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Abstract 

Maintenance is an essential task that must be carried out in an efficient and 

effective manner in order to sustain and prolong the physical assets of a company. 

Maintenance may be defined as any action which has the objective of retaining or 

restoring an item to a state in which it can perform its required function. 

Maintenance is therefore a valuable part of most industries today, helping improve 

productivity and output whilst reducing the costs associated with downtime in 

addition to eliminating failure of equipment. The goal of maintenance, like all 

other functions of any manufacturing company, must be a cost effective activity. 

Consequently, it becomes essential for a company to develop a cost effective 

maintenance strategy that will achieve this goal. 

Delay-time analysis is a maintenance modelling technique which can achieve 

such goals in a manufacturing environment. Delay-time analysis, through the 

input of certain parameters, is capable of establishing an optimum inspection 

interval from both a downtime standpoint as well as a cost standpoint. The delay- 

time analysis concept has been further developed in this thesis in order to 

establish an environmental model. Alongside the downtime model and cost 

model, the environmental model gives a measure of the consequence of failure in 

terms of cost to both a company and to the environment. This environmental 

model has been applied to a company producing a product which is potentially 

harmful to both humans and the environment. 

The use of delay-time analysis to establish a downtime model and cost model 

relies predominantly on objective historical data which, given the correct types of 

data, makes model development a powerful and accurate tool. The environmental 

model, however, relies heavily on subjective data and expert judgement in order 

to establish the required parameters. In order to overcome the inevitable 
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inaccuracies present in subjective expert judgement, due mainly to individual 

perception, the environmental model has been further enhanced using fuzzy set 

modelling. 

The use of delay-time analysis to develop a model involves establishing 

several important parameters, one such parameter being that of failure rate (A. ). 

This parameter forms an integral part of a delay-time analysis study but is 

established in a simplistic manner (i. e. number of failures/time). This parameter is 

established using historical information calculated using statistical averages. 

Understanding and identifying the influencing factors responsible for failure will 

serve to improve the understanding and increase accuracy of failure rate. This 

thesis examines and develops this parameter with the use of Bayesian network 

modelling. Bayesian network modelling allows differing influences responsible 

for failure to be considered in an exact and precise manner. 

The findings of this research is that a methodology has been successfully 

developed, using delay-time analysis modelling, in order to aid decision making 

in a manufacturing environment. Further improvement of the delay-time analysis 

model was brought about with the use of fuzzy set modelling and Bayesian 

network modelling. The integration of both the fuzzy set model and Bayesian 

network model into the delay-time model has been conducted. A direct 

comparison has being drawn between the original delay-time model and the 

enhanced delay-time model in order to highlight the improvements of the 

integrated model. 
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Chapter 1 

Introduction 

Summary 

This chapter will discuss the background of this research and in doing so 

highlight the inherent problems which exist in industry today when applying 

delay-time analysis. The objectives and hypotheses of this thesis will serve to set 

out a logical structure of this thesis which is aimed at addressing the inherent 

problems outlined. The main research methodology is briefly discussed as well as 

the scope of the research. 

1.1 Background of the research 

Manufacturing, production and process industries today exist in a competitive 

market. There is an ever increasing need for improving efficiency, reducing costs 

and increasing safety, each intrinsically linked with one another. Maintenance is 

an integral part of any manufacturing industry, with a successful maintenance 

strategy delivering improvements to a company through increased productivity 

and efficiency whilst reducing the associated costs. The main aim of maintenance 

is threefold. Firstly, the equipment or system must have the highest possible 

reliability, secondly minimising the downtime of equipment and thirdly, 

minimising maintenance costs (Savic et al. (1995)). The total cost of maintenance 

is extremely difficult to calculate because of the number of factors which are 

affected when a machine or a piece of equipment fails (Ashayeri et al. (1996)). 

Factors could include: disruption to productivity, loss of productivity, downtime 

of failed equipment, quality of a product, inefficient use of personnel, repair time 

and repair cost. It is therefore essential to have an effective maintenance strategy 
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in place in order to remain competitive. Effective maintenance modelling can 
deliver greater efficiency in the form of reductions in downtime of equipment, 

optimisation of inspection intervals, and reduced downtime for inspections, with 

each improvement bringing about its own reductions in costs to the business. In 

the case of a company producing a product which is considered harmful to the 

environment, should failure take place, the prevention of failures become vital to 

the company. The inspection interval is often devised through subjective means, 

i. e. discussions with maintenance personnel. Maintenance is often performed for 

years without consideration to costs relating to inspection, breakdowns or 

downtime of equipment (Andrews and Moss (2002)). Advanced tools and 

techniques, which may be used for streamlining, updating and assessing current 

methods, are either unknown or inefficiently applied to a maintenance department. 

This may be down to a lack of knowledge, insufficient time allowed to study 

problems or situations, failure to understand modern techniques available or that 

there is a limited knowledge base which exists in the company. 

There are several maintenance concepts and tools that enable equipment, 

machines or processes to be maintained in a cost effective manner whilst 

minimising downtime and maximising reliability. Such concepts and tools include 

Reliability Centred Maintenance (RCM) (Mokashi et al. (2002)), (Anderson and 

Neri (1990)), (Moubray (1997)), Preventative Maintenance (PM), Condition- 

Based Maintenance (CBM) or Predictive Maintenance, Total Productive 

Maintenance (TPM) (Bran (2006)) and Effective-Centred Maintenance (ECM) 

(Saferelnet (2005)). However, they must be utilised in an effective manner 

sometimes adopting several of these methods in combination to achieve cost 

effective results (Pillay and Wang (2003)). Applying modelling techniques such 

as delay-time analysis (DTA) (Christer et al. (1998)), Markov Modelling (Black et 

al. (2003)), (Saaty (1980)) and Bayesian network modelling (Wang and Trbojevic 

(2007)), (Khan et al. (2006)) to complex systems can be valuable. Delay-time 

analysis can, given certain parameters, establish an inspection interval based on 

minimising downtime or reducing inspection costs (Apeland and Scarf (2003)). 
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There are several examples for applying delay-time analysis such as gearboxes in 

buses (Leung and Kit-leung (1996)), winches on fishing vessels (Pillay and Wang 

(2003)) or an extrusion pump in a company producing copper tubing (Christer et 

al. (1995)). At present though, no research has been carried out applying such 

modelling techniques to an environmentally hazardous industry, taking into 

account environmental impact should failure occur. 

1.2 Research objectives and hypotheses 

The primary aim of this research is to develop a risk-based maintenance 

methodology capable of delivering a maintenance strategy. The development of 

an advanced risk-based framework is a vital part of this thesis as it sets the 

foundations of the whole project. The maintenance methodology will serve to 

establish inspection intervals based on reducing downtime, reducing costs or 

understanding the risks relating to an environmental impact. In order to achieve 

this aim, this thesis outlines three main objectives. 

The first objective is to develop an advanced risk-based maintenance 

methodology for a manufacturing company. The maintenance methodology will 

provide a framework to optimise the maintenance and inspection activities of a 

company using qualitative and quantitative risk-based techniques. The modelling 

technique used for this exercise will be delay-time analysis. The optimisation will 

serve to either qualify the existing inspection policy that is being adopted or prove 

the inadequacy of the inspection policy. The result of the optimisation will be to 

establish an optimum inspection interval based on minimising downtime, 

minimising costs or minimising the environmental impact should failure occur. 

The second objective is to develop additional models to support the 

implementation of the risk-based maintenance methodology. The modelling 

techniques used to achieve the objective of providing support and improvement to 
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the delay-time model is fuzzy set modelling and Bayesian network modelling. The 

integration of fuzzy set modelling into the delay-time model will address the 

problems associated when large amounts of subjective expert judgement are 

required. The integration of Bayesian network modelling into the delay-time 

model will further improve the delay-time model by considering the influencing 

events responsible for failure. 

The third objective is to carry out a case study in order to demonstrate the risk- 

based maintenance methodology and the supporting models. This objective is a 

vital part of this thesis as its purpose will be to demonstrate the integration of 

objective and subjective information into a maintenance model. The gathering of 

the objective information required as well as the elicitation of the subjective 

information will employ the supporting models. The information will be applied 

to the delay-time model in order to establish a maintenance and inspection 

strategy. As part of this objective, the case study will apply the maintenance 

methodology to a company producing a hazardous product. This will serve to 

establish inspection intervals based on reducing downtime of key equipment and 

reducing costs associated with maintenance and inspection. Additionally, this case 

study will assess the potential risks relating to the failure of key equipment 

resulting in an environmental catastrophe. 

The objectives are set out in order to achieve the hypotheses of the research. 

The hypothesis being the development of a maintenance and inspection strategy 

capable of tackling a variety of circumstances found in industry, with special 

consideration placed on a company producing hazardous material. This hypothesis 

must utilise historical data, available data and expert judgement using risk-based 

tools and techniques. 
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1.3 Statement of problem 

The main obstacle in developing a maintenance methodology which can be 

utilised by a variation of manufacturing industries is developing a maintenance 

methodology which can accommodate the differing types of information, products 

and processes of each. Each manufacturing company will have information 

relating to times and costs of inspections, maintenance and repair activities. The 

challenge of this thesis is to extract the required information, from objective and 

subjective sources, in order to produce a maintenance methodology. The process 

of gathering data, the use of existing data or reliance on expert judgement has 

shown to be a troublesome process in terms of accuracy (Wang (2005)), (Pillay 

and Wang (2003)), (Black et al (2003)), (Christer et al. (1995)). The gathering of 

objective data in order to apply a modelling technique can be difficult as it 

generally requires many months or even years to attain sufficient data (Christer et 

al. (1998)). The use of subjective data gathered from expert judgement can often 

come in a form which requires standardisation with existing data in order to 

establish a consistency of data ensuring confidence in the modelling results. The 

combining of both objective and subjective data requires elicitation in order to 

establish the data which is required to apply advanced modelling techniques to a 

manufacturing company. 

1.4 Research methodology and scope of thesis 

The methodology of the research carried out outlines a framework for the 

development of a delay-time analysis model for a manufacturing company. The 

research integrates fuzzy set modelling and Bayesian network modelling into the 

delay-time analysis model in order to improve the overall model results. 

The research will discuss methods of understanding a manufacturing process, 

identifying the problems encountered and establish data that is required. This data 
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is interpreted and parameters are then established for applying delay-time 

analysis. Further development of the delay-time model is achieved by integrating 

fuzzy set modelling into the delay-time model in order to improve the accuracy 

and level of detail of the subjective information required. The delay-time model is 

further expanded by integrating Bayesian network modelling into the delay-time 

model. This introduction serves to re-evaluate and improve a key parameter of the 

delay-time model. 

The scope of this research was to develop a maintenance methodology, 

utilising varying information from both objective and subjective sources. The 

purpose of the maintenance methodology is to a) reduce the downtime of 

equipment due to breakdown and failures, b) reduce costs associated with 

maintenance and inspection activities and c) reduce the risks associated with 

possible environmental damage due to failure. 

This thesis is compiled of seven chapters. Chapter 1 has outlined a brief 

introduction relating to the background of the research, an introduction of the 

research objectives and hypotheses, a statement highlighting the problems 

currently encountered and the methodology and scope of this thesis. 

Chapter 2 will examine the current literature which has influenced this study 

giving a brief overview of current maintenance concepts as well as the 

manufacturing industry in general. Following this overview, a detailed review of 

the current status in maintenance planning is considered. This will serve to draw 

attention to the possible inadequacy and limitation of the current status, thus 

demonstrating the need and justification of this research thesis. This chapter will 

close with a brief introduction to each of the risk-based modelling techniques used 

in this thesis namely: delay-time analysis, fuzzy set modelling and Bayesian 

network modelling. 
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Chapter 3 gives a detailed and exhaustive review of what will be the 

cornerstone of this research thesis, delay-time analysis. This review will scrutinise 

various applications of this modelling technique, examining some of the 

advantages and disadvantages of its use. The primary methodology is introduced 

in this chapter. The methodology includes the delay-time models, downtime 

model D(T) and cost model C(T) and environmental model E(T). The 

methodology developed has been applied to a case study in order to demonstrate 

the process involved. 

Chapter 4 looks specifically at the problems relating to the standardisation of 

information when applying delay-time analysis to a maintenance department, 

specifically the delay-time environmental model E(T). This chapter outlines the 

inherent problem of combining subjective judgement and objective data. The 

introduction of a fuzzy set modelling methodology is outlined in this chapter 

dealing with the elicitation of such information. This methodology has been 

applied to a case study in order to demonstrate the process involved. The original 

case study from chapter 3 is re-examined with the fuzzy set modelling data 

replacing the original data gathered relating to the environmental model. A direct 

comparison between the original delay-time environmental model and the fuzzy 

delay-time model is then carried out. This comparison highlights the advantages 

of using fuzzy set modelling to elicit information from differing sources whilst 

overcoming the uncertainties and inaccuracies which previously surrounded this 

problem. 

Chapter 5 will examine one of the key parameters when developing a delay- 

time model, this parameter being failure rate X. The failure rate parameter was 

originally established (section 3.4) by dividing the number of failures by the time 

under consideration. This method though is based on statistical averages and does 

not consider the various events which can influence failure. Establishing and 

modelling the various parameters responsible for the failure rate of a system is 

considered in this chapter. A modelling technique known as Bayesian network 
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modelling is introduced in order to establish this parameter. Bayesian network 

modelling allows the influencing factors responsible for failure to be considered. 
Bayesian modelling also allows influencing events to change and update 
depending on the data available at any given time. A methodology has been 

developed and applied to the case study from chapter 3. The methodology 

establishes the failure rate parameter for use in the delay-time model. Similarly to 

chapter 4, the Bayesian model failure rate is integrated into the delay-time 

analysis model. A comparison is then conducted between the Bayesian network 

value for failure rate and the original value as used in chapter 3. The introduction 

of the Bayesian network model into the delay-time analysis model demonstrates 

an increased understanding and improved level of detail which could not have 

been envisaged originally. 

Chapter 6 will examine the delay-time analysis model developed in chapter 3 

and attempt to integrate fuzzy set modelling from chapter 4 and Bayesian network 

modelling from Chapter 5. This chapter will discuss the possible limitations of 
delay-time analysis which have been encountered during this research project. 
Overcoming these limitations by integrating both the fuzzy set model and the 

Bayesian network model will be examined and discussed. A series of comparison 

studies are developed in this chapter for each of the delay-time models namely, 
downtime model D(T), cost model C(T) and environmental model E(T). Each 

comparison is drawn from the original delay-time model developed in chapter 3 

and the integrated delay-time model developed using fuzzy set modelling and 
Bayesian network modelling. 

Chapter 7 will draw conclusions from the overall study. The chapter will 
begin by discussing the main conclusions and whether these conclusions have 

been addressed in this research project. This chapter will also ascertain as to 

whether this investigation has been a contribution to research. The limitations of 

this research will also be given together with possible future research which can 

expand and explore this body of research. 
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Chapter 2 

Literature Review 

Summary 

This chapter will give an overview of a number of fundamental maintenance 

concepts that are currently available in industry today. An overview of the 

manufacturing industry will also be considered together with a brief discussion of 

the current status of maintenance planning in industry today. This chapter will 

then outline the need and justification for further research in this field. A brief 

introduction to the modelling techniques used in this research thesis is also 

presented. 

2.1 Introduction 

Before any research can take place there must be a need for further 

development. In order to establish whether there is a need for further development 

a thorough literature review of the topic area must be conducted. This chapter 

presents a thorough review of several key topics pertinent to this research thesis. 

Firstly, an overview of several maintenance concepts are discussed beginning 

with some fundamental definitions relating to maintenance and reliability and 

moving then onto key maintenance philosophies. Secondly, a thorough review of 

the current manufacturing industry is presented. This section covers the need for 

maintenance in industry, highlighting the increase of competition in the 

manufacturing industry. This overview also pays attention to manufacturing in the 

UK and the need for continuous improvements in the field of maintenance in 

manufacturing. Thirdly, a brief look at the current status of maintenance planning 

in the manufacturing industry is also discussed. Here a number of widely used and 
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often adapted maintenance concepts are scrutinised in greater detail, with 

discussion on some of the advantages as well as the pitfalls in applying such 

methodologies. In discussing these three important topics in manufacturing and 

maintenance, a genuine need and justification for further research is identified. A 

brief introduction to three analysis techniques which have been utilised in many 

varying industries is also presented, the techniques being: Delay-time analysis, 
fuzzy set modelling and Bayesian network modelling. 

2.2 Maintenance concepts - an overview 

Maintenance can be defined as ensuring that a facility, equipment or other 

physical asset continues to perform its intended functions. The ultimate goal of 

maintenance is to provide reliability to equipment, machines or processes that 

meets the business needs of the company. Reliability may be defined as `the 

ability of a machine or components or equipment to perform a required function 

under specified conditions for a given period of time without failing' (BS EN 

292). When maintenance is correctly developed and managed, it serves to 

preserve a company's asset to meet the need for reliability at an optimal cost. 

Maintenance may be broken down into categories, proactive and reactive. The 

reactive maintenance strategy has to respond to an identified need, for example, a 

breakdown of a machine or equipment. This strategy though relies on the speed of 

the maintenance department to respond and react to be effective. The overall goal 

of reactive maintenance is to reduce response times and reduce equipment 

downtime. The proactive maintenance strategy is primarily concerned with 

stabilising machines or equipment, relying on the detailed assessment of 

equipment and predictive maintenance or condition-based maintenance (CBM) 

techniques. The importance of maintenance is an indispensable function in a 

manufacturing enterprise (Ahmed et al. (2005)). The total cost of maintenance is 

extremely difficult to calculate because of the number of factors affected by the 
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action of a machine breaking down (Ashayeri et al. (1996)). Factors could 
include: 

" Disruption to productivity. 

" Loss of productivity. 

" Downtime of failed equipment. 

" Downtime due to inspection. 

" Quality of product. 

" Inefficient use of personnel. 

" Repair time. 

" Costs associated with all of the above. 

Given these factors, the importance of maintenance should not be underestimated 

as it is one of the areas that contribute heavily to productivity. Not only can 

effective maintenance extend the life of the equipment but it can also improve 

production operations as a whole. A successful maintenance policy helps in 

reducing equipment downtime, improving quality and increasing productivity 

(Anderson and Neri (1990)). 

There are several types of maintenance, one of which is Preventive 

Maintenance (PM). PM is maintenance that is performed before equipment failure 

takes place (Pillay and Wang (2003)). This type of maintenance involves the 

repair and maintenance of equipment in order to avoid unexpected failure during 

use. This method is often used in industry with routine inspections at set intervals. 

There are two types of PM that have evolved; the first is based on statistical and 

reliability analysis of equipment failure. The second involves the use of sensor 

monitoring of equipment in order to predict when failure will occur, this method 

is also known as condition-based monitoring. This method, however, can be 

costly and ineffective when used as the only maintenance practiced (Mokashi et 

al. (2002)). Following on from PM is a maintenance strategy known as Predictive 

Maintenance or Condition-based maintenance (CBM). Equipment is inspected 
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periodically to monitor their condition to observe the degradation which has taken 

place, a decision is then made as to whether repair/maintenance is required. This 

is only effective if condition monitoring is close to real-time and acted upon 

quickly. Success with this type of maintenance could have the eventual 

postponement of programmed maintenance tasks, thus reducing downtime of 

equipment. It uses non-intrusive testing techniques such as sensors, visual 
inspections or performance data in order to assess the condition of the equipment. 

Continual feedback of the condition of the equipment would allow the planning 

and scheduling or repairs before failure occurs. The data collected in CBM can be 

used in one of several ways in order to identify a precursor of failure or simply the 

condition of the equipment. 

" Trend analysis. This involves simply reviewing the data to see if there is a 

downward trend toward failure (Newell (1999)). 

" Pattern recognition. This is the understanding of the relationship between 

certain events and failure (Porrondo et al. (1998)). 

" Tests against limits and ranges. Here alarms could be set at upper or lower 

limits to inform when a certain aspect of equipment moves outside this 

limit (Sherwin and Al-Najjar (1999)). 

" Statistical process analysis. If there is published failure data on a 

component or system, a comparison of the failure data that has been 

collected on site with the published data can be useful to verify or disprove 

that the published data can be used for the analysis of a component or 

system (Arthur (2005)), (Pillay and Wang (2003)). 

It is important to note that CBM should not be the only type of maintenance used 

(Pillay and Wang (2003)). Reliability-Centred Maintenance (RCM) is also used to 

optimise PM strategies. The focus of RCM is on maintaining system function 

rather than restoring equipment to an ideal condition. Another maintenance 

concept is that of Total Productive Maintenance (TPM). The aim of TPM is to 

maximise equipment effectiveness through increasing the availability of 
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equipment through the investment in human resources, this investment being 

through the utilisation of the workforce to become autonomous (Ahuja and 
Khamba (2007)). TPM is based on the promotion of PM through motivation and 

management of autonomous small group activities (Mohamed (2000)). As 

demonstrated in this section, maintenance has many facets for the multitude of 

applications in a manufacturing organisation. It is essential to have effective 

maintenance models and strategies in place in order to remain competitive. The 

challenge of any company is to employ the correct combination of maintenance 

tools and techniques which are appropriate to their business. 

2.3 Manufacturing industry - an overview 

Over the past 40 years the manufacturing industry has witnessed fundamental 

changes in its business. During the mid-1960s manufacturing capacity was less 

than demand which meant a company could sell whatever was produced (Hill 

(2000)). The rebuilding of some industrial nations, together with the emergence of 

others, saw output begin to outstrip total demand. This eventually led to 

overcapacity in many industries which in-turn contributed to the competitive 

nature of markets. Today, there is an ever-increasing pressure on manufacturing 

companies to improve the quality and increase products available whilst reducing 

costs in order to remain competitive. It is this competition that drives companies 

to achieve improvements in design and productivity in order to bring about cost 

reductions. The UK is the sixth largest manufacturer globally measured by output. 

The manufacturing industry makes up half of all UK exports, adding £ 150 billion 

to the economy each year. Investment in the UK is second only to USA with £26 

billion, this compares to £15 billion for France and £3 billion for Germany (BERR 

(2008)). Competition, which may be characterised by technological innovations 

and a continuously changing market, places increasing pressure on each 

manufacturing company. In order to survive and thrive in the market, continuous 

improvement in the production systems to satisfy customer needs is required 
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(Gomes et al. (2006)). In the competitive market which the manufacturing 
industry is in, effective maintenance plays a key role in achieving a competitive 

strategy in industry today. There are many manufacturing approaches used in 

industry today, ranging from small batch manufacturing to mass production. The 

type of manufacturing approach to adopt will depend on the quantities to be 

produced, the type of product to be produced and the period of time available. 

Batch manufacturing, for instance, consists of workstations where several 

products can be manufactured on one production line. This method is generally 

used to produce seasonal items where demand is not continuous, for example, a 

bakery or a shoe manufacturer. At the other end of the scale is high volume, 

continuous manufacturing. This method is used to manufacture, produce, or 

process materials without interruption, for example, the oil and gas industry, 

automobile industry. The pressure on manufacturing companies is prompting 

senior management to examine each and every function of their business which 

includes manufacturing, or the maintenance of, to achieve a competitive 

advantage (Pintelon et al. (2006)). The maintenance function is therefore being 

looked on as a means of cost saving and gaining a competitive advantage. The 

integrating of the maintenance function with the other manufacturing functions 

has proved to save time and money when dealing with reliability, availability and 

maintainability issues (Moubray (2003)). Industry today adopts effective and 

efficient maintenance strategies such as condition-based maintenance (CBM), 

reliability-centred maintenance (RCM) and total productive maintenance (TPM) 

over the traditional reactive maintenance approaches (Sharma et al. (2005)). 

Along with the various manufacturing methods and maintenance techniques used 

in industry, there are a multitude of methods which attempt to bring about 

improvements relating to increasing productivity or reducing costs through 

eliminating waste. These `improvement' methods include Lean Manufacturing 

(LM) and Six Sigma. Lean manufacturing is a system based on the philosophy of 

waste elimination, the removal of all non-value added activity from the 

manufacturing process (Phillips (1999)). Six Sigma is a philosophy that employs a 

structured continuous improvement methodology to reduce process variability and 
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remove waste from processes using statistical tools and techniques (Banuelas and 

Antony (2002)). The challenge, which comes from competition and the need for 

producing profits, compel companies into implementing maintenance strategies 

and productivity improvement techniques in order to compete in a constantly 

changing and competitive market (Samuel et al. (2002)). 

2.4 Current status of maintenance planning in the manufacturing industry 

Maintenance engineering and maintenance management are becoming more 

and more vital to the success of a manufacturing company. This is due to the high 

capital costs of machines and equipment as well as their high maintenance costs. 

Maintenance though can often be applied in a haphazard way, with poor 

integration of various maintenance techniques. Often a company will implement 

one or more of the best known maintenance techniques such as RCM, TPM and 

CBM without proper understanding of the maintenance philosophy or proper 

understanding of their own business. In many companies PM tasks can be 

perceived as unnecessary because they seem to be having little impact on plant 

operations. Conversely, PM can also be over utilised, in the sense that PM 

activities are performed more frequently than is actually needed. While each of 

these will certainly contribute to the success of the maintenance department, the 

way in which they are introduced can often lead to future problems (Coetzee 

(1999)). As a result, maintenance planning in the manufacturing industry today 

faces many challenges. There have been several case studies which have 

witnessed such challenges resulting in both successful and unsuccessful 

implementations, TPM implementation at the Rover Group being one such 

example (Bohoris et al. (1995)). This example highlights some of the pitfalls of 

implementing new maintenance concepts, in this instance TPM, into an 

automotive company. The maintenance departments across the company were 

detailed in a five-year strategy plan by the board of directors to implement TPM. 

Two previous attempts had been abandoned due to: 1) introduction of TPM on too 
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many machines at once, 2) lack of involvement of production staff and 3) TPM on 

equipment that was not essential to the overall process. The implementation was 

successfully achieved through a number of fundamental changes in the company, 

namely, gradual implementation of TPM and the implementation process was 
driven forward by production with the maintenance department assisting the 

process. This example illustrates a lack of planning of the implementation and 

how errors in implementing a maintenance strategy can be costly. 

