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Abstract 

Human factors are becoming the predominate contributors to accidents in the 

maritime transportation sector. Therefore, a methodology based on Reason's Swiss 

Cheese Model to qualitatively and quantitatively analyse an accident is proposed. 
During the analysis, a proposed Human and Organisational Factors (HOFs) framework 

that is suitable for investigating and analysis maritime accidents can also be integrated 

with the analysis results for obtaining a more comprehensive insight into the causation 

of the accident. 
The proposed methodology comprises several well-defined Formal Safety 

Assessment techniques forming a systematic procedure in a series of processes. The 

methodology mainly applies Why-Because Analysis and Fault Tree Analysis for 

qualitative analysis, and Bayesian Network and Influence Diagrams for quantitative 

studies. In addition, Sensitivity Analysis is utilised for validating the analysis results 

and finding the critical factors of the accident. In the end of the analysis, a Bayesian 
Network representing the accident can be acquired revealing both the quantitative and 
qualitative results in a graphic presentation. Furthermore, an Influence Diagram which 
is extended from the established Bayesian Network of the accident is also achievable, 
for the decision makers, to evaluate the expected utilities based on the cost-benefit of 
the potential Risk Control Options against the (or similar) type of accident. Both the 
Bayesian Networks and Influence Diagrams of the accident are capable of proceeding a 
"what if' examination via the propagation function of the models to carry out a 
diagnosis and prediction process. This provides the analyst with a simulation 
functionality to examine the accident under all the possible conditions given. 

In summary, the proposed methodology implements the notion of Window of 
Opportunities of Reason's model for accident analysis with the following contributions 
to academic knowledge: (1) implementing Reason's Swiss Cheese Model with Venn 
diagram; (2) proposing a dedicated HOFs framework (HFACS-MA) for maritime 
accidents; (3) innovating a Backtracking process and its validation mechanism; 
(4) presenting a Conditional Probability Table of Bayesian Network in Karnaugh-map 

style (K-CPT); and (5) recommending a notation for List Statements to organise the 
information and evidence of an accident. 

The combined methodology is demonstrated with a case study based on the 1987 
Herald of Free Enterprise accident which capsized off Zeebrugge with large loss of life. 
Human factors were considered to be the main causes of accident with failings at senior 
ship and shore management level as well as at operational level. The resultant analysis 
shows how the relevant importance of different causal factors can be evaluated. 
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Ch. 1: Introduction 

Chapter One - 
Introduction 

Summary 

In this chapter, the overview of the present study is given, including the hypothesis 

of the study, the structure of the thesis and the general description of the proposed 

methodology. 

1.1 Introduction 

The ultimate purpose of analysing accidents is to understand the full range of 

conditions and factors that contributed to an occurrence, so that similar events can be 

prevented. Licu, Cioran, Hayward and Lowe (2005) have stated that every occurrence 

provides an opportunity to study how the deviation occurred and to identify ways of 

preventing it from happening again. Since humans only have a finite set of cognitive 

and physical resources and are not good at handling complex environments composed 

of multiple competing stimuli, humans can and will commit errors (Krokos and Baker, 

2007). According to a great number of studies devoted to this issue, it has been pointed 

out that around 20% to 90% of accidents in the maritime transportation sector are 

mainly caused by human errors (Trucco et al., 2008; Harati-Mokhtari et al., 2007; 

Wang and Trbojevic 2007; Hetherington et al., 2006; Darbra and Casal, 2004, to name 
but a few). The International Maritime Organization (IMO) has taken the conscious 
decision to concentrate its efforts much more strongly on the human element (O'Neil, 
2003). That is, despite the difference of the perspectives, human errors are gradually 
being recognised as the primary causal contributors to accidents. 

Nowadays the major aviation accident analysis methods, e. g. Systemic Occurrence 
Analysis Methodology (SOAM) (EUROCONTROL, 2005) and Human Factors 
Analysis and Classification System (HFACS) (Shappell and Wiegmann, 2003b), are the 
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Ch 1: Introduction 

applications of Reason's Swiss Cheese Model (Reason, 1997), which have a significant 
influence on the ways that investigators conduct their investigations to find the overt 

and underlying causes of aviation accidents. In this sense, the Swiss Cheese Model is 

assumed to be beneficial to the maritime industry whilst applying it as the core concept 

of the proposed methodology incorporating with several risk assessment techniques. 

These techniques include Why-Because Analysis (WBA) (Ladkin, 2001; Paul-Stüve, 

2005), Fault Tree Analysis (FTA), Bayesian Network and Influence Diagrams, etc. 

However, none of these techniques is able to accomplish the analysis alone. This is 

because, for instance Why-Because Analysis can only produce qualitative analysis 

results; Fault Tree Analysis cannot solve the quantitative problems when the Basic 

Events are not mutually independent. Also the basic Bayesian Network lacks 

mechanisms to ensure that all the nodes in the model are actually necessary and 

sufficient. 

Before covering the scope of the present study, it is worthy to revisit the definition 

of the Swiss Cheese Model since it is the core concept of the methodology. The 

definition given by Reason is that "an accident can happen only when the holes in many 
layers momentarily line up to permit a trajectory of accident opportunity - bringing 

hazards into damaging contact with victims" (Reason, 2000). Reason further introduces 

this accident trajectory as a Window of Opportunity (WoO) giving the necessary 

condition of an organisational accident to be triggered. It is "the rare conjunction of a 

set of holes, which consist of a series of latent conditions and active failures, in 

successive defences, allowing hazards to come into damaging contact with people and 

assets". In the notion, "active failures are errors and violations committed by the 

personal at the sharp end of system, but they are now being seen more as consequence 
than as principal causes". Such unsafe acts are likely to have a "direct impact on the 

safety of a system and immediacy of their adverse effects" (Reason, 1997). In contrast, 
latent conditions are the inevitable "resident pathogens" within the system. They arise 
from decisions made by designers, builders, procedure writer and top level management 
(Reason, 2000). These latent conditions, such as poor design, undetected manufacturing 
defects, maintenance failures or unworkable procedures, etc., may have been present for 

many years before they are combined with local circumstances and active failures to 

penetrate the multi-layer of defence of any system (see Figure 1-1 for illustration). 
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Ch. 1: Introduction 

Figure 1-1 Reason's Swiss Cheese Model 
(from Reason, 2000) 

Therefore, in order to prevent the similar accidents from happening again, one has 

to find a way to shut the WoOs which can penetrate the defences of the system prior to 

the future accidents. Before shutting the WoO, the holes and the factors which cause the 

holes to exist have to be identified. Furthermore, not only the causal factors have to be 

identified, but also the significance, frequency and impact of the factors have to be 

clarified. Ultimately, the best countermeasure against the reoccurrence of the accident 

should as well be examined when the investigators carry out the analysis after the 
investigations and before compiling the accident report and recommendations for public 

enquiry and lesson learning. The tools which can assist the investigators to perform 

their work are of vital importance. Thus, the objective of the present study is to propose 

a methodology which can fulfil the need of analysing human, factors involved in 

maritime accidents qualitatively and quantitatively. 

1.2 Research objectives and the hypothesis 

The main goal of the present study is to propose a methodology which can 

qualitatively and quantitatively analyse the Human and Organisational Factors (HOFs) 
involved in a maritime accident in order to assist the decision makers to choose the best 

countermeasures for preventing similar accidents from happening again. There is no 
intention to point out who should be blamed for causing the accidents, but to highlight 

which parts of the system are vulnerable, according to the accident analysed via the 

proposed methodology. 

Since the IMO has followed the aviation industry in the adoption of Swiss Cheese 

and SHEL models and proposed guidelines for the investigation of human factors in 
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Ch. 1: Introduction 

marine casualties and incidents (IMO A. 884,1999; IMO, 2008), a HOFs framework 

which based on the guidelines to clarify and classify the human factors involved should 

be considered and integrated into the analytical methodology as a whole. In addition, 

probabilistic figures which highlight the significance, frequency and impact of the factor 

involved are the key issues of the methodology. Furthermore, a systematic procedure of 

the methodology is also important for improving the objectivity of the analysis 

outcomes. 

The objectives of the present study are formed by considering the following three 

requirements: 
1. applying the Swiss Cheese Model as the core concept of the methodology; 
2. being capable of carrying out the accident analysis qualitatively and 

quantitatively; and 
3. a systematic procedure for avoiding unnecessary subjective speculations. 

In short, the hypothesis of the study is that the Swiss Cheese Model can be 

implemented by employing well-defined probabilistic assessment techniques to achieve 
the three requirements mentioned above for analysing maritime accidents. In the 

proposed methodology, the Swiss Cheese Model is adopted as the fundamental concept 

of the method and the HFACS is the basis of the HOFs framework applied. In addition, 
WBA, FTA, Bayesian Network and Influence Diagrams are the main techniques to be 

employed to deal with the qualitative and quantitative analyses. When required, an 

application of fuzzy set theory is applied to handle the problem of expert judgements. 

1.3 The features of the methodology 

The methodology is set up to surround the core concept of the hypothesis which is 

implementing the Swiss Cheese Model to compose an accident analysis tool by 

adopting Formal Safety Assessment techniques with HOFs framework to identify, 

clarify and classify the human factors involved in an accident. In this section, only the 
brief introduction regarding the features of the methodology and the techniques adopted 
are included, rather than an in-depth theoretical and mathematical explanation. The 
details of the techniques adopted are elucidated in the relevant chapters where they are 
applied. For example, WBA, FTA, Bayesian Networks and Influence Diagrams are 
covered in Chapters 4 and 5, and HFACS is described in Chapter 6. 
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Mainly, the qualitative analysis is achieved by WBA and FTA Whilst the Bayesian 

Network and Influence Diagram perform the quantitative part. The Bayesian Network 

and/or Influence Diagrams also provide the final presentations of the accidents analysis. 

A modified version of HFACS which can fulfil the needs of the maritime industry in 

investigating and analysing HOFs involved in an organisational accident is also 

proposed in the present study in order to fit the requirements of the IMO guidelines and 

can be utilised as a HOFs framework to integrate with the analysis results. This 

framework can not only assist the investigators to identified, clarify and classify the 

factors involved, but also have the advantage to provide a comprehensive illustration 

associated with the causation of the accident amongst those factors in each level of the 

system. That is acquired by integrating the qualitative and quantitative analysis results 

with the framework. 

In terms of subjective probability, when historical statistic data is insufficient or 

unavailable for the quantitative analysis, experts' judgements are the alternative, and an 

aggregation method based on fuzzy set theory is a solution to obtain the group 

consensus of the estimations. Both the randomness and fuzziness of the uncertainty are 

the key issues of the estimates that the methodology has to deal with. The present study 

therefore proposes a method, in Chapter 7, to address this issue making the proposed 

methodology more resilient. 

Having a systematic procedure is another advantage of the methodology. At each 

step of the analysis procedure, the analyst only has to concentrate on the inferring or 

reasoning of the present stage. At each stage, the questions are in a comparatively 

uncomplicated format, in which the scopes are limited and the questions are easy to 

answer. By following a systematic procedure, there is no need for the analyst to foresee 

the orientation of the analysis results in the middle of the analysis if they can carry out 
the analysis properly at each stage and step. The entire outcome of the analysis is hence 

obtained by accumulating and integrating the answers given by the analyst at each step 

and stage. 

1.4 The structure of the thesis 

The thesis is compiled in eight chapters. Following the introduction of the present 
study in Chapter 1, Chapter 2 reviews the important literatures influencing this study. 
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The emphasis and kernel of the methodology start with Chapter 3 and end with Chapter 

7. They are presented as follows in an interrelated manner (see Figure 1-2). 
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Figure 1-2 The structure of the thesis 

In Chapter 3, the outline of the methodology is given, where the background 

information of the analysis method is shown. The notions of the methods in respect to 

the hypothesis, implementing the Swiss Cheese Model as a qualitative and quantitative 

analysis tool, are specified to provide an overview of the proposed methodology. The 

various techniques are briefly covered prior to the more detailed analysis in Chapters 4 

to 7. 
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Qualitative Quantitative 

Fact Finding WBG Constructing Backtracking II Countermeasure(s) 

Information Minimal BN 11) 
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Facts- Factors-* Cut Sets-* Cut Sets-ý* model-f modelRCOs 

WBA ID Constructing 

Figure 1-3 The data processing of the method 

The data progression of the qualitative and quantitative analysis method shown in 

Figure 1-3 is depicted in Chapter 4. The method starts with the qualitative analysis to 

elicit the events and factors involved in an accident and to clarify the causation amongst 

them. Subsequently, the quantified figures of the factors are added into the qualitative 

outcomes to form the quantitative results, in which the proposed aggregation method (in 

Chapter 7) may be utilised for subjective probability and/or group consensus. Finally, 

the qualitative and quantitative analysis results can be integrated with the proposed 
HOFs framework to present a more comprehensive insight into the causation of the 

factors distributed in different levels of the system. 

By following the methods depicted, a case study applying these methods to the 

Herald of Free Enterprise tragedy to carry out the analysis is demonstrated in Chapter 5. 

Furthermore, the qualitative and quantitative analysis results of the case are 
incorporated with the proposed HOFs framework, which is elucidated in Chapter 6, to 

illustrate the causation of the casual factors as well as the associations amongst each 
level of the system. This framework is important to the methodology to be used in 

maritime area since it follows the IMO regulations. It implies that this methodology can 

also be applied onto other realm provided that the dedicated field 1-IOFs framework is in 

place. 

Chapter 7 is the aggregation method, based on fuzzy set theory, to solve the group 

consensus problem when applying expert judgements due to lack of historical statistic 
data to perform the quantitative analysis. Finally, Chapter 8, the conclusion chapter of 
the thesis, summaries the arguments presented in the prior chapters as well as the further 

considerations and work. 
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1.5 Discussion 

In the proposed methodology, Reason's Swiss Cheese Model is the basis complied 
by all the methods employed. The qualitative outcomes represent the instances of the 

WoOs identified in an accident, and the quantitative results reveal the width or extent of 

the WoOs. From the analysis results shown in the form of Bayesian Networks, not only 

the causation of the factors involved is displayed, but also the significance, frequency 

and impact of the factors can be explored. 

The HFACS is another application of the Swiss Cheese Model in which the factors 

are classified into different levels and categories associated with a HOFs framework. A 

comprehensive insight into the causation of the accident analysed can be obtained by 

integrating the qualitative and quantitative analysis results with the HOFs framework. 

A systematic procedure of the methodology is another important feature to make it 

feasible and practical. During the procedure, the analysts can only concentrate on every 
limited scope of questions and infer their rational answers to the questions in each stage 

and step, without concerning the whole picture of the accident. This feature can reduce 
the unnecessary speculations and diminish the influences of individual bias. All analysis 

outcomes are therefore accumulated and integrated together to obtain the final results. 

The aggregation method based on fuzzy set theory dealing with the group 

consensus problem arisen when applying expert judgements due to lack of historical 

statistic data is one of the key features to make the methodology more resilient. Both the 

randomness and fuzziness of the uncertainty are considered in the aggregation method 
to handle the issue of subjective probability. 

In addition, this study has made the following contributions to academic 
knowledge: 

1. Implement Reason's Swiss Cheese Model with a Venn diagram (section 3.2). 
This implementation uses set theory and probability theory to qualitatively 
and quantitatively analyse the factors within the model. 

2. Proposes HFACS-MA for maritime industry (Chapter 6). This HOFs 
framework in this research is dedicated for investigating and analysing human 
factors involved in maritime organisational accidents. The framework is based 
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on the IMO guidelines (IMO A. 884,1999) and Casualty Investigation Code 

(IMO, 2008). 

3. The innovative Backtracking process and its validation mechanism (section 

4.5.2 - 4.5.4). This process can transform a fault tree into a Bayesian Network 

in a form of Minimal Cut Set, in which the Top Event is no longer represented 
by a single object, but several nodes as Minimal Cut Sets. This formulation 

can benefit the diagnosis and prediction of the network to be performed, 

offering more valuable information than the traditional Top Event format can 

provide. 

4. The K-CPT (section 4.3.3). This is a combination of Kamaugh-map and 
Conditional Probability Table of Bayesian Network. The K-CPT can help 

analysts to find the minimum sum-of-product Boolean expression depicting 

the deterministic correlation between a node and its parent nodes in a 

Bayesian Network. 

5. The notion of List Statement utilised in Fact Finding process (section 4.2.2). 

This data format and index mechanism can facilitate the logical organisation 

of the information and evidence of an accident as part of the proposed 

analysis procedure. . 

In summary, the present study assumes that the proposed methodology should be 

beneficial to the maritime industry to find the real causes of accidents. In the following 

chapters the details of the methodology and the ways to apply it are specified one by 

one according to the topics shown in Figure 1-2. 
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Chapter Two - 
Literature Review 

Summary 

A proper investigation and analysis to an accident is the key to the understanding 

of the occurrence and the prevention of reoccurrence. Accident analysis methods are 

therefore developed to sustain the successfulness of the accident investigation. In this 

chapter, the literature on this topic is reviewed and has been organised into several 

sections. These sections are: the development of accident analysis methods, the role 
human factors play in accidents, the method to identify human factors involved in an 

accident, the techniques which can be applied in accident analyses, and the fuzzy 

approach with which experts' judgements can be used to obtain rational information 

overcoming the problem of insufficient data. The chapter concludes with a proposed 

methodology, to be developed in this thesis, to provide a sufficiently thorough and 

comprehensive solution to the problem. 

2.1 Introduction . 
Whatever the types of accidents, the outcomes are always individual suffering, lost 

properties and/or damaged environment. In order to prevent the similar accidents from 

happening again, lessons must be learned and preventative measures must be made. It is 

of vital importance to know what the real causes are in order to formulate proper 
countermeasures that can effectively and efficiently keep the similar accidents from 
happening again. Therefore, a comprehensive and thorough accident analysis method to 

attain this requirement is a vital requirement. A broad introduction to this topic is 

covered in section 2.2. 

Since human factors (or elements) are now being recognised as the primary causes 
to cause the complex socio-technical system to fail, the method applied for accident 
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analysis must be able to elicit the human factors involved to present a clearer picture in 

relation to the causation of the accident. The background information with respect to 

those studies that have been done for this issue are described in section 2.3. 

Furthermore, not only qualitative analysis results are necessarily to be provided by 

the analytical methods, but quantitative information is also ideally needed. This is 

because the significance, frequency and impact of every contributing factor involved in 

an accident are different and can be crucial for determining the relative importance of 

the factors. Indeed, the quantitative information would therefore be preferred, if it can 
be reliably obtained. Previous methods proposed by other researches are described in 

section 2.4. 

Uncertainty and subjective probability are critical issues when expert judgements 

are the alternative due to lack of historical statistic data whilst carrying out the 

quantitative analysis of an accident. Solutions to this issue are varied as to which type of 

quantitative techniques the analysis applies. The overview and the proposed solution are 
discussed in section 2.5. 

2.2, The development of human factor analysis of accidents 

Gordon, Flin and Meares (2005) have reviewed and summarise the development of 
Human Factors Incident Investigation Tool (HFIT) between 1980 and 2002 listing a 
total of 18 major HFITs developed, in addition to their proposed HFIT. These HFITs 

are categorised into three categories: Reactive Incident Reporting Systems, Combined 

pro-active and reactive investigation systems and Confidential incident reporting 

systems. In the Reactive Incident Reporting Systems category, several renowned 

programs, e. g. the Human Factors Analysis and Classification System (HFACS) 
(Shappell and Wiegmann, 2000; Shappell and Wiegmann 2003b) and Technique for 

Retrospective Analysis of Cognitive Errors (TRACEr) (Shorrock and Kirwan, 2002), 

acknowledge that organisational and social factors should be included in the analyses. 
This has led to the development of different HFITs in order to cope with this complexity. 
In addition to these HFITs, other examples found in the literature are as follows. 

b The AcciMap (Svedung and Rasmussen, 2002): a graphic presentation represents a 
particular accident scenario. It is based on the classic cause-consequence chart 
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representing the causal flow of events supplemented by representation of planning, 
management and regulating bodies contributed to creation of the scenario. 

b The Systemic Occurrence Analysis Methodology (SOAM) (EUROCONTROL, 

2005): guidelines to the investigation of Air Traffic Management (ATM) safety 

occurrences. The SOAM developed for EUROCONTROL is one of the accident 
investigation methodologies based on Reason's Swiss Cheese Model for 

organisational accidents. 

b The Wheel of Misfortune (O'Hare, 2000): an attempt to overcome the difficulties 

of Reason's Swiss Cheese Model which consists of a linear sequence of 'planes'. 

That can obscure a better thought that, in terms of intersecting influences, accident 

causation is spreading outward from various points. 

The Why-Because Analysis (WBA) (Paul- Stüve, 2005; RVS WBA homepage): a. 

technique for causally analysing the behaviour of complex technical and socio- 

technical systems. Its primary application is in the analysis of accidents, mainly to 

transportation systems (air, rail and sea). 

Common elements of all these HFITs are that the techniques are all based on the 

notion of a structured socio-technical system which indicates the preconditions, the 

functions on the different system levels involved and an analysis of how they have 

contributed to the developments of an accident causation in order to elicit the `real' 

human factors. A shortcoming is that they all lack quantified indicators to distinguish 

the magnitude (i. e. the quantification) of the identified human factors involved in an 

accident. 

Another field with a growing concern for human performance in a complex 
technical control system is Human Reliability Assessment (HRA) which focuses on the 

reliability of human operators (Wang and Trbojevic, 2007). A great number of HRA 

techniques for quantifying human factors have been developed. Wu and the co-authors 
(2009) have categorised these techniques into two generations. The first generation is 
developed for probabilistic safety assessment of plant risk; the representatives are: 

  Technique for Human Error Rate Prediction (THERP). 

  Human Error and Reduction Technique (HEART) 
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  Success Likelihood Index Method (SLIM) using Multi-Attribute Utility 

Decomposition (MAUD) 

  Technica Empirica Stirne Errori Operati (TESEO) 

The second generation of the HRA techniques applied cognition analysis. The 

typical one is: 

 A Technique for human Error Analysis (ATHEANA) 
, 

By following a standard procedure in risk assessment and risk criteria that the 

techniques provide, the identification of human factors in a failure case provides the 

links between operations, critical failures and consequences of these failures and may be 

formulated in terms of overall system risk. However a current weakness of these 

techniques is in validation of the proposed models (Wang and Trbojevic 2007). 

In terms of Probabilistic Risk Assessment (PRA), the Fault Tree Analysis (FTA) 

and Bayesian Network are the techniques have been widely applied in variant 

professional fields, such as aviation and nuclear power industries. They are even utilised 

as the tool to analysis the human factors involved in an accident. For example, Johnson 

(1999) has applied FTA to analysis the relationship between human error and 

organisational failure'that occurred in a railway accident. Lee and Cha (2005) have 

proposed a technique based on FTA to qualitatively evaluate casual relationship 
between software faults and physical hazards. Celik, Lavasani and Wang (2010) have 

illustrated a Fuzzy extended Fault Tree Analysis (FFTA) methodology to clarify the 

probability of technical failures, operational misapplications and legislative shortages 
leading to shipping accidents. Martin and the co-authors (2009) have used a Bayesian 

Network model to analyse the human factors regarding workplace accidents caused by 
falls from a height. Another example using a Bayesian Network to identify human 

safety behaviour in construction industry in China by considering safety climate factors 

and personal experience factors has been shown by Zhou, Fang and Wang (2008). 
Meanwhile, Eleye-Datubo, Wall, Saajedi and Wang (2006) have adopted Bayesian 
Network and Influence Diagrams to formalise a methodology that makes a risk 
assessments model easier to be built for a marine and offshore evacuation scenario. 

A case study analysing organisational factors in maritime transportation has been 

carried out by combining FTA and Bayesian Network to form a model for risk 
assessment (Trucco et al., 2008). This study is derived from previous research which 
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mapped a Fault Tree model into a Bayesian Network model in order to improve the 

analysis amongst components dependence of a computer system (Bobbio et al., 2001). 

Anderson and Felici (2003) have made a study that reviewed the techniques in the 

analysis of safety, reliability and security of industrial computer systems. They found 

that using a Bayesian Network model can extend the Fault Tree model by capturing the 

probabilistic logical operators, multi-state variables and sequentially dependent failures. 

However, the Bayesian Network failed to model actions that happen to the system in a 

previous state, over time. In summary, translating a Fault Tree model into a Bayesian 

Network model may further enrich the safety analysis, but not having adopted a well- 
defined human error model or framework with FTA and/or Bayesian Network analysis 

techniques makes them somewhat deficient in practice. 

In the conjunction of human error and Formal Safety Assessment (FSA) 

methodologies, a groundbreaking Fuzzy Bayesian Network (FBN) method which 
integrates the human element into a probabilistic risk-based model in maritime safety 

assessment is proposed by Eleye-Datubo, Wall and Wang (2008) to demonstrate the 
human performance in maritime industry. Moreover, Celik and Cebi (2009) have 

proposed a methodology which is based on HFACS and Fuzzy Analytical Hierarchy 

Process (FAHP) to generate an analytical HFACS as the quantitative assessment tool in 

order to clearly identify the roles of human errors in shipping accidents. Despite the 

growing number and sophistication of the techniques, the challenges associated with 

understanding and organising human error and its causes are continuing. This is because 

in different fields each organisation tends to develop its own error classification system, 

which makes it difficult to compare the analysed data across techniques within an 
industry or across industries (Krokos and Baker, 2007). 

2.3 Human and Organisational Factors (HOFs) framework for 

accident analysis 

Before the end of the 1970s, the study of human error contributing to the 
occurrence of accidents never managed to achieve high priority in psychology realm 
until the occurrence of the first major modem industrial disasters caused by human error 
(ground collision between two large aircraft in Tenerife, 1977,587 casualties; and the 
well-know nuclear accident of Three Miles Island, 1979). Then, research was quickly 
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driven towards life science, psychology (i. e. enhancing psychological and psycho- 

sociological), typology and mechanism of human errors (Amalberti, 2001). These 

studies made their first emphasis on individual human failures, in which Rasmussen's 

(1982) Skill-Rule-Knowledge based error taxonomy and Reason's (1990) Generic Error 

Modelling System (GEMS) are representative. Subsequently, at the end of 1990s, the 

concept of the organisational accident linking individual, systemic and organisational 
failures came to the forefront of industrial research. Swiss Cheese Model (Reason, 1997) 

and SHEL model (i. e. the acronym of Software, Hardware, Environment and Liveware) 

(Hawkins, 1987) are renowned examples. In terms of human factors involved in 

aviation accidents, these two models are now widely applied as the fundamental of the 

analysis methodology (e. g. the SOAM and the HFACS) across North America and 

Europe 

The International Maritime Organization (IMO) has followed the aviation industry 

in the adoption of Swiss Cheese and SHEL models and proposed guidelines for the 

investigation of human factors in marine casualties and incidents (IMO A. 884,1999; 

IMO, 2008). Both of the methodologies and guidelines have realised that, when 
investigating an accident, the investigators should not only focus on the actions of the 

sharp end personnel at the time of the occurrence, but also have to consider the 

following two aspects in order to align with and support "Just Culture" principle (Licu 

et al., 2005). 

  Seeking explanation for the conditions that shapes the actions of sharp end 

personnel. V 

  Identifying latent organisational factors that allowed the unsafe conditions to 

exist, under which an occurrence can be triggered. 

In addition to Swiss Cheese and SHEL models, there are several other research 

studies which posture different viewpoints with respect to HOFs. Gordon et al. (2005) 
have proposed a HFIT model, which divides the human factor into four categories: 
`Threats', `Situation Awareness', `Action Errors' and `Error Recovery'. Another 

example is the `Wheel of Misfortune' model (see Figure 2-1), which consists of three 

concentric spheres: the actions of the front line (innermost), local precipitating (middle) 

and the global conditions generated by organisation (outermost) (O'Hare, 2000). 
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Figure 2-1 The Wheel of Misfortune (from O'Hare, 2000) 

Amongst those HOFs models that have been proposed, the Swiss Cheese Model 

and SHEL model have their unique merits and continue to influence the realms of 

organisational accident investigation and analysis. For example, the SOAM and the 

HFACS are derived from Reason's Swiss Cheese Model; the IMO guidelines and the 

SOAM are both influenced by the SHEL model forming the core concept of the 

methodology. Reason himself also keeps evolving the Swiss Cheese Model both on the 

applicability and functionality of the model. For instance, a practical guide on managing 

maintenance error (Reason and Hobbs, 2003) addresses the features of human 

performance, risks, error-provoking factors, principle of error management and safety 

culture, etc., for the application of aircraft maintenance. Aside from this, a latest 

extended Swiss Cheese Model is proposed from the perspective of safety, in which a 

slice of Cheddar is considered, as the system defences or barriers for safety, in order to 
increase the resilience of the system (Reason, 2008). 

Besides, some transformations of SHEL models are as well developed by different 

organisations or industries for their particular requirements. For example, a modified 
SHEL model which adds an additional Organisation (0) factor, as the fifth category, to 
form a SHELO model in order to denote the interaction between aircraft maintenance 
technician and the organisation (Chang and Wang, 2010). Another example is m-SHEL 
model, which introduces an additional Management (m) factor to specify the factors in 

association with corporate organisation, administration and system that influence the 

atmosphere at job site and safety culture (Kawano, 1997). In the same way, HFACS-RR 
(a modified HFACS to the railroad industry) is introduced to conduct investigations 

associated with train accident/incident in order to understand and manage the 
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contributing factors in all levels of the railroad industry (Reinach and Viale, 2006). 

Generally speaking, although some modifications of the category descriptions are 

required for different professions, the HFACS framework has been proven that it is 

effective in categorising errors from investigations reports and is useful in capturing the 

full range of relevant human factors (Baysari et al., 2008). 

Yet, these models and methodologies are continuing concentrating on qualitative 

side without considering a quantitative analysing mechanism in conjunction with the 

applied HOFs model or framework. 

2.4 Qualitative and quantitative analysis on human factors 

involved in an accident 

Since human error continues to be the predominant factor in maritime accidents, in 

which organisational factors are known playing a significant part in accident causation, 

a sufficiently thorough and comprehensive accident/incident investigation procedure to 

establish the significance, frequency and impact of the factors involved is needed 
(Barnett, 2005). From the viewpoint of engineering, analyses can be roughly divided 

into two categories: qualitative and quantitative. In the perspective of qualitative 

analysis of an accident, the answers to the questions of analysing outcomes are normally 
the factors involved in the occurrence and the causation amongst them. The main 

purpose of the quantitative analysis of the accident is to look for the significance and/or 
frequency of the causal factors identified. Therefore, it is of vital importance while 

performing the analysing task - not to only concentrate on the qualitative outcomes, but 

also to seek the quantitative results of the analysed factors. 

2.4.1 Qualitative analysis on human factors 

It is suggested that, when performing an analysis task, one thing should be kept in 

mind all the time is that - "not to become satisfied and stop questioning but to always 
try to establish whether the last answer might give rise to a new follow-up question" 
(Schager, 2008). Moreover, "it is critical to understand why people did what they did, 

rather than judging them for not doing what we now know they should have done" 
(Dekker, 2002). Dekker also urges investigators should keep mindsets on the "new view 
of human error", avoiding the perspective of hindsight and outside, when reconstructing 
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the human contributions to an accident. Despite the new view and notions, lacking of a 

systematic procedure to construct the human contribution to accidents is the 

shortcoming of the method that Dekker proposes. Svedung and Rasmussen (2002) have 

pointed out that graphic representation of the causal flow of accidents is very effective 
in creating an overview of complex occurrences, and hence they develop a tool named 

as AcciMap for the purpose. Other similar graphic methodologies, such as SOAM 

(EUROCONTROL, 2005), WBA (Paul-Stüve, 2005) and HFIT (Gordon et al., 2005), 

are also developed by following this principle. 

However, another trend also arises that analysis is carried out by applying or 

modifying well-defined Formal Safety Assessment techniques as the tools, instead of 

developing a dedicated method, for clarifying both the factors and causation of an 

accident. For example, Johnson (1999) has applied the FTA as the tool to visualise the 

relationship between human errors and organisational failures that occurred in a railway 

accident; Lee and Cha (2005) have proposed a technique - Causal Requirements Safety 

Analysis (CRSA) - by extending the FTA to qualitatively evaluate causal relationship 

between software faults and physical hazards; Celik et al. (2010) have integrated fuzzy 

feature into FTA in order to clarify the probability of technical failures, operational 

misapplications and legislative shortages leading to a shipping accident; and Trucco, 

Cagno, Ruggeri and Grande (2008) have combined FTA and Bayesian Network to 

model a Maritime Transport System (MTS), at the preliminary design stage of High 

Speed Craft (HSC), for analysing the HOFs in a collision scenario in open sea. 

In terms of qualitative analysis, FTA can really provide an effective graphic 

presentation to illustrate the causation of an accident. Nevertheless, it is insufficient in 

analysing accidents quantitatively. This is because it lacks probabilistic information for 

the intermediate events and the rigid restriction of dependencies between basic and 
intermediate events although FTA has the mechanism to perform the probabilistic 
inferring for the Top Event. In contrast, Bayesian Networks are models with clear 

advantage over fault tree because they allow the representation of network instead of 
trees. This is particularly useful for common cause analyses (Castillo et at, 1999). 
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2.4.2 Quantitative analysis on human factors 

Bobbio, Portinal, Minichino and Ciancamerla (2001) have shown that Bayesian 

Networks provide a robust probabilistic method of reasoning with uncertainty and are 
becoming widely used for dependability analysis of safety critical system such as the 

Programmable Electronic Systems. They state that Bayesian Networks are more suitable 
to represent complex dependencies amongst components and to include uncertainty in 

modelling. Mohaghegh, Kazemi and Mosleh (2009) have supported this argument and 

also claim that Bayesian Networks are a network-based framework for representing and 

analyzing models involving uncertainty. Yang, Bonsall and Wang (2009) have 

concluded that Bayesian Networks enable risk diagnosis and prediction to be made 

using uncertainty inference foundation. 

As well as modelling uncertainty, probabilistic inference is another advantage 

provided by Bayesian Networks technique, under which interventions (i. e. believe 

updating or evidence propagation) can be conducted with other network variables 

resulting in predictions and diagnoses (Anderson and Vastag, 2004). They recommend 
that if objectives included prediction and diagnosis of observed variables, then Bayesian 

Network approach should be selected. Zhou, Fang and Wang (2008) have demonstrated 

that human safety behaviour can be improved more efficiently and effectively by 

controlling `safety climate factors', rather than `personal experience factors' by using a 
Bayesian Network model to represent the construction industry in China. That is 

achieved by including local conditional dependencies into the model, by directly 

specifying the causes that influence a given effect (Bobbin et al., 2001). Martin et al 
(2009) have stated that the identification of the dependency relationships between 

different variables, and expressing these relationships in probabilistic 
terms, enables 

Bayesian Networks to offer a broad-based perspective on the circumstances surrounding 
work. Bayesian Networks thus represent a statistical tool of huge potential in 
investigating the causes of accidents falling from a high above two metres at workplaces 
in Spain. 

However, the Bayesian Network approach cannot solve all the problems, and there 
is a need for a systematic procedure to establish the model. Thus, a hybrid approach 
integrating deterministic and probabilistic perspectives may need to be considered. In 
the research by Mohaghegh et al. (2009), a Bayesian Network was integrated with 
System Dynamics, Event Sequence Diagrams and a Fault Tree in order to demonstrate 
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the effects of organisational factors as the deeper (or more fundamental) causes of 

accidents and incidents. This provided a flexible risk management tool for complex 

socio-technical system in the aviation safety domain, focusing on airline maintenance 

systems. 

2.5 Expert judgements and uncertainty 

Yang and Liu (1998) have stated that there are two different meanings of 

uncertainty; one is randomness, and the other is fuzziness. The randomness looks at the 

occurrence probability, which is normally described by a probability distribution 

function. In contrast, the fuzziness is the uncertainty of belongingness, which is 

normally described by a membership function. This is relevant to this research, because, 

in practice, the lack of historical statistic data is often a conundrum in applying PRA 

techniques to carry out accident analyses. Expert judgements are often the alternative to 

mitigate this difficulty in order to get rational data for the occurrence probability of the 

events. The data given according to experts' subjective opinions can be seen as 

subjective probability information. However, this alternative raises another two issues: 

(1) how to express the uncertainty (both randomness and fuzziness) of the data, and (2) 

how to attain the group consensus under a common ground. 

Celik et al. (2010) have suggested that fuzzy probability has the merits to flexibly 

express the vagueness of data and insufficient information associated with the 

occurrence of the Top Event regarding an accident, or a system in a safety case. Wang, 

Yang and Sen (1996; 1995) have shown an approach that provides a rational way of 

articulating and processing subjective safety and cost information to achieve a 
hierarchical system safety analysis by using fuzzy sets to express the subjective 

opinions and to synthesise the estimates. Furthermore, Yang, Wang, Xu, and Chin 

(2006) have proven that by using a fuzzy belief structure to accommodate numerical 
data and subjective judgements with probability and fuzzy uncertainties can provide a 
systematic yet strict procedure for aggregating both probabilistic and fuzzy information 
in an analytical fashion. That allows the incorporation of incomplete assessment 
information with fuzziness. 

When fuzzy belief structures are applied to deal with the uncertainties of subjective 
estimations with group of experts, an aggregation (or synthesis) method regarding the 
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type of the structures has to be introduced. This is because a group consensus of the 

estimates is always preferred, sometimes is even mandatory. Therefore, variant 

aggregation methods have been developed for different types of fuzzy PRA techniques. 

For example, Celik and Cebi (2009) have applied the Buckley solution algorithm to 

aggregate the experts' opinions in a form of triangular fuzzy numbers depicting 

linguistic terms, based on a FAHP, in order to identify the role of human error in 

shipping accidents. Other instances, such as Wang et al. (1996; 1995), have applied an 
Evidential Reasoning approach to synthesise the safety expressions which are described 

by linguistic variables characterised by fuzzy membership functions to evaluate the 

safety of a system. However, linguistic variables and fuzzy number cannot be directly 

applied as the conditional probability data in the used Bayesian Network software (i. e. 
Netica), only a numerical crisp value can be accepted. Thus, in Chapter 7, the Similarity 

Aggregation Method (SAM) (Hsu and Chen, 1996) aggregating individual fuzzy 

opinions in Positive Trapezoidal Fuzzy Number (PTFN) format to obtain a group 

consensus is applied and specified. Furthermore, the f-weighted valuation function, 

developed by Detyniecki and Yager (2000), to defuzzify fuzzy number is utilised in 

order to obtain the crisp value of the PTFN. 

2.6 Discussion 

In this chapter, the literature regarding the accident analysis methodologies has 

been reviewed. Several issues on this topic have been discussed. These issues include: 

the development of the analysis methods, the human factors involved, the qualitative 

and quantitative analysis techniques, and fizzy approach solving uncertainty and 

subjective probability for group consensus. The deficiencies and insufficiencies of the 

methods reviewed are also discussed in each section. 

The overall summary is that a thorough and comprehensive accident analysis 
methodology is desperately needed. This should include a systematic procedure to sort 
out the causation of the factors involved, a HOFs framework to clarify and classify the 
identified factors, a mechanism to perform the analysis qualitatively as well 
quantitatively and a solution to obtain the estimates from a group of experts. The 

proposed methodology for accident analysis (derived from the work described in this 
chapter) is therefore developed in Chapter 3 with the detailed description of the 
individual components of the methodology in the subsequent chapters. 
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Chapter Three - 
Outlines of the Methodology 

Summary 

The overview of the developed methodology which can assist investigators in 

analysing an accident qualitatively and quantitatively is given in this chapter. The 

methodology is based on the concept of Reason's Swiss Cheese Model. The accident is 

analysed in the form of Bayesian Network by implementing the Window of 
Opportunities (WoO) of the Swiss Cheese Model associated with the accident. This 

implementation is also combined with a Human and Organisational Factor (HOFs) 

framework which can be utilised to provide a comprehensive insight into the causation 

of the accident with a human and organisational factors hierarchy. This framework has 

the merit of assisting investigators to both classify the identified human factors and 

ascertain the more remote organisational factors. 

The ideal data for calibrating such models is historical statistic data. When this is 

not available, expert judgements should be used. An aggregation method based on fuzzy 

set theory is applied for handling the group consensus issue during the analysing 

procedure when experts do not agree with each other at first. The chapter concludes 

with a summary of the broad features of the methodology provided and the 

consideration of further research needed. 

3.1 Introduction 

Reason's (1997) Swiss Cheese Model (see Figure 1-1) provides a valuable abstract 
explanation regarding how an accident can happen, but the way to implement the model 
in analysing the accident qualitatively as well as quantitatively still remains uncertain. 
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According to the latest elucidation made by Reason (2008), the notion of the Swiss 

Cheese Model is as follows. 

The current model (1997) involves a succession of defensive layers separating 
potential losses from the local hazards. 

... Each `slice' has holes in it like 
Emmenthale cheese; but unlike cheese the gaps are in continuous motion, moving 
from place to place, opening and shutting. Only when a series of holes `line up' can 
an accident trajectory pass through the defences to cause harm to people, asset and 
the environment. The holes arise from unsafe acts (usually short-lived windows of 
opportunity) and latent conditions. The latter occur because the designers, builders, 

managers and operators cannot foresee all possible accident scenarios. They are 
much more long-lasting than the gaps due to active failure and are present before an 
adverse event occurs. ... 

There were two important changes. First, the defensive 
layers were not specified. They included a variety of barriers and safeguards - 
physical protection, engineered safety features, administrative controls (regulations, 
rule and procedures), personal protective equipment and the frontline operators 
themselves: pilots, drivers, watchkeepers and the like. They often constituted the last 
line of defence. The second change was the use of the term `latent conditions'. 
Conditions are not causes, as such, but they are necessary for the causal agent to have 
their effect. 

Investigation 

-º Ifointation 
& evidence 

rITN& 
SAM r 

(chapter 7) 

IIFACS-MA 
_10. (Chapter 6) 

7 
SI ART 

Qualitative X. 

quantitative 

accident analysis 
method 

(Chapter 4) 

Integrating the 
analysed results 

with I{FACS-MA 
(Chapter 6) 

fI-ßN 
analysis 
results 
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res,, over 
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most critical 1101: 

factors & the bent 

cost-benefit 

END 

Figure 3-1 The overview of the proposed methodology for accident analysis 

't'herefore the present study presumes that the WoO of Swiss Cheese Model may 
be able to be instantiated by the set theory and the probability theory, which is 
introduced in section 3.2 and specified in Chapter 4. Meanwhile, a Human and 
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Organisational Factor framework, which follows the notion of defensive layers in the 

Swiss Cheese Model, to categorise the factors identified in an accident has also been 

investigated (see section 3.3 and Chapter 6). Finally, a method associated with 

aggregating a group of experts' estimates and resulting in a group consensus is proposed 
in Chapter 7 and briefed in section 3.4. Figure 3-1 illustrates the overview of the 

procedure when it is applied for accident analysis. 

At the beginning, the information and evidence collected during the investigation 

period are handled qualitatively in order to find out the factors involved as well as the 

causation amongst them. By following a quantitative analysing procedure with a fuzzy 

set theory application, the qualitative analysis results are value-added with quantitative 
figures producing the Fault Tree - Bayesian Network (FT-BN) analysis results. Then a 

proposed HOFs framework is used, as a mask, to integrate the qualitative and 

quantitative analysis results (see Figure 6-10 as an example) for classifying the 

categories of the identified factors, demonstrating the association between them in 

different layers and seeking for the justification and insufficiency of the accident 

causation. Finally the most critical factor can be obtained, as well as the best cost- 
benefit countermeasures can be inferred, through the finalised analysis results over the 

proposed HOFs framework. The countermeasures referred in the proposed methodology 

are the Risk Control Options which can eliminate hazards from the system or mitigate 
the risks if accidents happen. More theoretical and applicative details regarding each 

part of the methodology can be found in the following sections and relevant chapters. 

- 3.2 Qualifying and quantifying the Window of Opportunity (WoO) 

It is assumed that the extent of a Woo can be determined by the illumination 

which is projected onto the other side of the Swiss Cheese Model through the lined up 
holes. The light source (e. g. lamp or torch) on the one end of the Swiss Cheese Model is 
deemed as the pathogens (or local circumstances) which may attack the system and 
cause an accident to happen. The other side of the Swiss Cheese Model may see the 
projected illumination if and only if the light source is on and there is at least one WoO 
existing in the Swiss Cheese Model at the time (see Figure 3-2(a)). Therefore, the 
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intensity of the light is considered as the severity of the damage, and the coverage area 

of the illumination is as the probability of the events occurrence. In addition, the 

coverage of the illumination on the projection area directly relates to the width, the 

number and the position of the WoOs in the model. Meanwhile, each WoO is decided 

by the factors that cause the holes existing in each layers of the model and lining up the 

WoO to penetrate the defences of the system. Hence the aims of the proposed 

qualitative and quantitative accident analysis method are to find: (1) the factors that 

cause these holes of the WoOs existing; and (2) the coverage of the illumination as the 

probability of the events occurrence. Therefore, the set theory is mainly applied to 

clarify the causation of the causal factors - the qualitative issue - according to the 

association of the holes regarding the WoOs, and the probability theory provides a tool 

to solve the probability of events occurrence - the quantitative issue. 

ABC 

Light 
Sourcc 

L) 

= 

n (X) 
(4) 

(1) 

7) ; 

ý 

d 
V 

C 

Ü 

U 

L`. 

(a) an example of Swiss Cheese Model (b) Venn Diagrams 

Figure 3-2 Illustrating the model with Venn Diagrams using illumination 

In the example of Figure 3-2, there are three layers comprising the Swiss Cheese 

Model and each layer has a hole. The name of the hole is the same as the label of the 

layer (e. g. the hole A is in layer A). It is evident that the illumination coverage projected 

on the projection area due to this WoO is the area labelled as "(1)" shown on the Venn 

Diagrams in Figure 3-2 (b). That is, the WoO is caused by inBnC and the 

occurrence probability of the WoO is P(A (l B (l C). Meanwhile, in this example, the 

sample space S can be seen as made up of eight pieces of areas which are denoted as 

areas (1) - (8). Additionally, since a subset of a sample space is called event, there are 

three events in this example; they are events A, B and C. That is, 
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S= {(1), (2), (3), (4), (5), (6), (7), (8)} 
A= ((1), (2), (3), (4)) 
B= {(1), (2), (5), (6)) 
C= {(1), (3), (5), (7)1 

Since the probability of aggregating areas in the sample space S is exactly one (i. e. 

P(S) =1) and an event A is true for an experiment if the outcome of the experiment is an 

element of the event, a probability P(A) is therefore assigned to each event AcS. 

Those probabilities must obey the following three axioms (Jensen and Nielsen, 2007) 

(Russell and Norvig, 2003): 

Axiom 1 P(S) =1 P(-, S) =0 

Any subset A must have a nonnegative probability. 

Axiom 2 for all AcS it holds that 1>_P(A)>_0 

If A and B are the subsets of the sample space, the combined event can be shown as 

follows. 

Axiom 3 If AcSand BcS then P(AUB)=P(A)+P(B)-P(Af B), 

or P(AUB)= P(A)+P(B) if A and B are disjoint (i. e. AFB = 0) 

where A (1 B is the intersection between A and B and it represents 
the event that both A and B occur. 

The brief introduction regarding the probability above is called joint probability 
(see Table 3-1(a) as an example). In contrast, conditional probability (see Table 3-1(b) 

as an example) depicts the probability from another viewpoint which is given condition 

on other known factors (see the Venn Diagrams example shown in Figure 3-2(b)). This 

type of probability is generally stated as the following kind: 

U "Given the event B, the probability of the event A is p", denoted as P(A I B) = p. 
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Table 3-1 The comparison between joint and conditional probability 

(a) joint probabilityP(A, B, C) I (b) conditional probability P(CIA, B) 

A=1 A=O 
B=1 B=0 B=1 B=O 

C=1 (1) (3) (5) (7) 
C=O (2) (4) (6) 8 

Note that the probability in the 
joint distribution sums to 1 (i. e. 

P(6w) = P((1))+... + P((8)) =1). 

A=1 A=O 
B=1 B=0 B=1 B=0 

C=1 (1) (3) (5) (7) 
(1)+(2) (3)+(4) (5)+(6) (7)+(8) 

C=0 (2) (4) (6) (8) 
(1) + (2) (3) + (4) (5) + (6) (7) + (8) 

Note that conditional probability of C sums up to 1 
for each column of the table. 

Moreover, since P(A I B) specifies a probability distribution for each event B= bj , 

the conditional probabilities over A should sum to 1 for each state of B, according to 

Axiom 1. That is Z P(A = a, IB=b j) =1 for each bj (see Table 3-1(b)). Therefore, the 
i-t 

probability of each area shown in Figure 3-2(b) (i. e. the Venn Diagrams) can be 

expressed as a joint probability (i. e. P(A, B, C)) or as a conditional probability (i. e. 

