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ABSTRACT 

In this work, an inverse FE modelling program based on the Kalman filter technique 

has been developed and used to study three material models (linear elastic, 
hyperelastic and hyper foam). Two error treatment methods have been developed and 
implemented in the program and their feasibilities for different material systems were 

systematically investigated. FE models simulating the indentation process of three 

typical material behaviours have been developed and some important factors including 

mesh sensitivity, frictional conditions and material properties have been 

systematically studied to validate the FE models. The use of single indenter and dual 

indenters have been comparatively studied in terms of accuracy, convergence and 

robustness of the inverse program, which are important for materials characterisation. 
The program was evaluated with blind tests using numerical experimental data of 
known material properties. The validated method was then successfully used to study 

the properties of EVA foams for midsole of sport shoes and human heel pad using a 

newly develop continuous indentation testing system. 

Blind tests have been successfully used to establish the validity, efficiency and 

robustness of the program with different material models, error treatment and 

selection of indenters. The results showed that the double indenters method is better 

than the single indenter method, which is initial value dependent for some materials. 
The results also showed that the new random error treatment method is applicable to 

all the three material models while the converged results based on the program with 

constant error distribution was initial values dependent. The blind test results showed 

that Kalman filter is a feasible method and the random error treatment is more 

practical approach for characterisation material and can be universally applied to 

different materials models. Sensitivity test with perturbation in the indentation force 

demonstrated that the program is robust against potential experimental noise/errors. 

The framework established has been successfully used to characterise the properties of 
EVA foams in comparison with conventional compression, and compression-shear 
methods. The prediction from indentation tests showed comparable accuracy to the 

standard combined compression-shear tests, while pure compression could not predict 



the parameters accurately describing the material at complex situations. The 

parameters inversely predicted can be directly used in the product design and 

simulation process. A new in vivo test machine has been developed and performed on 
human subject with good accuracy and repeatability. The inverse method has been 

used to predict the elastic and nonlinear parameters of the heel pad. The predict elastic 

and hyperelastic properties showed good correlation for all the subjects tested. 

However the nonlinear model is more accurate, in describing the stiffening effect of 

the heel pad. This method would provide a practical way for detecting the property 

change of the heel pad with different conditions. 
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CHAPTER ONE 

INTRODUCTION 



1.1 Introduction 

For over a century, indentation test has been employed to probe the mechanical 

behavior of materials for a wide range of engineering applications. In the indentation 

test, an indenter is pressed onto the sample surface and the resistance of the material is 

represented by the size of the residual impression on the surface or the force- 

indentation depth data (Figure 1.1). The main reason for its ubiquitous use is its 

intrinsic experimental simplicity in terms of facilities and sample requirements. 

Indentation tests can be performed with minimal specimen preparation and/or 

mounting and can be conducted several times on a single specimen at different 

locations. Indentation tests can also be performed within different environments (e. g. 

temperatures or humidity) with complicated loading histories (Ren et al, 2002; Petre 

et al, 2005). In addition, recent developments of advanced instruments have made 

possible the application of forces from kilo-Newtons down to piconewtons, and local 

displacements down to nanometers. Indentation tests are used for many types of 

materials such as metals, ceramic and plastic and recently, biological entities (Petre et 

al, 2005). Traditionally, indentation tests have been mainly used to measure the 

hardness of materials, which is a good indicator to compare materials for a particular 

application. However, it could not provide the constitutive law or parameters of the 

materials. This has limited its applications in particular for those with complex 

constitutive stress-strain relationships such as polymer foams and biological materials. 

It is very important to develop a more thorough approach to predict the material 

parameters in order to establish the constitutive material law, which is essential to 

simulate the material/structure behaviors in services (Figure 1.1). 

-------------------------------------- Inverse 

I Force Program 

Indentation depth 

-------------------------------------- 
Figure 1.1 Schematic to show an indentation process. 

Constitutive Material 
Parameters and Laws 

Simulation of more 
complex Service and 
loading conditions 
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One viable way to predict the material properties from indentation tests are to use so 

called inverse finite element (FE) modelling method combining indentation tests, FE 

simulation and inverse parameter identification. Recently, inverse FE modelling 

methods have been developed extensively to deal with situations where the material 

parameters (as input in the FE models) could not be directly determined from an 

experimental tests (Dao et al, 2001; Ren et al, 2006; Delalleau et al, 2006). The most 

common method is the interactive inverse FE method. In this process, an optimisation 

algorithm is coupled with finite element modelling to find the optimal values for a set 

of target parameters, which produce numerical results matching the experimental 

results (minimising the objective function). In the interactive inverse processes, the FE 

simulation has to be repeated with changing material parameters until an optimum 

combination of material properties has been found. Recently, a new post modelling 

approach has been proposed in material parameters characterisation (Nakamura et at, 

2000; Gu et at, 2003; Delalleau et al, 2006). This method does not require the repeat 

of FE analysis during the optimisation process, which could be a significant advantage 

for practical application as it does not rely on the complex modelling program and 

resources. In this approach, a simulation space is developed based on finite element 

modelling data within which parameters searching process is to be performed. Among 

the approach currently available for engineering applications, a potentially useful 

program for material parameters identifications based on the indentation tests is the 

Klaman filter method. This technique was initially developed for optimisation of 

electronic/control systems (signal-processing algorithm) (Grewal and Andrews, 2001). 

The capacity of the program in dealing with noises in the input made it potentially 

suitable for characterising material tests data with a certain level of error or noise. 
This is particularly important for in vivo tests on human subjects as it is difficult to 

control due to the nature of the testing (Ren et al, 2005). 

According to Tikhonov and Arsenin (Tikhonov and Arsenin, 1977), ill-posed 

problems can yield stable solutions if sufficient priori information about the true 

solution is available. An inverse modelling technique is not effective unless they 

satisfy convergence and consistency conditions. This requires an accurate FE model of 
the system, an effective estimation mechanism and proper experimental setup. In 

many cases, direct applications of inverse analysis techniques would not yield 
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accurate solutions since many problems are ill-condition (i. e. difficult to converge to a 

unique solution). In some cases, some pre-known or presumed conditions must be 

prescribed to establish a robust procedure for individual cases. These are particular 

important for material parameters identifications as there are many factors which may 

potentially influence the results when a complex material model is involved such as 

rubber, foams and biological tissues. Therefore, it is essential, for both research and 

industrial applications, to develop a practical approach applicable to these materials. 
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1.2 Aims and Objectives 

This work aims to develop a new inverse FE modelling method to accurately predict 

material parameters for three main material models for sport and biological materials 

and use the developed program to characterise the properties of ethylene vinyl acetate 

(EVA) foams and the human heel pad in vivo. 

Main objectives are: 

" To develop an inverse FE indentation technique based on the Kalman filter method 

to predict material parameters accurately; 

" To investigate the feasibility of the approach to three typical material models (i. e. 

linear elastic, hyperelastic and hypefoam models) using blind tests; and establish 

factors affecting the accuracy and robustness of the inverse FE indentation approach; 

" To develop a new continuous indentation testing system for foam and in vivo human 

heel pad tests; 

" To perform indentation tests on EVA foams and inversely predict the material 

parameters in comparison with other conventional test methods; 

" To test the human heel pad in vivo with different spherical indenters and inversely 

predict the material parameters using the program developed. 

Detailed studies of the EVA foams and the human heel pad in vivo are very important 

for many product developments in particular in sport technology. EVA foams are 

widely used in sport footwear and equipments such as the midsole of sport shoes, 

providing the shock absorbing and cushioning capacity (Mills 2003; Ruiz-Herrero et 

al, 2005). The properties of EVA foams are highly nonlinear and viscoelastic (Verdejo 

and Mills, 2004). Determination of the material parameters is important to provide 

data for the simulation of their service performances, product design and quality 

control. The Human heel pad is an important part of the human body. A detailed 

knowledge of its mechanics is indispensable to understand its functions as well as 

treatment of injury and medical conditions. In vivo characterisation of heel-pad 

deformation can also provide insight into tissue properties changes that may occur in 

diseases such as diabetes rheumatoid arthritis (Rome, 1998; Hsu et al, 2000; 2002). In 
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addition, quantitative characterisation of the properties of the heel pad is also of great 

importance to sport shoe design due to its wide usage as the midsole materials. 
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1.3 Outline of the thesis 

In Chapter 2, background information and current researches on indentation tests, 

inverse modelling and their applications in materials characterisation are reviewed. It 

covers different types of indentation tests and their applications in studying various 

materials. A summary of current testing methods of polymer foams and mechanical 

testing of biological materials (the heel pad) is presented in the first section. The basic 

theories of nonlinear mechanics and strain energy functions are reviewed with the key 

controlling materials discussed. The theoretical frame of different inverse FE 

modelling methods and optimisation programs are compared. The difficulties and 

challenges for the inverse FE modelling approach based the indentation tests are 

reviewed and discussed. 

In Chapter 3, an inverse FE modelling program based on the Kalman filter technique 

is developed and applied to study three commonly used material models (linear 

elastic, hyperelastic and hyperfoam) in blind tests. Two error treatment methods are 
developed and implemented in the program and their feasibility for different material 

systems is systematically investigated. The use of single indenter and dual indenter 

method are comparatively studied in terms of accuracy, convergence and robustness 

of the predicted results, which are important for materials characterisation. The 

program is evaluated using blind tests with numerical experimental data to investigate 

their validity, efficiency and robustness of the program with different material models. 
The sensitivity of the estimated mechanical properties to variations of the input 

parameters (e. g. potential perturbation of the load) is also established. 

In Chapter 4, the inverse FE program developed is used to predict the material 

properties of EVA foams and the human heel pad in vivo. A new continuous 
indentation testing system is designed and constructed. The accuracy of the systems is 

validated on a silicone rubber material with known material properties and assessed 
by comparing the testing results with the data from a standard tensile testing machine. 
In the second part of the chapter, two EVA foams used in sport shoes are 

systematically tested. The material parameters are then predicted using the framework 

of the hyperfoam model established in Chapter 3. The inversely predicted results are 

7 



compared to the values determined from the conventional compression and 

compression-shear test methods. In the third part of the chapter, the properties of the 

human heel pad are studied using the indentation tests and inverse FE modelling 

program. The repeatability and effect of experimental conditions on in vivo testing are 

systematically assessed. Tests with different indenter sizes are performed on three 

human subjects, and then the linear elastic and nonlinear elastic material parameters 

of the human heel pad are identified from the indentation test data. 

Chapter 5 discusses the application of inverse FE modelling techniques in material 

parameters identification based on the indentation method and factors affecting the FE 

modelling and inverse modelling results. The accuracy and sensitivity of the inverse 

FE modelling program developed in this study are compared to other approaches. The 

advantages and disadvantages of using the dual indenter method against the 

conventional single indenter method are also discussed. The constitutive stress-strain 

curves of the materials are determined from the parameters predicted and compared to 

some published results. The elastic and nonlinear properties of the human heel are 

compared and their suitability for describing the material is compared and discussed. 

In Chapter 6, overall conclusions were given and future works are highlighted. 
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CHAPTER TWO 

LITERATURE REVIEW 



2.1 Introduction 

In this chapter, the main types of indentation tests and their applications in testing a 

wide range of materials are reported. The current testing methods of foam materials 

and biological materials (e. g. the human heel pad) in vivo are compared and the 

importance of parameter identification is highlighted. The nonlinear mechanics and 

strain energy functions of materials are presented. The theoretical frame and current 

researches on the inverse FE modelling method and optimisation programs are 

critically reviewed and potential improvement is discussed. The difficulties and 

challenges for inverse FE modelling approach based on the indentation tests to predict 

the nonlinear material properties are reviewed and discussed. 
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2.2 Indentation method and its applications in characterising materials 

For over a century, the indentation test has been employed to probe the mechanical 

behavior of materials for a wide range of engineering/medical applications (Ren et al, 

2002; Gerard, 2005). In the test, an indenter is pressed onto the sample surface and 

the force-indentation depth data was used to represent the resistance of the material. 

Many different types of indenters with various shapes have been developed as 

schematically shown in Figure 2.1. Sharp indenters such as cone, sharp pyramidal tip 

indenter (trilateral or quadrilateral) and spherical indenter are normally used for harder 

materials such as metal or ceramic or plastics. Many hardness systems have been 

developed based on the average pressure underneath the indenters (Dao et al, 2001). 

Softer materials such as foams and biological tissues are normally tested using flat 

indenter and spherical indenters. Conventional foam tester (shore hardness) requires a 

large sample (at least 6 mm thick) and the method only provides information about the 

hardness of a sample, which could not be directly used to model the detailed material 

behaviours in service (Petre et al, 2007). 

Recently, instrumented indentation is increasingly being used to probe the dynamic 

mechanical response of materials (Taljat and Zacharia, 1998; Giannakopoulos, 2006). 

In the test, the force and indentation depth is continuously monitored and the 

indentation resistance of the material is represented by the whole loading unloading 

curve rather than a single value. Figure 2.2 shows, schematically, a typical continuous 

indentation curve of EVA foams, which is normally used for making the midsole of 

running shoes. The whole loading curve can be used to represent the resistance of the 

material over different indentation depth, therefore provide a more realistic 

representation of the loading condition in service. This could be a distinctive 

advantage of continuous indentation over static indentation tests. The additional levels 

of control, sensitivity, and data acquisition offered by instrumented indentation 

systems have resulted in numerous advances in materials science, particularly 

regarding fundamental mechanisms of mechanical behaviour. 

A number of studies have used continuous indentation to study the loading response 
of both isolated and bulk soft tissue. It is convenient to use and does not require large 
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specimen. In addition the loading mode in an indentation is directly relevant to some 

service condition of these materials, such as foams, heel pad etc. This made it an 

attractive method in testing these materials. However, the strain fields under an 

indenter are very complex even for an isotropic material and a robust data analysis 

method is very essential. For more complicated materials systems (e. g. thin films, 

small volumes, porous structures, biomaterials), indentation response is tied to 

specific aspects of material behavior yet effective interpretation requires expertise in 

both indentation mechanics and the physics of the system being indented. (Gouldstone 

et al, 2007). Another difficulty in analyzing indentation test data is associated with 

the material behaviors, which are often described by complex nonlinear material 

models (Lanir, 1979; Oomens et al, 1987; Keeve et al, 1998; Hendriks et al, 2006). 

Most of these models have multiple parameters that could not be directly obtained 

from the indentation tests. A thorough approach to predict these properties has to be 

developed. This is particularly important for sport materials such as foam (e. g. 

midsole EVA foams) and biological tissue (e. g. the human heel pad) (Figure 2.3), as 

these materials could be under very complex loading conditions in service. 

12 



2.3 Mechanical testing of the human heel pad 

Heel pad testing and its interaction with the supporting structure (shoe) is an 

important research field for sport or medical applications. Figure 2.3 shows the 

structure of the human foot within an assembly of a running shoe. The human heel 

pad is uniquely designed to enable pain-free weight bearing and locomotion (Rome, 

1998). It also has the ability to attenuate impact forces at heel strike of the gait cycle 

so as to protect the underlying calcaneum bone (Noe et al, 1993; Narvaez et al, 2000). 

All these functions are directly linked to the mechanical behavior of the foot and 

detailed knowledge of the heel pad mechanics is indispensable, in order to understand 

its roles as well as injury and medical condition. In addition, the properties of the heel 

pad also have great importance in product design in terms of providing stability and 

comfort for sport shoes and protection equipments. All these require detailed 

investigation with a proper testing and analysis method. 

Examinations of the mechanical properties of the human heel pad have been taken 

two routes: in vitro testing and in vivo testing. An in vitro biological study is carried 

out on tissues in isolation from a living organism. An in vivo biological study is the 

one taking place within a living biological organism. Both methods have been widely 

used in many biological systems such as skin and internal organs. The testing method 

mode can be indentation, compression, tension or torsion depends on the condition of 

the biological system and the physiological condition of the organ (Serup and Jemec, 

1999; Ren et al, 2005,2006). 

In vitro tests of the human heel Bad 

Figure 2.4(a) shows the setup of an in vitro compression test on the human heel pad 
(Ker, 1996). The heel specimen with skin, fatty tissue and calcareous are separated 
from the subject and loaded with a metal plate attached to an actuator. The pad is 

covered by plastic cling film to avoid risk of drying. This approach was also used by 

other researchers(Aerts et al, 1995). As shown in the Figure 2.4(a), the skin of the heel 

impacts against a horizontal circular plate of 64 mm diameter. The load and 
displacement are monitored representing the resistance of the heel to the compression 
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loading. A typical force displacement data is shown in Figure 2.4 (b). Both the loading 

and unloading curves are highly nonlinear with significant stiffening at high strain 
level and hysteresis loop. The in vitro tests is similar to conventional material tests 

once the sample is ready, however, one major problem with in vitro studies lies that 

the tissue no longer has the same physiological properties as in vivo situation due to 

the loss of water etc. 

In vivo tests of the human heel pad 

In vivo tests are performed on biological tissue in its natural state with the material 

behavior close to the real physiological condition. It has been increasingly used to 

study the deformation of biological tissue such as human skin, biological organs, heel 

as well some internal organs. The most frequently encountered techniques included 

tension tests, compression tests, torsion tests, suction tests or indentation tests 

(Gunner et al, 1979; Ohura et al, 1980; Wijn, 1980; Berardesca et al, 1986; Sugihara 

et al, 1991; Warren et al, 1991; Clark et al, 1996, Tong et al, 2003; Pailler-Mattei 

and Zahouani, 2006). Two most suitable methods for heel tests are the compression 

and indentation tests. 

Figure 2.5 shows a typical set-up of in vivo compression testing of the human heel pad 

(Tong et al, 2003). The test rig used includes a base plate, a support frame with a see- 

through Perspex foot mount plate attached to it, a foot rest jig incorporating a linear 

lead screw slide unit with a rotating handle at the end of it and a L-shaped plate which 

supports the probe holder with the ultrasound transducer probe. A force transducer 

and linear variable displacement transducer (LVDT) measured the compression force 

and displacement. Velcro straps are used to restrain patient foot movement relative to 

the test rig. The heel pad thickness at unloaded condition (Tu) and loaded condition 
(TL) is measured using Ultrasound. The compressibility index (Clndex), which 
determines the resilience of the heel pad, is calculated according to equation: 

Clndex(%) = 00 (2.3.1) 
U 

Where a higher Clndex denotes a higher heel pad resilience. 
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Strain (c) in the heel pad is estimated (calculated) according to 

f Tf 
(2.3.2) 

u 

where Tf denotes the heel pad thickness at a given force and Tu is the unloaded heel 

pad thickness. When E=0, there is no compression; and when e=1, there is full 

compression. This semi-quantitative index allows direct comparison of the effect of 
factors such as age, sex, weight, height of all subjects on their heel mechanical 

strength (Tong et al, 2003). 

Klaesner et al (2001) used a portable indenter device to determine the force- 

displacement data on soft tissue in a clinical setting. In the test, the foot is stabilised 

using clay to minimise movement of the metatarsals and the stiffness can be measured 

using the indentation test (r=4mm indenter was used). The data is then used to 

calculate the effective Young's modulus for the tissue using equations derived by 

Zheng et al (1999). The test is convenient to perform, however, the results of the 

approach are in a wide range of values dependent upon the portion of the curve used 

as shown in Figure 2.6. This clearly shows that the stiffness is strongly strain level 

dependent, which made the interpretation of indentation data more difficult. This 

made it difficult to directly compare results from different sources. A more thorough 

approach has to be used to predict the material properties based on the nonlinear 

mechanics, which is to be briefly reviewed in the next section. 

15 



2.4 Linear and Nonlinear elastic material behaviours 

The behaviour of materials subject to tensile/compression forces can be described by a 

stress-strain graph. Figure 2.7 shows schematically the three main type of stress strain 

relationships in soft materials (such as rubber, foams and biological tissues), namely 

linear elastic (a), elastically non-linear (b) and Viscoelastic (c). For an elastic material, 

the stress is proportional to strain, the strain is recoverable if the stress is removed, i. e. 

the specimen returns to its original dimensions. This occurs in the initial linear region 

of the stress-strain curve of flexible foams and some rigid foams. A linear elastic 

relationship between compressive or tensile stress and strain can be described by: 

O'x=Ee 

where the constant E is the Young's modulus. 

