoka, Japan, July 20-22,2005.

157

8. E. Grishikashvili-Pereira, R. Pereira, A. Taleb-Bendiab, "Fault Detection
Mechanism for Autonomic Distributed Applications. " Proceedings of 21st Annual
UK Performance Engineering Workshop. UKPEW 2005, Newcastle, UK. 14-15 July,
2005

9. E. Grishikashvili Pereira, R. Pereira and A. Taleb-Bendiab, "Performance
evaluation for self-healing distributed services and fault detection mechanisms".
Journal of Computer and Systems Science, ELSEVIER, March 2006.

158

References

1. IEEE, 6th IEEE International Conferance on Engineering of Complex
Computer Systems (ICCECS 2000), in IEEE Computer Society. 2000: Tokyo, Japan

2. A. Laws, A. T. -B., and S. J. Wade, Towards a Viable Reference Architecture
for Multi-Agent Supported Holonic Manufacturing Systems. International
Jurnal of Applied Systems Science, 2001. Vol. 1.

3. G. Bieber, J. C., Introduction to Service-Oriented Programming, in Motorola
ISD. 2002

4. I. Crnkovic, M. L. A Case Study: Demands on Component-Based
Development. in 22nd International Conference on Software Engineering.
2000: ACM Press.

5. Jini Technology. http: //www. jini. ora
6. Newmarch, J., Remote Events, in A Programmer's Guide to Jini Technology,

chapter 14: Remote Events. 2000, Apress: USA.

7. Java remote Methodlnvocation - Distributed Computing for Java.
http : //j ava. sun. com/products/j dk/rmi/reference/whitepapers/j avarmi .

html

8. Badr, N. An Investigation into Autonomic Middleware Control Services to
Support Distributed Self-Adaptive Software Schoool of Computing and
Mathematical Scinces Liverpool John Moores University Liverpool 2003

9. A. S. Tanenbaum, M. V. S., Distributed Systems Principles and Paradigms.
2002: Prentice Hall. 0-13-088893

10. G. Coulouris, J. D., T. Kindberg, Distributed System, Concepts and Design.
Third Edition ed. 2001: Addition Wesley. 0201-61918-0

11. G. Coulouris, J. D., T. Kindberg, Distributed System, Concepts and Design.
Second Edition ed. 1996: Addition Wesley. 0201-61918-0

12. Principles of Distributed Middleware.
http: //www cs huji. ac. il/-davb/huji/pdm/links. html

13. Celko, J., SQL for Smarties: Advanced SQL Programming. Expanded 2nd

Edition ed. 1999: Morgan Kaufmann. 1558605762

14. Scientific Computing Associates LindaSpace. 2003.
http: //lindaspaces. coM/products/linda. html

15. Addition-Wesley Inc, Argonne National Laboratory Designing and Building

Parallel Programs, Tuple Space. http: //www-

unix mcs and oýv/dbpp/text/node44. html

16. OMG CORBA Basics. http //www omg org/gettinstarted/corbafag. htm

17. Carnegie Mellon University Component Object Model (COM), DCOM and

Related Capabilities. 1997.
hqp: //www. sei. crnu. edu/str/descriptions /com body html

18. P. Sliviter Object Linking and Embedding. 1998.

http //www it bton ac uk/Research/Archive/noolearning/facilits/exemplars/oov
b/schedule/section 17/ab24 3. htm

159

19. Carnegie Mellon, Software Engineering Institute Copmonent Object Model. 1997. http: //www. sei. cmu edu/str/descriptions/com body html
20. B. Sheresh, D. S., R. Cowart, Microsoft Transaction Server, in Microsoft Windows Nt Server Administrator's Bible: Option Pack Edition. 1999, IDG Books.

21. Loughry, M., Active Directory for Dummies. 1999: For Dummies; Bk&CD- Rom edition. 0764506595

22. Sun Microsystems Jini Network Technology.
http: //wwws. sun. com/software/j ini

23. Erl, T., Service-oriented Architecture: A Field Guide to Integrating XML and Web Services. 2004: Prentice Hall PTR. 0131428985
24. Java 2 Platform, Enterprise Edition (J2EE). http: //java. sun. com/i2ee/
25. Microsoft Corporation Microsoft

. NET. http: //www. microsoft. com/net/
26. P. Coad, J. N., Object-Oriented Programming. 1st Edition ed. 1993: Pearson

Education. 013 03 2616X

27. Bieber, G. Openwings - Closing the Personal Digital Divide, Motorola 2001.
28. J. Carpenter, G. B. Openwings - Component Service Specification, General

Dynamics Decision Systems 2002. Alpha Ver 0.72.

29. E. Grishikashvili, N. B., D. Reilly, A. Taleb-Bendiab. From Componen-Based
to Service-Based Distributed Applications Development and Lif-Time
Management. in EuroMicro. 2003. Antalya, Turkey.