P(C I A, B)), and the equality between them is: 

P(A, B, C)= P(C I A, B)P(A, B) 

For example, the probability of An B (l C (i. e. the area (1) in the Venn Diagrams) 

should read: 

P(AnBnc)=P(CI AnB)P(AnB) 

The answer to the equation above is "P((1))" which can be directly derived from 

the joint probability in Table 3-1(a) or computed from the conditional probability shown 

in Table 3-1(b). For the latter, P 
(1) 

(+ ý2) 
P((1) + (2)) = P((1)) is the answer, according 

to the data shown in the table. The example stated above shows that the set theory and 
the probability theory can be utilised to implement the Woo with qualitative and 
quantitative figures. In the next two sections, the basic qualitative and quantitative 
patterns of WoOs are discussed respectively. For more details and explanations of these 
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two issues, Chapter 4 covers the essential theoretical information, and Chapter 5 

provides a case study. 

3.2.1 Qualifying the WoO with the set theory 

In the preceding section, the example WoO consists of three holes, one in each 

layer, resulting in the AND relationship amongst these holes. Each hole represents one 

of the direct causal events of an accident. The factors identified in the accident are 

associated with each hole, and cause them to happen at the same time, but only one 

WoO is formed in this case. The holes and the factors are connected to one another in 

terms of why-because or cause-consequence relationship. This relationship is similar to 

the type of family tree; because of the existence of the grandparents, there is the 

possibility of having the parents, and then the child. For the purpose of contrast, Figure 

3-3(a) is a single WoO example showing holes A and B in a two layers model. The 

projected area labelled as AB in the third layer (i. e. the projection area) is the only WoO 

of the model. Thus, the association of AnB is the qualification of the WoO and the 

coverage of the projected area AB represents the accident occurrence probability. Once 

the holes (or events) are certain, factors behind these holes have to be found out in the 

next step. It is highly likely that one factor may associate with more than one event, as 

well as a particular event may associate with more than one factor. 

ýý. 
B 

{O 

ý, t 
(a) a single WoO through two layers (b) two disjointed WoOs through two 

layers 

Figure 3-3 Two basic types of WoO qualification 
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In a multi-WoO instance, each WoO should be considered individually. For 

example, in Figure 3-3(b) there are two WoOs which consist of holes Al. A2 and 11 

where holes Al and A2 are in the same layer whilst hole B is in another layer. This 

combination results in two projected areas A1B and A2B representing two disjointed 

WoOs. In this example, they can be qualified as Al nB and A2 fB individually. 

However, if the context of the WoOs is further complicated, for instance, the example 

looks like the one shown in Figure 3-4, which consists of several joint WoOs. A 

simplification method proposed in Chapter 4 can assist in finding the association of the 

holes involved for each WoO. Nevertheless, this may not be always the case if the 

combination of the WoOs is too complicated to simplify. At least, the aggregated WoOs 

can be acquired following the proposed method. This means that the total influence of 

the WoOs will still be available even though individual WoO cannot be clarified. That 

is, there are two options to demonstrate these WoOs. The first option is the aggregation 

of these WoOs which are treated as the Top Event of a fault tree (see Figure 3-4(a) as an 

example); the second one is the individual WoO, deemed as a Minimal Cut Set of a 

fault tree (see Figure 3-4(b)), if they are available. 

Wool 
Wo02 

Top 
Event 

Wo03 Wo04 

(a) the aggregated outcome of the WoOs 

Wool 
Wo02 

Wo03 Wo04 

(h) the identifiable individual WoO 

Figure 3-4 A complicated combination of' WoOs 

3.2.2 Quantifying the WoO with the probability theory 

As stated earlier, the occurrence probability of a WoO is represented by the 
illumination coverage reflected on the projection area resulting from the holes lining up 
together in the model. For a single WoO example, the intersection area of the associated 
holes located in each layer is the answer to the probability of the WoO. Thus, the 
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probability of the WoO shown in Figure 3-3(a) can be acquired by Equation (3.1) since 
A is independent of B in the model. 

P(A (1 B) = P(A)P(B) (3.1) 

It can also be expressed in terms of conditional probability, which is the major 
format to be applied in the proposed method. Thus, the expression is rewritten as 

follows. 

P(A (1 B) = P(A I B)P(B) = P(B I A)P(A) (3.2) 

When one of the terms in the equation moves to the other side of the equal sign, it 

becomes the well-known Bayes' rule (Bernardo and Smith, 2002; Jensen and Nielson, 

2007). 

P(A I B) _ 
P(B I A) 

BP(A) 

"Bayes'rule provides a method for updating the beliefs about an event A given that 

information about another event B is known. For this reason P(A) is usually called the 

prior probability of A, whereas P(A I B) is called the posterior probability of A given B; 

the probability P(B ( A) is called the likelihood of A given B" (Jensen and Nielsen, 

2007). For an extension of the rule in a context C, it can be stated as follows: 

P(A I B, C) - P(B 1A, C)P(AI C) 
P(BI C) 

In a multi-WoO example, the quantification of individual Woo can only be 

obtained if the qualification of each Woo is achievable in the first place. If this is not 
the case, only the entire aggregated influence outcome of these WoOs (i. e. Top Event 

case shown in Figure 3-4(a)) is available for the subsequent quantitative analysis in the 

methodology without respective WoO details. This is because, in the proposed method, 
the corresponding Top Event model of an accident can be constructed without detailed 

WoOs involved being figured out in advance. In other words, each WoO is extracted 
from the Top Event outcome through an approximate simplified process resulting in an 
approximate outcome associated with these WoOs. It is preferred to have the Minimal 
Cut Set than the Top Event outcome representing the WoOs of the accident. An analogy 
is that a compound object without knowing the constitution of the materials can only be 
utilised in a limited way. For example, knowing nothing about the constitution of iron 
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can only shape the iron, but not be able to produce steel or stainless. Thus, having 

clarified an individual WoO, there are advantages to analyse each WoO respectively, 

and then to find the best countermeasure for each of them. The reason why it is better 

for the WoOs to be handled individually is that each WoO can damage the system alone, 

only the probabilities of them are different. If an individual WoO is not able to be 

obtained, at least the aggregated lighted projection area (i. e. Top Event) can be 

alternatively found. The influence of the Top Event can be computed by following 

Equation (3.3) with the conditional probabilities data of these factors. For more details, 

see the relative sections in Chapters 4 and 5. 

Z P(PA = light I A, B, C)P(A, B, C) (3.3) 

where "PA = light" is the lighted coverage of the Projection Area 

If a respective WoO is acquirable, Axiom 3 can be applied to deal with the total 

probability computation. Hence the aggregated probability of the projected areas AIB 

and A2B in Figure 3-3(b) can be computed via Equation (3.4). 

P(A1B U A2B) = P(. 41 n B) + P(A2 n B)- P(A1 fB (l A2) (3.4) 

= P(A1 I B) + P(, 421 B)- P(A1 n A2 B) 

In addition to the identification of individual WoOs, dependency is also an 
important issue between events. If information changing on event B does not change the 
belief about the occurrence on event A, A and B are independent. In other words, the 

events A and B are independent if 

P(AI B)=P(A) 

Given that the notion of independence is symmetric, if A is independent of B, then 
B is independent of A. It can be proven by applying Bayes' rule. 

P(B I A) = 
P(A n B) 

= 
P(A I B)P(B) 

= 
P(A)P(B) 

= P(B) 
P(A) P(A) P(A) 

Therefore, since two events are independent, Equation (3.2) (i. e. the fundamental 

rule) can be rewritten as Equation (3.5). That is also the case shown in Figure 3-3(a). 

P(A (1 B) = P(A I B)P(B) = P(A)P(B) (3.5) 
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3.3 Implementing Reason's Swiss Cheese Model with a Human and 
Organisational Factors (HOFs) Framework 

Although Reason's Swiss Cheese Model (see Figure 3-5) has articulated four 

layers (i. e. unsafe acts, precursors for unsafe acts, line management deficiencies and 
fallible decisions) as the levels of the model and the contextual association between 

them (Reason, 1990), no exact nature of the `holes' which comprise WoOs has been 

identified, which is a limitation of the model (Shappell and Wiegmann 2003b). 

Therefore a HOFs framework, based on the Swiss Cheese Model, named Human 

Factors Analysis and Classification System (HFACS) (see Figure 3-6) for the U. S. 

aviation industry is proposed by Shappell and Wiegmann (2003b) and has been used in 

analysing the U. S. civil and military airborne accidents since year 2000 (Wiegmann and 
Rantanen 2003; Wiegmann et al., 2005; Scarborough et al. 2005; Shappell and 
Wiegmann 2003a; Shappell et al., 2007). In addition, it has been shown that a 

transformation of the framework can also be utilised in the railway industry (Baysari et 

al., 2008; Reinach and Viale, 2006). 

Figure 3-5 The Swiss Cheese Model of accident causation Source: adapted from Reason (1990) modified by Shappell and Wiegmann (2003b) 
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Figure 3-6 The Human Factors Analysis and Classification System (HFACS) 
(from Shappell and Wiegmann (2003b)) 

The present study assumes that it would be beneficial for the maritime industry to 
investigate and analyse maritime accidents if a dedicated human factors classification is 

in place. For that reason, a HOFs framework is proposed and named as Human Factors 

Analysis and Classification System -for Maritime Accidents (HFACS-MA), which is 

analogous to the HFACS and is the implementation of the notion. The distinction which 
is different from the original HFACS is that the proposed framework considers and 
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adheres to the requirements of the International Maritime Organization (IMO) 

guidelines for the investigation of human factors in marine casualties and incidents 

(IMO A. 884,1999). In Chapter 6, the details regarding the framework and the 

applications are specified. The proposed HOFs framework (i. e. the HFACS-MA) 

comprises four levels (see Figure 6-1); they are: 

b Unsafe Acts (i. e. the bottom level); 

b Preconditions; 

b Unsafe Supervision; 

b Organisational Influences (i. e. the top level). 

0 

Each level consists of several categories, in which numerous items such as the 

human factors of the type are defined. It is intended that the specific items of each level 

can be varied according to the requirements of the applied fields or realm. Having 

established a framework of the kind, it will be beneficial for the maritime industry from 

two aspects. 

1. It can provide a clear classification and definition of HOFs that helps the 

investigators to identify the human factors involved in an accident as well as to 

classify the categories of the factors. 

2. It can also offer a clearer causality hierarchy associated with HOFs for the 

investigators to track the causal sequence among the identified factors as well 

as to avoid overlooking the organisational predisposing factors. 

Barnett (2005) has pointed out that how to establish the significance, frequency and 
impact of organisational factors is still a research conundrum. The present study 

proposes one solution to the problem by establishing the dedicated HOFs framework 

(i. e. HFACS-MA) and combining with the qualitative and quantitative analysis method 

mentioned in section 3.2. It is the combination of the framework and the method which 

can provide a comprehensive insight into: 

1. The causation and the probability of WoOs which are identified in an accident. 
The combination of the proposed framework and the method can illustrate the 
causation of the identified factors, located in different levels of the HOFs 
framework, making up of the WoOs as well as the probability information 

regarding the WoOs and the factors as a whole. 
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2. The influences of the factors from the top level to the lower level of the 

framework. This portrays the principle of Reason's Swiss Cheese Model that 

the causal sequence moves from fallible decisions, through the intervening 

planes, to an accident. 

3. The deficiency of information or evidence. The framework can prompt the 

investigators to pay attention on the factors that are identified in the lower 

levels without further explanation or underlying factors connected from the 

higher levels. It will facilitate the investigators to ensure if any factor in the 

higher level is overlooked and warrants further investigation. 

4. The vulnerable parts of the maritime industry. The numerical or statistical data 

associated with the analysed accidents can easily be exchanged if they are all 

performed under the same HOFs framework. That is, the framework becomes a 

platform to bear a broadened analysis by overlapping the data collected from 

the entire maritime industry in order to highlight the significant defects of the 

system. 

3.4 Solving uncertainty and consensus problem with fuzzy set theory 

When historical statistic data is not available, it is a common practise to use 

experts' judgements evaluating the probabilities of the factors identified in an accident 
in order to carry on the analysis procedure. It is highly likely that a group of experts will 
be invited to perform this functionality. However, a question is frequently encountered 

as to how to obtain a group consensus when their estimates do not coincide with one 

another in the beginning. From the viewpoint of decision makers, it is preferred that a 

group consensus, rather than several individual figures, is provided depicting the 

analysis results. The proposed accident analysis methodology has also recognised this 

conundrum. Hence, an aggregation method in considering the systematisation, 

objectivity and the contentment of the experts is proposed. 

The proposed method (covered in Chapter 7) applies the form of Positive 
Trapezoidal Fuzzy Number (PTFN) to handle the uncertainty of estimation and the 
Similarity Aggregation Method (SAM), which is proposed by Hsu and Chen (1996), to 
deal with the estimates aggregation. In addition, the f-weighted valuation function is the 
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measure to obtain the crisp value of the PTFN. Occasionally, the Delphi method, which 
is a communication tool developed by Dalkey (1969), is used as a last resort to reach a 

common ground associated with those PTFNs given by the experts when their estimates 

are apparently apart. Eventually, the group consensus can be reached, through the 

proposed aggregation method, and the outcome of the consensus can be accepted by 

most of the experts involved. 

It will be shown in Chapter 7 that the proposed aggregation method can assist the 

proposed methodology in fulfilling the requirements of obtaining a group consensus 

with the following features: 

b The form of PTFN has the advantages to intuitively express an expert's 

estimate as well as the uncertainty of the estimate. Moreover, this form can 

not only fulfil the aggregation of the estimates in the SAM process, but also 
facilitate the common intersection of the estimates to be reached within the 

Delphi process. 

The consensus PTFN can only be attained provided that the common 
intersection amongst the estimates exists. Since the common intersection is 

always under the coverage of the consensus PTFN, it can be deemed as that 

the consensus PTFN is constructed based on the common ground of the group 

opinion. 

b The SAM aggregation function considers the "importance of the experts" 

when deciding the "degree of influence (or contribution)" of each estimate for 

the group consensus. Moreover, this method can also regulate the overall 

consensus outcomes bias to the "degree of importance of the experts" or the 

"agreement degree (or similarity) of the estimates". 

The outcome of the f-weighted valuation function can be regulated as to bias 

to the average of the core, or the average of the support, of the PTFN when 
defuzzifying it into a crisp value. 

The Delphi method can ensure a common intersection of the estimates to be 

reached and the crisp value of the consensus PTFN to be accepted by all the 

experts involved. 
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The form of PTFN and f-weighted valuation function can still be utilised even 

though only one expert's estimate is applied. This is because the form of 
PTFN has the advantage to deal with the uncertainty. 

3.5 Discussion 

Reason's Swiss Cheese Model has been widely utilised as the core concept to 

develop a number of guidelines, frameworks or methods, e. g. IMO guidelines and 
HFACS, in analysing accidents causation regarding human and organisational factors. It 

recognises both the active failures, at the sharp end of the system, and the latent 

conditions, in design, procedures and management that may lain dormant within the 

system for years, have the same significant contributions to the safety of a system, or 

organisation (Barnett, 2005). However, those applications mainly concentrate on a 

subjective interpretation regarding the occurrence of the identified factors to carry out 

accidents analysis qualitatively, without a quantitative probability figures to distinguish 

the significance of the factors objectively. 

Hence, by implementing the WoO of Reason's Swiss Cheese Model, this study 

presumes that a qualitative as well as quantitative accident analysis method based on the 

notion of the model can be achieved, in which the set theory and the probability theory 

are applied as the theoretical fundamentals. The method ends with a Bayesian Network 

to illustrate the analysed accident to deal with not only the causation of the factors 

identified qualitatively, but also the probability (or significance) of each factor 

quantitatively. By combining with the proposed HFACS-MA, which is a HOFs 

framework analogising to the HFACS, a comprehensive insight into the causation of the 
factors involved, from the sharp end personnel level to the organisational management 
level, is demonstrated. 

The proposed methodology has also considered the group consensus issue. Expert 
judgements can be applied when there is a lack of historical statistical data. Fuzzy set 
theory is the means to mitigate the dispute which may arise during the analysis 
procedure when consensus estimation is required from a group of experts. 

Predictably, the proposed methodology has the merit to be utilised in analysing the 
real causes of accidents. It can also be used in a "safety case" scenario to assess the 
safety of a system before a real accident happens. 
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In summary, the significant features of the proposed methodology are briefly listed 

as follows. 

>A systematic procedure to find out the causation of the factors involved in an 

accident, as the qualitative analysis results, is in line with the notion of WoOs of 
Reason's Swiss Cheese Model. Meanwhile, the probabilities of the Woo and the 

factors are the quantitative figures to depict their significance in the occurrences. 

> The Bayesian Network model established according to the qualitative and 

quantitative analysis results can be seen as a dedicated simulator of the accident to 

perform a series of what if examinations in order to identify the significance of the 

critical factors and to clarify the effectiveness of the countermeasures. 

> An Influence Diagrams model based on the established Bayesian Network model 

of the accident is a useful tool for decision makers to evaluate the best Risk 

Control Option, whilst considering the cost-benefit issue, among variant available 

countermeasures. 

> Both the qualitative and quantitative analysis results of the accident can 

simultaneously be shown in a Bayesian Network model to provide a 

comprehensive insight into the causation of the accident by integrating the 

HFACS-MA framework, as well as in an Influence Diagrams model to evaluate 

the cost-benefit outcome of the countermeasures. 
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Chapter Four - 
The method for qualitative and quantitative analysis 

Summary 

In this chapter, a method of obtaining the qualitative as well as the quantitative 

analysis results of a maritime accident in conjunction with experts' judgements is 

proposed. The method mainly applies Why Because Analysis (WBA) and Fault Tree 

Analysis (FTA) techniques for qualitative analysis, and Bayesian Network techniques 

for quantitative analysis. In addition, Sensitivity Analysis (SA) and Influence Diagrams 

are also applied as parts of the method. Every technique applied in the method follows 

the concept of Reason's Swiss Cheese Model to implement a relay-like procedure. The 

analysed results are presented in a form of Bayesian Network, in which the qualitative 

and quantitative analytic outcomes of the accident are shown in a graph with probability 
figures. An Influence Diagram which is derived from the Bayesian Network model of 

an accident can also be established for decision maker as a tool to select the best Risk 

Control Option (RCO) based on cost-benefit consideration through the Maximal 

Expected Utility (MEU) functionality. The proposed method also has merit in that an 

objective analysis results are still achievable even though the historical statistic data 

may not be available and experts' judgements have to be employed. This is because the 

systematic procedure and the validation process of the proposed method can effectively 

reduce the subjective speculations during the analysis. 

4.1 Introduction 

From the view of Fault Tree Analysis, the Window of Opportunity (WoO) of 
Reason's (1997) Swiss Cheese Model is similar to the Minimal Cut Sets (MCS) of Fault 
Tree Analysis. This is because a Minimal Cut Set is a Cut Set that if any Basic Event is 

removed from the set, the Top Event will not occur; where Cut Set is a collection of 
Basic Events such that if they all occur the Top Event must also occur (Andrews and 
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Moss, 2002). In Fault Tree Analysis, the Basic Events indicate the limit of resolution oC 

the fault tree and are mutually independent. For a quantitative analysis, it is those events 

for which data are required in FTA. Thus, the similarity of the definitions between Woo 

and Minimal Cut Set inspires the proposed method due to their concept are almost the 

same. In other words, the WoO should be able to be implemented by the Minimal ('111 

Set of FTA if the holes in each layer of the Swiss Cheese Model are treated as the events 

in the fault tree. In this sense, it seems that Reason's Swiss Cheese Model can be 

materialised by the Minimal Cut Sest under which the Top Event (i. e. the accident) is 

triggered by the combination of those events (i. e. the holes). Hence, this study assume" 

that if the Minimal Cut Sets of FTA can implement the WoOs of an accident, it would 

be possible to analyse an accident qualitatively as well as quantitatively. Then the 

Causal Factors and the countermeasures of the analysed accident may be identified 

objectively through a systematic procedure in order to prevent the similar occurrences 

from happening again. 
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In order to obtain the Minimal Cut Sets (or WoOs) of the accident, the Cut Sets 

involved in the accident have to be identified first. The difference between Minimal Cut 

Set and Cut Set is that a Minimal Cut Set consists of "necessary and sufficient" Causal 

Factors Whilst a Cut Set merely consists of "sufficient" Causal Factors. These Causal 

Factors are the factors that cause the consequence event (i. e. the holes) to happen. In 

Fault Tree Analysis, this consequence event is represented by the Intermediate Event of 

a Cut Set (or Minimal Cut Set). For identifying these Cut Sets, the Causal Factors 

derived from the information or evidence gathered during the investigation stage have to 

be clarified in advance. The proposed Human and Organisational Factors (HOFs) 

framework - HFACS-MA - which is specified in Chapter 6 can benefit investigators to 

identify the factors during the investigation. 

Therefore, during the analysis procedure of the proposed method (see Figure 4-1), 

the first process is to extract the relevant facts from the information or evidence 

gathered during the investigation (section 4.2.2). Further, as stated in section 4.2.3, the 

Causal Factors are then identified from the extracted facts. Hence, the Why-Because (or 

Cause-Consequence) relationship amongst these Causal Factors can be clarified and 
depicted in a Why Because Graph (WBG) by following the Why-Because Analysis 

process. These processes are described in sections 4.2.4 and 4.2.5. In the final stage of 

the Why-Because Analysis, a graphical presentation (i. e. the WBG) and a list of Causal 

Factors can be produced to depict the causation amongst these factors for every Why- 

Because subset. However, this is not necessarily the final result of the qualitative 

analysis because the Cut Sets might contain some insignificant or irrelevant Causal 

Factors. Thus, Karnaugh map (section 4.3.2) and K-style Conditional Probability Table 

(section 4.3.3) are applied in order to determine the necessary and sufficient Causal 

Factors (i. e. the Minimal Cut Sets) for each Why-Because subset. Eventually, the 
Minimal Cut Sets of an accident can be obtained via FTA (section 4.4) to achieve the 

goal of qualitative analysis of the accident. 

For quantitative analysis, the Bayesian Network technique is employed to 

overcome the difficulties of dependency over Basic Events within Fault Tree Analysis 
(section 4.4.1). To construct the corresponding Bayesian Network model, which is 
based on the prior qualitative analysis results, the proposed backtracking process 
(section 4.5.2) is utilised in order to establish the Directed Acyclic Graph (DAG) of the 
Bayesian Network model for the Minimal Cut Set(s) of an accident. For the Bayesian 
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Network model of Top Event (TE), the corresponding WBG and K-style Conditional 

Probability Tables (K-CPT) are the blueprint (section 4.3.5). Having coded the 

appropriate data to the Conditional Probability Tables (sections 4.3.4 and 4.5.5) for each 

node in the Directed Acyclic Graph, the preliminary Bayesian Network model of an 

accident is established. However this is not yet the outcome of the quantitative analysis. 

It has to pass the Sensitivity Analysis as the validation process (section 4.6.1) before the 

final quantitative analysis results of the accident can be acquired. By employing 

sensitivity finding process, the critical Causal Factors of the accident can also be found 

(section 4.6.2). Furthermore, the selection of the possible countermeasures, as Risk 

Control Options (RCOs), against the accidents can be fulfilled by expanding the 

Bayesian Network model to become an Influence Diagrams model (section 4.7) for the 

decision makers. The entire procedure of the proposed method is briefly illustrated in 

Figure 4-1 and the details for each process are described in the associated sections of the 

chapter. 

4.2 Why-Because Analysis (WBA) for Causal Factors 

In general, at least two questions arise when an accident has occurred; they are 
"what happened? " and "how did it happen? " In most cases the first question is easier to 

specify, for example the Estonian-flagged RO-RO passenger ferry `Estonia', carrying 
989 people, departed from Tallinn, the capital of Estonia, at 19: 15 hours on 27 
September 1994 for a voyage to Stockholm, Sweden. She sank in the northern Baltic 
Sea in the early hours of 28 September 1994. But it would be difficult to point out 

which Causal Factors (or causes) are involved immediately. In order to clarify which 
Causal Factors were really present at the time of the occurrence and the causalities 
between them, WBA is applied as the first part of the method to ensure the queries can 
be solved objectively, thoroughly and systematically. However, only parts of the WBA 

are utilised in the proposed analysis procedure due to the requirements of the method. 
The main work handled by WBA is merely fording out the sufficient Causal Factors 
involved in the accident and the causation amongst them. These results will then be 

passed to another process which is the probability distribution reasoning for further 

Bayesian Network model construction. 

WBA is a method for accident analysis and has been used to analyse many aviation, 
railway, marine and computer related accidents and incidents (RVS WBA homepage). It 
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is primarily used as a reactive analysis method. The major result developed in WBA is a 

Why-Because Graph which depicts the cause-consequence relationships (or causations) 

between Causal Factors and the Top Event (i. e. the accident). The Why-Because Graph 

consists of nodes and directed edges as a non-cyclic graph. The nodes represent the 

identified Causal Factors whilst the directed edges denote the causations between the 

Top Event and the Causal Factors. There are two reasons to apply WBA as the 

technique for identifying these Causal Factors within the analysis procedure. Firstly, the 

concept of the Why-Because Graph is in line with the implication of Cut Sets of FTA. 

This means that each event involved in the fault tree can be illustrated as the 

consequence of a set of Causal Factors in the Why-Because Graph to implement the 

idea of Cut Set. This is crucial to the analysis method because these Cut Sets are the 

foundation for acquiring the Minimal Cut Sets of FTA, which are the instances for 

implementing the Window of Opportunities of the accident. Secondly, the non-cyclic 

feature of the Why-Because Graph coincides with the characteristic of the Directed 

Acyclic Graph of Bayesian Network. The Bayesian Network model of the accident is 

the cornerstone to deal with the quantitative analysis of the accident and the subsequent 

selection of countermeasures for the decision makers within the proposed method. 

Before specifying the proposed method further, it is worth clarifying some 

terminologies used in the analysis procedure. These clarifications are not intended to 

override their original definitions which have been well-defined in the derived 

techniques, e. g. FTA or WBA. Rather, they seek to provide readers with a clearer aspect 

about the roles they play and how they will be dealt with within the proposed method. 
In other words, they are still consistent in their original definitions but just with 
different interpretations. 

º CF (Causal Factor): the factor causes its direct consequence event (i. e. 
Intermediate Event or Top Event) to occur. It can be deemed as a Basic Event or 

an Intermediate Event but is definitely not the Top Event. 

º BE (Basic Event): it is the primary form of Causal Factor and the analysis 
boundary of the procedure. That is, the leaf of a causation branch without any 
factor connected as its Causal Factor. 

º IE (Intermediate Event): it is the other form of Causal Factor which locates 
between the Top Event and the Basic Event of the Fault Tree, the Why-Because 

-43- 



Ch. 4: The method for qualitative and quantitative analysis 

Graph of WBA and/or the Directed Acyclic Graph of Bayesian Network. It can 

not only be the Causal Factor of an event, but can also be the consequence of its 

Causal Factors. 

/ CS (Cut Set): it consists of a set of sufficient Causal Factors to cause its direct 

consequence event (i. e Intermediate Event or Top Event) to occur. However, it 

may contain some insignificant or irrelevant factors. 

º MCS (Minimal Cut Set): it is a Cut Set that contains only necessary and 

sufficient Causal Factors to cause its direct consequence event to occur. This 

means no Causal Factor existed in the MCS is insignificant or irrelevant. 

As noted previously, the aim of these processes is to ascertain the Cut Set (or 

Causal Factors) for the Top Event and each Intermediate Event involved in the accident. 

This is achieved by inspecting the information and evidence collected during the 

investigation stage with the help of WBA technique. Therefore the WBA starts at 

organising the investigation information and ends in forming a Why-Because Graph and 

the Cut Sets of the accident. It can be divided into five steps; they are (1) information 

and evidence gathering, (2) facts finding, (3) Causal Factors identifying for each 

Intermediate/Top Event, (4) Why-Because Graph forming and (5) Causal Factors listing. 

A variation of WBA used in the present study is that although the WBA consists of 

eights subroutines to obtain the analysis results (i. e. the Why-Because Graph), neither 

the execution order nor the subroutines applied in the proposed procedure are the same 

as the original WBA. Only two of the subroutines are employed. They are the Causal 

Sufficiency Criterion (CSC) at the causal factors identification stage and Why-Because 

Graph in the process, results forming stage. The details of each process and application 

are described in the following sections. 

4.2.1 Information gathering according to the IMO guidelines 

Once an accident occurs, normally the administrative authorities will immediately 

launch an investigation into the occurrence so that lessons can be learned. There are 
several field guides (IMO, 2008; EUROCONTROL, 2005; Shappell and Wiegmann, 

2000; Dekker, 2002b; Stoop, 2003) specifies how to carry out the investigation 

objectively, thoroughly and effectively. Since this study considers the human factors 
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involved in the maritime accidents, the resolutions, codes and circulars adopted by the 

International Maritime Organization (IMO) are the primary guidelines to be followed. 

In May 2008, the Maritime Safety Committee (MSC) of IMO adopted a dedicated 

casualty investigation code (IMO, 2008) when the committee met in London for its 84th 

session. The following announcement, which is introduced on the IMO website 

(http: //www. imo. org), briefly describes the latest innovation of the code. 

New casualty investigation Code adopted 
The MSC adopted a new Code of International Standards and Recommended 
Practices for a Safety Investigation into a Marine Casualty or Marine Incident 
(Casualty Investigation Code). Relevant amendments to SOLAS Chapter XI 1 were 
also adopted, to make parts I and II of the Code mandatory. Part III of the Code 
contains related guidance and explanatory material. 

The Code will require a marine safety investigation to be conducted into every "very 
serious marine casualty", defined as a marine casualty involving the total loss of the 
ship or a death or severe damage to the environment. 

The Code will also recommend an investigation into other marine casualties and 
incidents, by the flag State of a ship involved, if it is considered likely that it would 
provide information that could be used to prevent future accidents. 

The new regulations expand on SOLAS Regulation 1/21, which requires 
Administrations to undertake to conduct an investigation of any casualty occurring to 
any of its ships "when it judges that such an investigation may assist in determining 
what changes in the present regulations might be desirable". 

Table 4-1 shown below are the Resolutions adopted by the organization with 

regard to the casualty investigation code. According to Resolution A. 849(20), there are 
two types of information that should be gathered during the investigation; they are 
"information generally required in all cases" and "additional information required in 

specific cases". It further subdivides the information generally required in all cases, into 

ten categories; they are: 

1. Particulars of the ship 
2. Document to be produced 
3. Particulars of voyage 
4. Particulars of personnel involved in incident 
5. Particulars of sea state, weather and tide 
6. Particulars of the incident 
7. Assistance after the incident 
8. Authentication of documents 
9. Engine-room orders 
10. External sources of information 
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In the same way, the additional information required in specific cases is also 

subdivided into five categories listed as follows. 

1. Fire/Explosion 
2. Collision 
3. Grounding 
4. Foundering 
5. Pollution resulting from an incident 

In each category, the guidelines enumerate a series of recommendations about 

which type of data should be collected as well as which kind of information is referred 

to. 

Table 4-1 The IMO resolutions/circulars regarding the Casualty Investigation Code 

Resolution 
A. 173 S. IV Participation in official inquiries into marine casualties. 
Resolution Recommendation on the conclusion of agreements and 
A. 203(VII) arrangements between States on the question of access and 

employment of foreign seaborne salvage equipment in territorial 
waters. 

Resolution The conduct of investigations into casualties. A. 322 
Resolution 
A. 440(XI) Exchange of information for investigations into marine casualties. 
Resolution Personnel and material resource needs of Administrations for the 
A. 442(XI) investigation 'of casualties and contraventions of conventions. 
Resolution Co-operation in maritime casualty investigations. 

. 637(16) 
Resolution Code for the investigation of marine casualties and incidents, as 
A. 849 20 amended by resolution A. 884(21). 
Resolution Amendment to A. 849(20) 
A. 884(21) (Appendix 2 Guidelines for the investigation of human factors in 

marine casualties and incidents) 
MSC/Circ. 539/ Reports on casualty statistics concerning fishing vessels and 
Add. 2 fishermen at sea. 
MSC/Circ. 827 (updated by MSC/Circ. 953/MEPC/Circ. 372): Reports on marine 

casualties and incidents. Harmonized reporting procedures - Reports 
required under SOLAS regulation 1/21 and MARPOL 73/78 articles 
8 and 12. 

MSC- Revised harmonized reporting procedures - Reports required under MEPC. 3/Circ. 1 SOLAS regulation 1/21 and MARPOL 73/78, articles 8 and 12 
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Furthermore, the Code also remarks on the signification of the human factors 

involved and suggests twenty-five areas of inquiry, from which a series of example 

questions have been designed. These inquires are roughly subdivided into two 

categories as "Shipboard Issues" and "Shore-Side Management Issues". This can assist 

the investigator in searching for human factors involved in an accident. The public can 

now access a dedicated database (i. e. Global Integrated Shipping Information System 

(GISIS) http: //gisis. imo. org) which has been set up by IMO secretariat with regard to 

ship casualties and other shipping information. The Casualty Module of GISIS contains 

two kinds of information collected on ship casualties. The first category of the 

information comprises factual data collected from various sources. The second category 

of data is made up of more elaborated information based on the reports of investigations 

into casualties received at the IMO. This may consist of the analysis of full investigation 

reports by the organization or reporting forms annexed to MSC-MEPC. 3/Circ. l. It is 

recommended to gather the information by following the domain guidelines since they 

can help the investigations to ensure that the data collected is comprehensive and 

sufficient. For maritime accidents and casualty investigation, the IMO guidelines should 
be the fundamental basis to be followed. 

4.2.2 Fact finding with a proper format 

Fact Finding 

Information 
Facts-ir 

or evidence 

The main purpose of this fact finding process is to organise the information 

obtained during the investigation into a proper format. This format has to consider three 

essential requirements for carrying out the rest of the analysis within the procedure. 
They are: 

1. The facts specified should only focus on a single action, condition, event, etc., 
at the same time it has to be clear and explicit for the analyst to understand. 

2. It should contain a means of index to link up the source information as well as 
the subsequent analysis outcomes. 

3. The maintainability of the data pool which collects and organises the sieved 
facts should be easy to add in or take out any factual data. 
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Therefore, the formation of listed statements is proposed as the solution to fulfil 

the requirements. Each listed statement consists of three parts; they are "(#): sequential 

identifier with a hierarchy feature (e. g. 1.1 or 1.2.1)", "the statement body for one single 

fact" and "(source index)". The proposed format is shown below and some examples are 

illustrated in section 5.2.1: 

(#) [the statement body for one single fact] (source index) 

e. g. (3) [The master ordered a ship speed of 18 knots] (DoT 9.2; pp. 7). 

The first part of the format, the sequential identifier "(#)", can have various types 

of notation. The only constraint on the format is that it has to be short and a pure 

numerical style is preferred. This is because the letter-number (e. g. A-1) notation style 

will be intensively applied within the following processes. In order not to mix up the 

notation of listed statements with the others, it is recommended to use a different type of 

notation style in different analysis processes. The second part of the format is the 

statement body that contains sentence(s) to depict one particular fact which is extracted 
from the gathered information. Each statement should only focus on one single fact and 
describe it as briefly as possible without compromising the clarity. For convenience, for 

the next process to handle the described fact, it is preferred that the statement matches 

with an event or a Causal Factor. If this is not the case, ̀ disorder' may be introduced 

whilst transferring the statements from facts, to Causal Factors in the next process. 
Although this `disorder' will not halt the process, it will produce some undesired 

outcomes such as several statements leading to one Causal Factor or, vice versa, several 
Causal Factors referring to one statement. The last part of the format. is the "(source 

index)" located at the end of the statement. This is a short notation which links the 

statement and the source information from which the fact is derived. No particular style 

of the index needs to be followed but it should be as simple as possible. These indices 

will be very useful for locating the origin of the information if any doubt arises when 

reviewing the statements. 

Once all the facts have been elicited and organised, according to the proposed 
format, to create a data pool of listed statements, the next process of identifying the 
Causal Factors can be proceeded. 
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4.2.3 Identifying the Cut Sets using Causal Sufficiency Criterion (CSC) 

Fact Finding 

Information 
-ý or evidenceýý 

Facts 
A 

Factors 

WBA',: z 
------------ 

The identification of the direct Causal Factors for each Intermediate/Top Event 

through the listed statements organised within the previous process is now considered. 

The CSC is proposed in the WBA guideline (Paul-Stüve, 2005). It is specified such 

as "between a set of causal factors A, """ AN and a consequence event B, it is impossible 

for B not to have happened if all of Ak; ke [1, N] have happened". In contrast, the 

definition of Cut Set of FTA is that "a Cut Set is a collection of Basic Events such that 

if they all occur the Top Event must also occur" (Andrews and Moss, 2002). Since the 

similarity of these two definitions, the study assumes that the CSC of WBA can be 

utilised to sort out a set of direct Causal Factors for each Intermediate/Top Event of an 

accident from the listed statements to represent the Cut Set of the Event in FTA. In 

other words, the CSC is treated as a filter to sieve out the Causal Factors from the data 

pool of listed statements in order to constitute a Cut Set that is sufficient to trigger a 

particular event. It is fitting to treat every Causal Factor in WBA as an Intermediate 
Event in FTA, but it might sometimes be improper to treat it as a Basic Event in FTA. 

This is because it is very unlikely that the Causal Factors involved in an accident are 

mutually independent. This feature will result in a problem if the Causal Factors are 
treated as Basic Events to carry out the quantitative analysis in FTA without clarifying 
the dependencies amongst them. Fortunately, FTA is only applied to handle the 

qualitative analysis within the proposed method so that this issue does not halt the 

process, and the only differentiation between Intermediate Event and Basic Event is 

whether they are "the limit of resolution of the fault tree" (Andrews and Moss, 2002), 
i. e. the boundary of the analysis. It implies that, in the proposed application, an event 
becomes a Basic Event if it is on the boundary of the fault tree, otherwise it is an 
Intermediate Event. In addition, each Intermediate Event and the set of its direct Causal 
Factors (i. e. Cut Set) can also be seen as a Why-Because subset. The entire Why- 
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Because Graph of the accident can then be acquired by assembling every Why-Because 

subsets into one union, with other subsets subsequently included. 

As described in section 4.1, the aim of this process is to clarify which direct Causal 

Factors triggered an Intermediate Event to occur. Thus, two considerations must be 

made when transforming the listed statements into the direct Causal Factors of 

Intermediate/Top Events for further analysis. 

Firstly, each listed statement should be depicted as a single fact as possible, but 

this is not always the case. In other words, there will not always be a one-to-one relation 
between the listed statements and those Causal Factors. It might be a relationship of 

many listed statements regarding one Causal Factor, or vice versa, one listed statement 

refers to many Causal Factors. However, if the index system of the listed statements is 

well defined, this phenomenon does not cause a serious problem but introduces some 
`disorder' only. Secondly, in a practical application, if a dedicated domain/field causal 

taxonomy is available, it would be helpful for analysts to identify the Causal Factors 

from the listed statements. This means that, as long as an action, condition or event 

conforms to one particular definition of the taxonomy, it can easily be identified as a 
Causal Factor. For example, in section 5.2.1, the listed statement (2) of the case study - 
"The assistant bosun failed to carry out his duty to close the bow doors at the time" is 

identified as a Causal Factor because it conforms to one of the definitions of the 

proposed HFACS-MA framework, which is "Violations: factors in a mishap when the 

actions of the operator represent wilful disregard for rules and instructions, and lead to 

an unsafe situation" described in section 6.2.1.2. 

As soon as all the gathered information and evidence with respect to the accident 

are listed and organised as listed statements in the previous process, the causality 

amongst them becomes the top priority issue of the analysis procedure in order to 

ascertain the answers of how and why the accident happened. The purpose of this 

process is similar to piecing together a jigsaw puzzle; all the pieces of the puzzle (i. e. 
listed statements) are now in place, but the whole picture of the puzzle (i. e. the Why- 
Because Graph or the Cut Set of each Intermediate Event) is as yet unknown. Therefore, 

a systematic procedure to transform the listed statements into the Causal Factors and 
specify the causalities amongst them is proposed as follows. 
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(1) The Causal Factor identifying process starts from the Top Event of the accident. 

It is similar to starting piecing together a jigsaw puzzle from the first identified piece, 

and then the adjacent pieces to the first identified piece one after another. That is, the 

analyst scans all the listed statements searching for the possible direct Causal Factors 

which could result in the Top Event, one by one, from the top to the bottom of the 

statements in turn, using Causal Sufficient Criterion as the sufficiency examiner. The 

purpose of the criterion is to ensure the Cut Set (i. e. set of identified direct Causal 

Factors) of a particular Intermediate/Top Event is both sufficient and valid to the event. 

This means that a factor will become one of the identified Causal Factors of a particular 

Intermediate/Top Event if it is rationally believed that it is responsible for the 

occurrence of the event. 

(2) The factor is subsequently added into the Cut Set of the Intermediate/Top Event. 

If the direct Causal Factors in the Cut Set are still not enough to support the 

Intermediate/Top Event to occur, then the Causal Factor identifying process has to 

iterate for that particular Intermediate/Top Event until the Cut Set satisfies the CSC. An 

example of transforming those listed statements into the Causal Factors is demonstrated 

in the case study in section 5.2.2. Once the Cut Set of a particular Intermediate/Top 

Event passes the CSC, the Causal Factor identifying process for that Event is 

accomplished. 

(3) The Intermediate/Top Event and its Causal Factors are hence grouped as one 

of the Why-Because subset, which is going to be used to construct the Why-Because 

Graph in the next stage. This is, the Intermediate/Top Event is deemed as the "why (or 

consequence)" and its Cut Set as the "because (or causes)" in the graph, in which the 

direct Causal Factors of a particular Intermediate/Top Event comprise the Cut Set of 

that event in FTA. 

Soon after the Cut Set of Top Event is finalised, each Causal Factor in that Cut Set 

becomes an Intermediate Event and launches another Causal Factor identifying process 
for each new Intermediate Event. This process operates iteratively on all new identified 

Causal Factors until reaching the boundary of the analysis (e. g. beyond the investigation 

scope) from the information collected. If every Cut Set for each Intermediate/Top Event 

is satisfied with CSC, it would be confident to say that the entire Why-Because Graph, 

which consists of these Intermediate/Top Events with their Cut Set, is also satisfied with 
CSC. After accomplishing this process, there are two groups of intermediate analysis 
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data eventually created; they are the identified Causal Factors and the Cut Set for each 

Intermediate/Top Event. They are not only the essential material to construct the Why- 

Because Graph and to make a List of Factors, but also the foundation for the rest of 
analysis processes. It is important to note that the Causal Factors contained in the Cut 

Set only represent the sufficient Causal Factors of the Intermediate/Top Event and not 

the necessary and sufficient Causal Factors. The difference between them will be 

explained in section 4.3. 

4.2.4 Constructing the Why-Because Graph (WBG) 

Fact Finding WBG Constructing 

Information 
or evidence 

Do- Facts-º Factors- . 

W BA 

The goal of constructing the Why-Because Graph is to assemble those Why- 

Because subsets (i. e. the Intermediate/Top Event and its Cut Sets identified in the 

preceding process) into a singular graph (see Figure 4-2 for the illustration). Each 
Intermediate/Top Event and its Cut Set have been seen as a subset of the Why-Because 
Graph, in which Intermediate/Top Event is the "why (or consequence)" and its Cut Set 
is the "because (or causes)". The complete Why-Because Graph should be able to 

construct via assembling these Why-Because subsets together providing none of the 
Intermediate Events has been overlooked. 

The identified subset (i. e. IE and its CS) The WBG assembled by those subsets 
: 

TE 
5 

, 

L_J I_ 
Il 

_J ....... aya AB 

Figure 4-2 The identified subsets and the Why-Because Graph 
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The construction of the Why-Because Graph is fairly straight forward. As each 

Intermediate/Top Event and its Cut Set are a subset of Why-Because Graph, the main 

purpose of the process is to collect and assemble these Why-Because subsets form the 

top (i. e. Top Event) to the bottom in turn. Therefore, the process starts with the first 

identified event - Top Event to assemble the Why-Because Graph. Each Causal Factors 

of the Top Event will becomes one of the first layer's Intermediate Events, if any one of 

them has a Cut Set (CS) identified in the preceding process. The Cut Set belongs to that 

Intermediate Event will be concatenated to the tail of the Intermediate Event in the 

Why-Because Graph, and hence the graph grows. The entire Why-Because Graph is 

completed when all the Why-Because subsets of each Intermediate Event have been 

placed in the right location of the graph. It is also possible to construct the Why- 

Because Graph and identify the Causal Factors of the Intermediate/Top Event 

simultaneously provided that this is not detrimental to the analyst work. Figure 4-2 

illustrates the notion of assembling the Why-Because Graph with the identified subsets 

and the notion of layers with the horizontal lines. 

4.2.5 Create the List of Factors (LoF) 

Fact Finding WBG Constructing 

Information 
or evidence 

W BA 

The goal of this process is to organise the identified Causal Factors, which are 

contained in the Why-Because Graph, with an index mechanism referring to the derived 

listed statements. The LoF is the key for the Causal Factors and/or the Why-Because 

Graph to refer to the origin of the listed statements. It also provides a useful auxiliary 

reference to perform the Boolean algebra operation for clarifying the Minimal Cut Sets 

of the accident in the following processes. After accomplishing the construction of the 

Why-Because Graph of the accident, a comprehensive overview is given with regard to 

"how did the accident occur" and "which Causal Factors were involved in the accident". 

However, this overview is not yet able to answer the question of "why did the accident 

happen". This is similar to the whole jigsaw puzzle having now been pieced together, 

but the story behind the picture is as yet unknown. Before carrying out the analysis 

further for the answer to "why did it happen", those identified Causal Factors, which are 
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shown in the Why-Because Graph, have to be organised and labelled as a data pool for 

the following analysis. The principle of the labelling system of the Causal Factors is to 

assign a symbol or label to each Causal Factor as short and clear as possible. This is 

because these symbols or labels will be utilised in the Boolean algebra operation for 

clarifying the Minimal Cut Sets of the accident. The assigned symbol or label has to be 

simple as well as ordered. Meanwhile it also has to differentiate from the enumerating 

system of the listed statements. Therefore, this study proposes a letter-number (e. g. 

"Al" or "A" only) format to deal with the notation of the Causal Factors. It is 

recommended to initiate the label assigning process after the Why-Because Graph has 

been accomplished rather than during the Causal Factor identifying process. Without 

the entire overview of the Why-Because Graph, it is highly likely that the label assigned 

to a Causal Factor will be changed due to another new Causal Factor being identified. 

Therefore, it is recommended to assign the symbols or labels to each Causal Factor after 

accomplishing the Why-Because Graph of the accident to gain the benefit of a coherent 

symbol outcome. 

Having assigned the symbol or label to each Causal Factor in the Why-Because 

Graph, it is worth making a list of Causal Factor as a quick reference. Since these 

Causal Factors are derived from the listed statements, it is also worth setting up an 

index for each Causal Factor to rapidly refer to the related statements. The proposed 
format of the LoF is shown as follows. 

Label: [factor description] (index) 

e. g. A: [a large quantity of water entered G deck] (4) 

From the example shown above, "A" is the symbol or label of the Causal Factor; 

and "(4)" in the tail of the sentence is the index which links the Causal Factor "A" to the 

listed statements No. 4. The "[factor description]" depicts the identified Causal Factor in 

a short sentence emphasising on one single factor. A domain or field error taxonomy 

will be helpful to identify the factor and to clarify the category of it. As noted 

previously, a Causal Factor might be derived from more than one listed statement as 

well as one statement may be referred by more than one Causal Factors. An example of 

the LoF for the case study is illustrated in section 5.2.3. The index notion between the 

LoF and listed statements together with the listed statements and source information is 

demonstrated in Figure 4-3 below. 
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Index System 

° Source Source s 
MAM 

E 
(1) [statement body] (source to index 
( statement body] (source data in x) 

(N statemen ] (source data index) 

" A: [factor Lion] (statemeli is index) 
i d n ex) B: [factor descriptilý statements 

Z: [factor description] (stateme is index) 
U 

Figure 4-3 The index mechanism amongst LoF, listed statements and source 
information 

4.3 Determining the approximate Minimal Cut Set(s) (MCS) for 

Intermediate/Top Event and constructing the Bayesian Network 

model of Top Event 

Up to this stage, the analysis results acquired are the Why-Because Graph, Cut Set 

for each Intermediate/Top Event and the List of Factors. However, in order to perform 

the best qualitative analysis, Minimal Cut Sets, rather than the Cut Sets, for each 

Intermediate/Top Event are preferred. Hence, the main purposes of this process are to 

form a Bayesian Network model of Top Event and to clarify the approximate Minimal 

Cut Set(s) for each Intermediate/Top Event by ruling out the trivial Causal Factors from 

the Cut Set. As noted previously, the difference between Minimal Cut Set and Cut Set is 

that a Minimal Cut Set consists of "necessary and sufficient" Causal Factors whilst a 
Cut Set merely consists of "sufficient" Causal Factors. That is, a Cut Set might still 

contain some insignificant or irrelevant Causal Factors. However, the notion of Minimal 

Cut Sets applied in the proposed methodology is not the same as the type used in FTA; 

they are in an approximate style. This is because an approximate simplification law is 

applied to obtain the Minimal Cut Sets in situations where all the traditional "AND", 

"OR" and "Equal" are defined as "noisy-AND", "noisy-OR" and "noisy-Equal". They 

are defined as follows: 
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C=AA. B means C occurs if A and B happen simultaneously. 