(2.4.1) 

The absolute value of the ratio of the lateral strain to the longitudinal strain is the 

Poisson's ratio: 

e 
v= - (2.4.2) 

At small strain for both compression and tension, the average experimentally observed 

Poisson's ratio, v, of foams is about 0.33. At larger strains it is commonly observed 

that Poisson's ratio is effectively zero during compression - the buckling of the cell 

walls does not result in any significant lateral deformation. However, during tension, 

the Poisson's ratio is nonzero, which is a result of the alignment and stretching of the 

cell walls. For an isotropic material, the shear modulus G can be calculated using: 

G_ E 
2(1+v) 

(2.4.3) 

As shown in Figure 2.7 (b), non-linear relationships between stress and strain are 

usually convex upwards in compression (compressive stresses and strains are taken to 

be positive). For foam or biological tissues, the non-linearity occurs due to changes in 

its geometry at high strains. At small strains the material deforms in a linear, elastic 

manner as a result of cell wall bending. At large strain, the cell walls rotate and align, 

resulting in an increased stiffness. The walls are substantially aligned at a tensile 

strain of about 0.33. When the material is under cyclic loading, it will exhibit a typical 

viscoelastic material behaviour illustrated in Figure 2.7 (c). This is a type of 
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deformation exhibiting the mechanical characteristics of viscous flow and elastic 
deformation. Most foam materials and biological material exhibited highly nonlinear 

and viscoelastic behaviors (Mills et al, 2003). Nonlinear materials behaviour is 

significantly different from linear deformation and it has to be understood based on 

the nonlinear mechanics. 
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2.5 The basics of non-linear continuum mechanics for finite element analysis 

2.5.1 Deformation gradient 

In continuum mechanics, an initial configuration k°, and a deformed configuration k' 

of the considered continuum has to be considered as shown in Figure 2.8. 

xe k' , is the corresponding configuration mapping of the initial configuration 

XE k° transformed through a displacement vector u(Q. 

x=u(X)+X (2.5.1) 

x= ýP(X, t) (2.5.2) 

The components of the total differential dr is given in terms of the components of 

dX and the partial derivatives of ca by Atkin and Fox (1980). 

acp, (X, t) dxi ' 
ax 

dKA = Vt, AX A 
A 

(2.5.3) 

The quantities tp,, A are known as the deformation gradients. They are the components 

of a second-order tensor known as the deformation gradient tensor denoted by F. 

Fm =V1 A=' (i, A=1,2,3) or F=a= 
ax 

axA ax ax 
(2.5.4) 

where F is the deformation gradient tensor with component F, a . By the rules of index 

notation that F is a second order tensor, since it has two independent indices. It is also 

important to note that F is not symmetric. The deformation gradient tensor can also be 

written in matrix format as: 

a(P, aýP, ae, 
F� F, 2 F� 

ax, ax2 ax3 

F= Fz, F22 F23 = 
a92 42 (2.5.5) 

F31 F32 F33 ax, axz ax3 
Vq7 3a 'rt3 a93 L, a 

ax, ax2 OX3 

The deformation gradient is the most basic object used to quantify the local 
deformation at a point in a solid. 
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Assuming the Jacobian exists at each point of deformed configuration, which 

physically can be interpreted as the ratio of the undeformed volume over the 

deformed volume for a homogeneous deformation at a material point. 
J= det(F) >0 (2.5.6) 

then the material of the body cannot penetrate itself, and that material occupying a 
finite non-zero volume in initial configuration cannot be compressed to a point or 

expanded to infinite volume during the motion (Atkin and Fox, 1980). Assuming that 

a volume element dVo in initial configuration deforms into a volume element dV in 

deformed configuration where 

dV = JdVo (2.5.7) 

Let p denote the density of the body in the deformed configuration and po the density 

in initial configuration. Then the next equation should exist 

pdV I podVo (2.5.8) 
0 

So 

j_ Po (2.5.9) 
P 

where po and p are the initial and deformed material densities, respectively. 

For an incompressible material, J=1 for all admissible deformations (Weiss and 
Gardiner, 2001). 

2.5.2 Strain tensor and principle strain invariants 

Related to the deformation gradient tensor F, two more convenient measures of the 

stretching part of the deformation can be defined. 

C=FTF (2.5.10) 

BÄFFT (2.5.11) 
C and B are right and left Cauchy-Green strain tensors, respectively, which are 

symmetric second-order tensors. These tensors provide measures of material 

stretching that are independent of rigid body rotation and form the basis of 

constitutive model development for soft materials. 
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Since the right Cauchy strain tensor is symmetric and positive definite, it will have 

three real eigenvalues. The square roots of these eigenvalues are denoted as the 

principal stretch of the material 

If the three principal stretches are defined as X1, X2, X3, then, the deformation can be 

represented by x1.3 in the three directions: 

xi = /VI, x2 = /2X2, x3 =A X3 

00 
F= 0 22 0 =FT 

00 A3 

00A, 00200 
C=FTF= 0 22 00 22 0020 (2.5.12) 

00 23 00 ,300A 

The principle strain invariants are: 

I, = trC -- A+ A2 +4 

12 = 
2(trC)Z 

- 
12trC2 =. ii2. +2 A. 3 +4 (2.5.13) 

13 =detC=2 4 

Where "tr" denotes the trace of the tensor. These parameters (Il, 12) I3), the principle 

strain invariants of the right Cauchy strain tensor, are commonly used to define the 

strain energy functions together with the corresponding stress tensors (Atkin and Fox, 

1980). 

In finite deformation theory, different measures of stress and strain are employed 
depending on whether the quantity is to be referred to the reference configuration or 

the deformed configuration. The Green-Lagrange strain tensor is used when strain is 

referred to the reference configuration (Weiss and Gardiner, 2001): 

E= 1(FTF-1) 

where I represents the identity tensor. 

(2.5.14) 
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Re-writing equation (2.5.14) into a different form as: 

E=2(C-1) (2.5.15) 

C is the right Cauchy deformation tensor defined in equation (2.5.10). As with all 

strain tensors that correctly describe large deformation, E=0 for rigid body motion 

(Weiss and Gardiner, 2001). 

The Green-Lagrange strain tensor can be written in terms of the deformation gradient 

tensor as follow: 

Ei; =2 (FkFkj ̀Sig) (2.5.16) 

Where S;,, is the kroneckor delta, which follows: 

81f 
1, i=ji, j= 1,2,3 (2.5.17) = O, i #j 

Using the definition of the deformation gradient, the Green-Lagrange strain tensor can 
be written in terms of the displacements as: 

E 1(ßk k+ +I) (2.5.18) 
2 ax, axe OX, O, 

This relationship shows that the large deformation strain tensor contains a quadratic 

term. This means that all large deformation analyses are non-linear. Ignoring the 

quadratic term, the small deformation strain tensor can be defined as 

I aUi 
+ 

öu, 
2( ox, aX1) 

(2.5.19) 

where s, is an approximate measure of strain that is only accurate for infinitesimal 

strains which is less than 1%. 

2.5.3 Stress tensor 

The Cauchy stress, T, is defined as the force acting on the deformed configuration, i. e. 
force/(unit deformed area). The problem with using the Cauchy stress tensor for 
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analysing materials undergoing large deformation is that the area in the deformed 

configuration generally is not known. For this reason, it is often advantageous to use a 

stress tensor that is defined in terms of the reference or initial configuration. 

Two commonly used measures are the first and second Piola-Kirchoff stress tensors. 

They are defined respectively as 

P=JF-'T 

S= JF''TF"T = PF-T 

(2.5.20) 

(2.5.21) 

The first Piola-Kirchoff stress P, sometimes referred to as engineering stress, is the 

component of force in the current configuration on a surface that is normal to the axes 

in the reference configuration, measured per unit surface area (Spencer, 1980). The 

components of P can be directly measured experimentally, which is not symmetric. 

The stress tensor S, second Piola-Kirchoff, is symmetric, but it does not have a direct 

physical interpretation. S is used more commonly than P because it is energetically 

conjugate to the Green-Lagrange strain tensor E. The tensors S and E often appear 

together in constitutive models for large deformation elasticity. In the case of finite 

deformations, the Piola-Kirchhoff stress tensors are used to express the stress relative 

to the reference configuration. This is in contrast to the Cauchy stress tensor which 

expresses the stress relative to the present configuration. For infinitesimal 

deformations or rotations, the Cauchy and Piola-Kirchoff tensors are identical. 

2.5.4 Strain energy functions 

Strain energy refers to the Potential energy stored in a body by virtue of deformation. 

If the material is perfectly elastic the strain energy is equal to the work that must be 
done to produce both normal and shear strains. Once the stress causing the strain is 

removed, the strain energy is recovered. The recovery is total for perfectly elastic 

material and partial for plastic material due to energy dissipation. The strain energy 
function, W, is a function which relates the strain of a material to the energy 
developed by this deformation. Such a function is only properly defined for elastic 
material. Strain energy density (U): Strain Energy Density (SED) is strain energy 
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measured per unit volume of the body. SED represents a better indication of the 

material since it is normalized to the size of the body. The strain energy function can 

be viewed as a generalization of Hooke's law that allows us to describe complex 

elastic components (linear and nonlinear as shown in Figure 2.7) in a systematic way. 

Nonlinear elastic materials (such as rubber, foams and biological tissues) undergo 

large deformations. Figure 2.9 shows typical stress strain curves for rubber under 

tension. The material can undergo a very large deformation generally known as 

hyperelastic behaviour. Typical examples include foams, rubber and many biological 

tissues. For an elastic material, the stress at any point can be defined solely as a 

function of the deformation gradient F at that point. A change in stress arises only in 

response to a change in configuration, and the material is indifferent to the manner in 

which the change in configuration arises in space and time. For a hyperelastic material, 

the above definition applies, and there is an additional scalar function from which the 

stress can be derived at each point. The scalar function is the stored energy or strain 

energy function, W, which can also be defined solely in terms of the deformation 

gradient as presented in Section 2.5.1(Weiss and Gardiner, 2001). 

W =W(F) (2,5.22) 

The strain energy, W, must obey the Principle of Material Frame Indifference. This 

principle ensures that rigid body motions will not change the value of the strain energy 
function. Consequently, W may be expressed in the form 

W=W(C) (2.5.23) 

where C is the right Cauchy-Green strain tensor. Then, the second Piola-Kirchhoff 

stress is derived directly from the strain energy as 

S-lac (2.5.24) 

Hyperelasticity provides a convenient framework for the formulation of constitutive 
equations for materials such as foams or biological soft tissues because it allows for 

large deformations and anisotropy (Weiss and Gardiner, 2001). 
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Any hyperelastic material maybe represented by a strain energy function. For Hookean 

(linear) elastic materials, this takes the following form: 

W =W(I,, I2,13) (2.5.25) 

Where 

11= trC; 12 =2 [(trC)2 - trC2 ]; 13 = det C 

The isotropic hyperelastic material reduces to linearised elasticity when appropriate 

assumptions regarding the magnitude of strains and rotations are made (Weiss and 
Gardiner, 2001). 

For nonlinear Finite Element analysis, the solution process often proceeds by 

searching for a configuration that is close to a known equilibrium state that provides a 
balance between incrementally applied loads and the current stress field in the 

material. In this case, the elasticity tensor plays an important role in the iterative 

solution process (Weiss and Gardiner, 2001). 
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2.6 Strain energy functions for rubber, foams and biological materials 

Many strain energy function models have been developed to characterise different 

material systems which undergo large deformation, typically Mooney-Rivlin model, 

neo-Hookean form, Ogden model and hyperfoam model (Ogden, 1972a; Petre et al, 

2007). The hyper foam model is for highly compressible material (such as polymer 

foams) whiles the other three are for incompressible materials (such as rubber and 

water filled structures). These material models have been employed in several 

computational software including ABAQUS, which are briefly described below. 

2.6.1 Models for incompressible material 

Mooney-Rivlin model 

Mooney derived an expression for the strain energy function for rubber starting from 

several assumptions: (1) The material is homogeneous and free from hysteresis; (2) 

The material is isotropic initially and throughout the deformation; (3) The 

deformations occur without change in volume; (4) The traction in simple shear in any 

isotropic plane is proportional to the shear (Mooney, 1940). 

The linear form of strain energy function Mooney initially proposed is: 

W=C1(11 -3)+C2(12-3) (2.6.1) 

where Cl and C2 are constants. It is the most general form admitting a linear 

relationship between stress and strain in simple shear, and has since been referred to 

as the Mooney-Rivlin model. With suitable choices of C) and C2, this equation gives a 

marginally better fit to some of the experimental data of rubber than pure elastic 

models (Atkin and Fox, 1980). 

The strain energy W (Equation 2.6,1) can be split into to two parts, the deviatoric and 

volumetric terms. Then the form of the Mooney-Rivlin strain energy density becomes 

(ABAQUS). 
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U= Clo(11-3)+Col(12 -3)+. (J°r _1)2 (2.6.2) 

where U is the strain energy per unit of reference volume; Clo, Col, and Dl are 

temperature-dependent material parameters, i,, IZ are the first and second deviatoric 

strain invariants defined as 

Il =+ *ýz + and (2.6.3) 
I 

where the deviatoric stretches J 32; ;J is total volume ratio; J`1 is the elastic 

volume ratio. ),; are the principal stretches. The initial shear modulus (po) and bulk 

modulus (Ko) are given by 

, uo = 2(C10 + C01) (2.6.4) 

Ko = (2.6.5) 

Only isotropic thermal expansion is permitted with the hyperelastic material model. 

The elastic volume ratio, f', relates the total volume ratio (J) and the thermal volume 

ratio (J`h) following this equation: 

J ei J 
J rh (2.6.6) 

J`h is given by 
ill =(1+e 

h)3 (2.6.7) 

where eh is the linear thermal expansion strain that is obtained from the temperature 

and the isotropic thermal expansion coefficient. 

Neo-Hookean form mode 

The form of the neo-Hookean strain energy potential is given by 

U= Clo(7 _3)+ 
D (Pub _1)2 (2.6.8) 

where CIO, and DI are temperature-dependent material parameters, 1 is the first 

deviatoric strain invariants; fl is the elastic volume ratio. 
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Ogden form models 

Another commonly used model is the Ogden model (Ogden, 1972a). Instead of taking 

U as a function of Ij and 12, the model is based on an assumption that U is a function 

of the principle values b1, b2, bj of B. 

Ü= ýILýn/ci )(b - +b2" +b3" - 

n 

(2.6.9) 

where p, are constants, and the a� are not necessarily integers and may be positive or 

negative. B is left Cauchy-Green strain tensor and defined in equation (2.5.11). b1, b2, 

b3 are principle values of B. B is left Cauchy-Green strain tensor and defined in 

equation 2.5.11. The general form of the Ogden strain energy potential is 

N 

U_ 
Zýt( 

ai + aý �ý 
aý _3)f-ý (Je1_1)21 (2.6.10) 

L. + a, f=t 1 

where X; are the deviatoric principle stretches; )j are the principle stretches; N is a 

material parameter; u;, aj, and D; are temperature-dependent material parameters 

(ABAQUS). 

The initial shear modulus and bulk modulus for the Ogden form are given by 

N2 
, uo = ýr " Ko = (2.6.11) D 

Following this form, the Mooney-Rivlin form can also be obtained from the general 

Ogden strain energy potential for special choices of A and a,. 

2.6.2 Models for compressible material 

In reality, all rubbers are compressible to certain extent, however when subjected to 

very high hydrostatic pressures, vulcanized rubber undergoes only very small volume 

changes, so that for practical purposes it can be regarded as incompressible. For foams 

this is no longer the case and, motivated by the above considerations, studies have 
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been made on the appropriate forms of W for compressible rubberlike materials (Blatz 

andKo, 1962; Ogden, 1972b). 

Using a combination of theoretical arguments and experimental results, Blatz and Ko 

(1962) suggested a strain energy function density of the following form 

1. 
+1-2V _Z, l(1_2v) 11 1- 2v 2, /(1_2v) U=Ipf Ji-1-y J3 +2fß(1-f) Jz-1-v+ 

v 
J3 

where µ, fv are constants, and 

. 
Il =IlJ2 =12/13, J3 =I32 

(2.6.12) 

(2.6.13) 

When 1-0.5 and the material is incompressible so that I, = I, the strain energy 

function reduces to the Mooney-Rivlin form 

U=Z 1({I, -3 }+1 p(1-f){12-3 } 

U=C! (I1-3)+C2(I2 -3) (2.6.14) 

In the case of 47% foamed polyurethane rubber, the results of Blatz and Ko indicate 

that f=0, ,u=4, in which case 

U=2p{J2+2J3-5 } (2.6.15) 

and clearly U is independent of Il. 

By generalising the Ogden model for incompressible materials, a new form of 

compressible materials was proposed (Ogden, 1972b). 

U= Z(, u�/a�)(b; ° +bz� +b3"' -3)+F((b, b2b3) (2.6.16) 
n 

in which the compressibility is accounted for by the additive function F of b, b2b3. In 

finite element modelling, an improved equation is suggested known as the elastomeric 
foam material model (ABAQUS). 

U= E7 2' `+ AP +A'-3+1 ((d 8J)-a, vi -1) (2.6.17) 
=1 r 

13i 
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where N is a material parameter; A, a, , and Aare temperature-dependent material 

parameters; 

A, =(J`") 3A, (2.6.18) 

SOS 

2s32J`h212i23 = J`hV = Jel (2.6.19) 

and A; are the principal stretches. The elastic and thermal volume ratios are: Je! 

andJ" respectively. 

The coefficients p, are related to the initial shear modulus, p0, by 

N 

Po = fir (2.6.20) 
is 

while the initial bulk modulus, KO, follows the form 

N 

KO =2]2fr (`ß) (2.6.21) 
-Z 

3 

For each term in the energy function, the coefficient Adetermines the degree of 

compressibility, which is related to the Poisson's ratio, v, , by the expressions 

ß_v, ' 1-2v, v-_1 
Q, 

(2.6.22) 

Thus, if ß, is the same for all terms, a single effective Poisson's ratio, v, can be 

derived. This effective Poisson's ratio is valid for finite values of the logarithmic 

principal strains (El , c2 , s3) in uniaxial tension (c2 =c3= -vs, ). Then the stress- 

strain relations are defined in terms of the nominal stress (the force divided by the 

original undeformed area) and the nominal, or engineering, strains, C,. The principal 

stretches, A,, are related to the principal nominal strains, v, by 

At =1+c, (2.6.23) 
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2.7 Materials testing and parameters identification 

As shown in the last section, most of these nonlinear strain energy functions include 

more than one material parameter. It is a challenging task to accurately derive these 

functions. Conventionally, the determination of material parameters is based on the 

use of test samples with a standardised geometry and strain state (as shown in Figure 

2.10). Such that particular conditions on the stress and strain field are satisfied in the 

sample/or part of the sample. Then the unknown model parameters are obtained via 

curve fitting from experimental data. 

Current standard approaches normally require large numbers of tests and samples with 

well-defined geometries (Mills and Zlicu, 1999; Mills et al, 2003; Moreu amd Mills, 

2004; Petre et al, 2007). For example, for foam materials, a wide range of tests have 

to be used (e. g. compression test, shear test, volumetric test, etc. ) in order to predict 

these parameters. In a shear test, the assembly has to use adhesives to bond the 

sample and loading platen which limits the strain level can be reached by the 

maximum strength of the adhesive bond (Payne, 1991; Petre et al, 2006). In addition, 

the method is inconvenient or even impossible where standard specimens are not 

readily available, or for in situ monitoring the mechanical strength of the materials. 