30. Pallos, M. S., Service-Oriented Architecture. A Primer. EAI Journal, 2001.

31. I. Crnkovic, M. L. Component-Based Engineering - New Paradigm of
Software Development. in MIRPO 2001.2001. Opatija, Croatia.

32. Han, J. An Approach to Software Component Specification, Monash
University 1999. Melbourne, Australia,

33. Sziperski, C., Component Software - Beyond Object-Oriented Programming.
Second Edition ed. 2002: Addison-Wesly and ACM Press. 0-201-74572-0

34. A. W. Brown, K. C. W. An Examination of the Current State of CBSE: A
Report on the ICSE Workshop on Component-Based Software Engineering. in
ICSE 98.1998. Japan.

35. School of Computer Science, Carnegie Mellon University Architecture
Description Language. 1998. http: //www-
2. cs. cmu. edu/-acme/acme documentation. html

36. Emmerich, W., Engineering Distributed Objects. 2000: John Wiley & Sons
Ltd. 0-471-98657-7

37. Autonomic Computing. 2000. http: //www. research. ibm. com/autonomic/

38. J. 0. Kephart, D. M. C. The Vision of Autonomic Computing, IBM Tomas J.

Watson Research Center 2003.

39. Corporation, I. Introduction to Autonomic Computing, IBM Corporation,

Software Group 2001. Somers, NY,

160

40. Koopman, P. Elements of the Self-Healing System Problem Space. in ICSE WADS03.2003. Portland.

41. M. Mikic-Rakic, N. M., N. Medvidovic. Architectural Style Requirements for Self-Healing Systems. in Wass'02.2002. Charleston, South Carolina, USA.
42. P. N. Gross, e. a. An Active Events Model for Systems Monitoring. in Complex

and Dynamic System Architecture. 2001. Brisbane, Australia.
43. D. Reilly, A. T. -B., A. Laws, N. Badr. An Instrumentation and Control-Based Approach for Distributed Application Management and Adaptation. in Woss'02.2002. Charleston, South Carolina, USA.
44. D. Garlan, B. S. Model-Based Adaptation for Self-Healing Systems. in WOSS'02.2002. Charleston, South Carolina, USA.
45. P. Oriezy, M. M. G., R. N. Taylor, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf, An Architecture-Based Approach to Self-Adaptive

Software. IEEE Intellingent Systems, 1999.14.
46. The Rio Project. 2001. http: //developer. jini. org/exchange/projects/rio
47. Microsystems, S. RIO Architecture Overview, Java Center 2000.
48. Dearing, R. Service-Oriented Architecture Using Jini,

SearchWebServices. com 2003.

49. Microsystems. Open Net Environment (ONE) Software Architecture - An
Open Architecture for Interoperable, Smart Web Services, Sun Microsystems
Inc 2001. Palo Alto, CA,

50. Reichardt, D. A Field Guide to Services On Demand and Sun TM ONE, Sun
Microsystems 2001. September 2001.

51. Combs, N. BBN-DASADA, Agent-Based Service-Orented Software
Composition, BBN Technologies 2001. Cambridge,

52. Technologies, B. Cougaar Architecture Document, A BBN technologies
2001. Version 8.6. hitp: //www. cougaar. org

53. Sun Microsystems Openwings. 2003. http: //www. openwings. org/
54. Invent, H. -. Java Service Framework: An Approach to Open-Standards

Services Sevelopment, 2001.

55. Mochizuki, M. A Middleware Architecture for Improvised Assembly of
Component-Based Application Graduate School of Media and Governance
Keio University Fujisawa, Kanagawa, Japan 2000

56. Technical Committee on Complexity in Engineering.
htti): //www. elet. -Polimi. it/tccx

57. C. Herring, S. K., Component-Based Software Systems for Smart

Environments. Personal Communications Interactive, IEEE, 2000.

58. M. J. Williams, A. T. -B. A Toolset for Architecture Independent,

Reconfigurable Multi-Agent Systems. in Proceedings of First International

Workshop on Mobile Agents. 1998.

59. W. E. Hefley, D. M. Intelligent User Interfaces. in International Conference

on Intelligent User Interfaces. 1993. Orlando, Florida, US: ACM Press.

161

60. Beer, S., Diagnosing the System for Organizations. 1985, Chichester: John Wiley & Sons.

61. Herring, C. E. Viable Software
- The Intelligent Control Paradigm for Adaptable and Adaptive Architecture Department of Information Technology, and Electrical Engineering University of Queensland Brisbane 2002

62. A. Laws, A. T. -B., and S. J. Wade. Managing Complexity in Self-Adaptive Software: A Cybernetic Approach, School of Computing and Mathematical Sciences, Liverpool John Moores University 2001. Liverpool,
63. A. Laws, A. T. -B., and S. J. Wade. From Wetware to Software. A Cybernetic Perspective of Self-Adaptive Software. in Self-Adaptive Software, Second

Internationals Workshop, IWSAS. 2001. Balatond, Hungary: Springer.
64. M. R. Geneserth, S. P. K., Software Agents. 1994, Communications of the ACM. p. 48-54.
65. L. Bellissard, M. R. From Distributed Objects to Distributed Components: the Olan Approach. in ECOOP Workshop published in Special Issues in Object-

Oriented Programming. 1997.