C A" B means C occurs with a high probability (not necessarily equal to 1) 

if A and B happen simultaneously. 

C=A+B means C occurs if A or B happens. 

C; zts A+B means C occurs with a high probability (not necessarily equal to 

1) if A or B happens. 

C=A means C occurs if A happens. 

C, ts A means C occurs with a high probability (not necessarily equal to 1) if 

A happens 

Therefore the Minimal Cut Sets applied, hereafter, in the following processes are 

used in an approximate style without further specification. In order to rule out these 

trivial Causal Factors from the Cut Set, two instruments are applied as the filter to 

achieve this goal; they are Karnaugh map (or K -map in short) and K-style Conditional 

Probability Table (or K-CPT in short). Before specifying the details of the transforming 

process, it is necessary to understand how these two techniques handle the intermediate 

analysis results obtained so far. 

4.3.1 The properties of Boolean algebra 

Before specifying the Minimal Cut Set(s) transforming process, it is worth 

reviewing the properties of Boolean algebra. Table 4 -2 summa rises some of these 

properties which will be utilised in the proposed process. The symbols for the two 

primary binary operations are defined as ""/n "(logical AND/set intersection) and 

"+ /U" (logical OR/set union), and for the single unary operation is as "A/-, " (logical 
NOT/set complement). The value of "0" represents logical FALSE, and "1" for logical 

TRUE. The frequently applied algebraic manipulation of Boolean expressions or the 

axiom laws of Boolean algebra are tabulated in Table 4-2, and the engineering style (e. g. 
A A. B for "AND" and A+B for "OR") is the notation to be followed hereafter. 
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Table 4-2 Summary of Boolean algebra properties 

A+(B+C)=(A+B)+C A"(B"C)=(A"B)"C associativity 

A+B=B+A A"B=B"A commutativity 
A+(A"B)=A A. (A+B)=A absorption 
A+(B"C)=(A+B)"(A+C) A"(B+C)=(A"B)+(A"C) distributivity 

A+ A =1 A" A= 0 complement 

A+ A= A A. A= A idempotency 
A+ 0= A A" 1= A boundedness 
A+1=1 A"0=0 

A+B =A"B A"B =A+B DeMorgan'slaws 

A=A involution 

4.3.2 The Karnaugh map (K-map) 

The K-map is a pictorial form of a truth table and provides a simple 

straightforward procedure for minimising Boolean algebra expressions (Mano, 2002). It 

can reduce the need of Boolean algebra calculations by taking the advantage of humans' 

pattern-recognition capability. The capability facilitates the rapid identification and 

elimination of redundant items in the expression. A K-map is a table which consists of 

numbers of cell. The dimension of a map is decided by the number of Boolean variables 

shown in the expression and is power of two; i. e. 2", neN (n: the number of variable). 

Each cell of the map has a unique binary value representing the corresponding 

combination of the variables, called terms or minterm. With reference to the forms and 

definitions of Boolean expressions, it is obvious that each binary value can be converted 

to an equivalent decimal value. Besides, the cells of the terms in the map are arranged in 

the way of "Gray code" in which only one variable changes its value between two 

adjacent cells. For illustration, a four variable K-map which contains Boolean variables 
A, B, C and D having sixteen cells in the map is shown in Figure 4-4 as an example. In 

the map, at the top side of the grid, the value of the variables is expressed in binary form. 

Therefore, "AB=00" means that neither A nor B appear in the expression, "AB=11" 

represents A and B appear in the terms of the expression, and so forth. 
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CD=00 

CD=01 

CD=11 

CD=10 

AB=00 AB=01 AB=11 AB=10 

ABCD (0) ABCD (4) ABCD (12) ABCD (8) 

AB CD (1) BCD (5) ABCD(13) ABCD(9) 

ABCD(3) ; BCD(7) ABCD(15) ABCD(11) 

ABCD (2) ABCD (6) ABCD (14) ABCD (10) 

Figure 4-4 A K-map of four Boolean variables 

Once the variables have been defined, the values of the cells are transcribed 

according to the location of the cells and the Boolean expression. Thus, for every 

possible combination of Boolean variables, the one-to-one relationship between cell and 

the combination of variables is defined. For example, if ABCD appears in the 

expression, the value of cell "(0)" must be "True" or '1°', otherwise "False" or "0". The 

K-map may theoretically be applied for the simplification of any Boolean expression 

regardless of the number of variables contained, but it is normally used when there are 
fewer than six variables. This is because a K-map comprising more than six variables is 

complex and tedious to simplify (Mano, 2002). 

Having completed a K-map with value assigned to each cell, a minimised Boolean 

expression can be acquired by grouping together adjacent cells containing "True" or "1". 
Each group provides a "product" to create a sum-of-products in the Boolean expression, 

e. g. A"B+C"D. A minimum sum-of-products expression is defined as "a sum of 

product terms which (a) has a minimum number of terms, and (b) of all those 

expressions which have the same minimum number of terms, has a minimum number of 
literals" (Roth, 1992). A K-map can use the following rules for simplifying the 

expressions (Belton, 1998). 

1. Groups do not include any cell containing "False" or "0" 
2. Groups may be horizontal or vertical, but not diagonal. 

3. Groups must be the cell number of 1,2,4,8, or in general 2", n r= N. 

4. Each group should be as large as possible. 
5. Each cell containing "True" or "1" must be in at least one group. 
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6. Groups may overlap. 
7. Groups may wrap around the table. The leftmost cell in a row may be grouped 

with the rightmost cell and the top cell in a column may be grouped with the 
bottom cell. 

8. There should be as few groups as possible, as long as this does not contradict 
any of the previous rules. 

Eventually, a corresponding minimised sum-of-products Boolean expression can 

be obtained through the K-map if the simplification procedure is carried out correctly. 

The K-map is mainly applied to clarify the Minimal Cut Set(s) (i. e. the minimised 

Boolean expressions) for each Intermediate/Top Event, and the result should be the 

same as the outcome acquired by the algebraic manipulation of Boolean expressions or 

the axiom laws of Boolean algebra. 

4.3.3 The K-style Conditional Probability Table (K-CPT) 

The K-CPT is an integration of Karnaugh map and Conditional Probability Table 

of Bayesian Network. The new K-style Conditional Probability Table is only introduced 

and used in the next stage for finalising the Minimal Cut Set(s) of Intermediate/Top 

Events. The layout or arrangement of the K-CPT is similar to a K-map. However, the 

value assigned into each cell of the table is the probability distribution of the condition 
that the corresponding combination of Boolean variables represents, instead of "1" or 
"0" in a K-map. In addition, the K-CPT only displays the probability value that the 
influenced node occurred, since the occurrence of an influenced node is the only 

concern and there is always a complementary relationship between each half part of the 

tables. For instance, in Figure 4-5, an example shows the difference between the 

original Conditional Probability Table of a Bayesian Network and the K-CPT where 

only the data under the condition that event C occurred is shown in the corresponding 
K-CPT. It provides the same advantage that K-map has in order to perform the 

simplification of the Minimal Cut Set(s) from the Cut Set regarding an 
Intermediate/Top Event in the next stage. 
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DAG of BN Original CPT of BN K-CPT 

C=0 C=1 
A=O B=O 0.9 0.1 

B=1 0.1 0.9 
A=1 B=0 0.8 0.2 

B=1 0.7 0.3 

A=0 A=l 
B=O 0.1 0.2 
B= l 0.9 0.3 

(P. S. only the data for 
"C=1 " is shown) 

Figure 4-5 An example of DAG, CPT and corresponding K-CPT 

4.3.4 Determining the approximate Minimal Cut Set(s) (MCS) for each 

Intermediate/Top Event with the K-CPT and the K-map instruments 

Fact Finding WBG Constructing 

Information Fach-* F-actors-ý ('ul Sets-ý 
or evidence 

I R'ßA K-CI'i' K K-map 

Having specified the functionalities of K-CP"I' and K-map, this section describes 

how to carry out the transforming process which sorts out the Minimal Cut Set(s) for 

each Intermediate/Top Event via these two instruments working together. The K-CPT 

and the K-map are applied to every Why-Because (or cause-consequence) subset, one at 

a time. Each subset consists of an Intermediate/Top Event and its Cut Set (i. e. the set of 

direct Causal Factors). The K-CPT illustrates the conditional probability distribution 

relationship between an Intermediate/Top Event and its Casual Factors whilst the K- 

map can transform the Cut Set of the event into Minimal Cut Set(s). Having linalised 

the process, the Cut Set of the event is replaced by at least one Minimal Cut Set of the 

direct Causal Factors to represent the cause-consequence relationship between the event 

and the factors. All the factors left in the Minimal Cut Set can therefore be ensured as 

the Necessary Causal Factors. After this process, it might be found that the 

Intermediate/Top Event consists of more than one Minimal Cut Set instead of only one 
Cut Set as before. This is because the proposed methodology has considered the 

possibility of different combinations of these Necessary Causal Factors could also lead 

to the same consequence (i. e. the Intermediate/Top Event). 

Later in section 5.3, an example detailing the K-CPT establishing and K-map 

simplification regarding a tragic case are demonstrated in the case study. Finally a list of 
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Boolean algebra equations depicting the Minimal Cut Set(s) for each Intermediate/Top 

Event is provided as the outcome of this simplification process. These equations arc 

essential to clarify the Bayesian Network of Minimal Cut Sets of an accident in the 

following processes. Figure 4-6 shows three basic types of approximate simplification 

outcomes as examples. They are similar to the notion of "noisy-AND with leak" and 

"noisy-OR with leak" relationships which is proposed by Bobbio et al. (2001), and as 

well as the "noisy-Equal". 

WBG (or DAG) 

u 

ARC 

0 b 
Iý 

,1ßC 

K-CPT 

(for D=1) 
C=0 C=l 

AB=00 0.01 0.01 
AB=01 0.1 0.1 
AB=11 0.1 0.95 
AB=10 0.01 0.01 

(for C=1) 
[A_o 0.01 

A-1 0.8 

(for D=1) 
C=0 c=1 

AB=00 0.05 0.9 
AB=01 0.85 0.95 
AB=11 0.8 0.85 

; 1B=10 0.95 0.9 

K-map 

C=0 C=1 
AB=00 O O 
AB=01 -z0 O 
AB=11 '0 Z1 
AB=10 ý: --0 'z0 

A=O 
A-1 ý1 

c=o C--- l 
AB=00 O z1 
AB=oI zzl Z1 
AB=11 ': r1 Z1 
AB=10 21 zt 1 

AB=00 O z1 
AB=OI zzl Z1 
AB=11 z1 Z1 
AB=10 zzl zt 1 

(P. S. the data shown in K-CPT is examples f or 
demonstration only) 

Approximate 
MCS 

I) ii"13"C 
(noisy-AND) 

CA 
(noisy-Equal) 

D 2zA+B+(' 
(noisy-OR) 

Figure 4-6 The three basic forms of approximate Minimal Cut Set 

In the beginning of the transformation process, an empty K-CP'l' and K-map, 

whose size and layout are set according to the number of Causal Factors in the Cut Set, 

are in place for each Why-Because subset. Subsequently, a probability distribution 

value is assigned into each cell of the K-CPT (i. e. tables shown in the second column of 
Figure 4-6) according to historical statistic data or experts' judgement. Once the K-CPT 
has been completed, the corresponding K-map is also obtained by determining the data 

in each cell of the K-CP'F either becoming to "1" or "0", and then transcribing it into the 
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corresponding cells of the K-map (i. e. tables shown in the third column of Figure 4-6). 

Having completed the K-map, a Boolean expression representing the approximate 

Minimal Cut Set(s) of an Intermediate/Top Event can be obtained via a simplification 

process. By sorting out all of the Why-Because subsets concluded in the preceding 

processes with the simplification process, both the approximate Minimal Cut Sets of 

Intermediate/Top Events and the Bayesian Network of Top Event of an accident can be 

acquired by one further step. 

4.3.5 Forming the Bayesian Network of Top Event 

After the Why Because Graph (WBG) and K-CPT of an accident are set up, one of 

quantitative analysis results can be obtained. By applying WBG as the blueprint of the 

Directed Acyclic Graph of Bayesian Network and K-CPT as the data sources of CPT of 

Bayesian Network, the Bayesian Network model of Top Event of an accident can be 

constructed accordingly. There will be two Bayesian Network models as the 

quantitative analysis results yielded in the proposed methodology. One depicts the Top 

Event of an accident, and the other specifies the approximate Minimal Cut Set(s) (for 

short, it is only named Minimal Cut Set hereafter) of the accident if the preceding 

simplification process is achievable. The difference between these two models is the 

way they interpret the Window of Opportunities (WoOs) of an accident. The Top Event 

model concentrates the entire influence of WoOs whilst the Minimal Cut Set model 
discusses the effect of each WoO individually. In section 5.3, more details in regard to 

the distinctions between these two models will be shown with a real case applied. 

Nonetheless, the Minimal Cut set model of an accident may not be available all the 

time, or the outcome of the model may not be acceptable. This is because the Minimal 

Cut Set model has to compromise the precision of the analysis results in order to gain 
the possibility of simplification. The Minimal Cut Set model is based on the assumption 
that an Intermediate/Top Event is highly likely to happen if its Minimal Cut set(s) occur 
(i. e. the approximate simplification law). However, this is not always the case in reality. 
For example, if the value assigned in K-CPT is less than 0.6 (i. e. an event has 60% of 

probability to happen if its Minimal Cut set(s) stand), it would be difficult to determine 

it as "1" in the corresponding K-map (i. e. the event is 100% to happen). The larger the 
difference in K-CPT, the more the distortion of the Minimal Cut Set(s). Therefore, the 

outcomes of the Minimal Cut Set model may not be acceptable if the simplification 
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result has been over-distorted. The degree of the distortion can be checked by 

comparing the quantitative analysis results of FTA and the Bayesian Network model 

with respect to there Minimal Cut Sets as a validation mechanism. It can be expressed 

as follows. 

F7A(MCS)- BN(MCSI 
Distortion = BN(MCS) 

4.4 Fault Tree Analysis (FTA) to finalise the qualitative analysis 

results 

Eventually, having clarified all the Minimal Cut Set(s) (i. e. the set contains 

Necessary Causal Factors) for each Intermediate/Top Event (i. e. the consequence event 

of the Why-Because subset), the Minimal Cut Sets of the accident can now he obtained. 

Again, Boolean algebra manipulation is utilised to determine the Minimal Cut Sets of 

an accident. At the end of this process, all the possible Minimal Cut Sets of the accident 

will be revealed as the qualitative analysis results of the accident. Fach Minimal Cut Set 

depicts the possible combinations of these Basic Events that caused the accident to 

happen. However these Basic Events are not the only factors to cause the accident to 

happen but the representative only. In other words, they are not necessarily the entire 

Causal Factors but the deepest latent conditions that reside in every causation branch. 

These Basic Events are the latent conditions of those Intermediate Events whilst the 

same Intermediate Events are the latent conditions of the 'hop Event (i. e. the accident). 

Those Intermediate Events are located in the middle of the causation branch and should 

not be overlooked even though they are not present in the Minimal Cut Sct(s) of 'Fop 

Event. 

4.4.1 Determining the Minimal Cut Set(s) of a Fault Tree 

Fact Finding IWBG Constructing 

Information 
Fac4} Minimal 

or evidence-f 
-i i Cut Sets-01. 

Cut Sets-f 

1%R, t K-CPT& K-map 
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This process is similar to the mathematic factorisation operation, but the equation 

of the operation is associated with a list of Boolean algebra expression regarding the 

Intermediate/Top Events acquired in section 4.3.4. It starts from the Top Event again. 

The Top Event is substituted by its Minimal Cut Sets, which are represented by sets of 

its Necessary Causal Factors and are displayed on the right hand side of the equal sign 

in the equation. Then, each Necessary Causal Factors in the Minimal Cut Sets of the 

Top Event becomes an Intermediate Event and is replaced by their Minimal Cut Sets, 

which are shown in column "approximate MCS", for example in Figure 4-6, until 

reaching the end of the tree (see Figure 4-7 as an example). This also means that the 

factorisation operation is stopped at the bottom of the Why-Because Graph or the 

boundary of the analysis (i. e. the Basic Events). The axiom laws of Boolean algebra arc 

applied, from time to time, during the operation in order to obtain the most simplilied 

form of the equation. After reaching the final stage of the factorisation operation, 

several groups of Necessary Causal Factors (i. e. the Basic Events) in the form of suln- 

of-products are revealed as the results. Each group of Basic Events represents one of the 

Minimal Cut Sets of the Top Event. For example, in Figure 4-7, a fault tree is shown 

such that the Fop Event is caused by two Intermediate Events (i. e. events A and 13) 

whilst event A is caused by event C or D (as the Basic Events) and event B is triggered 

by event E respectively. Subsequently, after the factorisation process, the simplified 

outcome of the equation turns out to be " (C 
" F) + (I) " F) ". I fence two groups of 

Necessary Causal Factors emerge as the Minimal Cut Sets of the l'op Fvent; they are 

"(C " E)" and "(D " E)". Later, in section 5.4.1, Equation (5.2) which demonstrates the 

factorisation process for the case of Herald of Free Enterprise (IIoFI; ) will provide a 

more comprehensive picture about how it works. 

TN . -A"I3 
TE = (C + n). F, 
Tr: =(C-r-. )+(1)-l. ) 

I; = MCSI + MCS2 
here 

MCSI =(C 1: ) 

MCS2 = (D 
" t; 

) 

A=C+f) 

B=E 

Figure 4-7 An example of finalising the Minimal Cut Sets of a Fault Tree 
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However, in the Minimal Cut set(s) of Top Event, there is no any symbol 

representing events A and B (i. e. the Intermediate Events). From the example above, it 

has been shown that these Basic Events contained in the Minimal Cut Sets are not the 

only Causal Factors to trigger the Top Event to happen. Instead, every Intermediate 

Event with regard to these Basic Events is also the factors to make those holes existing 
in the WoOs of the accident and should not be overlooked as well. Those Intermediate 

Events lying on the middle of the causation breaches are the consequences of these 

Basic Event as well as the causes of the Top Event. 

The qualitative analysis results of the accident are now finalised. They can not only 
be presented in the form of Top Event, but also the form of Minimal Cut Sets to 

materialise the WoOs of an accident reflecting the Reason's Swiss Cheese Model. This 

means that the half way of the hypothesis is achieved but the nature of FTA obstructs 

the second half of the hypothesis (i. e. the quantitative analysis of an accident) to fulfil. 

In the following sections, the difficulties and the solutions for the quantitative analysis 

of an accident will be discussed. 

4.4.2 The difficulties for FTA to perform the quantitative analysis of the accident 

It has been demonstrated that FTA is a well-defined technique for qualitative 

analysis of accidents (Johnson, 1999). Theoretically, the quantitative analysis of the 

accident (i. e. the Top Event) can be achieved by treating the identified Necessary 
Causal Factors of the accident as Basic Events and assigning each of them a probability 
figure. Then, the overall probability of the occurrence of the accident can be calculated 

via Equation (4.1). In the equation, the first term is numerically more significant than 

the second term and the second term is more significant than the third term, and so on. 
Therefore truncating the series at an odd-numbered term will provide an upper bound 

and truncating the series after an even-numbered term provides a lower bound for the 

exact probability (Andrews and Moss, 2002). 

P(TE)=EP(Kj)- P(KI nKj)+... +(-1)"-'P(K1 nK2 n... nK. ) 
i=i i=2 j-1 (4.1) 

where 'n' is the number of minimal cut set and'Ki' is minimal cut set i, i =1, ..., n 

This approach is appropriate in all circumstances whether or not Basic Events are 
repeated providing the assumption that the Basic Events are independent is true 
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(Andrews and Moss, 2002). However, this assumption (or condition) is almost 
impossible to apply on the quantitative analysis of an accident. This is because all the 

events or factors identified in the accident are normally interrelated to each other. In 

other words, there are at least two difficulties in applying Equation (4.1) to achieve the 

quantitative analysis of the accident. Firstly, it would be difficult to identify all the 

Necessary Causal Factors of an accident reaching the condition that they are all 

mutually independent, such as the Basic Events. Secondly, if these Necessary Causal 

Factors are not mutually independent, it would be more difficult to find the intersection 

part (i. e. the common factors) amongst those Minimal Cut Sets in order to apply 
Equation (4.1). 

4.4.3 Acquiring the likelihood of the accident via Minimal Cut Set Upper Bound 

approach 

Having considered the two difficulties mentioned above, it is clear that it would be 

almost impossible to apply FTA to achieve the quantitative analysis of the accident if 

the identified Necessary Causal Factors are not mutually independent. Hence, an 
approach combining the techniques of Fault Tree Analysis and Bayesian Network 
(FTA-BN) is proposed to overcome the difficulties. In other words, the FTA applied 

will not deal with the quantification issue at the Basic Event level, but at the Minimal 
Cut Set level instead. For the remaining part of quantitative analysis (i. e. the likelihood 
for each Minimal Cut Set), a Bayesian Network technique is applied as the means to 

acquire the quantified data for each Minimal Cut Set as well as the Top Event. This 

means, in this approach, that the quantified data for each Minimal Cut Set and Top 
Event are derived from a Bayesian Network. The FTA technique will only be applied to 
deal with the qualitative analysis. The Minimal Cut Set upper bound approach 
(Andrews and Moss, 2002) shown in Equation (4.2) can only be applied to calculate the 
likelihood of the Intermediate Events with their Minimal Cut Sets results acquired from 

a Bayesian Network. This is because this approach will introduce a certain amount of 
overestimate if there are common factors amongst these Minimal Cut Sets. Thus, the 

more the common factors, the larger the overestimate. The details of the processes 
regarding Bayesian Network are described in section 4.5. 
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P(IE)) 1-rl[1-P(K, )] 

i-I (4.2) 

where ̀ n' is the number of minimal cut set and ̀ K; ' is minimal cut set i, i=1, ..., n 
(equality exists when no event appears in more than one minimal cut set) 

As soon as the likelihood for each Minimal Cut Set has been acquired via the 

Bayesian Network model of the accident, the Fussell-Vesely Importance Measure (F- 

VIM) (see Equation (4.3)) can be used to rank the criticality for each Minimal Cut Set. 

The importance of Minimal Cut Set signifies the role that it plays in either causing or 

contributing to the occurrence of the Top Event. The importance measure is defined 

simply as the probability of occurrence of cut set i given that the system has failed 

(Andrews and Moss, 2002). 

P(K, ) 
I' 

P(T) (4.3) 

where ̀ K; ' is minimal cut set i, i=1, ..., n 

4.4.4 The overestimate issue of Minimal Cut Set upper bound approach 

The following example illustrates the overestimate problem of the Minimal Cut Set 

upper bound approach with real figure. For demonstrating the differentiation between 

the answers acquired via Equations (4.1) and (4.2), the fault tree shown in Figure 4-7 is 

utilised in this example, in which three basic events C, D and E are independent to each 
other with probability 0.1 for each. Therefore the probability of Top Event is 0.019 

according to Equation (4.1). The calculation details are shown in Equation (4.4), where 
the accurate probability of the Top Event is obtained. 

P(TE) = P(CE + DE) 

= P(CE)+P(DE)- P(CDE) 

=0.01+0.01-0.001 
= 0.019 

(4.4) 

When Equation (4.2) is applied to deal with the calculation of overall probability 
of the Top Event, the answer turns out to be 0.0199. The details are shown in Equation 
(4.5). Both Equation (4.4) and Equation (4.5) are under the same condition that both the 
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likelihoods of MCSI and MCS2 are equal to 0.01. However, in Equation (4.5), a certain 

amount of overestimate (i. e. 0.0009) is encountered, which is caused by the common 

factor E that has been taken into account more than once, whilst Equation (4.2) is 

applied. This is also the reason why Equation (4.2) is the style of "not larger than" 

instead of "equal to". 

P(TE)MCSVB :! ý 1-(1-MCS1X1-MCS2) 

S1-(1-0.01)(1-0.01) (4.5) 

<_ 0.0199 

4.5 Bayesian Network (BN) for quantitative analysis 

The main purpose of this process is to construct a corresponding Bayesian 

Network model of an accident according to the qualitative analysis results described in 

the preceding sections. The model, which consists of a Directed Acyclic Graph and 

Conditional Probability Tables, is the major utility to perform the quantitative analysis 

of the accident. After constructing the model, not only the likelihood of each Minimal 

Cut Set (and/or Top Event) can be presented, but also the "what f' examinations can be 

carried out. The "what if' examination, which resorts to the functionalitjr of propagation 

of Bayesian Network, can easily reveal the change of factors in the model due to the 

change of one or few particular factors given. The propagation function is also a very 

useful tool to infer the critical factors and the effectiveness of countermeasures of an 

accident, from an objective viewpoint. In the following sections, the following topics 

are discussed in turn: a brief introduction of Bayesian Network techniques, the 

systematic procedure to construct the corresponding Bayesian Network model, the way 

to perform the "what if' examinations and finally the absorption problems that may be 

encountered whilst constructing the model. As a result of these discussions, an overview 

of the quantitative analysis of the proposed method emerges. 

4.5.1 A brief introduction of Bayesian Network technique 

In real world, the events involved in an accident are hardly mutually independent. 

Therefore, when the dependency amongst events has to be considered (i. e. the first 
difficulty mentioned in section 4.4.2 above), Bayes' Rule/Theorem (Bernardo and 
Smith, 2002), which is shown in Equation (4.6), seems to be one of the best solutions to 
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handle this issue. However, the conditional probability cannot be computed using a 

simple application of Bayes' Rule/Theorem. Therefore, a Bayesian Network technique 

is developed to address this difficulty. By exploiting conditional independencies 

entailed by influence chains, Bayesian Network is able to deal with the probabilistic 

inference amongst the events in an acceptable amount of time and space (Neapolitan, 

2004). 

P(AnB)=P(BI A)P(A)=P(AI B)P(B) 

where "I" means "given" or "on the condition of' 
(4.6) 

Since the dependencies amongst those Necessary Causal Factors are the major 

difficulty that has to be solved, the present study assumes that the Bayesian Network 

model of the accident, which is modelled and illustrated by the Directed Acyclic Graph 

to instantiate the WoO, is a feasible way to perform the quantitative analysis of the 

accident. This is because Bayesian Network technique is designed to deal with 

dependency with probability distribution, in which a Direct Acyclic Graph that encodes 

conditional probability distribution at its nodes is the core of Bayesian Network (Wang 

and Trbojevic, 2007). In short, that is: 

"BN" = "DAG" encoded with "conditional probability distribution" 

Wang and Trbojevic (2007) further specify the definition of Bayesian Network as 

follows. 

In a Directed Acyclic Graph, an edge (or arc) goes from one node (i. e. the 
source) to another (i. e. the target) and hence makes connection in only one direction. 
Acyclic implies that such a graph contains no cycle. In a Bayesian Network structure, 
nodes (usually drawn as circle) represent random (i. e. chance) variables such as 
events, that take values from the given domains. Arcs (normally drawn as either 
curved or straight lines having a terminating arrowhead) are used to represent the 
direct probabilistic dependence relations among the variables. Each influence 
relationship is described by an arc connecting an influencing (or parent) node to an 
influenced (or child) node and has its terminating arrowhead pointing to the child 
node. If a node has no parents, then its probability distribution is said to be marginal 
(or unconditional), otherwise it is conditional. 

As stated in section 4.3.4, in a Bayesian Network, the quantitative association 

amongst the modelled nodes is represented via a Conditional Probability Table (CPT). 

Each node encodes the value of conditional probability distribution into a Conditional 
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Probability Table associated with it. The encoded nodes with no predecessor are 

described by prior probability distributions. Those nodes with predecessors are 

described by posterior probability distributions. The conditional probability of a 

parameter, a, given a condition, b, would be written as P(alb), where the "I" vertical bar 

is read as "given that" or "given" (the indication of conditionality). Figure 4-8 illustrates 

a Bayesian Network example with two nodes and its associated Conditional Probability 

Tables. To obtain the quantified value with respect to these states, Node B is described 

by prior probabilities P(bj) and P(b2). Since Node B has an effect on Node A, then A is 

conditionally described by its posterior probabilities P(a jIb j), P(al l bz), P(a21 b1), and 

P(a2l b2). The subscript "1" or "2" is used to denote which state of the two states of the 

specified variable is addressed. 

Bý = 4`" Influencing (parent) node 
Bis a causeofA 

Influenced (child) node ýA= ý' A is an consequence of B 

bi Pj 
b2 P(b2) 

bi b2 
at Paib, Il Pa. b2 
a2 f(a2lbd 

d 

P a2 b 

"I" means "given" or "on the condition of ' 

Figure 4-8 The illustration of Directed Acyclic Graph & Conditional Probability Table 

From a table P(A, B) of probabilities P(ab b), the probability distribution P(A) can 
be calculated via Equation (4.7). Let ai be a state of A. There are exactly m different 

states of event B for which A is in state a1. Therefore: 
mm 

P(a) P(a,, bb)P(a, I bb)P(bb) 
J=1 J-1 

(4.7) 

This calculation expresses the fact that the variable B is marginalised out of the 
joint probability distribution, P(A, B) (resulting in P(A)) (Eleye-Datubo, 2005). This 

process is called marginalisation (or summing out) - because the variables other than a, 

are summed out (Russell and Norvig, 2003). In general, for any sets of variables A and 
B, the marginalisation rule can be written as follows: 
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P(A) =I P(A, B) 
H 

In addition, for conditional probabilities instead of joint probabilities, a variant of 

this rule uses the product rule as follows: 

P(A) _ P(A I B)P(B) 
B 

In other words, in Bayesian Network, the unconditional (or marginal) probability 

distribution of each node can be acquired via Equation (4.7) where the Directed Acyclic 

Graph encodes conditional probability distribution for each node (Eleye-Datubo, 2005; 

Neapolitan, 2004; Jensen, 2001). Therefore, the unconditional probability distribution 

(or marginalisation of probability) of P(a) (i. e. P(ai) and P(a, ) ) of the example in 

Figure 4-8 can be obtained via Equation (4.7), and the details are shown in Equation 

(4.8). 

2 

P(a1) _ P(a1 I h; )P'(b; ) =P(al I h1)l'(hi) + P(ai I h2)P'(b, ) 
ji (4.8) 
z 

P(a, )=yP(az h; )P(b; )=P(az I b, )P(b, )+P(az I hz)P(hz) 
j=l 

4.5.2 Backtracking the Intermediate Events via the factorisation equations of 

Minimal Cut Sets 

Fact Finding WBG Constructing Backtracking 

Information Minimal 

or evidence, 
Facts-00ý I actors-ý cut Sets 

t ul Sets--00. 

R'BA K-CPT & K-map 

In the proposed method, the Minimal Cut Sets of an accident are depicted by sets 

of Basic Events without specifying the Intermediate I-vents involved. It is very 
important that those Intermediate Events should not be overlooked when constructing 

the corresponding Bayesian Network model. This is because both Basic Events and 
Intermediate Events are all the identified Necessary Causal Factors of' the accident, in 

which the Intermediate Events are both the consequences of the Basic Events and the 

causes of Top Event. Therefore, in order to discover those Intermediate Events, a 
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backtracking process has to be carried out before constructing the model. This process 

mainly explores the associated Intermediate Events according to the Basic Events 

contained in the Minimal Cut Sets of the accident. Through the backtracking process, 

clues reveal which Intermediate Events have been influenced by the associated Basic 

Events following a step by step approach, from the Basic Events to the Top event. In 

this section, only the notion of the process is described. The application of the 

backtracking regarding a real case is shown in section 5.5 as an example. 

When processing, it is helpful to highlight the backtracking paths by using circles 

and arrows in the equations (see Figure 4-9). For the purpose of quick reference, all the 

Intermediate Events involved in the Bayesian Network model are summarised in the 

second half part of the equations (i. e. the "where" part) with their influencing events (i. e. 

their Necessary Causal Factors). These backtracking equations are the blueprints for 

constructing the Bayesian Network model of Minimal Cut Sets in the next stage. For 

correctness, it is very important to maintain the equivalency in the equations between 

both sides of the equal sign from time to time. This is also the means to ensure that the 

backtracking outcomes are correct otherwise some Intermediate Events will easily be 

overlooked. Later, an incorrect example, in section 4.5.4, will be utilised to illustrate 

that the backtracking can be misdirected due to the Boolean absorption property in the 
factorisation equations and resulting in a wrong answer of backtracking. Since these 
backtracking equations are the blueprints to construct the Directed Acyclic Graph of 
Bayesian Network of an accident, the correctness of the backtracking equations is 

crucial to the subsequent outcome of the quantitative analysis of the accident. A 

validation mechanism to avoid this kind of error is hence proposed in section 4.5.4. 

TE - TE = (A 1" B)+ (A2 
" B) 

TE= CD" TE=(A1+A2). E 
TE=(C"E)+(D"E) TE=(C"E)+(D"E) Al "I 

E=MCSI+MCS2 T K TE=MCSI+MCS2 r Ä F 

where : where : y 

MCS1=(C"E) MCS1=(C"E)=(A1"B) 

MCS2=(D"E) MCS2=(D"E)=(A2"B) C, 

A=C+D Al=C 

B=E A2=D 
B=E 

Figure 4-9 The illustration of backtracking process and equations for the analysis 
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For specifying how to perform the process, an example is used to illustrate the 

procedure as follows. In Figure 4-9, it shows the factorisation equations on the left and 

the backtracking outcomes on the right with regard to the example utilised in section 

4.4.1. Through a systematic procedure in the preceding section, it has shown that the 

Top Event was triggered by two Minimal Cut Sets; they are (C. E) and (D - E) . 
Meanwhile, it also depicts that there are two Minimal Cut Sets to provoke the event A to 

occur; they are (C) and (D) respectively. Now, in order to construct the Bayesian 

Network model of the example for the quantitative analysis, it is needed to clarify the 

Cause-Consequence path by tracking back to the Top Event from its Minimal Cut Sets 

through all the Intermediate Events involved. This has to resort to the factorisation 

equations with Boolean algebra again. In the factorisation (or downward) equations, it 

reveals the Why-Because relationship, but it also implies the Cause-Consequence 

information between each row, and the row abovelbelow. This process starts from the 

last row of the equations. In the row, the Minimal Cut Sets depict all the possible 

combinations of Basic Events which trigger the Top Event to occur. In addition, the 

Intermediate Events influenced by these Basic Events can also be revealed by searching 
for where these Basic Events derived from. For example, the difference between the 

first and second rows on the left hand side of Figure 4-9 shows that event A can either 
be triggered by event C or event D. This means either event C or event D alone can 

provoke event A to occur. Therefore a new symbol Al is utilised on the right hand side 

of the figure to denote the situation that event A is triggered by event C, and another 

symbol A2 denotes another situation that event A is triggered by event D. Meanwhile, 

the reason why event B happens is because of the existing of event E, and so on. In the 

end, the backtracking results for these Intermediate Events are summarised in the 

"where" part of the equations. They denote the influencing nodes (or Necessary Causal 

Factors) for each Intermediate Event in the Bayesian Network model. That is, the 
factors on the right hand side of the equal sign are the predecessor (or influencing) 

nodes to the Intermediate Events on the left hand side. 

On the left hand side of Figure 4-9 (i. e. the factorisation/downward part), some of 
the equations in the first half part have a backtracking/upward counterpart on the right 
hand side. The equations on the right hand side of the figure can be seen as the 
backward Why-Because paths. Although they look slightly different from their 
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counterpart on the left hand side, they are still equivalent except using different symbols 

to denote the same thing. This means that their results are equivalent despite the 

expressions on both sides being not the same (i. e. they should be equal). Therefore, it is 

very important to check the equivalency between both sides of the equations, from time 

to time, to ensure that the backtracking outcome is correct. If the equivalency between 

both sides of the equations cannot be maintained in any row of the equations, it 

indicates that, somewhere in the process, the backtracking results are incorrect. 

Especially, the absorption property of Boolean operation in the factorisation stage has 

the tendency to cause this kind of problem to happen. Therefore, extra caution has to be 

paid to this issue whilst carrying out this process. 

4.5.3 Constructing the Directed Acyclic Graph (DAG) of the accident 

Fact Finding WBG Constructing Backtracking 

Information Minimal BN 

or evidence-- t 

WBA K-CPT & K-map 

Having accomplished the backtracking process, a list of backtracking equations is 

in place. Thus, all the Intermediate Events involved in the accident are listed, one by 

one, with their direct Necessary Causal Factors on the right hand side of the equal sign. 
As noted previously, these backtracking equations are the blueprints to construct the 
Bayesian Network model of Minimal Cut set in the process. The Top Event is no longer 

represented by a single object. Instead, it is substituted by several Minimal Cut Sets as 
the proxies in the rest of the analysis procedure. Each Minimal Cut Set represents one of 
the WoOs in terms of the Reason's Swiss Cheese Model. That means that each 

combination of the Basic Events is the representative of the factors that cause the 

accident to occur. However, the Intermediate Events should not be overlooked even 
though they do not appear in the Minimal Cut Sets. The procedure to construct the 
Directed Acyclic Graph is described as follows. 

At the beginning of the process, the construction of the Directed Acyclic Graph 

starts from the Top Event, which is now represented by several Minimal Cut Sets. Each 

time, the process handles and focuses on one Minimal Cut Set only. These equations are 
interpreted in the way that, in each row of the backtracking equations, the 
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Intermediate/Top Events, on the left hand side of the equal sign, are the child nodes of 

their Necessary Causal Factors, which are on the right hand side as their parent nodes. 
Meanwhile, in the Directed Acyclic Graph, each influence relationship is described by 

an arc connecting from an influencing (i. e. parent or predecessor) node to an influenced 

(i. e. child or successor) node and has the arrowhead toward to the child node (Wang and 

Trbojevic, 2007). If a node does not exist in the Directed Acyclic Graph whilst 
interpreting one of the equations, the process will place the node into the corresponding 
location of the Directed Acyclic Graph according to the backtracking results. This 

process will look at each Minimal Cut Set in turn, from the top to the bottom of the 

backtracking equations iteratively. Having handled all the Minimal Cut Sets of the Top 

Event (i. e. the accident) in this process, the Directed Acyclic Graph of the accident 

should be established accordingly. 

In Figure 4-10, a Bayesian Network example which is the case that has been 

utilised in sections 4.5.2 to demonstrate the backtracking process is constructed. First of 

all, Node MCS1 is placed into the corresponding location in the Directed Acyclic Graph 

with label "MCSJ". According to the equation "MCS 1= (Al " B) ", two extra nodes are 

added into the Directed Acyclic Graph as the parents nodes of Node MCS1, and they are 

named as "Al" and "B" respectively. The arcs are drawn from Node Al to Node MCS1 

as well as the one from Node B to Node MCSJ. Since there is an equation depicting the 

causation for factor Al (i. e. Al=C), the process continues interpreting the equation and 
constructing the Directed Acyclic Graph with a new added node as the parent node of 
Node Al. "C" is the label of the new added node and it has an arc with arrowhead 
towards Node Al. In the same way, a new parent node for-Node B is placed, which is 

labelled as "E" with an arc from Node E to Node B. Up to this stage, it is the end of the 

construction for MCS1 since there is no further backtracking equation for either factor C 

or E. Therefore, the process turns to MCS2 for the interpretation and construction. 

The corresponding equation for MCS2 is "MCS2 = (A2. B)". This results in two 

new nodes being introduced in the Directed Acyclic Graph; they are MCS2 and A2 

respectively. Since Node A2 is the influencing node, the arc with an arrowhead is hence 

connected from Node A2 to Node MCS2. For Node B, due to it is already existed, only a 

new arc form Node B to Node MCS2 is added. This means that a node can influence 

more than one nodes as well as a node can be influenced by multiple nodes in the 
Bayesian Network. This feature is also in line with the reality; multiple causes result in 
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one particular consequence or multi consequences result from one particular cause. In 

addition, a new parent node for Node A2 is introduced and labelled as "D" due to the 

equation "A2=D". Finally, the entire process is accomplished, because all the Minimal 

Cut Sets have been handled accordingly. The outcome of the established Directed 

Acyclic Graph is shown on the right hand side of Figure 4-10 with the corresponding 
backtracking equations on the left hand side. 

TE=(Al. B)+(A2"B) 

TE=(A1+A2). E 

TE=(C"E)+(D"E) 

TE = MCS 1+ MCS2 

where : 
MCS1=(C"E)=(Al"B) 
MCS2=(D"E)=(A2"B) 
Al=C 
A2=D 

B=E 

MCS2 

A2 

1° 
i 

D 

Figure 4-10 The backtracking equations and the corresponding DAG 

4.5.4 The absorption problem whilst backtracking 

In this section, the problem of overlooking the Intermediate Events, the reason why 
it happens and the method to avoid it are addressed. The problem may happen when 
there is more than one backtracking path available, from a Basic Event to the Top Event, 

and the backtracking process is performed incorrectly due to the absorption in 
factorisation equations. Consequently, some of the Intermediate Events involved in the 

accident could be overlooked if the backtracking process does not consider all the 

possible paths. When this type of error occurs, it results in the established Directed 
Acyclic Graph being incomplete and the nodes in the Bayesian Network model to 

represent the associated Minimal Cut Sets being insufficient as a result. It would be 
helpful to appreciate this issue by using an example to explain how it happens, and how 
to avoid it through a proposed validation mechanism. Hence, in the rest of this section, 
an example is utilised and shown in Figure 4-11, in which the fault tree of the example 
is shown on the left and its corresponding Directed Acyclic Graph of Bayesian Network 
is on the right of the figure. 
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In this example, three Basic Events (i. e. event A, B and C) and two Intermediate 

Events (i. e. events D and E) are the Causal Factors of the Top Event. They result in 

"A+BC' as the outcome of the Minimal Cut Sets where MCS1 is represented by "A", 

and MCS2 is "BC". Since event A is a repeated Basic Event in this example, it will 

trigger more than one Intermediate Event (i. e. events D and E) to happen 

simultaneously if it occurs. This also means that there are two backtracking paths from 

event A to MCS1. Due to the fact that AC and AB have been absorbed by A in the 

factorisation equations, it could easily overlook either event D or event E when the 

backtracking initiates from the event A and only concentrate on one of the backtracking 

paths, instead of considering all the possible paths. This is also the reason why the 

absorption property of Boolean algebra can cause the problem that some Intermediate 

Events are overlooked during the backtracking process. Since the absorption property is 

frequently applied in the Boolean algebra operation, this kind of error is highly likely to 

occur. The correct factorisation and backtracking equations of the example are shown in 

the middle of Figure 4-11. 

0C 

TE=D"E 

+B +C) 
C+AB+BC 

BC 

= MCS 1+ MCS2 

where : 
MCS1=A=D1+E1 
MCS2=BC=D2"E2 
D1=A 
D2=B 
E1=A 
E2=C 

MCSI MCS1 MCS2 

rrý. 
EI DI D2 E2 

6ýö 

Figure 4-11 The fault tree, equations and Bayesian Network model of the example with 
repeated Basic Event 

In contrast, in Figure 4-12, it is supposed that the incorrect example only reveals 

one of backtracking path for event A. It results in that event D (i. e. factor DI) is the only 
Intermediate Event which is connected with event A in the Directed Acyclic Graph for 
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MCSI. As a result, the backtracking path via event E has been overlooked and the 

Directed Acyclic Graph is incomplete. 

Fortunately, this kind of error can be easily highlighted by checking the 

equivalency between the backtracking equations and the factorisation equations (see the 

equation highlighted by the circle in Figure 4-12). This implies that the equivalency 

between two equations has to be retained despite different symbols have been applied. 

In this incorrect example, factor El (i. e. one of the proxies of event E) was substituted 

by factor Dl in the backtracking equations resulting in that event E was overlooked. 

Since factor D1 is neither event E nor the proxy of event E, this contradiction 

immediately indicates that something has been done wrong with the backtracking 

process. Thus, in order to ensure that the Directed Acyclic Graph is constructed 

correctly, a good practice in the backtracking process has to be followed. That is, all the 

possible backtracking paths for the absorbed items has to be considered as well as the 

equivalency between the backtracking and factorisation equations has to be checked all 

the time. 

TE "E(D1+D2XDl+E 
+BXA+C)=(D1+D2XD1+E2) 

_ +AC+AB+BC 
A BC 

= MCS 1+ MCS2 

where : 
MCS 1=D 
MCS2=BC=D2"E2 

D1=A 
D2=B 
E2=C 

MCS 1 

T 
D1 

0 

MCS2 

D2 

0 
E2 

C 

Figure 4-12 The incorrect backtracking outcome of the example 

4.5.5 The Conditional Probability Table (CPT) of the Bayesian Network model 

Having established the Directed Acyclic Graph associated with the Minimal Cut 
Sets of an accident, the process turns to encoding the Conditional Probability Tables for 

each node in the graph in order to accomplish the corresponding Bayesian Network 
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model before being able to perform the quantitative analysis of the accident. As 

mentioned in section 4.5.1, the Conditional Probability Tables specify the probability 

distribution of every state of the nodes under the conditions given by their predecessors 
in the Bayesian Network. Basically, there is a probability distribution for every state of 

the child node considering every combination of the states of the parent nodes. In other 

words, if the conditions of the node are influenced by the node's direct predecessor(s), 

the posterior probability distributions values are given. If the node has no predecessor, 

the prior probability distributions of the node are entered into the Conditional 

Probability Tables. The dimensions of a Conditional Probability Table are determined 

by the number of parents, the state numbers of each parent and the number of states of 

the child node. Generally speaking, a Conditional Probability Table is a matrix of 

conditional probabilities (Eleye-Datubo, 2005). A conditional probability is a 

probability of one event, given that another event has occurred. More generally, for 

variable A with a set of states (a,, a2,..., a�) and variable B with a set of states (bl, b1, ..., 
b, ), the conditional probability matrix P(alb) representing the conditional probability of 
A given B is as follows: 

P(a, 1 bl) P(a1 I b2) ... P(a1 I bm ) 

P(alb) _ 
P(a2 I b1) P(a2 I b2) 

... 
P(a2 I b. ) 

P(an I bl) P(an l b2) ... P(an l bm ) 

Once all the data of the Conditional Probability Tables for each node has been 

given, the Bayesian Network is able to calculate the marginalisation (or unconditional) , 
probabilities for each node. This is also the likelihood outcome for each node which is 

shown in the Bayesian Network model. It is important to note that the likelihood 

outcomes shown in the model are unconditional probability distribution although the 
data given in the Conditional Probability Tables is conditional. Theoretically, the best 

figures entered in the Conditional Probability Tables are derived from the historical 

statistic data according to other studies or researches if they are available. If the data 
does not exist, then experts' judgements are used as an alternative. These judgements 

can be done by an individual or a group of experts. If a group of experts is applied, it is 

preferred to obtain a consensus figure rather than several individual figures representing 
their opinions. Besides, a crisp value is essential due to the requirement of the 
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Conditional Probability Table. In order to harmoniously apply experts' judgements, a 

method is proposed to deal with group consensus issue and is detailed in Chapter 7. 

After finalising the Conditional Probability Tables of a Bayesian Network model, 

the quantitative analysis is now able to proceed. As noted previously, in the Bayesian 

Network model of Minimal Cut Sets, the Top Event of an accident is represented by 

several Minimal Cut Sets nodes rather than a single object. Each node of Minimal Cut 

Sets represents one of the WoOs of the. accident with the likelihood outcome. 

Nevertheless, the likelihood figures for each Minimal Cut Set are normally different 

because they consist of different combinations of Causal Factors. It should be noted that, 

in this model, the likelihood of the accident (i. e. the Top Event) is neither represented 
by any one of the Minimal Cut Sets nor simply their summation of likelihood outcomes. 
It has to resort to the Minimal Cut Set upper bound equation of FTA (see Equation (4.2) 

in section 4.4.3) with all the Minimal Cut Sets involved to obtain the approximate 

answer, or directly refer to the Top Event model depicted in section 4.3.5. 