With the improvement of data collection techniques available to most 

manufacturing companies, improvements in accuracy of failure data, diagnosis 

and prediction can be realised. This data collection, through a maintenance 

management information system (MMIS), collects, processes, and transmits 

maintenance information and makes it available to maintenance personnel, 

managers, and those who need to make decisions which may affect plant 

operation and performance. Many organisations however have implemented such 

systems with differing levels of success (Labib (1998)). Successful 

implementation of such a system is dependant on both the planning strategy of the 

company and the maintenance practice in place. 

Maintenance departments in the manufacturing industry often utilise a general 

PM strategy with the integration of other maintenance philosophies. This 

maintenance approach is then fine-tuned to suit each individual company. This 

method though has the potential to create problems such as establishing a root 

cause when a problem arises due to the multiple layered maintenance strategy. 

Implementation of new machines or equipment may also create problems as the 

existing maintenance strategy has to cope with this change. 
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2.5 The need and justification for further research 

The manufacturing industry has a prodigious array of maintenance tools and 

techniques available at its disposal, along with an equivalent amount of software 
for the collection and manipulation of data, in order to establish a successful 

maintenance and inspection strategy. The problem exists however, that there is no 

single solution to determining maintenance and inspection strategies for a 

company. The amount of differing approaches that can be and has been 

considered makes choosing the correct strategy for any business a daunting task. 

The use of traditional maintenance and inspection techniques can be highly 

subjective, often relying on the judgement of maintenance personnel to establish 
inspection intervals. This method often comes down to the fact that if there are 
breakdowns then inspection should be increased or, if there are no breakdowns 

inspections could be reduced. The majority of maintenance and inspection 

analysis has come in combining one or more manufacturing philosophies to suite 

the specific needs of the company (Mohamed (2000)). 

The use of risk-based analysis in industry has been wide and varied, some of 

which are discussed in section 3.1. The existing techniques used to establish 

maintenance and inspection regimes do not consider costs relating to inspection or 

breakdowns, nor do they take into account the probability or consequence should 

failure take place. This can be of vital importance to an industry where the product 

is a hazardous or even deadly product, for example the oil industry, gas industry 

or the nuclear industry. One of the main advantages of using risk-based 

approaches for establishing maintenance and inspection regimes is the use of 

probabilistic data together with key historic data, for example failure rate. It is 

worth noting at this point that the term failure rate A, or Mean Time Between 

Failure MTBF (a reciprocal of failure rate) is used as a guide to establish the 

interval at which a maintenance task should be carried out. Other information 

which is utilised is data relating to breakdown times and costs as well as 

inspection times and costs. Maintenance and inspection regimes can then be based 
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on minimising costs or minimising downtimes, whichever is considered important 

to the business. A risk-based concept able to take into account all of the 

parameters mentioned is that of Delay-time analysis (DTA). Delay-time analysis 

models information gathered using both historical data as well as subjective data. 

Delay-time analysis is capable of establishing inspection intervals for a 

maintenance department through the modelling of this information. This 

modelling technique however, has not been used to deal with failure of a 

component or equipment resulting in an environmental catastrophe. This thesis 

has addressed this problem by applying the concept of delay-time analysis to an 

environmentally sensitive product in order to establish an inspection interval 

based on minimising the risk of an environmental disaster. Chapter 3 introduces a 
delay-time environmental model which considers parameters such as human loss 

of life, human injury and collateral damage both residential and industrial. Each 

parameter is considered in terms of probability of occurrence as well as 

consequence in terms of cost. Lastly, but vitally, the environmental delay-time 

model considers the risks relating to whether the environmental damage can be 

reversed. The challenge in using the environmental model is the significant 

reliance on subjective expert judgement and the combining of this information 

with historic objective data. The elicitation of this information has been overcome 

in chapter 4 through the use of another technique known as fuzzy-set modelling. 

Finally, the parameter failure rate forms an integral part of the delay-time concept 

from the very beginning. It was thought that this parameter could also be 

improved upon as it is vital to the delay-time modelling exercise. This parameter 

is usually based on statistical averages and can easily fail to reflect a situation. 

The use of Bayesian network modelling was used to establish this parameter. 

2.6 An introduction to the modelling techniques 

The modelling techniques used in this thesis are delay-time analysis, fuzzy set 

modelling and Bayesian network modelling. The delay-time analysis model forms 
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the main area for this research with fuzzy set modelling and Bayesian network 

modelling supporting the original concept. Each model has been applied to a case 

study in order to demonstrate the methodology developed for each model. An 

introduction to each modelling concept has been included in this chapter for 

convenience. 

2.6.1 Delay-time analysis 

When a failure takes place in a component, a machine or a piece of equipment 

there are several signals which could give an indication to an impending failure, 

for example: 

" Excessive vibration. 

" Unusual noise. 

" Excessive heat. 

" Surface staining. 

" Smell. 

" Reduced output. 

" Increased quality variability. 

" Particles in oil. 

It is often observed that a component or piece of equipment will give an initial 

sign of failure before its actual failure. The initial sign of failure being P and the 

failure being F, this is known as the P-F interval (Moubray (1997)). This however 

can only be possible if a clear potential failure condition exists. The conditions of 

the failure must display the following signs: 

" The P-F interval must be consistent. 

" It must be practical to monitor less than the P-F interval. 

" The interval is long enough for action to be taken before failure. 
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Given this set of circumstances a concept known as delay-time analysis can be 

used. 

Delay-Time Analysis (DTA) is a concept whereby the time h between an 
initial telltale sign of failure u and the time to actual failure can be modelled in 

order to establish a maintenance strategy. Delay-time is the period of time when 
inspection or maintenance could be carried out in order to avoid total failure. 

Figure 2.1 illustrates the delay-time concept (Arthur (2005)). 

h 

U failure 

Figure 2.1. The delay-time concept. 

To understand the advantages of the delay-time concept consider the example 
in figure 2.2. A time line with points on it signifies failures that have taken place. 

The item of equipment here is being maintained on a breakdown basis. The time 

of a failure is a random series of points. 

Time 
failure failure failure 

Figure 2.2. A delay-time maintenance breakdown example. 

Figure 2.3 illustrates the same failure point pattern but included is the initial sign 

of failure with each failure arising under a breakdown system. 
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Time 

" failure 
0 initial sign of failure 

Figure 2.3. A delay-time example with initial signs of failure. 

In this example increments of time have been included, in this case weeks, but 

the increments could be hours, months or even years. If the existing inspection 

period was that of a month or longer then this clearly shows that three failures 

would have taken place. Conversely, if the inspections would have been on a 

weekly basis, then two of the three failures would have been detected and 

prevented. Inspections though can be costly. Although two failures would have 

been avoided, three of the four inspections that took place at weeks 1,3 and 4 

during the four week period were unnecessary as week 2 inspection highlighted 

both failures. The cost of a breakdown can be high but the cost of inspections that 

are unnecessary can also be costly. Such costs, including, the time it takes to carry 

out an inspection, the production time that has been lost due to the inspection, the 

cost of man hours wasted both directly from the inspection task and indirectly 

from equipment operators not being able to perform their jobs, all contribute 

toward making inspections inefficient. Therefore it is vital to have the right 

balance between inspection and possible equipment failure. In this example if an 

inspection had taken place at two week intervals then two of the three failures 

would have been avoided whilst minimising unnecessary inspections. 

The delay-time concept was first introduced by Christer (1973) where he used 
delay-time analysis to model the inspection policy for building maintenance. 
Following the argument of Christer and Waller (1984), the occurrence probability 
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of a fault arising within the period (0, T) with a delay-time of h, the probability of 

occurrence of this event is f(h)dh where f(h) is the probability density function of 

the delay-time. If the fault arises in the period (0, T-h) the delay-time will expire 

before the next inspection at time T, which will result in failure. If a defect arrives 

in the interval ((T-h), 7) then the next inspection will arise before the delay-time 

expires and the defect is rectified without causing a breakdown. Therefore the 

probability that a defect causing a breakdown is the chance it arises within (0, T- 

h), such a probability is ((T-h)/T), as can be seen in figure 2.4. 

Breakdown Inspection 

repair repair 

4 -h 

0 (T-h) T 

Figure 2.4 - Breakdown and inspection repair 

The probability that a defect arises within the interval (h, h+ dh) is J(h)dh. The 

combined probability of the events of a delay-time within (h, h+ dh) and a defect 

arising within (0, T-h) is ((T-h)/Tjf(h)dh. Therefore summing up all possibilities of 

h, the probability of a defect leading to a breakdown failure b(7) (assuming 

perfect inspection) can be expressed as follows: 

-h (h)dh b(T) =TTTl 
0 

(2.1) 

This Equation (2.1) forms an integral part of the delay-time models which have 

been developed in this thesis. Equation (2.1) has been further developed and is 

included in each delay-time model, this is illustrated in section 3.3.10. 
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2.6.2 Fuzzy set modelling 

Fuzzy Set Theory (FST) was first developed by Zadeh in 1965. A fuzzy 

system is a system that uses imprecise or linguistic terms to describe a state. A 

system can have many `states'. For example, the temperature of an engine may 

use the terms `cold', `warm', `hot' and `very hot', these temperatures may 

represent 0-250°C, 251-500°C, 501-750°C and 751-1,000°C respectively. 

Traditionally these states are referred to as `crisp' variables but, although 

mathematically correct, are impractical in reality in many circumstances. With 

crisp variables the uncertainty of a state reaches its maximum at each border i. e. 

the temperature region 490°C - 510°C. An example of the impractical nature of 

crisp states could be that a temperature reading of 500°C may take place, it falls 

into the area of `warm' but an underestimation of 2°C would alter the state to 

`hot', leading to uncertainty in a maintenance decision to shut the engine down for 

an inspection or a repair. This uncertainty is ignored when dealing with crisp 

variables, known as bivalent set theory (Zadeh (1987)). In order to deal with these 

linguistic variables and the reality of a smooth transition from warm to hot, FST is 

used. FST abandons the sharp transition from one state to another thus allowing 

`fuzziness' between states (Metaxiotis et al. (2003)). 

Following on from this, if a universe X is made up of a multitude of x and 

various combinations of these elements make up set A on the universe, then for 

crisp sets an element x in the universe Xis either a member of crisp set A or is not. 

From this example, non-membership is represented by 0 and full membership is 

represented by 1. This was expanded by Zadeh to accommodate various degrees 

of membership from 0 being non-membership to 1 being full membership, a 

membership between 0,1 indicates the degree of membership p(x). The difference 

between a crisp set and a fuzzy set is the membership function. Crisp sets have a 

unique membership function whereas fuzzy sets (denoted by Ä) have an infinite 

number of memberships to represent the situation (Ross (2004)). The typical 

notation used for a fuzzy set is illustrated in Equation (2.2). 
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uT«x) E [0,1] (2.2) 

The symbol µ4(x) represents the degree of membership of element x in a fuzzy 

set Ä, therefore ta(x) is equal to the degree to which xE2 (where E denotes ̀is 

a member of' or `contained in'). 

Different values can be assigned to a membership function depending on the 

purpose of the study or investigation. Fuzzy sets can also be represented by 

various shapes, again, this is dependant on the investigation or how best the data 

in hand is to be represented. The most common shapes used are triangular curves, 

S-curves, is-curves and trapezoidal curves (Pillay and Wang (2003)), these curves 

are illustrated in figure 2.5. 

11111 

1111 11; 1 
1; 

1 

11 
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11 

(a) Triangular (b) Trapezoidal (c) S-Curve (d) it-Curve 

Figure 2.5. Various shapes that can be represented in fuzzy set theory. 

The membership is generally shown in the vertical axis and ranges from 0 (non- 

membership) to 1 (full membership), the domain of a set is generally shown on 

the horizontal axis. A typical fuzzy set is shown in figure 2.6, highlighting the 

temperature ranges of an engine as previously discussed in the example above. 
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1 

Figure 2.6. A typical fuzzy logic diagram illustrating engine temperature ranges. 

There are two main types of membership functions which can be used namely, 

triangular and trapezoidal. The type of membership to use depends on the concept 

to be represented as well as the context in which it is to be used. Fuzzy sets, as 
illustrated in figure 2.6, can be represented by families of parameterised functions, 

in this case triangular functions. 

2.6.3 Bayesian network modelling 

Bayesian network modelling is an artificial intelligence tool used to model 

uncertainty in a domain or system (Nadkarni and Shenoy (2001)). Bayesian 

network modelling can help in identifying the relationships between variables 

given uncertainty in a system. The identification of critical variables whilst taking 
into account other influencing factors is also a valuable feature of Bayesian 

modelling. Uncertainty in any system can be due to factors such as: 

" Inadequate understanding of the system. 

" Incomplete knowledge of the system at a point in time. 

" The system or parts of the system behaving in a random manner. 
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In its simplest form Bayesian network modelling relies on Bayes' theorem as its 

rule of inference, i. e. observations are used to update an uncertainty of a 

parameter or node in a Bayesian model. It relates to the conditional and marginal 

probabilities of two random events, calculating the posterior probabilities given 

observations of the two events. If two events A and B are considered where event 

A is the influenced node and event B is the influencing node, Bayes' theorem 

states: 

P(A I B) = 
P(B I A)P(A) 

P(B) 

where: 

P(A) is the prior or marginal probability of A. 

P(AIB) is the conditional probability of A given B. 

P(BIA) is the conditional probability of B given A. 

P(B) is the prior or marginal probability of B. 

(2.3) 

This theorem forms the basis of Bayesian network modelling. A Bayesian 

network is a directed acyclic graph (DAG) that encodes a conditional probability 

distribution (CPD) at the nodes on the basis of the arcs received. The nodes can 

represent any kind of variable or event. The variable or event could be a physical 

event, for example, a weather condition or equipment failing, a hypothesis 

whereby a theory or premise is put forward or an inferred variable i. e. not directly 

observed. A Bayesian network is therefore a DAG encoded with a CPD. In a 

Bayesian network structure an arc goes from one node (the source) to another 

node (the target) thus making a connection in one direction only (acyclic). A node 

is generally drawn as an oval or circle, representing the variable or event. The arc 

is generally a straight line with an arrowhead illustrating the direction of the link 

from the source node, often called the parent node, to the target node, often called 

the child node, representing the probabilistic dependence between the two 
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variables. If a node is an influencing node, i. e. no parents, then it has a marginal 

probability, if a node is an influenced node, i. e. a child, then this has a conditional 

probability. A simple Bayesian network modelling example is illustrated in figure 

2.7. 

Source or 
'parent' 

b1 P(bj) 

b2 P(b2) 

Target or 
'child' b1 b2 

al P(ajIbr) P(ajIb2) 

a2 P(a, I br) P(a2I b2) 

Figure 2.7. A simple Bayesian network model. 

A simple Bayesian network consisting of event A and event B including their 

conditional probability tables (CPTs) is illustrated in figure 2.7. The CPT for 

event B has two states namely, bl and b2 together with the probabilities P(b f), 
P(b2). The CPT of event A has two states a, and a2 but the states are influenced by 

event B. The states in a node may signify the differing conditions of a node, for 

example `hot' and `normal' for event B and `working' and `failed' for event A. 

The probability for event A, P(ajIbj), is described as `the probability of state a, 

`given' state b1' where the indication of conditionality is signified by the vertical 

symbol between each state `I' meaning `given that' or `given'. With B having an 

effect on A, A is conditionally described by posterior probabilities P(a jIb j), 
P(a jl b2), P(a2I b j) and P(a2l b2). The total size of a CPT child node is determined 

by the number of parent nodes in the network model, the number of states in each 

parent node and the number of states in the child node. The size of the Bayesian 

model requires careful consideration due to this fact. For example, three nodes 
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containing two states will generate a CPT for the child node containing 16 states, 

each requiring a prior probability to be established. 

One of the advantages of Bayesian network modelling is its flexibility in 

allowing new nodes to be added to an existing model. It also allows existing 
information previously added to be updated as new information is gathered. An 

example of a simple Bayesian network is illustrated in figure 2.8. 

Figure 2.8. A simple Bayesian network model. 

The example in figure 2.8 is that of an engine of a car. The engine will require oil 

to lubricate the engine and water to cool the engine, a lack of either will cause 
failure of the engine. The influencing nodes in this example are therefore `Coolant 

hose' and `Oil pump' with the influenced node being `Engine'. The Bayesian 

network therefore consists of three nodes, `coolant hose', `oil pump' and `engine' 

with each node consisting of two states. Coolant hose has two states, either `leak' 

or `no leak', oil pump also has two states, ̀ fail or `working' and engine can have 

the state of `fail' or `running'. This example models the causal dependence 

between the coolant hose and the engine and between the oil pump and the 

engine. 

The probability of a leak in the coolant hose will be an influencing factor as to 

the state or condition of the engine i. e. running or fail. A Bayesian network can 

not only visually represent the relationship between various nodes or events 
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(qualitative representation), it can quantitatively represent each node through a 

conditional probability table (CPT). A node with no predecessors (parent) is given 

a 'prior' probability distribution, whereas a node with predecessors (child) is 

given 'posterior' probability distributions. With each node given a CPT, a 

quantitative relationship between each node can be modelled. The CPT for each of 

the nodes 'Coolant hose', 'Oil pump' and 'Engine' is illustrated in figure 2.9. 

En Iine(Engine) 
Oil fail working 
Coolant leak no leak leak no leak 

Fail . 100.0 l100.0 0.0 .0 
Running 

.0 .00.0 
195,0 

Coolant he se (Cool ant) 

leak 30,0 

no leak 0,0 

Oil punll'(Oil) 
Fail 50.0 

working 50.0 

Figure 2.9. CPT for Engine, Coolant hose and Oil pump. 

The CPT for coolant hose is given a probability value for a leak and no leak. 

In this instance there is a probability of 30% that the coolant hose will leak and a 

70% probability that there is no leak. This data could be based on historical failure 

data, age of the component in question, or any other relevant variable. Similarly, 

the probability of the oil pump failing or working is 50%. The probability for the 

engine either running or failing is conditional on the condition of the oil pump and 

the condition of the coolant hose. Looking initially at the first column of the CPT 

for engine, there is a 100% probability of engine fail given failure of the oil pump 

regardless of whether there is a coolant leak. Looking now at the last column, 

given the oil pump working and with no leak present there is a 95% probability 

that the engine will run. In this example the child node (i. e. 'engine') has multiple 

parents (i. e. 'coolant hose' and 'oil pump'). In order to calculate the probability of 

the engine failing it is necessary to adopt the chain rule (equation (2.4)). The 
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nodes 'coolant hose' and 'oil pump' will be termed 'A' and 'B' and engine will be 

termed 'C'. The term Cl signifies the state engine 'tail'. 

22 

p(cl) _ 1)(C1 A, B, )P(A, )P(B, ) (2.4) 

P(engine ; fail )= P(oil 'fuil )x (coolant leak) x P(prior engine fifil )+ 

P(oil 'fail )x (coolen! 'no leak )x P(prior engine //ril '+ 

P(oil 'work )x (coolant leak) x P(/)rior engine 'faail) + 

P(uil 'work') x (coolant 'no leak) x P(prior engine fail') 

P(engine=0.5x0.3x1 +0.5x0.7x1 + 0.5 x 0.3 x 0.3 + 

0.5 x 0.7 x 0.05 = 0.5625 or 56.25% prohahilily. 

After populating the CPT for each node or event the modelling can also be 

carried out by using the software, Hugin (http: //www. hugin. com), giving the same 

result. 

COolant hose Oil pump En ine 
30.00 leak 50.00 fail 56.25 Fail 

.: -: 70,00 no leak 50.00 working 43.75 Running 

Figure 2.10. CPT (or Coolant hose, oil pump and Fngine. 

From this example. illustrated in figure 2.10, it can be seen that given the 

conditional probabilities of both the coolant hose and the oil pump, the engine has 

a 56% probability of failing. The main advantage of Bayesian network modelling 

is that this information can now be updated giving a revised probability of engine 

failure. For instance, should a new oil pump be fitted, then the probabilities 

concerning the failure of the oil pump will be greatly reduced, which in turn will 

update the probability of engine failure. Amending the oil pump probabilities to 
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10% fail, 90% working gives an updated probability of engine failure of 21%, the 

updated CPT is illustrated in figure 2.11. 

Coy dint hc6e Oil pump Enciine 
30,00 leak 10.00 fail 1.25 Fail 
70.00 no leak 90.00 avorking 78,15 Running 

Figure 2.1 1. Updated CPT for oil pump. 

To further demonstrate the flexibility of Bayesian network modelling, 

continuing with the above example, in addition to the replacement of the oil 

pump, a new coolant hose has been installed. The amended probabilities for the 

CPT of the coolant hose is that of 95% no leak. Given a further update of the 

model, the probability of engine failure is further reduced to 16% given this new 

information, the complete CPT for all three nodes is illustrated in Figure 2.12. 

Coolant hose Oil um Enciine 

5,00 leak 10,00 Fail 15,62 Fail 
95.00 no leak 1 90: 00 'corking 84t3S Running 

Figure 2.12. Updated CPT for Coolant hose. 

2.7 Conclusion 

This chapter has presented an overview of maintenance concepts as well as the 

manufacturing industry in general. The current status of maintenance planning has 

also been reviewed. From this a need and justification for research has been 

established in the field of risk-based techniques. A methodology using delay-time 

analysis (chapter 3), with supporting models using fuzzy set modelling (chapter 4) 

and Bayesian network modelling (chapter 5) has been developed as the main part 

of this research project. 
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Chapter 3 

Methodology of using delay-time analysis for a 

manufacturing industry 

Summary 

This chapter has been written to give a methodology of applying delay-time 

analysis to a maintenance and inspection department. The aim is to reduce 
downtime of plant items and/or reduce maintenance and inspection costs, taking 

into account the possible environmental impact of a failure in terms of cost, both 

to the company and to the environment. The chapter also attempts to give a 

subjective measure of the consequences of such a failure in terms of cost to the 

environment, in monetary value to the company and the damaging effect to the 

company image. A methodology has been developed and applied to a case study 

in order to demonstrate the process involved. 

3.1 Introduction 

There are numerous risk-based techniques used in industry today for a wide 

variety of applications. There are several notable applications that serve to 

highlight the diversity of industries and techniques used. These include the 

optimisation of maintenance procedures using generic algorithms in the railway 
industry (Podofillini et al. (2006)), optimal maintenance decisions in the process 

industry improving the safety of plant and equipment (Kallen and van Noortwijk 

(2005)), probability risk analysis (PRA) and subsequent prioritisation of 

maintenance activities of the NASA space shuttle (Pate-Cornell and Fischbeck 

(1993a), (1993b)) and a sensitivity analysis of critical components using neural 
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networks (Marseguerra et al. (2003)). 

Another technique, known as delay-time analysis (DTA), has also been 

applied to several maintenance areas in industry. Applications of delay-time 

analysis in industry have ranged from an extrusion press in a factory (Christer et 

al. (1995)) to the screening of cancers (Dekker and Scarf (1998)). Many papers 
(Christer et al. (1998b), Christer et al. (2000), Leung and Kit-leung (1996)) 

consider the application of delay-time analysis with certain assumptions attached, 

namely, perfect inspections and a constant inspection interval. Imposing these 

assumptions simplifies the mathematics in order to give a clear understanding of 

the methodology adopted. The downside of applying such assumptions is that the 

models, for most part, do not reflect reality. In Badia et al. (2002) a single unit 

system that alternates operating and idle time was studied. It examined a system 

with failures that are revealed at inspection and failures which are unrevealed at 
inspection. This took into account the probability of a failure remaining 

undiscovered at inspection, dealing with an assumption often made in the 

application of delay-time analysis; breakdowns can only occur when machinery or 

equipment is operating. A model which looked at imperfect inspections at non- 

constant intervals (Zhao et al. (2007)) using a non-homogeneous Poisson process 

(NHPP) in conjunction with delay-time analysis attempts to address this problem. 

In the next section, a selection of case studies will be examined in greater detail in 

order to obtain an understanding as to what has been previously achieved and 

what opportunities lie ahead in applying the delay-time concept to new 

challenges. 

3.2 Applications of Delay-time Analysis 

There are several interesting case studies to draw from using delay-time 

analysis utilising different information to good effect, some improving the 

maintenance policies and other studies verifying the validity of the existing 
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maintenance policies. 

One study was to look at the maintenance problem of gearboxes that a bus 

company was experiencing (Leung and Kit-leung (1996)). The study investigated 

the possibility of improving the effectiveness of the existing maintenance policy. 
The tasks were to minimise maintenance costs, to estimate the reliability of the 

gearbox, to predict the consequences of possible maintenance policy changes and 

to predict the number of breakdowns each month for the year ahead. The need to 

identify an existing problem and its nature is vital to the success of any 

maintenance modelling process. Delay-time analysis was the central concept 

methodology used in this example. Following the argument of Christer and Waller 

(Christer and Waller (1984)) the models used in this example were the expected 

downtime per unit time function D(T) and the expected cost per unit time of 

maintaining the equipment C(T) on an inspection period T. An availability model 

was also developed in order to estimate the availability of a gearbox per month, 
based on ideal running time (IRT) and downtime incurred (TD) during a month 

((IRT-TD)/IRT). Using the delay-time concept took the inspection period to 8 

days compared to the current inspection interval of 30 days. A direct comparison 

was then calculated between the current inspection policy of once a month and the 

delay-time inspection policy of eight days using three criteria, cost, utilisation and 

downtime. The monthly maintenance cost would have risen by nearly four times 

the amount under the delay-time inspection policy, the required workload would 

have risen 36%. It was therefore suggested that they continue using the current 

inspection policy. However, this example was one where the company's 

inspection policy was correct for them even though the delay-time inspection 

policy would have reduced downtime, the cost of employing this strategy was too 

great. 