Recently, some effort has been made to use non-standard tests under more complex 

conditions to determine the material parameters. The uses of a range of tests have 

been explored including suction, intension, torsion, bending test or indentation 

(Vannah and Childress, 1996; Diridollou et at, 2000; Knight et al, 2001; Elsner, 

2002; Vescovo et al, 2002; Mattei and Zahouani, 2004). Generally, these tests involve 

applying a predefined stress/deformation on the sample surface and the monitoring of 

the load/displacement. In the case of the indentation test, an indenter is pressed onto 

the sample surface and the force-indentation depth data is used to represent the 

resistance of the material. This method is convenient to use and requires smaller 

testing areas than other testing methods. In addition, the loading mode is directly 

relevant to the human perception of materials softness. These made it attractive 

method for application in biomedical or sport engineering (Bader and Boeker, 1983; 

Erdermir et at, 2006). Recent development of continuous indentation method has 
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greatly improved the information can be determined from indentation tests for 

different type of materials (Giannakopoulos, 2006; Vandamme and Ulm, 2006). In an 

indentation test, the stress and strain is not well defined, so it could not be used to 

directly determine the material parameters. Recent development of inverse modelling 

techniques opened up the possibility to combine indentation test and FE modelling 

(simulating the test itself) to derive the material parameters through inverse FE 

modelling (Delallea et al, 2006; Erdemir et al, 2006). In this process, the material 

properties are determined by using FE modelling to find out an optimum material sets 

which match the experimental test data. The searching and optimisation process is 

associated with setup of the experimental works and the inverse program. 
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2.8 Inverse problems and its application in material properties prediction 

Inverse modelling has been applied to many problems in engineering fields. General 

areas in inverse problems in engineering mechanics were the subjects of mathematical 

and computational aspects of inverse problems, parameter or system identification, 

shape determination, sensitivity analysis, optimization, material property 

characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, 

thermal inverse problems, and other engineering applications (Tanaka and 

Dulikravick, 2000). Parameter estimation can be treated as one form of inverse 

problem of optimisation that deals with the determination of the mechanical system 

with unknown material properties, geometry sources or boundary conditions, from the 

knowledge of response to given excitations on its boundary (Neaupane and Sugimoto, 

2003). A successful program for predicting material parameter has to be accurate, 

efficient and robust and this depends on testing method used, inverse program, 

optimisation method etc. 

2.8.1 Inverse parameter estimation 

An inverse problem is the task that often occurs in many branches of science and 

mathematics where the values of some model parameter(s) must be obtained from the 

observed data (Data -+ Model parameters). A quotation attributed to Prof. Oleg 

Mikailivitch Alifanov, a great Russian proponent of Inverse Methods, says: "Solution 

of an inverse problem entails determining unknown causes based on observation of 

their effects". On the contrary, the corresponding direct problem involves finding 

effects based on a complete and precise description of their causes, Figure 2.11 

displays a graphical representation of the concepts mentioned above. The solution for 

an inverse problem can be searched formulating it as an optimisation problem. A 

technique for property reconstruction from measurements can be described as a 

generalised least squares approximation. The standard least squares solution can 

guarantee the existence of a solution, but it can be unstable in the presence of noise, a 

permanent feature in experimental data (De Campos et al, 2007). 
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Inverse problems belong to the class of ill-posed problems, in the sense that the 

existence, uniqueness and stability of the solutions cannot be assured. In order to have 

a well-posed inverse problem, assuring a final solution that is stable and physically 

acceptable, some priori information must be added to the quadratic difference term. In 

general, this additional information associated with the inverse solution means 

smoothness (De Campos et al, 2007). 

Denoting X= (x1, X2--. x, )7, the unknown vector to be determined by the inverse 

analysis, the inverse problem can be formulated as a nonlinear constrained 

minimization problem, 

min 0(x), lq 5 xq 5 u4 (q=1,2,...... n) (2.8.1) 

where ̀ n' denotes the number of unknown parameters, the lower and upper bounds 1q 

and uy are chosen in order to allow the inversion to lie within some known physical 

limits, and the objective function is given by 
2 

0(x) _ 
[: rcfxp 

_ (DMod (x)] + n(x) (2.8.2) 

where N. denotes the number of measurement points (or points for comparison), n the 

regularisation operator, and Ja variable that can be measured and modelled 
(simulated) in a mathematical formulation (De Campos et al, 2007). There are two 

formulations for solving inverse problems (Beck et al, 1985). The unknown function 

can be solved in a parameter estimation approach, or a function estimation approach, 

where the functional form is not available. 

2.8.2 Optimisation Methods 

There are many methods available to solve the parameter estimation problems. The 

computational cost of the inverse analysis depends mainly on the applied optimisation 

algorithms (Szeligo et al, 2004), the method of minimisation of an objective function 

or residuals of an equation set. In general, optimization methods can be classified as 

stochastic/deterministic. 
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Stochastic optimisation methods 

Stochastic optimisation methods, in general, search for the position of the minimum in 

the parameter space with a couple of parameter vectors {x, }i=1 
Z- e X. The quality of 

parameter vectors such composed is checked with the least square- functional f2 (x) . 
The best parameter vector is then chosen as the optimal solution. The advantage of 

these methods is that they can overcome local minimum and are therefore well suited 

to find the global minimum. Unfortunately, the frequent calculation of the least- 

square-functional may result in high numerical cost. Several stochastic methods have 

been proposed, such as the evolution strategy and simulated annealing (Schwefel, 

1981). 

The simulated annealing (SA) method is inspired by a physical process of slow 

cooling of initially melted material. This process looks for obtaining perfect crystals 

which, at the end of cooling, have the smallest possible internal energy. In the process 

of cooling, the molecules move into the interior of the mixture randomly, positioning 

them in a crystal network when the temperature is reduced. The method uses the 

Metropolis' algorithm (Metropolis et al, 1953; Press et al, 1996; De Campos et al, 

2007) and the search is initiated at some point of the search space. The main steps for 

SA implementation (Press et at, 1996; De Campos et al, 2007) are as outlined 

follows: 

1. Define initial candidates, and compute the objective function value for each 

candidate. Define an initial temperature for the problem. 
2. Chose new candidates randomly (if they have the same value for the 

mathematical model, choose others). Re-compute for each one the objective 
function. 

3. If the value of the objective function decreases between two consecutive 
iterations, the changing is then accepted and the process continues. If the value 

is greater, the changing is accepted with probability of p=e (AO(, )iT) 
, where 
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iO(x) is the difference in the value of the objective function between two 

iterations. 

4. Decrease the temperature to r*T (annealing schedule) after a certain number 

of iterations of step (2). Here, T is the temperature in the step (3), and r is a 

reduction factor. 

5. Repeat steps 2-3-4 up to the convergence. 

The SA algorithm employs a random search mechanism which accepts not only 

changes that decrease objective function O(x) , but also some changes that increase it. 

Gradient-based deterministic optimisation methods 

In gradient-based deterministic optimization methods, in every iteration step, the 

program calculates the gradient of the least-square-functional f 2(x) with respect to 

the parameters x, namely 

Vf2(x)_of2(x) 
ax 

(2.8.3) 

The differentiability of the least-square-functional with respect to the parameters has 

to be guaranteed. Additionally, the iterative solution requires an appropriate choice of 
initial values for the parameters. The disadvantage of these methods is that they are 

only suited to find local minima. Two examples of gradient-based deterministic 

method include the simple gradient method (Seifert, 2003) and the Levenberg- 

Marquardt-method (Press et al, 1996). Due to its robustness, the latter proved to be a 

well suited method when dealing with parameter identification (Seifert, 2003). 

In the simple gradient method, starting from the current parameter vector { x, }, in the 

negative direction of the gradient Vf 2 Ix, , i. e. in the direction of the steepest descent: 

x, +l xr - aVf s Ix, (2.8.4) 

The constant a defines the length of the gradient step and is an additional unknown. It 

has to be identified in a sub-optimisation-procedure to find the next local minimum (if 
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convergence is given). As mentioned above, an initial parameter vector xo is needed 

to start the calculation. The update is performed until a stop criteria is fulfilled, as e. g. 
I f2(xl+l)-. f 2(XI) IS S. 

where 8 is a defined tolerance. 

(2.8.5) 

The Levenberg-Marquardt method is based on a gradient-strategy for a least-square- 

functional f '(x) which depends non-linearly on the unknown parameter vector x. A 

Taylor expansion of f2 (x) around the current parameter vector x1 truncated after the 

quadratic term yields 

f 2(x) 
cf 

2(xj)+(x-xj)"Vf Z Ixi +2(x-xl)Z "VVf 
2 Ix, (2.8.6) 

The following definitions for the gradient Vf 2 Ix, and the Hessian matrix VVf 2 Ixe : 

Set 

b= -Of 2IX, (2.8.7) 

A=VVf2Ixe (2.8.8) 

near the minimum the following equation can be employed: 

xi+l =x, +A`' -b (2.8.9) 

In the case that f2 (x) is independent (or almost independent) of one component of p;, 

then the matrix A would be singular, i. e. the inverse A'1 would not exist. Such a case 

is present if the experimental data is not sensitive on one of the components of x; .A 

singularity of A can be treated numerically with the singular value decomposition, 

described in some published works (Press et al, 1996; Stoer and Burlisch, 1980). 

Equation (2.8.9) can be considered as a linear set of equations 

A"Ax=b (2.8.10) 

where the parameter increment Ax is given by 

Ax =xi+I-x, (2.8.11) 
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Further from the minimum a gradient step is used according to equation (2.8.4), which 

can be recast into 

Ax=ab (2.8.12) 

The Levenberg-Marquardt method interpolates between equations (2.8.10) and (2.8.12) 

by making additional assumptions: The constant a in equation (2.8.12) is replaced by 

the inverse of the product of a scaling parameter A and the corresponding element of 

the diagonal of A. Equation (2.8.12) now reads: 

S A. Ax, = bb (no summation over j) (2.8.13) 

Merging equations 2.8.10 and 2.8.13 yields 

Ajk(1+, ) j =k , Ask 
A, k j#kJ, 

k =1,2, ... n (2.8.14) 

and the linear set of equations 
A. Ax; b (2.8.15) 

can be used to compute the increment Ax. With Ax, the equation can be used to 

evaluate the least-square-functional f 2(X) with the update of the parameter 

x, +, =x, +dx (2.8.16) 

If 

f2(x1+i)ý: f2(xI) (2.8.17) 

then 
2=10*A (2.8.18) 

else 
A_ß. l10 (2.8.19) 

yields an update of A for the next iteration step. In this iterative solution an initial 

value for A has to be specified, e. g. =10"3 . Again, equation (2.8.5) can be used as 

a stop criteria. Mohrmann modified the update of A by a sub-optimization procedure 
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of f2 in direction of A. This modification results in a better convergence rate (Seifert, 

2003). 

A successfully inverse FE modelling program requires the combination of FE 

modelling and data analysis. Commonly used methods in material parameters 

estimation include three main approaches (i) general minimization procedure with 

interactive data processing method; (ii) Artificial Neural Network (ANN) algorithm 

and (iii) Kalman filtering techniques. Details of each approach and their application 

are described in section 2.8.3 -2.8.5. 

2.8.3 An optimisation method with interactive data processing 

Figure 2.12 shows a typical inverse modelling approach used an interactive method 

(Meuwissen et al, 1998). This process involves interactively changing the material 

parameters in the FE models until the predicted results or results match the 

experimental results. In this approach, an optimisation algorithm is coupled with the 

finite element method in order to find the optimal values for a set of target material 

parameters to be determined. A user defined objective function serves to measure the 

optimality of the parameters. Finally, an optimal fit of the simulated data to the 

experimental is reached. This approach has been used for different materials including 

metals, polymeric foam and bio-materials (Kauer 2001; Bolzon et al, 2004; Gerard et 

at, 2005; Hendriks et at, 2006; Ren et at, 2006). As shown in Figure 2.12 the FE 

modelling is repeated with changing material parameters until an optimum 

combination of material properties is found. This approach required re-running the FE 

models during the optimisation process, which may take a large amount of time to 

reach the optimal solution with increased the computational cost. 

Kauer (2001) applied this method with suction tests to determine the linear material 

parameter of the human skin. In this work, the experimental data is the pressure 
displacement data. The parameters in FE models of the suction test were varied until a 

close match between the experimental results and numerical was reached. Gerard et al 
(2005) employed similar iterative optimal method with indentation experiments 

38 



characterizing the mechanical behavior of the human tongue. To determine the 

constitutive law from this indentation experiment, i. e. the global relationship that can 
be assumed between strain and stress inside the body, an optimization algorithm based 

on an "analysis by synthesis" strategy was elaborated. It consists of (1) assuming a 

given constitutive law, (2) building a finite element analysis (FEA) of the indentation 

experiment, (3) comparing the simulations provided by this FEA with the indentation 

measurements, (4) using this comparison to propose a change of the constitutive law 

that should bring the FEA simulations and the measurements closer, and (5) starting 

again with (2) up to the point where the comparison carried out in (3) gives 

satisfactory results (Gerard et al, 2005). Recently, Ren et al (2006) developed 

parametric approach to determine the results from in vivo surface testing. The 

approach is shown in Figure 2.13. This approach involves a two-staged approach 

using a rough range data first and then refines the material. This method could 

effectively reduce the amount of computational works required but the approach has 

to be based on a good pre-knowledge of the materials. 

2.8.4 Artificial Neural Network (ANN) 

Artificial neural networks consist of simple processing units called neurons arranged 
in layers connecting inputs to the outputs. A typical example of a single layer neural 

network structure is shown in Figure 2.14. The most popular of these is the feed- 

forward network where the output of one neuron is the input to neurons of the next 
layer only. The hidden layers provide the necessary complexity for non-linear 

problems. A typical neuron receives input signals x[k], sums them according to their 

weights w[k] , passes it through a function (F) and produces an output y[k] . This 

output is then a weighted input for other neurons in the next layer, which perform 

similar functions. The final calculated outputs are then compared with the 

experimentally obtained outputs T[k] , and the error e[k] is calculated. This error is 

then propagated backwards and used for adjusting the weights of each of the neurons. 
The process of using the experimental outputs to minimise the error iteratively is 
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called as training the network. The weights of the trained network are stored, and can 

be used later for predicting outputs given a different set of inputs (Wasserman, 1989). 

Recently, Artificial Neural Network (ANN) algorithm has been used to model 

complex non-linear relationship based on indentation results. Huber et al (2000; 

2002) presented artificial neural network models to determine the constitutive 

properties of thin films on a substrate based on the force-depth curves of spherical 

indentation. Their models enabled the material properties of both the thin film and the 

substrate to be identified from a single indentation load-displacement curve. Tho et 

al (2004) proposed artificial neural network model to characterise elasto-plastic 

material properties of metals following the work hardening rules. Kapoor et al (2005) 

and Araujo et al (2006) employed ANN technique to predict mechanical properties of 

a kind of alloy with a laminated structure based on a two layered system as shown in 

Figure 2.15. In addition, Tyulyukovskiy and Huber (2007) used neural networks 

combined with FE model and experiments to analyse bulk material and thin films for 

their creep behaviour. 

There are some main advantages of ANN method. Firstly, A major advantage of the 

use of neural networks for data modelling is that they are able to fit complex nonlinear 

models and these models do not have to be specified in advance. Secondly, It is 

possible to train a neural network to perform a particular function by adjusting the 

values of connections (weights) between elements. Thirdly, Neural networks are 

composed of elements operating in parallel, which allows increased speed of 

calculation compared to slower sequential processing. Fourthly, Neural networks have 

the ability to detect all possible interactions between predictor variables: The hidden 

layer of a neural network gives it the power to detect interactions or interrelationships 

between all of the input variables. There are also some disadvantages of ANN method 

limiting its applications. ANN operates as black boxes. The rules of operation in 

neural networks are completely unknown. All dependencies (between parameters and 

responses) are hidden within neural network structure. Neural network model 
development is a computationally intensive procedure that requires much greater 

computational time.. In addition, it can be difficult to determine what patterns the 

system has found and to figure out how it arrived at its conclusions. Furthermore, the 
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weight matrix of ANN is complex. To reduce the training time and get the optimal 

solution, an expert system, which produce reasonable weight matrix, is needed 

(Cllinan, 2003; Szeliga, 2004). 

2.8.5 An optimisation method with post data processing -the Kalman filter 

method 

The Kalman filter was developed as an optimal, recursive, signal-processing 

algorithm (Kalman, 1960). Since then, the Kalman filter has been the subject of 

extensive research and application. The inverse procedure has been applied in signal 

processing, inertial navigation, radar tracking, sensor calibration, manufacturing and 

other aspects (Grewal and Andrews, 2001). It provides an efficient computational 

solution based on the least- squares theory. The method is effective in estimating 

unknown state variables using measurements that may contain substantial error or 

noise. Essentially, the algorithm updates the previous estimates through indirect 

measurements of the state variables and the covariance information of both the state 

and measurement variables. 

Figure 2.16 shows kalman filter supplies an efficient computational method to 

compare the experiments and the modeling/simulation data recursively. In the figure, 

u denotes the observation of experiments, h the output of the numerical/finite-element 

modeling. One significant different between this approach and the interactive method 

(shown in Figure 2.12) lies in that this approach does not need to run FE model 

interactively. This will cut down the computational cost and help to reduce the 

dependence on using FE modelling packages. Since Kalman filter method was 

initially developed for the optimisation of electronic/control systems (signal- 

processing algorithm) (Grewal and Andrews, 2001). The method is effective in 

estimating unknown state variables using measurements that may contain substantial 

error or noise and provides an efficient computational solution based on the least- 

squares theory. In addition, the capacity of the program in dealing with noises made it 

suitable for characterising in vivo skin tests, which is often difficult to control due to 

the nature of the testing on human subjects. 
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The Kalman filter has been used in seeking unknown parameters of homogeneous 

material models (Hoshiya, and Saito, 1984; Aoki et al, 1997; Delalleau et al, 2006; 

Gu et al, 2003; Nakamura et al, 2000). Neaupane and Sugimoto (2003) used extended 
Kalman filter coupled with the finite element method to formulate an inverse problem 

and estimate the thermal boundary known as heat transfer coefficient (HTC). In their 

research a simple non-linear formulation based on steady-state heat conduction has 

been incorporated in the Kalman filter loop. From the laboratory experiment, steady 

state temperatures were measured at predefined locations. The heat transfer coefficient 

(HTC) was estimated inversely from these measurements (Neaupane and Sugimoto, 

2003). Nakamura et al (2000) used Kalman filter technique in their research to 

estimate material properties of graded material and suggested the procedure is also 

applicable in estimating other physical and mechanical properties of any 

coating/layered materials (Nakamura et al, 2000). Gu et al (2003) built an inverse 

analysis model based on Kalman filter technique to characterise elastic-plastic 

properties of graded materials. The results showed excellent agreement between the 

indented load-displacement relations from finite element analysis with the estimated 

properties and that of measured record, which assures a high degree of accuracy in the 

current measurement procedure. 
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2.9 Main challenges for material parameter identification based on t he 

indentation tests 

According to Tikhonov and Arsenin (Tikhonov and Arsenin, 1977), ill-posed 

problems can yield stable solutions if sufficient a priori information about the true 

solution is available. Such information is added to the least squares approximation by 

means of a regularization term, in order to complete the solution for the inverse 

problem. As discussed in section 2.8, robust inverse modelling techniques are not 

effective unless they satisfy convergence and consistency conditions. This requires an 

accurate FE model of the system, an effective estimation mechanism and proper 

experimental setup. As detailed in section 2.6, a range of strain energy functions have 

to be used for different material behaviour and the potential effect on the inverse 

modelling process has to be systematically established. 

As in many inverse analyses, the model is initially "ill-posed" or "ill-conditioned" 

(i. e., not able to achieve good convergence characteristics) with single indenter 

measurements. One potential approach is to use of an additional indenter with 

different radius. In a previous work, additional indenter approach has showed 

significant improvement on the inverse process of elastic plastic materials. It is 

important to extend this into nonlinear materials models and use these methods to 

characterise some key nonlinear materials including polymer foam and biological 

tissues in vivo. 
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(d) pyramidal tip (quadrilateral) indenter 

Figure 2.1 Schematic showing different types of indenters. 
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Force 

Figure 2.2 Schematic showing a typical continuous indentation curve of foam/rubber 

materials. 

The heel pad 
::: ] 

Figure 2.3 Schematic showing the structure of the human foot and heel pad in an 

assembly with a running shoe of EVA midsole. 
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(a) Linearly elastic and (b) Elastically non-linear (c) Viscoelastic 
isotropic 

Figure 2.7 Schematics showing the linear elastic and nonlinear elastic material 
behaviors. 

Figure 2.8 Initial configuration k° and deformed configuration k` representing the 

deformation field. 
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Figure 2.9 Typical stress strain curve for rubber showing a typical hyperelastic 

material behaviour. 
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Figure 2.10 Deformation modes of various experimental tests for defining 

hyperelastic material parameters (ABAQUS). 
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Causes x Effects y 
Given x 

Direct problem K 
ýý Find y=K(x) 

Find x=K'(y) 
Given y 

Inverse problem K 

Figure 2.11 Representation of the direct/forward and of inverse problems. 