A: (B: and C: ) 

occur not 
0.1 0.9 

EI: (E2:, DI: and D2: ) 

occur not A/B/C 

1 0 occur 
0 1 not 

MCS1_1 (and MCS1_2: ) 

occur not E1(D1) 

1 0 occur 

0 1 not 

MCS2: 

occur not D2 E2 

1 0 occur occur 
0 1 occur not 

0 1 not occur 
0 1 not not 

Figure 4-13 The Bayesian Network model of the repeated Basic Event example 
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In Figure 4-13, the Bayesian Network model associated with the repeating Basic 

Event example shown in Figure 4-11 is utilised to illustrate the notion. The Conditional 

Probability Tables are shown on the left hand side whilst the corresponding Bayesian 

Network model is on the right hand side. Each row of these tables depicts the 

probability distributions on the left half of the tables whilst the conditions given by its 

predecessors appear on the right of the same row. If a table subjects to no condition (e. g. 

the tables for nodes A, B and C), then prior probability distributions are given. In 

addition, the quantitative results displayed in the Bayesian Network model (on the right 
hand side of Figure 4-13) are the marginalised (or unconditional) likelihood outcomes 
in a percentage manner for each node. There are two nodes representing the MCS1 in 

the model of the example; they are Node MCS1_1 and Node MCSI_2. They are utilised 
to highlight that event A cannot either trigger event D or event E to cause the Top Event 

to happen. Any one of them should not be overlooked. Therefore, two nodes are shown 
in the model representing MCS1, but only one of their quantities will be applied to 

calculate the likelihoods of the Top Event. If the Minimal Cut set upper bound approach 
is applied, the computation details are shown in Equation (4.9), in which the probability 
figure applied for events A, B and C are 0.1 (or 10%) for each. 

P(TE)<1-(1-MCS1X1-MCS2)=1-(1-0.1X1-0.01)=0.109 (4.9) 

The result shown in the equation means the likelihood of the Top Event is not 
larger than 10.9% which coincides with the answer obtained via Equation (4.1). The 

equality exists when no factor appears in more than one Minimal Cut Set. It implies that 
the result obtained in light of the Minimal Cut Set upper bond formula will be 

somewhat overestimated providing that there are common factors amongst Minimal Cut 
Sets. That is, the more the common factors involved, the larger the result overestimated. 
It is very important to bear in mind with this feature whilst applying this approach for 

the analysis. However this approach is still suitable for comparison purposes if the 

precise answer is not mandatory. 

So far, the applied Bayesian Network software is only able to accept single crisp 
value for the entries of the Conditional Probability Tables. A practical problem may 
arise if there is more than one expert providing their estimations for the data of 
Conditional Probability Tables. It is unavoidable that they will disagree with each other 

-81- 



Ch. 4: The method for qualitative and quantitative analysis 

regarding the values of the tables sometimes. A method which applies fuzzy set theory 

to obtain a consensus values, as the compromise, for the data of Conditional Probability 

Tables of the Bayesian Network model is proposed and detailed in Chapter 7. In the 

method, the consensus values for each node are derived and aggregated from every 

expert's opinion. However, it does not mean that this method intends to ignore the 

differences of the judgements, but simply proposes one solution to aggregates the expert 

opinion and may allow a resolution of the disputes amongst these experts. 

4.5.6 The propagation of the Bayesian Network model for "what if" examination 

The propagation (or Bayesian inference) is another useful feature that the Bayesian 

Network can provide. "Bayesian inference is a process by which observation of a real- 

world situation are used to update the uncertainty about one or more variables 

characterising the aspects of that situation. It relies on the use of Bayes' Rule/Theorem 

as its rule of inference, defining the manner in which uncertainties ought to change in 

light of newly made observations" (Wang and Trbojevic, 2007). It implies this feature 

can be used to examine the possible outcomes of every Causal Factor of the accident, 

based on the established Bayesian Network model, as "what if' examinations,. In 

addition, it can also be used to examine the possible solutions to prevent the similar 

accidents from happening again. Later, in section 5.5.6, the case study will show that 

the countermeasures which against some of the Intermediate Events are sometimes one 

of the efficient ways to prevent the similar accidents to happen again. This means that, 

from the view of Swiss Cheese Model, the Top Event can be prevented or relieved via 

blocking one of the holes represented by the Intermediate Events and resulting in the 

closure of the associated WoO of the accident. 

The "what if' examination is an application of propagation function. By giving a 

new figure of the uncertainly to one of the nodes in the Bayesian Network model, the 

updated node will then update its likelihood (or belief). Consequently, it also triggers a 

chain reaction to the other nodes as an epicentre. Those nodes which have connections 

with the updated nodes will update their likelihoods according to the dependencies 

associated with the epicentre. Hence the updated node becomes the supreme influencing 

nodes of the Bayesian Network model and all the other nodes turn out to be its 

influenced nodes at the time even though those whom are its predecessors. Although the 

updated node has changed the influencing direction to the predecessors at that time, the 
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dependencies between the node and its predecessor and others successors remain the 

same. In other words, the conditional dependencies amongst them depicted in the 

Conditional Probability Tables are still unchanged. In order to explain how it works out, 

it is necessary to cover some theoretical details about the feature before carrying on with 

the example application. 

In fact, the propagation feature is only part of Bayesian inference mechanism. 

Together with the concept of conditional independence and the techniques of 

marginalisation, it provides a basic tool for Bayesian belief updating. It should be noted 

that the arrowheads in the Directed Acyclic Graph only represent the real causal 

connections rather than the flow of information during the inferring. In other words, the 

information can be propagated in any direction in a Bayesian Network. Therefore, the 

key features of conditional independences and/or dependency-separation (i. e. D- 

Separation) have to be clarified before performing the propagation. Actually, D- 

Separation is another method to determine conditional independence. Both of them 

indicate the same thing. However, conditional independence is defined in terms of 

probabilities and D-separation in terms of paths in a graph (Eleye-Datubo, 2005). 

Eleye-Datubo (2005) further specifies that the characteristics of conditional 
independence may be experienced when two nodes are in a Bayesian Network model 
but the evidence about one cannot influence the other. To determine conditional 
independence in this setting, one must also consider all the undirected paths between 

these two nodes. Any node on any paths in the model may "block" the dependence 

along that path, and therefore if all the paths between the two nodes are blocked at least 

once, the two nodes will be independent (i. e. D-separated). This characteristic is crucial 
to fully understand the propagation function when it is applied to "what if' examination. 
Otherwise, the influencing paths might be blocked unexpected and the outcome of the 

propagation might be incorrect. Besides, the D-separation feature can be utilised as a 

mechanism to validate the correctness of the Directed Acyclic Graph of a Bayesian 

Network model. Yang (2006) suggests that the correctness of a qualitative Bayesian 

Network can be checked by carrying out the belief updating to each node and 

comparing the D-separation outcomes with the reality. In considering a node on a path 
in the network, Eleye-Datubo (2005) summaries the D-Separation can be distinguished 

from three types of connection: serial, diverging and converging. Each connection has 
its own propagation properties as follows: 
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Figure 4-14 Serial, diverging and converging connections to a node C on a path 
(from Eleye-Datubo, 2005) 

9 In a serial (head-to-tail) connection (i. e., BIC4A), any evidence entered at 

node A or node B can be transmitted along the directed or undirected path 

respectively (as in Figure 4-14 (a)(i)) providing that no intermediate node C on 

the path is instantiated (which thereby blocks further transmission by D- 

separation as in Figure 4-14(a)(ii)). 

" In a converging (head-to-head) connection (i. e., B -IC FA), entering evidence at 

node B will update node C but will have no effect on node A (Figure 4-14 (b)(i)). 

Evidence can only be transmitted between parents (i. e. nodes A and B) when the 

child (converging) node C has received some evidence (See Figure 4-14(b)(ii)). 

" In a diverging (tail-to-tail) connection (i. e., B E-C-IA), evidence can be 

transmitted between child nodes (i. e. nodes A and B) of the same parent (i. e., 

node C) providing that the parent is not instantiated (Figure 4-14 (c)(i)). 
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Otherwise, nodes A and B are conditionally independent (i. e., due to D- 

separation) given evidence at node C (Figure 4-14(c)(ii)). 

In the following example, the special case of belief updating called "Evidence" is 

applied, in which according to the information obtained, some particular nodes can only 

be one of the states stood (Jensen, 2001). For illustration, the MCS2 of the repeated 

Basic Event case, which is the example shown in Figure 4-13 in section 4.5.5, is utilised 

as the example. During the examination, the event D2 is assumed to occur (i. e. its 

likelihood is set as 100%) with evidence supported (see the right hand side of Figure 4- 

15). Consequently, the likelihood values of Node MCS2 and Node B arc both increased 

10 threes as they were before. However, the Node E2 and Node C are not influenced 

because of the converging D-Separation of Node MCS2. This means that the 

propagation information is not transmitted to Nodes E2 and C' through , ti1CS2. The 

outcome can be interpreted as event B being believed to have happened and the A1( 'S2 

increasing the likelihood from I% to 10% due to the "evidence" showing that factor D2 

happens. For quick referencing, the Conditional Probability 'Tables for Node D2 and 
Node MCS2 are shown on the left hand side of the figure. They are the same as the data 

shown in Figure 4-13 and will be utilised in the illustration of propagation calculation 

regarding Nodes MCS2 and B. 

-n- 
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The propagation and marginalisation details for P(MCS21) , which represents the 

unconditional probability of the state "occur" of Node MCS2 under the condition that 

Node D2 has been updated by "evidence", are shown in Equation (4.10). The 

computation just simply applies Equation (4.7) to update its likelihood. However, the 

probability data with regard to Node D2 no longer applies from the Conditional 

Probability Table for the calculation, but from the "evidence" instead. In this example, 

the P(D21) and P(D22) are replaced by 100% and 0% respectively. To keep the 

calculation details short, only one of the states (i. e. the state of "occur") is illustrated. 

Since there are only two states within Node MCS2 and there is l's complement 

relationship between them, the likelihood of the other state of the node (i. e. state "not") 

can be obtained by simply subtracting the likelihood of the state "occur" by one (i. e. 

1-P(MCS21)). 

i=2 
j=2 

P(MCS21) _ P(MCS211 D21, E2, ) x P(D2, )P(E2j) 
(4.10) 

r=t j=t 
=(lxlx0.1)+(0xlx0.9)+(0x0x0.1)+(0x0x0.9) 

= 0.1+0+0+0 

= 0.1 

In contrast to Node MCS2, the propagation details for Node B is more complicate 

since Node B is the predecessor of Node D2. This is because now Node B turns out to 
be the influenced node of Node D2, rather than the influencing node as it was, ̀due to 
the "evidence" updating of Node D2. This introduces a small difficulty for carrying out 
the marginalisation of P(B1) because there is no immediate data for P(B1 D21) and 

P(B1 I D22) in the Conditional Probability Tables. Therefore Bayes' Rule/Theorem (see 

Equation (4.6)) is applied to obtain the answer of P(B1 I D2, ) with the data of 

P(D21 I B, ) (i. e. the data depicted in the Conditional Probability Tables) and the 

marginalised P(D21) before updating. It supposes to apply the same process to obtain 

the answer for P(B1 I D2, ). However, since the updated P(D22) is zero, no matter 

what value the P(B1 I D22) is, the answer of P(B1 I D22)P(D22) is always zero. Hence, 

the calculation for P(B1 I D22) can be omitted. Therefore, the updated P(B1) is 
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acquired via the calculation shown in Equation (4.11). For P(MCS22) , the updated 

P(B2) is also achievable via subtracting the acquired P(B1) from one as the short cut. 

1-2 

P(B1)P(B1 ID2, )xP(D2, )=P(B1I D21)P(D21)+P(B, I D22)P(D22) 

P(B1 I D21) = P(D21 I Bt)P(B1) / P(D21) = (1 x 0.1)/ 0.1=1 

P(B1 I D22) = P(D22 I Bl)P(B, )/P(D22) 

(4.11) 
P(D21) =1 & P(D22) =0 

P(B1)=(P(B, 1 D21)x1)+(P(B, ID22)x0)=(1x1)+(0x0)=1 

By applying the propagation function of the Bayesian Network model, the analyst 

is not only able to determine which countermeasures can effectively reduce the 

likelihood of the accident, but also more confident to say which factors take the 

significant role in causing the accident to happen. It also means that the Bayesian 

Network model would be a convenient tool for the accident investigation authorities to 

objectively conclude the critical Causal Factors as well as the effective countermeasures 

of the accident. This is because the Bayesian Network models can offer a 

comprehensive view for the analyst to score all the Causal Factors involved not only 

qualitatively but also quantitatively. In the next section, the validation of the Bayesian 

Network model will be the topic to be addressed. It is of vital importance for the 

correctness of the analysis results. 

4.6 The Sensitivity Analysis (SA) over a Bayesian Network model 

"Sensitivity Analysis is the study of how the uncertainty in the output of a model 
(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input. The Sensitivity Analysis is hence considered by some as a prerequisite for 

model building in any setting, and in any field where the model is used" (Saltelli, 2002). 

It implies that the Sensitivity Analysis can be utilised to determine how "sensitive" a 

model is to the change in the value of the parameters and to the change in the structure 
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of the model. Since the structure of the Bayesian Network model (i. e. the qualitative 

analysis results) is established through a systematic procedure, the Sensitivity Analysis 

applied within this proposed method will only focus on two issues: (1) validating the 

Conditional Probability Tables data and (2) finding the critical factors of the model. 
This study will only address these two issues, further applications might be revealed in 

the future. 

It is believed that validating the model and finding the critical factors of a Bayesian 

Network model are imperative for the correctness of the analysis conclusions. In order 

to achieve these two goals, the technique applied is called Parameters Sensitivity 

examination, which is one of the applications of Sensitivity Analysis. In the 

examination, a series of parameters and values of the parameters are tested in order to 

appreciate the behaviour of the model which is changed due to the change of the 

parameters (Breierova and Choudhari, 1996). By showing how the model's behaviour 

responses to the change of the parameters value, Sensitivity Analysis is therefore 

applied, as the principle, to fulfil these two goals by evaluating the variations of the 
Bayesian Network model. Although the principle is the same, the procedures for 

achieving these two goals are different. Validating the model focuses on whether the 

outcomes of the entire model are in accord with the reality whilst finding the critical 
factors concentrates on the behaviours of individual nodes. Both of them have to resort 
to the mechanism of propagation of Bayesian Network in order to carry out the 

examination. Therefore, a Bayesian Network software, Netica (2008), was utilised to 
perform the computation and the propagation of the model. 

4.6.1 The validation of the Bayesian Network model 

Once a Bayesian Network model has been constructed by following the procedure 
described in the preceding sections, the correctness of the model becomes an imminent 
issue and has to be ensured before further progressing. That is, the validation of the 
Bayesian Network model is imperative and has to be made before the model is further 

used for the official accident analysis. As stated earlier, this process can resort to the 
technique of Parameter Sensitivity examination. By choosing some significant Causal 
Factors identified in the accident, variant probability values are given to the 
corresponding nodes in the Bayesian Network model as the "updated belief' ' to trigger 
the propagation of the model. Each time only one Causal Factor is selected and the 
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inputted value is changed from 0% to 100% step by step, for example 10% as the 

interval of the steps. Then the outcomes of the Bayesian Network model are changed 

accordingly and will be observed thoroughly. That is, the likelihoods for each node of 

the model will be updated according to the dependencies through the propagation 

function when the testing probability value is given to the selected node(s). The results 

of those Minimal Cut Sets (i. e. the proxies of the Top Event) are then recorded as the 

outputted data of the model. This examination process will be imposed to every selected 

factor, one by one, until all the selected factors have been tested thoroughly. Please note 

that each Causal Factor may be represented by more than one node in the Minimal Cut 

Set model. Therefore all the nodes in association with that particular factor have to be 

given the "updated belief' at the same time. If the Minimal Cut Set model is employed, 

the updated belief of the Top Event is acquired via the Minimal Cut Set upper bound 

formula (see Equation (4.2) in section 4.4.3) with those outcomes. This procedure is 

summarised as follows. 

1. Update the belief of the node(s) which represent one particular Causal Factor 

from 0% to 100% step by step, for example 10% as the interval of the steps. 

2. Record the updated result of Top Event as the output of the model or compute 
the updated result of those Minimal Cut Sets through Equation (4.2) to 

acquire the answer. 

3. Iterate previous steps until all the selected Causal Factors have been examined 
thoroughly. 

Having accomplished this process to all the selected Causal Factors, the figures 

with regard to the likelihood of the Top Event against those "updated belief' to each 
Causal Factor are acquired (see Figure 5-10 as an example). From those figures, the 

tendency of each selected Causal Factor can be revealed and compared. With the help of 
those figures, several requirements can be examined as the criterion. They are: 

1. These tendencies should be in line with the reality of the accidents. This is, 

the worse the negative behaviour of the factors, the higher the likelihood of 
the accident. 

2. The curves which are converted from those figures should converge to a small 
area, on the positive behaviour side, as the trend. This phenomenon is derived 
from the notion of Woo that if any one of the holes to line up the window has 
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been shut, the WoO no longer exists. That is, no matter which hole has been 

shut, the window should be closed. 

3. As long as all the Causal Factors have been set with the most adverse figures, 

the likelihood of the Top Event should reach the maximum figure. This is also 

rational correspondence to the reality. Since these selected Causal Factors 

were identified as the causes of the accident, the accident should happen 

whilst all the Causal Factors occur. 

A proper validation process can help the analyst to highlight the inadvertent error(s) 

of the Bayesian Network model. From the point of view of practicability, the proposed 

validation process is reasonable and achievable for being part of the method. Although 

the proposed validation process is sound for the purpose of the method, a further 

comprehensive validation method to improve the process may be considered in the 

future. 

4.6.2 Finding the critical Causal Factors of the accident 

Having validated a Bayesian Network model, finding the critical factors of the 

model is the aim of the next step. Yang (2006) suggests that, in a Bayesian Network, it 

is possible to differentiate the importance of the input nodes in terms of the individual 

safety contribution to the output variable by giving the same variation of input 

probabilities and comparing their influence magnitudes on the output node(s). A study 

also points out that a node (or parameter) whose specific value(s) can significantly 
influence the outcome of the model is identified as the critical factor, which greatly 

changes the system's behaviour with the change of the node's value (Breierova and 

Choudhari, 1996). They recommend that "A good sensitivity analysis should conduct 

analyses over the full range of plausible values of key parameters and their interactions, 

to assess how impacts change in response to changes in key parameters". Therefore, the 

proposed process to find out the critical Causal Factors of the accident is performed by 

examining all the nodes in the Bayesian Network model with full range of plausible 

values for each node. These values are deemed as the "updated belief' of the nodes to 

trigger the propagation of the model and compare their influence magnitude to the 

output node(s). This must be done systematically and thoroughly for ensuring that none 

of the nodes will be overlooked. Apparently, it would be time consuming and error 
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prone if this process is carried out manually. Fortunately, this requirement can be 

achieved easily through a built-in function of the utilised Bayesian Network software - 

Netica (2008). The explanation of the functionalities provided for sensitivity. finding is 

described in Appendix-C. 

Before executing this function via the software, a target node has to be assigned. 

After appointing one of the nodes representing the Minimal Cut Sets as the target node 

for the finding process, the software examines the sensitivity regarding the target node 

for every node in the model, one by one, step by step. A text report is provided at the 

end of the execution as the results. The report is divided into two parts; the details for 

individual node are in the first part and the comparison data is in the second part. The 

first part of the report provides detailed information associated with a "finding node", 

whilst the second part of the report provides a summary list of the sensitivities for each 

node. The second part of the report also shows the ranking of the "`finding nodes" listed, 

from high to low, according to the sensitivities results. By having the report, it is helpful 

for the analyst to identify which Causal Factors are more sensitive (or crucial) to one of 

the WoOs (i. e. the Minimal Cut Sets) of the accident. After applying this process to all 

the WoOs of the accident, one by one, and analysing these reports, it is now easier for 

the investigators to objectively identify which factors are crucial with a comprehensive 

picture. With these identified crucial factors, it would he helpful fier the investigation 

authorities to objectively conclude the comments and the recommendations in the 

investigation reports. It is recommended that this process should he executed before any 

recommendation of the countermeasures has been made. The countermeasures issue 

which is considered as the Risk Control Options will be discussed in the next sections. 

4.7 Influence Diagrams (ID) for Risk Control Option (RCO) 

Fact Finding WBG Constructing Backtracking 

Information 11m'ma1 61 
or evidence 

--Om- Facts-* Factors Cut Sets-Oo- Cut 
Sets--*. mudelýý model--11' 

N'B: 1 K-CPT & K-map lIll Constructing 

An Influence Diagrams is a graphical framework for representation and analysis of 
(Bayesian) decision making under uncertainty. It can solve "a decision problem 

amounts to (i) determining an optimal strategy that maximises the expected utility for 
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the decision maker and (ii) computing the Maximal Expected Utility of adhering to this 

strategy (Kjaerulff and Madsen, 2008)". In addition, Jensen (2001) articulates a 

definition as that an Influence Diagrams consists of a Directed Acyclic Graph over 

chance nodes, decision nodes and utility nodes with the following structural properties: 

  there is a directed path comprising all decision nodes; 

  the utility nodes have no children. 

For the quantitative specification, we require that: 

  the decision nodes and the chance nodes have a finite set of mutually 

exclusive state; 

  the utility nodes have no states; 

  to each chance node A is attached a Conditional Probability Table P(AIpa(A)); 

  to each utility node U is attached a real-valued function over pa(t). 

From the view of the decision makers, the countermeasures against a particular 

type of accident may be seen as a decision problem. In the thought of cost-benefit, it 

would be improper if one only considers the likelihood of the occurrence without taking 

into account the cost and the payoffs of the countermeasures. A previous study (Eleye- 

Datubo, 2005) has shown that the Maximal Expected Utility of Influence Diagrams can 
be applied as the tools to evaluate the cost-benefit issue for safety-based marine and 

offshore decision making. In that study, the utility figures are relative to Implied Cost of 
Averting Fatality (IACF), which is a typical approach used in the offshore industry 

(Wang and Trbojevic, 2007). Instead of IACF, the study assumes that the same 

technique (i. e. the Maximal Expected Utility) can be utilised to analyse the accident for 

all the possible countermeasures considering the cost-benefit issue. Hence, the proposed 

methodology treats these countermeasures as the Risk Control Options incorporating 

into the Influence Diagrams model of accidents in order to obtain the Maximal 

Expected Utility of the countermeasures. The Maximal Expected Utility considers the 
likelihood of the occurrence as well as the cost and payoff of the countermeasures at the 

same time. The Influence Diagrams model is expanded from the established Bayesian 

Network model of the accident. In other words, the Bayesian Network model is the 
foundation of the Influence Diagrams model, in which the analysed results of the 
accident clarified in the preceding processes are the basis. Hence, the Influence 
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Diagrams model is eligible to be considered as a dedicated model which corresponds to 

the reality of the accident. Having established this model, it would be beneficial for the 
decision makers to assess all the available countermeasures, considering the cost-benefit 
issue, in order to choose the best solution to prevent the (or similar) type of accident 
from happening again. 

A concise summary regarding Influence Diagrams, Expected Utility and Maximal 

Expected Utility is given as follows. 

Influence Diagrams: 

"An influence diagram is a compact representation of a joint expected utility 
function" (Kjaerulff and Madsen, 2008). In order to provide decision-making 

capabilities, a Bayesian Network can be expanded with utility functions and with 
variables representing decisions to form an Influence Diagrams. That is, 

"Influence Diagrams" = "Bayesian Network" + (decisions & utilities} 

Besides, a utility table U(D, S) depicting the utility for each configuration of 
decision alternative, d, d r= D, and outcome states, S, for the determining 

variable has to be yielded in order to assess the decision alternatives in D. 

Expected Utility: 

The Expected Utility (EU) of a given decision alternative d is: 

EU(d)=j: P(SI d)U(d, S) 
s 

where U(d, S) are the utility function of (d, S) encoded in the utility table of node 
U. The conditional probability P(SId) represents the belief in S given that d is 

performed (Kjaerulff and Madsen, 2008). 

Maximum Expected Utility (MEU): 

A rational decision-maker should choose an action that maximises expected 
utility of outcome states. Thus, given that dl, d2,..., dk are the mutually exclusive 
decision alternatives of D, the decision alternative d that gives MEU is: 

(4.12) 

MEU(d) = mdx(EU(d, ), EU(d2),.... EU(dk)} (4.13) 
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Evaluation of the Influence Diagrams can be done by setting the decision node to 

a particular choice of action (i. e., the best RCO) and treating the node just as a 

nature node with a known value that can further influence the values of other 

nodes (Eleye-Datubo, 2005). 

In Influence Diagrams, the Decision nodes (usually drawn as rectangles or squares) 

represent the decision alternatives which are available to the decision makers. The 

nodes include a specification of the available decision options (i. e. choices). Edges into 

decision nodes indicate time precedence: an edge from a random variable to a decision 

variable indicates that the value of the random variable is known then the decision will 

be taken. By the same token, an edge from one decision variable to another decision 

node indicates the chronological order of the corresponding decisions. In contrast, the 

Utility nodes (normally drawn as diamond-shaped or hexagons) represent the figure of 

merit for a decision alternative. Each utility node has utility functions associating each 

utility with each states of its parents (Utility nodes do not have children). The 

probabilities of the nodes involved in the model are influenced by the decisions taken. 

Therefore the expected utility for each decision alternative can be computed accordingly 
(the global utility function is the sum of all the local utility functions) (see Equation 

(4.12)). The alternative with the highest expected utility is chosen; this is known as the 

Maximum Expected Utility principle shown in Equation (4.13) (Eleye-Datubo, 2005). 

4.7.1 Applying Influence Diagrams for selecting the Risk Control Option 

Fact Finding WBG Constructing Backtracking Countcrmeasurc(%) 

Information--ý 
Facts--* Factors--4 Cut Scts-ý 

V1ýmmalf B\º Ip 
nr evidence Cul Sets_ model. 

_ 
mudcl_f 

R('Ot 

WBA K-CPT & K-map III) Constructing 

An instance of Influence Diagrams which has considered the occurrence likelihood 

of analysed accident as well as the cost and payoff of countermeasures is proposed and 

shown in Figure 4-16. It does not mean that this is the only solution to implement this 

notion, instead other implementations are still possible. In other words, it is an example 
to show how Influence Diagrams to cope with the cost-benefit issue for decision makers 
in order to choose the most efficient countermeasure against the accident. In the 
following paragraphs, the proposed solution is depicted with the calculation details. 
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Payo ff ------------ MCS# RCO ------------ Cost 
Up(n1) P(si) di UU(dt) 

UP(n2) ------------ P(s: ) d2 UU(dz) 

MCS#N 
Sl SZ 

d, d2 d, d2 

n, P(nj si, d1) P(n1jsj, d2) P(n»s2, dj) P(nlIs2, d2) 

n2 P(n2si, dl) P(n, lsl, d2) P(n2ls2, di) P(n2s2, d. ) 

Figure 4-16 The example of Influence Diagrams for Risk Control Option selection 

An Influence Diagram can be obtained by expanding the Bayesian Network model 

of an accident, in which one Decision node (labelled as R('O) and one Utility node 

(labelled as the Cost) are added into the established Bayesian Network model. In 

addition, for each Minimal Cut Set of the accident, which is represented by a Chance 

node (labelled as the MC'S#; # EE N), an extra Chance node (labelled as the M('S#N) is 

attached with a Utility node (labelled as the Payoff) followed (see Figure 4-16 for the 

illustration). Node RCO denotes the available countermeasures for decision making. 

Node Cost specifies the costs for each Risk Control Option, and the number of utility 

function of the node depends on the state number that Node R('O has (i. e. the numbers 

of the alternative). Node MCSi#N represents the posterior status of the occurrence 

subject to the conditions of its parent nodes given (i. e. Nodes MCS)l and WO). The 

number of the states of Node MCS#N is decided by the states of Node A! C, 5'4. The 

Conditional Probability Table of Node MCS#N denotes the conditional probability 

regarding the effectiveness of the countermeasure. It is the prediction of the likelihood 

of the Top Event (or Minimal Cut Sets) if the Risk Control Options are imposed. The 

symbol "#" represents one digit of natural (or counting) number (i. e. #EN). For 

example, MCSI or MCS1N is instantiated if # is "1". Node Payoff, which has the same 

number of utility functions as the state number that its parent node has (i. e. Node 

MCS#N), specifies the benefits which can be acquired if one of the states of Node 

MCS#N occurs. For calculating the expected utility, Fquation (4.14) is applied. lach 
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alternative of the decision is calculated with the corresponding data of the nodes 

specified in the tables to obtain the answers of Risk Control Options one by one. 

EU(RCO) = U(Cost) +E P(MCS# NI MCS#, RCO) x U(Payoff) (4.14) 

For further illustration, the Directed Acyclic Graph of the proposed Influence 

Diagrams is shown on the right hand side of Figure 4-16. On the left hand side, the 

tables encoding these nodes are revealed. In this example, the decision node (i. e. Node 

RCO) has two alternatives: di and d2. If a decision is made based on d1, then the 

expected utility is quantified via EU(dj), which is shown in the first part of Equation 

(4.15). If a decision is based on d2, EU(d2) is applied, which is shown in the second part 

of the equation. 

EU (d, ) = U, (d, ) 

+P(s, )x[P(ni Isl, dl)UP(ni)+P(n2Isl, di)UP(n2)] 

+P(s2)x[P(n, I s2, d, )UP(n, )+P(n2 I s2, di)UP(n2)] (4.15) 

EU(d2)= U, (d2) 

+P(sl)x[P(nl I s1, d2)Up(ni)+P(n2 l sl, d2)Up(nz)] 

+P(s2)x[P(ni Ise, d2)Up(nl)+P(n2Is2, d2)Up(n2)] 

When the values of the expected utilities (i. e. EU(di) and EU(d2)) are acquired, the 

decision alternative d that provides the Maximal Expected Utility is given by: 

NEU(d) = max{EU(dl), EU(d2)} 

Theoretically, the Influence Diagrams model cannot only perform the Maximum 

Expected Utility functionality, but also execute the "what if' ' propagation testing since it 

is derived from Bayesian Network. This feature provides an extraordinary merit when 

Influence Diagrams are applied as the tool for assessing the best Risk Control Option. 

This is because this application can offer the decision makers a wider flexibility to 

examine the effectiveness of the countermeasures by testing variant conditions of the 

circumstances. Moreover, it also adheres to the accident analysis results and the cost- 

benefit consideration as a whole. A more comprehensive example which applies the 
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proposed Influence Diagrams pattern to deal with the assessment of Risk Control 

Options for Herald of Free Enterprise case is shown in section 5.7. In that case study, 

the proposed pattern is used to construct the Influence Diagrams model which is based 

on the qualitative and quantitative analysis results of the accident. In that section, the 

calculation details are also illustrated in order to appreciate the underlying computation 

of the process. 

4.8 Discussion 

The hypothesis of the proposed methodology implementing the Wo0 of Reason's 

Swiss Cheese Model via the Minimal Cut Set of FTA is inspired by the similarity of the 

definitions between the WoO and the Minimal Cut Set. Having this notion as the 

principle of the method, the gathered information or evidence of an accident during 

investigation stage are transformed into the listed facts, the Causal Factors, the Cut Sets, 

and then the Minimal Cut Sets in turn to acquire the qualitative analysis results. 

Subsequently the quantitative analysis results are obtained through the corresponding 
Bayesian Network model which is constructed according to the qualitative analysis 

results. Furthermore the Influence Diagrams model extending from the Bayesian 

Network model provides a cost-benefit analysis tool, in light of the analysis results, for 

the decision makers to select the best Risk Control Option. The entire relay-like 

procedure of the methodology adheres to the Swiss Cheese Model with several sound 

risk assessment techniques, as a whole, to achieve the goal of analysing an accident 

qualitatively , 
and quantitatively. In addition, having established the Bayesian Network 

and/or Influence Diagrams model of the accident, a dedicated simulator of the accident 
is available, with the feature of propagation of Bayesian Network, to perform a series of 
"what if' examinations, which offers an opportunity to objectively appreciate the 

influences that have effect on all the factors involved in the accident. In summary, from 

the perspective of data processing, the progress of the analysis procedure which is 

shown in Figure 1-3, and in several corresponding sections, is illustrated in Figure 4-17 

again. In the figure, the main stream is the evolution of the analytic data whilst the 

rectangles depict the relevant processes applied. 
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Qualitative Quantitative 

Fact Finding WBG Constructing Backtracking Countermeasure(s) 

Information Minimal B1' II) 
or evidence' 

Jim- Facts-01- Factors-i Cut Sets-Oo- 
ut Sets-4* model-* modelRCOS 

W'VBA ID Constructing 

Figure 4-17 The data processing of the method 

Predictably, this method can be utilised not only for the accident analysis but also 

for the preliminary assessment on safety case at other social-tech applications if the 

proper mathematic models of the topics are not in place. The features of the proposed 

methodology are briefly listed as follows. 

 A systematic procedure to sort out the Minimal Cut Sets of the occurrences, as 

the qualitative analysis results, is in line with the WoO of Reason's Swiss 

Cheese Model. 

  Both the qualitative and quantitative analysis results of the occurrences can 

simultaneously be shown on a Bayesian Network model as well as an Influence 

Diagrams model. 

  The Bayesian Network model established according to the qualitative and 

quantitative analysis results can be seen as a dedicated simulator of' the 

occurrences to perform a series of what if examination. 

  An Influence Diagrams model based on the established Bayesian Network 

model of the occurrence is a useful tool for decision makers to evaluate the best 

Risk Control Option, whilst considering the cost-benefit issue, amongst variant 

available countermeasures. 
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Chapter Five - 
Case Study Using the Proposed Method: 

Herald of Free Enterprise 

Summary 

In this chapter, the tragedy of Herald of Free Enterprise (HoFE) is used as a case 

study to demonstrate the proposed method for identifying the Causal Factors involved 

in the accident and analysing the causation. This occurred on 6th March 1987 soon after 
leaving the harbour at Zeebrugge, Belgium The techniques applied by the method in 

analysing an accident qualitatively and quantitatively have been explicitly introduced in 

Chapter 4. They are: Why-Because Analysis (WBA), Karnaugh map (K-map), Fault 

Tree, Analysis (FTA), Bayesian Network and Influence Diagrams. The method also 

utilises the Sensitivity Analysis to validate the analysed outcomes and to find out the 

critical Causal Factors of the accident. In this chapter, the entire relay-like procedure is 

performed, with these techniques, onto the HoFE case in order to provide a thorough 

overview of the analysis method. In the final stage of the procedure, the analysed results 

of the case study is further extended into an Influence Diagrams model, and the 
Expected Utility of Influence Diagrams is used to evaluate several possible Risk 

Control Options (RCOs) in order to demonstrate the way of finding the best 

countermeasure with the consideration of cost-benefit. 

5.1 Introduction to the analysis 

As noted previously, the first intention of the analysis is to clarify the Causal 

Factors of an accident and the causation amongst them. Thus, the factors involved in 

the accident have to be identified in advance. Therefore the aim of the first process is to 
identify all the Causal Factors involved in the accident basing on the information or 
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evidence gathered during the investigation stage. Then, as stated in section 5.2.2, the 

Causal Factors for each Intermediate/Top Event and the causations amongst them are 

identified in turn. Next, the overall Why-Because (or Cause-Consequence) relationship 

amongst these Causal Factors will be depicted in a Why-Because Graph (WBG), 

according to the analysis outcome of WBA (section 5.2.3). However, this is not 

necessarily the final result of qualitative analysis since the analysed results might 

contain some irrelevant or redundant Causal Factors. In section 5.3, these Causal 

Factors (or Cut Set) are further clarified in order to obtain the Minimal Cut Set(s) for 

each Intermediate Event through the approximate simplification process (section 5.3.1). 

Hence, the Minimal Cut Set(s) of the accident are able to be obtained by using the Fault 

Tree Analysis techniques (section 5.4). The entire qualitative analysis can be achieved 

at this stage. 

For quantitative analysis of an accident, a Bayesian Network technique is mainly 

utilised (section 5.5). A Bayesian Network model of Top Event can be obtained by 

transforming the established Why-Because Graph into a Directed Acyclic Graph (DAG) 

with the associated Conditional Probability Tables (section 5.3.2). The DAG of the 

Minimal Cut Set model is constructed by resorting to the proposed backtracking process 
(section 5.5.1), in which the simplified Minimal Cut Set equations acquired from the 

preceding approximate simplification process are the blueprint. In conjunction with the 

associated Conditional Probability Tables (section 5.5.4), the Bayesian Network model 

of Minimal Cut Sets of the accident can be established accordingly. In terms of 

validation, the Sensitivity Analysis is applied to ensure that the quantitative analysis 

results are rational (section 5.6). Finally, in section 5.7, the Influence Diagrams 

technique is utilised as the means to evaluate the possible Risk Control Options (i. e. the 

countermeasures to prevent reoccurrence) from the cost-benefit viewpoint. 

The entire analysis procedure mainly relies on the gathered information and 

evidence collected during the investigation period. Subject expertise is also used, from 

time to time, to compensate the deficiency of the data, especially in the processes of 
WBA, approximate simplification, Conditional Probability Table of Bayesian Network 

and Influence Diagrams. Some assumptions on the data used for analysing the HoFE 

tragedy have been made by the author in order that the proposed methodology can be 
demonstrated. 
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5.2 Why-Because Analysis (WBA) for identifying the Cut Sets 

The technique applied for identifying the Causal Factors and Cut Sets that involve 

in an accident is primarily the WBA, but the order and the number of the processes 

applied in the proposed method are different from the original WBA. This is because 

some of the mechanisms the WBA provides can be substituted by the other processes 

proposed in the method. For instance, the "quality assurance process" of WBA is 

substituted by the proposed Sensitivity Analysis technique depicted in section 5.6. 

Therefore, the processes which involve WBA are limited in identifying the Causal 

Factors for each Intermediate/Top Event and constructing the Why-Because Graph. In 

the end of the WBA process, a list of Causal Factors is produced as one of the data pool 

for the subsequent analysing processes. It should be noted that the WBA is highly 

dependent upon the subject expertises during the analysis. A brief description of WBA 

applied in the proposed method is covered in section 4.2. 

5.2.1 Gathering information and determining the facts of the accident 

In general, the gathered information with regard to an accident is mainly collected 

and organised during the investigation stage. The guidelines proposed by the 

International Maritime Organization (IMO) for the investigation into marine accidents 

are enumerated in section 4.2.1 where the codes, resolutions and circulars adopted by 

the IMO are tabulated, and these have to be considered ensuring the correctness and 

thoroughness of the data when an investigation is carried out. In order to focus on the 

application of the method, the case study does not consider this issue. Instead, it is 

assumed that the information gathered in this chapter is correct and sufficient. 

All the identified facts or events listed in the following paragraph are extracted 
from the accident investigation report (DoT, 1987), which is available from Marine 

Accident Investigation Branch (MAIB) website (httl2: //www. maib. lov. uk). v. uk). In addition, 

a video documentary from the National Geographic Channel (Seconds from Disaster - 
Capsized in the North Sea, which is available form YouTube website (NGC, 2008)) is 

also utilised. They are the major data sources used for demonstrating this analysis 

example. Facts extracted from these data sources are then transformed into a collection 

of listed statements and become the major data pool for identifying the Causal Factors 
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in the analysis. For referencing purposes, a short description in parentheses, as the 

notation of the "(source index)", at the end of each listed statement denotes which part 

of the DoT report the statements are derived from. For example the "(10.1; pp. 8)", in 

the second listed statement below, denotes that the statement is extracted from section 

10.1 on page 8 of the DoT report. 

These listed statements are enumerated as follows. The mechanism to perform the 

facts finding process is indicated in section 4.2.2. 

1. The chief officer relieved the 2nd officer from the duty of loading officer and then 

he left the bow door area without ensuring that the assistant bosun was present 
(10.5-10.8; pp. 8-9). 

2. The assistant bosun failed to carry out his duty to close the bow doors at the time 

(10.1; pp. 8). 

3. The master ordered a ship speed of 18 knots (9.2; pp. 7). 

4. A large quantity of water entered G deck and caused an initial lurch to port due to 

free surface instability - reached 30° (9.3; pp. 7). 

5. The Court was satisfied that at departure the HERALD had a mean draught of 
between 5.68 m and 5.85 m with a trim by the head about 0.8m (8.5; pp. 6). 

6. The ship was in fact overloaded significantly at departure (8.5; pp. 6). 

7. The ship was trimmed by the head in order to load E deck (8.1; pp. 5). 

8. The Court identified a need for more information about the weight cargo actually 
loaded and the desirability of fitting draught indicator (8.5; pp. 7). 

9. It was necessary to trim the ship by the head to allow the raised ramp to reach E 
deck (7.3; pp. 5). 

10. The ballast system could fill or empty No. 14 ballast tank at a rate of 115-120 tones 
per hours (7.3; pp. 5) (meaning that it would take at least 2 hrs to fill or empty the 
tank). 

11. The company employed a Master and two deck officers on this run (7.2; pp. 5). 

12. Frequently the order "harbour station" was given before loading was completed 
(11.1; pp. 10) (indicating pressure to leave the berth). 
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13. The lack of time available at Dover to handle both discharge and loading together 

with storing, was often mitigated by an early sailing from Zeebrugge in the 

previous voyage (11.3; pp. 11). 

14. "Master came to rely upon the absence of any report at the time of sailing as 

satisfying them that their ship was ready for sea in all respects. That was, of 

course, a very dangerous assumption" (12.3; pp. 12). This was encouraged by the 

standing order 01.09 specifying that "In the absence of such report the Master will 

assume, at the due sailing time, that the vessel is ready for sea in all respects" 

(12.3; pp. 12). 

15. Before this disaster there had been no less 5 occasions when one of the company's 

ship had proceeded to sea with bow or stern door open ... the management had not 
drawn them to the attraction of the other Masters (12.5; pp. 12). 

16. The fact that ... Captain Lewry had a personal responsibility for taking his ship to 

sea in an unsafe condition.. . he was seriously negligent in the discharge of his 

duties. The negligence was one of the causes contributing to the casualty (12.6; 

pp. 13). 

17. Senior Master Captain Kirby adopted a set of General Instructions issued by 

Captain Martin in July 1984. "2. The officer loading the main vehicle deck, G 

deck, to ensure that the water tight and bow/stem doors are secured when leaving 

port. " (13.2; pp. 14). He was content to accept without demur the Ship's Standing 
Orders issued by the company... If he had read the orders he would certainly have 

appreciated their defects 
... Captain Kirby must bear his share of the responsibility 

for the disaster (13.3; pp. 14). 

18. The failure on the part of shore management to give proper and clear directions 

was a contributory cause to the disaster (14.1; pp. 14). 

19. It was the failure to give clear order about the duties of the Officers on the 
Zeebrugge run which contributed so greatly to the cause of this disaster (14.2; 

pp. 15). 

20. The worst features of the Standing Orders were that (1) they made no reference to 

closing the bow and stem doors, and (2) they appear to have led Captain Lewry to 

assume that his ship was ready for sea in all respects merely because he had had no 
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report to the contrary (15.3; pp. 16). 

21. There is no indication on the bridge as to whether the most important watertight 

doors are closed or not.... Indicator lights on the very excellent mimic panel could 

enable the bridge to monitor the situation in such circumstances (A memorandum 

issued by Captain Blowers on 28th June 1985) (18.4; pp. 23). 

22. The matter was raised again on 17th May 1986, a memorandum issued by Captain 

Kirby and Captain de Ste Croix, suggested that "17. Bow and stern doors. 

Open/Closed indication to be duplicated on bridge" (18.6; pp. 24). But on the 21st 

October 1986, Mr Alcindor replied "... the Bridge indication is a `no go"' (18.7; 

pp. 25). 

23. Captain Lewry told the Court ... that no attempt had been made to read the draught 

of his ship on a regular basis... Fictitious figures were entered in the Official Log 

which took no account of the trimming water ballast (19.2; pp. 26). 

24. The ship was operating outside her conditions as set out in (and, was therefore not 

complying with) the conditions under which the Passenger Ship Certificate was 
issued (19.3; pp. 26). 

25. Mr. Develin, a director of the Company and former "Chief Marine 

Superintendent", did not appreciate that the stability of the HERALD could be 

significantly affected if the ship was trimmed by the head (19.2; pp. 26). Mr. 

Develin ought to have been alert to the serious effects of operating at large trims. 
Furthermore he should have been concerned about Captain Martin's remarks about 

stability in a memorandum sent on 24th October 1983 (19.3; pp. 26). 

26. Mr. Ayers, who was at the relevant time a director of the Company, told the Court 

that in his view it was impossible for the officers to read the draught mark of the 

HERALD (19.5; pp. 27). 

27. Normal ballasting requirements are for Nos. 1 and 14 tanks ... to be filled for 

arrival Zeebrugge and emptied upon completion of loading 
... Using one pump the 

time to either fill or empty the two tanks is approximately lhr. 55mins. Using two 

pumps ... can be reduced to approximately lhr. 30mins (20; pp. 29). 

28. Mr. Develin did not agree with the need for a high capacity ballast pump (20; 

pp. 29). An estimate was obtained for the installation of a pump at a cost of 
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£25,000. This cost was regarded by the Company as prohibitive (20; pp. 30). 

29. The "Marine Department' did not listen to the complaints or suggestions of their 

Masters. Those areas were: (a) complaints that ship proceeded to sea carrying 

passengers in excess of the permitted number. (b) The suggestion to have lights 

fitted on the bridge to indicate whether the bow and stern doors were open or 

closed. (c) Draught marks could not be read. Ships were not provided with 

instruments for reading draughts. At times ships were required to arrive and sail 

from Zeebrugge trimmed by the head, without any relevant stability information. 

(d) The suggestion to have a high capacity ballast pump to deal with the Zeebrugge 

trimming ballast (16.2; pp. 17). 

30. Water in large quantities continued to flood trough the open bow doors aperture 

(9.3; pp. 7). 

5.2.2 Determining the Why-Because subset for each Intermediate/Top Event 

Once all the information and evidence with respect to the accident are listed and 

organised as statements one by one, the causality among them becomes the most 
important issue in order to find out the answer of how and why the accident happened. 

Therefore, the aim of this process is to identify the Causal Factors as well as to clarify 

the causations between them according to the listed statements described in the 

preceding section. In this section, the Causal Sufficiency Criterion (CSC) of WBA is the 

major tool to transform these listed statements into Causal Factors and to clarify the 

causality among them. For the details of the process, section 4.2.3 is worth visiting. 

Recall the definition of CSC that "between a set of Causal Factors A, ... A,, and a 

consequence event B, it is impossible for B not to have happened if all of Ak; ke [1, N] 

have happened (Paul-Stüve, 2005)". This is similar to the definition of Cut Set of FTA; 

a Cut Set is a collection of Basic Events such that if they all occur the Top Event must 

also occur (Andrews and Moss, 2002). As mentioned before, the similarity between 

these two definitions is the reason why CSC is chosen as the tool to identify the Cut Set 

of Intermediate/Top events. The Cut Set is a set of direct Causal Factors which is 

sufficient to trigger a particular Intermediate/Top Event to occur where Intermediate 

Events are those events between Top Event and Basic Event in the fault tree. The 
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process repeatedly goes through these listed statements with CSC to identify the direct 

Causal Factors relating to each Intermediate Event, one by one, from the top (i. e. Top 

Event) to the bottom (i. e. Basic Event) of the fault tree. In each step, the process only 

concentrates on one particular Intermediate Event in order to find out the sufficient 

direct Causal Factors for that event. Therefore, a Why-Because subset can be set 

accordingly. In the end, once all the Why-Because subsets relating to each Intermediate 

Event have been sorted out, the Why-Because Graph is able to be drawn for further 

analysis in the following steps (see Figure 5-1 below). 

Normally each listed statement should be represented by a Causal Factor in which 

an event symbol (e. g. A or L8) is assigned in the analysis procedure. However, they are 

not necessarily one-to-one relationship although it is preferred. Sometimes, more than 

one Causal Factor refers to a single listed statement (see Figure 5-1 and LoF in section 

5.2.3). Conversely, it is also possible that a single event symbol refers to more than one 

listed statement. For example, in the Why-Because Graph in Figure 5-1, event J shows 

the symbols (10) and (27) meaning that the corresponding facts are listed in statements 

No. 10 and No. 27 in section 5.2.1. 