A similar case study that was carried out was that of a winch on a fishing 

vessel (Pillay et al. (2001)). Again as in the previous example, a downtime 

estimation model and cost estimation model were used but differently a safety 
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criticality estimation model was also developed. The data gathered in this example 

came from a subjective source. Having established a delay-time for each of the 

three models, downtime estimation, cost estimation and safety criticality, the 

inspection period when downtime is minimised was that of 5.18 operating hours, 

7.24 operating hours when the cost is minimised and 17.28 when safety criticality 
is minimised. Expected cost was plotted against expected downtime, this 

generated the best compromise between cost and downtime. A compromise 

between the three was also established when downtime, cost and safety were 

plotted together. This information could be extremely useful for high maintenance 

equipment or frequent breakdown equipment. 

The two assumptions, perfect inspection and constant rate of defects over 

time, simplify the mathematical modelling of a system but can be misleading in 

some cases to portray the real-life system. Most case studies tend to use perfect 

inspections, this though is dependant on the equipment being studied. In Pillay et 

al. (2001) and Arthur (2005) the studies assumed perfect inspections. The 

introduction of non-perfect inspection (Christer et al. (1995)) brought a different 

concept to inspections. If equipment is complex it has been shown that there is no 

guarantee after an inspection that the equipment or system is now in a perfect 

condition. This was utilised in a case study of an extrusion press in a factory. This 

is useful as it gives a quantitative measure of how imperfect the inspection was, 

i. e. the probability r of detecting a fault. This case study also demonstrated the use 

of objective data which was termed `the objective method'. It demonstrated that 

the model output values for downtime percentage compared to the objective data, 

which was gathered from production records and failure data, were in close 

agreement, confirming that appropriate delay-time analysis modelling can be used 

in supporting maintenance policies based on objective information. 

A further case study (Christer et at. (1998a)) of a company manufacturing 
brake linings highlighted several key points in the effective use of maintenance 

and the positive results that delay-time analysis contributed to. A piece of 
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complex equipment was used in this study and data gathered was over a 13-month 

period. The problem highlighted with this case study was that of identifying and 

removing a fault at inspection or more accurately with the probability of it. The 

figure of 13% was established from discussions with their maintenance engineers. 
Their current 3-week inspection policy was unsuitable. An optimal inspection 

period was established as that of once a week which brought about a 30% 

reduction in downtime. Also the probability of detecting a fault during inspection 

was that of 13%. If measures were taken to improve the engineering ability to 

identify and rectify this figure then significant gains could be realised, reducing 
downtime from 7.2 hours a week with a3 week inspection policy to 3.4 hours 

with the same inspection policy. Another point made during this study was to 

establish which components had the shortest delay-time so that these items would 
be targeted at inspection firstly, thus further reducing downtime. The data, as 

previously discussed, that existed was that of times of failures and times that 

maintenance was carried out but no data existed of the condition of the equipment 

at inspection or the actions taken at inspection. This, though not uncommon in the 

industry, highlights the importance of useful data underlining the lack of 

awareness from the management of the value of this type of detailed data. 

A delay-time analysis, which was applied to a vibration analysis inspection for 

an offshore oil and gas water injection pumping system (Arthur (2005)), was 

carried out in order to establish a cost effective inspection policy. The critical 

systems are currently maintained using a condition based maintenance (CBM) 

policy with an inspection cycle time of once a month. Firstly, data was collected 
from the computerised maintenance management system and assessed. From this 

information any planned maintenance was disregarded and any unplanned 

(corrective) action was further scrutinised. The nature of the work carried out was 

established and dominant failure modes were highlighted. The failure modes were 

the bearings from the motor, the gearbox and pump of the injection system and 

the impeller and shaft from the pumps. This data was compared to an industrial 

reliability databank (OREDA (2002)). Converting both sets of data to a common 
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base of MTBF showed the observed data and reference data as comparable 
between each other giving credibility to the observed data. The mean delay-time 

was then established together with the optimal inspection interval. The costs of 
failure and inspection were then established and the results proved that a monthly 
inspection period was not cost effective and a move to a 5-month inspection 

period would bring a reduction from an annual cost of inspection from £25,200 to 

£4,200, a saving of £21,000. 

3.3 Methodology 

In order to develop a maintenance model using delay-time analysis a 

methodology needs to be developed in order to give the process a framework. 

Delay-time analysis can be used as a tool for reducing the downtime, D(T) 

(Christer et al. (1995)) of a machine or a piece of equipment based on an 
inspection period T, given the probability of a defect arising within this time 

frame b(T). For a particular plant item, component or series of machines, delay- 

time analysis is useful because the equipment in question is generally high volume 

and high capital expense, therefore any reduction in downtime due to breakdown 

or over inspection can be beneficial. As with the modelling of downtime per unit 

time, it is also possible to establish a cost model, C(T) (Leung and Kit-leung 

(1996)), again based on an inspection period T and probability b(T), this model 

estimates the expected cost per unit time of maintenance. This modelling has also 

been used for safety criticality (Pillay and Wang (2003)) on a fishing vessel 

giving safety criticality of a failure and operational safety criticality. Given these 

examples of how delay-time analysis can be applied, one area that could benefit 

greatly is the impact of a failure leading to an environmental accident. A 

quantitative approach of assessing the cost to a given company of an 

environmental accident could give a measure of the importance of and the 

monetary value gained in avoiding such an event. A flowchart of this 

methodology is illustrated in figure 3.1. 
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A methodology for applying delay-time analysis is proposed as follows: 

" Understand the process. 

" Identify the problems. 

" Establish data required. 

" Gather data. 

" Objective data analysis. 

" Subjective data analysis. 

" Advantages and disadvantages. 

" Validation of the delay-times and the distribution. 

" Establish assumptions. 

" Establish a downtime model D(T), cost model C(T) and environmental 

model E(T). 
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Understand Process, 
identify problems and 

gather data 

Analyse maintenance, 
inspection and failure data 

Subjective data available 
- expert judgement 
- questionnaires 

Objective data available 
- Maintenance 

data 
- faihire data 

Develop a histogram of failures in order to 
decide on the probability distribution 

function f(h). i. e. extDonential. Wiebull. etc.. 

Determine breakdown and Determine environmental 
inspection costs Calculate b(T) costs 

- breakdown repair (Equation 3.4) - company 
- inspection repair - human 
- insvection - environment 

Determine delay-time parameters 
- inspection downtime 
- arrival rate of defects 

- etc. 

Calculate C(T) Calculate D(T) Calculate E(T) 
(Figure 3.4) 

II 
(Figure 3.3) 

II 
(Figure 3.6) 

Determine optimum Determine optimum Determine optimum 
inspection T inspection T inspection T 

Decide which inspection interval will best suit the 
circumstances of the company 

Or 
Find a compromise between D(T), C(T) and E(T) 

Figure 3.1. A flowchart of the delay-time analysis methodology. 
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3.3.1 Understand the process 

Before the development of any maintenance model is carried out a thorough 

understanding of the processes involved is essential. Insufficient or inadequate 

work in this area will almost certainly spell disaster in the task of understanding 

the problems of a company. When understanding a process it is equally important 

to consider the tasks carried out at inspection as well as during maintenance. It 

may be the case that there are several parts that are inspected regularly but seldom 

fail or a component that fails regularly might be overlooked because it is 

inexpensive to correct. 

3.3.2 Identify the problems 

Several techniques using risk-based analysis can be useful in this phase of the 

study including event tree analysis (ETA) or failure mode and effects analysis 

(FMEA). ETA can be used to identify various possible outcomes given an 

initiating event. An example of this is a component failing giving an indication to 

an area of equipment or process that requires further investigation. FMEA can 

identify possible failure modes and the effects on the system but can also give a 

potential severity to the effect, this being most useful when looking at 

environmental or safety critical items. Having spoken to maintenance managers, 

production managers and key shop floor staff, a thorough understanding of the 

process should now be possible. Most problem areas should now be highlighted 

and problems evident. Problems such as frequent breakdowns, common cause of 

breakdowns and lengthy breakdowns, especially in the case of high volume 

equipment should all become apparent. Care should be taken as to whether a 

breakdown is a maintenance issue and not an engineering issue or operator issue. 

An example of an engineering issue may be working to an incorrect drawing or 

procedure, an operator issue may be the performing of a task using incorrect 

tooling or running a machine at a higher rate than it was originally designed to 
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run. Once the key plant items have been identified together with a list of dominant 

failures associated with the item, data can then be gathered. 

3.3.3 Establish data required 

Data can come in many forms from maintenance departments and more often 

than not be extremely detailed, however for the purposes of producing a delay- 

time model this information is often unusable (Christer et al. (2000)). The 

majority of data gathered by maintenance departments is generally the name of 

the equipment or the part number to have failed, the repairs made including spare 

parts used and the time the repair or inspection has taken to return the equipment 

to production. Therefore the type of data collected is important along with some 

basic assumptions for the equipment or component investigated. The types of data 

required for a delay-time analysis (Pillay et at. (2001)) are as follows: 

" Average downtime due to inspection, d. 

" Average downtime for a breakdown repair, db. 

" Arrival rate of defects per unit time, kf. 

" Failure rate X (1/MTBF). 

Downtime due to inspection, d is the amount of time, on average, an 

inspection will take to complete and return the equipment to production. The 

average downtime due to a breakdown and subsequent repair of the equipment db 

is the time it takes on average to return the equipment to production. The units of 

both downtime inspection and breakdown repair downtime must be identical but 

can be measured in hours, days or months depending on the equipment under 

investigation. The arrival rate of a defect, kf is the average time a defect arises 

over a period of time, calculated by the number of defects divided by the total 

operating time of the equipment under investigation. Failure rate ? is the 

reciprocal of mean time between failures (MTBF) where MTBF is the mean 
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operating time between failures of a component or piece of equipment. MTBF, 

however, should not be confused with the delay-time of a component or piece of 

equipment. The delay-time is the time from an initial telltale sign of failure to 

actual failure, both being dependant on the inspection interval, T. 

3.3.4 Gather data 

The question as to whether a delay-time analysis is carried out using either 
subjective means or objective means is dependant on what data is available. If 

maintenance records of inspections carried out with details of failures encountered 

are available then an objective delay-time analysis can be used to estimate the 

delay-time. If however this type of data is not available then subjective delay-time 

analysis must be used. This can be achieved by gathering information from 

sources such as the maintenance team, operator personnel and management 

through the use of questionnaires. It has been previously suggested (Christer and 

Waller (1984)) that the number of experts to use is in the region of 3 to 5 for 

subjective delay-time analysis. The consistency of the data is another aspect to 

consider when gathering data. There could be several sources of data available for 

a piece of equipment giving different signals regarding completeness and 

accuracy of data which could develop into a time consuming activity to sort the 

valid data from the irrelevant data. 

3.3.5 Objective data analysis 

As previously discussed objective delay-time analysis requires maintenance 

data as well as failure and inspection data in order to estimate the values of the 

parameters that will indicate the arrival rate of a defect kj and the delay-time 

distribution. 
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3.3.6 Subjective data analysis 

It has been documented (Christer et al. (1998b)) that the delay-time concept is 

not as straightforward to understand by engineers and operators as first imagined 

during the study of equipment at a company, therefore care needs to be taken 

when developing questionnaires or interrogating inspection data. To help avoid 

confusion when trying to implement a delay-time analysis to a manufacturing 

environment the term `how long ago' (HLA) and `how much longer' (HML) can 
be used (Leung and Kit-leung (1996)). The term HLA is a means of establishing 
from an engineer or a technician how long ago the fault could have been detected. 

The problem with asking for an estimate for HLA is that possible blame could be 

levelled at the individual for not identifying the hidden fault at an earlier 
inspection, therefore care needs to be taken and trust gained when establishing 
HLA and HML figures. The delay-time h can be calculated by adding the HLA 

and HML together. It is prudent to gather data that is not an exact point of time 

but 3 points of time namely a pessimistic, an optimistic and a most likely figure, 

thus taking both the pessimistic and optimistic data and calculating an average of 
both from each expert and comparing it to the most likely figure. 

3.3.7 Advantages and disadvantages 

There are several advantages and disadvantages for using the subjective delay- 

time analysis method for estimating a delay-time for plant or equipment. The 

main advantage with subjective delay-time analysis is that limited failure data is 

required in order to establish a delay-time estimate, one simply relies on the 

expertise of the personnel involved with the running of the equipment. Moreover, 

if the majority of maintenance and inspection data existing is unusable, then a 

means of establishing figures for the required parameters needs to be established 

even for objective delay-time analysis. There are however some disadvantages 

with this method, one disadvantage being that if a lack of faults or failures of the 
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equipment in question is infrequent then it may take some time to gather enough 

data for subjective delay-time analysis to be viable. A second disadvantage is that 

it can be time consuming. It takes time to compile and issue the questionnaire to 

ensure that all staff involved in the process has an understanding of the delay-time 

concept. Understanding the delay-time concept has previously proved a tough 

challenge, therefore the content of the questionnaire is of vital importance in order 

to avoid lengthy sessions with relevant experts explaining the questionnaire or 

gathering inaccurate data. In addition to establishing HLA and HML figures there 

are other questions that need to be addressed, namely: 

1. How many failures do you experience each working day/week/month? 

2. What is the average downtime for each failure? 

3. How many faults have been identified at each inspection? 

4. Please give a brief description of the failure and fault. 

5. Is the failure or fault preventable? 
6. If the failure or fault is preventable, briefly describe how. 

3.3.8 Validation of the delay-times and the distribution 

An important process in validating the information gathered is to confirm the 

results from each questionnaire with the author of the questionnaire, this makes 

certain that the perception of the questionnaires is that of the author of the 

questionnaire and no misinterpretation has been made (Christer et al. (1998b)). 

Once the delay-time estimates have been gathered a histogram can be constructed 

in order to establish the distribution and hence the type of distribution to use. The 

exponential distribution is frequently used to model the time interval between 

successive random events and generally used for breakdown repair data. 

Alternatively, when the failure probability varies over time, the Weibull 

distribution is appropriate (Pillay and Wang (2003)). It is necessary to test the 

distribution to the data in question; this can be done by using a chi-square 
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goodness of fit test. This is achieved by fitting the observed distribution to a 

theoretical distribution and comparing the frequencies observed in the data to the 

expected frequencies of the theoretical distribution. Once the model b(T), the 

probability of a defect arising within a certain time frame as a failure, has been 

developed then a means of validating it is required in order to give a reasonable 

amount of confidence to the model. A means of achieving this could be to take a 

point on the delay-time model, for example 7 days, and using maintenance data of 

the previous 7 days and comparing the two figures. 

3.3.9 Establish assumptions 

In order to apply the data to a model there are a number of assumptions that 

need to be established. The assumptions are generally based on the observations 

of the data, knowledge of the equipment involved and discussions with the 

maintenance management team, engineers and operatives. The following are 

typical assumptions of a simple delay-time model. 

1. Inspections take place at regular intervals. 

2. Inspections are perfect and that all defects will be identified at inspection. 

3. Defects found at inspection will be repaired during the period of 
inspection. 

4. Defects arise at a constant rate ? per unit time. 

5. The equipment or machine is in a steady state condition. 
6. Defects or failure can only take place when the equipment is in operation. 
7. Defects are assumed to arise independently of each other. 

Several of the above assumption may appear to be obvious but it is worth 

having total agreement with all persons involved in the study as even the simplest 

of assumptions could be misinterpreted or ignored because it may seem 

unimportant. An example of a simple assumption being ignored or amended 
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whilst a study is in progress is that of assumption 1, the time interval between 

inspections. An inspection may be carried out early due to a window of 

opportunity that has arisen or delayed because of production demands, therefore 

careful consideration and understanding of the assumptions is vital to the success 

of any study. Assumption 2 may seem impractical in reality because of the 

difficulty of knowing whether a fault may have already been present but not 

evident at an inspection. An inspection can be given a probability of a fault being 

detected at inspection (Christer et al. (1995)), this is generally given by r, 

therefore the probability of a perfect inspection is 1-r. For most cases though 

perfect inspection is assumed as this eases the mathematical complexity for 

demonstration purposes. Imperfect inspection could be a possible way of 

adjusting the model to the differing skills and experience of the maintenance staff 

or if a certain piece of equipment has a history of troublesome inspection repair 

giving a low utilisation, care is needed however as this type of problem is 

frequently an engineering issue. For example, a maintenance engineer with 20 

years experience is to be replaced by a newly qualified maintenance engineer of 2 

years experience. The newly qualified engineer will not have the same knowledge 

or experience of the equipment and therefore a probability ranging from 0 to 1 

could be applied. Similarly a poor track record of inspection repairs and 

breakdown repairs could be factored into the model. The arrival rate of defects 

being constant X, also known as homogeneous Poisson process (HPP) is a 

deciding factor of the use of the exponential distribution function. 

3.3.10 Establish a downtime model D(T), cost model C(T) and environmental 

model E(T) 

When the probability distribution function of a delay-time f(h) follows an 

exponential distribution, i. e. when the failure rate X or 1/MTBF is constant over a 

specified time period, the distribution function, as shown in Equation (3.1), is 

used to calculate the probability of a defect arising b(T) (Christer and Waller 
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(1984)): 

.f 
(h) = Ae-n (3.1) 

The probability of a defect leading to a breakdown failure b(T) can be expressed 

as follows in Equation (3.2). 

b(T) =TTTh 
)f(h)dh 

0 
(3.2) 

Combining the distribution function f(h) with the breakdown failure probability 

b(T) gives: 

b(T) =TTh _A, dh (3.3) 
T 0 

This term can be further simplified as: 

T 

b(T) =Tf (T 
-h)te-a''dh (3.4) 

0 

It is important to note that b(T) is dependant on the delay-time h. 

3.3.10.1 Downtime model D(T) 

It has been demonstrated (Leung and Kit-leung (1996), Pillay et al. (2001)) 

that with establishing a probability for breakdown failure b(T) it is also possible to 

establish an expected downtime per unit time function D(T) as shown in Equation 

(3.5). 
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d +kfTb(T)db D(T) _ (3.5) 
T+d 

where: 

d= Downtime due to inspection. 

kf = Arrival rate of defects per unit time. 

b(T) = Probability of a defect arising. 
db = Average downtime for a breakdown repair. 

T= Inspection period. 

Substituting b(T) from Equation (3.4) into Equation (3.5) gives: 

Id +kfTLý ( 

T(T+-d 
J 

h)I. e-a''dh Idb 
D(T) -- (3.6) 

3.3.10.2 Cost model C(T) 

Similarly, given the cost of inspection Cost;, the cost of a breakdown CB and 

the cost of inspection repair CIR, the expected cost per unit time of maintenance of 

the equipment with an inspection of period T is C(T), giving Equation (3.7) (Pillay 

et al. (2001)): 

C(T)- 
[kfT{Cost8b(T)+Cost, 

R[i-b(T)]}+Cost, 
] 

(3.7) 
(T+d) 

where: 
C(T) = The expected cost per unit time of maintaining the equipment on 

an inspection schedule of period of time T. 
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CostB = Breakdown repair cost. 
CostJR = Inspection repair cost. 

Cost, = Inspection cost. 

The cost of an inspection is simply made up of the cost per hour of the inspection 

personnel plus the cost per hour of downtime of equipment that may be required 

in order for the inspection to take place multiplied by the amount of time on 

average of the inspection, as shown in Equation (3.8) (Jones et al. (2009)). 

Costi = (Costýp + Costd) Tinsp (3.8) 

where: 

Costp = Cost of inspection personnel per hour. 

Costd = Cost of downtime per hour. 

T; �Sp = Time taken to inspect. 

The cost of a breakdown is calculated as the cost of the failure plus the costs of 

corrective action to bring the equipment back to a working condition. This is 

calculated as the cost of the maintenance staff per hour plus the cost of downtime 

per hour multiplied by the time taken to inspect plus spares used and any special 

equipment or personnel needed. The details of a breakdown repair are shown in 

Equation (3.9) (Jones et al. (2009)). 

COStB = AMsia + Costa) (Tinsp + Trepair) + Sp + Se (3.9) 

where: 

Msgaf = Maintenance staff cost per hour. 

Trepair = Time taken to repair. 

Sp = Spares and replacement parts cost. 
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Se = Special equipment / personnel / hire costs. 

The cost of an inspection repair is somewhat identical to the breakdown repair 

cost apart from the following: 

" Inspection repair will not generally have equipment hire costs (Se). 

" The time to repair will be of shorter duration for inspection repair. 

The time for an inspection repair having a shorter duration is mainly due to a 

breakdown having a greater knock-on effect. An example of a breakdown repair 

having a greater knock-on effect than an inspection repair could be the timing belt 

from an engine. An inspection repair would entail inspecting and replacing the 

item multiplied by the time it would take plus the cost of the item. A breakdown 

repair of a timing belt will be the same as an inspection repair plus the cost of 

pistons, a cylinder head and crankshaft multiplied by the time to repair, obviously 

greater in duration. The equation for inspection repair is shown in Equation (3.10) 

(Jones et al. (2009)). 

COStJR = (Mstaf + COSId) (Tinsp + Trepair) + Sp (3.10) 

A point to note regarding the cost model C(T) (Equation (3.7)) is that it 

describes a worst case scenario. This worst case scenario is a fault leading to 

failure before an inspection takes place or a fault being detected at inspection. 

Conversely, a best case scenario would be no failure taking place before 

inspection and no fault being present at inspection. A development for this cost 

model could be establishing a compromise between a best case scenario and a 

worst case scenario, this area of research though is outside the scope of this 

chapter. 
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3.3.10.3 Environmental model E(T) 

The aim of the environmental model is to establish parameters relating to the 

impact of a failure of a piece of equipment or a part of a process on the 

environment. Often in industry a failure of a machine or a piece of equipment is 

generally detrimental to production, the only impact being that production will 

cease for several hours with a cost relating to the lost production and the cost of 

repair. When attempting to gauge the impact on the environment of a failure a 

judgement has to be made as to the danger to the public as well as the 

environment costs. Environmental accidents can be simple spillages but can also 

be severe enough to have grave consequences both to life as well as damaging the 

environment for many years. Often this type of accident is difficult if not 

impossible to reverse, compounding the importance of avoiding equipment or 

component failures. An environmental model relating to the above concerns is 

shown in Equation (3.11) (Jones et al. (2009)). 

E(T) _ 
kfT 1E,. m, 

h(TT 

+d 
mage[I -b(T)]j (3.11) 

() 

where: 

Eimpact = Ehealih + Ecollateral + Ereverse (3.12) 

The term Ehealth gives a measure of the possible consequences a failure might have 

to human health. The term takes into account the severity of injury, the number of 

people affected and the probability of the accident resulting in injury. Eheahn is 

illustrated in Equation (3.13). It is important to highlight that the probability for 

each term is a probability of a certain consequence taking place given a failure, 

not the probability of a failure taking place. For example, should an oil platform 

explode then there is a high probability that injuries will be encountered and lives 

will be lost. The point of this probability is to attempt to give an indication as to 
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the possible extent, in human terms, should failure occur. This probability is 

known as a conditional probability or failure consequence probability. 

Ehealih = CL1. P1 + CL2. P2 + CL3. P3 + CL4. P4 + CL5. P5 (3.13) 

where: 

CL1 = Costhl. Lifehl 

CL2 = Costh2. Lifeh2 

CL3 = Costh3. Lifeh3 

CL4 = Costh4. Lifeh4 

CL5 = Cosths. Lifehs 

Costhi = Cost of unwell. 

COSth2 = Cost of ill health. 

COSth3 = Cost of hospitalisation. 

Costh4 = Cost of disability. 

Costh5 = Cost of a life. 

Lifeh� = Number of people effected. 

P� = Conditional probability of particular event. 

The term Ecoiia1erai gives a measure of the possible consequences a failure might 

have to plant items and to any residential buildings. The term takes into account 

the possible costs incurred and the probability of the accident resulting in damage. 

Ecauaterai is illustrated in Equation (3.14). 

Ecoltaterai = (COStp/ant Pplanc + (COStRes Pre. (3.14) 
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where: 

costp! Q�t = Cost of plant items damaged. 

costRes = Cost of residential building damaged. 

Ppiant = Probability of plant item damage. 

Pres = Probability of residential building damage. 

The term Edamage gives a measure of the possible consequences a failure might 

have to the environment. The term takes into account the cost to clean up any 

spillage that may result from a failure and the probability of a failure resulting in 

spillage requiring clean up. Edamage is illustrated in Equation (3.15). 

Edamage 
- COStclean Pclean 

(3.15) 

where: 

costs/ea� = Cost to clean up. 
PC1ea1 = Probability of spillage. 

Another factor to consider when establishing an environmental model is whether 

the result of a failure is reversible i. e. if it is possible to reverse or clean up the 

damage the failure has caused. With the possibility to reverse the effects of a 

failure a suitable time scale needs to be applied together with a factor relating to 

the amount of time. Table 3.1 illustrates a range of time scales for the amount of 

time the reversal or clean up time will take following a failure resulting in 

spillage. A brief review of several industrial accidents from differing industries 

which resulted in environmental damage requiring clean up forms the basis of 

table 3.1. Having previously established a measure of the possible consequences 

failure might have to the environment through the term Edamage, the review took 

into account possible timescales required. Additional to the clean up time is a 

factor relating to each time scale, this factor increases as the amount of time to 
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reverse the failure increases. There is a rank of 'low' given to the first 3 factors, a 

rank of `medium' to the next 3 factors, a rank of'high' to the next 2 factors and a 

rank of `very high' to the remaining 2 factors. The rank of 'medium', 'high' and 

'very high' signifies a considerable environmental disaster. 

Table 3.1. Factor relating to the time taken to clean up a failure. 

Clean-up time Factor Rank 

0 to 4 weeks 0.1 

I to 3 months 0.2 Low 

3 to 12 months 0.3 

I to 3 years 0.4 

3 to 7 years 0.5 Medium 

7 to 10 years 0.6 

10 to 25 years 0.7 

25 to 50 years 0.8- 

50 to 100 years 0.9 

100 + years 1 

A reversal probability is an effective way to quantify the possible 

irreversibility of a failure leading to an environmental accident, illustrated in 

Equation (3.16). 

= 
�evre (i - i; ) 

where: 

Fr = Factor relating to the clean up time. 

(3.16) 

It is important to highlight in Equation (3.16) that if the reversal period of time 

is 100+ years i. e. when F, is 1, then it is taken as an infinite amount of' time. This 

amount of time is impractical to model as it is obviously a serious failure and 
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outside the scope of this model. Given this information a calculation can now be 

made as to the environmental impact of a possible failure given the above 

parameters and applying them to Equation (3.11). 