Figure 2.12 Block diagram of the mixed numerical-experimental method (u denotes 

the observation of experiments, h the output of the numerical/finite-element 

modeling) (Meuwissen et al, 1998). 
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Figure 2.16 Flow chart showing a post-modelling approach based on the Kalman 
Filter method. 
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CHAPTER THREE 

INVERSE FINITE ELEMENT (FE) MODELLING 
METHOD TO DETERMINE THE MATERIAL 

PARAMETERS BASED ON INDENTATION 
TESTS 
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3.1 Introduction 

In this chapter, an inverse FE modelling program based on the Kalman filter technique 

to extract material parameters from indentation tests is developed and applied to three 

material models (linear elastic, hyperelastic and hyperfoam). The Kalman filter 

method was initially developed for optimization of electronic/control systems (signal- 

processing algorithm) (Grewa and Andrew, 2001). Essentially the algorithm updates 

the previous estimates through indirect measurements of unknown state variables and 

covariance information of both the state and measurement variables based on the 

least-squares theory. Its capacity for noise filtering makes it potentially an important 

tool in dealing with materials testing data, which normally associate with significant 

noise. 

The framework of the inverse program with Kalman filter technique has been 

developed for material parameters identification based on testing data from a single 
indenter or two indenters of different sizes. These two approaches are designated 

`single indenter' and `dual indenter method'. Two error treatment processes for 

processing indentation tests data and parameters are proposed and incorporated in the 

program in MATLAB. The program is evaluated using blind tests with numerical 

experimental data to investigate their validity, efficiency and robustness in analysing 
different material models. 

For each material system, finite element (FE) models of continuous indentation with 

spherical indenters of different radius are developed. The effects of some key 

modelling parameters (such as mesh density, frictional conditions, etc. ) on the 

indentation curves are investigated using parametric studies in ABAQUS and the 

optimum modelling conditions are established. The elastic model is also validated 

against published analytical solutions. These FE models are then used to map the 

effects of material properties on the loading curves using parametric studies in 

ABAQUS. Based on the parametric studies, simulation spaces covering a wide range 

of potential material properties are constructed, which provide the program with a 
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database for material parameters identification. The inverse program is evaluated with 

numerical data with known material properties. The validity and accuracy of each 

approach with a single indenter or dual indenter are assessed and robust approaches 

for different materials models are established. The sensitivity of the estimated 

mechanical properties to variations of the input parameters (e. g. potential perturbation 

of the load) is also investigated. 
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3.2 Parameter estimation model based on the extended Kalman filter technique 

Figure 3.1 shows a typical inverse FE modelling approach commonly for materials 

parameter estimations. The database normally includes experimental data and FE 

simulation data arranged into a simulation space. The inverse program explores the 

simulation space starting from a given initial guessed value to work out optimum 

material properties, which produce numerical results closely matching the testing 

results. The simulation space is normally constructed by using finite element models 

mimicking the testing and true boundary conditions. In this work, the inverse program 

is developed based on the Kalman filter method due to its noise filtering capacity 

(Naka, nura et al, 2000). The main theory and searching mechanism is described in the 

next section within the context of parameter identification based on experimental data. 

A Kalman filter is essentially a set of mathematical equations that implements a 

predictor-corrector type estimator to minimize the estimated error covariance - when 

some presumed conditions are met (Leustean and Rosu, 2003). The parameter 

estimation problems can be described by the following equations. 

''rk+1 - Xk + Wk (3.2.1) 

zk = h(xk)+vk (3.2.2) 

Equation (3.2.1) is the process model describing the parameter of the state over time 

-the value of the parameter ̀x' at time `k+l' is the same as its value at the previous 

time `k' with a process noise vector ` wk '. Equation (3.2.2) is the measurement model 

presenting the relationship between the measurement parameter Zk and its prediction 

h(xk) retrieved from parameter ̀x' at time `k' and ̀ vk' is the measurement noise. 

The function 'h' cannot be measured directly. The process noise ' wk ' and 

measurement noise ̀ vk' is assumed to be independent of each other and follow a 

normal probability distribution (Equation 3.2.3-3.2.4). 

P(wk) -N (0, Qk) (3.2.3) 

P(vk) -N (0, Rk) (3.2.4) 

The prior estimate of the parameter 'X' and measurement prediction vectors `Z' are 
defined as follows: 
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Xk+l :" Xk (3.2.5) 

k, (xk (3.2.6) 

Where, in Equation (3.2.5), `xk' is the best posterior estimation at time k, `zk+l 'is the 

prior estimation at time k+l. The function `h' in Equation 3.2.6 represents the 

potential relationship between measurement vector `z' and retrieved parameter vector 
`x'. 

The goal of the Kalman filter is defined as: 

xk xk ý" Kk 
(Zk - h(xk » (3.2.7) 

This equation computes a posterior estimation ` xk ' as a linear combination of a priori 

estimate ̀  zk ' and a weighted difference between the actual measurement' zk ' and the 

measurement prediction zk or h(zk) 
, The difference (zk - h(zk )) is called the 

measurement innovation (or the residual) that reflects the discrepancy between the 

predicted measurement zk or h(zk) and the actual measurement' zk '. A residual of 

zero means that the two are in complete agreement. 

The non-linear function h (Equation 3.2.2) can be approximated with Taylor series 

expansion retaining the first order term: 

h(xk) = h(xk) + Hk (xk - zk ) (3.2.8) 

Where ' Hk ' is the Jacobian matrice of partial derivatives of ' h(xk) ' with respect to 

Hk =(' (xk (3.2.9) 
I 

Equation (3.2.2) can then be re-written in the following form: 
Zk = zk + Hk (xk - xk) + vk (3.2.10) 

The matrix Kk in Equation 3.2.7 is called Kalman gain that minimises the posterior 

estimate error covariance ̀  Pk ', which can be expressed as: 

Pk = E[(Xk - Xk)(xk ' Xk )T 
J 

= EL(xk ' Xk - Kk (zk 'tl(Xk)))(Xk xk 
- Kk (Zk ^Il(xk )))T 
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= E[(Xk - Xk - Kk (Hk (xk - xk) + vk ))(Xk - xk - Kk 
(Hk 

(xk -'Xk) `#' vk ))T 
J 

=E[((1n -KkHk)(xk -xk)-Kkvk))((In -KkHk)(xk -xkKbvk))T 
j 

= ((In -KkHk)(xk -xk)(xk -Xk)r(In -KkHk)T -Kkvk(xk `Xk)T (In -KkHk)T 

-(In -KkHk)(xk -xk 
)v TKkT +KkvkvkTKkT 

1 

=(I. -KkHk)Pk (In -KkHk)T -Kk 
[vk(xk 

_Xk)T 
kn 

_KkHk)T 

-(I. -KkHk) R[(xk -Xk)vkn}KkT +KkRkKkT 
] 

(3.2.11) 

Here, (xk - xk ) is uncorrelated with the measurement noise vk , and 

Rk, ii=k 
r= ET ]-0, 

ii0k 
(3.2.12) 

if 

Then 

Pk =(I, -KkHk)P(I� -KkHH)T +KkRkKkT 

T =(I� -KkHk)P 
(I,, -HkTKkr)+KkRkKkT 

=(Pk -KkHRP)(Inr -HRTKkT)+KRRRKRT 

=P -k kT KkT --KkHkPk +KkHkPW T KkT +K Jyk T 

=Pk -Pk HkT Kkr -KkHkPk +Kk(HkPk Hkr +Rk)KkT 

The trace of Pk is minimised when the matrix derivative is zero: 

d (trace(Pk (Kt ))) 
_0 (3.2.13) 

d (Kk ) 

Differentiation of the trace of ` Pk ' with respect to ` Kk ' needs to follow these three 

matrix differentiation formulas: 

d (trace(xA)) 
yd 

(trace(xA)T) 
= AT , where xA is a square matrix 

d(x) d(x) 

d (trace(xAxT )) 
= W, where A should be a symmetric matrix d(x) 

Since the matrices PA and HkPk HkT + R, t are symmetric and matrix HkPI is a 

square matrix, so 

d(trace(Pk(Kk))) 
= 

d(trace(Pk -Pk HkTKkT -KkHkPk +Kk(IJkPk'1kT +Rk)KkT)) 

d(Kk) r d(Kk) 
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= -(Hk P, t )T - (Hk Pk )T + 2Kk (Hk Pk HkT +Rk) =0 

Then 

-(HkPk )T -(HkPk )T +2Kk(HkP, HkT +Rk)=0 

2(HkPk )T = 2Kk (HkPk HkT +14) 

Kk = Pk HkT (HkPýHkT + Rk )-l (3.2.14) 

The posterior estimate error covariance matrix can be worked out as: 

Pk =1-P HkTK r -KkH, +Kk(HhP Htr + k)Kkr 

=J -FHkT KkT 
-Kiff P +1HkTKkT 

_ Pk- -KkHkP- 

=(In -KkHk)Ir (3.2.15) 

Finally, the prior covariance matrix Pk+t at time k+1 can be determined: 

Pk+i = E[(xk+, - xk+1)(xk+1 - xk+i )r 
] (3.2.16) 

According to equation 3.2.1 and 3.2.5, 

xk+i -Xk+l = Xk -Xk + Wk 

So 

+i =Lf((xt'zk)+H'k)((k _Xk)+Wk)r] 

1; 
4 °4 ýt^ -'xkýt"k -XkýT +Wk7Ck -xkýr +(xk _xk)wkT +WkWkr)] 

= Pk + Qk (3.2.17) 

E[K'kx'i J= 
{Qk, if i=k 

(3.2.18) 
0, ifi# k 

Here, (xk - zk) is uncorrelated with the process noise wk . Equation 3.2.17 indicates 

the relationship between prior covariance matrix Pk+, and posterior covariance matrix 

Pk (Grewal and Andrews, 2001). 

Figure 3.2 shows the calculation loop of the parameter estimation used in this work 
based on the extended Kalman filter theory described above. In the figure, zk is the 

vector of retrieved parameters , . 
z0 is the first-guess value of the vector , Po is the 
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initial covariance matrix, Zk is the vector of measurement , h(xk) is the 

corresponding prior information vector. zk is the output. Furthermore, Hk is the 

Jacobian matrice and the matrix Kk is the Kalman gain. In the extended Kalman filter 

calculation loop, the parameters Qk and Rk are related to the process noise` wk ' and 

measurement noise` v*'. 
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3.3 Inverse FE indentation modelling based on the Kalman filter method 

The indentation process involves pressing an indenter into the surface of the material. 

The resistance of the material is typically represented by the force (P) and 

displacement (h) data. The P-h relationship is a function of the indenter size, 

interfacial condition and the material properties (Zahouani et al, 2002). The material 

properties are not readily available from the P-h curves, and have to be estimated 

through inverse fitting process. Figure 3.3 shows the flow chart for material parameter 
identification from indentation curves using the Kalman filter method. In this model, 

FE modelling data was used to form the database for seeking the solution which 

produces an indentation curve closely matching the experimental data. The inverse 

model employs extended Kalman filter calculation loop as detailed in section 3.2. The 

programming of this algorithm has been conducted with MATLAB. The three main 

parts of the programme, key processes and factors influencing the results are described 

below. 

3.3.1 Treatment of the experimental and FE modelling data 

The experimental data used is in the form of force-indentation depth curves. The data 

was acquired from indentation test or from numerical models with known material 

parameters for evaluating the program. In the FE modelling part, numerical models 

mimicking the geometry and boundary conditions of the indentation tests were 
developed using the software 'ABAQUS'. Details of the FE model for different 

material models will be presented in sections 3.4-3.6. 

One crucial aspect of inverse FE modelling is that the experimental data used must be 

sufficient to reflect the effect of material parameters on the experimental data to be 

able to predict the parameter values. In this work, two approaches have been 

investigated. One is to use experimental data from a single indenter; the other is to use 
data from two indenters of different sizes. The hypothesis for using more than one 
indenter is to increase the redundancy of the experimental data to improve the 

robustness of the program and improve its sensitivity to potential perturbation in the 
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experimental data. These are essential for material testing, in which the robustness and 

accuracy is the main priority rather than computational time and efficiency. 

3.3.2 Development of the simulation space 

Parametric studies were performed to generate a series of models with material 

properties over a potential range to form the simulation space. The parametric studies 

is a function in ABAQUS, which allow the user to generate, execute, and gather the 

results of multiple analyses that differ only in the values of some of the input 

parameters, such as material parameters or dimensional parameters (Ren et al, 2006). 

The numerical force-indentation depth curves were processed into discrete data with 

evenly spaced points against the indentation depth (termed indentation points). The 

numerical data were then processed to form simulation surfaces at each indentation 

depth, which represents the variation of the strength for different combination of 

material properties at certain indentation depth. If the whole indentation depth is 

divided into `n' divisions, then there are `n+l' simulation surfaces and these 

simulation surfaces form a simulation space. In the parameter searching process, the 

experimental data (input data) were processed into discrete data with equal number of 

the indentation points corresponding to formations of the simulation space. The 

inverse program explores the simulation space starting from a given initial guessed 

value to work out optimum material properties which produce numerical results 

closely matching the input data. 

3.3.3 Error treatment methods for covariance matrix Qk and Rk 

As detailed in section 3.2, error treatment is a very important aspect of the inverse 

modelling process for material parameter identification. The noise characteristics may 

vary with the experimental or material conditions. There are two main errors which 
have to be considered for inverse indentation tests. One is the Measurement noise (Wk) 

while the other is the Process noise (Vk) (Equation 3.2.1-3.2.2). The measurement 

error is represented by the difference between the measured force and the predicted 
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values. The process noise represents the tolerance of the predicted parameters within 

the targeted accuracy of the material behaviour. 

Two different error treatment approaches are to be developed in the program and 

comparatively studied in this work to deal with the error distribution. One method is 

to assume constant distribution, i. e. to set Rk as a time independent matrix. The 

components can be estimated based as a percentage of the maximum measurement 

error based on the machine resolution. A constant percentage (1%-10%) error of the 

potential material parameters is also assigned to the matrix Qk. This represents the 

required accuracy (tolerance) on the final parameters. This method was conventionally 

used in the other works (Gu et al, 2003), however, the suitability (accuracy, 

robustness) of this approach for the characterisation of different material systems and 

testing method needs to be investigated. A new approach proposed in this work for 

this particular field is to use normal distribution (Figure 3.4), i. e. both Rk and Qk are 

treated as time dependent and varies from the true values following a normal 

distribution. With this method, the materials properties is not required to be pre- 

known, which could be an major advantage for material characterisation in particular 

when dealing with nonlinear material models. In this method, the measurement noise 

and the process noise was assumed to follow a normal distribution. 

The normal distribution is also called Gaussian distribution (Figure 3.4), which is a 
bell-shaped curve centred on, and symmetric about, x=p. The width is controlled by 

the parameter a, which is also the standard deviation of the distribution. 

The probability distribution function for a Gaussian distribution is: 

P(x, uºa) =i e`(x-N)=1202 
Q 2; t 

(3.3.1) 

In this equation, p is the mean of the distribution. If p=0, the mean of the random 

variable is 0, the equation then becomes: 

p(x, p, a) =12; 
' 
e -x2 12a2 

(3.3.2) 

This format is often called the unit Gaussion or unit normal distribution. The area 
between the curve and the horizontal axis (Figure 3.4) is: 
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L1 e-'2' °2 dx =1 (3.3.3) 
Q2; c 

It is well documented that the area lying within x= to and the curve is 68.27%, 

95.45% of the area lies within x= ±2a, and 99.73% of the area lies within x= ±3a. 

When values are quoted with a random error, having Gaussian standard ar , then this 

error will be presented 1± 3c , which guarantee 99.73% of the measurement lies 

between 1- 3a' and 1+ 3ai (Barlow, 1989). 

Re-writing Equations 3.2.1 and 3.2.2 in a different format: 

Wk Xk+l - Xk (3.3.3) 

Vk = Zk - h(xk) (3.3.4) 

In the process model, the difference of the parameter between the prior state and 

current state reflects the process noise (Equation 3.3.3). In the measurement model, 

the difference between the measurement and prediction reflects the measurement error 

(Equation 3.3.4). Based on Gaussian distribution of the errors, the following equations 

can be employed to calculate the covariance matrix Qk and Rk , which offers a 

different approach to the constant error method. 

Qk =( 
Xk+l Xk )2 (3.3.5) 

3 

3 
(3.3.6) R, =(h(Xk)-Z'ß)2 

During the searching process, xk and Zk are assumed as the mean values of the 

unknown parameter and measurement at time k, respectively. 

3.3.4 The material parameter searching procedure for single indenter and dual 

indenter methods 

Figure 3.5 outlines the main procedures to evaluate the inverse FE program for 

different material models (i. e. linear elastic, hyperelastic and hyperfoam model). The 

program was assessed by blind tests before being applied to real experimental tests. 
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Details of the material models are to be detailed in the section 3.4. The most important 

process in the inverse program is the calculation of the Kalamn gain based on an 

initial guessed value. The subsequent calculation of the Kalman gain will be based on 

each updated values. The main calculation steps when using single indenter or dual 

indenters is detailed below. 

Sinale indenter method 

Assume the unknown material parameter set is vector X, which includes two elements 

A and B. With initial guessed values of material properties (A,,, Do): 

Xi = (Ao 
, Bo) (3.3.7) 

and assume an unit matrix for 

i 
Pi=101 (3.3.8) 

The Kalman gain can be calculated based on the Equation 3.2.14, the nonlinear 

function h represents the relationship between the unknown parameters and 

measurements as explained earlier. 

Oh, Ohl -' 

K 
12 0 

,, OA * 
oh, äh, 

* 12 0* OA +R (3.3.9) 1-0 12 ah, M OB 0 12 ah, ' 
0 aB 

For inconstant random error normal distribution treatment, 

hmeasured h2 

RI ='3` (3.3.10) 

For constant random error normal distribution treatment 

R1= Qmms , 
(3.3.11) 

Where h,, -,, d represents experiment of indentation using indenter radius r. hi 

represents data calculated from FE model with AO and Bo at the first indentation point. 

a2, represents the measurement error. 
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So, Ao and Bo are updated following: 

B' 
_B +K, *(h memwed -h 1) (3.3.12) 

io 

X2 = (Al, B, ý (3.3.13) 

X2 is then ready for next calculation loop. P, and Pý are updated (calculated) using 

the following equations. 

s 
P 

[[1 0_ 
K (1h2 (1h2 0 

(3.3.14) 'r 01' OA öB 0 12 

PZ = P1 + Ql (3.3.15) 

For inconstant random error normal distribution treatment, 

Al - Ao Z 

Qi =32 (3.3.16) 
0 

B, -B° 

For constant random error normal distribution treatment 

Q= 
(°rAA 0 (3.3.17) 10 CAB 

Where F2 represents updated data calculated from FE model of r with material 

parameters Al, B1 at the second measurement point. This loop is repeated until the last 

point. a, andaý are determined by the accuracy of the estimations. 

Dual indenter method 

Assuming the initial material parameters is 'Ao' and 'Bo. The measurementsh', Pare 

obtained by using indenters rr and r2, respectively. 

T 
i2 0) Xi (A0, Bo), P' =0 12 

Then, the Kalman gain (K), can be calculated following: 
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Öh, 1 Öh, 2 Öh, ' N ah, ' COh; -1 
12 0* aA öA * äA DB * 12 0* äA öA +R 0 1Z a1 

"'h2 
ai 2 jZ 0 12 al; i aj 2i 

öB aB J Lk. öA aBi k, äB öB 

For inconstant normal distribution 

(jmeasuredt 
r12 

3 
R1 _ 

0 

0 
(Jmea$ured2 

_ 
k2 2 

3 

For constant normal distribution 

Qmm 
0,0 

R, =O2 
Ah2 

(3.3.18) 

(3.3.19) 

(3.3.20) 

Where h, "' and h, ̀ ="'2 represent indentation force at an indentation point 
(depth) with an indenter sizes of r, and rz , respectively. h; and h, represent data 

from FE models with different indenter sizes (r, , r2 ). 