In this example, the process starts from the Top Event (i. e. the capsizing of Herald 

of Free Enterprise) by examining all the facts organised in the listed statements with the 

criteria (i. e. CSC) to identify all the direct Causal Factors which cause the Top Event to 

happen. In this way, the examination found that the factor "large quantity of water 

entered G deck (specified in sentence (4) of section 5.2.1)" is one of the direct Causal 
Factors that caused the Top Event (i. e. the capsize of the ship) to happen. This Causal 

Factor is hence added and labelled A, and an arrow arc is drawn from factor A to the 
Top Event as shown in Figure 5-1. Meanwhile factor A is also queued for further CSC 

examination. These arrow arcs infer that the direct Causal Factors (i. e. "Because" events) 

are the factors that cause the pointed event (i. e. "Why" event) to happen. In addition to 
Causal Factor A, there are two more Causal Factors existing; they are Causal Factors B 

and C. Causal Factor C is also identified from statement (4) and is defined as "lurch to 

port due to no enough upright GM force against Free Surface Instability (FSI)". 
Nevertheless, under the examination of CSC, factors A and C do not seem to be 

sufficient enough to trigger the Top Event to occur. The justification for including 

Causal Factor B is that, theoretically, a large amount of water inside the ship will not 
definitely cause the Free Surface Instability to occur. Ships can only capsize due to Free 
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Surface Instability when subject to three conditions simultaneously. These are: large 

amount of liquid inside the ship, no anti-FSI devices and the righting GM force of the 

ship is counteracted by excessive rolling. Therefore, a factor B of "No anti-FSI device" 

is justified to be added as the third Causal Factor of the Top Event. This addition is 

supported by a documentary program (Seconds from Disaster - Capsized in the North 

Sea) from National Geographic Channel (NGC, 2008). It is revealed that the absence of 

anti-FSI devices at the time should be accounted as one of the Causal Factors of the 

disaster. Examples of anti-FSI devices on vessels are longitudinal bulkheads (common, 

for example, on oil tankers), fast-draining scuppers or pumps (to remove water from the 

deck), transverse bulkheads/barriers to limit quantity and flow of water entering vessel. 

This examination results in three direct Causal Factors (i. e. factor A, B and C) being 

identified as the lined up holes of a Windows of Opportunity (WoO) in the Swiss 

Cheese Model, and are added into the Why-Because Graph with arrow arcs connecting 

to Top Event as the result. Up to this stage, the first CSC check against the Top Event is 

now accomplished. 

In the next step, factors A, B and C become the Intermediate Events and their direct 

Causal Factors need sorting in turn. Since event A has events D and F as the direct 

Causal Factors (see Figure 5-1), Events D and F are queued for further CSC 

examination. Eventually there is no further CSC examination for event Hl because it is 

assumed that its Causal Factors are out of the scope of the information gathered during 

the investigation or are not concerned in the analysis. Hence HI is treated as a Basic 
Event. That is, the process is iterated until reaching the limit of the information the 
investigation gathered or the boundary the analysis intended. Detailed CSC 

examinations for the rest of Intermediate Events of the accident are not specified further. 

Figure 5-1 contains the entire results. In the graph, the rectangles represent those 
Intermediate Events which are connected (or supported) by their direct Causal Factors 

while the circles denote those Basic Events which are the end of a branch of the fault 

tree. 
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Figure 5-1 The Why-Because Graph of HoFE accident 
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5.2.3 Constructing the Why-Because Graph (WBG) and List of Factors (LoF) 

In this process, as stated in sections 4.2.4 and 4.2.5, there are two goals. The first 

goal is to integrate all Why-Because subsets regarding every Intermediate Event 

(including the Top Event). The outcome of the integration is the Why-Because Graph 

(see Figure 5-1 as an example). This graph is built according to the results derived from 

the previous CSC examination, step by step, from the top to the bottom. The second 

goal is to organise a list of Causal Factors which are involved in the accident. At the tail 

of the description for each factor, a number, in parenthesis, indicates where a listed 

statement is derived from. This provides an index for rapid referencing between the 

listed factors and the listed statements. For example, "(4)" at the end of the description 

of factor A shows that factor A is derived from the listed statement No. 4 in section 5.2.1. 

Most of the listed statements have at least one corresponding event in the WGB whilst 

some of the symbols are concluded from two or more listed statements. For example, 

factors A and C are supported by the listed statement No. 4 while factor J is concluded 

from listed statements No. 10 and No. 27. 

The following list is the complete LoF of the HoFE case and can be seen as a quick 

reference of the Causal Factors. It is also a useful auxiliary reference for the following 

processes. 

TE (Top Event): HoFE lurched to port side and capsized due to Free Surface 

Instability (FSI) 

b A: A large quantity of water entered G deck (4) 

B: No Anti-FSI device (bulkhead or scupper) existed 

U C: Insufficient upright GM force against FSI (4) 

D: HoFE Trimmed by head of 0.8m (5) 

b El: Spring tide occurred 

b E2: Deficiency of harbour ramp to load ship in all conditions (7)(9) 

r* E3: Requirement load on E deck (7) (9) 

b F: Bow door left open while sailing (30) 

c G: Poor stability (25) 
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b HI: Ship speed reached 18 Kts (3) 

b H2: No draught indicators were fitted (8) (26) 

b J: Insufficient time to empty the ballast tanks (10) (27) 

K: The captain assumed that his ship was ready for sea (16) (20) 

> Ll: Shore management did not consider anti-FSI was necessary 

b L3: Ship manning was not enough (11) 

b L4: Ship took no account of trimming water ballast (23) 

> L5: The ship was operating outside her approval condition (24) 

U L6: Time pressure for an early sailing from Zeebrugge (13) 

b L7: Senior Master was content with existing Ship's Standing Orders (17) 

* L8: Failures of Shore Management (18) (29) 

b M: The assistant bosun was not present to close the bow door (2) 

b N: HoFE overloaded significantly (6) 

b 0: No high capacity ballast pump was installed (27) (28) 

b P: No indicator of bow door status fitted on the bridge (21) (22) 

Q: Management did not draw door incidents to the other Masters (15) 

> R: Master came to rely upon the absence of any report (14) 

U Si: Regulating Authorities had not addressed FSI 

b T: The Chief Officer left bow door unmanned (1) 

U U: Poor Ship's Standing Order (SSO) to crews (20) 

r* V: Harbour Station (HS) order was given before loading was completed (12) 

U W: Failure to give clear order about the duties (19) 
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5.3 Simplifying the approximate Minimal Cut Sets (MCS) and 

constructing the Bayesian Network model of Top Event 

There are two goals in this process. They are: (1) clarifying the Minimal Cut Sets 

for each Intermediate Event and (2) constructing the Bayesian Network model of Top 

Event. So far, the analysed results obtained for each Intermediate Event are Cut Sets 

rather than Minimal Cut Sets. As stated earlier, the difference between Minimal Cut 

Sets and Cut Sets is that a Minimal Cut Set consists of necessary and sufficient Causal 

Factors whilst a Cut Set consists of sufficient Causal Factors. Thus, two techniques, 

Karnaugh map (K-map) and K-style Conditional Probability Table (K-CPT), are 

utilised in order to transform the Cut Sets into Minimal Cut Sets if they are achievable. 

In short, the approximate Minimal Cut Set is named as Minimal Cut Set hereafter. Later 

in the second half of this section an example will be illustrated to show how these two 

techniques work together to achieve the first goal. The theoretical background is 

covered in section 4.3. Having completed this transformation, a list of Boolean 

equations depicting the Minimal Cut Set(s) for each Intermediate Event is provided as 

one of the outcomes of the process. These Boolean equations are essential for 

constructing a Bayesian Network model of Minimal Cut Sets of an accident which is 

depicted in section 5.5. 

5.3.1 Determining the approximate Minimal Cut Set(s) for Intermediate Events 

In the determining process (see Figure 5-2 as an example), the corresponding Why- 

Because Graph of an Intermediate Event (i. e. a Why-Because subset) is shown on the 
left of the figure, and the Boolean equation for the Minimal Cut sets is shown on the 

right. In the middle, the associated K-CPT and K-map are tabulated. Each row 

represents a subset and the transforming results are produced from the left to the right in 

turn according to the data in the column on the left, as the input source. Experts' 

estimates might be needed in K-CPT if the historical statistic data is not available, and 
the simplification rules of Karnaugh map (revealed in section 4.3.2) are applied for 

obtaining the minimised sum-of-products Boolean expressions for each Intermediate 

Event. In the following paragraph, the determining process applied on the Why-Because 

subset of Intermediate Event A is demonstrated as an example. The entire processing 
results are shown in Figure 5-2, Figure 5-3 and Figure 5-4. A list of Boolean 
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expressions regarding the Minimal Cut sets of Intermediate Events of the case study is 

shown at the end of this section. 

The determining process starts from the Top Event (i. e. the accident) and visits 

each Intermediate Event, which is drawn in a rectangle symbol in the Why Because 

Graph. Then, the execution of the process is similar to factorisation in algebra and only 

stops at the end of the branch, which is a Basic Event shown in a circle symbol. 

Therefore, each time, the process only necessarily focuses on one Why-Because subset 

for reasoning. For example, in the subset with regard to Intermediate Event A, the 

reasoning is only concentrated on event A and its direct Causal Factors; they are factors 

D, F and HI (see Figure 5-2). The details of processing the rest of the Intermediate 

Events are not included, but the entire results of the process are shown in a means of 

graphs, maps, tables and Boolean equations in Figure 5-2, Figure 5-3 and Figure 5-4. 

In event A, it is shown that about two thousands tonnes of sea water entered into 

the ship within 30 seconds because the bow door of the ship was widely opened (i. e. 
factor F) and the ship's speed reached 18 knots (i. e. factor HI) whilst the ship was 
trimmed by head (TBH) around 0.8m (i. e. factor D), according to the accident 
investigation report (DoT, 1987). Hence, it is presumed that the experts assign a value 

of "0.95" depicting the occurrence probability of event A subjecting to this condition. 
Therefore, the value is inputted into the entry of the K-CPT which represents factors Hl, 

F and D appearing simultaneously (i. e. H1=1, F=1 and D=1 are given as the condition). 
Meanwhile, in the entry of "(HI, F, D) = (1,40)", "0.9" is given as the occurrence 
probability, which is almost the same as the previous one. This is because factor D is 

considered as a minor influencing factor when the bow wave reaches 4 metres above sea 
level due to the ship's speed reaches 18 knots and comes up with the shallow water 

effect occurring at the same time. In such circumstance, the entire bow door area was 

engulfed by the bow wave and factor D becomes relatively insignificant although it had 

been considered as an important Causal Factor at the first investigation. 

This consideration had been confirmed by a full scale sea trial with her identical 

sister ship Pride of Free Enterprise which took place 9 weeks after the disaster. Both 
the model tests and the Pride experiment indicated clearly that at Combinator 6, which 
is a speed indication of about 18 knots, the bow wave welled up the bow doors, i. e. 
perhaps 2m above the level of the top of the spade (DoT, 1987). The Pride sea trial also 
revealed that there was almost no bow wave reaching the bow door over the spade if the 
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speed was under 15 knots, even though the ship (Pride of Free Enterprise) was 

ballasted and trimmed by head about 1 metre. Therefore, it is appropriate to assume that 

the probability given that (HI, F) = (0,1) is "0.1" no matter factor D existed or not. 

This means that the accident would almost not have happened if the ship's speed had 

not reached 18 knots in the entrance of the harbour, even though she (HoFE) was 

trimmed by head about 0.8 M with her bow door was opened. This also explains why 

the disaster had not happened before the HoFE accident, even though at least five 

incidents had been reported where the ships sailed with bow door open when 

proceeding to sea (DoT, 1987). Unfortunately, HoFE did not make it this time, due to a 

series of human errors compounded by her higher speed in the harbour and her heavy 

condition of loading. For the rest of the entries, as the bow door is closed ("F=0"), the 

probability values are very low and assigned "0.01". Once the K-CPT of event A has 

been accomplished, the associated K-map can be obtained if an appropriated 

approximate criterion is applied. For example, a value (in K-map) is deemed as one if it 

is larger than 0.8 (in K-CPT), and as zero (in K-map) if it is small than 0.2 (in K-CPT). 

Having set up the K-map, a simplified Boolean expression associated with the 

approximate Minimal Cut Sets of event A can be obtained following a K-map 

simplification procedure. An illustrated example is A -- Hl " F. 
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Figure 5-2 The determining process for approximate MCS (1/3) 

-114- 



Ch. S: Case Study Using the Proposed Method: Herald of Free Enterprise 

G: poor stability 
D: TBH 0.8m 
N: overloaded 

K ý. 

K: no re-check 
P: no BD indicator 
Q: Master didn't 
know the incidents 
R: no report is ready 
for sea 

N 

L4 H2 LS 

N: overloaded 
H2: no draught 

indicator fitted 
L4: not accounted 

ballast water 
L5: operated outside 
the safe condition 

IrS. 'j 

: Ut L3 -., V e 

T: CO left earlier 
L3: short of crew 
U: poor SSO 
V: earlier HS order 

3 
L7. 

U: poor SSO 
W. order unclear 
L7: content with 

existing SSO 

K-CPT: K-map: 
D=O D=1 

N=O 0.05 0.1 
N=1 0.2 0.95 

D=0 D=1 
N=O =0 
N=1 =0 =1 

K-CPT: K-map: 
P=0 P=1 

QR=OO 0.01 0.6 
QR =01 0.05 0.8 

R=11 0.9 0.99 
QR =10 0.01 0.7 

P=0 P=1 
QR=OO =0 =1 

R =01 z0 =1 
R=11 --1 =1 
R=10 =0 ý1 

K-CPT: K-map: 
H2=0 H2=1 

L4L5 0.05 0.1 
=00 
L4L5 0.2 0.8 
=01 
L4L5 0.2 0.95 
=11 
L4L5 0.1 0.8 
=10 

K-CPT: 
L3=0 L3=1 

UV=00 0.05 0.8 
UV=01 0.1 0.9 
UV=11 0.9 0.99 
UV=10 0.1 0.95 

K-CPT: 
w=o w=1 

L7=0 0.05 0.2 
L7=1 0.1 0.95 

H2=0 H2=1 
L4L5 ;0 =0 
=00 
L4L5 ;0 =1 
=01 
L4L5 z: ý0 =1 
=11 
L4L5 0 ; 21 
=10 

K-map: 
L3=0 L3=1 

Uv=00 =0 :1 
UV=01 z-0 Z1 
W=11 =1 -- 1 
UV=10 z0 =1 

K-map: 
w=o w=1 

L7=0 =r0 
L7=1 z0 ý1 

Figure 5-3 The determining process for approximate MCS (2/3) 
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Figure 5-4 The determining process for approximate MCS (3/3) 
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Once all of the Intermediate Events in the Why-Because Graph have passed the 

simplification process, the direct Causal Factors remaining in each Minimal Cut Set of 

the Intermediate Events can be considered as Necessary Causal Factors. This also 

means that they are the necessary and sufficient factors. A summary of the Boolean 

equations for the Minimal Cut Sets of these Intermediate Events is shown in Equation 

(5.1). However, it should be noted that the Necessary Causal Factors defined in the 

proposed method are those significant factors which can highly likely, instead of 

definitely, cause the Intermediate/Top Events to happen if they all occur. This is the side 

effect of the proposed approximate simplification law that some factors will be ignored 

due to the simplification. That is the simplification compromises the details of the 

Causal Factors in order to reveal the individual Window of Opportunities of the 

accident. 

K-CPT: K-ma : 
T=0 0.01 T=0 =0 
T=1 0.8 T=1 

MST 

Therefore: 

-116- 



Ck5: Case Study Using the Proposed Method: Herald of Free Enterprise 

TE; zA"B"C 
A; tý HI"F 
CMG 
DmýE2"E3"J 
FswK"M 
G; teD"N 
Jsý-, O 
KAP+(Q"R) 
M-- T 
N--H2"(L4+L5)=(H2"L4)+(H2"L5) 
0 -- L8 
PL8 

QL8 

RAU 

T L3+(U"V) 

UiW"L7 
VzL6 
WýL8 

5.3.2 Constructing the Bayesian Network of Top Event of an accident 

(5.1) 

Having accomplished the first goal, the next task is to construct the Bayesian 

Network model of Top Event of an accident. By directly transforming the Why-Because 

Graph into the Directed Acyclic Graph and forming the Conditional Probability Table 

derived from the K-CPT, a Bayesian Network model in relative to the Top Event can be 

constructed accordingly. Figure 5-5 illustrates the corresponding Bayesian Network 

model of . 
Top Event of the case study, and the data regarding the Conditional 

Probability Tables is tabulated in Appendix-A. Up to this stage, a Top Event model, 

without the details of Minimal Cut Sets, is accomplished and the quantitative analysis 

can be proceeded if the WoOs of the accident is not the issues concerned. The 

difference between these two models is that the Top Event model only shows the 

aggregated influences of the Causal Factors with respect to the accident, rather than the 

individual WoOs. In section 3.2, more details regarding this issue are covered. Again, as 

noted earlier and specified in section 4.3, the Minimal Cut Sets model of an accident is 

obtained by compromising the accuracy of the Causal Factors involved in order to gain 

the extra information of WoOs. The distortion of the analysis outcomes is unavoidable 
because of the approximate simplification of the method. 
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Figure 5-5 The Bayesian Network model of Top Event of HoFE 

5.4 Applying Fault Tree Analysis (FTA) for finalising the qualitative 

analysis 

Eventually, having clarified the Minimal Cut Sets for each Intermediate Event, the 

Minimal Cut Sets of an accident can be clarified by performing a factorisation operation 

with thöse Minimal Cut Sets of every Intermediate Event, in which Boolean algebra is 

used again. The theoretical explanations regarding this process are described in section 

4.4. At the end of this process, all the possible Minimal Cut Set(s) of the accident will 

be revealed as part of the qualitative analysis results of the accident. As mentioned 

before, each Minimal Cut Set of the accident represents one of the Window of 

Opportunities to cause the accident to happen, which is represented by a combination of 

identified Basic Events. However, these Basic Events are not the only identified Causal 

Factors to cause the accident to happen, but simply the representatives. These Basic 

Events are the Causal Factors of those Intermediate Events whilst those Intermediate 

Events are the Causal Factors of the accident (i. e. Top Event). Those Intermediate 

Events are located in the middle of the causation branch and should not be overlooked 

even though they are not shown in the Minimal Cut Set(s) of Top Event. Later, in 
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section 5.5, the case study will illustrate a comprehensive picture to discover those 

Intermediate Events through a backtracking process. Before backtracking, the Minimal 

Cut Set(s) of the accident has to be determined first. The tragedy of Herald of Free 

Enterprise is still the example utilised in the following process. For the theoretical 

details of the process, it is worthy to revisit the explanations in section 4.4. 

5.4.1 Determining the approximate Minimum Cut Sets of the accident 

Although factors SI and LI have been denoted in the Why-Because Graph of the 

accident as the Necessary Causal Factors of event B (i. e. No Anti-FSI device (bulkhead 

or scupper) existed) in the preceding section, there is no intention to discuss it further 

since there is no official evidence to support this speculation. Therefore there is no 

factorisation operation for event B. This means that event B will not be substituted by 

factors SI and LI in the following process. 

The determining process starts from the Top Event again. In the first row of 
Equation (5.2), the Top Event is replaced by "A"BB. C ", which is shown on the right 

hand side of the approximation sign. This determination derives from the summary of 

Minimal Cut Sets of Intermediate/Top Events, which are concluded in section 5.3.1. It 

shows that there are three events deemed as the Necessary Causal Factors of the Top 

Event. Subsequently, in the second row of the equations events A and C are replaced by 

(Hl - F) and G respectively, according to the summary. Then event F is replaced by 

(K "M), and G is replaced by (D " N), and so on for the rest of succeeding Intermediate 

Events. This means that these Intermediate Events are iteratively replaced by their 

Minimal Cut Set(s), and then the Minimal Cut Set(s) replaced by their Necessary Causal 

Factors, until reaching the bottom of the Why-Because Graph, which is a circle symbol 

in the graph denoted as a Basic Event. In the end, there are only Basic Events left in the 

equations, such as Hl and L8, etc. During the determining process, the properties or 

axiom laws of Boolean algebra have to be applied in order to obtain the most simplified 

results. The absorption property, for example, reduces the number of the terms for event 
A from four down to two in the last second row of the equation. This is because that two 

identical (H1 
" L8 . L7 " L6) items can be simplified into one (i. e. A+A=A 

or AvA= A) in Boolean algebra. 
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Finally there are only four Minimal Cut Sets yielded as the result of the process; 

they are MCSl MCS4. This means that the accident can occur provided that any one of 

the Minimal Cut Sets occurs. When an insight is taken into these equations, it reveals 

that all of the factors involved can be divided into three major parts; they are portions A, 

B and C. For example, in Equation (5.2) the (Hi 
" L8 " L3) is denoted as Al and the 

(E2. E3 " L8 " H2 " L4) is as C1 for MCSI. It also can be seen as that factors H1, L8 and 

L3 eventually trigger event A to occur and the combination of factors E2, E3, L8, H2 

and L4 makes event C happen. However there is another combination of the factors that 

can trigger event A to happen; this is (Hl 
" L8 " L7 " L6) denoted as A2 in short. The same 

as event A, there are two combinations of the factors that can provoke event C; they are 
(E2. E3 " L8 " H2 " L4) denoted as C1 and (E2-E3-L8-H2-L5) denoted as C2 

respectively. As long as events A, B and C occur at the same time, the Top Event occurs 

no matter which combination of these factors triggers events A and C to happen. That is 

why there are four possible combinations of the factors that could make the accident 

happen. 

TE--A"B"C 

ý(H1"F)"B"G 

ý(H1"K"M)"B"(D"N) 
e[Hl"(P+Q"R)"T]"B"{(E2"E3"J)"[(H2"L4)+(H2"L5)]} 

[Hl"(P+Q"R)"(L3+U"v)]"B"{(E2"E3.0)"[(H2"L4)+(H2"L5)J 

g2[(H1"P"L3)+(Hl"P"U"V)+(H1"Q"R"L3)+(H1"Q"R"U"V)]"B" 
[(E2. E3.0. H2 " L4)+ (E2 

" E3.0. H2 " L5)] 

m [(H1"L8"L3)+(H1"L8"(W 
"L7)"L6)+(H1"L8"U"L3)+(H1"L8"U"(W "L7)"L6)] 

"B"[(E2"E3"L8"H2"L4)+(E2"E3"L8"H2"L5)] 
e[(H1"L8"L3)+(H1"L8"(L8"L7)"L6)+(H1"L8"(W"L7)"L3)+(H1"L8"(L8"L7)"L6)] 

"B"[(E2"E3"L8"H2"L4)+(E2"E3"L8"H2"L5)] 
m [(H1"L8"L3)+(H1"L8"L7"L6)+(Hl"L8"(L8"L7)"L3)+(H1"L8"L7"L6)] 

"B"[(E2"E3"L8"H2"L4)+(E2"E3"L8"H2"L5)] 
[(H1"L8"L3)+(H1"L8"L7"L6)]"B"[(E2"E3"L8"H2"L4)+(E2"E3"L8"H2"L5)] 

m MCS1+MCS2+MCS3+MCS4 

(5.2) 
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where : 
MCS1=(Hl"L8"L3)"B"(E2"E3"L8"H2"L4)=A1"B"Cl 
MCS2=(Hl"L8"L3)"B"(E2"E3"L8"H2"L5)=A1"B"C2 
MCS3=(Hl"L8"L7"L6). B"(E2"E3"L8"H2"L4)=A2"B"Cl 
MCS4=(Hl"L8"L7"L6)"B"(E2"E3"L8"H2"L5)=A2"B"C2 
Al=(Hl"L8"L3) 
A2=(Hl"L8"L7"L6) 
C1=(E2"E3" L8" H2" L4) 
C2=(E2"E3"L8"H2"L5) 

The Minimal Cut Sets which could cause the accident to happen have been 

revealed through a systematic procedure., Nevertheless it is dangerous to only focus on 

these Basic Events and overlook those Intermediate Events since they do not emerge in 

the Minimal Cut Sets. One thing should be kept in mind is that these Intermediate 

Events are still the Causal factors (the same as Basic Events) to make the holes exist in 

the layers forming the Window of Opportunities. Later, in section 5.6, the case study 

will show an example that the accident can be prevented by blocking any one of the 

holes due to these holes can be shut by reducing the occurrence probabilities of one or 
few associated Causal Factors, including those Intermediate Events. It will also show 

why the likelihoods of different Minimal Cut Sets are not the same. 

FTA technique is capable of doing qualitative analysis as well as quantitative 

analysis provided all the Basic Events are mutually independent. This assumption is 

almost impossible to comply with in the method because the identified Basic Events 
involved in an accident are normally correlative to each other. Therefore another 

appropriate technique has to be applied in order to overcome this difficulty. Bayesian 

Network is hence chosen as the technique to handle the quantitative analysis of an 

accident. In the following section, the way to carry out the quantitative analysis with 
Bayesian Network is under the spotlight. 

5.5 Applying Bayesian Network (BN) for quantitative analysis 

In this section, the processes to establish a corresponding Bayesian Network model 
regarding the Minimal Cut Sets of an accident, according to the qualitative analysis 

results acquired in the preceding sections, for the quantitative analysis are discussed. It 
is crucial to ensure that the established Bayesian Network model is able to present all 
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the identified Causal Factors without overlooking any Intermediate Event. Therefore, a 

backtracking process, which consists of two operations, to sort out the Intermediate 

Events involved and the correlation between them has to be done before constructing 

the model of the accident. The backtracking process mainly reveals the clues as to 

which Basic Events in the Minimal Cut Sets can influence those Intermediate Events. It 

is a step by step process, from those Basic Events to the Top Event. These backtracking 

paths, which are highlighted by the circles and arrows shown in Equations (5.4) and 

(5.5), are very useful for fording the backtracking equations. These equations will then 

become the essential blueprints for constructing the corresponding Bayesian Network 

model in the next stage. For the purpose of quick reference, all the Intermediate Events 

involved in the model are summarised in the second half part of the equations (i. e. the 

"where" part) with their influencing events (i. e. the Causal Factors shown on the right 

hand side of the approximation sign). For validation, it is very important to examine the 

equivalency, in the equations, between the factorisation part and backtracking part from 

time to time. It is also the way to ensure that the backtracking outcomes are correct 

otherwise some Intermediate Events will easily be overlooked. Later, in section 5.5.3, 

an incorrect example will be demonstrated to show a potential problem which is prone 

to overlooking those Intermediate Events and a proposed validation mechanism to avoid 
it. 

5.5.1 Backtracking the Intermediate Events via the factorisation equations of 
Minimum Cut Sets 

In section 5.4, the Minimal Cut Sets of an accident are represented by sets of Basic 

Events. However the Intermediate Events lying between those Basic Events and the Top 

Event in the fault tree should be taken into account as well. The process to sort out those 

Intermediate Events involved starts from the Minimal Cut Sets of the accident. By 

utilising the Why-Because causation (i. e. the factorisation equations), the process can 
track back the corresponding Cause-Consequence relationship from the Basic Events of 
the Minimal Cut Sets through the associated Intermediate Events to the Top Event, and 
then sort out the backtracking paths and Intermediate Events involved. For more details 

regarding this issue, section 4.5.2 is worthy to revisit. The systematic procedure to track 
back the Intermediate Events of the case study is described in the following sections. 
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5.5.1.1 Factorisation operation (Downward Why-Because) 

In section 5.4, it has been showed that the HoFE tragedy was triggered by four 

Minimal Cut Sets, which are represented by sets of Basic Events. In order to clearly 

demonstrate how the backtracking process works, the Necessary Causal Factors of event 

A (including the in-between Intermediate Events) are used as an example. The process 

starts from revisiting the factorisation equations related to event A and fords that it has 

two Minimal Cut Sets involved; they are A1= (Hl " L8 " L3) and A2 = (HI " L8 " L7 " L6). 

They are two Sets of Basic Events representing those Necessary Causal Factors to 

provoke event A to occur. Equation (5.3) is elicited from the portion associated with 

event A in the factorisation equations (i. e. Equation (5.2)) in order to present a clearer 

view of the process without unnecessary clutter. 

In Equation (5.3), it shows where Al and A2 derive from. It also implies the Why- 

Because causation between each row, and the row above/below. For instance, the 

differences between the second and third rows show that event K (the consequence) is 

triggered when either event P occurs or events Q and R happen simultaneously. In 

addition, the reasons why events P or Q can occur are because factor L8 exists in the 

fifth row while event R is influenced by event U, and so on. The factorisation operation 
described in Equations (5.2) and (5.3) can be seen as the Downward Why-Because path 

leading from the Top Event at the top of the fault tree to the Basic Event at the bottom 

of the tree. 

A H1"F 

zH1"(K"M) 
z H1"(P+Q"R)"M 

(H1"P"M)+(H1"Q"R"M) 
(H1"L8"T)+(H1"L8"U "T) 
(H1"L8"T) 

H1"L8"(L3+U"V) 
(H1"L8"L3)+(H1"L8"U "V) 
(H1"L8"L3)+(H1"L8"W -L7 -L6) 

z (H1"L8"L3)+(H1"L8"L8"L7"L6) 

z (H1"L8"L3)+(H1"L8"L7 "L6) 
Al+A2 

where : 
A1=(H1"L8"L3) 
A2=(H1"L8"L7"L6) 

(5.3) 
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5.5.1.2 Backtracking operation (Upward Cause-Consequence) 

Although, the details regarding the downward operation of the equations have been 

shown above, further analysis of the equations is required in order to sort out the Cause- 

Consequence correlation (i. e. backtracking equations) to build the Bayesian Network 

model of the accident for the quantitative analysis. That is, a backtracking operation of 

the equations is needed and is illustrated as follows. 

As mentioned before, event A is neither directly triggered by events H1, L8 and 

L3 (i. e. the Minimal Cut Set Al) nor events H1, L8, L7 and L6 (i. e. the Minimal Cut Set 

A2), but through a series of Intermediate Events. The reverse Why-Because path (i. e. the 

Cause-Consequence correlation) from these Basic Events to event A have to be clarified 
in order to identify which Intermediate Events are involved. This process starts from the 

last row of the factorisation equations which are labelled as Al and A2. When 

backtracking to event T, it reveals that (L3) and (UV) are the Minimal Cut Sets of event 
T respectively, and that is the main reason why there are two Minimal Cut Sets for event 
A. Therefore a new symbol TI is utilised to denote the situation that event T is triggered 

via event L3 (i. e. Ti L3 ). Meanwhile another symbol T2 denotes that event T is 

triggered by events U and V when they occur simultaneously (i. e. T2 U U. V ). Now, 

event T can also be expressed as (TI +T2) in the backtracking equations resulting from 

the two Minimal Cut Sets triggering event T to occur. Subsequently, the propagation of 

event T results in the propagation of event M. That is, two extra symbols (i. e. M1 and 
M2) are applied to depict that event M is triggered by which Minimal Cut Sets of event 
T respectively (i. e. Ml Ti and M2; ts T2). This is justified from the factorisation of 
MT denoted'in Equation (5.1). In the same way, symbol KI is used to denote event K 

is triggered by event P (i. e. Kl s: e P) as well as symbol K2 for it is provoked when event 
Q and R occur at the same time (i. e. K2 Q"R). 

When backtracking the Minimal Cut Set A2 for event A, there are two factors L8 
identified (as shown in row 9 of equation (5.4)), one derived from event TV (see the 

circle mark with an arrow in row 9 of Equation (5.4)), and the other one from event Q or 
P (in row 4). However, only one L8 is left in the end of the factorisation equations 
because of the idempotency property (i. e. A+A=A or A A. A= A) of Boolean algebra 
(see row 10 of Equation (5.4)). Thus event L8 should be restored to two instances before 

tracking back to event W (from row 9 to row 8) while joining with event L7 (i. e. W" L7 ) 
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for event U (row 7). In addition, event L6 (in row 8 of the equation (5.4)) comes from 

event V (row 7). It is revealed when rows 7 and 8 of the equations are compared. In 

Equation (5.4), there is always a corresponding backtracking/upward equation on the 

right hand side in addition to the factorisation/downward equations. Although the 

backtracking equations look slightly different from their counter part on the left hand 

side, both of them are equivalent except using different symbols to denote the same 

thing. For example, in row 7 of Equation (5.4), event T was replaced by (L3 +U" V) 

during factorisation. This means that it has two Minimal Cut Sets which are represented 
by (L3) and (U "V) respectively. Hence, the symbol TI is utilised to denote the 

condition influenced by L3 and the symbol T2 for the condition of U U. V (row 6) during 

backtracking. Thas is, despite the expressions on both sides are . slightly different, the 

equivalency between both sides should be kept. In a similar fashion, another two 

symbols F1 and F2 (row 1) are added into the backtracking outcome for event F to 
denote the situation of (KI-MI) and (K2 " M2) respectively (i. e. Fl --Kl " M1 and 
F2--K2-M2), and eventually revealing Al; --HI-Fl and A2 --Hl " F2 to end the 
backtracking operation. In the end, the backtracking equations for event A, consisting of 
Minimal Cut Set Al and A2 in factorisation part, are summarised in the "where" part of 
Equation (5.4). 

O 

Factorisation Backtracking 

11 
0 

1. ) AmHI"F 

2. ) wH1"(K"M) 
3. ) wH1"(P+Q"R). M 

4. ) w(H1" M)+(H1" R"M) 

5. ) r(H1 T)+(H1.! "T) L 

6. ) w(H1"L8"T) 
7. ) wHI"L8"(L3+ V "L8"L3)+(HI"L8"U"V) 
8. ) w(H1"L8"L3)+(H1"L "W"L L6 

9. ) w (H1"L8"L3)+(H1 
"L8"L8"L7"L6) 

10. ) w(H1"L8"L3)+(H1"L8"L7"L6) 
11. ) m Al+A2 

2' IMI 

) Am Hl-(F J+ F2 
2. ) r HI. " Kl M1 2"M2 
3. ): (HI " 1"M1)+(HI. 2"M2) 
4. ) (HP. l1)+(I1 " f2) 
5. ) +(H1"L8"7'1)+(Jf1"L8"U"T2) 
6. ) r. H1"L8" l+T2)n(H1"L8"Tl)+(111"L 2) 
7. ) . (H1"L8 

.3 
ýN1"L /"V 

8. ) ' (H1"L8"L3)+(NI"L8 W "L7"L6) 
9. ) w(H1"L8"L3)+(ffl"L L8 L7-L6) 
10. ) '. (Nl "L8"L3)+(H1"L8"L7"L6) 
11. ) -AI+A2 

(5.4) 
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where : 
Al m(Hi. L8"L3)ý(Hi. P"Ti); w (Hi. K1"MI)A6 HI. Fl 
A2 its (Hi. L8"L7"L6); v (HI"L8"L8"L7"L6)m (HI*L8"W "L7"V) so (HI 

"L8"U"V) 

z(Hl"L8"U"U"V) (Hl"L8"U"T2)a(HI-Q"R"M2)a(HI"K2"M2)as HI-F2 

F1sts KI. M1 

F2swK2"M2 
K1+wP 

K2s+Q"R 

M1 Au T1 

M2mT2 

Ti L3 

T2#U"V 

PwL8 
Q#L8 

RAU 

UswW"L7 
Vsw L6 
WswL8 

The backtracking process for event A is now completed. So far, there is no 

backtracking process for event B since no factorisation has taken place. 

In the backtracking of event C, the operation starts at the end of the factorisation 

equations of event C. However the following discussion will only focus on the details of 

the backtracking part without discussing the factorisation of event C. Equation (5.5) 

contains the factorisation details (on the left hand side, elicited from Equation (5.2)) and 

the backtracking equations (on right) for event C. There are two Minimal Cut sets 

represented by two set of Basic Events that can provoke event C to occur. They are 
(E2 " E3 " L8 " H2 " L4) and (E2 " E3 " L8 " H2 " L5) , and are labelled as CI and C2 

respectively in the factorisation equations. Moreover, event L8 (in row 5) replaces event 
O (in row 4) for both CI and C2 in the factorisation part of Equation (5.5). Therefore, in 

the backtracking equations, it is obvious that event 0 was caused by event L8. In other 

words, event L8 is the only factor to determine whether event 0 occurs or not. 
Meanwhile, event J is influenced by event O. In addition, event N was replaced by 

" (H2 " L4)+ (H2 " L5)" (row 3) when performing the factorisation. Hence, during the 

backtracking, two different symbols, Ni and N2, are utilised to label these two Minimal 

Cut Sets of event N respectively (i. e. Ni -- (H2 
" L4) and N2 sv- (H2 

" L5) ). This means 

that either Ni or N2 can provoke event N to happen. It is also similar to the occurrence 

of event G. Therefore two new symbols, GI and G2, are added to depict the provoking 
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O 

condition of (D " Ni) and (D " N2) respectively for event G. It is quite straightforward 

to define event D since it consists of events E2, E3 and J (row 3). Eventually, the 

backtracking results for event C with regard to correlative Intermediate Events are 

finalised and summarised in the "where" part of the equations. In these equations, the 

factors on the right hand side of the approximation sign are the Necessary Causal 

Factors to the Intermediate Events (on left). Again, for validation, the equivalency 

between both sides of the equations has to be kept from time to time. As noted 

previously, these backtracking equations are the essential information, as the blueprints, 

to construct the Bayesian Network model of Minimal Cut sets of an accident. It is vital 

to secure the backtracking results are correct. Finally, the backtracking process is 

completed and is possible to conduct the Bayesian Network model constructing process, 

which mainly relies on the summarised backtracking equations shown in Equation (5.4) 

for event A, and Equation (5.5) for event C. 

Factorisation Backtracking 
1. ) C -- G 1. ) C st; GI + G2 
2. ) z&D "N 2. ) tt D" (N1 + N2) = (D " N1) + (D " N2) 
3. ) 

J(j2"E3" 
"[(H2"L4)+(H2"L5)] 3. ) c(E2"E3" "(N1+N2) 

4. ) z(E2"E3" "H2"L4)+(E2"E3. O"H2"H5) 4. ) Pý (E2"Exjw +(E2"E3.0-N 
5. ) #(E2"E3 L8 H2"L4)+(E2"E3"L8"H2"L5) 5. ) s: d(E2"E3"L8 H2" +(E2"E3"L8 H2"L5 
6. ) sts Cl + C2 6. ) p Cl + C2 

0 
(5.5) 

where : 
Cl se (E2"E3"L8"H2"L4) (E2"E3. O)"(H2"L4)a (E2"E3"J)"N1 szs D"N1 sjG1 
C2 (E2 " E3 " L8 " H2 " L5) 3 (E2. E3-0). (H2-L4)sts (E2-E3-J)-N2 zD- N2 ms G2 
G1zD"N1 
G2--D-N2 
Dz E2"E3"J 
N1 sti H2 " L4 
N2 H2 " L5 
J-- 0 
0 L8 
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5.5.2 Constructing the Directed Acyclic Graph (DAG) of the Bayesian Network 

model for Minimal Cut sets 

Having accomplished the backtracking process, lists of backtracking equations are 

revealed. In the HoFE example, the backtracking equations are shown in the "where" 

part of Equations (5.4) and (5.5). They are the blueprints for constructing the DAG of 

Bayesian Network of the accident in this process. The way to establish the DAG is 

described in section 4.5.3 and is briefed as follows. An arc connects from an influencing 

(parent or predecessor) node to an influenced (child or successor) node and has the 

arrowhead toward the child node (Wang and Trbojevic, 2007). Therefore, at the 

beginning, the DAG starts the construction from the Top Event, which is now 

represented by four Minimal Cut Sets (i. e. MCSI MCS4). Since the process has to deal 

with them in turn, MCS1 is the first one to be handled. The MCS1 consists of Al. B B. C1 

according to Equation (5.2) in section 5.2.1. This implies that MCS1 is provoked (or 

influenced) by these three Causal Factors. Thus, node MCS1, which is one of the 

proxies of Top Event, is placed first. Subsequently, nodes Al, B and C1 are added into 

the DAG respectively with an arc, depicting the influence relationship, toward node 

MCS1 to establish the correlations amongst them (see Figure 5-6). These connections 

are in light of the equations (i. e. MCS1-- Al "B" CI), which means that node MCS1 is 

the successor of these three new added nodes. In addition, according to the backtracking 

equations (5.4) summarised in section 5.5.1, factor Al is influenced by factors HI and 

F1 (i. e. Al; ze Hl " F1). Therefore, two new added nodes, F1 and H1, are joined as the 

predecessor of node Al. In a similar fashion, another arrow arc connects node C1 with 

node G1 expressing G1 is the predecessor of C1, according to Cl Gl depicted in the 

backtracking equations (5.5). After further step by step processing through the 

backtracking equations in turn, the DAG of Bayesian Network for MCS1 is eventually 

accomplished when all the Intermediate Events, as well as Basic Events, involved have 

been placed in the DAG accordingly. The process is carried out on the other Minimal 

Cut Sets in the same way and finally builds up the entire DAG of Bayesian Network 

model for the Minimal Cut sets of the accident. In the end, Figure 5-6 is the whole 

picture showing the DAG with around forty nodes included. 
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Figure 5-6 The Bayesian Network model for HoFE accident 

5.5.3 The absorption problem while backtracking 

Although the construction of the DAG of Bayesian Network model for the accident 

has been accomplished in the preceding section, there is one aspect regarding the 

backtracking process that needs further consideration. As specified in section 4.5.4, it is 

the problem caused by absorption, in which the Intermediate Events are wrongly 

tracked back due to the fact that more than one backtracking path, from the Basic 

Events to the Top Event, is available. For instance, the absorption problem might occur 

in the backtracking of event A in the HoFE example. 

In order to highlight this issue, part of Equation (5.2) in section 5.4.1 regarding 

event A is extracted and shown in Equation (5.6). This equation shows that only two 

groups of Basic Events are left in the end of the factorisation due to the absorption 

property of Boolean algebra. Since the second and fourth groups (i. e. A2 and A4) are 

identical, they are absorbed into one group. Meanwhile, the third group denoted as A3 is 

also absorbed into Al, and eventually only two groups of Basic Events have been left as 

the Minimal Cut Sets of event A. The absorption property is frequently applied in 

Boolean algebra equations for simplification purposes, but this might cause confusion 

while carrying out the backtracking. 
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Az [(H1"L8"L3)+(H1"L8"L7"L6)+(H1"L8"(L8"L7)"L3)+(H1"L8"L7"L6)] 

=A1+A2+A3+A4=(H1"L8"L3)+(H1"L8"L7"L6) 
where 
A1=H1"L8"L3 
A2=H1"L8"L7"L6 
A3=H1"L8"L7"L3 
A4=H1"L8"L7"L6 

(5.6) 

An invalid example which is shown in Equation (5.7) and Figure 5-7 is the 

outcome resulting from this type of confusion. In contrast, Equation (5.4) in section 

5.5.1.2 is the valid version and is compared with. The incorrect Equation (5.7) shown 

below looks similar to the valid one, but actually these two equations are not equivalent. 

The difference between them is in the backtracking part. The omission of some of the 

Intermediate Events associated with item A2 is under the spotlight when these two 

equations are compared. Precisely speaking, events Q and R are omitted in Equation 

(5.7). This results from the absorption of factor L8 in factorisation and wrongly tracking 

back in backtracking process. If the backtracking equations were not verified before 

building the DAG of Bayesian Network, the Bayesian Network model would look like 

the one shown in Figure 5-7. When it is compared with the valid version (i. e. the one 

shown in Figure 5-6), nodes Q and R are omitted in the DAG, which is pointed out by 

an ellipse in Figure 5-7. It is assumed that the mistake occurs when the process merely 
tracks factor L8 back to factor P, rather than factors P and Q at the same time. This 

problem can happen when the group (or item) A2 is the only start point to launch the 
backtracking in this case, rather than from the groups A2 and A4 at the same time. 

Consequently, the Intermediate Events Q and R, which are also influenced by the L8, 

are overlooked due to the absorption in the factorisation operation. The overlooking of 

some Intermediate Events in the DAG can happen when the backtracking is performed 
from a single absorbed item rather than from all the identical items. 

Fortunately this mistake can be picked up by checking the equivalence between the 
backtracking equations and the factorisation equations in the process. For instance, one 

of the inconsistencies is highlighted in Equation (5.7) by the ellipses. In this example, 
the equation (in row 4) on the left hand side does not equivalent to the one on the right 
hand side, because factor P is neither equal to (Q 

" R) nor one of the proxies of them. In 
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order to avoid this type of mistake, the good practice is to initiate the backtracking from 

all the items before any absorption takes place and to check the backtracking equations 

with the factorisation counterparts for equivalence all the time during the backtracking 

process. 

Factorisation Backtracking 

o 
A-HI"F 

Q zH1"(K"M) 
zHl"(P+Q"R)"M 
z(H1"P"M) Hl"Q"R M x(Hl P"Ml + H1 P M2 

4(Hl"L8"T)+(Hl"L8"U"T)=(Hl"L8"T) -(Hl"L8"T),, (Hl"L8"Tl)+(Hl"L8"T2) 

Hl"L8"(L3+U"V) w Hl"L8"(T1+T2)=(H1"L8"Tl)+(Hl"L8"T2) 
(Hl"L8"L3)+(Hl"L8"U"V) (Hl"L8"L3)+(Hl"L8"U"V) 

(HI"L8"L3)+(Hl"L8"W"L7"L6) (Hl"L8"L3)+(HI"L8"W"L7"L6) 

z (Hl"L8"L3)+(H1"L8"L8"L7"L6) v(Hl"L8"L3)+(Hl"L8"L8"L7"L6) Q 

z(Hl"L8"L3)+(Hl"L8"L7"L6) ;d (Hl"L8"L3)+(Hl"L8"L7"L6) 

v Al+A2 su Al+A2 

(5.7) 

Figure 5-7 An incorrect Bayesian Network model caused by absorption 

5.5.4 The Conditional Probability Table (CPT) of the Bayesian Network model 

After constructing the Directed Acyclic Graph of the accident, the Conditional 
Probability Tables of the model have to be completed before the corresponding 
Bayesian Network model being able to perform the quantitative analysis of the accident. 
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These tables specify the probability distributions for each state of the nodes, contained 
in the Directed Acyclic Graph, under certain conditions. In other words, the Conditional 

Probability Table tabulates the conditional probability distribution of each node 

according to Bayes' rule specified in section 4.5.1. Once all the data of the Conditional 

Probability Tables have been given, the Bayesian Network model is able to calculate 

and show the outcomes of marginalisation (or unconditional) likelihood for each node. 
It is worth revisiting section 4.5.5 if further technique details are required. Figure 5-8 

shows the established Bayesian Network model regarding the HoFE example applied in 

this case study. The likelihood outcomes shown on the display are marginalised (or 

unconditional) although the data entered is conditional probability distribution. 

Regarding the data for these Conditional Probability Tables, there is no doubt that the 

historical statistic data is the first choice to derive from. However, if the historical 

statistic data is not available at the time, experts' judgement will be one of the practical 

solutions to resort to. In this example, all the data given for the Conditional Probability 

Tables is presumed to be rationally correct although it is neither associated with 
historical statistic data nor expert judgements, but the researcher's estimation for the 
demonstration only. 

In Table 5-1, the Conditional Probability Tables for nodes L8, L7, JV and U of the 

established Bayesian Network model are shown. The entire' Conditional Probability 

Table of the model is tabulated in Appendix-B. Instead of working out the 

marginalisation of the nodes by hand, a Bayesian Network software package (i. e. Netica) 
is utilised to perform this tedious job. The tables which belong to the nodes that have 

predecessor(s) consist of two parts; the data part (the data shows on the left hand side of 
the tables) and the conditions part (given by their parent or predecessor nodes on the 

right hand side of the tables). If there is no condition part in the tables, it means that this 

node has no predecessor and the data is depicted by prior probability distributions. 
Otherwise it is depicted by posterior probability distributions. For not distracting the 

concentration of the explanation, only two states are imposed onto every node in this 
case; but more than two states are still practical. The label of each state of the nodes 
follows the title of the node with a subscript number to distinguish them. For example, 
the L81 denotes the state No.! of node L8. Each entry of these tables depicts the 

probability distributions subject to the condition given on the right hand side (i. e. the 
condition part) of the tables. For example, the cell located at the cross of row one and 
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column one in the data part of the table for node U depicts the probability of state Uj 

under the condition of W1 and L71. 