3.4 Case study 

In order to demonstrate the above models for downtime D(T), cost C(T) and 

environmental E(T) a case study of a factory producing carbon black in the UK is 

given. 

This particular process of creating carbon black is made up of three units A, C 

and D. The three units cover the whole process stream from the reactor to the 

MUF (Main Unit Filter), this collects and separates the product from the gasses 

produced. The carbon black is then transferred into storage containers. A low 

pressure air and natural gas produce a flame of high temperature (1500 degrees 

centigrade) in the combustion zone of the reactor. Heavy oil, which is known as 

feedstock, is sprayed into the flame and a carbon black reaction occurs. After the 

feedstock is exposed to the high temperature it is quenched with water in order to 

stop the carbon black formation reaction. At this point the basic form of carbon 

black is formed, carbon black powder. Each unit consists of either 7 or 9 

compartments each housing 205 filters: 

" Unit A is made up of 7 compartments housing 205 filters per 

compartment, giving a total of 1,435 filters. 

9 Unit C is made up of 9 compartments housing 205 filters per 

compartment, giving a total of 1,845. 

" Unit D is again made up of 7 compartments housing 205 filters per 

compartment, giving a total of 1,435. 
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The filter is a bag type filter measuring approximately 10cm in diameter and 
2.5m in length. The cost of a filter is around £28 each with a life expectancy of 

three to four years. There is a second manufacturer of the filter that has a cost of 

around £7.50 but it has a life expectancy of 12 to 14 months with a lower 

tolerance to acid than the more expensive filter. A typical carbon black process is 

shown in figure 3.2. 

Cogen or Energy 

ON Preheater 
Recovery/Flare 

0O 

Water 
Waste Gas 

Air Natural Gas 
Pelletizer or Tall Gas 

Reactor 
Bag Filter 

Natural Gas Preheater x 11117.111110 11111111 
Dryer 

Waste Gas 
Combuster 

MUM 

Railroad Cars Trucks Bags Super Sacks 

Figure 3.2. A typical carbon-black process diagram. 

3.4.1 Failure of a filter bag 

This study will examine the failure of a filter bag as it is a primary concern 

relating to the release of carbon black into the atmosphere. The consequences of a 

failure of a filter bag can result in carbon black being leaked into the atmosphere. 

Because the particles when in the `fluffy' state are so fine, it is estimated that one 

tablespoon of carbon black could cover an estimated 4000m2 in this fine powder 

state. Carbon black has been classified by the International Agency for Research 
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on Cancer (IARC) as a group 2B carcinogen (The environmental protection act 

(1990)), this means that it is a possible carcinogenic to humans based on sufficient 

evidence in animals and insufficient evidence in humans, although morality 

studies have shown no association between carbon black and lung cancer rates. 

Studies have also demonstrated that regular exposure can result in a reduction in 

lung capacity. Inhalation of the dust causes coughing and wheezing, can cause 

drying to the skin with repeated and prolonged contact. Carbon black is not 

biodegradable but is non-toxic, often disposed of in a landfill because it will not 

seep or release any constituents to the groundwater (ICBA (2004)). Given this 

information the environmental impact of a leakage is considerable. The 

environmental agency has the power to suspend or even close production of the 

site should it consider it a hazard to the public and environment (IPPC (2007)). 

3.4.2 Costs of failure of a filter bag 

When a filter bag is to be changed the compartment has to be closed down. 

This requires 8 hours of cool down followed by a period between 6 and 24 hours 

downtime for repair and replacement then a further 2 hours to warm the unit back 

up. If a total re-bag is required downtime is generally around 7 days. When a unit 

is brought off-line it continues to burn gasses in order to keep the temperature in 

the reactor constant thus wasting energy. Additionally, the system allows that any 

surplus energy created during the manufacturing process can be sold back to the 

national grid. The cost of a failure is therefore compounded not only due to the 

costs in respect of the energy wasted but the loss of potential income from any 

surplus energy generated. Sometimes specialist maintenance crews need to be 

brought in to deal with a particular breakdown and failure, adding to the overall 

costs. A typical example of a breakdown which took 7 days to repair and replace 

all bags is demonstrated below. 

9 Loss of production per hour: £1,500 

Burn of gasses per hour: £238 
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" Loss of export of energy per hour: £26 

" Cost of maintenance personnel per hour: £28 

" Cost of supervisor per hour: £36 

" Cost of replacement filters (205): £40,180 

" Jetting crew: £710 

" Jetter hire: £300 

9 Cherry picker hire: £2,500 

This gives a total cost for a breakdown resulting in 1,435 filters being replaced 

effecting 1 MUF for a period of 7 days to be £350,794. 

3.4.3 Establishing a delay-time analysis 

In order to establish a delay-time analysis for this example several parameters 

need to be known. In this facility there are 205 filter bags in each compartment 

with either 7 or 9 compartments in each MUF. Due to the number of bags in each 

MUF in total this system is regarded as a system with multiple components. The 

parameters used in this example are as follows: 

" The arrival rate of a defect, kf - 0.28 per day. 

" Mean time between failure (MTBF) - 3 years. 

" Downtime for an inspection, d- 0.1 days. 

" Downtime for breakdown repair, db - 7 days. 

" Breakdown repair cost, CostB - £350,974. 

" Inspection repair cost, CostIR - £5,000. 

" Inspection cost, Cost; - £67. 

The data has been gathered from maintenance and inspection records over a 

period of 12 months (appendix 3). With the system being regarded as a multiple 
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component system, that is repairable with failures following a Poisson process i. e. 

arriving randomly, an exponential distribution is used together with a M'LUI and 

arrival rate of a defect. The arrival rate of a detect k1 was established by looking at 

the total number of defects for all three units for I year and finding an average of 
0.28 per day. The MTBF parameter of 3 years is the average time between a 
failure leading to a release of carbon black into the atmosphere. An inspection can 

either be a visual inspection checking the colour of the flame at the reactor or it 

can be what is called a `cloth check' which takes a sample of the air coming out 
into the atmosphere, this test takes between 10 minutes and 15 minutes to carry 

out. Both the visual inspection and cloth check inspection does not require a stop 

to production. However, an inspection to physically check the condition of' tile 

filter bags takes around 2.5 hours in duration. A total re-bag of a unit takes around 

7 days to complete including cool down and heat up periods. Ilaving established 

the relevant parameters it is now possible to apply them to [quation (3.6). 

Applying the parameters to Equation (3.6) it is possible to establish an inspection 

interval where a minimum downtime is of primary concern as illustrated in figure 

3.3. 
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D(T) Expected downtime per unit time 

Figure 3.3. Optimal inspection period based on minimum downtime D('1'). 
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As illustrated in figure 3.3, the minimum inspection interval based on 

minimum downtime D(T) is 11 days. Applying the cost parameters to Equation 

(3.7) an optimal inspection interval can be established. From the obtained result, 

the downtime curve (D(T) can be drawn against t (days) as shown in figure 3.3. 

Using methods such as the 'best fit' technique, the mathematical function of 1)(1') 

can be obtained. The minimum D(T) value can be found when d(D(T))/dt = 0. 

E-however, in this case where it is not difficult to find the minimum D('l') value 

from the graph and also a very high level of accuracy is not really necessary, a 

time consuming process of finding the minimum D("I') value accurately described 

above is not used. Instead the minimum D(T) value is directly found by observing 

the D(T) curve from the graph in figure 3.3. This principle is applied to establish 

C(T) and E(T). 

When the cost C(T) is of primary concern the optimum inspection interval is 

II days with a cost of £940 as shown in figure 3.4. 

C(T) Expected cost per unit time 
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£4,000 

£3,500 

£3,000 

C(T) £2,500 

£2,000 

£1,500 

£1,000 

£500 

1 £0 

Figure 3.4. Optimal inspection period based on minimum cost C(T). 
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With the minimum downtime D(T) being 11 days and minimum downtime cost 

C(T) being 11 days an inspection interval is clearly straightforward. By applying 

the environmental parameters, illustrated in table 3.2, to Equation (3.11), it is 

possible to establish an optimal inspection interval based on minimising the 

environmental impact should failure occur. 

Table 3.2. Environmental parameters to establish environmental model E(T). 

Model Parameters Cost Probability Calculated Cost 

Environmental Human Sickness £10k 0.5 £5k 
Ill health £0 0 £0 

Hospitalisation £0 0 £0 
Disability £0 0 £0 

Loss of life £0 0 £0 
Total £5k 

Environmental Collateral Plant £250k I £250k 
Residential £250k 0.5 £125k 

Total £375k 

Environmental Damage £200k I £200k 
Environmental Reverse (factor 0.2) £250k I £250k 

Environmental Impact Total £630k 

The probabilities illustrated in table 3.2 relate to the fact that should a failure 

occur leading to carbon black being released into the atmosphere then there is a 

probability of 1 that the plant will be damaged and this will result in damage 

costing £250,000. This principle applies to the other probabilities in table 3.2, for 

example, there is a 0.5 probability of residential damage should a release occur. 

Utilising the above parameters and applying them to Equation (3.11) and table 

3.1, an environmental criticality can be established. An inspection interval of 11 

days with an estimated cost of £27,641 has been established as shown in figure 

3.5. 
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Figure 3.5. Optimal inspection period based on minimum cost to the environment 

E(T). 

3.4.4 Validation 

In order to analyse the eftcct ot'change to the results of' I)('1'), C'(1') and F('l') a 

sensitivity analysis was carried out on each model. The analysis varied certain 

input data by 5% and 10% resulting in the following. 

3.4.4.1 Validation of D(T) 

The sensitivity analysis was carried out on the variables k, (arrival rate ot' 

defects) and ý. (failure rate) with an increase and decrease of 5'%"o and ]0% on each 

variable. The following five cases were considered. 

Case 1: Variables k/-and X decrease by 10`% 
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Case 2: Variables kfand ?, decrease by 5% 

Case 3: Variables kfand ?, unchanged 
Case 4: Variables kfand ? increase by 5% 

Case 5: Variables kfand ?, increase by 10% 

The increase and decrease of variables resulted in small changes in variation to the 

downtime D(T) and inspection interval as illustrated in table 3.3. 

Table 3.3. Sensitivity analysis of increasing and decreasing kf and X. 

Downtime D(T) Inspection interval 

Case 1 26 minutes 11 days 

Case 2 26 minutes 11 days 
Case 3 27 minutes 11 days 

Case 4 28 minutes 10 days 

Case 5 28 minutes 10 days 

The optimal inspection interval remains very close to the original interval given 

an increase and decrease of 5% and 10%. The sensitivity analysis for D(T) is 

shown graphically in figure 3.6. 
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Figure 3.6. A graphical representation of the sensitivity analysis from table 3.3. 

3.4.4.2 Validation of C(T) 

A sensitivity analysis was carried out on the cost of an inspection repair and 

the cost of an inspection in order to analyse the ef7ect of a change in the costs. The 

cost of an inspection repair and an inspection has been increased and decreased by 

5% and 10%. Similarly to validation of D('1') the following live cases were 

considered. 

Case 1: Cost/1z and Cost, decrease by 10% 

Case 2: ('ost1l? and Cost, decrease by 5% 

Case 3: Cos/Il? and Cost, unchanged 

Case 4: ('ost/Iz and ('os! increase by 5% 

Case 5: Cost/K and Cost, increase by 10% 

The result of this analysis is that a decrease in inspection repair costs and 
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inspection costs results in a slight reduction in the inspection interval as well as 

the cost C(T). Conversely, as the costs of inspection repair and inspection increase 

then the cost C(T) increases, the inspection interval remains II days. The result of 

this analysis is shown in table 3.4. 

Table 3.4. Sensitivity analysis of increasing and decreasing cost C(T). 

Cost C(T) Inspection interval 

Case I £891 Ill days 

Case 2 £916 10 days 

Case 3 £940 II days 

Case 4 £963 11 days 

Case 5 £986 11 days 

The sensitivity analysis is also shown graphically in figure 3.7. The optimal 

inspection interval remains very close to the original interval given an increase 

and decrease of 5% and 10'Yo. 
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Figure 3.7. A graphical representation of the sensitivity analysis from table 3.4. 
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3.4.4.3 Validation of E(T) 

A sensitivity analysis was carried out on the cost of the environmental impact 

(Eimpact) and environmental damage (Edamage) analysing the effect on a change in 

the costs. The cost of Eimpact and Edamage increased and decreased by 5% and 10%. 

Similarly to D(T) and C(T), the following five cases were considered. 

Case 1: E, mpac: and Edomage decrease by 10% 

Case 2: Eimpac: and Edamage decrease by 5% 

Case 3: E;, �pac, and Ed ., �age unchanged 
Case 4: Eimpac: and Ed�nage increase by 5% 

Case 5: Eimpact and Edamage increase by 10% 

The result of this analysis is that a decrease in E; mpacj and Edamage results in a slight 

reduction in cost E(T). As the costs of Eimpact and Edamage increase then the cost 

E(T) increases, the inspection interval however remains at 12 days. The result of 

this analysis is shown in table 3.5. 

Table 3.5. Sensitivity analysis of increasing and decreasing cost E(T). 

Cost E(T) Inspection interval 

Case 1 £24,877 11 days 
Case 2 £26,595 11 days 

Case 3 £27,641 11 days 

Case 4 £29,023 11 days 

Case 5 £30,405 11 days 

The sensitivity analysis is shown graphically in figure 3.8. The optimal inspection 

interval remains unchanged given an increase and decrease of 5% and 10%. 
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Sensitivity analysis based on E(T) 
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Figure 3.8. A graphical representation ofthe sensitivity analysis from table 3.5. 

3.4.5 Discussion 

The decision to focus attention on the filter bags came after a study of faults 

and repairs data for the whole of last year (2006). When a fault, failure or routine 

shutdown for maintenance was carried out, discounting any downtime under 5 

hours duration, 59% of unit A was attributed to the filter bags whether it was a re- 

bag or a component associated with a filter bag. The figure for unit C came in 

lower with a figure of 27% with unit D recording no downtime due to filter hag 

failure. 

It has been demonstrated in this case study that an optimal inspection interval 

taking into account a minimum downtime D(T) of 11 days has been established 

using the delay-time analysis technique. Using minimum cost C('I') as the criteria 

an inspection interval of 11 days with a cost of £940 was calculated. An 

inspection interval of 11 days when applying the environmental model was 
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established. 

Current practice at the company is that of a weekly inspection interval 

involving a flame check and a cloth check. It can be argued that this inspection 

interval could move to a2 weekly interval but given the nature of the two 

inspection checks and the fact that it does not stop production, a weekly 
inspection interval appears reasonable. 

3.5 Conclusion 

This case study looked at a company in the UK producing carbon black. 

Carbon black is carcinogenic which carries certain risks to humans, as previously 

described, given certain levels of exposure. Taking this into account a failure of a 

filter bag or a component associated with a filter bag could lead to exposure to 

humans, both on-site and residentially, of carbon black. The risk to human health 

as a result of inhalation generally points toward temporary breathing difficulties 

and coughing. 

This chapter demonstrates the delay-time concept for the use of minimising 
downtime and costs, setting inspection intervals to achieve this. The chapter also 

demonstrates the use of delay-time analysis for a potential environmental 

catastrophe resulting from failure of a piece of equipment or a component. The 

environmental model looked at factors such as human loss of life and the impact 

on the environment. The model also takes into account whether the damage from 

such a failure is reversible, if so, at what cost. Information was gathered from 

historical data as well as expert judgement. Parameters were established from this 

information in order to develop the delay-time models. The delay-time 

environmental model was applied to the possible release of carbon black, but this 

model could be equally applied to the oil industry, the chemical industry and to 

the nuclear industry as it gives a measure of the consequence should a failure lead 
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to an environmental disaster. 

With regard to this case study, the optimal inspection period is a matter for the 

management team to decide upon. The factors to consider are minimal downtime, 

minimising cost or minimising the environmental impact should a failure lead to a 

release of carbon black into the atmosphere. Given the close proximity of all three 

inspection intervals it should be a relatively straightforward task to establish an 

inspection interval. 
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Chapter 4 

The use of fuzzy set modelling for maintenance 

planning in a manufacturing industry 

Summary 

This chapter has been written to give a standardisation of information for 

applying delay-time analysis to a maintenance and inspection department. The 

aim of this chapter is to take both subjective and objective information gathered 

and elicit the required information using fuzzy set modelling for the purpose of 

applying it to delay-time analysis. A methodology has been developed and applied 

to a case study in order to demonstrate the process involved 

4.1 Introduction 

Information in a company can come in many forms, either from historical data 

or from expert judgement or a combination of the two. This information can often 

be vague, subjective and carry a high degree of uncertainty resulting in a lack of 

confidence in the data available. This lack of confidence may come under one or 

more of the following areas: 

" Lack of data. 

" Vagueness of information. 

" Uncertainties in data. 

" Incomplete data / information. 

" Human judgement. 

70 



A lack of data when carrying out any analysis can result in distorted results 
due to the reliance on an individual's perception and judgement of the data that is 

lacking. This can result in vagueness of information. Vagueness of information 

can also come in the form of imprecise instructions or procedures for maintaining 

a system or machine. This vagueness could then lead to inconsistency with 
inspections or maintenance tasks to be carried out, leading to interpretation of 

information using individual judgement. Uncertainties in data will undermine 

confidence in any analysis, casting doubt over the results. Incomplete data could 

render a study void before it begins. A common factor which can compound all of 

the other factors relating to data is that of human judgement. This can vary from 

individual to individual resulting in inaccurate analysis, uncertainty with the 

results of the analysis and reduced confidence in the course of action to be taken. 

When applying a decision making model to a manufacturing company the 

information gathered is crucial to the success of the analysis, requiring accuracy 

and relevance from the start. Often data that is required is available partly from 

objective historical data but requires the input of additional expert judgement in 

order to complete the analysis. It is the merging of historical data with expert 

judgement which can often cast doubt over the accuracy of the results. Combining 

two different types of data and standardising it into a usable and accurate form in 

order to apply it to a decision making model, in this case delay-time analysis, is 

required. This information needs to be elicited in order for it to be usable in any 

decision making model. A framework for this is illustrated in figure 4.1. 
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Figure 4.1. A proposed framework for the elicitation of information in a company. 

As illustrated in figure 4.1, information may come from many areas of an 

organisation as well as being in different forms, therefore elicitation of this 

information is required. 

The elicitation of information in this chapter will attempt to combine a number 

of objective parameters with a number of subjective parameters for the purpose of 

applying delay-time analysis. 

When applying delay-time analysis to any problem, certain parameters need to 

be established. It is at this point that the accuracy of the data used in establishing 

the parameters is vital. Delay-time analysis has been used as a tool for reducing 

the downtime, D(T) (Christer et al. (1995)) of a machine or equipment based on 

an inspection period T, given the probability of a defect arising within this time 

frame b(T). For a particular plant item, component or series of machines, delay- 

time analysis is useful because the equipment in question is generally high volume 

and high capital expense, therefore any reduction in downtime due to breakdown 

or over inspection can be beneficial. As with the modelling of downtime per unit 

time, it is also possible to establish a cost model, C(T) (Leung and Kit-leung 
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(1996)), again based on an inspection period T and probability b(T). The cost 

model C(T) estimates the expected cost per unit time of maintaining the 

equipment. An environmental model E(T) has recently been developed (Jones et 

al. (2009)) for environmentally sensitive products or processes. It establishes the 

impact of a failure of a piece of equipment or a part of a process on the 

environment. Often in industry a failure of a machine or a piece of equipment is 

generally detrimental to production. The only impact of a failure is that 

production will cease for several hours with a cost relating to the lost production 

and the cost of repair. When attempting to gauge the impact on the environment 

of a failure a judgement has to be made as to the danger to the public as well as 

the environment costs. 

The aim of the environmental model is to establish an inspection interval, 

given certain parameters, relating to the impact of a failure of a piece of 

equipment or a part of a process on the environment. Environmental accidents can 

be in the form of simple spillages but can also be severe enough to have grave 

consequences both to human life as well as damaging the environment for many 

years. Often this type of accident is difficult, if not impossible, to reverse thus 

compounding the importance of avoiding equipment or component failures. The 

environmental model relating to the above concerns is illustrated in section 

3.3.10.3. 

The parameters that relate to the environmental model E(T), need to come 

from historical data as well as expert judgement (subjective data). The problem 

exists though that either subjective or objective information can only be used 

separate of each other, not combined together. A detailed definition of the 

objective data that is required to carry out a delay-time analysis is given in section 

3.3.3: 

A method of taking subjective information, combining it with any historical 

data and objective data that may be available and transforming it into useful 
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parameters for delay-time analysis can be achieved using fuzzy logic. Fuzzy logic 

allows a gradual transition from one state or linguistic term to another. It permits 

the use of linguistic terms to describe a system or state, providing flexible 

modelling of imprecise data and information. 

4.2 Applications of fuzzy logic 

Fuzzy logic has touched most sectors from risk-based assessment of a fishing 

vessel (Pillay and Wang (2003)) to the hospitality industry (Petrovic-Lazarevic 

and Wong (2000)) and from supply chain performance (Lau et al. (2002)) to 

construction dispute evaluation in the building and construction industry (Cheung 

et al. (2001)). Its uses also cover the business industry (Wilson and McDonald 

(1994)) including developing a marketing strategy (Li (2000)) as well as the social 

sector, notably clinical applications constructing artificial intelligence programs 

that perform diagnosis and make therapy recommendations (Clancey and 

Shortliffe (1984)). 

Given the wide variety of applications utilising fuzzy logic, this chapter will 

attempt to look at several relevant papers where similar work has been carried out, 

namely papers dealing with probability, risk and costs relating to maintenance 

activities. 

The risk assessment using a fuzzy set approach (Pillay and Wang (2003)) 

looked at the problem of failure data on a typical fishing vessel. The data relating 

to fishing vessels is generally scarce and any data that is available has a high 

degree of uncertainty attached to it. This paper, given the problems generally 

associated with data collection, set about modelling the occurrence likelihood and 

the possible consequence of hazards established using fuzzy logic. The use of 

fault tree analysis (FTA) was used to calculate the probability of system failures, 

establishing the critical events that may lead to failure. Linguistic variables were 
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then established in order to represent the occurrence likelihood of a critical event. 

The consequences of a failure, or the severity of the consequence as it is termed, 

were established using expert judgement by means of Failure Mode and Effects 

Analysis (FMEA). After the consequences were identified they were then grouped 

into 4 categories, these being personnel, equipment, environment and catch with 

each failure being rated from 1 to 4 linguistically. By combining the occurrence 

likelihood with the severity of the consequence a risk ranking was produced 

giving linguistically the risks associated with a failure of a certain component. 

This paper demonstrated the success that can be achieved using two different 

types of information and combining them to good effect. 

A study of risk assessment of port security using fuzzy modelling (Ung 

(2007)) addressed the problem of deliberate or intentional damage from terrorism 

or criminal activity. Risk assessment deals with the likelihood and consequence of 

a possible event. A greater challenge was encountered as there was an 

unpredictable likelihood coupled with a high consequence. The study employs 

Failure Mode, Effects and Criticality Analysis (FMECA) but instead of using 

traditional historic data, fuzzy logic was used utilising linguistic terms as values. 

This was an obvious choice given the lack of data available. The sensitivity of the 

information made it unlikely to gather the required information. The study 

includes four elements, each with differing importance. The four elements 

introduced included: criticality of each asset, vulnerability of each asset, 

probability of occurrence and severity of occurrence. A greater importance was 

attached to criticality of each asset and vulnerability of each asset, with less 

importance given to probability of occurrence and severity of occurrence. This 

proved to be a useful aspect of this study as parameters with less importance may 

be considered without detracting from the important key parameters. Additionally, 

the expert judgement that was considered was given a differing weight to their 

opinions depending on their knowledge and experience. This methodology is 

useful given the often differing experience of experts used in research papers 

requiring expert judgement. 
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The inherent drawback of fuzzy modelling is the use of multiple parameters to 
describe multiple linguistic terms. This situation tends to generate a large number 

of fuzzy rules that need to be developed in order to model the system. A simple 

example of 5 parameters described using 5 linguistic terms requires 3,125 fuzzy 

rules. The advantages of using fuzzy logic systems previously outlined include a 

greater accuracy in decision making, a greater flexibility when applying it to 

differing problems and a reduction in human inconsistencies (Metaxiotis et al. 

(2003)). 

4.3 Methodology of applying Fuzzy Logic 

Applying delay-time analysis to a problem in order to establish an inspection 

interval using the environmental model E(T), using both objective information 

and subjective judgement, requires the development of a methodology. With a 

lack of data and the fact that some of the data required will be from an objective 

source, the methodology needs to address the combining of both types of data. 

The linguistic terms necessary to describe the parameters of both probability and 

costs must firstly be considered. This methodology will look firstly at a segment 

of the environmental model, namely the Ehealth term, in order to demonstrate the 

process. This term looks at the cost in terms of human injury. The terms Ecoiiaterai 

and Ereverse will then be examined, making up the remaining segments of the 

environmental model E(T). The modelling of this environmental model will 

demonstrate the use of linguistic terms to successfully model both conditional 

probability and consequence. The result will be a crisp value that can then be 

combined with the existing objective data in order to apply delay-time analysis 

environmental model. 

A methodology of applying fuzzy logic to delay-time analysis is developed to 

include the following steps: 
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" Establish membership function. 

" Develop a fuzzy rule base. 

" Synthesize parameters. 

" Defuzzify results. 

4.3.1 Establish membership function 

The membership functions for this methodology will deal with the conditional 

probability of occurrence and the costs associated with failure depending on the 

severity of the failure (consequence). The linguistic terms describing the linguistic 

variables will come from the use of expert judgement. Each expert is required to 

evaluate a proposition, `x belongs to A'. A is a fuzzy set on a relevant universe X, 

representing a linguistic term with a given linguistic variable x, with a, (x) being a 

value of scores within a certain range of X. Furthermore, if there are n experts 

with equal knowledge and experience, then Equation (4.7) can be applied (Klir 

and Yuan (1995)): 

A(x) _ 
E, a, (x) 

n 
(4.7) 

where, A(x) is the final answer after the judgements made by the n experts have 

been combined and a; (x) is the answer given by an individual expert, iEn. 