Then the updated material parameters can be worked out as: 

+ K, [(headl h) (hl esd2 
_ h(3.3.21) 

AI 

(: ] , 

XT = (A,, B, ) (3.3.22) 

The posterior estimate error covariance P, can be calculated: 

ah2 ah2 
1 ? )_Kz äA aB 12 0 

P' o *ah2 aha (3.3.23) 
220 12 

aA aB 

The prior covariance matrix PZ at second point is updated as following 
Is = Pi + Q, (3.3.24) 

For inconstant normal distribution 
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A-Ao2 

Qi =3 (_B0)2] 
(3.3.25) 

For constant normal distribution 

6A, 0 
Qi 

0 0'2 
2 (3.3.26) 

The new data will then be used as the input to update the calculation at the next point. 
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3.4 Application of the inverse FE modelling approach to different material 

systems 

In this section, the feasibility of the inverse FE program to analyzed three commonly 

used material models (i. e. linear elastic, hyperelastic and hyperfoam) has been 

systematically studied. The main governing constitutive equations and parameters of 

the material models are listed in Table 3.1. These materials are commonly used in a 

wide range of applications in particularly in sport and protection facilities. 

Table 3.1 List of material models. 

Materials Governing Equations Main material Typical 

Models parameters materials 

Linear elastic o= Ec E, Young's modulus Rubbers at 

model v, Poisson's ratio small strains. 

Hyperelastic U_ 2A 0 ýý -3) 
L, " a, , D1 Human heel 

model a, pad, muscle, 

+ý-1(J`' -1)2' ' =j sA) 
skin etc. 

1-1 D, 

Hyperfoam U_ 2P, ýa+_3 u, , at, ß, EVA foams 

model i°' a, in Running 

+ (J`' °'ý' -1 
J shoes. 

V, P 

FE model for each material/system was developed using a commercial simulation 

software ABAQUS. In each case, an optimum modelling approach has been 

developed based on detailed investigation of the influence of boundary conditions, 

mesh sensitivity and the effect of materials properties over different strain spectrums. 
The numerical results of the elastic model were compared to an available analytical 

model to validate the FE program. The establish FE model was then used to develop 

the simulation space by running models with a wide range of materials properties. The 

parametric study feature is a function in ABAQUS, which allow the user to generate, 
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execute, and gather the results of multiple analyses that differ only in the values of 

some of the input parameters, such as material parameters or dimensional parameters 

(Ren et al, 2006). The inverse program was evaluated using blind tests with numerical 

experimental data (numerical results with known material properties). This is 

commonly used approach in developing inverse programs (Delalleau et al, 2006). It 

allows the uniqueness, accuracy and sensitivity of these inverse FE methods to be 

systemically investigated. The results for linear elastic, hyperelastic, hyperfoam 

systems have been presented in the section 3.5-3.8. 

Two main approaches have been studied to predict the material parameters from 

indentation tests. The first one is to use one indentation test only (designated single 

indenter method). This approach has been used by many researchers but the accuracy 

and validity were not well established. In many cases, it heavily depends on the pre- 

knowledge about the material or the initial guessed value, in other words, the data 

could be ill conditioned. The new approach to be explored is to use experimental data 

from two indenters of different sizes (designated dual indenters method). One 

hypothesis for using more than one indenter is that, by using indenters of different 

dimensions and sizes, material behaviour at different strain-stress conditions could be 

produced and this would potentially help to predict multiple material parameters. 
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3.5 FE modelling of indentation of linear elastic materials and inverse 

parameters identification 

3.5.1 Elastic FE indentation model 

As shown in Figure 3.6(a), a 2-D axial symmetric model was used due to the 

symmetry of the spherical indenter. The indenter was assumed to be analytically rigid 

body as it is much harder than the indented material. The element type of the material 

used is CAX4R (an axisymmetric element) and finer meshes have been applied around 

the indenter to improve the accuracy. The thickness and width of the model is 36 mm 

and 36mm, respectively; both are six times larger than the indenter radius to avoid 

potential sample size and boundary effects (Johnson, 1985). The bottom face of the 

material was fixed in all degrees of freedom (DOF). Contact has been defined 

between the indenter surface and sample surface. The material of interest is allowed to 

move and the contact between the indenter surface and the material surface was 

maintained at all the times. 

In FE modelling, the accuracy of the results is influenced by many factors such as the 

mesh density, frictional condition and validation of the boundary conditions. The most 

relevant factors for the simulation of indentation process are the mesh density and 

frictional conditions (Talfiat and Zacharia, 1998). The friction coefficient used is 0.5, 

which is commonly used in indentation testing of soft materials. The meshes in the 

model were generated with pertinent symmetry consideration to reduce the domain 

size with different mesh density for different regions. The potential influence of all 

these factors on the accuracy of the modelling process needs to be investigated. This 

was assessed by varying the meshing scheme (i. e. mesh density) in the FE models, and 

then comparing the P-h curves. Figure 3.6 (c) shows the P-h curves with different 

meshing approaches (Figure 3.6 (b)). It is clearly shown that models with coarser 

meshes (larger element size) near the indenter have resulted in lower indentation 

forces. The indentation curve became very close for models with mesh 2 and mesh 3, 

eventually the results became insensitive to the mesh density, therefore Mesh 3 was 

set as the suitable mesh density. Tests on other material properties showed similar 

results. 
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3.5.2 Validation of the FE model with analytical solutions 

Figure 3.7 compares the numerical force displacement data and corresponding result 

using the following analytical solution (Johnson, 1985). 

FzE *32 Z9 1-v2 
(3.5.1) 

In the equation, 'Fz' is the reaction force, 'R' is the indenter radius; 'E' and 'v' are the 

Young's modulus and Poisson's ratio of the material. 'S' is the indentation depth. As 

shown in figure 3.7, the two sets of data showed good agreement. The correlation 

coefficients between these two curves using a least square regression method is within 

99.9%. Similar agreement between numerical results and analytical results were 

observed with other indenter sizes, which suggests that the FE model is congruous 

with the analytical model. Please note the analytical solution is only valid at smaller 

strain level, it becomes invalid as the model goes into large strain. 

3.5.3 Effect of indenter seize and material parameters on the indentation curves 

and simulation spaces 

Figure 3.8 compares the force-indentation depth curves and stress distribution for 

different sized indenters. As shown in Figure 3.8(a), the force-indentation curve is 

stiffer when larger indenter is used. The stress around the indenter showed similar 

distribution patterns, however, the peak stress value and the volume of the deformed 

material are different. When a larger indenter is used, the effectively deformed 

material volume is significantly larger. These differences may reflect the different 

contribution of the two material parameters (i. e. E and v) to the indentation force, 

which could potentially provide a mechanism to be used in the inverse modelling 

process to extract these material parameters. 

Figure 3.9 shows the effects of the Young's Modulus (E) and the Poisson's ratio (v) 

on the force-indentation depth data. The Poisson's ratio was fixed at 0.28 in (a); while 

the Young's modulus was fixed at 0.25 (MPa) in (b). As shown in the figures, the 

slopes of the force-indentation depth curves increased when the Young's modulus and 
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Poisson's ratio was increased, but the Young's modulus exhibited much more 

profound effect than the Poisson's ratio. It is also evident that the force-indentation 

depth data becomes less sensitive to the Poisson's ratio when 'v' approaches to zero. 

These sensitivity test results will provide guidelines in designing the inverse 

modelling strategy. 

In the parametric studies, the Young's modulus was varied from 0.05 (MPa) to 0.45 

(MPa) with values 0.05,0.15,0.25,0.35,0.45. The Poisson's ratio used was ranged 

from 0.12 to 0.44 with values 0.12,0.20,0.28,0.36,0.44. The numerical results were 

then recorded and stored into a database to form a simulation space. As described in 

section 3.4, the simulated force-indentation depth data has to be transformed into a 

discrete form for the data searching process. To avoid potential uncertainty of the data 

at very small indentation depth, the study domain selected corresponded to the 

indentation depth of 0.025-0.5mm and each curve was divided into 190 equally 

spaced divisions. Figure 3.10(b) shows typical simulation surfaces at the 71`h 

indentation point (corresponding to a depth of 0.2mm) and 151th (corresponding to a 

depth of 0.4mm) indentation point. Each surface represents the reaction force at the 

certain indentation depth within the range of Young's modulus `E' and Poisson's ratio 

v. In the parameter fitting process, the program searches through this space and 

determine a set of material properties that produce force displacement result matching 

the input experimental data. 

3.5.4 Searching process of elastic properties based on the single indenter method 

Figure 3.11 illustrates the parameters searching process based on the single indenter 

method using an indentation curve for R=4mm (Figure 3.8 (a)) as the input data. The 

initial values used were Eo=0.30 MPa and vo=0.40, while the target values are E=0.14 

(MPa), v=0.43. Figures (a) and (b) show the material properties searching process 

with constant error treatment and random error treatment. At each indentation point, 

the program searches for a combination of material properties (E and v), which gives 
the best fit to the target point on the experimental curve. As shown in the figures, the 

fitting process of material parameters involved significant scatter in the earlier stage 
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starting from the initial value. In the later stage, the predicted results came closer to 

the real values, and then converged into a stable set of properties. It is clearly shown 

that the process with random error is much more stable and quick to converge than the 

method with a constant error of 5%. Inverse programme with different level of 

constant error (1%, 5%, 10%) have been assessed and the searching process exhibits 

very similar trend (results not shown to preserve clarity). The program failed to 

converge when the percentage error used is smaller than 1 %. As shown in the figures, 

the predicted properties from both approach are close to the true material properties 

(E=0.14 MPa), v=0.43) in this case. 

To assess the robustness of the program and avoid ill conditioning, the effect of the 

initial guessed values on the converged results have been studied. As shown in Figure 

3.12, each grid point was used as an initial guessed value then the predicted material 

properties is summarised to study potential effect of initial value on the predicted 

results. Figure 3.13 shows the distribution of the converged results. As shown in the 

figure, the results with constant error approach (Figure (a)) is randomly scattered over 

a wide range. The converged results for random error approach are focused at three 

main points but the overall range is similar to that for the constant error approach 

(Figure (b)). 

Multiple FE models have been developed with material properties selected from the 

converged material properties (circled in Figure 3.13(b)) and the P-h curves were 

compared with the input numerical experimental data. As shown in Figure 3.13(c), 

these P-h curves agree very well with the numerical experimental data. This suggests 

that these significantly different parameters have identical P-h curves, in other words, 

the material property could not be determined uniquely using one indenter only. 

3.5.5 Searching process based on dual indenters 

Figure 3.14 illustrates the parameter searching process using experimental data from 

two indenters (R=4 and R=6 mm) simultaneously. The initial values used were 
Eo=0.30 MPa and va=0.40, while the target values are Er=0.14 (MPa), v7=0.43. At 
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each indentation point, the program searches for a set of material properties (E and v) 

which gives the best fit to the experimental curves from both R4 and R6. Figures (a) 

and (b) show the material properties searching process with constant error treatment 

and random error treatment. As shown in the figures, the fitting process started from 

random picked initial values, and then it came closer to a stable value (figure 3.14(b)). 

The results shows clearly that the process with random error is much more quick to 

converge (reach a plateau) than the constant error method. In this run, the results 

obtained are close to the true material properties as highlighted on the figure with the 

straight line. The results predicted were 0.141 for E and 0.4228 for v, with the error 

percentage is 0.79% and 2.14%, respectively. 

Similar to the single indenter approach, a range of initial values have been used to 

assess the robustness of the program. The result is plotted in Figure 3.15. The results 

for the constant error treatment (1%, 5% and 10%) (Figure 3.15(a)) are similar to the 

results of the single indenter approach (Figure 3.13(a)). The results from the random 

error approach are much more focused with all the converged results close to the true 

material materials. Multiple FE models have been developed with material properties 

selected from the converged material properties (circled in Figure 3.15(b)) and the P-h 

curves were compared to the input numerical experiment data. As shown in Figure 

3.15(c), these P-h curves agree very well with the numerical experimental data. This 

suggests that the dual spherical indenters with random error treatment could be used 

to predict the two elastic parameters (E and v) of materials. 

Several sets of material properties (E and v) have been used as the true material 

properties in the blind tests to assess the robustness and accuracy of the program. 

Typical comparison of the predicted results and the true parameters were listed in 

Table 3.2 and selected data was shown in Figure 3.16. In each case, there are a few 

material data sets over a small region matching the input data. The results suggest that 

the dual indenters could produce unique results. 

76 



Table 3.2 Typical predicted results by inverse FE modelling based on the dual 
indenters method on elastic materials. 

Tar et value Predicted value U limit Low limit 
ET VT E V E V E V 
0.1 0.15 0.0999 0.1582 0.1000 0.1489 0.0997 0.1696 
0.2 0.15 0.1996 0.1576 0.2002 0.1458 0.1987 0.1701 
0.3 0.15 0.2986 0.1634 0.3001 0.1498 0.2969 0.1744 
0.4 0.15 0.3995 0.1575 0.4005 0.1431 0.3986 0.1693 
0.1 0.2 0.0999 0.2069 0.1001 0.1964 0.0996 0.2184 
0.2 0.2 0.2000 0.1993 0.2008 0.1915 0.1989 0.2073 
0.3 0.2 0.2988 0.2111 0.3006 0.1937 0.2967 0.2257 
0.4 0.2 0.3979 0.2138 0.3998 0.2012 0.3956 0.2286 
0.1 0.25 0.0999 0.2536 0.1000 0.2460 0.0997 0.2609 
0.2 0.25 0.1998 0.2535 0.2006 0.2414 0.1989 0.2660 
0.3 0.25 0.2992 0.2581 0.3010 0.2419 0.2977 0.2708 
0.4 0.25 0.3988 0.2570 0.401 0.243 0.3977 0.2664 
0.1 0.3 0.1002 0.2977 0.1005 0.2906 0.0999 0.3017 
0.2 0.3 0.1999 0.3007 0.2008 0.2922 0.1990 0.3089 
0.3 0.3 0.2988 0.3077 0.3011 0.2925 0.2962 0.3245 
0.4 0.3 0.4004 0.2980 0.4040 0.2825 0.3970 0.3145 
0.1 0.35 0.1003 0.3464 0.1012 0.3338 0.0996 0.3566 
0.2 0.35 0.1998 0.3520 0.2007 0.3254 0.1987 0.3697 
0.3 0.35 0.3001 0.3499 0.3012 0.3441 0.2986 0.3568 
0.4 0.35 0.4004 0.3477 0.4027 0.3364 0.3981 0.3579 
0.1 0.4 0.1003 0.3959 0.1019 0.3754 0.0991 0.4093 
0.2 0.4 0.2015 0.3912 0.2065 0.3600 0.1971 0.4156 
0.3 0.4 0.3021 0.3919 0,3118 0.3584 0.2984 0.4053 
0.4 0.4 0.4030 0.3911 0.4065 0.3706 0.4012 0.3965 
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3.6 FE modelling of indentation of hyperelastic materials and inverse parameters 
identification 

3.6.1 FE models 

Hyper-elastic models are widely used to describe the non-linear material behaviour of 

biological tissue such as skin, heel pad (Serup and Jemec, 1999). One of the mostly 

used models in ABAQUS is the Ogden material model. This model is able to capture 

the stiffening behaviour at large strains. 

The first order form of the Ogden strain energy potential (U) is in the following form 

(Twizell and Ogden, 1986) 

Ü=ý7(2 +2 +4-3) (3.6.1) 

Where 2, A, A are the deviatoric principal stretches and ̀ µ' and ̀ a' are the material 

parameters representing the hyper-elastic behaviour under uniaxial compression. 

,ý =2; A2 =A2 .i 
112 ; A=1+16 (3.6.2) 

Where c is the compressive strain. The compressive stress (a) is calculated from strain 

energy function U. 

LT 
(3.6.3) 

Figure 3.17 shows a 2-D axial symmetric model with a spherical indenter. Similar to 

the previous indentation FE model, the indenter was modelled as an analytically rigid 
body. The axisymmetric element CAX4R is used and finer meshes have been applied 

around the indenter to improve the accuracy. The thickness and the width of the model 

are 14 mm and 26mm, respectively. The bottom face of the material volume was fixed 

in all degrees of freedom (DOF). Contact has been defined between the indenter 

surface and material surface with friction coefficient of 0.5. The mesh in the regions 
directly under the indenter tip was refined with high mesh density in order to obtain 

accurate results. 
Figure 3.17(b) shows a typical numerical force indentation depth curve of a spherical 
indenter (R= 4 mm). Mesh size effects have been assessed by varying the mesh 
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density and the results are shown in Figure 3.17(c&d). At lower mesh density level, 

the peak forces is considerably higher, then eventually the result become less sensitive 

to the mesh size. When the mesh density near the indenter reaches certain level, the P- 

h curves became identical. This mesh scheme was selected as the suitable mesh for all 

the tests. Tests on other material properties showed similar trend. 

3.6.2 Effect of the indenter size and material parameters on the indentation 

curves and simulation spaces 

Figure 3.18(a) represents the force-indentation depth curves using different indenters. 

The stress distributions underneath the indenters were shown in Figure 3.18(b). The 

differences could potentially provide a mechanism to be used in the inverse modelling 

process to extract the material properties. Figure 3.19 shows the effects of the hyper- 

elastic material coefficient 'µ' and 'a' on the force-indentation depth data. A fixed 

coefficient 'a' of 8.0 was used in (a) and 'µ' was 0.05 (MPa) in (b). As shown in the 

Figure (a), the slopes of the force-indentation depth data increased as the coefficient 

'µ' increased. The effect of the 'µ' is profound starting right from the low indentation 

depth while, the effect of 'a' is not significant at low indentation depth (up to 2mm in 

this case). At large indentation depth, it is clearly shown that the slopes of the force- 

indentation data increased when 'a' was increased. This suggests that 'µ' has much 

more significant effect than the 'a'. These sensitivity test results will provide 

guidelines in designing the inverse modelling strategy. 

To build up the simulation space, a range of material sets p=0.008,0.03,0.05,0.08, 
0.12 (MPa) and a=4.0,6.0,8.0,10.0,12.0) have been used in the parametric studies. 
Figure 3.20 shows the relationship between the simulated force-indentation depth data 

and the corresponding simulation surfaces. The curves were divided into 190 equally 

spaced divisions and the simulation surface shown in the figure is for the 116th 

indentation points (indentation depth of 2.5mm) and the 166`h indentation points 
(indentation depth of 3.5mm), respectively. Each surface represents the reaction force 

at a certain indentation depth within the material property range. In the parameter 
fitting process, the program searches through this space and determine a set of 
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material properties that produce force displacement result matching the input 

experimental data. 

3.6.3 Inverse parameters identification based on the single indenter method 

Figure 3.21 illustrates the searching process of hyperelastic parameters using the curve 

for R=4mm. The initial guessed value was po=0.045 and ao =8.0 while the target 

values (or true material parameters) were 9T=0.07 and aT =6.2. Figure 3.21 (a) and (b) 

shows the material parameters searching process with the constant error treatment and 

random error treatment method, respectively. At each indentation point, the inverse 

program searches for a combination of material properties (t and a) which gives the 

best fit to the input experimental curve. As shown in Figure 3.21(a), the searching 

process of parameter ̀ µ' involved significant scatter in the initial stage, then the 

predicted result became stable and came closer to the target value. The results also 

show clearly that the searching process for `µ' is much smoother than the searching 

process for `a'. This is probably due to the lower sensitivity of a on the indentation 

curves as shown in Figure 3.19(b). The converged data for the searching process with 

the random error method is much closer to the target value than the results for the 

constant error method as highlighted by the solid line. 

To assess the robustness of the inverse program to avoid ill conditioning, a range of 

initial guessed values has been used (Figure 3.22) and the distribution of the 

converged results are shown in Figure 3.23. The results from the constant error 

approach is much more scattered and the results with different constant error levels 

(1%, 5%, 10%) are comparable. Multiple FE models have been developed with some 

selected material parameters in Figure 3.23(a) and the P-h curves are compared with 

the input numerical experiment data. As shown in Figure 3.22(b), these P-h curves are 
different but the constant method failed to distinguish them. As shown in Figure 3.23 

(c), the predicted values with random error treatment are much more focused and the 

value is in good agreement with the true material value. 
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3.6.4 Inverse hyperelastic parameters identification based on the dual indenters 

method 

Figure 3.24 illustrates the parameters searching process using data for R=4 and R=6 

mm. The initial guessed value was go=0.04 and ao =8.0 while the target values are 

µT=0.07 and aT =6.2. The searching process with constant error treatment and random 

error treatment was shown in Figures (a) and (b) respectively. At each indentation 

point, the program searches for a combination of material properties which gives the 

best fit to the experimental curves. Similar to the single indenter approach, the 

searching process for `µ' is much smoother than the process for `a'. In the later stage, 

the predicted results came closer to the real values. In this run, the results obtained 

from these two approaches are comparable and close to the true materials properties. 