Table 5-1 The Conditional Probability Table for nodes L8, L7, Wand U 

of the Bayesian Network model 

L8: (Shore Management) 

good (L81) 
management 

poor (L82) 
management 

0.2 0.8 

L7: (Senior master was content 
withnut demur the SSO) 

Concerned Satisfy (L71) L72 
0.8 0.2 

W. (ctnt�Q to o; vP clear order about the duties) 

Clear (W1) Vague (W2) L8 
0.95 0.05 good management L81 
0.05 0.95 poor management L82 

U: (Ship Standing Order (SSO) to crew) 

poor SSO 1 good SSO (U2) W L7 
_ 0.1 0.9 Clear (WI) Satisfy (L71) 

0.05 0.95 Clear WI concerned(L72) 
0.95 0.05 Vague (W2) Satisfy (L71) 
0.2 0.8 vague (W2) concerned(L72) 

5.5.5 The quantitative analysis results of the Bayesian Network model 

Although the Netica software will perform the marginalisation of all the nodes in a 

second, it is worthy to demonstrate the calculation details in light of equation (4.7) in 

section 4.5.1 in order to appreciate how it works. The demonstration takes only four 

nodes, nodes L8, L7, Wand U, of the established model (see Figure 5-6) as the example 

and tabulates their Conditional Probability Tables in Table 5-1. The data depicted in the 

tables for nodes L8 and L7 are unconditional (or prior) probability distribution since 

they have no predecessor. Hence the demonstration will only concentrate on the 

marginalisation of nodes Wand U respectively. Before carrying out the marginalisation 

process for node U, the unconditional probability distribution of node iV has to be 

acquired beforehand. Therefore the marginalisation process for node W is the first to be 

dealt with and each state of the node has to be handled individually. The marginalisation 
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process for node W is illustrated in Equation (5.8) where the data for nodes W and L8 

refer to Table 5-1. In the equation, the P(W1 I L81) depicts the probability of state W, 

under the condition given by state L81 of node L8. The data in the cell crossed at 

column Wl and row L81 in the table of node W is referred to and the value of 0.95 is the 

answer for P(W1 I L81). Besides, P(L8, ) is the unconditional probability distribution of 

state L81 of node L8. Since node L8 is depicted by prior probability distribution in the 

table, the figures shown in the cell can be directly referred to as P(L8, ) and 0.2 is the 

result. By the same token, the remaining parts of the equation are handled with the 

associated data in the tables. Eventually the answer with regard to P(W1) turns out to be 

0.23 and the answer for P(W2) is acquired as 0.77. 

2 

P(W1) _ 2> ý P(WI I L8j) x P(L8j) = P(Wi I L81)P(L81)+P(R'i I L82)P(L82) 

_ 
(5.8) 

x 0.2) + (0.05 x 0.8) = 0.19 + 0.04 = 0.23 . 
8ý 

2 

P(W2)=LP(W2I L8, )xP(L8f)=P(ß'2 I L8, )P(L81)+P(W2 I L82)P(L82) 
J-1 

=(0.05x0.2)+(0.95x0.8)=0.01+0.76=0.77 

After finalising the calculation of P(W1) and P(W2), the marginalisation of node 

U is now able to proceed with the Conditional Probability Table data of nodes U and L7 

specified in Table 5-1. The calculations for P(U1) and P(U2) are a little more 

complicated than P(W1) and P(W2) since node U has two parent nodes rather than just 

one as node W has. Nevertheless, the principle is still the same except the workload of 
the calculation is twice as for node W. The details of the calculation are illustrated in 

Equation (5.9). The answers for P(U1) and P(U2) are 0.6367 and 0.3633 respectively. 

Although these manual calculation results look slightly different from the results 
displayed on the Netica software shown in Figure 5-8, they are correct. The study 

presumes that the differences resulted from the round and display function of the 

software. That is, 0.6367 is displayed as 0.637 due to the use of only 3 digits after the 
decimal point are taken and rounded in the software. 
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i=2 
, 
j-2 

P(U1) _ P(U1 I W,, L7j) x P(Wi)P(L7, ) 

=1 
= P(U1 ( W,, L71)P(W)P(L7, )+P(U1 I Wl, L72)P(Wl)P(L72) 

+P(U1I W2, L71)P(W2)P(L71)+P(U1 I W2, L7z)P(W2)P(L72) 

=(0. lx0.23x0.8)+(0.05x0.23x0.2)+(0.95x 0.77 x 0.8)+(0.2 x 0.77 x 0.2) 

= 0.0184 + 0.0023 + 0.5852 + 0.0308 = 0.6367 
/=2 
j=2 

P(U2) = ZP(U2 IWi, L7, ) x P(W)P(L7 j) 
i=i 

(5.9) 

= P(U2 I Wi, L71)P(W1)P(L7, )+P(U2 I W1, L72)P(Wi)P(L72) 

+P(U21 W2, L71)P(W2)P(L7, )+P(U2 ý W2, L72)P(W2)P(L72) 

= (0.9 x 0.23 x 0.8)+(0.95 x 0.23 x 0.2)+ (0.05x0.77x0.8)+(0.8x0.77x0.2) 

= 0.1656+0.0437 + 0.0308+ 0.1232 = 0.3633 

Having finalised the Directed Acyclic Graph and Conditional Probability Tables of 

the Bayesian Network model for the accident, the quantitative analysis is now able to 

proceed. Both the qualitative and quantitative analysis results are presented in Figure 5- 

8. As mentioned before, the Top Event is no longer represented by a single object in the 

model, but four Minimal Cut Sets instead. This is because there are four possible 

combinations of these factors that can lead the ship to the accident according to the 

preceding qualitative analysis result. Each Minimal Cut Set represents one of the 

Window of Opportunities of the accident but their likelihoods are different. The 

marginalisation results for each node, including these four Minimal Cut Sets, are shown 
in a percentage manner with their short notation. For example, "capsized 28.2"of node 
MCSI denotes the likelihood of capsizing of the ship is 28.2% under the threat of those 

factors represented by MCSJ. 

It should be noted that the overall likelihood of the accident is not the likelihood 

represented by any one of the Minimal Cut Set acquired in the Bayesian Network model. 
This is because, in a Bayesian Network model of Minimal Cut Sets, the Top Event of 
the accident is represented by several Minimal Cut Sets rather than a single object as it 

is in FTA. As elucidated in section 3.2, each Minimal Cut Set only represents one of the 

possible combinations of those Necessary Causal Factors to trigger the accident to occur, 
the quantity of each Minimal Cut Set can only bear part of the total responsibility. Thus, 

the way to obtain the answer of the overall likelihood of the accident is not simply 

-135- 



Ch5: Case Study Using the Proposed Method: Herald of Free Enterprise 

summing up these likelihoods. It has to resort to the FTA Minimal Cut Set upper bound 

formula (see Equation (4.2) in section 4.4.3), although a certain amount of overestimate 

is introduced. This overestimate is unavoidable as long as there are common factors 

existing among those Minimal Cut Sets. That is, the more the common factors, the 

larger the overestimate. However, if there is no common factor among those Minimal 

Cut Sets, this formula still has a chance to obtain an accurate figure. 

Equation (5.10) shows the calculation details of the total likelihood of this example 

according to the upper bound formula. This means the likelihood of the accident (i. e. 

capsizing of the ship) is not larger than 66.32%. The reason why the equation is "not 

larger than" rather than "equal to" is that the calculated result in light of this formula 

will be somewhat overestimated due to those common factors have been counted more 

than once. It is very important to bear in mind with this feature while applying this 

formula for analysis; this figure is only suitable for comparison and not for the precise 

answer. It is recommended that the overall accident likelihood should refer to the 

Bayesian Network model of Top Event which is introduced in section 5.3.2 and discuss 

the individual Minimal Cut set figures via this Minimal Cut Set model. 

P(TE)S1-(1-0.282X1-0.205X1-0.268X1-0.194)=0.6632 (5.10) 

Figure 5-8 The Bayesian Network model of Minimal Cut Sets of the accident 
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5.5.6 The propagation of the Bayesian Network model 

The propagation is another powerful feature of Bayesian Network. This feature can 
be used to perform "what if' examination in order to predict the possible outcomes of 

each factor involved in the model under the conditions given, as well as the possible 

solutions to prevent the similar accidents from happening again. It is worthy to revisit 

section 4.5.6 for the theoretical details regarding the propagation of Bayesian Network. 

In this section, some assumed examples will be used to illustrate how this functionality 

works and how it can be utilised for inferring. For instance, the accident report indicated 

that the "poor shore management" should take a significant part of the responsibility of 
the tragedy (DoT, 1987). In other words, if the shore management had listened to the 

complaints, suggestions or wishes of their Masters, the accident could have been 

prevented. For verifying this allegation, the established Bayesian Network model of the 

accident can now be used to examine if this argument is rational. Instead of adjusting 
the shore management factor (i. e. L8: shore management) directly, the demonstrated 

example amends factor W (i. e. failure to give clear order about the duties) for 
illustrating some particular features of propagation. It is assumed that if the orders given 

regarding the duties were clear then the probability of P(W1) in the model would be 

increased from 20% to 100%. Consequently, the likelihoods of MCSI-MCS4 shown in 

the established model (see Figure 5-9) reduce to 13.4%, 10.2%, 10.8% and 8.5% 

respectively. They are almost 50% less than the previous outcomes when Figure 5-9 and 
Figure 5-8 are compared. 
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Figure 5-9 The propagation outcomes with the value of node iW changed 

From the Bayesian Network model shown in Figure 5-9, it approves this argument. 

This is achieved by updating the belief of node W assuming a new piece of evidence has 

been found. It makes node W act like an epicentre and a chain reaction of belief update 

is triggered over the Bayesian Network model. All the other nodes in the model are 

influenced and updated according to the dependencies to the epicentre node (i. e. node 

YT). Hence the epicentre node becomes the supreme influencing node over the Bayesian 

Network model and all the other nodes turn out to be its influenced nodes at the time 

even though those used to be its predecessors. However the dependencies between them 

remain the same, only the influencing direction has been reversed. This means that node 

L8 now becomes one of the influenced nodes, rather than an influencing node, of node 

W, although the dependency between them is still the same as before. Since nodes L8 

and U are directly connected with node W, the calculation details for their belief 

updating are illustrated as an example. Because node U is still a successor of node Was 

it was, the marginalisation equations for node U remain the same as Equation (5.9) 

except the probability of P(W1) and P(W2) are changed; they are now 100% and 0% 

respectively. Thus, the likelihood values of P(U1) and P(U2) become 9% and 91% 

accordingly (see Equation (5.11)). 
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1-2 
J-2 

P(U1)P(U11 W,, L7J)xP(W, )P(L7J) 

i=1 
=(0.1x1x0.8)+(0.05x1x0.2)+(0.95x0x0.8)+(0.2x0x0.2) 

=0.08+0.01+0+0=0.09 
1=2 

''Z (5.11) P(U2) _ P(U2 I W,, L7j) x P(W, )P(L71) 

=(0.9xlx0.8)+(0.95x1x0.2)+(0.05xOx0.8)+(0.8xOx0.2) 
=0.72+0.19+0+0=0.91 

Nevertheless, the situation for node L8 is different because it becomes the 
influenced node of node W. This means that the influencing direction is now reversed, 
from node W to node L8 instead. Therefore, the unconditional Probability distributions 

depicted in the Conditional Probability Table for node L8 are not the proper data to be 

directly applied and have to be acquired through the marginalisation formula shown as 
Equation (5.12). 

2 

P(L81) _ ýP(L81 I W, ) x P(W, ) = P(L81 I W)P(W, )+P(L81 Wz)P(W2) 
J. 1 
z 

(5.12) 

p(L82) _ ZP(L82 W1)xP(W1) = P(L82 I WW)P(W)+P(L82 I W2)P(WYW) 
i-1 

There is still a problem due to the fact that no corresponding data with respect to 

P(L8 I W) is available in the Conditional Probability Table. Fortunately, the P(L8I W) 

can be derived from P(W I L8) via Bayes' rule since the dependency between nodes L8 

and W is still unchanged. The details of the calculation for P(L8 W) are shown in 

Equation (5.13). The entire updated outcomes of these nodes (i. e. the Bayesian Network 

model) are shown in Figure 5-9. From the figure, it shows that the shore management 
has been improved, from 20% to 82.6% if the orders given are always clear. It also 

shows that this remedy can dramatically reduce the likelihood of the overall occurrence 

around 50% when the likelihood outcomes of the four Minimal Cut Sets are compared 
with the outcomes shown in Figure 5-8. The overall likelihood of the accident is now 
36.24% according to Equation (5.14). 
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However, this remedy cannot completely prevent the accident to happen because 

some other Window of Opportunities may still exist. It should be noted that the value to 

update node W (or any other node) does not necessarily have to be either 100% or 0% 

(it is just a special case of belief update called Evidence). Precisely speaking, the 

Evidence means that "the information obtains when some particular nodes can only be 

one of the states stood" (Jensen, 2001). Actually, the belief update can be any figure 

between 0 and 1 (i. e. E [0,1] ). 

P(L81 I W) = P(W I L81)P(L8, ) / P(W1) = (0.95 x 0.2) / 0.23 = 0.826 

P(L82 I W, ) = P(W I L82)P(L82) l P(W) = (0.05 x 0.8) / 0.23 = 0.174 
P(L81 I Wi) = P(W2 I L81)P(L81)/P(W2) 
P(L82 I W) = P(WW I L82)P(L82) / P(W2) 

(5.13) 

P(W1) =1 & P(W2) =0 to work with Equation (5.12) 

P(L81) = P(L81 I W)P(W1)+P(L81 I W2)P(W2) = 0.826 
P(L82)= P(L82 I W)P(Wi)+P(L82 I W2)P(W2) = 0.174 

P(TE)51-(1-0.13X1-0.102X1-0.108X1-0.085)=0.3624 (5.14) 

By using the propagation function, it is not only able to determine which factors 

can effectively reduce the likelihood of the accident, but also has more "evidence" to 

say which factors highly likely caused the accident to happen. For instance, in the HoFE 

example, all the evidence has shown that the bow door of the ship was definitely opened 
while sailing and theship's speed reached 18 knots at the time. Such evidence can be 

used to test the established Bayesian Network model to see if the evidence outcomes are 
in line with the reality. Having set up such new evidence, the updated likelihoods of 
these four Minimal Cut Sets soar dramatically while factors F1 and F2 (i. e. status of 
bow door) are both set to the status of "Opened" and factor Hl to "over 18 Kts" (see 
Figure 5-10). Hence the likelihood of MCS1-MCS4 arise by around one more time. All 

the Causal Factors on the left of the figure are almost confirmed to happen. However the 

nodes on the right group only have little change. This updated outcome of the Bayesian 
Network model does confirm the situation that the ship capsized at that time. 
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(1-0.54X1-0.39X1-0.542)1-0.392)=0.9219 (5.15) 

Figure 5-10 An application of Evidence examination in which 
"bow door opened' and "ship speed over 18 Kts" are confirmed 

This functionality is very useful when the Bayesian Network model is applied for 

further analysis, because it can provide the investigators with a comprehensive view 

about the influences from one factor to the others over the network. It also means that 

the Bayesian Network model can provide the investigation authority a convenient tool 

to discover the critical factors and the effective countermeasures against the accident. 

Therefore, the authority may be able to conclude a qualitative and quantitative analysis 

of an accident more confidently. However it still remains an important issue unsolved 

yet - how to validate the established Bayesian Network model. The next section will 

provide an answer to this question. 

5.6 Sensitivity Analysis of the Bayesian Network model 

Sensitivity Analysis is a technique to determine how "sensitive" a model is to the 

change in the value of the parameters and to the change in the structure of the model (as 

discussed in section 4.6). Regarding the correctness of the structure of a Bayesian 

Network model, Yang (2006) also suggests that it can be checked by carrying out a D- 
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separation examination to each node and comparing the outcomes with the reality. 
Without distracting the discussion, it is presumed that the structure of the example 

model has been checked via D-separation examination and is correct. Hence, the 

Sensitivity Analysis applied for the proposed method merely focuses on two goals. 
They are firstly validating the Conditional Probability Tables of the established 
Bayesian Network model and secondly finding the critical factors of the model. 
Although further applications of Sensitivity Analysis associated with Bayesian Network 

might be possible, the study would first address these two goals and demonstrate the 

relative applications in the next two sections. 

5.6.1 The validation of the established Bayesian Network model of the accident 

The correctness, or at least reasonableness, of the established Bayesian Network 

model is the prerequisite of the following accident analysis as well as the fairness of the 

conclusions and recommendations of the analysis. Therefore, the validation of the 

established Bayesian Network model is the first aim to achieve before further 

progressing. The examination applied for this purpose is called parameter sensitivity 
examining, which is one of the applications of Sensitivity Analysis. For further 
information with respect to this application, it is worth revisiting section 4.6.1. In order 
to perform this examination, several significant Causal Factors have to be chosen in 

advance. By giving variant probability values, as the belief updates, to the selected node 
to trigger the propagations, the behaviours of the model are compared with the reality. If 
the model's behaviours are in line with the observations of the real world, it would be 

more confident to say that the established Bayesian Network model coincides with the 

reality. In this examination, the inputted values are ranged from 0% to 100% step by 

step, and 10% is the interval of the step. 

Therefore, in this example, four human factors are selected as the significant 
Causal Factors to perform this parameters analysis examination. They are the Assistant 
Bosun, the Chief Officer, the Captain and the Shore Management. In the established 
Bayesian Network model these factors are represented by node M (the Assistant Bosun 

was not present to close the bow door), T (the Chief Officer left bow door early), K (the 
Captain assumed that his ship was ready for sea) and L8 (the Shore Management) 

respectively. They were those crucial human factors that should be taken into account, 
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according to the DoT accident report. This is also the reason why these four factors are 

chosen for the examination. Their inputted values, as the belief updates, will be applied 

to one of the chosen node and changed values step by step, in turn, in order to observe 

the changes of the outputs (i. e. MCSI MCS4) according to the propagation outcome. 

Each time, only one of the factors will change the inputted value whilst the value is set 

from 0% (i. e. the most negative behaviour) to 100% (i. e. the most positive behaviour) 

with 10% as the interval for each step. Hence, when the propagation is triggered, the 

likelihoods of the nodes are updated according to the value inputted and the 

dependencies amongst them. It should be noted that some of Causal Factors may be 

represented by more than one node in the Minimal Cut Set model. For example, there 

are two nodes (i. e. node M1 and M2) representing the Assistant Bosun in the model. 

Therefore all the nodes relating to that particular factor have to be changed accordingly 

if there are any. Having updated the belief of the corresponding nodes, the overall 

likelihood of the accident is observed via aggregating the likelihoods of these four 

Minimal Cut Sets with Equation (4.2). The examining outcomes and the comparison 

with regard to these four factors are showed in Figure 5-11. The brief conclusions of the 

outcomes are: 

1. If the Probability distributions of these four human factors can be reduced, the 
likelihood of the accident decreases as well. 

2. All the curves of these factors in the figure converge to a small area while the 
inputted value is set to 100%. It means that the eventual outcome of different 

countermeasures against any one of these four Causal Factors is almost the 

same since they all can shut the Window of Opportunity, no matter which 
holes of the window have been blocked. 

3. The factor of "Assistant bosun was not present to close the bow door" seems 
to be the most critical factor in the model because its adversely influenced 

result is the worst due to its immediate feature to the accident. 
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Figure 5-11 The Sensitivity Analysis results regarding 
these four critical human factors involved in the accident 

These conclusions are in line with the reality of the accident and are considered 

respectively as follows. 

Firstly, according to the outcomes of the parameter sensitivity examination, the 

worse the human factors performance (i. e. the Assistant Bosun, the Chief Officer, the 

Captain and the Shore Management), the higher the likelihood of the accident. This is 

concluded by interpreting the trends of these curves shown in the figure, in which the 

inputted values represent the performance of the human factors and 0% of the value is 

the worst case. The tendencies of these factors are the same. They all have the most 

adverse consequences (on the left of the curves) due to the adverse behaviours (i. e. 0% 

is the inputted values) and the lowest likelihood of the occurrence (on the right) when 

the alertness is given (i. e. 100% is the values). 

Secondly, the bow door could have been closed if any one of them had been 

carried out their duties properly. Accordingly, the accident would not have happened if 

the bow door had been closed. In other words, these four factors line up the trajectory 

and can be seen as an instance of Window of Opportunity. Once any one of the holes in 

the window has been shut, the Window of Opportunity does no longer exist. That also 

explains why the curves converge to a small area. The convergence means the 

-144- 



Ch. 5: Case Study Using the Proposed Method: Herald of Free Enterprise 

effectiveness of the countermeasures against any one of the selected factors are similar. 

These countermeasures are the means to ensure that the practitioners carry out their 

duties properly. 

Thirdly, the Assistant Bosun is the most immediate factor to the accident and can 

be seen as the active failure. The curve representing the factor of Assistant Bosun has 

the most adverse outcome when comparing with the other three factors. In contrast to 

Assistant Bosun, the Shore Management is the most distant and indirect as the latent 

condition. In addition, the magnitude and the trend of the factor are apparently different 

from the curve of Assistant Bosun. This phenomenon may be utilised to distinguish the 

active failure and latent condition factors of the accident when the Bayesian Network 

model is applied. However, it should also be considered, from another point of view, as 

to why the Assistant Bosun's unintentional error could result in such disastrous 

consequences as though he was entrapped. The management pretended that the 

Assistant Bosun would never fail without any defence (or alarm) mechanism but after 

all he is still a human being. The management should have considered a mechanism to 

prevent this crucial function from failure, such as a positive reporting procedure. If the 
Ship Standing Orders had been designed so that the Assistant Bosun should be required 
to report that the bow door was closed actively, rather than passively, before setting out 
for the sea, the captain should have realised that something was wrong at that time. 

5.6.2 Finding the critical factors of the model 

In addition to the validation of the established Bayesian Network model, 
Sensitivity Analysis can also be used to indicate which parameters (or factors) are 

critical to the model. Having validated the model, finding the critical factors of the 

model is the next step. As noted in section 4.6.2, a node (or parameter) whose specific 

value(s) can significantly influence the outcome of the model is identified as the critical 
factor, which greatly changes the system's behaviour with the change of the node's 
value (Breierova and Choudhari, 1996). In order to ensure that any node has not been 

overlooked, this process should be performed systematically and thoroughly for all the 

nodes in the model. Having the help of a built-in function (i. e. Sensitivity to Finding) of 
the employed Bayesian Network software (i. e. Netica), this requirement can easily be 

achieved. Before performing this function, a target node has to be selected first. The 
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selected target node is the node of concern at the moment. By checking all the nodes in 

the model and obtaining the sensitivity analysis results regarding the target node, the 

entire results can be acquired through a report. 

By appointing node MCSI as the target node in this example, both Table 5-2 and 

Table 5-3 tabulate the sensitivities, to the target node, for each finding node (i. e. the 

other nodes except node MCS1) involved in the model. Table 5-2 shows one of the 

instances (i. e. node M1) in the first part of the report and Table 5-3 lists the entire 

second part of the sensitivity finding report. The second part of the report also ranks all 

the nodes listed, from high to low, according to the sensitivities to the target node. The 

meanings of these data shown in the tables are briefly tabulated in Table 5-4 and the 

details of the definitions are specified in Appendix-C. By analysing these tables, it is 

more confident to say that the factor "Assistant bosun was not present to close the bow 

door", which is presented by node M1 in the model, is the most sensitive (or critical) 

human factor to MSC1, which represents one of the Window of Opportunity of the 

accident. This seems reasonable and is in line with one of the conclusions depicting in 

the last section. 

Table 5-2 The first part of the report: the detailed information for each finding node 
Sensitivity of'MCS1'to findings at'Ml': 
Probability ranges: Min Current Max RMS Change 
capsized 0.0626 0.2816 0.3785 0.1457 
safe 0.6215 0.7184 0.9374 0.1457 
Entropy reduction = 0.0906 (10.6 
Belief Variance = 0.0212 (10.5 
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Table 5-3 The second part of the report: the summary list of the sensitivities 
Sensitivity o f'MCS1' due to a finding at an other node: 

Node Mutual Info Variance of Beliefs 
MCS 1 0.8577 0.2023 
Al 0.2462 0.0633 
Cl 0.2217 0.0554 

- Fl 0.1959 0.0493 
Ml 0.0906 0.0212 
G1 0.0864 0.0234 
K1 0.0723 0.0173 
MCS3 0.0718 0.0214 
MCS2 0.0537 0.0163 
P 0.0492 0.0116 
D 0.0457 0.0125 
L8 0.0397 0.0094 

0.0368 0.0088 
O 0.0357 0.0084 
Ti 0.0326 0.0073 
J 0.0309 0.0078 
W 0.0274 0.0069 
L3 0.0175 0.0040 
Ni 0.0129 0.0033 
H1 0.01 0.0025 
U 0.0097 0.0026 
R 0.008 0.0022 
K2 0.007 0.0019 
E3 0.0063 0.0017 
A2 0.0056 0.0016 
L4 0.0048 0.0012 
T2 0.0044 0.0012 
G2 0.0042 0.0012 
F2 0.0041 0.0012 
E2 0.0029 0.0008 
M2 0.0028 0.0008 
MCS4 0.0023 0.0007 
B 0.0017 0.0004 
C2 0.0012 0.0003 
H2 0.0003 0 
N2 0 0 
L5 0 0 
L7 0 0 
L6 0 0 
V 0 0 
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Table 5-4 The brief explanation of the meanings of the sensitivity report 

Title Definition 
Minimum belief that each state q of Q can take due to a Min finding at F. This provides a value for each state. 
Maximum belief that each state q of Q can take due to a Max finding at F. This provides a value for each state. 
The square root of the expected change squared of the belief 
of state q of Q, due to a finding at F. This provides a value for 

RMS Change 
each state. This is the standard deviation of P(gjf) about P(q) due 
to a finding at F, with the finding at F distributed by P (f). 
The mutual information between Q and F (measured in bits). 

Entropy reduction The expected reduction in entropy of Q (measured in bits) 
(Mutual Info) due to a finding at F. 

The expected change squared of the beliefs of Q, taken over Belief Variance 
all of its states, due to a findin at F. 

Notation: 
Q: is the query variable 
F: is the varying variable 
q: is a state of the query variable 
f is a state of the varying variable 
RMS: is "root mean square", which is the square root of the average of the 

values squared. 

After carrying out the same examination to all the WoOs (i. e. Minimal Cut Sets) of 

the accident, one by one, and gathering their results, the investigators are able to 

identify the critical factors with a broadened picture. Having concluded these identified 

critical factors according to the Bayesian Network model, it would be helpful for the 

authorities to decide which conclusions and recommendations are objective to the 
investigation report. These two Sensitivity Analysis processes may repeat if any 
improper value of the nodes has been found during the process. It is expected that this 

critical factors finding process can lead to the resolution of the experts' disagreements 

or arguments in terms of critical factors by appreciating the influences of each node to 

the model. 

5.7 Influence Diagrams for the accident analysis 

In this section, the study will demonstrate an instance that applies the Maximum 

Expected Utility (MEU) of Influence Diagrams as the tool to assess the Risk Control 
Options (RCOs) against the analysed accidents. The Influence Diagrams model is 
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derived from the established Bayesian Network model of the accident, as the foundation, 

having considered cost-benefit issue. The Risk Control Options represented by the 

Expected Utilities in the model are the countermeasures to the analysed accident. From 

the view of decision making, it would be helpful if the countermeasures for preventing 

the type of accidents are evaluated in terms of cost-benefit and the effectiveness of all 

possible solutions. In order to illustrate this notion, a pattern of Expected Utility which 
is proposed in section 4.7 will be applied to the Herald of Free Enterprise example in 

the next two sections. Four presumed Risk Control Options are utilised as the 

countermeasures to construct the corresponding Influence Diagrams model for the 

demonstration. 

5.7.1 Applying Influence Diagrams to assess the Risk Control Options (RCOs) 

against the accident 

In order to demonstrate the process of applying Influence Diagrams, as the tool, to 

assess the Risk Control Options for accident analysis, the established Bayesian Network 

model for the accident of Herald of Free Enterprise is used and expanded. It is presumed 
that the established Bayesian Network model, constructed through the proposed method, 
is validated. For finding the best countermeasure from all of the possible solutions, an 
Influence Diagrams model which is constructed by adding several Decision and Utility 

nodes, including some Chance nodes, into the established Bayesian Network model is 

utilised. These new added nodes are four Chance-nodes (i. e. node MCSIN - MCS4N), 

one Decision node (i. e. node RCO) and five Utility nodes (i. e. node Payoff I- Payoff ̀_4 

and node Cost). This construction follows the proposed pattern of Expected Utility 
depicted in section 4.7.1 to construct the Influence Diagrams model in order to assess 
the four-alternative Risk Control Options for decision-making (see Figure 5-12). These 
four Risk Control Options are mainly against the (or similar) type of HoFE accident 
with estimated costs figures for demonstration purposes. All the assumptions used are 
based on a five year period of ship's expected operating life. All the costs for equipment 
include the maintenance fee (estimated at roughly 5% of purchase price per year). These 
four Risk Control Options are listed and depicted as follows. 
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º R000: Nothing has been improved except the crews have been replaced. No 

further corresponding countermeasures are taken. Hence there is no extra cost 
imposed. 

º RCO 1: Sufficient manpower is provided; it can be seen as ensuring that two crew 

members are always at the bow door to secure its closure before sailing. In this 

case, the extra cost is £20,000 per year. 

RC02: A bow door monitoring system is installed; this allows the captain to 

check the status of the bow door anytime during the journey. £20,000 is the cost 
for installation and £1,000 is the maintenance fee per year. 

º RCO3: It can be deemed as a set of tougher safety regulations is imposed (e. g. 
International Safety Management Code) or an Anti-FSI (Free Surface Instability) 

device is geared, such as the installation of a longitudinal bulkhead on the G 

deck. It is assumed that its initial cost is £200,000 and £10,000 is the annual 

expense. 

-ISO- 

Figure 5-12 The Influence Diagrams for HoFE accident 



Ch. 5: Case Study Using the Proposed Method: Herald of Free Enterprise 

In order to simplify the explanation, the following paragraph only concentrates on 

the calculation details of the Risk Control Options for MCSIN. The calculations 

regarding the rest of the Minimal Cut Sets over the Risk Control Options are not 

detailed further; instead Netica software is used. In the new constructed Influence 

Diagrams model, an extra Chance node is added following each Minimal Cut Set node, 

as a child node. Therefore four new Chance nodes (i. e. MCSIN MCS41V) represent the 

posterior status (i. e. the remedied outcomes) of the Minimal Cut Sets after the Risk 

Control Options are implemented. Each such extra child node is named following its 

parent node with an extra "N" at the end of the label. For example MCSIN denotes the 

posterior status of MCS1. Table 5-5 shows the Conditional Probability Tables for nodes 

MCS1N - MCS4N whilst Table 5-6 shows the data for nodes Payoff and Cost. The 

conditional probability data for MCS2N - MCS4N is the same as MCSJN, and also 

refers to Table 5-5. Since the Conditional Probability Table data for the Utility nodes 

Payoff 1- Payoff j are identical, only one instance is shown in Table 5-6. It has two 

entries: -£8,000,000 (if ship is capsized and totally lost) and £4,000,000 (if ship is safe 

in 5 years time and has the revenue returned). In addition, the posterior status of the 

Minimal Cut Sets (i. e. MCSIN - MCS4N) depicts the probability (or prediction) 

regarding the change of the likelihood of these Minimal Cut Sets (i. e. MCSI - MCS4) 

when these Risk Control Options are implemented. For example, in Table 5-5 the most 
left top data entry specifies the posterior occurrence probability for capsize is almost 

equal to one if RCOO is implemented and the condition given by MCSJ happens. It 

means, in this example, that if the likelihood of capsize under the condition given by 

MCSI is 28.2% (as indicated for MCSJ in Figure 5-12), then 99.9% of the 28.2% will 
be the likelihood for MCS1N to be capsized. In other words, the final likelihood 

outcome of node MCSJN depends on the likelihood result of its parent node (i. e. node 
MCSJ). 

Table 5-5 The Conditional Probability Table of nodes MCSI N- MCS4N 

MCS 1~4 capsized Safe 

RCO RCOO RCO1 RCO2 RCO3 RCOO RCO1 RCO2 RCO3 

4 N MCS 1 capsized 0.999 0.2 0.2 0.05 0.001 0.001 0.001 0.001 ) ( - 
safe 0.001 0.8 0.8 0.95 0.999 0.999 0.999 0.999 
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Table 5-6 The Utility tables for Payoff and Cost 

Payoff 

capsized £ -8,000,000 

safe £ 4,000,000 

Cost 

RCOO £ 0 

RCO1 £ -100,000 
RCO2 £ -25,000 
RCO3 £ -250,000 

By applying Equation (5.16) in section 5.7.2, the individual Expected Utility 

results against each Minimal Cut Set over all the possible countermeasures (i. e. Risk 

Control Options) are listed in Table 5-7. In the table, the row MCS1 - MCS4 reveal the 

Expected Utilities results when only one particular Minimal Cut Set is considered over 
RCO1 - RCO4 respectively. For instance, each entry in the row labelled as MCSI 

reveals the Expected Utility under the condition that MCS1 is the only Minimal Cut Set 

considered in the model when these four Risk Control Options are imposed individually. 

Therefore the Expected Utility results with regard to one particular Minimal Cut Set 

over each Risk Control Option can be specified individually. This is achieved via the 

calculations detailed in section 5.7.2, in which the Expected Utilities for MCS1 are the 

examples illustrated. Table 5-7 tabulates the manual calculation results as well as the 
Netica software readouts. This table provides an opportunity to appreciate how these 
Expected Utilities responsed to each Minimal Cut Set and then influence to the 

synthesis outcomes for each Risk Control Option. The row "EU(Total)" depicts the 

value that sums up the four entries which represent the individual Minimal Cut Sets in 

the same column. The row labelled as "EU (corrected)" is the result by taking out three 

times of "cost" value from the "EU(Total)" value in each column. This is because, in 

each row belonging to each Minimal Cut Set, the "cost" has already been taken into 

account once at every entry. There will be three times of redundant "cost" value 
overestimated if the figure for each Expected Utility simply sums up the data in the 

same column of the table without correction. Therefore, the redundant "cost" value 
should be taken out for correction. The figures shown in row "Netica display" are the 
Expected Utility outcomes over each Risk Control Option while these four Minimal Cut 
Sets are considered simultaneously. They are derived from the readout shown in the 
Influence Diagrams model of HoFE (see Figure 5-12). The differences between the data 
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shown in row "EU (corrected)" and "Netica display" are minor and is reasonably 
believed to be from the effective decimal digits taken. Therefore, according to this 

outcome, there is no doubt that the RCO3 (i. e. gear up Anti-FSI devices for the ship) is 

the best choice of the countermeasure in five year time when considering the posterior 

occurrence probability and cost-benefit issue simultaneously. This is concluded from 

the ranking result of RCO3 > RCO2 > RCO 1> RCOO. 

Table 5-7 The summary of Expected Utility for each RCO and MCS 

(manual 
calculations) 

RCOO RCO1 RC02 RC03 

MCS1 £ 610768 £ 3214584 £ 3289584 £ 3572184 

MCS2 £ 1532920 £ 3398460 £ 3473460 £ 3617460 

MCS3 £ 778432 £ 3248016 £ 3323016 £ 3580416 

MCS4 £ 1664656 £ 3424728 £ 3499728 £ 3623928 

EU (Total) £ 4586776 1f. 13285788 £ 13585788 £ 14393988 

EU (corrected) £ 4586776 £ 13585788 £ 13660788 £ 15143988 
INetica 

display £ 4590000 ;C 13580000 £ 13660000 
1Z 

15140000 

P. S. the minor difference between the outcomes of "Netica display" and "EU 
(corrected)" results from the effective decimal digits taken (i. e. only four digits are 
rounded and shown in the Influence Diagrams model) 

5.7.2 The Expected Utility (EU) calculation details for MCS1 

In this section, the calculation details which acquire the Expected Utility results for 
MCSI over these four Risk Control Options are illustrated. The likelihood outcomes 

regarding MCS1 - MCS4 shown in the established Bayesian Network model are listed 
in Table 5-8 for the following calculations although only the data of MCSI will be 

utilised. The equation applied for the calculation is shown in Equation (5.16) below. 
The data involved in the calculation also refers to Table 5-5 and Table 5-6. The details 

of the calculation are illustrated in Equation (5.17), in which the individual Expected 
Utility results (i. e. RCOO-RCO3) for MCSI are illustrated one by one with the data 
involved. In the equation, some of the data has to refer to Table 5-5, which shows the 

posterior occurrence probability of each individual Minimal Cut Set when these Risk 
Control Options have been implemented. 
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Table 5-8 The likelihood for each MCS in the Bayesian Network model 

MCS1 MCS2 MCS3 MCS4 

capsized 0.282 0.205 0.268 0.194 

safe 0.718 0.795 0.732 0.806 

EU(MCS 1, RCO) =U (Cost)+E P(MCS 1N I MCS 1, RCO)x U(Payoff) (5.16) 

There are four parts in Equation (5.17). The first part of the equation (i. e. 

EU(MCSI, R000)) reveals the calculation details for acquiring the Expected Utility 

given MCS1 over RCOO whilst Equation (5.16) is applied. Therefore the U(Cost) is 

inputted by zero when referring to the data entry of RCOO in Utility Table Cost (see 

Table 5-6). Then, for P(MCS IN I MCS 1= capisized, RCO = RCOO), it has to refer to 

Table 5-5 at column "MCS1=capsized" and "RCO=RCOO". This was 0.999 for 

"capsized" and 0.001 for "safe" respectively. In the Utility Table "Payoff', there are two 

states (i. e. "capsized" and "safe" in Table 5-6). This represents the revenue that the ship 

can obtain under these two different circumstances. Hence, the data for U(Payoff) to be 

picked up, from the table, depend on which condition the P(MCS IN I MCS 1) is given. 

For example, in Equation (5.17), 0.999 x£-8,000,000 is taken for "MCSI N=capsized" 

and 0.001 x £4,000,000 for "MCSl N safe" when "MCS1=capsized". Finally, the 

answer acquired for EU(MCS 1, RCOO) is £ 610,768 when Equation (5.16) and those 

data shown in the tables are applied. In order to validate the outcomes of Equation 

(5.17), an Influence Diagrams model regarding this demonstration is utilised and shown 

in Figure 5-13. The Expected Utility results are under the condition that only MCSI 

exists, and therefore the reading of node RCO can be utilised to validate the results 

acquired by the manual calculation. Although there are minor differences between the 

manual calculations outcomes and the software readings, they are reasonably equivalent. 

Again, such minor differences are believed resulting from the differences of the 

effective decimal digits taken (i. e. only three digits after the decimal point are taken for 

the manual calculation but there are far more than three digits in the software). For 
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instance, the software reading shows the Expected Utility of RCOI is £3.215e6 (i. e. 

3.215 x 106) whilst the result of the manual calculation is £ 3,214,584. They are not the 

same but the difference is minor. 

EU(MCS1, RCOO) = £0 

+ 0.282 x (0.999 x£-8,000,000 + 0.001 x £4,000,000) 

+ 0.718 x 0.001 x£-8,000,000 + 0.999 x £4,000,000) 

= £0 + 0.282 x (£ 
- 7,992,000 + £4,000) + 0.718 x (£ 

- 8,000 + £3,996,000 

= £610,768 
EU(MCS1, RCOI) =£ -100,000 

+ 0.282 x (0.2 x£-8,000,000 + 0.8 x £4,000,000) 

+ 0.718 x (0.001 x£-8,000,000 + 0.999 x £4,000,000) 

_£ -100,000 + 0.282 x (£ 
-1,600,000 + £3,200,000)+ 0.718 x (£ 

- 8,000 + £3,996,000) 

_ £3,214,584 

(5.17) 

EU(MCS 1, RCO2) =£- 25,000 

+ 0.282 x (0.2 x£-8,000,000 + 0.8 x £4,000,000 

+ 0.718 x (0.001 x ;E-8,000,000 + 0.999 x £4,000,000) 

=£- 25,000 + 0.282 x (£ 
-1,600,000 + £3,200,000) + 0.718 x (£ 

- 8,000 + £3,996,000) 

= £3,289,584 

EU(MCS 1, RCO3) =£- 250,000 

+ 0.282 x (0.05 x£-8,000,000 + 0.95 x £4,000,000) 

+ 0.718 x (0.001 x£-8,000,000 + 0.999 x £4,000,000) 

=£- 250,000 + 0.282 x (£ 
- 400,000 + £3,800,000)+ 0.718 x (£ 

- 8,000 + £3,996,000) 

= £3,572,184 
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Figure 5-13 The Influence Diagrams of HoFE accident while only MCSI exists 

5.8 Discussion 

From the case study examined in this chapter, the hypothesis of implementing the 

Window of Opportunity of Reason's Swiss Cheese Model with the Minimal Cut Sets of 
FTA has been demonstrated, although it is an approximate outcome. It is not carried out 

via FTA alone, but several risk assessment techniques are used, one by one, step by step 
in the procedure. Each of these techniques (i. e. WBA, Karnaugh map, FTA, Bayesian 

Network and Influence Diagrams) provides a particular part of the procedure which has 

been formulated from Reason's Window of Opportunity in his Swiss Cheese Model. 

This method brings a comprehensive picture of the accident structure via the Baycsian 

Network model with results of both qualitative and quantitative analysis. 

With the help of the Bayesian Network model, an insight into the occurrence that 
diagnosing the critical factors involved and predicting the interactions amongst these 
factors are available. This is achieved by employing the Bayesian Network propagation 
feature which enables "what if' examination to be performed in order to objectively 
figure out which factors are critical and what the possible influences from one factor to 

another will be. In addition to the Bayesian Network model, the Influence Diagrams 
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model which is in conjunction with Utility and Decision nodes based on the established 
Bayesian Network model can offer the decision makers with a useful tool to examine 

the cost-benefit of the countermeasures from several choices in order to select one of the 

best Risk Control Option. 

In summary, this case study has shown that the proposed method is capable of 

achieving the requirements of analysing an accident qualitatively and quantitatively as 

well as evaluating the best countermeasure efficiently. The advantages of the method 

are briefly listed as follows. 

 A systematic procedure to sort out the Minimal Cut Sets of the accident as the 

qualitative analysis result is in line with the notion of Window of Opportunity of 
Reason's Swiss Cheese Model. 

  Both the qualitative and quantitative analysis result of the accident can 

simultaneously be shown on a Bayesian Network model. 

 A Bayesian Network model established according to the qualitative and 

quantitative analysis results can perform a series of "what if' ' examinations. 

  The applied Sensitivity Analysis method is capable of relieving the problem of 
validating the analysed results as well as finding out the critical factors via a 
thorough and systematic process. 

  An Influence Diagrams model based on the established Bayesian Network 

model of the accident is a useful tool for decision makers to select the best Risk 
Control Option from various countermeasures. 

  The application of Expected Utility based on the accident analysis results has 

considered occurrence likelihood, effectiveness of the RCOs and payoff issues 

for decision makers to select the best countermeasures as a means of cost-benefit 
resolution. 

From another perspective, although this method is dedicated to marine accidents 
analysis, it could be employed to other domains for the application of preliminary safety 
prediction, especially for the topics where no proper mathematic model is available. 
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Chapter Six - 
Human Factors Analysis and Classification System - for 

Maritime Accidents (HFACS-MA) 

Summary 

From the viewpoint of Human and Organisational Factors (HOFs) of maritime 

accidents and the prevailing human factors analysis methodology in the aviation 

industry, it is obviously worthwhile to develop a dedicated HOFs framework to deal 

with the human factor issue for the maritime industry. In this chapter, a prototype HOFs 

framework is proposed and named as Human Factors Analysis and Classification 

System for Maritime Accidents (HFACS-MA). Several advantages that the framework 

can offer are demonstrated in different sections. In section 6.2, the details of the 

proposed framework are specified level by level to show the hierarchy of HOFs. The 

benefits for the investigators in identifying the human factors issues during the 

investigation stage are described in section 6.3. Finally, in section 6.4, an example 

analysis showing the combination of the framework with the Fault Tree - Bayesian 

Network (FT-BN) analysis results of the accidents can provide investigators a more 

comprehensive picture of the influence of the human factors involved in the accident. 

6.1 Introduction 

"What makes the `Swiss cheese' model particularly useful in accident investigation 

is that it forces the investigators to address latent failures within the causal sequence of 

events as well. ... However, a limitation of Reason's model is it fails to identify the 

exact nature of the `hole' in the cheese" (Shappell and Wiegmann 2003b). Although the 

International Maritime Organization (IMO) guidelines have specified the procedure to 

be followed and the topics to be covered when the investigators collect the information 
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or evidences for human factor involved in marine casualties and incidents, there is still 

no dedicated HOFs framework for the maritime industry to illustrate the hierarchy of 

the causal sequences. Therefore, the necessity to develop a specific HOFs framework 

for the maritime industry to help the investigators to identify the human factors 

involved, as well as to figure out the causality amongst these factors, should be 

considered. 

This study therefore proposes the notion of HFACS-MA, which mainly follows the 

principles of the Human Factors Analysis and Classffication System (HFACS) (see 

Figure 3-6) (Shappell and Wiegmann, 2003b) and the Systemic Occurrence Analysis 

Methodology (SOAM) (EUROCONTROL, 2005). Most importantly, it complies with 

the guidelines for the investigation of human factors in marine casualties and incidents 

(IMO A. 884), which was adopted by IMO in 1999. Both HFACS and SOAM apply 

Reason's (1997) Swiss Cheese Model as the kernel concept of the framework. However, 

SOAM has also considered Hawkins's (1987) SHEL model (i. e. Software, Hardware, 

Environment and Liveware when identifying the causal factors which the sharp end 

personnel encountered at the time of the accidents. In contrast, HFACS has concentrated 

more on the contextual influences of active failures and latent conditions amongst 
different levels. 

The proposed HFACS-MA framework mimics the classification of HFACS but the 

content of level one (i. e. Unsafe Acts) and level two (i. e. Preconditions) have been 

modified according to the requirements of IMO guidelines. In the proposed Unsafe Acts 

level, it incorporates aspects of Reason's (1990) Generic Error Modelling System 

(GEMS) including the differentiation between errors and violations. Furthermore, in the 

Preconditions level, it adheres to the SHEL model as the core to distinguish the types of 
factors involved. Figure 6-1 gives an overview of the framework, from which at least 

two advantages can be gained. In the first place, it is not only a dedicated HOFs 

framework, satisfying the requirements of maritime industry, but also suitable for the 

proposed Fault Tree Analysis - Bayesian Network (FTA-BN) analysis method, which is 

detailed in Chapters 4 and 5, to classify the identified critical factors into their proper 

categories. This classification of the HOFs is the foundation for further statistical study 

or data exchanging between authorities regarding safety issues. In the second place, it 

will help the investigators to gain a more comprehensive picture about the relative 
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causal influences of various human factors aspects when gathering information or 

evidence during an accident investigation period. 

The aviation industry has relied on HFACS in analysing the underlying human 

factors causes of accidents for many years (Wiegmann and Rantanen 2003; Wiegmann 

et al., 2005; Scarborough et al,. 2005; Shappell and Wiegmann 2003a; Shappell et al., 
2007). HFACS has also made valuable contributions to investigations of railway 

accidents (Reinach and Viale, 2006; Baysari et al., 2008). The present study considers 

that it should be beneficial to incorporate HFACS into the proposed framework for 

maritime accident analysis. The resultant HFACS-MA framework has the following 

aspects: 

  The Unsafe Acts level takes into account Reason's GEMS model and can be 

seen as the centre component of the SHEL model (i. e. the central Liveware), 

which represents the conditions of sharp end personnel. 

  The Preconditions level consists of the four components of the SHEL model and 
the Personnel Factors proposed in the original HFACS framework. This is in 
line with the study that has been made by Celik an Er (2007). They has pointed 
out the "integrated unit" (i. e. hardware) shall be considered within the HFACS 
in order to identify the design-based human factors. Thus the proposed approach 
presumes that the preconditions of sharp end personnel encountered at the time 

of an accident can be more comprehensively specified with the proposed 
Preconditions level. That is the investigators should consider Software, 
Hardware, Environment, peripheral Liveware, and Personnel Factors 

comprehensively at this level. 

  In the IMO guidelines, no specific differentiation is made between Unsafe 
Supervision and Organisational Influences; both are considered as parts of the 
Management issue. This study recommends that the framework should remain as 
four levels as in the original HFACS approach. It is believed that it would 
benefit the maritime industry to make a clear distinction between the possible 
causal influences at Supervisory and at Organisational levels rather than simply 
counting them together as the factors of Management. 
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6.2 The framework of HFACS-MA 

Management 

Organisational 
Influences '--' 

Resource Organisational Organisational 
Management Climate Process 

Unsafe i 

Supervision ~- 
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Software Hardware Condition of Environment Lifeware Operator(s) 

Physical Technological 

Unsafe Acts 

Errors 
(GEMS) F Violations 

Skill-based Rule-based Knowledge- Routine Exceptional 
Errors Mistakes Based Mistakes Violations Violations 

Figure 6-1 The overview of the HFACS-MA framework 

In this section, each level of the proposed framework is specified, from the sharp 

end personnel level to the organisational level, with the categories contained in the level 
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and the brief explanations of each category. The proposed HOFs framework (i. e. 

HFACS-MA) comprises four levels (see Figure 6-1); they are: 

b Unsafe Acts (i. e. the lowest level); 

Preconditions; 

Unsafe Supervision; 

b Organisational Influences (i. e. the highest level). 