If the experts have differing knowledge and experience then Equation (4.7) can be 

modified to reflect this, as illustrated in Equation (4.8): 

A(x) = E, "_, Comp, a, (x) (4.8) 

where, Comp; is the degree of competency of the expert, and 
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E"_, comp, =1 (4.9) 

For this methodology the triangular membership function will be used as it gives a 

smooth transition from one linguistic state to another. The triangular membership 

also simplifies the defuzzification of each linguistic term (Ung (2005)). 

The linguistic terms used to describe the conditional probability will be 

explored initially. The first step when establishing the conditional probability 

(CP) for a failure event would generally require the use of fault tree analysis 

(FTA) (Pillay and Wang (2003)). Fault tree analysis is a diagrammatic method 

that can establish the occurrence probability of an undesired top event, given a 

certain sequence or combination of failure events. This method though relies on 

historical data. The use of linguistic terms to describe the differing stages of 

probability is generated from expert judgement. The linguistic terms used for 

conditional probability (CPn) for this study are as follows: 

" Remote (CPI ). 

" Low (CP2). 

" Moderate (CP3). 

" High (CP4). 

" Very high (CP5). 

A graphical representation of the membership function for conditional probability 

is illustrated in figure 4.2. 
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Figure 4.2. A membership function for conditional probability. 

The linguistic terms used to describe the consequence will be based on cost. It 

should be noted however, the consequence is taking into account the costs 

associated with the severity of failure. The term Ehealth will look at the cost of 

human injury. This human injury can range from cuts and bruises to loss of life, 

possible guidelines for costs associated with personal injury and loss of life are 

available from the National Safety Council (NSC). The cost of `loss of life' is in 

the region of £1.8m, `incapacitating injury' £100k and `non-incapacitating 

injury' £12,000 (NSC (2008)). These costs can give a guide to possible 

consequences associated with Ehealth costs. Ecoiiaterai will cover the costs associated 

with a failure leading to damage of plant items and buildings as well as residential 

buildings. The term Edamage will look at the cost of a failure requiring a clean-up 

process. The linguistic terms used for describing these consequences are: 

" Negligible (C 1). 

" Marginal (C2). 

" Moderate (C3). 

" Critical (C4). 

" Catastrophic (C5). 

A graphical representation of the membership function for consequence is 

illustrated in figure 4.3. 
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Figure 4.3. A membership function for consequence. 

Once the linguistic terms describing the required parameters have been 

established, the task of developing a fuzzy rule base can take place. 

4.3.2 Develop a fuzzy rule base 

A fuzzy rule base is a system that is constructed using expert judgement in the 

form of IF / THEN rules (Wang (1997)). An IF / THEN rule begins with an input 

variable. The input of the fuzzy rule base in this case is the consequence of a 

failure and the probability of a failure. The output is the assigned linguistic 

variable, in this case environmental consequence (EC), assigned again using 

expert judgement. The fuzzy rule base developed, given a conditional probability 

and a consequence of a failure, assigns an environmental criticality (ECn). An 

example of this is: IF Consequence Cl is Negligible and Probability CPl is 

Remote THEN Environmental Consequence (EC 1) is established giving the result 

Inexpensive. In order to generate the fuzzy rule base, the experts are asked to 

group the various combinations into 5 groups, each reflecting a differing cost or 

expense ranging from EC I to EC5. The term environmental criticality (ECn) is a 

measure of the risk, a combination of conditional probability and consequence, 

ranging from EC I inexpensive to EC5 disastrous. The linguistic terms used for 

describing environmental consequence (EC) are: 
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" EC 1 Inexpensive. 

" EC2 Reasonably expensive. 

" EC3 Expensive. 

" EC4 Very expensive. 

" EC5 Disastrous. 

The membership function for the rules in the fuzzy rule base can be 

determined using Equation (4.7). The linguistic terms are subjective as the costs 

will differ from industry to industry. For example; a number of experts from a 

small manufacturing company might perceive inexpensive as below £500, 

whereby experts from an oil company might perceive inexpensive as below 

£10,000. For each category a rank is given relating to its importance, with each 

probability rank being added to each consequence rank. Using expert judgement, 

a compromise is found for each environmental consequence (ECn) based on the 

combination of the probability and the consequence. In addition to establishing an 

environmental consequence, ranging from ECl to EC5, a belief structure is also 

required in order to give a greater accuracy to each rule. For instance, looking at 

rule 3 and rule 4, they both share the outcome of EC2, reasonably expensive, but 

rule 3 has a consequence of C3 (moderate) while rule 4 has a consequence of C4 

(critical). A belief structure will be able to differentiate between the two EC2 

results with rule 3 having a belief structure of (1) for EC2 and rule 4 having a 

belief structure of (0.80) for EC2 and (0.20) for EC3. A fuzzy rule base using the 

inputs consequence Cn and probability CPn has been developed, together with a 

belief structure (n), resulting in the following 25 rules: 

Rule 1: If consequence Cl and probability CP 1 then EC 1 (1) 

Rule 2: If consequence C2 and probability CP1 then ECI (0.80; EC2 0.20) 

Rule 3: If consequence C3 and probability CPI then EC2 (1) 

Rule 4: If consequence C4 and probability CPI then EC2 (0.80; EC3 0.20) 

Rule 5: If consequence C5 and probability CP1 then EC3 (1) 

Rule 6: If consequence Cl and probability CP2 then EC 1 (0.80; EC2 0.20) 

81 



Rule 7: If consequence C2 and probability CP2 then EC2 (1) 

Rule 8: If consequence C3 and probability CP2 then EC2 (0.80; EC3 0.20) 

Rule 9: If consequence C4 and probability CP2 then EC3 (1) 

Rule 10: If consequence C5 and probability CP2 then EC3 (0.80; EC4 0.20) 

Rule 11: If consequence Cl and probability CP3 then EC2 (1) 

Rule 12: If consequence C2 and probability CP3 then EC2 (0.80; EC3 0.20) 

Rule 13: If consequence C3 and probability CP3 then EC3 (1) 

Rule 14: If consequence C4 and probability CP3 then EC3 (0.80; EC4 0.20) 

Rule 15: If consequence C5 and probability CP3 then EC4 (1) 

Rule 16: If consequence Cl and probability CP4 then EC2 (0.80; EC3 0.20) 

Rule 17: If consequence C2 and probability CP4 then EC3 (1) 

Rule 18: If consequence C3 and probability CP4 then EC3 (0.80; EC4 0.20) 

Rule 19: If consequence C4 and probability CP4 then EC4 (1) 

Rule 20: If consequence C5 and probability CP4 then EC5 (1) 

Rule 21: If consequence Cl and probability CP5 then EC3 (1) 

Rule 22: If consequence C2 and probability CP5 then EC3 (0.80; EC4 0.20) 

Rule 23: If consequence C3 and probability CP5 then EC4 (1) 

Rule 24: If consequence C4 and probability CP5 then EC5 (1) 

Rule 25: If consequence C5 and probability CP5 then EC5 (1) 

It is important to point out that rules 20,24 and 25 have a difference in 

consequence or probability but display the same outcome and belief structure (i. e. 

EC5 with a belief degree of 1). This is because both consequences, critical and 

catastrophic, have serious implications when given a probability of either high or 

very high. 

4.3.3 Synthesise parameters 

Given the opinion of an expert, a synthesis of both consequence and 

probability can now take place. To illustrate this, an expert (i. e. expert #1) is 
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asked to give an opinion of each cost for Ehealth ranging from CL1 to CL5. To give 

an example, looking firstly at CL1, the expert believes that CL1 would be 5 on a 

scale of 1 to 10, giving a belief of 0.5 for C2 and 0.5 for C3. Similarly, the expert 

will give an opinion for a probability of each consequence of Ehealth ranging from 

P1 to P5 for each conditional probability (CPn). Here the expert believes that CL1 

would have a conditional probability of 4.5 on a scale of 1 to 10, giving a belief of 

0.75 for CP2 and 0.25 for CP3. This example is demonstrated below together with 

a graphical representation of the membership functions for both cost and 

probability, illustrated in figure 4.4 and figure 4.5 respectively. 

Expert #1 

CL1 (Cl = 0) (C2 = 0.5) (C3 = 0.5) (C4 = 0) (C5 = 0) 

P1 (CP1 = 0) (CP2 = 0.75) (CP3 = 0.25) (CP4 = 0) (CP5 = 0) 

1 

0.5 

Cl C2 C3 C4 C5 

Figure 4.4. The membership function for CL1. 

CP1 CP2 CP3 CP4 CP5 
1 

:.: 
/XXXX 

502 

44.5 68 10 

Figure 4.5. The membership function for probability Pi 
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Each value of CL� is combined with each value of probability (P�). An important 

point to note is if a zero (0) is given to a linguistic term, for example, Cl and CP 1, 

the result is `no score' for the combination. This synthesis will use `max-min' 

inference to establish the environmental criticality (EC). The first step is to take 

the `minimum' value for CLI and probability P1. Referring to the fuzzy rule-base 
developed in section 4.3.2, the results for this example are shown to be: 

C2 (0.5) and CP2 (0.75) 

C2 (0.5) and CP3 (0.25) 

C3 (0.5) and CP2 (0.75) 

C3 (0.5) and CP3 (0.25) 

EC2 0.5 Rule 7 fired 

EC2 0.25, EC3 0.20 Rule 12 fired 

EC2 0.5, EC3 0.20 Rule 8 fired 

EC3 0.25 Rule 13 fired 

Continuing with this example, the next step is to take the worst case scenario from 

the figures gathered, i. e. taking the maximum figure from each linguistic term. 

The result of modelling for expert #1 (i. e. CL1 and Pj) would therefore be: 

Expert #1- CL1 and PI = (EC2,0.5); (EC3,0.25) 

The environmental consequence for Ehealth, ranging from EC 1 to EC5 can be 

defined in monetary terms using expert judgement. The costs associated with each 

environmental consequence term will not only be specific to the industry in 

question, but the plant facility or factory in question. 

4.3.4 Defuzzify results 

The defuzzification process creates a single crisp value based on the fuzzy 

conclusion, in this case expressing the environmental consequence of a particular 

event. This process can also give a prioritisation to several possible scenarios, thus 

ranking a scenario based on risk. For this particular study a normalisation of the 
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worst case scenario is considered given the impact of the environmentally 
damaging effects that could result from failure. 

Having established an environmental criticality for CL1 and probability P, (i. e. 

EC2 0.5, EC3 0.25), a normalisation of these figures can now take place. It serves 

to transform the data gathered into an overall sum of 1 making therefore each part 

of the data representative of the whole. To illustrate this, continuing with the 

above example, taking the membership of EC2,0.5 and adding this to the 

membership of EC3,0.25, would give a total of 0.75. The next step is to divide 

the first figure, in this case 0.5 with the total, 0.75 giving 0.67 and dividing the 

second figure, 0.25 with 0.75 giving 0.33. The normalisation of CLi and 

probability P1 can now be put into a crisp value. For example, if EC2 is given a 

value of £10,000 and EC3 given a value of £25,000 then the following calculation 

can take place: 

Expert #1- EC2 (0.67 xf 10,000) + EC3 (0.33 x f25,000) = E14,950 

The benefit of normalisation is not realised until there are more than two 

parameters to deal with. For example, if the above example was to have the 

addition of the value EC4 0.10, where EC4 is given a value of £50,000, then this 

could be taken into account without distorting the results. 

EC2 (0.59 x £10,000) + EC3 (0.29 x £25,000) + EC4 (0.12 x £50,000) = £19,150 

When using expert judgement for fuzzy applications, there should generally be a 

minimum of three experts used for an accurate analysis to take place. Ideally, five 

experts may be an optimum number to use as this reduces errors that may arise 

due to an ambiguous value (Christer (1998b)). For this example, two additional 

expert opinions are added to expert #1 opinion, namely; expert #2 and expert #3. 

Taking the additional experts' opinions and calculating the value of this result 

gives: 
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Expert #1 (EC2,0.67); (EC3,0.33) (f]4,950) 

Expert #2 (EC2,0.58); (EC3,0.42) (£16,300) 

Expert #3 (EC2,0.75); (EC3,0.25) (C13,750) 

A unification of the three expert opinions using Equation (4.7) can now take 

place, adding each of the experts' opinions together and dividing by the number of 

experts used, in this case 3, giving: 

(£14,950 + £16,300 + J]3,750)13 =. f]5,000 

In this example, the cost of Ehealth would be £15,000. This process can be repeated 

for all of the parameters that make up the subjective terms for E(T), namely Eimpact 

and Edamage. 

4.4 Case study 

In order to demonstrate the above methodology a case study of a factory 

producing carbon black in the UK is given. A detailed description of the factory 

can be found in section 3.4. A detailed description of the impact of failure of a 

filter bag on the environment as well as the costs relating to the failure of a filter 

bag both directly and indirectly can be found in section 3.4.2. 

4.4.1 The application of applying fuzzy logic 

In order to apply the environmental model E(T), there are a number of 

objective parameters required. This objective data that has been gathered has been 

taken from historical means, i. e. inspection reports, maintenance reports, etc. The 

data gathered as part of this case study is as follows: 
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9 Arrival rate of a defect, kf 0.28 per day. 

" Mean time between failure (MTBF) 1095 days. 

" Downtime due to inspection 0.1 days. 

" Downtime for a breakdown repair 7 days. 

The subjective parameters that are needed in order to complete the delay-time 

analysis environmental model E(T) are as follows: 

" Ehealth 

" Ecollateral 

" Edamage 

" Ereverse 

For this case study the term Ehealth will be examined firstly in greater detail in 

order to provide a demonstration of the methodology. There are three experts used 

for this case study each with equal knowledge and experience. The first expert is 

currently a section manager with 15 years experience in the process industry. He 

holds a HND in electrical, instrument and process control engineering as well as 

being a time served electrician. The second expert is currently a reliability 

engineer with 21 years experience in the process industry, his qualifications are to 
degree standard. The third expert is an engineering manager with 14 years 

experience in the engineering and process industry. His qualifications are also to 

degree standard. Each expert was given the task of identifying firstly, a 

conditional probability then secondly a consequence of failure of a filter bag. The 

information was given out in isolation of the other experts in order to ensure that 

each opinion was an individual opinion. 
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4.4.2 Establishing Ehealth 

The membership functions of Cl to C5 were obtained using Equation (4.7) 

and the three experts' judgements. Expert #1 was asked to highlight consequence 

costs, CL1 to CL5 on this graph. Both the membership functions and the cost 

consequence CLI to CL5 for expert #1 are illustrated in figure 4.6. 

Cl C2 C3 C4 C5 

&< X X X / 0 
CL15k CLOk Qg0Okad 

5m 
CLs 

lOm 

Figure 4.6. Membership function of consequence of Ehealth from expert #I - 

The details of the results from this membership function are as follows: 

CL, (CI = 0.67) (C2 = 0) (C3 = 0) (C4 = 0) (C5 = 0) 

CL2 (Cl = 0.28) (C2 = 0.72) (C3 = 0) (C4 = 0) (C5 = 0) 

CL3 (Cl = 0) (C2 = 0.28) (C3 = 0.72) (C4 = 0) (C5 = 0) 

CL4 (Cl = 0) (C2 = 0) (C3 = 0.44) (C4 = 0.56) (C5 = 0) 

CL5 (Cl = 0) (C2 = 0) (C3 = 0) (C4 = 0.36) (C5 = 0.64) 

A graphical representation of probability was also constructed taken from the 

opinion of expert #1. The probability ranged from P1 to P5, where Pi is the 

conditional probability of CL1, P2 is the conditional probability of CL2, and P3 is 

the conditional probability of CL3 illustrated in figure 4.7. It is worth highlighting 

that none of the experts' believed that there is a probability of CL4 (cost of 

disability) or CL5 (cost of loss of life) given failure of a filter bag. 
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CP1 CP2 CP3 CP4 CP5 

Figure 4.7. Membership function of conditional probability of 
Ehealth from expert #1. 

The details of the differing probabilities are as follows: 

P1 (CPI = 0) (CP2 = 0.62) (CP3 = 0.38) (CP4 = 0) (CP5 = 0) 
P2 (CPI = 0.84) (CP2 = 0.16) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

P3 (CPI = 0.35) (CP2 = 0) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

P4 (CPI = 0) (CP2 = 0) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

P5 (CPI =0)(CP2=0)(CP3=0)(CP4=0)(CP5=0) 

Combining each consequence with each probability and assigning an 

environmental consequence (ECn) referring to the rules generated in section 4.3.2 

can now take place. Each expert was asked to consider the failure of a filter bag 

and to assign a cost consequence, CL� and a conditional probability P� 

accordingly. 

CL1; probability P, 

Cl (0.67) and CP2 (0.62) ECI 0.62, EC2 0.20 Rule 6 fired 

Cl (0.67) and CP3 (0.38) EC2 0.38 Rule 11 fired 
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CL2; probability P2 

Cl (0.28) and CPI (0.84) 

Cl (0.28) and CP2 (0.16) 

C2 (0.72) and CPJ (0.84) 

C2 (0.72) and CP2 (0.16) 

CL3; probability P3 

C2 (0.28) and CPI (0.35) 

C3 (0.72) and CPI (0.35) 

ECI 0.28 Rule 1 fired 

ECI 0.16, EC2 0.16 Rule 6f red 

ECI 0.72, EC2 0.20 Rule 2 fired 

EC2 0.16 Rule 7 fired 

ECI 0.28, EC2 0.20 Rule 2f red 
EC2 0.35 Rule 3 fired 

Having carried out the process of comparing the cost (CL�) with the probability 

(P�), a model result can now be extracted from these figures from expert #1. This 

part of the process will take the maximum from each cost - probability score 

comparison. 

Expert #1 results 

CLi; probability P, 

CL2; probability P2 

CL3; probability P3 

EC] 0.62; EC2 0.38 

ECl 0.72; EC2 0.20 

ECl 0.28; EC2 0.35 

The next step is to normalise this result giving: 

CLi; probability Pi 

CL2; probability P2 

CL3; probability P3 

ECI 0.62; EC2 0.38 

ECl 0.78; EC2 0.22 

EC] 0.44; EC2 0.56 

The same process was repeated for expert #2 and expert #3, the results of which 

are illustrated below. 

90 



Expert #2 results 

CL1; probability P2 ECI 0.44; EC2 0.56 

CL2; probability P1 ECl 0.59; EC2 0.41 

CL3; probability P3 EC1 0.46; EC2 0.39 

Normalising: 

CL1; probability P2 ECI 0.44; EC2 0.56 

CL2; probability P1 ECI 0.59; EC2 0.41 

CL3; probability P3 ECl 0.54; EC2 0.46 

Expert #3 results 

CL1; probability P3 ECI 0.42; EC2 0.41 

CL2; probability P2 ECl 0.55; EC2 0.33 

CL3; probability P3 ECI 0.32; EC2 0.27 

Normalising: 

CLI; probability P3 ECl 0.51; EC2 0.49 

CL2; probability P2 ECI 0.63; EC2 0.37 

CL3; probability P3 ECl 0.54; EC2 0.46 

Having established a cost consequence (CL�) and conditional probability (P�), 

resulting in an environmental criticality with a belief value for the failure of a 

filter bag, a monetary value is required for each environmental consequence ECn. 

The ECn figure can differ from industry to industry, but when dealing with the 

term Ehealth, loss of life and injury will have similar cost associated with it 

regardless of the industry considered. A guideline for establishing costs relating to 

Ehealth (NSC (2008)) was considered together with the experts' opinion has 
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established figures for each environmental consequence: 

EC1 = £10k 

EC2 = £50k 

EC3 = £25Ok 

EC4 =£1m 

EC5 = £5m 

Defuzzification of the experts' opinion can now take place. By assigning a cost to 

each environmental criticality (ECn) and applying these costs to each normalised 

judgement for cost CL� and probability P�, a single crisp value can now be 

gathered, as illustrated: 

Expert# 1 results 

CL1; probability P1 (£10,000 x0.62) + (£50,000 x0.38) = £25,200 

CL2; probability P2 (f]0,000 x O. 78) + (00,000 x O. 22) =. f]8,800 

CL3; probability P3 (£10,000 x 0.44) + (00,000 x 0.56) = f32,400 

Expert #2 results 

CL1; probability P1 (f10,000 x 0.44) + (£50,000 x 0.56) = £32,400 

CL2; probability P2 (£10,000 x 0.59) + (£50,000 x 0.41) = f26,400 

CL3; probability P3 (£10,000 x 0.54) + (00,000 x 0.46) = f28,400 

Expert #3 results 

CL1; probability Pi (f]0,000 x O. 51) + (E50,000 x O. 49) = f29,600 

CL2; probability P2 (f] 0,000 x 0.63) + (£50,000 x 0.3 7) =124,124,800 
CL3; probability P3 (f]0,000 x O. 54) + (; C50,000 x O. 56) =. f33,400 
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From the crisp figures gathered from the three experts unification can now take 

place, using Equation (4.7), in order to establish a single figure for Ehealih. 

CL1: £25,200 + £32,400 + £29,600 /3= £29,067 

CL2: £18,800 + £26,400 + £24,800 /3= £23,333 

CL3: £32,400 + £28,400 + £33,400 /3= £31,400 

This gives the term Eheatth a total value of £83,800. The remaining costs which 

make up the term Ehealth (costs CL4 and CL5) have been deemed unnecessary by 

the experts and therefore disregarded for failure of a filter bag. 

The next task is to establish costs relating to collateral damage and clean-up due 

to failure. 

4.4.3 Establishing Ecoiiaterei 

As discussed earlier in this chapter, Ecoiiaterat attempts to deal with the risk of 
damage to plant items and buildings plus damage to residential buildings due to 

failure. This study will continue to look at failure of a filter bag and its effects on 

collateral damage to plant and buildings. Again, the three experts were asked to 

estimate the cost to plant buildings and to residential building. The same scale has 

been used here as was used for Ehealth relating to cost, i. e. Cl to C5. Looking at the 

opinion of expert #1, the term costpla�t has a membership of 0.28 of C3 and 0.72 of 

C4, as illustrated in figure 4.7. Subsequently, expert #1 was asked to give a cost 

relating to the term costres dealing with residential damage, again this is illustrated 

in figure 4.8. This term has been given a membership of 0.60 of C2 and 0.40 of 

C3. 
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Figure 4.8. Membership function of consequence of Ecoiiaterai from expert #1. 

Having established costs relating to plant damage and residential damage a 

probability is now required for each term. The scale used for the term Eheahn has 

been used. Expert #1 assigned a probability of Ppiant for costpiant giving a 

membership of 0.84 for CPI and 0.16 for CP2, with probability Pres having a 

membership of 0.35 for CP1 as illustrated in figure 4.9. 

CP1 CP2 CP3 CP4 CP5 

i 
i 

X 
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'res "plant 
02468 10 

Figure 4.9. Membership function of conditional probability of 

Ecouaterat from expert #1. 

Again, as with the term Eheahn, each consequence with each probability can be 

assigned an environmental consequence (ECn) referring to the rules generated in 

section 4.3.2. 
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Expert #1 results: 

Costplanti probability Ppiant 

C3 (0.28) and CPI (0.84) 

C3 (0.28) and CP2 (0.16) 

C4 (0.72) and CPI (0.84) 

C4 (0.72) and CP2 (0.16) 

Costres; probability Pres 

C2 (0.60) and CPI (0.35) 

C3 (0.40) and CPI (0.35) 

EC2 0.28 Rule 3 fired 

EC2 0.16, EC3 0.16 Rule 8 fired 

EC2 0.72, EC3 0.20 Rule 4 fired 

EC3 0.16 Rule 9 fired 

ECl 0.35, EC2 0.20 Rule 2 fired 

EC2 0.35 Rule 3 fired 

The above results can now be synthesised as: 

Costplant; probability Ppia�t EC2 0.72; EC3 0.20 

Costres; probability Prey ECl 0.35; EC2 0.35 

The next step is to normalise this result giving: 

COStplant; probability Ppiant EC2 0.78; EC3 0.22 

Costres; probability PCeS ECl 0.50; EC2 0.50 

Defuzzification of expert #1's opinion can now take place, assigning a cost to 

each environmental criticality (ECn) and applying these costs to each normalised 
judgement for cost and probability. A single crisp value for Ecoiiaterai can now be 

established relating to the term for collateral damage. The costs previously 

assigned to each environmental criticality, ECn, have been used for collateral 

damage. 
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Expert# 1 results: 

Costplant; probability Pplant 

Costres; probability Pres 

(i50,000 x 0.78) + (f250,000 x 0.22) = £94,000 

(£10,000 x 0.50) + (£50,000 x 0.50) = £30,000 

From this result it is shown that the opinion of expert #1 for the risks associated to 

the cost of collateral damage is £124,000. This process was repeated for experts 
#2 and #3 (see appendix 2). The results of the three experts' opinion were then 

considered, using Equation (4.7), to give a single crisp value: 

Ecoilateral cost £124,000 + £145,600 + 130,000 /3= £133,000 

4.4.4 Establishing Edamage 

As described earlier in this chapter, the term Edamage relates to the impact of a 

failure on the environment, i. e. spillage or leakage, which requires clean-up. The 

term COStclean as well as a probability are the parameters for this term in order to 

establish a risk in terms of cost. The cost of environmental damage can differ 

greatly depending on the industry in question. As with the health parameter and 

the collateral parameter three expert opinions were gathered to establish a cost 

relating to environmental damage. Similarly from the other parameters 

established, expert #1 opinion was that of costciean having a membership of 0.20 

for c3 and 0.80 for c4 illustrated graphically in figure 4.10. 
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Figure 4.10. Membership function of consequence of Edamage from expert # 1. 

Having established costs relating to environmental clean-up a probability is now 

required for the term. Again, the scale for the term Eheatth has been used, assigning 

a probability of PC1ea� illustrated in figure 4.11. 

1 
CP1 CP2 CP3 CP4 CP5 

Figure 4.11. Membership function of conditional probability of 

Edamage from expert # 1. 