Similar to the single indenter approach, a range of initial guessed values have been 

used and the converged result was plotted in Figure 3.25. Several constant error levels 

(1%, 5% and 10%) have been assessed and the results were presented in Figure (a). 

The program has failed to converge when the error level was set within 1% or greater 

than 10%. The distribution of the converged results for the constant error and random 

error method is very similar and confined to a small region. The ranges of both 

parameters (`µ' and `a') obtained are much narrower than the results for the single 

indenters indentation. Multiple FE models have been developed with these material 

properties and the P-h curves agreed very well with the numerical experimental data. 

This suggests that the material property could be determined uniquely using two 

indentations using either constant error treatment or the random error approach. But 

the random error approach was much more stable. In both cases, the data range is 

much more focused than the converged data for the single indenter method (Figure 

3.23). 

Several materials sets (i. e. true material properties) with different parameters have 

been used as input data. Comparison of the predicted results and the true parameters 
were listed in Table 3.3 and selected data was shown in Figure 3.26. In each case, the 

predicted material data match the true material properties very well. This suggests the 
dual indenters could produce unique results. 
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Table 3.3 Typical predicted results for hyperelastic materials by inverse FE modelling 
based on the dual indenters method 

Target value Predicted value up li mit Low limit 

T (XT 4 a a a 
0.018 5 0.0180 4.9759 0.0180 4.9828 0.0180 4.9437 
0.040 5 0.0400 4.9640 0.0401 5.0358 0.0400 4.9266 
0.062 5 0.0620 5.0060 0.0620 5.0780 0.0620 4.9721 
0.084 5 0.0840 5.0529 0.0841 5.1140 0.0840 5.0040 
0.106 5 0.1060 4.9744 0.1061 5.0638 0.1059 4.7045 
0.018 7 0.0180 6.9906 0.0180 7.0032 0.0180 6.9807 
0.040 7 0.0400 7.0501 0.0400 7.0691 0.0400 7.0383 
0.062 7 0.0621 6.9453 0.0621 6.8696 0.0620 7.0114 
0.084 7 0.0840 6.9958 0.0840 6.9851 0.084 7.0098 
0.106 7 0.1060 6.9899 0.1061 6.9890 0.1059 7.0039 
0.018 .9 0.0180 8.9579 0.0180 8.9870 0.0180 8.9442 
0.040 9 0.0400 8.9487 0.0400 9.0033 0.0400 8.8930 
0.062 9 0.0620 8.9993 0.0620 9.0180 0.0620 8.9277 
0.084 9 0.0839 9.0008 0.0840 9.0120 0.0839 8.9721 
0.106 9 0.1059 9.0567 0.1059 9.0424 0.1058 9.0660 
0.018 11 0.0180 10.9854 0.0180 11.0353 0.0180 10.9353 
0.040 11 0.0400 10.9579 0.0400 10.9727 0.0400 10.9511 
0.062 11 0.0620 10.9911 0.0620 10.9702 0.0619 11.0730 
0.084 11 0.0839 11.0374 0.0840 10.9977 0.0838 11.0814 
0.106 11 0.1062 10.9487 0.1087 10.1355 0.1059 11.0767 
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3.7 FE modelling of indentation of hyperfoam materials and inverse parameters 

identification 

3.7.1 FE models 

Hyperfoam model is widely used to describe the behavior of foam materials for sport 

and protect equipments (e. g. EVA foams). This model is able to capture the nonlinear 

stiffening behaviour of materials at large strains. The strain energy density function 

(U) is represented by next two equations (ABAQUS): 

U3+1 ((j, ' ),, A - 1) (3.7.1) 

/ý1 '\Jrh) 3Al; '2A °Vlh\-141A =Vlh)-1'ý `Jed 
(3.7.2) 

where A,, A2 , A3are the principal stretches; J" , J" and J are the elastic volume ratio, 

the thermal volume ratio and the total volume ratio, respectively. 

Taking the first term of the hyperfoam strain energy density function without 

considering the thermal effect, there is 

U=,,, u [4 
ý+4+A_3+1 ((�er )'fl _ 1) (3.7.3) 

where µ, a and ß are the material properties representing the compressible foam 

behavior. ß is related to the the effective Poisson's ratio (v) following 

V (3.7.4) 
1-2v 

If the Poisson's ratio is known, then the material behavior is mainly governed by the 

two parameters `µ' and ̀ a', which could be identified through inverse modelling of 

indentation tests. 

A 2-D axial symmetric indentation FE model (Figure 3.27) was built to simulate the 

hyperfoam indentation process. The indenter itself was assumed to be analytical rigid 
body. The axisymmetric element CAX4R was used. Similar to the elastic and 
hyperelastic models, finer mesh has been applied around the indenter to improve the 

accuracy. The thickness and width of the model is 20 mm and 30mm, respectively. 
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The bottom face of the foam was fixed in all degrees of freedom (DOF). Contact was 

defined between the indenter surface and the top surface of the foam with a frictional 

coefficient of 0.5. The material of interest is allowed to move and the contact between 

the indenter surface and the material was maintained at all the times. 

Figure 3.27(b) shows a typical numerical force indentation depth curve simulated by 

this model with a spherical indenter of R= 4 mm. Mesh size effects was assessed by 

varying the mesh density (Figure 4.27 (c)) and the results were shown in Figure 

3.27(d). With reduced mesh size (e. g. Mesh 2) underneath the indenter, the force 

indentation depth curves become less sensitive to the mesh density and the P-h curves 

become identical. This helps to establish the suitable mesh density and optimise the 

requirement on the computational resources. 

3.7.2 Effect of indenter sizes and material parameters on the indentation curves 

and simulation spaces 

The force-indentation depth data curves and stress distributions underneath the 

indenter were presented in Figure 3.28. The stress around the indenter showed similar 

distribution patterns, however, the peak stress value and the volume of the deformed 

material are different with different indenter sizes. When a larger indenter is used, the 

effectively deformed material volume is significantly larger. These differences may 

reflect the different contribution of the two material parameters (i. e. E and v) to the 

indentation force, which could potentially provide a mechanism to be used in the 

inverse modelling process to extract these material parameters. 

Figure 3.29 shows the effects of the coefficient `µ' and `a' on the force-indentation 

depth curve. The coefficient 'µ' used in (a) was 0.2 and 'a' of 4.0 was used in (b). As 

shown in the Figure (a), the slopes of the force-indentation depth data increased with 
increasing coefficient `µ', while, the slopes of the force-indentation data increased 

when 'a' is decreased. This is significantly different from the hyper elastic model. 
These sensitivity test results will provide guidelines in designing the inverse 

modelling strategy. 
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The simulation surfaces (Figure 3.30) were constructed from numerical results with 

`µ' ranged from (0.008,0.06,0.2,0.5,0.8) (MPa) and `a' from (0.08,2.0,4.0,8.0, 

12.0). The numerical results were then recorded and stored into a database to form the 

simulation space. As described in section 3.4, the simulated force-indentation depth 

data has to be transformed into a discrete form. In this case, the curves, (which 

indentation depth from 0.02mm to 3.72mm) were divided into 176 equally spaced 

divisions. Typical simulation surfaces at the 90th and 140th indentation point were 

shown in the figure representing the variation of indentation forces within property 

range studied at the depth of 2mm and 3mm respectively. In the parameter fitting 

process, the program searches through this space and determine a set of material 

properties that produce force displacement result matching the input experimental 
data. 

3.7.3 Inverse parameters identification based on the single indenter method 

Figure 3.31 illustrates the property searching process based the single indenter method 

using the data for R=4mm in Figure 3.30 as the input data. The initial guessed value 

was `µo=0.16' and `ao =2.0' while the target values were `itT=0.6' and `aT =8.0'. 
Figures (a) &(b) shows the material properties searching process with a constant error 

treatment and random error distribution, respectively. At each indentation point, the 

program searches for a combination of material properties (µ and a) which gives the 

best fit to the target point on the experimental curve. As shown in Figure (a), the 

fitting process involved significant scatter when the search started from the initial 

value in the early stage, then converged into a stable value. 

To assess the robustness of the program, a range of initial guessed values has been 

used over a wide potential parameter range (Figure 3.32) and converged results are 

shown in Figure 3.33. The predicted results from constant error with different error 
levels (1%, 5%, 10%) scattered over a wide range. The program failed to converge 

when the noise level was set within 1%. The converged results for random error 

approach is much more focused but it still scattered over a wide range. 
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3.7.4 Inverse parameters identification based on the dual indenters method 

Figure 3.34 illustrates the property searching process based on the dual indenters 

method using data for R=4 and R=6 mm. The initial guessed value was go=0.16 and 

ao =2.0 while the true material parameters values were µT=0,6 and aT =8. At each 

indentation point, the program searches for a combination of material properties (E 

and v) which give the best fit to the target point on both the experimental curve. 

Figure (a) & (b) shows the material properties searching process with the constant 

error and random error method, respectively. In both cases, the search process is much 

smoother than the case for hyperelastic model and the results obtained are in good 

agreement with the true materials properties. 

Similar to the single indenter approach, the effect of the initial values has been 

assessed and the result was plotted in Figure 3.35. Different constant error levels (1%, 

5%, 10%) have been used and the distribution of the converged results showed similar 

pattern. The program failed to converge when the error level was set within 1%. 

Comparing Figures 3.35(a) and (b). It is evident that converged results based on the 

random error approach are much more focused. This suggests that the random error 

method is much more robust than the constant error approach with all the predicted 

values close to true material properties. 

Several different material properties have been used as input data to assess the 

capacity of the program in dealing with different materials. Typical results were listed 

in Table 3.4 and selected results were shown in Figure 3.36. The results clearly 

showed that the dual indenters could produce accurate results. 
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Table 3.4 Typical predicted results by inverse FE modelling based on the dual 
indenters method on hyperfoam material. 

Target value Predicted 
value 

Up limit Low limit 

T aT a a a 

0.1 1.6 0.1000 1.6018 0.1001 1.6237 0.1000 1.5905 
0.3 1.6 0.2999 1.5919 0.3000 1.5996 0.2997 1.5869 
0.5 1.6 0.4998 1.6302 0.5000 1.6982 0.4996 1.5923 
0.7 1.6 0.6991 1.5795 0.7000 1.6029 0.6962 1.5356 
0.1 3.7 0.0999 3.6728 0.1001 3.7134 0.0998 3.6627 
0.3 3.7 0.2999 3.6888 0.3000 3.6987 0.2997 3.6589 
0.5 3.7 0.4995 3.6857 0.5001 3.7005 0.4976 3.6302 
0.7 3.7 0.7001 3.7021 0.7013 3.7324 0.6990 3.6753 
0.1 5.8 0.1000 5.7993 0.1004 5.8686 0.0994 5.7168 
0.3 5.8 0.3001 5.8039 0.3004 5.8188 0.2985 5.7375 
0.5 5.8 0.4993 5.7760 0.5003 5.8078 0.4973 5.6935 
0.7 5.8 0.7016 5.8382 0.7031 5.8866 0.6971 5.7367 
0.1 7.9 0.0999 7.8789 0.1003 7.9523 0.0994 7.7994 
0.3 7.9 0.2997 7.8619 0.3009 7.9476 0.2976 7.7759 
0.5 7.9 0.4994 7.8816 0.5008 7.9268 0.4912 7.6280 
0.7 7.9 0.6995 7.8890 0.7019 7.9426 0.6978 7.8499 
0.1 10 0.0999 9.9776 0.1004 10.0614 0.0989 9.8085 
0.3 10 0.2994 9.9617 0.2998 9.9884 0.2976 9.8579 
0.5 10 0.4940 9.7871 0.4997 9.9922 0.4387 7.8200 
0.7 10 0.7001 10.0041 0.7037 10.0997 0.6979 9.9413 
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3.8 Sensitivity analysis and results 

Sensitivity of the predicted material properties due to variations of the input 

parameters is essentially an intrinsic characteristic of inverse problems, which has 

been a major difficulty in using inverse or reverse method (Venkatesh et al, 2000; Dao 

et al, 2001). In this work the input data were taken from numerical models, however, 

in a real testing situation, there can be potentially both system and random errors. 

Factors such as error in the indenter angle, roundness of the tip, alignment and 

accuracy of the recorded indentation force or depth all influence the measurement 

results (Dao et al, 2001). From the results shown in Section 3.5,3.6 and 3.7, the dual 

indentation method with random error approach is a more robust approach for all the 

models; therefore, the sensitivity of the estimated properties to variations in the input 

parameters was investigated in these three cases. This was conducted by adding a 

systematic percentage error to the input data, then systematically comparing the 

change in the converged material parameters. 

Figure 3.37 shows the sensitivity of estimated linear elastic properties to perturbations 

in the indentation force for the dual indentation approaches with an original property 

of E=0.14 and v=0.43. The result showed that the Young's modulus of the material 

can be predicted within ±0.01 MPa variation if the P-h response can be measured 

within 5% error. The Poisson's ratio of these materials can be determined using the 

existing inverse FE modelling within ±0.03 if the P-h response can be measured with 

5% error. Several materials sets have been used to investigate the accuracy and 

sensitivity with respect to the material parameters. The predicted results and 

sensitivity respecting to 5% perturbation in the indentation force were listed in Table 

3.5. The smaller scatter in the predicted properties reflects the higher accuracy and the 

greater scatter in the sensitivity results reflects the stronger sensitivity with respect to 

the properties. The percentage of scatters for E (AE/E) and v ((Liv/v ) of all the 

materials with respect to the ±5% perturbation of P (indentation force) are within ±6% 

to ±8%, respectively. This level of variation is reasonable of engineering application. 

88 



Table 3.5 Sensitivity study results of inverse FE modelling based on dual spherical 
indenters for linear elastic materials. 

Accuracy study Sensitivity study (with ±5% error of P) 

Input Predicted Accuracy Sensitivity (error+5%) Sensitivity (error-5%) 
values (error'/o) 

ET VT E V AVE Av/v eE eE/E eE AVE 
ev ev/v ev v/v 

0 1 0 2 0999 0 01069 -0.101/0 3,43% 00058 3.77% "0.0016 -3.604E 
. . . -0.0082 -412% O. OO57 295% 

0 3 0 2 2988 0 0 2111 -0.40% 5.55% 0,0146 4.86% -0.0153 -5.1r/O 
. , . . 0.0147 7.37% -0 0145 7.1Afi 

0 1 0 25 0999 0 0.2536 -0.10% 1.44% 0.0046 4.63% -0.0052 -5.23% 
. . . 0.0181 5.18% -00076 -2. M 

0.2 0.33 0.1998 0.3520 . 0.10/. 0.57% 0.0051 
0.0243 

157% 
6.95% 

-0.0032 
-0.0122 

"I. 62Si 
-3.50% 

4 0 0 4 4030 0 3911 0 0.75% -2.23% 
0.0164 4.10% 

0 -0.0139 -3.48% 
. . . . 0.0114 2ß59G 

-1-11 -00212 53% 

*The sensitivity study is using ±5% perturbation of the P in the P-h curves 

Figure 3.38 shows typical sensitivity study result of estimated hyperelastic properties 

to the perturbation in the indentation force for the dual indentation approaches with an 

original property of po=0.07MPa, as=6.2. The result showed that the parameter ̀µ' 

can be predicted within ±0.004MPa if the P-h response can be measured with 5% 

error. The parameter ̀a' of these materials can be determined using the existing 
inverse FE modelling program within ±0.25 if the P-h response can be measured with 
5% error. Several material sets have been used to investigate the accuracy and 

sensitivity of the program and the results were listed in Table 3.6. The percentage 

scatter of µ(dµ/µ) and a (Aa/a) of all the materials with respect to the ±6% and t3%, 

respectively, perturbation of the indentation force are from -5% to +5%. This suggests 

that the program is robust and not affected by the perturbation in the testing data, 

which is important for dealing with material tests. 

Table 3.6 Sensitivity study results of inverse FE modelling based on dual spherical 
indenters for hyperelastic materials. 

Accuracy study Sensitivity study (with ±5% error of P) 

Input Predicted Accuracy Sensitivity (error+. S%) Sensitivity (error-5%) 
values (error'%o) 

PT ar µ a AI/N Au/a Aµ ßu/µ Dµ QI�µ 
do Acx/a Aa Aals 

0.01 S. 0 0.0400 4.9640 0.03% , 0, 0.0021 3.13% . 0.0019 . S3% 
0237 0 31% 0.1078 2 1633 

0.062 11 0.0620 10.9911 . 0,01% . 0,08% 0.0031 5,00% . 0.0032 "5.11% 
00240 0.23'K 0.0165 O. ISNý 
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0 062 7 0 0 0621 6.9453 0.15% -0.78% 
0.0031 4.95% -0.0032 -3.16'/ 

. . . A. 007 -0,06% 0 0479 0,44% 

0 084 0 7 00840 6.9958 0.00% -0.06% 
0.0042 5.04% -0.0043 "5.0891 

. . 0.0007 0.01K 0.0313 0.4554 

106 0 10 0.1061 10,0324 0.05% 0.32% 0.0053 4.9734 -0.0052 -491% 
. 0.0103 0. t% -0.04M -0.44% 

*The sensitivity study is using t5% perturbation of the P in the P-h curves 

Figure 3.39 shows the sensitivity study results of the hyperfoam properties to the 

perturbation in the indentation force for the dual indentation approaches with an 

original property of µ0=0. O164, as=6.82. The result showed that the parameter ̀µ' can 

be predicted within ±O. 001MPa variation if the P-h response can be measured with 
5% error. The parameter ̀a' of these materials can be determined using the existing 

inverse FE modelling within ±0.2 if the P-h response can be measured within 5% 

error. Several materials sets have been used to investigate the sensitivity with respect 

to the material parameters and the results were listed in Table 3.7. A greater scatter in 

the sensitivity results represents stronger sensitivity with respect to the properties. As 

listed in the table, The percentage scatter of µ(Eµ/µ) and a (Aa/a) of all the materials 

with respect to d6% and ±1% respectively, perturbation of the indentation force are 
from -5% to +5%. This suggests that the program is robust and not affected by the 

perturbation in the testing data, which is important for dealing with material tests. 

Table 3.7 Accuracy and sensitivity study results of inverse FE modelling based on 
dual spherical indenters for hyperfoam materials. 

Accuracy study Sensitivity study (with ±S% error of P) 

Input Predicted Accuracy Sensitivity (error+5%) Sensitivity (error. 5%) 
values (error%) 

µT ar µ a Aµ/µ Aa/a Aµ c1Nýµ Dµ QNýµ 
An Aa/a Acs MJa 

0.1 1.6 0.1000 1.6018 0.03% 0.11% 0.0052 5.20% -0.0052 
0.0123 0.76% -0 0136 8S% 

0.5 3.7 
1 

0.4996 3.6892 -0.72% -0.29% 
0.0261 3.221% -0.0262 -5.24% 

0214 0 58% 252 6816 

0.3 5.8 0.3001 5.8037 0.04% 0,05% 0.0157 5.22% -0.0153 -5.10% 
. 0277 

. 48% 132 . 
23% 

0.3 7.9 0,4994 7.8816 -0.13% -0.23% 
0.0354 S. 07% -0.0268 -3.35% 

019 J}7. 0.0452 " . 3741 

0.7 79 0.6995 7.8890 -0.075'% -0,14yß 
0.0333 4.75% -0.0354 -5.06% 

320 - . 
41% 139 oQU0 . 18% 

0.1 JO 0.0999 9.9776 -0.12% -0,23yß 
0.71% -00050 . 0.71% 

105 I1% 3 0454 

*The sensitivity study is using 5% perturbation of the P in the P-h curves 
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3.9 Summary 

In this chapter, an inverse FE modelling program based on the Kalman filter technique 

has been developed and applied to study three material models (linear elastic 

hyperelastic and hyper foam). Two error distribution treatment methods have been 

implemented in the program and their feasibilities for different material systems has 

been established. FE models simulating the indentation of three typical material 

behaviours have been developed and factors such as mesh sensitivity, material 

properties were systematically studied to validate the FE models. Simulation spaces 

over a wide range of material properties have been developed for each material model, 

which successfully provided the data for the material properties prediction. The use of 

single indenter and dual indenters has been comparatively studied in terms of 

accuracy, convergence and robustness, which are important for materials 

characterisation. 