Each level consists of several categories. For example, there are three categories 

comprising the Organisational Influences level. Each category defines numerous items 

as the human factors of the type. It is intended that the specific items of each level can 
be varied according to the requirements of the applied fields or realm. Some of the 

levels contain a table listing examples of potential items in the categories. What the 

present study wants to emphasise is that the items given in these tables are only 
indicated as potentially relevant. They are not determined yet, but to illustrate the notion 

of the HOFs framework. Those items are mainly elicited from the definitions of human 

element in IMO guidelines A. 884(21), in which the terms and the definitions are given. 

In the following sections, the overview of the levels and the preliminary definition 

of each category will be shown. Nevertheless, the details of items for each category and 
the definitions of each item need to be carried out by other comprehensive studies, and 
is out of the scope of this study. At this stage, the study only gives an overview of the 
framework and its application in cooperating with the FTA-BN method for accident 
analysis. 

6.2.1 Unsafe Acts 

The first (or lowest) level of the proposed HOFs framework is Unsafe Acts level. 

The IMO guidelines suggest that "an unsafe act is defined as an error or violation that 
is committed in the presence of a hazard or potential unsafe condition" (IMO A. 884). 
This definition seems to derive from Reason's suggestion that "an unsafe act is an error 
or a violation committed in the presence of a potential hazard: some mass, energy or 
toxicity that, if not properly controlled, could cause injure or damage" (Reason, 1990). 
Reason further defines "the psychological varieties of unsafe acts which are classified 
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initially according to whether the act was intended or unintended and the distinction 

between errors and violations" (Reason, 1990) (see Figure 6-2). 

Figure 6-2 The classification of "Unsafe Acts" (from Reason, 1990) 

This differentiation between error and violation is also adopted by the HFACS 

when defining the unsafe acts of operators; it is loosely classified into two categories: 

errors and violations. Errors represent "the mental or physical activities of individuals 

that fail to achieve their intended outcome" whilst violations refer to "the wilful 
disregard for the rules and regulations that govern the safety" (Shappell and Wiegmann, 

2003b). Meanwhile, U. S. Department of Defence (DoD) defines unsafe acts of their 

practice version as "those factors that are most closely tied to the mishap, and can be 

described as active failures or actions committed by the operator that result in human 

error or unsafe situation" (U. S. DoD, 2005). 

Therefore, the proposed HOFs framework adopts. Reason's Generic Error 

Modelling System (GEMS) to distinguish errors from violations in order to follow the 

suggestions of the IMO guidelines. The study suggests that the unsafe acts level 

consists of two categories; they are errors and violations (see Figure 6-3). Their detailed 

definitions are described in the next two sections. 
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i lncafe Acts 
11 

Errors 
(GEMS) 

Violations 

Skill-based Rule-based Knowledge- Routine Exceptional 
Errors Mistakes Based Mistakes Violations Violations 

Figure 6-3 The "Unsafe Acts" level of HFACS-MA 

6.2.1.1 Errors (GEMS) 

In this category, the key feature is GEMS, which is asserted by Reason as that, 

"when confronted with a problem, human beings are strongly biased to search for and 

find a pre-packaged solution at the Rule-Based (RB) level before resorting to the far 

more effortful Knowledge-Based (KB) level, even where the latter is demanded at the 

outset" (Reason, 1990). This means that "errors (i. e. slips and lapse) occurring prior to 

problem detection are seen as being mainly associated with monitoring failures, whilst 

those that appear subsequently (RB and KB mistakes) are included under the general 
heading of problem-solving failures" (Reason, 1990). Figure 6-4 outlines the dynamics 

of the GEMS. 

It is believed that errors or mistakes described in GEMS are derived in large part 
from Rasmussen's Skill-Rule-Knowledge classification of human performance and 

yield three basic human error types (Reason, 1990), in which errors are unintended and 

"a mistake is an intentional action, but there is no deliberate decision to act against a 

rule or plan" (IMO A. 884) (see Figure 6-2). In other words, "errors are factors in a 

mishap when mental or physical activities of the operator fail to achieve their intended 

outcomes as a result of Skill-Based errors leading to an unsafe situation" (U. S. DoD, 

2005). These are failures in execution, e. g. lapses or slips. In contrast, Rule-Base or 
Knowledge-Base mistakes are actions that are carried out as planned but the actions are 
inappropriate; these are failures in planning (IMO A. 884). 
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Figure 6-4 The dynamics of the GEMS (from Reason, 1990) 

In summary, these three types of errors or mistakes are defined as follows: 

Skill-Based (slips and lapse) errors: "slips are an unintentional action where 

the failure involves attention whilst lapses are an unintentional action where 

the failure involves memory" (IMO A. 884). Here, "attention failures 

commonly occur during highly automatic behaviour and memory failure often 

appears as omitted items in a checklist, place losing, or forgotten intention" 

(Shappell and Wiegmann, 2003b). 
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/ Rule-Based mistakes: They are the mistakes involving "the inappropriate 

matching of environmental signs to the situational component of well-tried 

troubleshooting rules" (Reason, 1990). The control mechanism operating at 

the Rule-Based level is goal-oriented, but it is a feed-forward control which is 

structured by the large number of rules stored. 

º Knowledge-Based mistakes: They happen "when the individual has run out 

of applicable problem-solving routines and is forced to resort to attention 

processing within the conscious workspace. Mistakes at the Knowledge- 

Based level have hit-and-miss qualities not dissimilar to the errors of 

beginners and will be less predictable in their forms" (Reason, 1990). 

6.2.1.2 Violations 

Violations are "factors in a mishap when the actions of the operator represent 

wilful disregard for rules and instructions, and lead to an unsafe situation" (U. S. DoD, 

2005). These rules and instructions, including regulations, govern safe behaviour. 

Unlike errors, violations are deliberate and occur much less frequently since they often 
involve fatalities (Shappell and Wiegmann, 2003b). Meanwhile, the IMO guidelines 

state that "a violation is a planning failure where a deliberate decision to act against a 

rule or plan has been made" (IMO A. 884). Both the IMO guidelines and IHFACS 

suggest that the violations can be divided into two types: Routine and Exceptional. 

0 Routine violations: routine violations are those factors which "tend to be 

habitual by nature and often tolerated by governing authority" (Shappell and 
Wiegmann, 2003b). "Routine violations occur everyday as people regularly 

modify or do not strictly comply with work procedures, often because of 

poorly designed or defined work practices" (IMO A. 884). "If a routine 

violation is identified, one must look further up the supervisory chain to 
identify those individuals in authority who are not enforcing the rules" 
(Shappell and Wiegmann, 2003b). 

º Exceptional violations: exceptional violations appear as "isolated departures 
from authority, not necessarily indicative of individual's typical behaviour 

pattern, nor condoned by management" (Shappell and Wiegmann, 2003b). An 

exceptional violation "tends to be a one-time breach of a work practice, such 
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as safety regulations being deliberately ignored to carry out a task. Even so, 

the intention was not to commit a malevolent act but just to get the job done" 

(IMO A. 884). Shappell and Wiegmann (2003b) point out that most 

exceptional violations are usually "heinous and have an extreme nature. They 

are considered exceptional because they are neither typical of the individuals, 

nor condoned by the authority". 

6.2.2 Preconditions (SHEL) 

Preconditions are the second level of the framework and are deemed as latent 

states which create potential for a wide variety of unsafe acts. Each precondition can 

contribute to a large number of unsafe acts, depending upon the prevailing conditions. 

This means that, at this level, the "some-to-many mapping between preconditions and 

unsafe acts play a significant part in both provoking and shaping an almost infinitely 

large set of unsafe acts" (Reason, 1990). Hence "the only sensible way of dealing with 

these unsafe acts is, first, to eliminate their preconditions as far as possible and, second, 

to accept that, whatever the measures taken, some unsafe acts will still occur, and so 

provide defences that will intervene between the acts and their adverse consequences" 
(Reason, 1990). 

The original HFACS suggests that the process involves analysing preconditions of 

unsafe acts should include the condition of the operators, environmental and personnel 
factors (Shappell and Wiegmann, 2003b). However, the IMO guidelines recommend 
that the first step in the human factors investigation process is the collection of "work- 

related information regarding the personnel, tasks, equipment, and environmental 

conditions involved in the occurrence" (IMO A. 884). Precisely speaking, the guidelines 

recommend the use of the SHEL model as an organisational tool for the investigators 

avoiding that critical information will be overlooked or lost during an investigation. 

The original SHEL model, named after the initial letters of its components, 
Software (S), Hardware (H), Environment (E) and Liveware (L), was first developed by 

Edwards (1972). Later, Hawkins developed the Edwards's SHEL model from the view 

of the interfaces between a central Liveware element (i. e. the sharp end personnel) and 

other components to construct a "building block" style model. In this model the four 

components surround the central Liveware and affect the behaviour of the central 
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Liveware (see Figure 6-5 (a)). In the model, the edges of the blocks are not simple and 

straight since interfaces are rarely, if ever, perfectly aligned, and the central Liveware is 

usually the one has to adapt to incompatibility (Hawkins, 1987). This model helped the 

subsequent study of the human factors involved in flight. However, both models are 

based on the exactly same concepts. 

(a) SHEL model (b) multiple SHEL model 

Figure 6-5 The demonstration of the SHEL model (from Hawkins, 1987) 

Moreover, in a complex system (e. g. involving distributed cognition), it is often 

necessary to have multiple Software, Hardware, Environmental and Liveware elements 

existing (see Figure 6-5 (b)). In the SHEL model's viewpoint, the mismatch of the 

interfaces between the operators and the surrounding components can be the sources of 
human error. In this sense, the categories proposed in the Preconditions level are: 

condition of operator, software, hardware, environment and Liveware (see Figure 6-6). 

The application of the SHEL model leads to some dramatic differences from the 

original HFACS approach. This is because the "identification of a mismatch may be the 

identification of a safety deficiency in the system" (IMO A. 884). In summary, 

Preconditions are factors in a mishap if active and/or latent preconditions - such as 

conditions of the operators, software, hardware, environmental or other personnel (i. e. 
Liveware) practices, conditions or actions of individuals - result in human error or an 

unsafe situation. Thus, investigators must dig deeper into this level to explore why the 

unsafe acts occurred. Each category of the level is detailed in the following sections. 
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Preconditions 
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Figure 6-6 The "Preconditions" level of HFACS-MA 

6.2.2.1 Condition of Operator(s) 

The human element placed at the centre of the SHEL model is "the most valuable 

and flexible in the system. Each person brings their own capabilities and limitations to 

the work" (IMO A. 884). Hence, "the condition of an individual can, and often does, 

influence the performance on the job" (Shappell and Wiegmann, 2003b). HFACS 

suggests that three conditions of operators can directly impact the performance; they are 

adverse mental states, adverse physiological states and physical/mental limitations. Also 

personal readiness should be counted in this category because a compromise in personal 

readiness can lead to the failure of physical or mental preparation for duty. 

6.2.2.2 Software 

Software is the non-physical part of the system including organisational policies, 

procedures, manuals, checklist layouts, charts, maps, advisories and, increasingly, 

computer programs (IMO A. 884). "They are often less tangible than those associated 

with the Liveware-Hardware interface and encompass the non-physical aspects of the 

system, e. g. symbology" (Hawkins, 1987). 

6.2.2.3 Hardware 

Hardware refers to "the equipment part of a transportation system. It includes the 
design of work stations, displays, controls, seats, etc. " (IMO A. 884). "The natural 
human characteristic of adapting to Liveware-Hardware mismatches masks, but does 

not remove, their existence and the operators may never be aware of the deficiency, 

even when it finally leads to disaster" (Hawkins, 1987). 
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6.2.2.4 Environment 

Environmental factors are "factors in a mishap if physical or technological factors 

affect practices, conditions and actions of an individual and result in human error or an 

unsafe situation" (U. S. DoD, 2005). Sometimes the broad political and economic 

constraints under which the system operates are included in this category. The 

regulatory climate is a part of the environment because it affects communications, 

decision-making, control and co-ordination" (IMO A. 884). 

º Physical: Physical environment aspects are factors in a mishap if 

environmental phenomena such as "internal and external weather, climate, 

temperature, visibility, vibration, noise and other conditions, which constitute 

the conditions within which people are working", affect the actions of 
individuals and result in human error or an unsafe situation (IMO A. 884). 

This subcategory mainly focuses on the nature of environmental factors. 

º Technological: Technological environment aspects are "factors in a mishap 

when workspace design factors or automation affects the actions of 
individuals and result in human error or an unsafe situation" (U. S. DoD, 

2005). These factors encompass a variety of issues including the design of 
workplace and controls, information exchanging characteristics, task factors 

and automations. This subcategory emphasizes the importance of artificial 
environmental factors, e. g. harbour, waterway and traffic control issues, and 
so on. 

6.2.2.5 Liveware 

The peripheral Liveware refers to "the system's human-human interactions, 

including such factors as management, supervision, crew interactions and 
communications" (IMO A. 884). This is because, increasingly, "attention is being turned 

to the team-work of the system from the individual since group influence can be 

expected to play a role in determining behaviour and performances" (Hawkins, 1987). 

In summary, the Preconditions level focuses on revealing the underlying factors 
behind the act or decision of an individual or group. Therefore, it is important to 
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determine whether there were any factors in the work system that may have facilitated 

the expression of the given failure mode at the Unsafe Acts level. They can be found by 

examining the work system information, and are organised using the SHEL or GEMS 

model (IMO A. 884). Table 6-1 lists some example items for each category involved in 

the Preconditions level. These items are elicited from the IMO guidelines and are not a 

complete listing. The aim of showing the list is to provide a conceptual image of the 

scope. The details of the items can be varied according to the requirements of different 

domains or different authorities, and additional research is needed for determining them. 

Table 6-1 The example items of Preconditions 

> Condition of Operator(s) 
" personality 
" physical condition 
" activities prior to 

accident/occurrence 
" assigned duties at time of 

accident/occurrence 
" actual behaviour at time 

of accident/occurrence 
" attitude 

> Software 
" procedures and standing 

orders 
" regulations 

> Hardware 
" ergonomic design of 

working, living and 
recreation areas and 
equipment 

" ship design 
" state of maintenance 
" equipment (availability, 

reliability) 
" cargo characteristics, 

including securing, 
handling and care 

> Environment 
º Physical 

" adequacy of living 
conditions 

" adequacy of food 
" level of ship motion, 

vibrations, heat and noise 
" weather and sea 

conditions 
" ice conditions 

º Technological 
" port and transit conditions 

(VTS, pilots, etc) 
" traffic density 
" level of automation 

> Liveware 
" communication 
" on-board management and 

supervision 
" teamwork, 
" ship-shore communication 
" surveys and inspections 

(international, national, 
port, classification 
societies, etc. ) 

" organisations representing 
ship owners and seafarers 

(Note: This is a partial listinj 

6.2.3 Unsafe Supervision 

In practice, a mishap event can often be traced back to the supervisory chain of 
command. Reason (1990) originally names this level as line management deficiencies, 

- 171 - 



Ch. 6: HFACS-MA 

which are defined as the consequences of higher-level decision making, but it is not 

purely a function of these decisions. This is because the incompetence of any set of 

supervisions could exacerbate the adverse effects of high-level decisions or even good 

decisions to have bad effects. "Conversely, competence at the supervisory level could 

do something to mitigate the unsafe effects of fallible decisions, make neutral decisions 

have safer consequences, and transform good decisions into even better ones" (Reason, 

1990). "There is a many-to-many mapping between possible unsafe supervision and the 

various preconditions of unsafe acts, and the interaction between them is extremely 

complex". Any precondition could be the product of several different unsafe 

supervisions; the converse is also true. In this sense, four categories are proposed for the 

Unsafe Supervision level; they are: Inadequate Supervision, Planned Inappropriate 

Operations, Failed to correct Known Problem, and Supervisory Violations (Shappell 

and Wiegmann, 2003b). These categories follow the suggestion of the HFACS and are 
in line with Reason's Swiss Cheese Model of accident causation associated with 

supervisors who influence the condition of operators and the operation environment. 
Each of these categories is briefly described in the following sections. 

Unsafe I1 

Planned Failure to Inadequate Inappropriate correct Known 
LSU?! 

sory 
Supervision Operations Problem Violations 

Figure 6-7 The "Unsafe Supervision" level of HFACS-MA 

6.2.3.1 Inadequate Supervision 

The role of any supervisor is to provide his/her personnel with the opportunity to 

succeed. Hence, they have to provide whatever it takes to ensure that the job is done 

safely and efficiently. Therefore, "any thorough investigation of accident causal factors 

must consider the role supervision plays in the genesis of human error", despite 

"empowering individuals to make decisions and function independently" (Shappell and 
Wiegmann, 2003b). Thus, the category of Inadequate Supervision is defined as a factor 
in a mishap when supervision has failed to identify a hazard, recognise and control risk, 
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provide guidance, training and/or oversight, etc., and results in human error or an unsafe 

situation (U. S. DoD, 2005; 10). 

6.2.3.2 Planned Inappropriate Operation 

Planned Inappropriate Operation is "a factor in a mishap when supervision fails to 

adequately assess the hazards associated with an operation and allows for unnecessary 

risk. It is also a factor when supervision allows non-proficient or inexperienced 

personnel to attempt missions beyond their capability or when crew makeup is 

inappropriate for the task or mission" (U. S. DoD, 2005). Examples of these issues are 

the improper crew pairing and improper manning during a period of downsizing. 

6.2.3.3 Failure to correct Known Problem 

This refers to those instances where "deficiencies among individuals, equipment, 

training or other related safety areas are "known" to the supervisor, yet are allowed to 

continue uncorrected" as well as "the failures to consistently correct or discipline 

inappropriate behaviour certainly fosters an unsafe atmosphere and prompts the 

violation of rules" (Shappell and Wiegmann, 2003b). Likewise, the failure to report 
these unsafe tendencies and initiate corrective actions is another example. They can be 

deemed as a factor in a mishap when supervision fails to correct known deficiencies in 

documents, processes or procedures, or fails to correct inappropriate or unsafe actions of 
individuals, and this lack of supervisory action creates an unsafe situation (U. S. DoD, 
2005; 11). 

6.2.3.4 Supervisory Violations 

Supervisory Violations are those instances when existing rules, regulations and 
doctrine are disregarded or violated by the supervisors when they manage organisational 

assets". Likewise, "flaunting authority, which is the same as failing to enforce existing 
rules and regulations, is a violation at the supervisory level and invariably sets the stage 
for the tragic sequence of events that predictably follow" (Shappell and Wiegmann, 

2003b). In other words, they are factors in a mishap when supervision, whilst managing 

organisational assets, wilfully disregards instructions, guidance, rules, or operating 
instructions and this lack of supervisory responsibility creates an unsafe situation (U. S. 
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DoD, 2005). Table 6-2 lists some of the example items which refer to the IMO 

guidelines. 

Table 6-2 Selected examples of Unsafe Supervision 

> Unsafe Supervision º Inadequate Supervision 
º Planned Inappropriate Operation organization of on- 

division of tasks and board training and 
responsibilities drills 

" composition of the crew º Failure to correct known 

" manning level problem 
" workload/complexity of tasks º Supervisory Violation 
" working hours/rest hours Certificates (authorized 

" planning (voyages, cargo, unqualified crews or 
maintenance) equipment) 

" opportunities for recreation 
" assignment of duties 

(Note: This is a partial listing) 

6.2.4 Organisational Influences 

Fallible decisions of upper-level management can directly affect supervisory 

practices, as well as the preconditions and actions of operators. Unfortunately, these 

organisational errors often go unnoticed by safety professionals (Shappell and 
Wiegmann, 2003b). In considering fallible decisions, it is important to be aware that 

"system accidents have their primary origins in fallible decisions made by designers and 
high level managerial decision makers". Since they are "an inevitable part of the design 

and management process, the question is not so much how to prevent them from 

occurring, as how to ensure that their adverse consequences are speedily detected and 

recovered" (Reason, 1990). Therefore, the Organisational Influences are defined as 
"factors in a mishap if the communications, actions, omissions or policies of upper-level 

management directly or indirectly affect supervisory practices, preconditions or actions 

of the operator(s) and result in system failure, human error or an unsafe situation" (U. S. 

DoD, 2005). These latent conditions generally involve issues related to Resource 

Management, Organisational Climate, and Organisational Process and are detailed as 
follows. 

- 174 - 



Ch 6: HFA C-MA 
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Figure 6-8 The "Organisational Influences" level of HFACS-MA 

6.2.4.1 Resource Management 

"This category encompasses the realm of corporate-level decision-making 

regarding the allocation and maintenance of organisational assets such as human 

resources (personnel), monetary assets, equipment, and facilities". Such resources are 

typically based upon two, sometimes conflicting, objectives - the goal of safety and the 

goal of on-time, cost-effective operations (Shappell and Wiegmann, 2003b). This is 

because all organisations have to allocate resources to two distinct goals: production 

and safety. In the long term, they are clearly compatible, but there are occasionally 

short-term conflicts of interest due to the fact that all resources are finite (Reason, 1990). 

Unfortunately, history tells us that "safety is often the loser in such battles, and as such, 

it is the first to be cut in organisations having financial difficulties" (Shappell and 

Wiegmann, 2003b). Management should ensure that "human-factors engineering 

principles are known and utilised and that existing specifications for equipment and 

workplace design are identified and met". Hence, Resource Management is defined as a 

factor in a mishap "if resource management processes or policies, directly or indirectly, 

influence system safety and results in poor error management or creates an unsafe 

situation" (U. S. DoD, 2005). 

6.2.4.2 Organisational Climate 

Organisational Climate can be seen as the working atmosphere referring to a broad 

class of variables that influence worker performance within the organisation. The 

HFACS suggests that the climate can be broken down into three categories; they are 

structure, policies and culture. The structure reflects the chain-of-command, delegation 
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HFACS suggests that the climate can be broken down into three categories; they are 

structure, policies and culture. The structure reflects the chain-of-command, delegation 

of authority, communication channels, and formal accountability for actions. The 

culture refers to the unofficial or unspoken rules, values, attitudes, beliefs, and customs 

of an organisation. In other words, culture is "the way things really get done around 

there". Meanwhile, the policies are "official guidelines that direct management's 
decisions about such things as hiring and firing, promotion, retention, sick leave, and a 

myriad of other issues important to the everyday business of the organisation" (Shappell 

and Wiegmann, 2003b). All these issues affect attitudes about safety and the value of a 

safe working environment. Hence it is defined as "a factor in a mishap if organisational 

variables including structure, policies and culture influence individual actions and 

results in human error or an unsafe situation" (U. S. DoD, 2005). 

6.2.4.3 Organisational Process 

This category refers to "corporate decisions and rules that govern the everyday 

activities within an organisation.... Other organisational factors such as operational 

tempo, time pressure, and work schedules are all variables that can adversely affect 

safety. ", It can be subdivided into three subcategories; they are operations, procedures 

and oversight (Shappell and Wiegmann, 2003b). Operations refer to "the characteristics 

or conditions of work that have been established by management". Procedures are "the 

official or formal procedures as to how the job is to be done". Oversight is viewed as 
"monitoring and checking of resources, climate and processes to ensure a safe and 

productive work environment". Generally speaking, Organisational Processes can be 

defined as "a factor in a mishap if organisational processes such as operations, 

procedures and oversight negatively influence individual, supervisory and/or 

organisational performance and results in unrecognised hazards and/or uncontrolled risk 

which leads to human error or an unsafe situation" (U. S. DoD, 2005). 

Again, Table 6-3 is just an example of the listing. Another study to figure out the 
details of the items is needed and is out of the scope of this research. 
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Table 6-3 Selected examples of Organisational influences 

> Organisational influences 
º Resource Management 

" policy on recruitment 
º Organisational Climate 

" safety policy and 
philosophy (culture, 
attitude and trust) 

" general management 
policy 

º Organisational Process 
" management commitment 

to safety 
" scheduling of leave 

periods 
" port scheduling 
" contractual and/or 

industrial arrangements 
and agreements 

(Note: This is a partial listing) 

6.2.5 The management factors and m-SHEL model 

The m-SHEL model (see Figure 6-9) was first introduced by Kawano when he 

carried out a human factors research project for Tokyo Electric Power Company. This 

model is derived and expanded from SHEL model in order to solve the problem of not 

incorporating the management factors when it is applied to the human factors involved 

in an organisation (Kawano, 1997). In m-SHEL, the management (m) factor is defined 

as "the corporate organisation, administration and system, and the efforts to develop a 
desirable atmosphere at job site and safety culture, " when it cooperates with the original 
SHEL model. Subsequently, a few studies (Itoh et al., 2002; Hiroaki, 2004) published in 

Japan have referred this (m) factor when the m-SHEL model is applied for human 

factors analysis. However, in these papers, there is no further definition being given as 
to how the (m) factor interacts with, or influences, the other components (i. e. Software, 

Hardware, Environment and peripheral and central Liveware). 

(a) m-SHEL model (b) multiple m-SHEL model 

Figure 6-9 The illustration of m-SHEL model (from Itoh et al., 2002) 
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Although there is no specific definition associated with management factors in 

IMO guidelines A. 884(21), Appendix 3 of the guideline (i. e. the section of "definitions 

common human element terms") has specified that the management factor involves the 

following situations. 

  Failure to maintain discipline 

  Failure of command 

  Inadequate supervision 

  Inadequate communication 

  Inadequate physical resources 

  Inadequate manning 

  Poor job design 

  Poor regulations or practices 

  Misapplication of policies, procedures or practices 

In addition, in the section of "process for investigating human factors" (i. e. 
Appendix 1) of the guidelines, the underlying factors are described as the causes behind 

the act or decision of an individual or group which may have facilitated the expression 

of the given failure mode in the work system. These factors can be found by examining 
the work system information collected and organised using the SHEL model or 
Reason's Swiss Cheese Model. In other words, they are the latent condition of the 
factors identified in the Preconditions or Unsafe Acts level of the proposed framework. 

Hence the identification of potential safety problem is based extensively on what factors 

were identified in the lower level of the framework. 

In this sense, if the management factors are deemed as the factors in 

Organisational Influences and/or Unsafe Supervision of the IIFACS-MA framework 

(see Figure 6-1), it can explain how the management factor interacts with or influences 

the other factors in the m-SHEL model and also complies with the requirements of the 
IMO guidelines. In other words, the consideration of including management factors in 

the HFACS-MA has the merit to implement the notion of m-SHEL whilst complying 

with the IMO guidelines and being in line with Reason's Swiss Cheese Model. In this 
fashion, the Management Factors can therefore be deemed as a factor in a mishap if 

adverse supervision and/or organisational influences result in poor management or 
creates an unsafe precondition situation. 

- 178 - 



Ch. 6 : HFACS MA 

6.3 The applications of HFACS-MA during the investigation stage 

Once the HFACS-MA framework is in place, it offers the analyst a clearer vision 

with respect to the definitions of human factors and the structure of the HOFs hierarchy. 

This framework can assist investigators in categorising the human factors identified and 

also in spurring on further investigation of the latent conditions regarding the identified 

factors during the investigation period. 

This framework would help the investigators in two aspects. 

Firstly, a clearer definition for the HOFs hierarchy and human factors can help the 

investigators to more clearly classify the identified human factors involved in the 

accident. Such as the framework that has been established by U. S. DoD (2005), it 

organises all the human factors which have been identified from the investigated 

accidents and details the typical characteristics of them. Additionally, it has also 

repeatedly been applied to numerous U. S. military and civil aviation accident 
investigations. It is obvious that an official HOFs definition can dramatically improve 

the classification of the factors identified by avoiding individual investigators use the 

same terminology in different ways. The definitions of factor and category for every 
level of the HOFs framework also improve the precision of the framework by 

specifying what should be classified as a human factor and by indicating exactly what 

should be categorised at which level. Meanwhile, the framework provides a well 
defined basis to facilitate quantification of the identified human factors involved in 

accident investigations. This also has the benefit of providing a platform for, data 

exchange. If data from separate accident investigations can be quantified using the same 

criteria, it will be easier for further statistical analyses to be made thus broadening the 

view of human factor issues. For instance, several studies (Wiegmann and Shappell 

2001; Shappell and Wiegmann, 2003a; Shappell et al., 2007) are able to carry out a 
broader statistical analysis regarding the analysed accidents-since they are achieved by 

following the same framework to gain the benefit of clear classifications and 

specifications of the identified factors. 

Secondly, a HOFs hierarchy associated with causality can offer the investigators a 

clearer view to track back through the causal sequence amongst the factors identified. 
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For example, if a preconditions factor has been identified, the framework will encourage 

the investigators to consider whether any Unsafe Supervision or Organisational 

Influences factors, as the latent conditions of the identified factors, is overlooked. In 

other words, it can clearly point out the deficiency of the information or evidence 

associated with the identified factors in the lower level (i. e. Unsafe Acts or 
Preconditions level) when no related factor in the higher level is discovered. This 

mechanism will help the investigators to decide if any underlying factor needs to be 

explored in greater depth. Besides, this framework can also helps the investigators to 

figure out the causalities (or trajectories) amongst identified factors from the higher 

level to the lower level. With the clearer hierarchy of HOFs and the classification of 
factors, the causal sequences between factors are no longer vague since their categories 

are determined. It implies that the factor in the lower level is always provoked by the 
factor in the higher level, and the reverse direction is very unusual. This is because the 

relationship between factors should be in line with the principle of the framework (i. e. 
Reason's Swiss Cheese Model), otherwise either some evidence is still missing or the 

supposed connections amongst the factors are incorrect. 
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6.4 The integration of HFACS-MA with the Fault Tree - Bayesian 

Network (FT-BN) analysis results 

As noted previously, the proposed HFACS-MA framework can not only be used at 

the investigation stage, but also be a very useful auxiliary tool for the subsequent 

analysis. By projecting the HFACS-MA framework, as a mask, onto the FT-BN 

analysis results, a comprehensive picture associated with the causalities amongst these 

identified human factors at different levels of the framework can be acquired. 

Furthermore, the factors located in the lower levels (i. e. Unsafe Acts or Preconditions 

level) without provoking factors in the higher levels also give the investigators an 

unambiguous indication that further investigation associated with these lower level 

factors should be considered. The example shown in Figure 6-10 illustrates the FT-13N 

analysis results of the Herald of Free Enterprise (HoFE) analysis, which is the 

integrated outcome with respect to the case study described in Chapter 5, with the mask 

of HFACS-MA framework. In this illustration all of the identified factors are placed in 

the levels according to their characteristics referring to the definitions of HFACS-MA 

framework. Each node includes indications showing the marginalised probabilities in 

terms of events occurrence likelihood in percentage manner. From the figure, the 

following features emerge in a comprehensive way: 

1. The illustrations of the Window of Opportunity (WoO) of Reason's Swiss 

Cheese Model and the trajectories to penetrate the WoO. For example, the path 

starts from Node L8 through Nodes P., K!, F1 and Al, and finally reach Node 

MCS1 or MCS2 is one of the instances of the trajectories whilst the 

combination of the factors of MCSI or MCS2 represents one of the WoOs. 

2. The influences of the factors from the higher level to the lower level. It 

portrays the principle of HFACS-MA framework (i. e. Reason's Swiss Cheese 

Model) that the causal sequence moves from fallible decisions, through the 
intervening planes to an accident. 

3. The deficiencies of information or evidence regarding some of the identified 
factors in the lower levels. This is highlighted by the lack of connections 
between underlying factors. For instance, there is no factor in the higher levels 
influencing Node HI in the FT-BN analysis result shown in Figure 6-10. 
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However, there should be some reasons (i. e. unsafe acts) to specify why the 

ship's speed was over 18 knots at the time, but no such explanation has been 

given. 

4. The numerical or statistical indications pin point which part of the system is 

more vulnerable. It is obvious, from Figure 6-10, that there are many potential 

factors for consideration at the Preconditions level, although they are now 

deemed as consequences instead of causes. In addition, if a series of accidents 

are reviewed and compared under the same framework, it can conveniently 

provide a chance to analyse these accidents statistically and offer a broader 

view which can highlight the weak point(s) of the system. For example, if some 

Unsafe Supervision factors are repeatedly identified as the critical factors in a 

series of incidents or accidents, these analysis results can subsequently be 

compared, organised and aggregated as an statistically figure. This figure can 
help the authorities to pin point the critical part(s) of the system before another 

serious accident occurs. 

6.4.1 The procedure to integrate the FT-BN analysis results with IHFACS-11MA 

framework 

Having accomplished the FT-BN analysis results according to the method 

proposed in Chapter 4, the results should be able to map onto the HHFACS-MA 

framework since the definition of the Minimal Cut Sets of the results is in line with the 

principle of HFACS-MA (i. e. Reason's Swiss Cheese Model). By following the 
definitions of each level of HFACS-MA framework, each node in the Bayesian 

Network should be able to find a location in one of the levels. Having organised each 

node to the levels which it belongs to, these factors should be able to divide into six 

groups; they are accidents, incidents (or events), unsafe acts, preconditions, unsafe 

supervision, and organisational influence levels respectively, from the top to the 
bottom. The nodes allocated in the incidents level are the Intermediate Events which are 
the consequence of unsafe acts or preconditions, and the accidents arc provoked or 
triggered by the combinations of these incidents. As noted previously, the accident is 

represented by several nodes named MCS# (#E N, e. g. 3) in the Baycsian Network 

model, and is no longer a single object as it is in FTA. Hence, in the accidents level, 

each node represents one of the Minimal Cut Sets of the accident and can be seen as one 
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of the WoO with a numerical figure to indicate its likelihood. In summary, the 

integration process can be achieved by the following steps: 

1. Drawing lines in the Bayesian Network model of the accident to separate the 

area and to indicate the different levels of the HFACS-MA framework. 

2. Organising each node to the levels to which it belongs according to its 

characteristic and the definitions of each category in the HFACS-MA 

framework. 

3. Rechecking the allocation of each node to ensure that every influencing 

direction is from the higher level to the lower level. If not, either the relative 

nodes have been placed to the wrong level or, even worse, the Bayesian 

Network model might be invalid. This is because it is very rare that the factors 

in the higher lever can be influenced by the factor in the lower level. 

6.4.2 Some considerations of the combination 

One may ask why the FT-BN analysis result and the HFACS-MA framework can 
be integrated together. Can any framework integrate into the FT-BN analysis result? 
The answer is Reason's Swiss Cheese Model. As long as the framework is based on the 

Swiss Cheese Model, it can be integrated with the FT-BN analysis result, though the 

items or categories for each level will vary. In other words, an individual can vary the 

framework and work with the FTA-BN methods providing that the levels of the 
framework still coincide with the principle of Reason's Swiss Cheese Model. This is 

because the principles of both HFACS-MA and FTA-BN method arc in line with 

Reason's Swiss Cheese Model. In FT-BN, each Minimal Cut Set is one of the instances 

of a WoO, and the WoO is the core of the Swiss Cheese Model. Meanwhile, the 

HFACS-MA, which is transformed from HFACS, is an instance of the Swiss Cheese 

Model with more specific definitions relating to items and categories involved at each 
level. Both FTA-BN and HFACS-MA are derived from the same principle but arc 

expressed differently, therefore they are compatible. They simply interpret the same 

thing from a different aspect. 

In the integrated outcome, the FTA delivers the qualitatively analysed results 

whilst the Bayesian Network performs the quantitative analysis with the HHOFs 

framework of HFACS-MA. Having integrated the framework with the FT BN analysis 
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result (see Figure 6-10 as an example), it clearly depicts which levels of the framework 

the factors belong to, as well as the occurrence likelihood of them. It can also highlight 

which part of the system in the lower levels is more vulnerable due to the defects in the 

higher level. Each path in the figure, from the higher level through the intervening 

planes and eventually leading to the nodes representing the Minimal Cut Sets, is the 

route map of influences (or causality) between levels. The paths also illustrate how the 

trajectories penetrate the multiple defences of the system. Each node in the various 

paths shows the quantified figure regarding the degree of influences, whilst the 

likelihood of each Minimal Cut Set indicates how big the "window" is. Predictably, the 

levels (or layers) of the framework can make the causality appear less disordered and 

ambiguous and even highlight the defects or deficiencies of the system explicitly and 
distinctly. This combination of information can provide the analyst with a crystal clear 
indication of causative links between identified factors. In summary, there are at least 

three advantages can be obtained from the combination. 

Firstly, It can reveal the likelihoods of every factor and the causality of the 

accidents with an overview of HOFs framework as a whole, in which the vulnerable 

part of the system is under the spotlight immediately. For instance, the example in 

Figure 6-10 shows that there are more human factors identified in the Preconditions and 
Unsafe Acts level. Undoubtedly, this outcome will attract the attention of the analyst. 
However the operatives at this level can now be seen as the victims rather than the 

pathogen. The outcome clearly illustrates that a few defects at the decision level can 
cause lots of problem in the operation level. The influences not only affect on the 
factors in the lower level, but also the combinations of these factors (i. e. Minimal Cut 

Sets), and the effectiveness on them are different from one to another. 

Secondly, it can help the investigators to decide if any factor in the higher level is 

still missing. In other words, if there is any lack of explanation to support the 

occurrence of an identified factor in the lower level. If so, a further investigation should 
be carried out. For instance, in Figure 6-10 there is no factor in the higher level 

connecting to event "L6 (time pressure for an early sailing from Zeebrugge)" and "E2 
(Deficiency of harbour ramp)" whilst these two factors are categorised as Preconditions. 

Although these two factors in this example have not affected the Top Event (i. e. the 
Minimal Cut Sets) significantly. They just reduce the likelihood value of the Top Event 
by 0.004 and 0.05 respectively if these two factors were not considered (or did not exist). 
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However, there is still something missing regarding the defects of the higher level from 

the point of view of HOFs framework. In other words, the framework clearly points out 

that further work is needed in order to figure out if there is any latent condition existing 

at the Unsafe Supervision and Organisational Influences levels to make events L6 and 
E2 likely to happen. 

Thirdly, the hierarchy of the framework can also help the analyst to validate the 

FT-BN analysis results. Theoretically, the factors in the higher level cannot be 

influenced by the factors in the lower level. It means that if all the nodes of the FT-BN 

results are placed in the correct levels according to the HFACS-MA framework, the 

influence arcs between the nodes should be always from the higher level (e. g. 
Organisational Influences) to the lower level (e. g. Unsafe Acts). If it is not the case, 

something must have gone wrong and the FT-BN analysis result should be re-examined. 
This is because the direction of influence within the HOF framework should always be 

from the higher levels to the lower levels. Thus, it provides a mechanism to validate the 

FT-BN analysis results. 

6.4.3 Further work regarding the framework 

The proposed HOFs framework in this chapter is a preliminary attempt using this 

approach. The present study has no intention to prove that the proposed framework is 

practically applicable. Yet, it points out the benefits of having a HOFs framework for 

the maritime industry and illustrates its possible applications. In other words, there are 

many refinements needed before the framework can be utilised in practical. Since these 

topics are either beyond the scope of the research, or more expertise is required, the 

study only highlights these considerations without further discussion. They arc: 

1. A consensus HOFs framework with detailed items defined for the maritime 
industry. A further study, to define the items and categories of the framework 
for the maritime industry, such as that done by U. S. DoD (2005), would be 
helpful for the investigators to follow in order to identify and depict the human 
factors. Furthermore, this definition also provides a basis to set up a platform 
for data exchange in order to share the information regarding the identified 

causal factors involved in variant accidents. 
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2. A protocol for data exchanging amongst authorities or organisations. If a data 

exchange protocol based on the consensus (or similar) HOFs framework is in 

place in the maritime industry, it would help authorities to gather and exchange 

the causal data of the analysed accidents with regard to HOFs. Individual 

enterprises in the industry could also benefit by following the same framework 

when investigating and analysing their own incidents; hence broadened 

applications of the quantified accident analysis data can be acquired. Therefore 

more comprehensive and efficient countermeasures can be introduced faster if 

the analysed accident data can be quantified, based on the same HOFs 

framework, and exchanged within the industry. 

3. The consideration of an additional Administration and legislation level. If an 

addition level is defined and added above the Organisational Influences level, 

the framework can extend the application scope to examine the deficiencies or 

defects associated with regulations or legislations, or even the authorities. This 

means that the method and the framework can also be helpful in identifying the 

deficiencies or defects occurring at the government level. This would be useful 
to deal with the issues beyond the organisational level. 

6.5 Discussion 

Although the IMO has realised the crucial role that the human factor plays in an 

accident and have specified numerous guidelines distributed in various documents (sec 

section 4.2.1), a dedicated HOFs framework still remains to be established. The 

proposed HOFs framework - HFACS-MA - outlined in this chapter is an illustration to 

point out the benefits which would follow from such a dedicated approach. 

Once established, a dedicated framework for the maritime industry could assist an 
investigation by identifying the human factors involved, and by combining the proposed 
FTA-BN method to provide a more comprehensive insight into the analysed accident. In 

other words, it should be of benefit to the investigators in carrying out their 
investigations and in analysing the results. 

The HFACS-MA framework proposed in this chapter incorporates key aspects of 
four major models which are prominent in the Human Factors' literature - Reason's 
Generic Error Modelling System, Reason's Swiss Cheese Model, Hawkins's STIEL 
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model and Itoh's m-SHEL model. Most importantly, it complies with the IMO 

guidelines for the investigation of human factors involvement in marine casualties and 

incidents. 

In the previous sections, the advantages of integrating the FT-BN outcomes and the 

HFACS-MA have been shown - in which, the HOFs framework is imposed onto the 

accident analysis results as a mask. This combination can not only indicate the 

causation amongst factors, but also reveal the influences between levels. This enables a 

comprehensive picture that has qualitative and quantitative information associated with 

the human factors involved in an accident to be gained. In short, from the view of 

Reason's Swiss Cheese Model, each Minimal Cut Set reveals the Window of 
Opportunity, and the likelihood of each Minimal Cut Set indicates the width (or extent) 

of the window (see Figure 6-10 as an example). This Minimal Cut Set explicitly 
instantiates that "disasters are very rarely the product of a single monumental blunder; 

usually they involve the concatenation of several, often quite minor, errors committed 

either by one person or, more often, by a number of people" (Reason, 1990). 

In summary, this combination provides a systematic method to perform the 

qualitative and quantitative analysis of an accident with a clearer causality overview 

over HOFs as a whole. At the analysis stage, the framework can provide a clear 
indication to show which part of the system is more vulnerable. This is because it 

highlights the following information. 

1. The perspectives of WoOs of the accident. It shows how the identified factors 
located in different levels comprise each one of the windows with the 
likelihood values for every factor and an overview of HOFs framework as a 

whole. 

2. The influences of the factors from the higher level to the lower level. 'T'his 

portrays the principle of the HFACS-MA framework that the causal sequence 
moves from fallible decisions, through the intervening planes to an accident. 

3. The deficiencies of information or evidence. The framework can facilitate the 
investigators to spotlight the factors identified in the lower levels without 
further explanation or underlying factors connected. It can help the 
investigators to check if any factor in the higher level is overlooked and 
warrants further investigation. 
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4. The vulnerable parts of the system. The numerical or statistical data can easily 
be acquired from the analysed accidents if they are under the same HOFs 

framework. This is the base to carry out a broadened analysis in order to 

highlight the weak points of the system. 

It has also been demonstrated in sections 6.3 that the proposed framework can 

provide a HOFs hierarchy to investigate the human factors involved in an accident. In 

other words, it can provide, for the investigators during the investigation stage, a 
definite taxonomy to classify the identified human factors involved in an accident and a 

clearer aspect to gather the evidence or information regarding those factors discovered. 

This is because: 

1. It provides a clear framework and definition which help the investigators to 
identify the human factors involved in an accident and to classify the categories 

of the factors. 

2. It offers a clearer causality hierarchy associated with HOFs for the 
investigators to track the causal sequence amongst the factors identified. 

Since human factors still dominate almost 80% of the accidents in maritime 
industry (Akten, 2004; Harati-Mokhtari et. al., 2007), the researcher would like to 
address the main benefits of the proposed HOFs framework. It provides: 

1. A dedicated HOFs framework with detailed levels and categories which is 
specifically suitable for the maritime industry. 

2. A platform for data exchanging amongst authorities or organisations. It is 
based on the dedicated HOFs framework for every entity in the maritime 
industry to share their analysed accident data. 

3. The consideration of an additional Administration and legislation lcvcl. This 

would be useful to examine the defects or deficiencies at the governmental 
level. 
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Chapter Seven - 
Similarity Aggregation Method (SAM) 

for group consensus of uncertainty 

Summary 

Group consensus is always a difficult issue to cope with. Unfortunately, historical 

statistical data will not be always available for some of the entries of the Conditional 

Probability Table regarding the established Bayesian Network model of an accident. 

The main feasible alternative is to use the judgement of a number of experts. However, 

the difficulty of obtaining a group consensus emerges. In order to overcome this 

problem, the present study proposes a method which provides a systematic and 

objective procedure to aggregate the experts' estimates. In addition, this method has 

also considered the uncertainty of the judgements and the experts' contentment about 

the consensus outcome. The method adopted applies the Positive Trapezoidal Fuzzy 

Number (PTFN) and the Similarity Aggregation Method to deal with the estimates 

aggregation and the f-weighted valuation functions to obtain the crisp value of the 
PTFN. Occasionally, the Delphi method has to be utilised in order to reach a common 

ground associated with those PTFNs given by the experts if their estimates differ 

significantly. Eventually, the group consensus is achieved, through the proposed 

aggregation method, and the outcome of the consensus takes into consideration the 

importance of the opinions given by individual experts involved. 

7.1 Introduction 

When historical statistical data is not available, it is a common practise to use 

experts' judgements to evaluate the likelihood of the events of the accident. However, a 
question is frequently encountered as to whether or not their estimates should be 
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aggregated when the views of the experts do not coincide. From the viewpoint of 

decision makers, it is preferred to have a group consensus, rather than several individual 

figures, to depict the accident analysis results. 

Traditionally, the aggregated result of the experts' estimates for the likelihood of 

the events can be the mean (or median) of the figures given. However, this simple 

practice may not be practicable all the time. Firstly, there may be a significant 

disagreement among experts with regard to some particular events. For example, two 

individual experts award 10% and 90% to a particular event respectively as the 

likelihood of the occurrence. It would be unrealistic for both of them to accept the 

average of 50% as the final consensus. Secondly, there will be doubt as to whether the 

single crisp value is of a suitable form to express the experts' opinion or not. 

Having considered these concerns (above) when solving the group consensus 

problem, an aggregation method is proposed in this chapter. The PTFN (see section 7.2) 

has the advantage to handle the uncertainty of the judgements considering randomness 

and fuzziness. Furthermore, it can also facilitate the common ground of the judgements 

to be reached when the Delphi method, which is a communication tool developed by 

Dalkey (1969), is applied (see section 7.5). Subsequently, the Similarity Aggregation 

Method (SAM), which is proposed by Hsu and Chen (1996), is utilised to aggregate 

these PTFNs when the common ground of the estimates is reached (see section 7.3). 

Eventually, the crisp value regarding a corresponding entry of the Conditional 

Probability Table of the Bayesian Network model, is acquired when the consensus 
PTFN is attained. This crisp value is obtained by transforming (or defuzzifying) the 

PTFN into a single figure value via the f-weighted valuation functions (see section 7.4), 

which is a defuzzification function proposed by Yager (1981). 

In summary, the flowchart shown on the right hand side of Figure 7-1 is the 

proposed procedure for dealing with a group of experts in order to obtain the group 

consensus. Furthermore, this method can also be used by a single expert to express 
his/her estimate if uncertainty is the problem to cope with. If this is the case, the 
flowchart shown on the left hand side of the figure is more suitable to be followed (as 

the Delphi method can be omitted). In the following sections, the PTFN, SAM, f- 

weighted valuation function and the Delphi method, which form the proposed 

aggregation method, will be introduced in turn. 
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Figure 7-1 The flowchart of the aggregation method 

7.2 Positive Trapezoidal Fuzzy Number (PTFN) 

A PTFN consists of two intervals which are the most likely interval (by, ci ] (i. c. 

the core) and the largest interval [ a;, d; ] (i. e. the support) where aj S bi S c15 di (scc 

Figure 7-2 for the illustration). It means that "a; " represents the lower least likely value, 
"b; " and "ci" the most likely value, and "d; " the upper least likely value. In the proposed 

methodology, each expert E, (i =1,2, ..., n) can construct a PTFN (R i) with member 

functions µR, (x) e [0,1], xE [0,1] to represent his subjective estimate regarding a given 

entry of the Conditional Probability Table of a Bayesian Network node. A trapezoidal 

fuzzy set is undoubtedly a better choice to represent the experts' estimates. 
Nevertheless, a triangular fuzzy set is also practicable, as a substitute, since it is a 
special trapezoidal fuzzy set. "A triangular fuzzy set can be seen as a special trapezoidal 
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fuzzy set when the core set (i. e. the most likely interval [b;, c; ]) of the trapezoidal fuzzy 

set takes the form of a single point" (Ren et al., 2008). 