Expert #1 assigned a membership of 0.74 for CP3 and 0.26 for CP4. Given this 

information an environmental consequence (ECn) can be established. 
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Expert #1 results: 

Costciean; probability Pclean 

C3 (0.20) and CP3 (0.74) 

C3 (0.20) and CP4 (0.26) 

C4 (0.80) and CP3 (0.74) 

C4 (0.80) and CP4 (0.26) 

EC3 0.20 Rule 13 fired 

EC3 0.20, EC4 0.20 Rule 18 fired 

EC3 0.74, EC4 0.20 Rule 14 fired 

EC4 0.26 Rule 19 fired 

Expert #1 results: 

Costciean; probability Pciean EC3 0.74; EC4 0.26 

Normalising this result gives: 

Costclean; probability Peiean EC3 0.74; EC4 0.26 

Defuzzification of expert 41's opinion can now take place, assigning a cost to 

each environmental criticality (ECn) as previously demonstrated, and applying 

these costs to each normalised judgement for cost and probability. A single crisp 

value for Edamage can now be established relating to the term for environmental 
damage. 

Expert #1 results: 

Costciean; probability Pclean (. f250,000 x O. 74) + (f1 mXO. 26) =1445,000 

From this result it is shown that the opinion of expert #1 for the risks associated to 

the cost of environmental damage is £445,000. This process was repeated for 

experts #2 and #3 (see appendix 2). The results of the three experts' opinion were 

then considered, using Equation (4.7), to give a single crisp value of £445,000. 
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Having established a cost for the term Edamage it is a straightforward task to 

establish a cost for Ereverse. With reference to Equation (4.7) it can be seen that a 

factor needs to be selected from Table 4.1. With this case study looking at the 

product of carbon black it is the opinion of the experts that a factor of 0.2 is 

realistic. Given this information a figure of £556,250 is calculated for the term 

Ereverse" 

Applying the results gathered from the three experts to the environmental 

model E(T), Equation (4.1), can now take place. The objective data (section 4.4.1) 

has been gathered from historical means, i. e. inspection and maintenance reports. 

This will make up part of the environmental model E(T). The remaining 

parameters have come from expert judgement, the environmental costs established 

being: 

Eheal h: f83,800 

Ecoriorerar. V33,000 

Edamage: f445,000 

Ereverse: f556,250 

When the objective data together with the subjective data is applied to the 

environmental model E(T) an inspection period, based on minimising the 

environmental impact of a failure, can be achieved. The outcome is illustrated 

graphically, as shown in figure 4.12. 
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Figure 4.12. Optimal inspection interval based on minimal cost. 

Figure 4.12 shows graphically the environmental impact cost of an inspection 

interval ranging from 1 day to 41 days. The graph illustrates a minimum 

inspection interval of 13 days with a cost of £50,406. 

4.4.5 Validation 

In order to validate the environmental model L: (1') a sensitivity analysis was 

carried out to consider the effect of change to the results. The analysis varied the 

input data, E;,,, pact and Edamage, increasing and decreasing each by 5% and 10% 

This resulted in no change to the inspection interval but had obvious changes to 

the environmental impact costs. 

An increase of 10% in the costs relating to the terms and I: &1111a, c 

resulted in an increase of £5,041 to give a total of £55,447. Similarly both 

and Eda,,, age were increased by 5% resulting in an increase off2,521 giving a total 
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of £52,927. Decreasing Eimpact and Edamage by 10% gave a reduction of £5,040 

resulting in a cost of £45,366. A reduction of 5% resulted in a decrease of £2,520 

giving a total of £47,886. These figures are illustrated in table 4.1. 

Table 4.1. Sensitivity analysis of increasing and decreasing E;,,, pac, and Edamage 

% Change Environmental 
cost 

Inspection 
interval 

10% £55,447 13 days 

5% £52,927 13 days 

Unchanged £50,406 13 days 

-5% £47,886 13 days 

-10% £45,366 13 days 

The validation can also be illustrated graphically as shown in figure 4.13. 

Sensitivity analysis based on E(T) 
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Figure 4.13. Optimal inspection period based on minimal cost to the environment. 
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4.4.6 Compare results with previous study 

Chapter 3 established the environmental model E(T) using expert judgement. 

The experts were asked to give a figure for each of the parameters relating to the 

consequential costs associated with the failure of a filter bag. They were also 

asked to give an estimation of the probability of each parameter leading to the 

particular outcome of each parameter. The results of this exercise are illustrated in 

table 3.2, section 3.4.3 of chapter 3. The aim of this chapter is to reproduce the 

environmental model using fuzzy logic generated data. In order to perform a 
direct comparison, all of the parameters relating to the downtime model D(T) and 

cost model C(T) have remained unchanged, the data relating to the parameters of 
the environmental model E(T) have been replaced with data established using 
fuzzy logic. The comparison between the original data to establish the 

environmental model E(T) and the data established using fuzzy logic is illustrated 

in table 4.2. 

Table 4.2. A comparison between the original environmental modelling data and 
the fuzzy logic generated environmental modelling data. 

Original 
data 

Fuzzy logic 
data 

Ehe&t, £5,000 £83,800 

Ecollateral £375,000 £133,000 

Edamage £200,000 £445,000 

Erv £250,000 £556,250 

E, mpact £630,000 £773,050 

Table 4.2 clearly illustrates a significant difference between the original data and 

that of the fuzzy logic generated data. The fuzzy logic data relating to the 

environmental model has been integrated into the delay-time analysis model 

alongside the original environmental modelling data from chapter 3, illustrated in 
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figure 4.14. The outcome of the fuzzy logic inclusion is to establish an improved 

inspection interval. 

Comparison of E(T) using Fuzzy Logic 
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Figure 4.14. Comparison of E(T) using fuzzy logic developed data. 

When the fuzzy logic generated data is added to the delay-time analysis model. 

the environmental model E(T) also shows a significant change. As illustrated in 

figure 4.14, the inspection interval has moved from 11 days to that of 13 days but 

more noticeably the environmental costs relating to täilure has increased from 

£27,624 to £50,406 which is almost twice the original estimate. The dittcrence in 

the results in this chapter compared to the results in chapter 3 is due to the 

estimation of the environmental modelling parameters in chapter I whercbý 

general approximation values were given. The modelling of costs in this chapter 

has been conducted in a detailed and meticulous manner with each expert 

judgement synthesised in a rational way. 
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4.5 Discussion 

The aim of this case study has been to apply delay-time analysis, a 

maintenance modelling technique, to a company producing carbon black. The 

challenge was to use both subjective expert judgement together with objective 

historical data. The reason for combining the differing types of data comes from 

the information required to applying the environmental model of the delay-time 

analysis method (Jones et al. (2009)). This environmental model looks at the 

consequence of failure of a component on the environment. This methodology 

relies heavily on expert judgement to quantify parameters such as loss of life, 

injury, collateral damage and clean-up costs into an overall cost risk, resulting in 

an inspection interval based on these factors. 

Current practice at the company is that of once weekly inspections, this study 

can suggest that the inspection interval could move to a once fortnightly 

inspection regime. However, given the facts that inspections do not halt 

production and can be completed in a short period of time, it is reasonable to keep 

the current once weekly inspection interval. 

It is important to note that Equation (4.1) deals with a worst case scenario. If a 
breakdown failure does not take place, where b(T) is the probability of a 

breakdown failure, then failure will occur during inspection repair, i. e. 1- b(7), the 

probability of failure at inspection repair. The best case scenario would be that no 

breakdown failures would occur and no repairable failures, therefore removing the 

term Edamage from Equation (4.1). A graph illustrating this would be a straight line 

from day one and increasing at a linear rate up to 41 days, therefore the longer the 

inspection interval, the greater the cost a failure would be. 

104 



4.6 Conclusion 

The primary aim of the delay-time analysis concept is to minimise downtime 

and costs associated with inspection and maintenance activities as well as 
breakdown costs. The environmental model attempts to quantify the risks in terms 

of cost associated with a failure resulting in danger to humans and damage to the 

environment. 

In chapter 3 the results of applying delay-time analysis looked at optimising 

the inspection interval by minimising downtime D(T), minimising costs C(T) and 

minimising the environmental impact of failure E(T). The first two terms took 

mainly historical objective data, but the environmental term required a large 

amount of subjective input. The parameters for applying the environmental model 

E(T) were developed from uncertainty and estimates in a random and imprecise 

way. This methodology has attempted to address this uncertainty by using fuzzy- 

logic combined with max-min analysis and normalisation to give a quantitative 

approach to applying delay-time analysis using the environmental model. 

The environmental model can be applied to differing industries including 

environmentally sensitive manufacturing processes and facilities which may pose 

a danger to human life and to the transportation of hazardous or environmentally 
damaging waste where a high level of uncertainty in data for estimation exists. 
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Chapter 5 

The use of Bayesian network modelling for 

maintenance planning in a manufacturing 
industry 

Summary 

This chapter has been written in order to apply Bayesian network modelling 

to a maintenance and inspection department. The primary aim of this chapter is 

to establish and model the various parameters responsible for the failure rate of a 

system, using Bayesian network modelling, in order to apply it to a delay-time 

analysis study. The use of Bayesian network modelling allows certain influencing 

events to be considered which can affect parameters relating to the failure rate of 

a system. Bayesian network modelling also allows these influencing events to 

change and update depending on the influencing data available at any given time, 

thus changing the failure rate or probability of failure. A methodology has been 

developed and applied to a case study in order to demonstrate the process 

involved 

5.1 Introduction 

When using delay-time analysis to develop a maintenance or inspection 

model, the need for both relevant and accurate data is vital to the success of the 

task. The information required in order to carry out such a modelling exercise is 

gathered from historical data and/or from expert judgement. This information is 

used to calculate the variables needed to apply delay-time analysis. A detailed 

definition of each parameter required is given in section 3.3.3 which includes: 
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" Average downtime due to inspection, d. 

" Average downtime for a breakdown repair, db. 

" Arrival rate of defects per unit time, kf. 

" Failure rate X (I /MTBF). 

Looking at the variable failure rate ?. (1/MTBF), the information required to 

populate this is usually based on statistical averages. For example, if a machine or 

piece of equipment has experienced 10 breakdowns over a period of 1 year this 

would result in a failure rate of 0.027 failures/day (MTBF 37 days). To further 

expand on this example, suppose 70% of the breakdowns occurred during the first 

3 months of operation, with only 1 breakdown experienced during the last 2 

months of operation. Calculating these figures into failure rates highlights the 

inadequacy of relying on averages when gathering data of this type (Aven and 
Sandve (1999)). Specifically, the failure rate for the first 3 months is that of 0.077 

failures/day (MTBF 13 days) but the failure rate for the last 2 months is 0.016 

failures/day (MTBF 63 days). Although the average failure rate of 0.027 

failures/day (MTBF 37 days) is correct for average breakdowns it may not be 

adequate to portray the actual situation. Continuing with this example, there may 
be a number of influencing factors that have been responsible for the varying 
failure rates over the 12 month period. For example, poor reliability of equipment 

may be encountered due to incorrect installation. Conversely, improvements in the 

design of the equipment may improve the reliability of the equipment. Other 

typical influencing factors for this example might include: 

" Poor initial implementation of equipment. 

" Improvements in inspection procedure. 

" Improvements in maintenance personnel training. 

" Renewal of key components. 

" Changes to inspection intervals. 
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A modelling technique capable of appreciating the differing influencing 

factors which could affect an event or variable is that of Bayesian network 

modelling. Bayesian network modelling is a simple mathematical formula for 

calculating conditional and marginal probabilities of a random event. Conditional 

probability is the probability of an event given the occurrence of an influencing 

event, whereas marginal probability is the unconditional probability of an event. 

Bayesian network modelling can also deal with subjective probability, which may 

represent the degree of belief from an expert, and apply it in a precise and relevant 

manner. 

5.2 Applications of Bayesian network modelling 

The use of Bayesian network modelling is wide-ranging, covering a multitude 

of industries and applications. The nature of Bayesian network modelling offers a 

flexible solution to problems, allowing incremental adjustments to influencing 

variables and probabilities. This section will examine several relevant case studies 

in order to demonstrate the varying uses and applications, highlighting both the 

benefits as well as the drawbacks when using Bayesian network modelling. 

The use of oil tankers in the shipping industry is common, where safety is of 

paramount importance. One of the main risks is that of collisions between tankers 

and FPSO (floating production storage and offloading) vessels. FPSOs are used 

when an oil platform is in a remote or deepwater location where seabed pipelines 

are not cost effective. The process involves pumping oil from the oil rig, 

transferring it to the FPSO then onto an oil tanker. Numerous collisions between 

FPSOs and oil tankers have occurred in the North Sea in recent years (Chen & 

Moan (2002)). A study was carried out examining system safety of FPSOs using 

Bayesian network modelling techniques (Eleye-Datuba (2005)). The study 

examined the transfer of oil from an FPSO to an oil tanker. Collision rates were 

established relating to the varying ways a collision may occur. A fault tree 
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analysis (FTA) was carried out in order to estimate the frequency of collisions for 

an FPSO, with additional information gathered from statistical reports. A 

Bayesian network model was then created to model the scenario using Hugin 

software. The model developed gave two influencing nodes: `shuttle tanker' and 
`support vessel' with one influenced node `collision-FPSO', with both influencing 

nodes connecting to the node `collision FPSO'. The model was run, giving figures 

of 5% probability of `impact' and a 95% probability of `no-impact' for `collision 

FPSO'. Given the flexible nature of Bayesian network modelling, a scenario was 

then initiated in the model whereby the probability of impact was increased to 

100%. The probability of loss of shuttle tanker went up from 7% to 50% with the 

support vessel failure probability rising from 24% to 65%. Given this scenario, 

several nodes were added including oil spillage, explosion and human injury. The 

importance of this is that given a certain event happening (100% probability) 

other factors either influencing or influenced by the event can be considered in the 

overall risk analysis. For this example these may include weather conditions, 

spillage of oil, flooding and human error, although human error may be 

considered to have an influencing effect on most industries in one way or another. 

An important aspect to consider when developing Bayesian network models is 

the complexity of the model. The model can describe complex problems by 

generating information about their structure, giving an understanding of the 

system structure (Abad-Grau and Arias-Aranda (2006)). Given this, an important 

attribute of Bayesian network modelling is its ability of coping with a system of 
high complexity through modularity. This is achieved by splitting the problem 
into smaller problem network models, which are solved separately helping to 

acquire solutions to the larger problem (Pearl, (1988)). The use of Bayesian 

network modelling for optimising preventative maintenance modelling was 
developed to a limited amount in a petrochemical case study (Percy and Kobbacy 

(1996)). Preventative maintenance is a maintenance activity aimed at reducing the 

occurrence and/or severity of failure in a system. In contrast to preventative 

maintenance is that of corrective maintenance. With corrective maintenance 
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repairs are carried out only after failure has taken place in the system. This study 
looked at analysing the renewal process with exponential distribution times to 

failure using Bayesian modelling. The use of Bayesian modelling allowed the 

prediction of the probability distribution for downtime and the amount of 

corrective repairs necessary which ultimately gave a cost per unit time. There was 

no comparison drawn between this study and that of traditional methods to 

establish a failure probability distribution. It did however highlight the need for 

inclusion of prior knowledge using a Bayesian methodology in order to derive 

probability distributions. This served to reduce the reliance on estimation of 

parameters which traditionally takes place, allowing optimal decisions regarding 

maintenance intervals to be established. 

Several assumptions were made in this study including: each maintenance 

activity having the same downtime duration and each corrective repair having the 

same downtime duration. These assumptions may be too restrictive in reality but 

this example illustrates the use of applying Bayesian network modelling to 

establish a probability distribution to enhance another maintenance modelling 

exercise. 

A case study looking at reliability assessment during equipment development 

of a weapon system using a Bayesian approach has also been carried out (Ke and 

Shen (1999)). This paper looked at an integrated Bayesian approach to assess 

equipment reliability during the development cycle. The integration process took 

information relating to the engineering knowledge available and integrated this 

with statistical results gathered from the testing program giving a true quantitative 

viewpoint. Bayes' theorem was applied to evaluate the reliability achieved by 

updating the prior distribution, showing the current reliability. This information 

was used to assess and evaluate the effectiveness of design changes that were 

previously carried out. This evaluation gave the management valuable information 

relating to design changes, aiding the decision process of whether the design is 

satisfactory or whether further corrective action relating to the design is required. 
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Given these varying applications of Bayesian network modelling in the 

engineering industry, a methodology has been developed in the following section 

to analyse the failure rate of a component. 

5.3 Methodology 

Applying Bayesian network modelling to a parameter, namely failure rate X, 

of delay-time analysis requires the development of a methodology. This 

methodology will serve to improve the accuracy of the delay-time model by 

improving the understanding of the events responsible for failure. It will also, 

given the nature of Bayesian modelling, give a continuing accuracy of failure rate 

given changes to certain influencing factors. The methodology will include the 

following stages: 

" Gather available information. 

" Establish nodes with dependencies. 

" Create conditional probability table (CPT) and prior probabilities for each 

node. 

" Normalise probability values. 

" Propagate evidence. 

" Generate posterior probabilities. 

5.3.1 Gather available information 

When gathering information relating to the failure rate of a component, it is 

vital to establish the type of data that is required. This data may come in the form 

of historical data i. e. maintenance reports, databases, etc., and/or from expert 

opinion, i. e. through the use of questionnaires, brainstorming, etc. When utilising 

Bayesian network modelling, expert opinion becomes a valuable asset when 
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developing the nodes and conditional probability table (CPT) information for the 

model. Often values will need to be assigned through expert judgement due to the 

lack of objective data available. As objective data becomes available, this can then 

update or replace any estimates that have been entered into the model using 

subjective means. Influencing factors relating to failure of equipment may cover 

aspects such as: 

" Age of component or equipment. 

" Life expectancy of component or equipment. 

" Inspection interval. 

" Inspection success rate. 

" Competence of inspection. 

" Competence of maintenance / inspection personnel. 

Once the relevant data has been gathered relating to failure rate both from 

objective means and from subjective means, influencing nodes or events need to 

be established together with dependencies for each node. 

5.3.2 Establish nodes with dependencies 

The constructing of a Bayesian network begins with the graphical 

representation of the nodes (event or variable) and their dependencies (indicated 

with an arc) to each other. This helps to develop the detail of the network as well 

as simplify the causal assumptions which are often difficult to express through 

mathematical notation (Pearl (2000)). The influencing nodes relating to the failure 

rate of a component can vary depending on the equipment or process in question. 

The influencing factors, as discussed in the previous section, may also need to 

take into account equipment or component failures of lesser or seemingly 

insignificant components which have a knock-on effect to the overall failure rate. 

Often influencing factors can carry a differing weighting from each other 
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depending on the circumstances surrounding failure. For example, the influence of 
human interaction will figure more prominently in a labour intensive process or 

production line than a process with a high degree of automation. 

5.3.3 Create CPT and prior probabilities for each node 

Having established the influencing nodes responsible for failure together with 

the dependencies, a CPT can now be developed for each node or event. 

Theoretically, the CPT may be populated using historical evidence, expert 
judgement or a combination of the two. A common criticism of the Bayesian 

approach is that it requires too much information in the form of prior probabilities 

(Yang et al. (2008)). This information is often difficult, if not impossible, to 

directly obtain in its practical applications. It therefore requires appropriate 

transformation of the initial data into a `legal' format, which can be accepted and 

accommodated by Bayesian reasoning. For example, in maintenance planning, 

historical data which is normally collected and expressed in the form of failure 

rates/frequency ), based on time units (i. e. MTBF) may sometimes need to be 

converted into failure probabilities p through setting up the worst marginal 

frequency criterion ý. The criterion represents the extreme failure frequency rate 

that an industry can tolerate in practice before defining the total failure of the 

equipment. Specifically speaking, the conversion can be symbolised as: 

x, ý-t p= (5.1) 

If any failure frequency is larger than , 
its corresponding failure probability will 

be defined as 100%. The result of applying this transformation rule is to give the 

nodes a prior probability. As previously mentioned, nodes with no dependencies 

i. e. no parents, have marginal probabilities, dependant nodes i. e. child nodes, have 

conditional probabilities. 
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5.3.4 Normalise probability values 

Normalisation of probability values is required to be non-zero with each 

condition of a CPT having a value between 0 and 1 and a combined value for each 
CPT of 1. The software used in this study (Hugin) automatically normalises any 

values entered. 

5.3.5 Propagate evidence 

Results are established through the propagation of the Bayesian model, it is 

vital to understand that although the graph is acyclic entered evidence propagates 
in both directions. A useful additional aspect of the Hugin software is that it 

allows the user to `lock in' evidence of a node when propagating the model, thus 

allowing unchanging evidence to remain whilst allowing other variables to 

update. 

5.3.6 Generate posterior probabilities 

The generation of posterior probabilities is the results of running the model 

after evidence is entered to improve the state of knowledge. 

5.3.7 Validation of the model 

Validation is an important aspect of this methodology as it will provide a 

reasonable amount of confidence to the results of the model. In this particular 

study a sensitivity analysis for partial validation of the model has been developed, 

the following three axioms must therefore be satisfied: 
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Axiom 1. A slight increase/decrease in the prior subjective probabilities of each 

parent node should certainly result in the effect of a relative increase/decrease of 

the posterior probabilities of the child node. 

Axiom 2. Given the variation of subjective probability distributions of each parent 

node, its influence magnitude to the child node values should keep consistency. 

Axiom 3. The total influence magnitudes of the combination of the probability 

variations from x attributes (evidence) on the values should be always greater than 

the one from the set of x -y (y E x) attributes (sub-evidence). 

5.4 Case study 

In order to demonstrate the above methodology a case study of a factory 

producing carbon black in the UK is given. A detailed description of the factory 

can be found in section 3.4. There is a detailed description of the impact of failure 

of a filter bag on the environment in section 3.4.1. The costs relating to the failure 

of a filter bag both directly and indirectly can also be found in section 3.4.2. 

This brief introduction to the production of carbon black, as described in 

chapter 3, serves to highlight the importance of preventing failure of a filter bag. 

As previously discussed in the introduction, delay-time analysis is used to 

establish a maintenance model which will give an optimal inspection interval 

based on reducing downtime. A key parameter of delay-time modelling is the 

parameter of failure rate X. This case study will use Bayesian network modelling 

to improve the accuracy of the parameter failure rate. 

115 



5.4.1 Gather available data 

Failure of a filter bag can have several factors that can contribute to failure. As 

is the case with most components, the age of the filter bag is an important factor 

when considering potential failure. The closer the filter bag is to the end of its life 

expectancy, the higher the probability of a failure occurring. There are a number 

of characteristics that occur due to age. Firstly, the colour of the waste gas will 

change gradually over a number of weeks, this is due to the higher content of 

carbon black being burnt. Secondly, the filter bag will become more brittle with 

age therefore being more susceptible to rupture due to high temperature spikes. 

Monitoring of and control of the filter bag temperature is a vital element when 

considering bag failure. If the temperature in the filter bag is too low, then 

corrosion of the bag takes place rapidly due to condensation from the sulphur. The 

sulphur moves from a gaseous state to a liquid state creating sulphuric acid, the 

sulphuric acid, thus leading to rapid corrosion and in turn bag failure. Too high a 

temperature or high temperature spikes in the bag results in burning of the bag, 

which in turn renders the bag brittle. Also, high temperature spikes have a higher 

probability of causing failure, this failure probability further increasing as the age 

of the filter bag increases. An important influence to consider is that of operator 

competence. In this case study it is not given the same influencing weight due to 

the level of automation of the system, but it must be considered if only at a 

reduced level. In other industries this would generally take equal importance, with 

greater importance being assigned in a dangerous, labour intensive industry, such 

as the oil or gas industry. The final contributor to failure of a filter bag is 

equipment failure. The fundamental process of a filter bag is: 

" The bag is filled with carbon black where it forms on the inside of the bag 

which increases the pressure. 

" The bag is then decompressed thus crushing the bag slightly, this 

decompression releases the carbon black from the bag and into a loading 

compartment beneath the bag. 
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" The bag is then refilled with carbon black thus commencing the process all 

over again. 

Failure of the bag to decompress will result in more and more carbon black being 

fed into the bag, this eventually leading to tearing the bag due to over filling. 

Given this information, nodes can be established with relevant dependencies. 

5.4.2 Establish nodes with dependencies 

As a result of gathering relevant information relating to the failure of a filter 

bag, the nodes that have been established which have an influencing factor to the 

failure of a filter bag are: 

" Operating temperature. 

" Age of filter bag. 

" Competence of operator. 

" Equipment failure. 

A simple influence diagram illustrating the factors which may contribute to the 

failure of a filter bag is illustrated in figure 5.1. 

Operating temperature Age offner bag Competence of l 
operator j Equipment failure 

Failure of a filter bap 

Figure 5.1. A Bayesian network relating to the failure of a filter bag. 
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With each node having an influencing factor on the failure of a filter hag, it is 

important to distinguish between the impact of each node. For example, the node 

`competence of operator' is regarded as having a lesser influencing effect in this 

case than that of 'operating temperature'. This is due to the 'operating 

temperature' being responsible for failure both directly and indirectly of a filter 

bag. The 'competence of operator' is reduced in importance partly due to the level 

of automation of the systems in place as well as the lack of dependency on one 

individual person. If this case study were to look at the downtime of the 

production facility instead of failure of a filter bag, then competence of operator 

would be considered a major influencing factor, due to operator error representing 

20% of production downtime. The data gathered as well as the expert judgement 

given has reflected this and will be conveyed in each CPT. 

5.4.3 Create CPT and prior probabilities for each node 

The next step is to establish a CPT for each node. Information has been 

gathered from historical data and from expert judgement. The CPT for each node 

is illustrated in figure 5.2. 

Operating temperature Competence :. f operatoi 
0.2_7 High '`a; 90.00 Good 

sue: - 99.50 Normal 5.00 Average 
0.23 Low 5.00 Poor 

Equipment failure Ace ,f filter baq 

0,53 Yes 2,59 life elapsed 
^ýý 99.46 No 97.41 life remaining 

Figure 5.2. CPT for each influencing node relating to 'failure of a filter hag'. 