The program was evaluated using blind tests with numerical experimental data 

including their validity, efficiency and robustness of the program with different 

material models. The results showed that single indenter method were initial 

dependent for elastic, hyperfoam and hyperelastic materials. The results also showed 

that the new uncertainty random error distribution treatment method is applicable to 

all the three material models while the program with the constant error distribution 

treatment was initial value dependent. The results demonstrate that Kalman filter is a 

feasible method and the random error treatment is more practical approach for 

characterisation material which is not initial value dependent and can be universally 

applied to different material models. The application of this method in charactering 

the properties of EVA foams and the human heel pad tissue in vivo is to be presented 

in the next chapter. 
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Experiments (I FE model 

Database 

" Experimental data 

" FE simulation data 

----------- 

r;;: 
F 

Updated 
estimation Inverse model parameters 
"----------------- ------------ ----J 

Convergence? 
No 

Yes 

Optimal parameters 

Figure 3.1 Flow chart showing the main procedures in an inverse FE modelling 

scheme for parameters estimation. 
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Enter initial estimate xo and Measurements: zo, z1,... 
its prior error covariance P,, - (Experimental data) 

I Compute Kalman gain: Update estimate with I 

K k= Pk HT (H k Pk H k+ R k) -' measurement zk: I 
Xk = Xk + Kk(Zk - 

h(Xk )) I 

II 

Project ahead at Compute posterior error 
I time k+l : covariance at time k: I 

k+l 
Xk 

Pk=(I�-KkHk)fk 
Pk+1 = Pk +Qk 

Outputs: 

Figure 3.2 Extended Kalman filter calculation loop for parameter estimation. 
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Experiment FE model 
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Experiments 

Initial 0.9 Rz 
estimation and 0.6 R, 

prior error W. 0.3 

covariance 0.0 ; ýýj 
0 100 200' 
Indentation Point 

FE Simulation Space 

f>. 

Compute Kalman gain: Update estimate with 

I Kk = Pk H, (Hk Pk- Hk + Rk) -' measurement z k: 
I 

Xk = xk + Kk 
(z, - 

h(xk )) 

II 
At time k+1: Posterior error covariance 

I 

xk+l = 
'k 

at time k: 
I 

P, +I=pi+Q, P, =(1. -K, H, )P, 

Last point? 

Yes 

Optimal parameters 
(End) 

No 

Figure 3.3 Flow chart showing the inverse FE indentation method for material 

properties estimation based on the Kalman filter technique. 

Updated Next indentation 

parameters point 
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Figure 3.4 Random error treatments for the experimental and estimation errors. 
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Evaluation of the program using blind test with 
numerical experimental data for different 

material models 

Materials systems 
(a) Elastic model 
(b) Hyperelastic (incompressible) 
(c) Hyper Foam (compressible) 

I 
I 

1I 
1 Single indenter tests vs. Double i 

indenters (R=4mm & R=6mm) 
1 
I 

11 
1 Constant error distribution method vs. 1 

Random error distribution method 1 

I. ---------- M- ----- rr - mm 

1-ý-------- V- --_-----i 

Application of established method to experimental test 1 
(EVA foams and in vivo tests of the human heel pad) 1 

(Chapter 4) 1 

-------------------- 

Figure 3.5 Main procedures to evaluate the inverse FE program for different material 

models. 
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uý 

(a) FE model of indentation process with a spherical indenter. 

(b) FE models with different mesh densities. 

0 8 
0. --Mesh 01 

0.6 Wsh 02 

0.5 -+-Mesh 03 

0.4 
0.3 

ä 0.2 
0.1 

0 
0 0.2 0.4 0.6 0.8 

Indentation Depth (mm) 

(c) Force indentation depth curves from FE models of different meshing schemes. 

Figure 3.6 FE modeling of the indentation process of a linear elastic material, typical 

force-indentation depth (p-h) curve and effect of meshing schemes. 
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Figure 3.7 Validation of the FE results against a known analytical solution. 
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(a) P-h curves for different indenter sizes (R=4mm and R=6mm). 
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Figure 3.8 Effect of the indenter radius on the indentation curve and stress 

distributions. 
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(a) Effect of the Young's modulus (v=0.28). 
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(b) Effect of the Poisson's ratio (E=0.25 MPa). 

Figure 3.9 Effects of elastic material properties (E and v) on the force-indentation 

depth relationship (R=4mm). 
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Figure 3.10 Typical numerical experimental data with different indenter sizes (a) and 

simulation surfaces at indentation depth of 0.2mm and 0.4 mm. 

101 



0.4 

- 
0.3 

m a 
k- 
W 0.2 

0.1 1 
0 50 100 150 200 

Indentation points 
Curve fitting process(r=4mm) 

0.2 
Fmeasure 

0.15 Fsimu 

lu 0.1 
ö 

U- 
0.05 

0 

0.5 
0.45 

0.4 

0.35 

The fitting process of v 

0 50 100 150 200 
Indentation points 

(a) Parameter searching process with a constant error (R=4mm). 
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(b) Parameters searching process with Random error (R=4mm). 

Figure 3.11 Typical material parameter fitting curves for single indenter test 

(R=4mm) with the constant and Random error method. (The true material properties 

are ET=0.14, vT=0.43; the initial guessed value used are Eo=0.30 MPa and vo=0.40). 
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Figure 3.12 Matrix of initial guessed values used to study the effect of initial values 

on the convergence of the program. 
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(a) Converged results based on the constant error method. 
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(b) Converged results based the random error method. 
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(c) Comparison between predicted indentations curves using the converged 
parameters (Mat 1-3 in (b)) and the original input experimental data. 

Figure 3.13 Converged results with different initial values based on the single 
indenter method. 
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Figure 3.14 Typical material parameter fitting curves for two indenters (a) Constant 

error method; (b) Random error method. (The true material properties are ET=0.14, 

vr-0.43; the initial guessed value are Eo=0.30 MPa and vo=0.40). 
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(a) Converged results based on the constant error method (Dual indenters). 
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(c)Comparison between predicted indentation curves using converged 
parameters (Mat 1-3 in (b)) and the original input experimental data. 

Figure 3.15 Converged results with different initial values based on the dual indenters 

method. 
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(a) FE indentation model for 
hyperelastic material. 
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(d) Mesh density effects (R=4mm). 

Figure 3.17 FE indentation model of a hyperelastic material, typical force-indentation 

depth (p-h) curve and effect of meshing schemes. 
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Figure 3.18 Effect of indenter size on the force indentation curve and stress 

distribution. 
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(b) Effect of the hyperelastic parameter ̀a' on the force-indentation depth data. 

Figure 3.19 Effects of the material parameters (µ and a) on the force-indentation 

depth relationship. 
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Figure 3.21 Typical material parameter fitting curves for the single indenter method. 

(Hyperelastic model, the true material properties are . 11=0.07, a1=6.2; the initial 

guessed value used are W=0.04 MPa and o, =8.0). 
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Figure 3.24 Typical material parameter fitting curves for the double indenters 
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Figure 3.31 Typical material parameter fitting curves for the double indenter method. 
(The target material properties are µr=0.6, ai =8; the initial guessed value used are 

µo=0.16MPa and aa=-2.0). 
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Figure 3.35 Converged results with different initial values based on the dual indenters 

method. 
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Figure 3.38 Typical sensitivity study results for the dual indenters method with an 

input material properties of µ=0.07 and a=6.2. 
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CHAPTER FOUR 

CHARACTERISATION OF THE MATERIAL 
PARAMETERS OF EVA FOAMS AND THE 

HUMAN HEEL PAD IN VIVO 
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4.1 Introduction 

In this chapter, the inverse FE program developed is applied to characterise the 

properties of the EVA foams and the human heel pad in vivo. In the first part, a new 

continuous testing system is designed and constructed. The accuracy of the system is 

validated on a rubber material with known material properties. The accuracy of the 

testing system is then further assessed by comparing the testing results on an EVA 

foam to that from a standard tensile testing machine. In the second part, indentation 

tests are performed on two EVA foams commonly used in sport equipments. The 

material parameters predicted from indentation tests using the framework for the 

hyperfoam model established in Chapter 3 are compared to that based the 

conventional compression and compression-shear test methods. The suitability of each 

method is systematically investigated. In the third part, the mechanical properties of 

the human heel pad are studied using the continuous indentation test and inverse FE 

modelling program. The repeatability and effect of experimental conditions on in vivo 

testing are established. Systematically tests with different indenter sizes are performed 

on human subjects, then the linear elastic and nonlinear elastic material parameters of 

the human heel pad were identified from the indentation test data. 
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4.2 Testing of EVA foams and Hyperfoam parameters identification 

4.2.1 Experiments 

Closed cell foams, such as EVA foam, are widely used in engineering, sport and 

biomedical fields. The properties of EVA foams are highly nonlinear and viscoelastic 

(Verdejo and Mills, 2004; Ruiz-Herrero et al, 2005), and are best described by 

nonlinear material models. The mechanical behaviour of EVA foams is normally 

described using the Ogden hyperfoam model (Mills et al, 2003; Petre et al, 2005) 

which constitutes several material parameters. Determination of these parameters 

through foam testing is important to provide data for the simulation of their service 

performances, product design and quality control. However, many of these models 

involve materials constants without physical meaning and it is a challenging task to 

determine these parameters. Conventionally, the determination of material parameters 

is based on the use of test samples with a standardised geometry under simplified 

strain state, such that particular conditions on the stress and strain field are satisfied in 

the sample/or part of the sample. Then the unknown model parameters are obtained 

using curve fittings from experimental data. For foam materials, a wide range of tests 

have been used (e. g. compression test, shear test, volumetric test, etc. ) in order to 

predict these parameters (Mills et al, 2003; Moreu and Mills, 2004). These methods 

normally require large numbers of tests and samples with well-defined geometries. In 

some cases, such as the shear test, the assembly has to use adhesives to bond the 

sample to the loading plate, this limits the strain level that can be reached by the 

maximum strength of the adhesive bond (Petre et al, 2005). In addition the method is 

inconvenient or even impossible where standard specimens are not readily available, 

or for in situ monitoring the mechanical strength of the materials. Indentation test 

represents a much more simple form of testing, which simulates conditions of variable 

pressures and deformation. However, conventional hardness tests, such as the Shore 

method, requires special samples (at least 6 mm thick) and the method only provides 

information about the hardness of a sample, which could not be directly used to model 

the detailed material behaviours in service. 
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As demonstrated in Chapter 3, using numerical experimental data, the hyperfoam 

parameters can be determined from indentation tests. It is important to directly 

compare the results with standard methods with experimental data, 

As shown in Figure 4.1 the material was tested using continuous indentation, 

compression and shear tests. As a comparison to the indentation method, the second 

approach used the uniaxial compression test only (designated "Com" method). The 

third approach combined the compression and shear test (designated "Com-Shear" 

method). Both methods have been used by several works in characterizing foams (Kim 

et at, 2002; Mills, et al, 2003). In these approaches, the resulting data were analysed 

using standard data fitting procedure in the finite element analysis software ABAQUS 

(ABAQUS 6.5 User's Manual) and have been widely used in research or industrial 

applications. The foam parameters (i. e. µ and a) from the three approaches based on 

experimental data of identical materials have been directly compared. This would 

provide a scheme to systematically evaluate and compare the feasibility and accuracy 

of these three approaches. 

4.2.2 Materials 

Specimens required for standard tests and indentation tests were cut from the same 

batch of EVA foams commonly used for making midsoles of footwear (Figure 4.2). 

Round specimens were used for the compression and indentation tests, while square 

specimens were used for the shear test. Two foams with different hardness have been 

used, and five samples of each material in different loading states were tested. Data 

used in the parameter determination reflect the average of these five trials. All tests 

were performed at room temperature with the sample preconditioned prior to final 

data collection (Petre et al, 2005; Kim et al, 2002). The data from each test were then 

used to extract foam parameters. 
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4.2.3 Compression, shear tests and testing results 

The uniaxial compressive and shear test were performed on a standard tensile testing 

machine (Figure 4.3(a)) (model: Tinius Olsen, H50KS) with a 5kN (ILTE-5000N) 

load cell. For the uniaxial compression tests, round samples were pressed between two 

parallel steel plates (Figure 4.3(b)). The shear tests were performed using a specially 

designed testing rig (Figure 4.3(d)). As shown in Figure 4.3(c&e), the uniaxial 

movement will result in a uniform strain within the material in the compression tests 

while in shearing test, the movement of the cross head results in a shearing load from 

both ends of the specimen. This ensures that the sample is aligned to the central line. 

Both ends of the specimen were glued to the plate to ensure uniform deformation. 

Trials with failure at the glued interface were repeated to determine the maximum 

strain for the shear test (Petre et al, 2005). 

Figure 4.4 shows a typical foam stress-strain data of the uniaxial compression and 

shear test. The compression curves exhibits typical regions reflecting the bending, 

buckling and densification (Gibson and Ashby, 1997; Ren and Silberschmidt, 2008). 

In the compression test, the sample was deformed to a strain up to 50% of their 

original thickness. Lateral strain was not collected. In the shear test, the loading plate 

was displaced vertically by 50% of the sample thickness to obtain a maximum shear 

strain (NB: Trials with failure at the glued interface were repeated to determine the 

maximum displacement for the shear test. ). FE modelling showed that the strain level 

in the compression and shear test was comparable to the indentation tests. 

4.2.4 The indentation testing system, machine validation and results 

The indentation test system (Figure 4.5) used an actuator as the driving system, Low 
friction and zero backlash due to the direct drive nature of the actuator provide an 
excellent positional repeatability and ideal for a range of positioning and localised 

testing. The indentation system was mounted on a strong supporting frame and allows 
tests in both vertical and horizontal directions. A sensitive load cell (model: LCMS- 
D12TC-1ON) is attached to the moving head of the actuator to monitor the forces 
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during the test. The indentation tests were performed using a spherical indenter made 

of stainless steel. Indenters with different sizes have been used and the force 

indentation depth data were then used as the input to the FE inverse modelling 

program to determine the foam parameters. 

Figure 4.6 shows the test result on a silicone rubber block in comparison to the 

analytical solution. The properties of the material are known with a Young's modulus 

of 0.134MPa and Poisson's ratio of 0.49 (Ren et al, 2006). In this figure, the analytical 

result follows the following equation (Johnson, 1985) 

F, _ (16R )i *E *ý3 
Z9 I-v2 

(4.2.1) 

Where `Fe' is the reaction force, `R' is the indenter radius; `E' and ̀ v' is the Young's 

modulus and Poisson's ratio of the material, respectively; 'S' is the indentation depth. 

As shown in the figure, the two sets of data showed good agreement when the 

indentation depth is less than lmm (i. e. within the linear elastic range). 

Figure 4.7 compares the foam test results with the newly developed machine and 

results on a standard testing machine (LLOYD instruments LR30K, 100N load cell). 

The indentation tests were performed with the loading curves up to different depths. It 

is clearly shown that the loading curve from the new machine is comparable with that 
from the standard tensile test machine, this suggests that the new indentation machine 

is accurate. Figure 4.7 also shows the material had identical loading curves at different 

depths but different unloading curves. The unloading curve is associated with the 

viscoelasticicty of the material, which is to be studied in future works. The unloading 

curves of the standard testing machine was not presented since the machine is screw 

driven and could not accurately test the unloading curve. The experimental results 

were highly repeatable and tests on different materials, including rubber and open cell 
foams, showed similar level of repeatability (results not shown). Figure 4.8 shows the 

test results with different test rates. The test rate of 2mm/s, 4mm/s and 8mm/s were 

used. The strain level used is suitable in quasi-static modeling of footwear in walking 
and running conditions (Petre et al, 2005). Sensitivity tests by varying the strain rate 
showed no significant effect on the force displacement data within the testing range. 
As shown in the curves, the material exhibits hysteresis under indentation, however, 
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only the loading part was used in the parameter identification representing the 

resistance of the materials during loading. The viscoelastic and hysteresis were not 

considered in this work. 

Figure 4.9 shows the test results on foams with different indenter sizes (R = 2,4,6 

mm). The force with larger indenter sizes is significantly higher but the loading and 

unloading cycle is very similar for the same material. The loading curve represents the 

indentation resistance of the materials, which is the main focus of this work; the 

viscoelasticicty is to be studied in future works. Figure 4.10 compares the loading 

curve of these two materials, and shows that Foam 1 is softer than Foams 2. All the 

curves showed similar trends with clear stiffening effect at higher indentation depth, 

but the curvature of the curves are different, which could provide data to predict the 

material parameters. 

4.2.5 FE modelling of indentation tests on EVA foams and material parameters 

identification 

The mechanical behaviour of EVA foams can be described by the hyperfoam model as 

detailed in Chapter 3. Figure 4.11 shows the inverse FE modelling approach process, 

which consists of three main parts - experimental works, FE modelling and the 

inverse program. The input of the experimental results was in the form of force- 

indentation depth data. Parametric finite element studies (Ren et al, 2006) were used 

to generate series of models with material properties varied over the potential range. 

The numerical data were then processed to form simulation surfaces for each 

indentation depth, which represents the variation of the foams' indentation resistance, 

for different combinations of material properties at a certain indentation depth. The 

inverse program will explore the simulation spaces, starting from a given initial 

guessed value, to determine the optimum material properties (a set of material 

parameters) which produce numerical indentation results that best match the 

experimental data. Material stability was evaluated for the predicted parameter set 

using the ABAQUS Drucker stability test, which ensures a positive definite material 

stiffness matrix (ABAQUS) preserving stability over the range of supplied strains. To 

137 



avoid ill-conditioning in the program, a wide range of starting points have been used 

and the average value of valid points with lower minima was used to represent the 

true material properties. 

Figure 4.12 shows the FE models used mimicking the geometry, loading and 

boundary conditions of the indentation test. Preliminary numerical investigations 

showed limited difference between 2-D and 3-D results for the indentation depths 

employed in this work. The element type used is CAX4R (an axisymmetric element). 

Contact has been defined at the indenter and sample surface, with finer meshes used, 

in the regions underneath and around the indenter to increase the accuracy of the 

model. The friction between indenter and specimen is assumed to be 0.5. Sensitivity 

tests have been performed on the influence of mesh size, boundary conditions, and 

frictional condition, in order to ensure the FE model is accurate with an optimum 

requirement on computational resources. The experimental data was smoothed by 

using polynomial fitting method. Typical fitted data is shown in Figure 4.13 and 

Figure 4.14 for Foam 1 and Foam 2. 

As described in section 3.4, the simulated force-indentation depth data has to be 

transformed into a discrete form. Figure 4.15 shows typical simulation surfaces at the 

indentation depth of 1.5mm and the indentation depth of 3.5mm. The parameter ̀ µ' 

ranged from 0.008 to 0.8 (MPa) and the parameter ̀ a' ranged from 0.08 to 12. Figure 

4.16 illustrates the property searching process with initial values of po=0.50 MPa and 

ao=2.0. At each indentation point, the program searches for a combination of material 

properties which give the best fit to the target point (on the experimental curve). As 

shown in the Figure, the fitting process involved significant scatter in the initial stage 

starting from the initial value. In the later stage, the predicted results came closer to 

stable values. Similar to the method used in the blind test, a range of initial value and 

the average value of the predicted data was used to compare to the results fitted from 

conventional shear and com-shear tests. 

Figure 4.17 compared the average value of ýL and a of the two foams from the 

indentation method, compression, and combined compression-shear method for the 

same foam. The data from the indentation tests represents the average data from the 
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converged results. The prediction from the indentation methods showed comparable 

results to the combined com-shear tests and the results from the indentation tests were 

comparable. This suggests that indentation approach is a feasible approach. The result 

from uniaxial compression is significantly different from the indentation method and 

combined compression-shear method therefore it is not suitable for complex loading 

situations. Figure 4.18 shows the predicted force-indentation depth curves using 

parameters extracted from compression, compression-shear test and indentation 

(spherical indenter radius is 4 mm and 6mm) of foam 1. As shown in the figure, the 

simulated force-indentation depth curves with parameters from indentation and 

combined com-shear tests showed good agreement with the experimental results. To 

further assess the results and robustness of the approach to more complex loading 

condition, indenter of different size were employed. By changing the indenter size, the 

ratio between indenter size and indentation depth varies, so varied the strain condition 

underneath the indenters (Johnson, 1985). Typical results shown in figure 4.19 

compare the results from indentation data, combined com-shear data and uniaxial data 

with an indenter radius of 2mm of two foams. Figure 4.20 plots the stress-strain 

curves with the material parameters from the two methods, that is indentation and 

com-shear. The uniaxial compression stress-strain curve of the foams showed good 

agreement. These results clearly showed that material parameters predicted from the 

indentation approach are comparable to the results from standard combined com-shear 

test. This could be a significant step forward in the testing method of polymer foams. 
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4.3 Indentation test of the human heel pad in vivo and inverse parameters 

identification 

4.3.1 In vivo heel pad testing and results 

Figure 4.21 shows the testing frame, the position of the indenter and the human heel. 