66. DARPA, BBN Technologies Quality Object (QuO). 2002. http: //quo. bbn. com/
67. Sun Microsystems The Reflection API. 2004.

hltp: //java. sun. com/docs/books/tutorial/reflect/
68. A. Brown, S. J., K. Kelly. Using Service-oriented Architecture and

Component-Based Development to build Web Service Applications, Rational -
the software development company 2002. October. TP032.

69. IBM, RedBooks Patterns: Flexible Self-Service Applications Using Process
Choreography. 2004.
hqp: //www. redbooks. ibm. com/redbooks/pdfs/sg246322. pd f

70. Lee, B., Weaving the Web. 1999: Harper San Francisco. 0062515861

71. Udell, J., Componentware. 1994, CMP Media LLC: Byte. com

72. J. Schneider, O. N. Components, Scripts and Glue. in Software Architectures -
Advances and Applications. 1999: Springer.

73. Mcllory, M. D., Mass Product Software Components, in Software
Engineering. 1969, P. Naur and B. Randell: NATO Scinece Commitee

74. M. Lumpe, J. S., O. Nierstrasz, and F. Achermann. Towards a Formal
Composition Language. in ESEC'97 Workshop on Foundations of
Component-Based Systems. 1997. Zurich.

75. M. Shaw, D. G. Software Architecture: Perspectives on an Emerging

Discipline, Prentice Hall 1996. April.

76. Pree, W., Design Patterns for Object-Oriented Software Development. 1995:

Addison-Wesley.

77. E. Gamma, R., Helm, R. Johnson, J. Vlossodes, Design Patterns - Elelments

of Reusable Object-Oriented Software. 1 st Edition ed. 1995: Addison-Wesley

Professional. 0201633612

162

78. Miner, N., Peer-to-Peer
- Harnessing the Power of Disruptive Technologies. March 2001.0-596-00110-X

79. Ariba, International Business Machines Corporation, Microsoft Web Services Description Language (WSDL). 2001.
80. Jini Community Rio Architecture Overview. http: //www. jini org//projects! rio
81. Cheng, S. Using Architectural Style as a Basis for Self-Repair. in IEEE/IFIP Conference onSoftware Architectures (WICSA2002). 2002. Montreal, Canada.
82. Sun Microsystems Java Technologies. http: 1/java. sun. com/
83. J. Newmarch Guide to Jini technology. 2004.

http: //jan. netcom-P. monash. edu. au/java/jini/tutorial/Jini. xml
84. Brown, A. W., Larcge Scale Component Based Development. 1st Edition ed. 2000: Prentice Hall. 01308872OX

85. Tokuda, M. M. a. H., Improvised Assembly Mechanism for Component-based
Mobile Applications. Mobile Multimedia Communications, 2001. E84-B,
No. O.

86. P. Robertson, R. L., and H. Shrobe. Introduction: the First International
Workshop on Self-Adaptive Software. in The First International Workshop on
Self-Adaptive Software (IWSAS2000). 2000. Oxford, UK: Springer 2001.

87. E. Grishikashvili, N. B., D. Reilly, A. Taleb-Bendiab. Autonomic Computing: A
Service-Oriented Framework to Support the Development and Management of
Distributed Applications. in 3rd Annual postgraduate Symposium, The
Convergence of Telecommunications, networking and Broadcasting, PGNet
2002.2002. Liverpool, UK: School of CMS, Liverpool John Moores
University.

88. N. Badr, D. R., A. Taleb-Bendiab. A Conflict Resolution Control Architecture
for Self-Adaptation. in International Workshop on Architecting Dependable
Systems WADS 2002.2002. Orlando, Florida, US.

89. Carnegie Mellon Networked Appliances, Project 19-601.
hltp: //www. andrew. cmu. edu/-msin/I 9601

90. Smart Home Forum, The HAVi organisation HA Vi. 2000.
hllp: //www. smarthomeforum. com/start/havi. asp'? ID=12

91. S. Moyer, D. M. The Internet Alarm Clock -A Network Appliance Case Study,

Telcordia Technolohies 2000. Morristown, NJ, USA,

92. A. Keller, U. B., G. Kar. Classification and Computation of Dependencies for

Distributed Management. in Fith IEEE Symposium on Computers and
Communications (ISCC 2000). 2000. Antibes - Juan-les-pins, France.