As illustrated in figure 5.2, each CPT has been populated using mainly historical 

data as well as expert judgement. The node 'Operating temperature' represents the 

probability of the system over the last 12 months to run either at a high 
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temperature (0.27%) or at a low temperature (0.23%) given that t is commonly 

agreed as 1 failure / day in this analysis. The data available has illustrated that the 

system had overheated (failed) once over the 12 month period which, applying 
Equation (5.1), gives: 

p=Ax k' =1 failure / 365 days x (1 failure / day)-' = 0.27%. 

Applying Equation (5.1) to this case study allows the use of failure data to 
become available as a probability for use in the Bayesian network model. 
Equation (5.1) accepts 1 failure per day, which will equate to 100% failure, as 
tolerable for this model. Failures exceeding this figure would still be regarded as 
100% failure as anything higher than 1 failure per day is regarded as 

unacceptable. 

The node for `Equipment failure' is established using the same logical premise 

which is used for `Operating temperature'. The frequency of equipment failing is 

twice over the same period of 12 months. Applying Equation (5.1) to this 

information gives: 

p=Ax.. =2 failures / 365 days x (1 failure / day)" = 0.54%. 

The competence of the operators is set to 90% good, 5% average and 5% poor, 

this is due to the absence of operator error in filter bag failures. The node `age of 
filter bag' contains two states, `life elapsed' and `life remaining'. The state `life 

elapsed' describes the age of the filter bag as a percentage of the total life 

expectancy of the filter bag. The state `life remaining' describes the remaining life 

of the filter bag, again expressed as a percentage. An example could be if the age 

of the filter bag is 100 days old, it has been in operation 7.8% of its life 

expectancy, life remaining would therefore be 92.2% (100% - 7.8% = 92.2%). In 

this case study the age of the filter bag is 33 days or 2.59% of `life elapsed' with 
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97.41% 'life remaining'. The age of the filter bag only becomes a main 

contributor to failure when combined with other influencing nodes, for example, 

high temperature spikes. Figure 5.3 illustrates the CPT of `Failure of a filter hag' 

given all influencing factors/probabilities. 

High 
Yes No 

Poor Good Average Poor Good Average Poor Good Average Poor 
17 22 27 20 25 30 15 20 25 

Low 

Yes No 

life elapsed life remaining life elapsed life remaining 
Poor 

Figure 5.3. CPT for 'Failure of a filter bag'. 

It is clear to see how quickly a Bayesian model can become complicated given 

only four influencing events. In figure 5.3, it can be seen that the four influencing 

events are listed in the left vertical column: 'Operating temperature', 'Equipment 

failure', 'Age of filter bag' and 'Competence of operator', with the node 'Failure 

of a filter bag' being either 'Failure' or `Working'. The values for the CP"1's are 

based generally on historical data but some aspects of the data has been examined 

and given probabilistic figures based on expert opinion, for example, the 

difference between 'Competence - Good' and 'Competence - average'. 

Having established the CPT for each node, both 'parent' and 'child', a 

normalisation is required for each. Normalisation has been carried out in this case 

study by either simple calculation prior to inputting the probability data into the 
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CPT or automatically from the (Kugin) software used. Propagation of evidence 

can now be carried out to examine differing scenarios given one or more varying 

pieces of evidence. 

5.4.4 Propagate evidence 

The propagation of evidence examines several different scenarios and 

combinations of events taking place (i. e. 100% probability). Propagation serves to 

highlight a problematic area that may require closer scrutiny should a particular 

event take place. ', A'ith regard to this case study, taking into account all of the prior 

probabilities, the failure probability of a filter bag is estimated to be 0.21%. 

Applying equation (5.1) to this failure probability makes it possible to transfer the 

failure probability to failure rate 4. A failure probability of 0.21% applied to 

equation (5.1) will then equate to a failure rate k of 0.0021 failures/day or MTBF 

of 476 days. This is illustrated in figure 5.4. 

Operatng ternperatufýj 
0. n ügh 

00.90 Normall 

___ 
0.23 lowrJ 

Operating temperature 

fie of ml ,, t bag 
° ire elapsed 

97.41 life remaning 

Age of filter bag 

Competence of operat 
00(1)0 Good 

1 5.00 Average 
5.00 Poor 

Competence of 
operator 

failure of a filter bag 

Equipment tailur¬N 

0.54 Yeo 
l', 99.416 No 

fakie of a filter bag 

0.21 Failure 

,A Working 

Equipment failure 

Figure 5.4. Prior probability of `Failure of a filter bag'. 

With the age of the filter bag remaining at 34 days, this evidence may be locked in 

the model, meaning that this parameter will not change given other changes in the 
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model. Having locked the age of the filter bag, a useful scenario that can be 'run' 

in this model is to simulate a high temperature spike. illustrated in figure 5.5. 

failure of a Elter bag 
" 15.89 Fadwe 
_[11 WaWnq, 

Figure 5.5. Probability of 'Failure of a filter bag' given a high temperature spike. 

From the scenario, illustrated in figure 5.5, a high temperature spike increases the 

failure probability to nearly 16% (MTBF 6.3 days). This is the single biggest 

influencing factor that can cause failure of a filter bag. A temperature spike 

occurrence when a filter bag is approaching the end of its life expectancy 

increases the occurrence of failure due to an increase in brittleness of the bag, this 

scenario is illustrated in figure 5.6. 
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fatlure of a filter bagM 
im 20.76 Failure 
'"AA 24 Working 

Figure 5.6. Probability of 'Failure of a filter bag' given both a high temperature 

spike and aged filter hag. 

As illustrated in figure 5.6, given the event of a high temperature spike together 

with the age of the filter hag (100% 'current age'), the probability of failure of a 

filter bag raises to 20.76% (MTBF 4.8 days). The operating temperature for this 

particular process is monitored closely but this scenario highlights the 

implications should a problem arise relating to operating temperatu-e. f: xamining 

the scenario of a third additional event taking place. 'competence of operator' (i. e. 

'poor' 100%) gives a further increase to that of 30.0100 for the probability of 
failure (MTBF 3.3 days), illustrated in figure 5.7. 
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Equipr rt fjilurEM 

,4 Yesl 
m 99.46 No j 

Flure of filter 
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Figure 5.7. Probability of 'Failure of a filter bag' given a high temperature spike 

and aged filter bag together with 'poor' competence of operator. 

The increase in probability of failure of a filter bag illustrates a significant jump of 

45% from 20.75% to 30.01%. It is worth noting that although `competence of 

operator' has been given a reduced level of importance compared to the other 

influencing factors, the change of 'competence of operator - good' has gone from 

90% to 0% and 'competence of operator- poor' has gone from 5% to 100%. 

Incorporating the final influencing factor 'equipment failure' illustrates an 

increase of' almost 7% for failure of a filter bag, moving from 30.01% to 32% 

(MTBF 3.1 days). This scenario is illustrated in figure 5.8. 
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failure of a filter bag 
32,00 Fmlurn 

U68 00 Working 

Figure 5.8. Probability of 'Failure of a filter bag' given the probability of all 

influencing factors taking place. 

This final scenario highlights that although equipment failure is considered to he 

an insignificant influence in comparison to a high temperature spike, it serves to 

point out that it does possess an influence, albeit a small one. The final scenario to 

look at will be to see the effect of failure of a filter bag ('Failure' 10O°') on the 

influencing parameters. This will serve to obtain possible areas for closer 

inspection. The model showing failure of a filter hag is illustrated in figure 5.9. 

Fdilure It a filter baq 
- F. ýJve 

_.. 
i uU WOi/xq 

Figure 5.9. Model illustrating when the täilurc ola filter hui; takes place. 
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This scenario has given an insight into the possible causes that may be responsible 

should the failure of a filter bag take place. Here the major influencing factors are 
that of the `operating temperature - high' moving from 0.27% to 20.77%, 

`equipment failure' increasing from 0.54% to 6.2% and `competence of operator' 

moving from 90% `good' to 23.59% with `average' and `poor' increasing 

significantly from 5% to 25.9% and 50.51% respectively. 

5.4.5 Validation of model 

A sensitivity analysis has been carried out in order to give a partial validation 

of the model. The model must satisfy the three axioms described in section 5.3.7. 

Examination of the model, illustrated in figure 5.5, reveals that when the 
`operating temperature' is set to 100% `high' this results in a revised failure 

probability of 15.89% from 0.21%. When the `operating temperature' is set to 
100% `high' and the `age of the filter bag' is set to 100% `current age' this 

resulted in a further increase in the failure probability of a filter bag, illustrated in 

figure 5.6. Figure 5.7 illustrates identical changes to that of figure 5.6 but with the 

addition of `competence of operator' set to 100% `poor', this again resulted in yet 

a further increase in the failure probability of a filter bag. Finally, figure 5.8 

illustrates the changes from figure 5.7 with the addition of `equipment failure' set 

to 100% `yes', resulting in a further increase in the failure probability of a filter 

bag. The exercise of increasing each influencing node satisfies the axioms stated 
in section 5.3.7, thus giving a partial validation to the model. 

This case study will use the Bayesian network model to establish the failure of 

a filter bag for use with delay-time analysis with a greater accuracy than that 

obtained using the traditional means, i. e. statistical averages taken over a given 

period of time. 

126 



5.5 Compare results with previous study 

Chapter 3 examined the process of producing carbon black. It gathered 

objective information from historical records and applied subjective expert 

judgement where required. This information was then applied to a maintenance 

model using delay-time analysis to establish a downtime model. The same historic 

data as well as the same expert judgement has been used for this case study. The 

aim of this case study is to replicate the same delay-time analysis but with the 

parameter failure rate X established using Bayesian network modelling instead of 

statistical averages as previously used. All other parameters used for this study 

have remained unchanged, namely: 

" Downtime for an inspection, d-0.1 days. 

" Downtime for breakdown repair, db -7 days. 

" The arrival rate of a defect, kf - 0.28 per day. 

The Bayesian model, illustrated in figure 5.4, has established that the probability 

of failure of a filter bag is 0.21%. The use of Equation (5.1) allows this failure 

probability to be converted into a failure rate, giving the failure probability a 

failure rate ?. of 0.0021 failures/day or MTBF 476 days. The previous study 

calculated the parameter failure rate X to 0.0009 failures/day (MTBF 1095 days). 

A useful way of looking at the information gathered in the Bayesian model would 

be to input the original failure rate of the filter bag (failure rate X 0.0009 

failures/day or failure probability 0.09%) into the model. This will serve to 

identify the changes which take place to the influencing parameters, this is 

illustrated in figure 5.10. 
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Equipment tadurEM 
`4 Yes 
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failure of a filter bag 
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Figure 5.10. Probability of 0.09%'Failure ot'a filter bag'. 

As illustrated in figure 5.10, the probability of' failure of a filter hag has been 

changed from 0.21% to 0.09% (0.09% equivalent to failure rate )ý 0.0009). This 

adjustment has altered the influencing parameters by what appears to be an 

insignificant amount. The change in each parameter is more significant when the 

change is calculated in relative terms. Looking firstly at the influencing parameter 

'operating temperature', there is a nominal increase in 'normal' of 0.0 3° o, but a 

significant change of 'high' from 0.27% to 0.241)/'i), this decrease equating toi a 

change of around 11%. The parameter 'age of filter bag' has been locked at 34 

days so that no change in the age can take place. 't'here is also no change in the 

parameter 'equipment failure'. This is due to the influence regarded as low both 

from failure data and from expert judgement. The parameter 'competence of' 

operator' again appears to have had only an insignificant amount of' Change but 

closer inspection challenges this. Competence 'good' increased nominally, 

average decreased by 0.06% and 'poor' decreased by 1%. The changes to this 

parameter are small but viewed as a whole Heust he considered. Overall the failure 

rate has been established, taking into account the lour influencing parameters 

outlined in section 5.5.4, as 0.0021 failures/day or NI I ICI" 476 days. The original 

estimate taken from statistical averages based failure rate 2. on I failure of ,º filter 

bag over a 3-year period, 0.0009 failures/day or M'l'ßl" 1095 days. This illustrates 
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a distinct lack of accuracy when relying on statistical averages when compared to 

factual historical data supported by expert Judgement. Establishing clear 

influences for the failure of a filter bag can also give a greater depth of 

understanding as to what may cause failure. The historical data used in this study 
is relevant to the influencing parameters established and can therelbre he applied 

with confidence. 

This differing of one parameter when applying delay-time analysis may seem 

an insignificant adjustment initially. This seemingly insignificant adjustment 
becomes noticeable when a direct comparison is considered, this comparison is 

illustrated in figure 5.11 
. 
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Figure 5.1 1. A comparison of D(T) using a Bayesian network calculated 

failure rate i, 

When applying the improved figure for failure rate / NI Iß1 to the original 

delay-time analysis a difference in the result becomes apparent immediately. A 

closer look at figure 5.11 reveals a change in the minimum inspection interval 

based on minimum downtime D(T). The minimum inspection interval using 
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statistical averages to calculate the failure rate X was originally calculated at 11 

days. Using Bayesian network modelling to calculate the failure rate to establish 

an optimum minimum inspection interval reduces this inspection interval to 7 
days. 

5.6 Discussion 

The aim of this chapter has been to apply delay-time analysis, a maintenance 

modelling technique, to a company producing carbon black. The parameters 

required to carry out such a study using delay-time analysis come mainly from 

objective, historical data. The parameter failure rate A. has been previously 

established using historical data calculated using statistical averages. This method, 
though, cannot adapt to the ever-changing influences responsible for failures and 
their effects on equipment or components. Bayesian network modelling was 
therefore used to counteract this inherent problem. 

The Bayesian model in this case study allows relevant information, considered 
an influencing factor on the failure of a filter bag, to be included. The inclusion of 

these influencing factors has given a greater depth of understanding to the 

parameter failure rate X, resulting in a greater confidence in the overall results of 

the delay-time analysis. The influencing factors `operating temperature', `age of 
filter bag', `competence of operator' and `equipment failure' have been used for 

this study. The historical data gathered for each influencing parameter together 

with the expert judgement has been carefully scrutinised and applied to the 

Bayesian network model. 

It has been demonstrated in this case study that the optimal inspection interval 

has been refined and improved using Bayesian network modelling to establish 

failure rate X. The re-evaluation of the parameter failure rate X, has reduced the 

optimum inspection interval from 11 days to 7 days. 
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5.7 Conclusion 

In chapter 3, a case study was carried out to establish an optimal inspection 

interval using delay-time analysis. The aim of this case study was to minimise 

maintenance and inspection costs by reducing downtime whilst optimising 
inspection intervals. Delay-time analysis relies on several parameters in order for 

it to be effective. One of the parameters, failure rate X, relies on the manipulation 

of historical data using statistical averages. 

This model has served to give a better understanding and confidence to the 

parameter failure rate X. It has not only given an opportunity to increase the 

accuracy in a modular way, but also given an insight into the likely causes should 
failure take place. 

This chapter has demonstrated the use of applying Bayesian network 

modelling to provide an improved and accurate method of establishing the 

parameter failure rate X. Although the inspection interval has reduced, greater 

confidence can now be given to the results of this study given the inclusion of 

several consequential factors relating to failure. 
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Chapter 6 

Integration of the models developed and 

discussion 

Summary 

This chapter will examine the delay-time analysis model developed in chapter 
3 of this thesis and attempt to integrate, both the fuzzy set model (Chapter 4) and 

the Bayesian network model (chapter 5). The discussion in this chapter will centre 

on the advantages that delay-time analysis can offer a manufacturing company. 
Part of this discussion, however, will highlight the limitations of delay-time 

analysis. This chapter will attempt to overcome these possible limitations by 

introducing and applying the models developed in Chapter 4 and Chapter 5. 

6.1 Introduction 

Delay-time analysis has been used as a basis for developing inspection 

maintenance models in many case studies. The application of applying this 

modelling technique shows an appreciation of many elements which are generally 

overlooked when attempting to establish an inspection interval. Elements such as 

inspection times and inspection costs, breakdown times and breakdown costs are 

all considered as well as the failure distribution function of the component or 

equipment in question. It is this incorporation of several differing pieces of 

information that establishes a cost effective inspection interval, which makes 

delay-time analysis a potentially powerful tool to most maintenance departments. 
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6.2 Development and limitations of Delay-time analysis 

The development of a delay-time model is one which requires information 

gathered from various sources in order to construct a precise and accurate model. 
The sources of information may come from historical data such as maintenance 

reports or failure data. Information may also come from subjective data in the 

form of expert judgement. This information is generally gathered through the use 

of questionnaires and/or brainstorming sessions. Regardless of the method of 

gathering the required information necessary to produce a model, accuracy of data 

which will bring about confidence in the model, will be of utmost importance to 

any manufacturing facility. 

It is clear from chapter 3 that the information that was gathered and applied, in 

order to generate a delay-time model for the downtime model D(T) and the cost 

model C(T), was taken mainly from historical information. The downtime model, 
D(T) used predominantly objective data, for instance Mean Time Between Failure 

(MTBF), arrival rate of defects kf and downtimes due to inspection and repairs. 
The cost model, C(T) used available data relating to costs of a failure, costs of a 
breakdown and costs of inspection. The information required for the development 

of the environmental model E(T), however, relied heavily on a mixture of 

objective data and subjective data which was gathered from expert judgement. 

The problem of elicitation of the objective and subjective information had to be 

overcome in order to have reasonable confidence in the modelling results. The 

environmental model has a reliance on expert judgement to establish the majority 

of its parameters. It is this reliance that reveals a possible limitation of the delay- 

time model. 

The difficulty in keeping a consistency between each expert opinion when 

attempting to establish costs relating to failure of equipment is challenging. The 

inherent problem resides in an individual's perception and judgement of a given 

situation. For example, one expert may give a cost relating to the consequences to 
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human health of a failure as moderately low while a second expert may perceive 

this cost as significantly higher. These differences may be due to previous life 

experiences of the individuals. This vagueness and inconsistency will diminish the 

accuracy of the results as well as the confidence in the modelling process. These 

inconsistencies highlighted have been dealt with in chapter 4 of this thesis by 

utilising fuzzy set theory in order to establish these subjective parameters. The use 

of fuzzy set theory to model these parameters succeeded in overcoming the 

vagueness of the gathered expert judgement data. 

Another limitation, which seems insignificant when first considered, is that of the 

term failure rate ? (1/MTBF). As previously discussed, this term is established 

through the gathering of failure data over a period of time and calculated as the 

number of failures encountered divided by the amount of time in question. In 

chapter 3, failure rate was established for the case study by simply dividing the 

number of failures, which was 1, by the amount of time in question, 1095 days (3 

years). This equated to a failure rate of 0.0009 or a MTBF of 1095 days. Having 

produced a delay-time model for the case study in chapter 3 using this failure rate, 
it became apparent that a slight deviation in failure data can result in a significant 

change to the failure rate parameter. This change in the failure rate parameter in 

turn has an effect on the delay-time model results. A means of developing a 

detailed and comprehensive method of establishing failure rate was therefore 

required. The failure of a component or equipment generally has several 
influencing factors which contribute to failure. A modelling technique capable of 

taking into consideration these influencing factors is that of Bayesian network 

modelling. Chapter 5 re-examines the failure rate parameter, exploring the 

differing influencing factors responsible for the failure of a filter bag. The 

influencing factors are then modelled using Bayesian network modelling in order 

to establish the failure rate parameter. The integration of both the fuzzy set model 

and the Bayesian network model is illustrated in figure 6.1. 
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(chapter 5) 

Determine breakdown and Determine delay-time parameters inspection costs 
- inspection downtime 

- breakdown repair 
- arrival rate of defects 

- inspection repair 
- etc. 

- inspection 

Calculate C(T) Calculate D(T) 
(Fieure 3.4) 

11 
(Fieure 3.3) 

Determine optimum Determine optimum 
inspection T inspection T 

Decide which inspection interval will best suit the 
circumstances of the company 
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I 

Determine optimum I 
inspection T 

Figure 6.1. A flowchart illustrating the integration of fuzzy set modelling and 

Bayesian network modelling into the delay-time analysis methodology. 

6.3 The introduction of Fuzzy set modelling into the environmental model, 

E(T) 

The use of fuzzy logic to establish the environmental model allowed the use of 

linguistic terms from expert judgement to define the risk in terms of both the cost 

consequence as well as the probability of each parameter. The parameters take 

into account the risk to humans, both employees and the general public, ranging 

from injury to loss of life; the risk of collateral damage to industrial building as 

Integration of fuzzy set 
model into the 

environmental model 
(chapter 4) 
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well as residential building; lastly, the risk to the environment, both a direct cost 

as well as a clean-up cost. The parameters were originally established using expert 

judgement by means of a simple estimation of each. 

The inclusion of fuzzy logic to generate the environmental parameters not 

only established accuracy and consistency for each parameter but also brings 

about a greater confidence in the overall results and conclusions of the study. It is 

important to point out that the same experts' used for the establishing of the 

original environmental modelling parameters were used for the fuzzy logic 

modelling of the environmental parameters. This resulted in a greater confidence 

of the results as it ensured consistency throughout the study. 

The first parameter that was estimated was that of Eheahn. The original figure 

for this parameter was £5,000, the subsequent analysis utilising fuzzy logic as a 

modelling tool gave a figure for this parameter of £83,800. The next parameter to 

be scrutinised was that of Ecoiiatemi. The original figure for this parameter was 

estimated at £375,000 where as the fuzzy logic generated figure was £133,000. 

This particular result gave confidence that the fuzzy logic model was not simply 

over exaggerating each parameter, but instead giving a true value based on the 

judgement of the experts. The environmental parameter Edamage had an original 

estimate of £200,000, the fuzzy logic estimate being £445,000. The parameter 

Ereverse was originally estimated at £250,000, the fuzzy logic estimation was that of 

£556,250. Finally the parameter Eimpact was originally estimated £630,000, the 

fuzzy logic estimation gives a figure of £733,050. The original values for these 

parameters had been generally underestimated. This underestimation resulted in a 

distortion of the results for the delay-time environmental model. The delay-time 

model originally provided an inspection interval of 11 days with a cost of 

£27,624. The updated environmental model utilising fuzzy logic demonstrates an 

increase in the inspection interval to that of 13 days with a cost of £50,406. This 

increase in cost suggests that a greater level of detail was required when using 
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fuzzy logic modelling, compared to the original methods adopted, in order to 

carry out the estimation of each parameter. 

6.4 Improvement to the parameter failure rate ? 

The introduction of Bayesian network modelling to model the parameter 

failure rate ?, was examined in chapter 5. Bayesian network modelling brought 

about a valuable insight as well as a greater level of understanding of the 

influencing factors responsible for the failure of a filter bag. After a rigorous and 
in-depth assessment of the failure of a filter bag using historical data and expert 

judgement, it was agreed that there were 4 possible influencing factors which 

contributed to failure. The influencing factors being; `operating temperature', `age 

of filter bag', `competence of operator' and `equipment failure'. An assessment 

was carried out for each influencing factor to establish their impact relating to the 

failure of a filter bag. This exercise also served to establish the dependencies of 

each influencing factor to one another. Prior probabilities were then established 

for each influencing factor, with careful consideration given to each probability. 

One criticism of Bayesian network modelling is the development of prior 

probabilities. Often data will be available in a variety of formats which makes 

transferring this information into a probabilistic model challenging. This 

transformation of data into failure probabilities was achieved through establishing 

a worst marginal frequency criterion. This simple equation (section 5.3.3, 

equation (5.1)) converted failure rates/frequencies into failure probabilities. The 

Bayesian model was then propagated in order to find the failure probability of a 

filter bag. The failure probability was then converted back to failure rate ?, using 

the same equation. Originally the MTBF was calculated at 1095 days. The use of 

Bayesian network modelling recalculated this parameter to that of 476 days. This 

change in the failure rate was entered into the delay-time model and a direct 

comparison was then made. The inspection interval based on downtime D(T) 

changed from 11 days to 7 days. This marks a significant jump in the inspection 
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interval by simply re-evaluating one parameter in the delay-time analysis model, 

namely failure rate. 

6.5 Overall improvement of Delay-time analysis from the integration of the 

models 

In order to assess the benefits of integrating the fuzzy logic model and the 

Bayesian network model into the delay-time analysis models, a direct comparison 

is required between the original delay-time models and the improved delay-time 

models. Examining each delay-time model individually will highlight the changes 

that have taken place. A comparison of the downtime model D(T) shows a clear 

distinction between the originally developed delay-time model and the integrated 

delay-time model. The original model has a minimum inspection interval of 11 

days whereas the improved model has significantly reduced the minimum 

inspection interval to that of 7 days. This comparison is illustrated in figure 5.11. 

The delay-time model relating to inspection costs C(T) also demonstrates a 

significant difference between the original delay-time model and the improved 

delay-time model. The original delay-time model calculated a minimum 

inspection interval, when costs are of primary concern, to that of 11 days. This 

figure moves to 7 days after incorporating the improved fuzzy logic and Bayesian 

network model parameters. This comparison is illustrated in figure 6.2. 
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Comparison between Origonal C(T) model and Improved C(T) model 
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Figure 6.2. Comparison between the original delay-time model and the improved 

delay-time model for C(T). 

Finally, a comparison of the original delay-time model relating to the 

environmental model E(T) and the improved delay-time model demonstrates less 

of a change compared to the D(T) model and the C(T) model. The inspection 

interval shows an increase from 11 days to 13 days. The difference in the 

expected cost however almost doubled from the original model to the improved 

model. A comparison of the original delay-time model and the improved delav- 

time model for the environmental model E(T) is illustrated in figure 6.3. 
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Comparison between Origonal E(T) model and Improved E(T) model 
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Figure 6.3. Comparison between the original delay-time model and the improved 

delay-time model for F. (T). 

6.6 Conclusion 

There are several important conclusions which may he dr, ºýý n from the 

introduction of the improved parameters to the delay-time models. The modelling 

of the environmental model lß(1') using fuzzy logic introduced a greater level of 

detail than was previously considered. Originally the environmental parameters 

were established through the use of expert judgement, with care taken to ensure 

consistency between each result with careful consideration given to each experts 

perception of each parameter. The introduction of' fuzzy logic to model the 

required parameters still relied on subjective judgement, but the process of 

establishing each parameter not only ensured a greater consistency but also 

succeeded in developing an extensive in-depth assessment of each parameter. 