In the test, the subject put one foot on top of a rigid platform. The indenter is moved 

upward through a hole in the platform to compress the heel pad. An adjustable locking 

collar with a diameter much larger than the hole was used as one of the mechanical 

stopper to ensure the indenter will be stopped upon contact with the platform. The 

system used an actuator (LinMot PSO1-23x160) as the driving system, which was 

mounted on a flexible supporting frame to allow tests in both vertical and horizontal 

directions. A sensitive load cell (model: LCMS-Dl2TC-JON) is attached to the 

moving head of the actuator to monitor the forces during the test. The indentation tests 

were performed using spherical indenter made of stainless steel. Indenters with 

different sizes have been used and the force indentation depth data was obtained, 

which was then used in the inverse analysis. 

As shown in Figure 4.6 and 4.7, the tester were validated against testing on samples 

with standard compression and simple shear tests before testing on human subjects. 

Three subjects were aged from 20-40 years subjects with no known skin disease or 

lower lime injuries. Tests on the subjects with or without foot trap were compared and 

showed no significant effect. All the tests were performed under comparable ambient 

relative humidity (30-35 % RH) and temperature (20-23 °C). 

Figure 4.22 shows a typical force indentation depth data of one subject with both the 

loading and unloading curves. The experimental results were highly repeatable and 
tests on different subject are comparable with similar level of repeatability (results not 

shown). The strain level used is suitable in quasi-static modeling of footwear in 

walking and running conditions (Petre, 2007). Sensitivity tests by varying the strain 

rate showed no significant effect on the force displacement data within the testing 

range. As show by the curve, the material exhibited clear hysteresis tinder indentation, 

however, only the loading part was used to evaluate the method in the parameter 
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identification for the study of the resistance of the materials during loading. The 

viscoelastic and hysteresis were not considered in this work. Figure 4.23 shows the 

repeated tests on the same subject. There is some discrepancy of the data but, in 

general the repeatability is reasonable. The averaged data of at least three tests has 

been used to represent the results. Figure 4.24 shows the test data with different 

indenter sizes (R = 4,6 mm) on three subjects. All the curves showed a similar trend 

with clear stiffening effect at higher indentation depth, but the curvature ratios of the 

curves are different. The tests also clearly picked up the inter-person difference 

between the three subjects. The data gained were then used to predict the material 

parameters. 

4.3.2 FE modelling of the heel pad tests 

A numerical model mimicking the geometry, loading and boundary conditions of the 

indentation test was developed using the software 'ABAQUS' (ABAQUS 6.5 User's 

Manual). A 2-D axial symmetric model (Figure 4.25) was used due to the 

axisymmetry of the spherical indenter. The element type used is CAX4R (an 

axisymmetric element) and contact has been defined at the indenter and the sample 

surface, with finer meshes used, in the regions underneath and around the indenter to 

increase the accuracy of the model. The friction between indenter and specimen is 

assumed to be 0.5. Sensitivity tests have been performed on the influence of mesh size, 

boundary conditions, and frictional condition, in order to ensure the FE model is 

accurate with an optimum requirement on computational resources. 

4.3.3 Inverse parameter identification of linear elastic properties of human heel 

pad in vivo 

Figure 4.26 shows typical inverse searching process. During the data fitting process, 

the program automatically search for the optimum set of material properties until a 

convergence is reached. To assess the robustness of the program or to avoid i11 

conditioning, a range of initial guessed values has been used and final result was 
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shown in figure 4.27. It is clearly shown that the result was focused within a 

reasonable range. The result in agreement with some published data but there are clear 

inter-personal differences. The Poisson's ratio is comparable and close to 0.5 which 

represents incompressible materials. 

4.3.4 Inverse parameter identification of hyperelastic properties of the heel pad 

Figure 4.28 shows typical inverse searching processes for the hyperelastic parameters 

with one (a) and two indenters (b). During the data fitting process, the program 

automatically searches for the optimum set of material properties until a convergence 

was reached. The final material sets give minimum difference between the simulated 

indentation curve and the experimental data. The results for the subjects are shown in 

figure 4.29 (a) and (b). As shown in the figure, the predicted hyperelastic material 

parameters from the single indenter (r=4mm and R=6mm) is slightly different with the 

results from the dual indenter is in the middle. As shown by the error bar, the results 

from the single indenter is much more scattered than that based on the dual indenters, 

this showed that the dual indenter method is a better approach. 
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4.4 Summary 

In this work, the inverse FE modelling program developed has been used to 

characterise the properties of EVA foams and the human heel pads in vivo. EVA 

foams were tested using indentation, compression and shear tests, and the material 

parameters determined were directly compared. The prediction from indentation tests 

showed comparable accuracy to the standard combined compression-shear tests, while 

only compression testing could not predict the parameters accurately describing the 

material at complex situations. Advantages and disadvantages of each method were 

discussed. The parameters inversely predicted can be directly used in the design and 

simulation process. The tests on the human heel pad showed that this is feasible 

method and the single indenter method produce results slightly depend on the indenter 

sizes, while the dual indenters method resulted in a value more representative to the 

material with a smaller error range. 
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Figure 4.8 Testing results on an EVA foam with different loading rates. 
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Figure 4.10 Comparison of the loading curves of different EVA foams. 
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Figure 4.12 Typical axial-symmetric finite element (FE) model of indentation tests. 
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depth curves with parameters extracted from indentation (with different indenter 
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Figure 4.25 Finite element indentation model. 
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Figure 4.26 Material parameters fitting process with dual indenters for the human 

heel pad (Linear elastic model). 
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Figure 4.27 Converged elastic properties of the three subjects. 
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Figure 4.28 Material parameter fitting process for the human heel pad based on the 
hyper-elastic model. 
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DISCUSSIONS 
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5.1 Use of indentation tests and inverse FE modelling in characterising material 
properties 

Indentation testing is an important materials testing method with either sharp or blunt 

indenter. It can be used to test different types of materials such as brittle (e. g. 

ceramics), elasto-plastic (e. g. metals) and soft materials (e. g. foams, rubbers, etc. ) 

(Ren et al, 2003). One significant advantage of the indentation lies that it only requires 

small amounts of material; this made it very attractive for the characterisation of 

material where standard specimen is not readily available such as in situ or in vivo 

tests (Ren et at, 2004; 2006). With an inverse FE modelling technique, some 

important material parameters that could be obtained from indentation test directly. 

This would provide important materials data for design and materials development. 

The EVA foams test represents a typical case for such situations. As demonstrated in 

Chapter 4, the nonlinear materials for the EVA foams have been successfully 

predicted based on the indentation tests. The results showed a good agreement with 

the conventional compression-shear tests currently used. The values predicted are also 

comparable to some published data for EVA foams for similar applications (Petre et 

al, 2006). Figure 5.1 compared the stress strain curves from this work and some 

published data on foams of different hardness. As it shown, the overall trend is 

comparable and it also shows that most of the EVA foams has different elastic part 

but very similar stiffening effect. The method developed represents a much simpler 

method in comparison to the conventional approach as detailed in Chapter 2. In the 

compression and shear tests, large sample size is required and the maximum strain 

applicable depends on the strength of the adhesive bond in the shear tests (Petre et at, 

2006). For continuous indentation tests, the sample size can be much smaller and can 

go into large deformations. 

Another important field where inverse FE modelling is essential is in vivo tests, which 

involves tests on the human subject directly, where isolation of the sampling was not 

possible or the isolation process may change the natural state of the material. The 

accuracy of such approach depends on the robustness of the facilities and the inverse 

program. As evidence by the tests on different materials, the indentation tester 

developed achieved good accuracy and repeatability. The results on rubber have been 
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validated by comparing the results against the results of an established analytical 

solution (Figure 4.6). The result on foams also showed good agreement at different 

indentation depth with the standard materials testing machine (Figure 4.7). The test 

ensures the detection of properties of soft tissues in its nature state. The predicted 

results of the human heel pad showed good agreement with some published data 

(Zheng et al, 2000). These suggest that the inverse program developed is accurate and 

could potentially used to detect some property change with treatment or medical 

conditions or ages. 

The program developed has also been successfully used to other material systems 

including characterisation of the plastic properties of spot welded joints. Spot welding 

is widely used in automobile body assembly and each car body have over 4000-6000 

spot welded joints. The plastic material properties for the different regions in a spot 

welded joint are crucial to the integrity of the structure. The program developed in this 

thesis has successfully been used to predict the plastic properties of the metal 

materials, which showed a good agreement with the standard tensile test results 

(Figure 5.2). These material properties were then used in a FE model to predict the 

performance of spot welded structure under tensile shear loading (Kong et al, 2008). 

In the work to predict plastic properties, the indenter used is Knoop and Vickers 

indenter and indentation depth is much shallower (10 micrometer), These 

demonstrated that the framework development in this work is flexible and adaptable 

for many different materials types, which is very important for material 

characterisation. 
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5.2 The use of Kalman filter method in inverse material properties 
characterisation 

As shown in Figure 3.3, the inverse FE modelling process developed consists of three 

main parts--experimental data, finite element modelling (FE) data and the inverse 

program. The validity and accuracy of this approach are influenced by factors 

associated with these processes such as accuracy of the experimental data, FE 

modelling, searching mechanism, etc. All these have been systematically investigated 

with blind tests before being applied to practical tests. 

As shown in Chapter 3, numerical experimental data, i. e. numerical result with known 

material properties, were used as the experimental data for evaluation/identification 

purposes. This allows making direct evaluation of the estimated solutions, with 

respect to actual solutions, over a wide range of materials and systematically 

comparing the uniqueness, and accuracy of the results. It also allows the results from 

single and double spherical indenter method to be directly compared and their 

correlation established. Systematic study on different material models showed that the 

difference between single and dual indenters might vary with material properties (e. g. 

Figure 3.13,3.15). For the elastic model, there is a clear effect; the single indenter 

approach could not uniquely predict the material parameters even with numerical 

experimental data. Similar results have been observed on other material properties 

such as plastic properties, where there were several combinations of the material 

properties which match the testing results (Kong et at, 2008). This suggests the dual 

indenters method is a better approach to provide more robust solution. 

The searching mechanism is another important factor in inverse FE modelling. The 

Kalman filter method was initially developed for optimization of electronic/control 

systems (signal-processing algorithm). Essentially the Kalman filter algorithm updates 

the previous estimates, through indirect measurements of unknown state variables, 

and covariance information of both the state and measurement variables, that may 

contain substantial error or noise and provides an efficient computational solution, 
based on the least-square theory. Its capacity for noise filtering made it potentially an 
important tool in dealing with materials testing data (as shown in the test results on 
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foams and human heel tissue), which normally associated with significant noise level. 

As detailed in section 3.2 and demonstrated in the results for different material 

models, the error treatment is a very important aspect of the inverse modelling process 

for material parameters characterisation. One is the measurement noise (vk) while the 

other is the process noise (Wk) (equation 3.2.1-3.2.2). One conventional way to treat 

noise has been using constant normal error distribution. A major difficulty with this 

method lies that it is difficult to correctly estimate the error range since indentation 

may operate at different depth and type of materials. In addition, the work presented in 

this report clearly showed that the applicability of such an approach is material model 

dependent, i. e. it only works well for some material models. This could seriously limit 

the potential application of the approach as it requires in-depth knowledge to set the 

constant error. The new approach proposed in this work for this field is using normal 

distribution with different dispersion (Figure 3.4). i. e. both Rk and Qk were treated as 

time dependent and varies from the true values following a normal distribution. With 

this method, the material properties are not required to be pre-known, which could be 

an significant advantage for the program for material characterisation in particular for 

the nonlinear material models. The results clearly showed that this approach is much 

more accurate and robust. 
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5.3 Factors affecting in the indentation test and inverse FE modelling process 

FE modelling is an important part of an inverse modelling process, which provides 

data to form the simulation space. The inverse program explores the simulation space 

starting from a given initial guessed value to work out optimum material properties, 

which produce numerical results that match the testing results. The simulation space is 

normally constructed by using finite element models mimicking the testing and true 

boundary conditions. So, the FE model must be able to accurately represent the testing 

in order to predict the material properties accurately. 

The indentation resistance of a material is commonly represented using the force 

indentation depth (P-h) curve, which can be affected by many factors (such as 

indenter shape and size, materials deformation around the indenter and experimental 

conditions, etc. ). These factors have to be carefully considered when using indentation 

method and FE modelling process. As detailed in chapter 3 and chapter 4, for each 

material models studied, the effect of mesh size has been assessed by varying the 

meshing scheme. This ensured that the model is accurate and valid. The linear elastic 

model was directly compared to an analytical solution, which further validate the FE 

model. Friction is another important factor has to be studied. This has been assessed 

in the earlier stage of the work by comparing the indentation curves with different 

coefficients and showed no significant difference for the three material models with 

the indentation depth range used in this work (Figure 5.3). This could provide a 

significant advantage for inverse FE modelling as it could reduce the uncertainty of 

the results due to frictional condition, which is normally very difficult to be 

characterised. 
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5.4 Effect of indenter numbers and sensitivity studies 

One crucial aspect of an inverse program lies that the input data must be able to 

provide sufficient material behaviour over different stress-strain conditions. In other 

words, there must be (or close to) one to one relationship between the stress-strain 

relationship and the experimental data. This may be effectively achieved by selecting 

suitable indentation testing conditions (types of indenter or combination of the 

indenters). This was evaluated in this work using comparative study approaches based 

on the single indenter and dual indenters method with different dimensions. 

The results showed that the selection of the single and dual indenters could have 

significant effect on the influence of the initial values. As shown in Figure 3.13 and 

3.33, the results from the single indenter method have scatter much more significant 

in particular in the case of linear elastic and hyperfoam models. This will require 

further measurements to refine the prediction if a single indenter method is used. For 

the dual indenters method, the results are not initial value dependent and focused on to 

a localised range around the true material value (Figure 3.15,3.25,3.35). This makes 

the dual indenter method a much better approach than the single indenter method in 

terms of convergence, in particular in situation where the material properties is not 

pre-known. 

Sensitivity of the predicted material properties due to variations of the input data is 

essentially an intrinsic characteristic of inverse processes. In this work, the input data 

were taken from a numerical model, but, in a real testing situation, there can be 

potentially both system and random errors. Factors such as indenter angle, roundness 

of the tip, and accuracy of the recorded indentation force or depth all influence the 

measurement results (Dao et al, 2001). This has been studied by adding a small 

percentage of perturbation to the indentation force, and then comparing the predicted 

properties with the original data. The results clearly showed that the method 
developed in this work is robust against potential errors in the experimental 

measurement. 
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5.5 Use of indentation test in in vivo testing 

The human heel tissue consists of the fat pad surrounded by a thick subdermal layer of 

fibrous tissue and the skin (Jahss et at, 1992). The structure is uniquely designed to 

enable pain-free weight bearing and locomotion (Rome, 1998; Narvaez, et. at 2000). 

A detailed knowledge of its mechanics is indispensable to understand its roles as well 

as injury and medical conditions. It has been shown that the mechanical strength of 

the heel pad is associated with medical condition such as such as chronic lower back 

pain, plantar heel pain, muscle tears, degeneration of cartilage (Volshin and WVosk, 

1982; Pratt D J. 1989). In vivo characterization of heel-pad deformation can also 

provide insight into tissue properties changes that may occur in diseases such as 

diabetes rheumatoid arthritis (Rom, 1998; Hsu et at, 2000,2002). With an accurate 

inverse approach, the clinical observation could be quantitatively assessed. 

Theoretically the parameter t in hyperelastic model represents the initial shear 

modulus. For an incompressible material, the initial elastic modulus can be calculated 

as 34 (ABAQUS). Figure 5.4 compared the predicted elastic modulus from the linear 

elastic model and the estimated Young's modulus from the hyperelastic model of the 

three subjects. The predicted Young's modulus values from hyperelastic model are 

slightly higher than the predicted data from the elastic model. This is suggesting the 

nonlinear model is better in describing the properties of the heel pad. The predicted 

elastic properties were comparable to some published works. For example, Hsu et at 

(2000) has reported an E value of 168KPa; Wang et al (1999) has reported a value of 

123KPa and Gefen reported a value of 105 KPa (Gefen et al, 2001). As shown in 

Figure 5.4. The difference may be due to subject difference and the indenter shapes. 

The work clearly showed that the inverse method is applicable further work is to 

extend to more subjects and use the method to study the effect of medical or treatment 

to the properties change. 
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Figure 5.2 The true stress-strain curve of a steel predicted from indentation tests using 

the program developed in this work. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORKS 
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6.1 Summary and conclusions 

In this work, an inverse FE modelling program based on the Kalman filter technique 

has been developed and applied to study three typical material models (elastic, 

hyperelastic and hyper foam) suitable for rubbers, biological materials and foams. 

Two error treatment methods have been developed and implemented in the program 

and their feasibilities for different material systems was systematically studied and 

established. FE models simulating indentation tests of three typical material 

behaviours have been developed and factors such as mesh sensitivity, material 

properties were systematically studied to validate the FE models. Simulation spaces 

over a wide range of material properties have been developed for each material model, 

which successfully provided the data for the material properties prediction. The use of 

single indenter and dual indenters has been comparatively studied in terms of 

accuracy, convergence and robustness, which are important for materials 

characterisation 

The program was evaluated using blind tests with numerical experimental data 

including their validity, efficiency and robustness for different material models. The 

results showed that the single indenter method is initial guessed value dependent with 

scattered converged results, while the dual indenter method is much more robust with 

improved accuracy. The results also demonstrated that the new random error treatment 

method was applicable to all the three material models while the program with the 

constant error treatment was initial value dependent in some cases. The results 

showed that Kalman filter is a feasible method and the random error treatment is more 

practical approach for material characterisation. It is not initial value dependent and 

can be universally applied to different materials models. 

The framework established has been successfully used to characterise complex 

material systems including EVA foams and human heel pad in vivo. EVA foams were 
tested using indentation, compression and shear tests, and the material parameters 
determined were directly compared. The prediction from indentation tests showed 

comparable accuracy to the standard combined compression-shear tests, while pure 

compression test failed to predict the parameters accurately to describe the material 
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under complex situations. Providing better information than simple hardness values 

these parameters can be directly used in the design and simulation process. 

A new in vivo test machine has been developed and tests performed on three human 

subjects showed good accuracy and repeatability. The elastic and nonlinear 

parameters of the heel pad have been successfully predicted based on the indentation 

tests. The predict results showed good agreement with some published data, and the 

predict elastic and hyperelastic properties showed good correlation for all the subjects. 

However the nonlinear model is more accurate in describing the stiffening effect of 

the heel pad. This method would potentially provide a practical way for detecting the 

property change of the heel pad with differed conditions. 
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6.2 Recommendations for future works 

This work has developed a framework for characterising materials properties based on 
indentation tests. The program and the results on EVA foams and the human heel pad 

in vivo have laid a solid platform for future works in the following areas: 

1. Use the approach to study the environmental effect such as temperature and 
humidity on foams or other plastic materials. The methodology developed 

represents a general approach which can be used in many other material systems. 
2. To model the heel pad in a multilayered structure. FE model developed represent a 

simply model and it has sufficiently represent the material behaviour within the 

indentation depth. It will be of great importance to develop a program for layered 

structure. A layered model will use much higher computational resources but 

potentially can be used try to distinguish the contribution of different layers to the 

indentation resistance. 

3. Use the method to characterise the effect of treatment or sport on the properties of 

the heel pad such as diabetic, aging, etc; another area is to characterise the 

regional material parameters difference in the planner tissue of foot and use the 
data in modelling the foot shoe interaction. 
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