93. Hasselmeyer, P. Managing Dynamic Service Dependencies. in Twelfth

International Workshop on Distributed Systems: Operations and Management

(DSCOM 2001). October 2001. Nancy, France.

94. C. Alexander, S. I., M. Silverstein, A Pattern Language: Towns, Buildings,

Constructons. Senter for Environmental Structure. 1977: Oxford University

Press. 0-19-501919-9

95. Beer, S., The heart of the Interprise. 1979, Chichester: John Weiley & Sons.

163

96. Beer, S., Brain of the Firm. 1981, Chichester: John Wiley & Sons.
97. D. S. Schmidt, M. S., H. Rohnert and F. Buschmann, Pattern-Oriented

Software Architecture: Patterns for Networked and Concurrent Objects. Vol.
2.2000, New York: Wiley & Sons.

98. M. Fowler, D. R., M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of Enterprise Application Architecture. 2002, Reading, Massachusett: Addison-
Wesley.

99. Cunningham, W., The CHECKS Pattern Language of Information Integrity, in
Pattern Languages of Programm Design, J. O. C. a. D. C. Schmidt, Editor. 1995,
Addison-Wesley: Reading, Massachusetts.

100. Borchers, J., A Pattern Approach to Interaction Design. 2001, New York:
Wiley & Sons.

101. IBM, RedBooks Patterns: Service-Oriented Architecture and Web Services.
2004. http: //www. redbooks. ibm. com/redbooks/pdfs/sg246303 pdf

102. Cleeland, D. C. S. a. C., Appyling Patterns to develop Extensible ORB
Middleware. IEEE Communication Magazine, 1999.37.

103. Lee, D., Concurrent Programming in Java: Design Principles and Patterns.
Second ed. 2000, Boston: Addison-Wesley.

104. M. Yu, A. T. -B., D. Reilly, W. Omar. Multi-Standard Service Interoperation
Protocol Through Polyarchical Middleware. in 4rth Annual postgraduate
Symposium, The Convergence of Telecommunications, networking and
Broadcasting, PGNet 2003.2003. Liverpool, UK: School of CMS, Liverpool
John Moores University.

105. M. Yu, A. E. g., Taleb-Bendiab, D. Reilly, W. Omar. Plolyarchical middleware
for On-Demand and Multi-Standard Services' Composition for Ubiquitous
Computing. in The First International Conference on Service Oriented
Computing. 2003. Trent, Italy: The University of Trent.

106. E. Grishikashvili Pereira, R. p., A. Taleb-Bendiab. Performance Evaluation for

Self-Healing Distributed Services. in The First International Workshop on
Performance Modelling in Wired, Wireless, Mobile Networking and
Computing (PMWMNC-2005), with IEEE International Conference on
Parallel and Distributed Systems. 2005. Fukuoka, Japan: IEEE.

107. Discussion of Sorting Algorithms. 1996.
http: //atschool. eduweb. co. uk/mbaker/sorts. html

108. Sun Microsytems The Java Tutorial - RMI.

http: 1/Java sun com/docs/books/tutorial/rmi/

109. R. Helman, D. a. B., J. JaJa. Parallel Algorithms for Personalised

Communication and Sorting with an Experimental Study. in ACM Symposium

on Parallel Algorithms and Architectures. 1996. Padua, Italy.

110. E. Grishikashvili, N. B., A. Taleb-Bendiab. Service-Oriented Approach for

Distributed application Assembly and Management. in The 4th Annual

Postgraduate Symposium on the Convergence, Telecommunication,

Networking and Broadcasting. PgNet. 2003. Liverpool, UK: LJMU.

164

111. N. Badr, D. R., A. Taleb-Bendiab. Policy-Based Autonomic Control Service. in
The Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks (Policy'04). June 2004. Yorktown Heights, New York.

112. N. Badr, M. R., D. Reilly, A. Taleb-Bendiab. A Deliberative Model for Self-
Adaptation Middleware Using Architectural Dependency. in The 15th
International Workshop on Database and Expert Systems Applications
(DEXA'04). August 2004. Zaragoza, Spain.

113. Object Management Group. http: //www. omg. org
114. Cover Pages Standard Generalized Markup Language. 2002.

htt-p: //xml. covelpages. org/swul. html

115. W3C Web Services Activity. 2002. http: //www. w3. org/2002/ws/
116. Fremantle, P., Weerawarana, S., Khalaf, R., 2002. Enterprise services.

Commun. ACM 45 (10), 77-80.
117. Wilkins, D. J. (2002) The Bathtub Curve and Prodct Failure Behavior. The

eMagazine for Reliability Professionals Volume,
http: //www. weibull. com/hotwire/issue21/hottopics2 I. htm

118. SemiconFareast. (2004). "Life Distribution. " from
hltp: //www. semiconfareast. com/lifedist. htm.

165