The use of l3ayesian network modelling to establish an II11pro\'ef le lt to the 

parameter failure rate 2, (1/M1'ß1) advanced the overall dirl, ºv-time anal)sis 
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model further. The original assessment of failure rate was established through two 

pieces of information, namely: how many failures have occurred? over what 

period of time has these failures taken place?. Although generally used and 

accepted this fails to take other influencing parameters into account. The use of 
Bayesian network modelling was capable of modelling the influencing parameters 

responsible for failure and establishing an improved figure for failure rate ?, (i. e. 

1/MTBF). The use of Bayesian network modelling may be utilised in other 

parameters relating to delay-time analysis in order to bring about further 

improvements. The parameter `downtime due to inspection' could be examined 
further to understand the influencing factors which contribute to this parameter. 

Analysis in this area may uncover aspects such as poor inspection procedures or 

inadequate training of inspection personnel. This may be applied equally to the 

parameter `arrival rate of defects' whereby the influencing factors may be 

considered through rigorous analysis. Analysis might find poor maintenance 

repairs, inadequate training of maintenance staff or use of inferior components 

used for repair. Finally, the delay-time parameter `average downtime for 

breakdown repair' may be considered for analysis using Bayesian network 

modelling. This parameter may have greater importance due to its potential to 

stop production. The analysis of this parameter could bring about a greater impact 

to productivity and costs through an improved understanding of the influencing 

parameters responsible. 

The combining of the two modelling techniques, fuzzy logic modelling and 

Bayesian network modelling, into the delay-time analysis model for D(T), C(T) 

and E(T) has shown an increase in understanding of the parameters. This 

understanding has revealed details which could have gone unnoticed using the 

original data. 
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Chapter 7 

Conclusion 

Summary 

This chapter will summarise the main conclusions drawn from this study, 

highlighting the specific contribution which has been achieved to this field of 

research. This chapter will also discuss the limitations of the research which were 

encountered and in doing so outline future possible research which could be 

conducted. 

7.1 Introduction 

A detailed review of manufacturing practices and maintenance concepts was 

carried out (chapter 2) in order to gain an insight and understanding of the current 

situation that exists in the manufacturing industry today. It was discovered that 

although there are a multitude of different manufacturing processes employed 

throughout industry, there is an equally diverse variety of maintenance strategies 

utilised in order to ensure successful productivity. This thesis draws attention 

towards the problems relating to establishing optimal inspection intervals in the 

manufacturing industry, in doing so demonstrates a possible solution utilising a 

risk-based maintenance methodology. 

7.2 Main conclusions 

The use of delay-time analysis to establish optimal inspection intervals for a 

company producing carbon black has been the main area of this research. The 
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technique combined the use of probabilistic data together with objective and 
subjective data. The inspection intervals established enable engineers and 

managers to set inspection regimes based on both qualitative and quantitative 
information. 

A main aim of this research was to produce a maintenance methodology for a 

manufacturing industry using risk-based analysis in order to establish a suitable 
inspection interval. This thesis has employed a number of analytical techniques in 

order to achieve this aim. The use of delay-time analysis in this study has 
demonstrated that an advanced method of maintenance modelling can be used in a 
medium sized manufacturing / process company. 

The use of delay-time analysis to establish efficient maintenance regimes 
through the minimising of downtime D(T) and costs C(T) enables managers to 

make informed decisions based either on reducing downtime or reducing costs or 
both. The introduction of the environmental model E(T) has introduced another 
facet to consider when developing a maintenance strategy. The environmental 

model, applied to an industry producing potentially damaging environmental 

products or substances, has considered the risks associated with the failure of a 

component or equipment on the environment. The model can not only be applied 

to an industry producing hazardous materials but could equally be applied to the 

transportation of hazardous goods. 

7.3 Research contribution 

The methodology of applying delay-time analysis to an industry producing 
hazardous and environmentally sensitive products has been developed. The delay- 

time analysis established optimal inspection intervals through minimising 

downtime D(T) and costs relating to maintenance and inspection C(T). In addition 

to the downtime model and cost model, an environmental model E(T) was also 
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developed. The environmental model took into consideration factors relating to 

humans, factors relating to collateral damage and factors relating to the cost to the 

environment. Through the use of fuzzy set modelling the environmental model 

was refined and enhanced which resulted in a greater depth of understanding and 

confidence in the model. Additionally, the use of Bayesian network modelling 

further developed and enhanced the parameter failure rate A., which is a key 

ingredient in all three delay-time models D(T), C(T) and E(T). The overall effect 

of the delay-time analysis with the integration of fuzzy set theory and Bayesian 

network modelling gives a robust and assured method of establishing maintenance 

and inspection regimes. 

7.4 Limitations 

When applying delay-time analysis to any problem it is vital to appreciate 

what exactly the results are illustrating. The use in this study of delay-time 

analysis always illustrates a worst-case scenario. This worst-case scenario 

condition is that if a failure does not take place before inspection then it will take 

place during inspection repair. Conversely, a best-case scenario is that no 
breakdown failures would occur and no failure repairs will take place at 

inspection. 

The failure distribution that was used in the delay-time model was exponential 

distribution. This distribution, however, only deals when the failure of a 

component or equipment is said to have a constant rate of failure. This may limit 

the application of delay-time analysis to certain types of equipment or 

components. 

The methodology demonstrated in this thesis has been successfully applied to 

a company producing carbon black. In order to gain a greater confidence and 
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insight into the uses and limitations of this methodology it will need to be applied 

to several industries from differing sectors. 

7.5 Future research 

Having established the difference between best case scenario and worst case 

scenario a possible area of research could be establishing a compromise between 

each case and setting inspection intervals based on both scenarios. 

Another area of research which could be explored is including differing failure 

distributions into the delay-time model. For this research the exponential 
distribution was used for its suitability to the type of failures which were 

encountered. Research could focus on applying delay-time analysis to an industry 

that possesses equipment which exhibit a different failure distribution than that of 

exponential, for example, the normal distribution function is widely used for 

modelling repair activities. Other failure distributions which could be considered 
include weibull, beta, gamma and lognormal. Assessment of their suitability to the 

data available could be carried out with the most suitable distribution, or a 

combination of distributions, being selected. 

Finally, a fundamental part of the delay-time analysis process is establishing 

the probability of a defect leading to a breakdown, this is given the term b(T). The 

introduction of Monte Carlo simulation into the delay-time analysis in order to 

establish b(T) could serve to numerically produce the probabilities which are 

needed. There may well be a limitation to this method as there is reliance on the 

input data being of a uniform distribution, plus the amount of samples must be 

reasonably high in order to ensure accuracy of the simulation. 
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Appendices 

Appendix 1- Fuzzy logic results for expert 2 and expert 3 

Expert #2 results for Enealth 

C1 C2 C3 C4 C5 

CLI CL2 CLj CL4 CLs 
0 5k 50k 500k 5m lOm 

I 

Membership function of consequence for Eheatth 

CL1 (Cl = 0.68) (C2 = 0) (C3 = 0) (C4 = 0) (C5 = 0) 

CL2 (Cl = 0.30) (C2 = 0.70) (C3 = 0) (C4 = 0) (C5 = 0) 

CL3 (Cl = 0) (C2 = 0.61) (C3 = 0.39) (C4 = 0) (C5 = 0) 

CL4 (CI = 0) (C2 = 0) (C3 = 0.60) (C4 = 0.40) (C5 = 0) 

CL5 (Cl = 0) (C2 = 0) (C3 = 0) (C4 = 0.68) (C5 = 0.32) 

Membership function of conditional probability for Eneatth 

P, (CP1 = 0) (CP2 = 0.44) (CM = 0.56) (CP4 = 0) (CP5 = 0) 

P2 (CP1 = 0.59) (CP2 = 0.41) (CM = 0) (CP4 = 0) (CP5 = 0) 

P3 (CM = 0.46) (CP2 = 0) (CM = 0) (CP4 = 0) (CP5 = 0) 
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P4 (CP1 = 0) (CP2 = 0) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

P5 (CP1 = 0) (CP2 = 0) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

Cost consequence, CL� and a conditional probability P� 

CL1; probability P1 

Cl (0.68) and CP2 (0.44) 

Cl (0.67) and CP3 (0.56) 

CL2; probability P2 

EC 1 0.44, EC2 0.20 Rule 6 fired 

EC2 0.56 Rule 11 fired 

Cl (0.30) and CP1 (0.59) EC1 0.30 Rule 1 fired 

C1 (0.28) and CP2 (0.41) EC 1 0.28, EC2 0.20 Rule 6 fired 

C2 (0.70) and CP1 (0.59) EC1 0.59, EC2 0.20 Rule 2 fired 

C2 (0.70) and CP2 (0.41) EC2 0.41 Rule 7 fired 

CL3; probability P3 

C2 (0.61) and CP 1 (0.46) 

C3 (0.39) and CP 1 (0.46) 

Synthesising: 

CL1; probability P2 

CL2; probability P1 

CL3; probability P3 

Normalising: 

EC 1 0.46, EC2 0.20 Rule 2 fired 

EC2 0.39 Rule 3 fired 

EC 10.44; EC2 0.56 

EC 10.59; EC2 0.41 

EC1 0.46; EC2 0.39 

CL1; probability P2 EC1 0.44; EC2 0.56 
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CL2; probability Pi 

CL3; probability P3 

Expert #3 results for Ehealth 

EC1 0.59; EC2 0.41 

EC 10.54; EC2 0.46 

C1 C2 C3 C4 C5 

A A: A 

V: V: v V: v CLI CL2 CL,, CL` CLS 
0 5k 50k 500k 5m lOm 

CPI CP2 CP3 CP4 CPS 

0P 2P2 4P68 10 

Membership function of consequence for Ehea! th 

CL1 (Cl = 0.42) (C2 = 0) (C3 = 0) (C4 = 0) (C5 = 0) 

CL2 (Cl = 0.45) (C2 = 0.55) (C3 = 0) (C4 = 0) (C5 = 0) 

CL3 (Cl = 0) (C2 = 0.73) (C3 = 0.27) (C4 = 0) (C5 = 0) 

CL4 (Cl = 0) (C2 = 0) (C3 = 0.41) (C4 = 0.59) (C5 = 0) 
CL5 (Cl = 0) (C2 = 0) (C3 = 0) (C4 = 0.64) (C5 = 0.36) 

Membership function of conditional probability for Eheahn 

P, (CM = 0) (CP2 = 0.59) (CM = 0.41) (CP4 = 0) (CP5 = 0) 

P2 (CP1 = 0.67) (CP2 = 0.33) (CM = 0) (CP4 = 0) (CP5 = 0) 

P3 (CM = 0.32) (CP2 = 0) (CM = 0) (CP4 = 0) (CP5 = 0) 

P4 (CM = 0) (CP2 = 0) (CM = 0) (CP4 = 0) (CP5 = 0) 
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P5 (CPI = 0) (CP2 = 0) (CP3 = 0) (CP4 = 0) (CP5 = 0) 

Cost consequence, CL,, and a conditional probability P� 

CLI; probability Pi 

C1 (0.42) and CP2 (0.59) EC I 0.42, EC2 0.20 Rule 6 fired 

CI (0.42) and CP3 (0.41) EC2 0.41 Rule 11 fired 

CL2; probability P2 

Cl (0.45) and CPI. (0.67) EC I 0.45 Rule 1 fired 

Cl (0.45) and CP2 (0.33) EC1 0.33, EC2 0.20 Rule 6 fired 

C2 (0.55) and CP1 (0.67) EC1 0.55, EC2 0.20 Rule 2 fired 

C2 (0.55) and CP2 (0.33) EC2 0.33 Rule 7 fired 

CL3; probability P3 

C2 (0.73) and CPI (0.32) EC1 0.32, EC2 0.20 Rule 2 fired 

C3 (0.27) and CP1 (0.32) EC2 0.27 Rule 3 fired 

Synthesising: 

CL1; probability P3 

CL2; probability P2 

CL3; probability P3 

Normalising: 

CL1; probability P3 

CL2; probability P2 

CL3; probability P3 

EC 10.42; EC2 0.41 

EC I 0.55; EC2 0.33 

EC I 0.32; EC2 0.27 

EC 10.5 1; EC2 0.49 

EC I 0.63; EC2 0.37 

EC 10.54; EC2 0.46 
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Expert #2 results for Ecollateral 

1 cl c2 c3 c4 c5 
vxxxx 

cwT ý. a 0 5k 50k rý500k 5m IOm 

CP1 CP2 CP3 CP4 CP5 

11 

1 

Tres rptant 
024 68 10 

Costplant; probability Ppiant 

C3 (0.45) and CP1 (0.73) 

C3 (0.45) and CP2 (0.27) 

C4 (0.55) and CP1 (0.73) 

C4 (0.55) and CP2 (0.27) 

Costres; probability Pres 

C2 (0.73) and CP1 (0.28) 

C3 (0.27) and CP1 (0.28) 

Synthesising: 

EC2 0.45 Rule 3 fired 

EC2 0.27, EC3 0.20 Rule 8 fired 

EC2 0.55, EC3 0.20 Rule 4 fired 

EC3 0.27 Rule 9 fired 

EC 1 0.28, EC2 0.20 Rule 2 fired 

EC2 0.27 Rule 3 fired 

Costpiant; probability Ppiant EC2 0.55; EC3 0.27 

Costres; probability Pres EC I 0.28; EC2 0.27 
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Normalising: 

Costplant; probability PPiant EC2 0.67; EC3 0.33 

Cost,,,; probability Pies EC 10.5 1; EC2 0.49 

Costpiant; probability Ppia�t (£50,000 x 0.67) + (£250,000 x 0.33 = £116,000 

Cost,,,; probability Pre, (£10,000 x 0.51) + (£50,000 x 0.49) = £29,600 

Expert #3 results for Ecoiiaterai 

I cl c2 c3 c4 c5 

11 

1 /X'4__ 
1 

uo, ýý pr0 5k 50k 500k Sm 1Om 

CP1 CP2 CP3 CP4 CP5 

i 
Inm 

rres P anf 
02468 10 

Costplant; probability Ppiant 

C3 (0.61) and CPI (0.81) EC2 0.61 Rule 3 fired 

C3 (0.61) and CP2 (0.19) EC2 0.19, EC3 0.19 Rule 8 fired 

C4 (0.39) and CPI (0.81) EC2 0.39, EC3 0.20 Rule 4 fired 

C4 (0.39) and CP2 (0.19) EC3 0.19 Rule 9 fired 

158 



Costres; probability Pres 

C2 (0.67) and CP1 (0.32) 

C3 (0.33) and CP1 (0.32) 

Synthesising: 

COstplant; probability Ppiant 

Costres; probability Pres 

Normalising: 

COstplanti probability Ppiant 

Costres; probability Pies 

Expert #3 result: 

Costplant; probability Ppiant 
Costres; probability Pres 

EC I 0.32, EC2 0.20 Rule 2 fired 

EC2 0.32 Rule 3 fired 

EC2 0.61; EC3 0.20 

EC 10.32; EC2 0.32 

EC2 0.75; EC3 0.25 

EC I 0.50; EC2 0.50 

(£50,000 x 0.75) + (£250,000 x 0.25)= £100,000 

(£10,000 x 0.50) + (£50,000 x 0.50) = £30,000 

Expert #2 results for Ed, mage 

cl c2 0 c4 c5 
xm 

a1 dew 
0 5k 50k 500k Sm lOm 
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I 

Costciean; probability Pclean 

CP1 CP2 CP3 CP4 CP5 

C3 (0.74) and CP3 (0.73) 

C3 (0.74) and CP4 (0.27) 

C4 (0.26) and CP3 (0.73) 

C4 (0.26) and CP4 (0.27) 

Synthesising: 

EC3 0.73 Rule 13 fired 

EC3 0.27, EC4 0.20 Rule 18 fired 

EC3 0.26, EC4 0.20 Rule 14 fired 

EC4 0.26 Rule 19 fired 

Costetean; probability Peiean EC3 0.73; EC4 0.26 

Normalising: 

Costcºean; probability Pclean EC3 0.74; EC4 0.26 

Expert #2 result: 

COStciean; probability Peiean (£250,000 x 0.74) + (£1m x 0.26) = £445,000 
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Expert #3 results for Edamage 

c1 c2 0 c4 c5 
1 

' darn 
0 5k 50k 500k 5m lOm 

I 

Costcleaný probability Pclean 

CP1 CP2 CP3 CP4 CP5 

C3 (0.58) and CP3 (0.88) EC3 0.58 Rule 13 fired 

C3 (0.58) and CP4 (0.12) EC3 0.12, EC4 0.12 Rule 18 fired 

C4 (0.42) and CP3 (0.88) EC3 0.42, EC4 0.20 Rule 14 fired 

C4 (0.42) and CP4 (0.12) EC4 0.12 Rule 19 fired 

Synthesising: 

Costc, 
ean; probability Pciean EC3 0.58; EC4 0.20 

Normalising: 

Costciean; probability Pciean EC3 0.74; EC4 0.26 
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Expert #3 result: 

CostcIean; probability Pclean (£250,000 x 0.74) + (£1m x 0.26) = £445,000 
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Appendix 2- Papers published during the course of the research 

Papers published: 

`Delay-Time Concept and its Application to Maintenance Problems'. Journal 

of Safety & Reliability Society. Vol. 27. No. 2. pp 5-19. 

Abstract: This paper has been written to give a brief view of inspection 

maintenance policies and the concept of delay-time analysis as a tool to achieve 

cost effective inspection maintenance and to reduce breakdown times. The paper 

also looks at future possible applications for this, developing a delay-time for 

individual parts or pieces of equipment and combining them to establish delay- 

time analysis for a group of parts or equipment. Also, the paper highlights the 

need to document failure data and maintenance data in a standard format to help 

develop delay-time as a tool in order to help smaller companies take advantage of 

this modelling concept. 

`Methodology for using delay-time analysis for a manufacturing industry'. 

Journal of Reliability Engineering and System Safety. Vol. 94. pp 111-124. 

Abstract: This paper has been written to give a methodology of applying delay- 

time analysis to a maintenance and inspection department. The aim is to reduce 
downtime of plant items and/or reducing maintenance and inspection costs, taking 

into account the possible environmental impact of a failure in terms of cost, both 

to the company and the environment. The paper also attempts to give a subjective 

measure of the consequences of such a failure in terms of cost to the environment, 

in monetary value to the company and the damaging effect to the company image. 
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Papers awaiting publication: 

`The gathering and use of data using fuzzy set theory for applying delay-time 

analysis to a manufacturing industry'; submitted to IMechE, Part E, Journal 

of Process Mechanical Engineering. 

Abstract: This paper has been written to give a standardisation of information for 

applying delay-time analysis to a maintenance and inspection department. The 

aim of this paper is to take both subjective and objective information gathered 

and elicit the required information using fuzzy set modelling for the purpose of 

applying it to delay-time analysis. A methodology has been developed and applied 

to a case study in order to demonstrate the process involved. 

`The use of Bayesian network modelling for maintenance planning in a 

manufacturing industry'. 

Abstract: This paper has been written in order to apply Bayesian network 

modelling to a maintenance and inspection department. The primary aim of this 

paper is to establish and model the various parameters responsible for the failure 

rate of a system, using Bayesian network modelling, in order to apply it to a 

delay-time analysis study. The use of Bayesian network modelling allows certain 

influencing events to be considered which can affect parameters relating to the 

failure rate of a system. Bayesian network modelling also allows these influencing 

events to change and update depending on the influencing data available at any 

given time, thus changing the failure rate or probability of failure. A methodology 

has been developed and applied to a case study in order to demonstrate the 

process involved. 
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Conference papers: 

`Delay-Time Concept and its Application to Maintenance Problems'. The 6`h IMA 

(Institute of Mathematics and its Applications) International Conference. 

September 2007, The Lowry Centre, Salford Quays, Manchester. United 

Kingdom. 

`Methodology for using delay-time analysis for a manufacturing industry'. The 

International Conference on Manufacturing Research. September 2008. Brunel 

University, London. United Kingdom. 

165 



PAGE/PAGES 
EXCLUDED 

UNDER 
INSTRUCTION 

FROM 
UNIVERSITY 



Appendix 3- Sample of maintenance and inspection data for 3 months for 

units A, C and D 

Dori n 

Unit Iloins 
Action Updated From SMs meeting UNTIL 

Shift SlI Down Timc Reason 21st Feb 

MUF No 6 air trap 
New PM's in place to carry out bearing 

03-Apr-06 A 4.63 A AH bearing failure. changes 12 months. QA required for stores 
stock items that have been repaired or new. 

K+ Pump Trial new (Smaller Head) pump with 

K+ pump failure. S/S balls. Up-Grade workshop test rig, to 

20-Apr-06 A 2.37 D AW Rpump Replacement en 
include pulsation damper, needle valve & 4- 

20 mA injection. (mimic CRA conditions). out took fuse Write QA control for K+ pumps in stores. To 
include witness, prove & label. 

RCA - K+ Tank drain pipe fractured in cable 
No 9 Sub Station HT trench. Training session with high volume of 

28-Apr-06 A 25.81 D AW Failure dumping K+ mix. Hot water in trench, 
condensation in sub station. Q Breaker 

tripped when water entered protection device. 

Not Compressor failure. Lack of H. P Air. 
From log: - Atlas contacted and came out to 

No2 compressor. Fault traced to the oil pump. 
The drive shaft had sheared. Took oil pump 

No 2 Air Compressor off site for a rebuild. Returned and fitted. 
06-May- A 8.90 C GMc P Air Lack of H failure 

Compressor back on line @ 1400hrs. Unable 
06 . . to contact Hewdwen air for a Mobile 

compressor. All emergency No's are not valid. 
(need updating). Action Up date emergency 

telephone numbers GS. GEW to discuss 
failure with Atlas. Is service interval correct? 

N Blower Failure. Motor down to earth. 
12-May- A 88 0 E DJ N Blower Electrical Tripped on overload. Removed off site. Back 

06 . Failure. on site Monday 15th. Report to follow. RCA 
required. Action GEW/JA 

MUF Bag leakage Planned downtime. MUF bag leak. 1 off bag 
19-May- 

06 A 31.25 C GMc , Down for MUF bag with failed ring plus 1 off cell plate blanking 

check ring leaking. Signs of acid condensation. Poor 
turnaround time. Maintenance finshied 14: 00. 
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MUF High Filter 

20-May- Pressure (Delta P). 
06 A 0.17 E DJ Human error - air Failure of following start up procedures. 

supply off to muf 
poppets 

20-May- Reactor, unable to 

06 A 1.33 E DJ remove blocked Transition doubled transitioned tip! 
transition jet 

Could not raise iodine number. Grade change 
from Hybrid trial from one quench stick 

23-Jun-06 A 1.67 B LD Free water in reactor operation to two. High water flow on one stick 
causing loss of water pattern. Free water 

found in reactor. Re-examine grade change 
procedures. GS 

26-Jun-06 A 24.15 C GMc 
Main Unit Filter, 

Shutdown for MUF Bag Check - Dirty cloth. Large number of 
bag check 

bags showing signs of ring failure. 

Main Unit Filter, e-Check - Dirty cloth check after going on 
28-Jun-06 A 11.72 C GMc Shutdown for MUF load. Cell plate holed. (Corrosion from acid 

bag check rain) 

Rotating Equipment 

30-Jun-06 A 1 98 A AW Failure, Raw Materials Tank 7 Transfer pump failure. Tripping Unit A 
. Handling Tank 7 & Unit. 

transfer pump failed. 

Repair leaking Ryland pump leaking. Changed out with stores 
12-Apr-06 C 10.18 A AH feedstock pump spare. Stores spare in poor condition. Action 

QA required for all equipment repaired off site. 

13-Apr-06 C 16.75 E AW Pumps, Ryland pump As above, leaking. 

07-May- Drier Drive motor & Work carried out to re-bolt down motor & 

06 C 19.75 B LD Gear box bed plate gearbox. Further work required in Unit 
bolts sheared. shutdown. RCA required. Action GEW/JA 

10-May- C 
Proximity failure on Proximity switch changed out. No signs of 

06 0.77 E DJ vent damper 
mechanical failure or damage. 

(FV205R1 

12-May- 
06 C 8.75 E DJ N Blower Electrical As Unit A 

Failure. 

19 ay Flame failure, no fault No fault found. Reactor left on MBHL for 
06 

C 3.40 AW found, relay swopped several hours no issues. Flame eye, relay & 

for HTF relay. amplifier checked on next downtime, again no 
A issues found. 

26-May- 
06 C 4 

. 
18 GMc Fouled Heat Offload for Befoul - Planned. 

C Excha nger, 
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N Blower Trip (Plus other drives) Manweb 
power dip. Manweb contacted. A Customer 

02-Jun-06 C 0.18 TS Low Combustion Air had caused spike. Dip not long enough for 
G59 to operate. Only Unit C failed. Motor 

B tested as if fault as a precaution. 

Reactor, unable to get 

03-Apr-06 D 0.25 B LD gas onto atomised IT Issue. 
stinger/ wrong grade 
load 

28-Apr-06 D 25.81 D AW No 9 Sub Station HT See Unit A 
Failure 

12-May- D 11.55 E DJ N Blower Electrical As Unit A 
06 Failure. 

Unit tripped to MBHL @ 0029hrs. Due to dip 
in RO water pressure. Unit to MBHL @ 
0014hrs. 
Unit As soon as MBHL is selected primary 
quench still goes into forced manual @ 100%. 

Quench Operation, This does not clear until unit has reached 
19-May- D 15 0 GMc Trip due to loss of RO MBHL (10mins later). 

06 . water pressure This robbed the RO water and the pressure 
shutting down unit A dropped tripping both unit A and unit D to 

quench. We got no alarm on unit D for this. 
The first we new was when unit D tripped to 
MBHL. ACTION - Unit A Quench Flow Tx 
requires re-ranging. GS 

C 

Rotating Equipment 

30-Jun-06 D 3.55 AW Failure, Raw Materials 
Handling Tank 7 As Unit A 

A transfer pump failed. 
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