1, (x) 

z 
a, bi 4r di 

Figure 7-2 The illustration of Positive Trapezoidal Fuzzy Number (PTFN) 

Since the Bayesian Network software `Netica' cannot accept fuzzy sets as the data 

for the entries of the Conditional Probability Table, the PTFN which represent the 

experts' estimates have to be defuzzified before introducing them to the corresponding 

entries. As the defuzzification function in the method, the f-weighted valuation function 

is applied and specified in section 7.4. Theoretically, this function is capable of 
defuzzifying trapezoidal or triangular fuzzy sets. Conversely, other defuzzifcation 

functions are also applicable provided that the outcome is able to cooperate with the 

proposed methodology. 

7.2.1 Considerations of applying PTFN 

The reason why the present study does not consider a linguistic format for the 

estimate rating of the experts' judgements is that it has no value to the Bayesian 

Network model in presenting the outcomes of likelihood. Therefore, only the numerical 
forms are considered to represent the experts' judgements. However, this numerical 
form has to be intuitive and of a form that uncertainty and aggregation can be dealt with 
in order to reflect the consensus opinion. Hence, the PTFN is selected as the way 
forward with the following considerations:. 

b Fuzzy theory provides a means to qualify subjective opinion. Mukaidono (2004) 
has asserted that "The goal of fuzzy theory is to establish a mathematical thcory to 
deal with subjectivity, given any membership values. ... It is a mathematical 
theory to deal with ambiguities using quantified descriptions in exact method". 
This means that fuzzy sets (or numbers) can provide a suitable form to quantify an 
expert's subjective opinion. 
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b The uncertainties of the estimate can be represented by the membership functions 

of the fuzzy number according to the intuitive feelingrudgement of individual. 

The uncertainty of the estimate (i. e. fuzziness) is represented by the area under the 

membership function of the fuzzy number. In other words, the larger the area, the 

higher the uncertainty. Furthermore, the membership function can be manipulated 
by a method defined in fuzzy theory (Mukaidono, 2004). This means that fuzzy 

sets are also a suitable form to depict the uncertainty of the estimate as well as to 

aggregate the group's opinions. 

b Zadeh expands fuzzy theory to the possibility theory, where membership values 

are interpreted as a possibility (i. e. randomness) of events. Mukaidono (2004) has 

specified this viewpoint as such "Probability is based on set theory. Fuzzy theory 
is based on fuzzy set theory. Since the (crisp) set of labels of a fuzzy set is a crisp 

set, we can consider the probabilities of them. This means that both theories can 

work together". This means fuzzy sets can be a form of interpreting the possibility 

of events. 
U Ren and the co-authors (2008) have shown that the fuzzy number can cooperate 

with Bayesian Network to analyse the collision risk for Floating Production, 
Storage and Offloading (FPSO) units. 

Therefore the practicability of applying a fuzzy number to represent the subjective 
estimates regarding the nodes of the Bayesian Network model indeed has merit. 
According to the, considerations denoted above, the PTFN is therefore chosen as the 
form representing the experts' judgement whilst the proposed methodology is applied. 

7.2.2 PTFN and Uncertainty 

This section provides an example of how the PTFN works within the proposed 
methodology for estimation. The example deals with two cxpcrts who provide cstimatcs 
as the judgements. Both of the experts assign a PTIFN, instead of a crisp value, to a 
given entry of the Conditional Probability Table representing their estimates. Expert A 

expresses a vague estimate whilst expert B offers a more precise estimation; the details 

are as follows. 

With reference to expert A's opinion, the lower least likely value (i. e. ti, ) of the 
PTFN is 10% which means that the likelihood of the occurrence must be higher than 
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10% according to his/her judgement. In a similar fashion, the most likely values (i. e. 

b;, c; ) that the expert assigns are 60% and 80% respectively. This means that between 

this interval the event is most likely to happen. Finally, the upper least likely value (i. e. 
d; ) is given as 90% which depicts that he would not believe the likelihood of the 

occurrence to be beyond this value. Therefore the fuzzy number representing expert A's 

opinion is denoted as R8 = (10,60,80,90) which results in 60% as the crisp value when 

the f-weighted function is applied for defuzzification (see Figure 7-3). In the same way, 

expert B assigns another PTFN Rb= (50,55,65,70) to represent his estimate, and 60% 

is the crisp value as well. 

It is clear to see that, from the equivalency of the crisp values, PTFN has the merit 
to assistant the experts to express their estimates even though their judgements arc 

vague, but the outcomes can be the same as any definite one. Furthermore, the format of 
PTFN has another advantage that it can facilitate the achievement of the aggregation 

amongst experts for obtaining a common ground. Section 7.6 provides two examples 

which show that the features of PTFN would not only help the experts to express their 
judgement, but also facilitate the achievement of a group consensus. 

PTFN example 

1.5 

0.5 
:T 

0 
0 10 20 30 40 50 60 70 80 90 100 

I -+- A -+- Crisp Vaix -A--_ 
A 

Figure 7-3 An PTFN example 

7.3 The Similarity Aggregation Method (SAM) 

Having acquired each estimate derived from every expert's judgemcnt regarding an 
entry of the Conditional Probability Table required in the IIayesian Network model, the 
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next problem is how to obtain the group consensus estimate of that entry. In this section, 

SAM is proposed as the solution to this problem. The SAM, which is proposed by Hsu 

and Chen (1996), is a method to achieve the aggregation of a group consensus opinion 

from several individual opinions through a systematic procedure. Here, the individual 

opinion is represented by a PTFN, denoted as (i=1,2, ..., n), and the group 

consensus opinion, denoted ask =f 
(f 

, 
R2, 

..., Ro ), is the outcome of the aggregation 

function which aggregates these experts' estimates. 

73.1 The main features of the SAM 

The functionality of the SAM is to aggregate several PTFNs into a consensus 

PTFN according to three indexes: the similarities between PTFNs, the importance of the 

expert and the bias preference (i. e. towards objective or subjective). The aggregation 

function has embedded two coefficients that allow users to regulate the aggregation 

process whether the consensus PTFN is bias toward objectivity or subjectivity. This 

method also has an advantage to implement a computer program due to the systematic 

characteristic of the procedure. Thus a prototype program has been implemented in the 

present study and has been applied in section 7.6 as the tool for the experiments. 

Another outstanding feature of the SAM is that the aggregation function has 

considered the "importance of the experts" and the "similarity of the estimates" 

simultaneously when deciding the degree of influence (or contribution) of an expert's 
judgement into the group consensus. In other words, this method can regulate the 

overall consensus outcomes biased to the degree of importance of the experts or the 

agreement degree (or similarity) of each estimate. The "importance of the experts" 

subjectively decides the weight for each expert's judgement whilst the "similarity of the 

estimates" objectively judges the weight for one's estimate according to the relative 

similarity when these estimates are compared with each other in turn. In other words, 
the "importance of the experts" offers a flexibility of allowing one's opinion to be more 
important than the others. However the "similarity of the estimates" firmly adheres to 

the results of similarity measure function. This means that, in the aggregation function 

of the SAM, there are two regulators affecting the outcome of group consensus opinion. 
One regulators can control the overall consensus outcome to bias to either subjective 
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"importance of the expert" or objective "similarity of the estimates", meanwhile the 

other fine-tunes the degree of importance for each expert's judgement. 

One may appreciate the features mentioned above from the details of the procedure 

depicted in the next section. 

7.3.2 The procedure of the SAM 

According to the suggestions made by Hsu and Chen (1996), the SAM can be 

achieved by following the eight steps outlined below. 

Step 1: 
_ Each expert E, (i =1,2, ..., n) constructs a PTFN R, representing his/her 

subjective estimate to a given circumstance and has to ensure a demanded common 

intersection among these estimates exists. The given circumstance associated with 

the proposed FTA-BN method is the entries of the Conditional Probability Table of 

Bayesian Network. Therefore the subjective estimates are the figures given to the 

entries. Precisely speaking, the experts, based on their own judgments, assign a 
PTFN to each entry of the Conditional Probability Table relating to the established 
Bayesian Network model in order to depict the likelihood of the events involved in 

the accident. In other words, every estimate derived from the experts' subjective 
judgments is represented by a PTFN to a given entry of the Conditional Probability 

Table of the nodes in the Bayesian Network model. It is highly likely that the 
initial estimates given by some experts have no common intersection at first. 

Hence the Delphi method is applied to modify the values of (a , b,, c,, d, ) of these 

PTTNs in order to obtain a common intersection at a fixed a-level cut. The details 

of the Delphi method are covered in section 7.5. It should be noted that the 

intersection between each pair of PTFNs is a prerequisite to perform this SAM. 

This means that the assumption of R, * nR *j * O, V i, j r: {1,2, 
"-", n} must stand for 

each PTFN in a set before continuing the following steps. 

Step 2: 
The aim of this step is to calculate the agreement degree S(i, Rj) of the opinions 

between each pair of estimates. This can be determined by the proportion of the 
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consensus area (i. e. R; nR j) to the total area (i. e. R; ui). The S(R,, Rj is also 

known as the similarity measure function and is defined by Equation (7.1) by 

Zwick, Carlstein and Budescu (1987). If both of the experts have the same opinion 

then S( 1, R j) =1, and if the opinions of two experts are completely different then 

S(9,;, K 
j) =0. This means 05 S(R j, R J51 

, and the higher the percentage of 

consensus area, the higher the agreement degree. 

S(R_;, R_j)= 
min 

1, 
pi, (xl uR, (x) Idx 

jmaxIpR. (x), uj (x) dx 
(7.1) 

Step 3: 
In this step, the work is to construct an agreement matrix (AM). Once all of the 

agreement degrees between each pair of experts have been measured, an 
agreement matrix can be constructed. This matrix gives an insight into the 

similarities among these experts' opinion. 

1 S12 """ SIj """ Sip 

AM = Sil Sa ... S4 ... Sin 

Sol S2 ... Sftj ... 1 

where Sd = S(R1, Rý) for iýj 

So=l fori=j 

Step 4: 
Once the agreement matrix has been sorted out, the average agreement degree 

A(E; ) for each expert E, (t =1,2, ..., n) is able to be acquired. The A(E, ) for each 

expert is achieved by Equation (7.2). Here, Sd gives the agreement degree (i. e. the 

similarity of the estimates) of expert E, when comparing with one of the other 

experts. 

n 
A(E; )= 

n 
tSy 

-1ý. ý (7.2) 
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Step 5: 
Calculate the relative agreement degree (i. e. RAD1 ) for each expcrt 

Et (i =1,2, ..., n). The RAD; is computed by using Equation (7.3). It represents the 

similarity of the opinion of an expert in contrast with the other experts of the 

group. It also implies a certain weight regarding the expert's opinion for further 

calculation. 
A(Ei) 

RAD _ (7.3) 

Step 6: 
Define the degree of importance TV, for each expert E, (i =1,2, ..., n). Sometimes, 

the relative importance of experts, such as team leader or head of department, is 

wildly different from the other experts and the different weight for different 

experts' opinion must be considered. Hence, the Tv, is defined as Equation (7.4). 

r; Wi =D , i=1,2, """, n (7.4) 

where r; is the importance weight of the expert and is acquired by the following 

procedure. First select the most important expert among the group and assign him 

the weight as one (i. e. r; =1). Then the Ah expert is compared with the most 
important expert to obtain the weight rr, 1 6 [0, Ili =1,2, ". ", n. If the importance of 

each expert is equal then w, = w2 = ... = wo = 
Yn 

" 

Step 7: 
Calculate the consensus degree coefficient (i. e. CDC ) for each expert 
E, (i =1,2, ..., n). After the relative agreement degree (i. e. RADS) and the degree 

of importance (i. e. TJ') have been acquired, the CDC, for each expert E, can be 
derived from Equation (7.5). 

CDCi =ß" wi + (1-ß) " RAD 

where 0 5pS1 (7. S) 
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ß can regulate the weight between agreement degree (i. e. RAD; ) and the degree 

of importance (i. e. W ). If the degree of importance of each expert is not 

considered, then ß is assigned zero (i. e. P=0). The CDC; of each expert is an 

efficient measurement to evaluate the relative worthiness of each expert's opinion. 

Step 8: 
Aggregate the consensus opinions according to the consensus degree coefficient 

(i. e. CDC; ) of expert Er (i =1,2, ..., n). Let R be the consensus fuzzy number of 

the group experts' opinion. The aggregated result of R is defined in Equation (7.6). 

n 
R= (CDC; (") R) (7.6) 

where (") is the fuzzy multiplication operation. 

7.3.3 The properties of the SAM 

Hsu and Chen (1996) suggest that the SAM holds some properties that should be 

noted when this method is applied. For rapidly referring, these properties are briefly 

summarised, without further discussion, as follows. 

1. Agreement preservation: if R! = Rj for all 1, j, then R= Rj . This means that if 

all the estimates of the experts are identical, the aggregated result should be 

equivalent to any of their estimates. 

2. Order independence: if is a permutation of (1,2,..., n), then 
N 

R=f (Rl, R2, ..., Rn =f R{lý, R(2), ..., R(oý). This means that the result of the 

SAM does not depend on the order in which the estimates are taken. 

3. Let the uncertainty measure H(R) of individual estimate R, be defined as the 

area under its member function (i. e. H(R, )= f p(x)dv). The uncertainty 

after the aggregation made by the SAM is the ̀ mean' of the uncertainties of 
every estimate. 

4. If an expert's estimate is far from the others, then his estimate is less 
important. 
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5. If a crisp value is considered to be possible for the aggregated result, then it 

should also be accepted by at least one estimate. 

6. The common intersection area of all estimates is included in the aggregated 

result (i. e. n i, R, cR 

7. If every expert's opinion can be represented by a PTFN, the aggregated result 

is also a PTFN. 

7.4 f-weighted valuation function for defuzzification 

It is said that the problem of comparing and ordering fuzzy numbers is the reason 

why the defuzzification methods are introduced. A general idea to this problem is to 

find a single scalar value (i. e. the crisp value) to represent the associated fuzzy number, 

and then the fuzzy numbers are compared via these represented scalar values (Yager 

and Filev, 1999). An approach to this method was introduced by Yager (1981), in which 

the expected value type of the valuations is based upon the transformation of a fuzzy 

subset into an associated probability distribution. 

Having acquired the aggregated PTFN as the group consensus opinion, the 
following process aims to obtain the crisp (or scalar) value of the fuzzy number. This is 

because the applied Bayesian Network software is not able to handle the fuzzy numbers 
generated so far, thus the PTFN has to be transformed into crisp values before being 

further utilised. The associated valuation process is also known as defuzzification 

process, in which a corresponding computation process is performed in order to acquire 

a represented scalar value. More precisely, the defuzzification process involves a 

process in which a fuzzy subset is used to generate a probability distribution. This 

probability distribution is then used to obtain an expected value, which can be used as 
the evaluation of the fuzzy subset (Yager and Filev, 1999). Therefore, the present study 
follows the same idea of transforming a crisp value from a PTFN which represents the 

experts' judgement acquired for the Conditional Probability Table of the Bayesian 

Network model. In this way, all the PTFNs applied in this method will be defuzzified 

according to the following process to obtain the corresponding crisp value before being 

used as the likelihood data of the nodes. 

- 201 . 



Ch. 7: SAM 

In order to obtain a crisp value, Val(F), as the proxy of a fuzzy subset F, Yager 

suggests using 

i 
Val(F) = 

(Average (Fa )" da 

0 

(7.7) 

Here FQ = {x I F(x) >_ a) is the a -level set of the fuzzy subset F and Average (Fa 

is the average of the elements in the a -level set. In order to associate probability 
distribution, Yager and Filev (1999) extended this formulation and developed a 

generalised formulation for a class of valuation functions. 

1 JAverage(Fa) 
" f(a) " da (7.8) 

Val(F) =, 
ff(a) 

- da 

0 

As shown in Equation (7.8), f(a) is a mapping from [0,1] to [0,1] (i. e. f. [0,1]-º 

[0,1]). If f(a) is monotone, it tends to put additional emphasis on the element with high 

cardinality, the core set (i. e. [b;, c; ]), while f(a) anti-monotone puts more emphasis on 
the support set (i. e. [a;, d; ]) (Yager and Filev, 1999). If a PTFN, F(a, b, c, d), is set by :F 
(left support, left core, right core, right support), it will have the membership functions 

shown below. 

0 for x<a 
x-a for a5x5b b-a 

F(x) =1 for b: 5 x :! g c (7.9) 
d-x 
d-c 

for c5x5d 

0 for x>d 

By following the notion of Equation (7.8), the Average (Fa) of a trapezoidal fuzzy 

number can be computed according to Equation (7.10) (Detyniecki and Yager, 2000) 
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uý +v Average (Fý 
a) =2 

(7.10) 

Therefore ua and va can be obtained with the help of the membership functions. 

Ua =(b-a). a+a and Va =d-(d-c)"a 

Then the valuation formula (i. e. Equation (7.8)) becomes: 

J[(b+c)"a +(1-a)"(a+d)]"f(a) "da 
Val(F) _°, (7.11) Jf(a). da 

0 

This equation can be put into the following form: 

Val(F(a, b, c, d)) 
b2c"w 

+ a2d. (1-w) 
(7.12) 

where ̀ w' is computed by: 
1 
Ja"f(a)"da 

w=°, 
ff(a) 

- da 

0 

(7.13) 

One evident result obtained is that, according to Equation (7.12), the valuation of 

the equation will be a weighted-mean between the average of the core and the average 

of the support. In other words, the valuation for any function f will be between the 

middle point (or average) of the core and the middle point (or average) of the support 

(because we [0,1]) (Detyniecki and Yager, 2000). Figure 7-4 gives an example 

illustrating the middle point of the core, the middle point of support, and the middle 

point of the average of core and support. In this example, the fuzzy set denoted in the 

figure is: F (1,6,8,9), and the crisp value of the trapezoidal fuzzy set depends on thef- 

weighted valuation function f(a) . 
For the increasing (or monotone) case (i. e. 

f(a) = aQ; q z0), the valuation of the defuzzification is between 6 and 7. For the 
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decreasing (or anti-monotone) case (i. e. f(a) = (1-a)'; q >- 0 ), the valuation of the 

defuzzification is between 5 and 6. 

Figure 7-4 Variability of the valuation for Yager and Filev's 
f- weighted function (from Detyniecki and Yager, 2000) 

For generality, letf-weighted valuation function f(a) =1 in Equation (7.11) and/or 

w =1/2 in Equation (7.13). The Val (F(a, b, c, d) ) becomes: 

Cb+c a+d 

Val(F(a, b, c, d))= 2+2 
2 

(7.14) 

This means that the transformed crisp value of the PTFN is the mean of the 

average of the core and the average of the support if Equation (7.14) is applied. 
However, iff-weighted valuation function (i. e. Equation (7.13)) is utilised, experts are 

able to fine-tune the crisp values, to either bias to core or bias to support of the PTFN, 

in order to represent their judgements (Ren et al., 2008). Therefore the defuzzification 

method utilised in the proposed methodology applies Equation (7.12) as the valuation 

function. Thus, by using w (w E [0,1]) as the regulator, the valuation function for 

defuzzifying a PTFN can place emphasis on the core or the support, or the somewhere 
between the average of the core and the support. 
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7.5 Delphi method 

The Delphi method is originally derived from a project named "RAND" (an 

acronym for Research and Development), which was funded by the U. S. Air Force in 

order to establish and propose a procedure to elicit and refine group judgement (Dalkey, 

1969). In the mid-1960s, this method was utilised to deal with a large amount of 

experiments with regard to technological forecasting (Fowles, 1978). In short, Delphi is 

"a procedure to obtain the most reliable consensus of opinion of a group of experts ... 
by a series of intensive questionnaires interspersed with controlled opinion feedback" 

(Dalkey and Helmer, 1963 cited in Fowles, 1978). From the view of Dalkey - one of the 

major researchers of the project, this method has three major features; they are: (1) 

anonymous response, (2) iteration and controlled feedback, and (3) statistical group 

response (Dalkey, 1969). Additionally, Linstone and Turoff (2002) in their book define 

that "Delphi may be characterized as a method for structuring a group communication 

process so that the process is effective in allowing a group of individuals, as a whole, to 

deal with a complex problem". In other words, according to the initial suggestion that 

has been made, the Delphi method is "a set of procedures for formulating a group 
judgement for subject matter where precise information is lacking" (Dalkey et al., 
1969). In general, the procedures mainly consist of three parts. They are (1) obtaining 
individual answers to pre-formulated questions either by questionnaire or some other 
formal communication technique; (2) iterating the questionnaire one or more times, 

where the information feedback between rounds is carefully controlled by the exercise 

manager; and (3) taking as the group response a statistical aggregate of final answers 
(Dalkey et al., 1969). 

7.5.1 The original Delphi process 

To undertake the Delphi method, Fowles (1978) suggests the following ten steps: 
1. Formation of a Delphi team to undertake and to monitor the project. 
2. Selection of one or more panels to participate in the exercise. Customarily, the 

participants are experts in the investigation area. 

3. Development of the first round Delphi questionnaire. 
4. Testing the questionnaire for proper wording (e. g., ambiguities, vagueness). 
5. Transmission of the first questionnaires to the panellists. 
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6. Analysis of the first round responses. 

7. Preparation of the second round questionnaires (and possible testing). 

8.. Transmission of the second round questionnaires to the panellists. 

9. Analysis of the second round responses. (Steps 7 to 9 are reiterated as long as 

desired or necessary to achieve stability in the results. ) 

10. Preparation of a report by the analysis team to present the conclusions of the 

exercise. 

Several experiments made by Brockhoff (1983) suggest that under ideal 

circumstances, groups as small as four can perform well, even though Dalkey found that 

a suitable minimum panel size is seven. Other studies (Erffmeyer et al., 1986; Fischer, 

1978) indicate that up to four times of the iteration of the rounds is sufficient to extract a 

consensus result. In practice, these conclusions are valuable to be followed when the 

Delphi method is applied. 

7.5.2 The critiques of the Delphi method 

Although there are advantages of using the Delphi method, it is not always 

supported. Woudenberg (1991) argued that "Delphi is extremely efficient in obtaining 

consensus, but this consensus is not based on genuine agreement; rather, it is the result 

of strong group pressure to conformity". Coates (1975) underlines the fact that "Delphi 

is a method of last resort in dealing with extremely complex problems for which there 

are no adequate models". The most extensive critique of the Delphi method was made 
by Sackman (1975 cited in Twiss, 1976) who criticizes the method as being unscientific. 
Martino (1970) asserts that the results of the method are bias on one's intuition about 

the behaviour of a Delphi panel. However, he still admits that improvements in the 

methodology for combining the panel members' estimates will enhance the utility of 
Delphi (Martino, 2003). In other words, "the Delphi method is useful in answering one, 

specific, single-dimension question. There is less support for its use to determine 

complex forecasts concerning multiple factors. Such complex model building is more 

appropriate for quantitative models with Delphi results serving as inputs". This view 

point is proposed by Gordon and Hayward (1968). They further state that a shortcoming 

of the Delphi method to be that "potential relationships between the forecasted events 

may be ignored and the forecasts might well contain mutually reinforcing or mutually 
exclusive items". Hence, a method - Cross Impact Analysis - has been developed by 
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them as an extension of Delphi techniques in order to remedy the deficiency of the 

method. Gordon and Hayward (1968) have stated that "the probabilities of an item in a 

forecasted set can be adjusted in view of judgment relating to potential interactions of 

the forecast items". 

7.5.3 The proposed process whilst applying Delphi 

By considering the pros and cons of the Delphi method, the proposed method 

decides to only apply Delphi as a tool to reach a common ground among those PTFNs 

given by the experts instead of obtaining the consensus PTFN of the group directly. In 

other words, the Delphi method is merely applied for ensuring that each set of PTFNs 

have a common intersection at certain a-level cut, rather than trying to acquire a 

consensus PTFN as the group opinion. Instead, every consensus PTFN for each set of 

PTFNs is computed using the SAM. Each set of PTFNs represents the estimated 

probability distributions, derived from the experts, regarding a Conditional Probability 

Table entry of the Bayesian Network nodes. This application is also in line with the 

suggestions made by Gordon and Hayward mentioned in the last section. By following 

the recommendations mentioned above, the Cross Impact Analysis should have been 

integrated with Delphi for acquiring the common intersection of the PTFNs. However, 

the proposed methodology does not need to do so since the Conditional Probability 

Table of Bayesian Network has already contained the functionality of conditional 

probability that the Cross Impact Analysis implies. To incorporate the Delphi method 
into the proposed methodology, the applied Delphi procedure is modified as follows: 

1. Formation of a Delphi team to undertake and to monitor the process. 
2. Selection of one or more panels (4 to 7 panels is preferable) to participate in the 

exercise. Customarily, the participants are the experts who are involved in the 

analysis task. 

3. Development of the first round of the Delphi questionnaire regarding the 

analysed Conditional Probability Table entries, in which the corresponding set 
of PTFNs have difficulties to reach the common intersection at certain a-level 
cut at first. 

4. Testing the questionnaire for proper wording (e. g., ambiguities, vagueness). 
5. Distribution of the first questionnaires to the panellists. 
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6. Aggregating the first round responses following the SAM. If the group 

consensus of the set is reached, then jump to Step 10, otherwise carry on the 

next step. 
7. Preparation of the second round questionnaires (and possible testing). 

8. Distribution of the second round questionnaires to the panellists. 

9. Aggregation of the second round responses. (Steps 7 to 9 are reiterated as long 

as desired or necessary to achieve stability in the results. ) 

10. Defuzzification of the consensus PTFN via the proposedf-weighted valuation 

function for the corresponding Conditional Probability Table entry. 

7.6 Experiments 

In this section, two examples are utilised to illustrate the process which aggregates 

a set of estimated PTFNs in order to acquire a consensus crisp value. These PTFNs are 

given by a group of experts and the consensus crisp value is acquired by using the 

proposed aggregation method depicted in the preceding sections. The crisp value 

represents the group consensus to a given entry of a Bayesian Network node. Both of 
the cases are under the condition that every expert is equally important and the overall 

aggregation outcome is decided by the "relative agreement degree of the estimate" 

rather than the "importance degree of the experts". This means that the weight for each 

expert's opinion depends on the similarity of the estimated PTFN when it is compared 

with others' (see section 7.3 for the detailed explanation). It is assumed that there are 
four experts involved in both cases and every expert has to construct a PTFN to express 
their judgements regarding the likelihood of the events before carrying out the 

aggregation process. If these estimates are not able to reach a common intersection at 

certain a -level, the Delphi method will be applied and iterated until this requirement is 

fulfilled. Once the consensus PTFN has been acquired via the SAM with a common 
intersection standing amongst these estimates, the f-weighted valuation function is 

applied to compute the crisp value according to the consensus PTFN for the target entry 

of the Bayesian Network nodes. The crisp value is the figure representing the 

probability distribution of an event associated with a given condition shown in the 
Bayesian Network node. . 
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In the following cases, the first case presumes that only one expert's estimate is 

distant from the others. In contrast, in the second case, more than two experts' opinions 

are significantly apart. Each case simulates different scenarios and many other scenarios 

are still possible. However, while applying the aggregation process with unmentioned 

situations, the execution approach may be slightly different but the principle of the 

process should remain the same. This principle is that a common intersection of the 

estimated PTFNs has to be obtained before carrying out the aggregation process. 

7.6.1 Case 1: only one expert's opinion is distant 

In this example, it is assumed that only one of the experts' estimates is distant from 

the judgement of the others. Under this circumstance, a quicker way to achieve the 

group consensus is to ask the most distinct expert to modify his estimate alone by 

following the Delphi procedure proposed in the preceding sections. The rest of the 

estimates should remain unchanged. Table 7-1 tabulates the assumed estimates given by 

each expert; here, the column "After Delphi" lists the estimates when a common 
intersection among these estimated PTFNs is reached after the Delphi process is applied. 
In contrast, the column "Before Delphi" depicts the estimates given before carrying out 
the Delphi process. 

In this example, the most distant estimate is made by expert A; this is (20,25,35, 
40) having 30 as the crisp value (i. e. the result after defuzzification) of the estimate. 
Therefore, expert A is the only expert who will be asked to modify his estimate 
following the Delphi process with a sub-consensus PTFN as the modification reference 
provided. The sub-consensus PTFN is the consensus PTFN without taking expert A's 

estimate into account and R. b =(1.4,6.4,16.4,21.4) with a crisp value of 11.42 as the 

result. The data entries for experts B, C and D in column "Before Delphi" of the table 

are the same as in column "After Delphi". This is because their estimates are unchanged 
during the Delphi process. Eventually, a common intersection amongst these PTFNs is 

reached when R, = (15,25,35,40) representing expert A's opinion is given after the 

Delphi process. This compromise results in the consensus PTFN R= (4,9,19,24) 
being obtained with 13.88 as the crisp value. 

Figure 7-5 illustrates the PTFNs representing the estimates given by every expert 
before and after the Delphi process, and the group consensus if there is one. On the left 
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of the figure, the estimated PTFNs for each expert are shown, in which no common 

ground of the PTFNs has been reached. In addition, the group consensus PTFN with a 

crisp value derived from the updated estimates after performing the Delphi process are 

drawn on the right of the figure. It is evident that the common intersection of these 

PTFNs is located in the range between 15 and 20, which is the common ground among 

these PTFNs. However, although the consensus PTFN is achieved, the crisp value - 

13.88 - is difficult to be accepted by expert A, as the group consensus, due to being 

outside the range of his estimate. Under this circumstance, all the involved experts may 

have to comprise their judgements, so that an acceptable outcome can be obtained. 

Table 7-1 The estimates made by each expert in Case 1 

Before Del hi After Delphi 

PTA 
Crisp 
value 

PTA Crisp 
value 

Expert A 20,25,35,40 30 15,25,35,40 28.75 
Expert B (0,5,15,20) 10 (0,5,15,20) 10 
Expert C (0,5,15,20) 10 (0,5,15,20) 10 
Expert D (10,15,25,30) 20 (10,15,25,30) 20 

consensus 4,9,19,24) 13.88 

Case 1 before Delphi without consensus 
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Figure 7-5 The illustration of the PTFNs for case 1 

7.6.2 Case 2: more than two experts are apart 

In this example, it is presumed that disagreement among these experts still remains 

unsolved in the first run (e. g. the situation shown in the preceding case). This situation 

could be caused by either the most distant expert refuses to modify his/her estimate 

further or more than one expert's opinions are apart from one another. This difficulty 

results in no group consensus being obtained unless all the experts are willing to 

compromise their judgements together. Under this situation, there is no other alternative 
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but to ask every expert to participate the Delphi process in order to reach a common 
intersection. 

Table 7-2, as in Case 1, shows the PTFNs of the estimates made by four experts 
before and after the Delphi process. Before updating their judgements, a median value 
(i. e. 72.19) of their initial estimations is given as the reference value for re-estimation. It 

is assumed that these experts are willing to modify their estimates and that the larger the 

difference, the larger the compromise. Therefore the consensus PTFN is obtained 
following the Delphi and the SAM aggregation method when the common intersection 

amongst these updated estimates is reached. These updated estimates and the consensus 
PTFN are shown on the right hand side (i. e. the column "After Delphi") of the table. 

Thus the consensus PTFN R= (62,77,87,94) and the crisp value of the PTFN (i. e. 
79.82) are acquired. 

Eventually, after the Delphi process, the crisp value of the consensus PTFN is 

inside the common intersection of every expert's estimates (see the figures shown on 
the right hand side of Figure 7-6). This outcome should be accepted by all the experts as 
the group consensus. This assumption is made by assuming that every expert will be 

content with the outcome as long as the crisp value is inside their estimates although the 

value may locate in the margin of the estimations. In this example, none of the expert's 
opinion has been ignored despite the crisp value is in the margin of one of the 
estimations. 

Table 7-2 The estimates made by each expert in Case 2 

Before Delph i After Del hi 

PTFN Crisp 
value 

PTFN Crisp 
value 

Expert #A (85,90,100,100 93.75 65,80,90,100) 83.75 
Expert #B 30,35,5,50) 40 50,55,65,80) 62.5 
Expert #C 55,60,0,75) 65 65,75,85,90) 78.75 
Exert #D 80,85,95,100 90 60,80,90,95 81.25 
consensus 62,77,87,94) 79.82 
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Figure 7-6 The illustration of the PTFNs for case 2 

It should be noted that the key point of the aggregation of group opinions is not an 

issue of computation, but an issue of human satisfaction. Any expert can disagree with 

the aggregation outcome by all means. It is unlikely that there is an aggregation function 

or procedure which can satisfy every expert regarding the aggregation outcome and 

solve all the problem of group consensus. The aggregation function is just a tool to 

facilitate the goal (i. e. group consensus). Although the proposed aggregation method 

and procedure are not able to solve all the problems, it is still practical to deal with the 

most of the cases. Other solutions are possible but the present study has no intention of 
discussing this further since the satisfaction of human beings involves psychological 
issues which are beyond the scope of the present study. 

7.7 Discussion 

It is highly likely that the required historical statistical data is not always available 
for the established Bayesian Network model associated with the analysed accident. 
Therefore, experts' judgements usually become the alternative to solve the problem of 
lacking of data. However, the group consensus issue arises when a group of experts are 
involved in providing their estimates for the Conditional Probability Table data of the 
Bayesian Network model. Hence, an aggregation method and/or procedure are needed 
in order to overcome this problem. Furthermore, the systematisation and objectivity of 
the method and the contentment of the experts have to be considered as well. 

The proposed aggregation method for the group consensus is based on the SAM as 
the core to deal with the numerical computation of a set of PTFNs. In addition, it needs 
to cooperate with the f-weighted valuation function for defuzzification as well as the 
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Delphi method for the common ground of the estimates. The aim of the proposed 

aggregation method is to seek a systematic and objective way to carry out a process that 

can help a group of experts to reach their group consensus for the estimated values 

regarding the entries of the Conditional Probability Table of Bayesian Network nodes. 

These Bayesian Network nodes are the events associated with an analysed accident 

which is depicted in the preceding chapters. 

It is obvious that, from the view of a decision maker, it would be easier for him/her 

to make a decision if a group consensus derived from a group of experts is reached. For 

example, the judge of the court will find it difficult to make a verdict if the members of 

the jury are not able to reach a group consensus. Theoretically, the SAM and f-weighted 

valuation function can handle the aggregation computation if the PTFNs given are close 

to each other. However, this would not be always the case since the experts' opinions 

might be significantly apart. Thus, compromise amongst the experts becomes essential, 

and the Delphi method is the communication tool to resort to in order to facilitate a 

common ground to be reached. 

It has been shown, in the preceding sections, the proposed aggregation method can 

assist with the proposed methodology to fulfil the requirements of obtaining a group 

consensus with the following features: 

The form of PTFN has the advantages to intuitively express an expert's 

estimate as well as the uncertainty of the estimate. The larger the uncertainty, 
the larger the area of the PTFN covered. Furthermore, this form can not only 
fulfil the aggregation of the estimates in the SAM process, but also facilitate 

the common intersection of the estimates (i. e. the common ground) to be 

reached within the Delphi process. 

The consensus PTFN can only be achieved if and only if the common 
intersection of the estimates exists. Since the common intersection is always 

under the coverage of the consensus PTFN, it can be deemed as the consensus 
PTFN is constructed based on the common ground of the group opinion 

although not all the experts may be content with the crisp value of the PTFN 

at first. 

b The SAM aggregation function considers the "importance of the experts" 
when deciding the degree of influence (or contribution) for each estimate to 
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the group consensus. Moreover, this method can also regulate the overall 

consensus outcomes bias to the "degree of importance of the experts" or the 

"agreement degree (or similarity) of the estimates". 

U The outcome of the f-weighted valuation function can be regulated to the 

range between the average of the core and the average of the support of the 

PTFN when defuzzifying the PTFN for the crisp value. 

b The Delphi method can ensure a common intersection of the estimates to be 

reached, and the crisp value of the consensus PTFN to be accepted by all the 

experts involved. 

The SAM and f-weighted valuation function can still be applied even though 

only one expert's estimate is utilised. This is because the form of PTFN has 

the advantage to deal with the uncertainty of randomness and fuzziness. 
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Chapter Eight - 
Conclusions 

Summary 

This chapter summarises, in section 8.1, the features and the contributions of the 

proposed methodology which can be utilised in qualitatively and quantitatively 

analysing human errors in maritime accidents. The improvements of the methodology 

and ideas for the future work of the research are also given in section 8.2. Finally in 

section 8.3 the study concludes that the methodology would be of benefit in assisting 
the investigator to find the real causes of the accident, and it is the start, rather than the 

end, of the research in this topic area. 

8.1 Summary of Research Findings 

In Chapter 1, it was shown that Human factors (or elements) are gradually being 

recognised as the primary causal contributors to the accidents in maritime transportation 

sector, and the International Maritime Organization (IMO) has taken the conscious 
decision to concentrate its efforts on the human element. A methodology which can 
qualitatively as well as quantitatively analyse the Human and Organisational Factors 

(HOFs) involved in an accident is desperately needed by the investigator in order to find 

the real causes of the accidents and to respond to the public enquiry and lesson learning. 

This is because a sufficiently thorough and comprehensive accident/incident 
investigation procedure to clarify the significance, frequency and impact of the factors 
involved is of vital importance. Therefore, the present study (see Figure 8-1, which has 

also been shown in Chapter 1) proposes a methodology which implements the notion of 
Reason's Swiss Cheese Model with the set theory and the probability theory in 

conjunction with several well-defined Formal Safety Assessment (FSA) techniques, e. g. 
Why-Because Analysis, Fault Tree Analysis, Bayesian Network and Influence 
Diagrams, etc., to form a systematic procedure that possesses the following features. 
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Figure 8-1 The structure of the thesis 

  The analysis outcomes covered in Chapters 4 and 5 show the Bayesian Network 

can not only display the causation of the factors involved, but also explore the 

significance, frequency and impact of the factors where the qualitative results 

represent the instances of the Window of Opportunities (WoOs) identified in an 

accident, and the quantitative results reveal the width or extent of the WoOs. 

  The proposed HOFs framework developed in Chapter 6- HFACS-MA - is a 

modification derived from the original Human Factors Analysis and Classification 

System (HFACS) and has taken Reason's GEMS and Hawkin's SHEL models into 

account in order to fulfil the requirements of the maritime industry. The framework 

is an application of the Swiss Cheese Model, from which the identified human 
factors can be classified into different levels and categories. Hence, a 
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comprehensive insight into the causation, of the accident analysed can be obtained 

by integrating the qualitative and quantitative analysis results with the HOFs 

framework. 

  The applied Similarity Aggregation Method (SAM) and the Positive Trapezoidal 

Fuzzy Number (PTFN) are developed in Chapter 7 using fuzzy set theory in order 

to handle the group consensus problem. This can help solve the problem 

encountered when experts' judgements are used to calibrate the Bayesian Network 

due to a lack of historical statistic data during the quantitative analysis period. Both 

the randomness and fuzziness of the uncertainty have been considered in the 

aggregation method to handle the issue of subjective probability. This feature 

makes the methodology more resilient. 

  The systematic procedure is another important feature of the methodology. This 

feature can make the methodology more feasible and practical by reducing the 

unnecessary speculations of the analysts and diminishing the influences of 
individual bias. This is achieved by ensuring that the analyst only concentrate on 

every limited scope of questions and infer their rational answers to the questions at 

each stage and step, without having to concern the whole picture of the accident. 
All analysis outcomes are therefore accumulated and integrated together to obtain 
the final results. 

The challenges in analysing an accident/incident thoroughly and comprehensively 
to clarify the significance, frequency and impact of the factors involved can be fulfilled, 

although in certain cases, it could be overly time consuming to conduct the analysis 

using the proposed methodology for some minor incidents. It is believed that some of 

the developed methods possess valuable potential as useful aids and effective 

alternatives to assist the decision makers in safety planning, and will gain increased 

usage in other safety related operations and management. It is also believed that these 

methods can be tailored to the applications of dealing with the safety problems in the 

other industries. The major contributions of the novel methods or notions proposed are 

as follows: 

  The implementation of Swiss Cheese Model with the set theory and the 

probability theory opens another possibility way to view the Swiss Cheese 

Model. It shows that the Swiss Cheese Model is not only suitable as an 
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abstract notion of human errors, but also capable of substantiating with 

physical figures to quantitify the factors behind these holes and/or WoOs. 

  The proposed HOFs framework - HFACS-MA - clearly classifies the human 

factors which can cause an accident to occur in different levels of the system. 

It can also be applied during the investigation stage to assist the investigator in 

avoiding overlooking those latent conditions in the shadow. When it is 

integrated with the qualitative and quantitative analysis results produced by 

the proposed methodology, a comprehensive insight into the causation of the 

causal factors reveals the interactions between those active failures and latent 

conditions. 

  The innovation of Backtracking process and its validation mechanism can 

transform a fault tree into a Bayesian Network in a form of Minimal Cut Set, 

in which the Top Event is no longer represented by a signal object, but several 

nodes as Minimal Cut Sets. This formation can facilitate the diagnosis and 

prediction of the network to be performed, offering more valuable details 

about an accident that the Top Event format can provide 

  The introduction of K-CPT and Approximate Simplification Law provides a 

method to find the minimum sum-of-product Boolean expression depicting the 

deterministic correlation between a node and its parent nodes in a Bayesian 

Network regarding an accident. This method can simplify a Bayesian Network 

of the accident into a simplified fault tree. It cannot only broaden the usage of 
Bayesian Network, but also extends the application of FTA. 

  The notion of the List Statement utilised in Fact Finding process provides a 
data format and index mechanism which can facilitate the logical organisation 

of information and evidence in the proposed analysis procedure. 

8.2 The improvements of the methodology and future work 

The hypothesis is fulfilled through a rather sophisticated combination of FSA 

techniques and methods. However, the mission has yet been accomplished since the 

novel methodology is still at preliminary stage. Improvements in the methodology and 

the potential application of the method are still expecting. Although it has been shown 
that the proposed methodology has potential for the analysis, due to the time and 
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research constraints, the present study has not been able to explore all aspects of what 

may be concerned and desirable in accident analysis. They can be identified as follows: 

1. The applicability and limitation of the methodology: it would be useful if more 

test cases are applied in order to further clarify the details of the issues. Then 

the deficiencies of the methodology will be revealed, and the direction of 

future improvement will be emerged. 

2. The detailed classification and definition of the proposed HOFs framework: 

the proposed HFACS-MA is only developed without specifying the detailed 

items and their definition in each category and/or level. A profound study to 

establish a dedicated HOFs framework which can fulfill the requirements of 
the maritime industry is urgently needed. 

3. The solution to the simplification of K-CPT if the variables are more than six: 
due to the limitation of Karnaugh-map, the simplification of K-CPT can only 
be carried out provided that the number of the variables is less than six. An 

alternative is needed to cope with this issue when it is encountered. 
4. A proper procedure to perform the diagnosis and prediction of the analysis 

results: the analysis results are formed in a Bayesian Network and/or Influence 

Diagrams model, which can be used to diagnose its causes and predict possible 
consequences based on observable evidence. A sufficient and thorough 

procedure to execute those functionalities is yet uncertain, and needs to be 

clarified. 
5. An achievable process to establish a Temporal Bayesian Network model for 

accidents: this would allow modelling an accident in light of its evolution over 
time. In other words, a Bayesian Network model is generated according to a 
specific time of the occurrence, and then the same structure of the model 
denoting different period of time of interest is repeated. Thus, the proposed 
methodology can be extended to deal with the time sequence issue of accidents. 

6. Different type of Influence Diagrams models for variant requirements of 
countermeasures: the proposed Influence Diagrams model is only suitable for 

considering cost-benefit as the criteria of the Risk Control Options. Different 
types of Influence Diagrams model should be introduced when the 
requirements of the countermeasures are changed. 
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7. Other methods for subjective estimation and/or group consensus: although the 

applied method (i. e. SAM + PTFN) is capable of handling this issue, it still has 

deficiencies for pragmatic utilisation due to the bothersome requirements of 
PTFN. For example, each estimate needs four numbers to compose a PTFN. In 

contrast, linguistic expressions may be a friendlier way for the experts to 

express their estimations and worthy of investigation. 

The proposed methodology can therefore be improved and its applicability can be 

extended to other safety related fields in other transport sectors and indeed virtually any 

other industry. 

8.3 Final Conclusion 

Hybrid methods are recognized as an effective way to deal with the 

multidisciplinary nature of organisational safety and corresponding assessment 
frameworks (Lin and Wang, 1997). The proposed methodology follows this idea by 

composing a hybrid technique integrating qualitative and quantitative analysing 
perspectives, and offers a flexible risk-informed decision-making tool. It can be used as 
an approach for accident analysis to particularly carry out the analysis in those 

situations where probabilistic distributions of the events or factors, involved in the 

accident, are difficult or impossible to obtain. 

The proposed methodology is still in an early stage of development, it needs time 
and more case studies to find out the best way of using it as well as ways of improving 
it. The detailed items and categories, even the levels, of the HFACS-MA also necd a 
profound study to finalise a dedicated HOFs framework which can fulfil the needs of 
the maritime industry in investigating and analysing HOFs involved in an organisational 
accident. One thing that can be assured is that this study shall not be the end but the start 
of the research in this topic. Further work regarding the proposed methodology is still 
required. 
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Appendix -A 

Appendix A- The Conditional Probability Tables for 

Top Event model 

Source of the data used in the Conditional Probability Tables 

Historical Statistic Experts Judgement Author's Assumption 
TE x 
A x 
B x 
C x 
D x 
El x 
E2 
E3 x 
F 
G 
Hi x 
H2 
J x 
K 
L3 x 
L4 
L5 x 
L6 x 
L7 x 
L8 x 
M x 
N x 
O x 
P x 

x 
R x 
T x 
U x 
V x 
w x 

- 228 - 



Appendix -A 

Netica (CoGF) 4.08 Win, (C) 1992-2008 Norsys Software Corp. 
Command Line: HeraldFE-TE. neta 
Compiled to 20 cliques, with total table size (including sepsets) of 332. 

TE: 
capsized safe A C B 
0.1 0.9 no water reach CP no Anti FSE 
0.1 0.9 no water reach CP Anti FSE existed 
0.01 0.99 no water under CP no Anti FSE 
0.01 0.99 no water under CP Anti FSE existed 
0.99 0.01 flooding reach CP no Anti FSE 
0.2 0.8 flooding reach CP Anti FSE existed 
0.1 0.9 flooding under CP no Anti FSE 
0.05 0.95 flooding under CP Anti FSE existed 

A: 
no water flooding HI F 
0.05 0.95 over 18Kts Bow opened 
0.99 0.01 over 18Kts Bow closed 
0.9 0.1 under 18Kts Bow opened 
0.99 0.01 under 18Kts Bow closed 

B: 
no Anti FSE Anti FSE existed 
0.99 0.01 

C: 
reach CP under CP G 
0.8 0.2 unstable 
0.2 0.8 stable 

D: 
TBH 80cm non TBH E2 E3 El J 
0.05 0.95 deficient ED loading high empty in 2 hrs 
0.9 0.1 deficient ED loading high more than 2 hrs 
0.05 0.95 deficient ED loading low empty in 2 hrs 
0.9 0.1 deficient ED loading low more than 2 hrs 
0.01 0.99 deficient no ED OP high empty in 2 hrs 
0.1 0.9 deficient no ED OP high more than 2 hrs 
0.01 0.99 deficient no ED OP low empty in 2 hrs 
0.1 0.9 deficient no ED OP low more than 2 hrs 
0.05 0.95 sufficient ED loading high empty in 2 hrs 
0.1 0.9 sufficient ED loading high more than 2 hrs 
0.05 0.95 sufficient ED loading low empty in 2 lus 
0.1 0.9 sufficient ED loading low more than 2 hrs 
0.01 0.99 sufficient no ED OP high empty in 2 hrs 
0.01 0.99 sufficient no ED OP high more than 2 his 
0.01 0.99 sufficient no ED OP low empty in 2 his 
0.01 0.99 sufficient no ED OP low more than 2 hrs 
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R1- 
low high 

0.25 0.75 

E2: 
deficient sufficient 
0.9 0.1 

E3: 
ED loading no ED OP 
0.8 0.2 

T. 

Bow opened Bow closed K M 
0.01 0.99 No D Check AssB presented 
0.99 0.01 No D Check AssB absented 
0.001 0.999 recheck AssB presented 
0.1 0.9 recheck AssB absented 

r- 

unstable stable N D 
0.95 0.05 overloaded TBH 80cm 
0.2 0.8 overloaded non TBH 
0.1 0.9 not overloaded TBH 80cm 
0.05 0.95 not overloaded non TBH 

H1: 
over 18Kts under 18Kts 
0.9 0.1 

H2: 
no DI fitted DI fitted 
0.99 0.01 

T" 

empty in 2 hrs more than 2 hrs 0 
0.1 0.9 no BHCP 
0.9 0.1 BHCP installed 

K: 
No D Check recheck p R 
0.05 0.95 BD indicator M aware NR is FTG 
0.01 0.99 BD indicator M aware NR is STOP 
0.9 0.1 BD indicator M unknow NR is FTG 
0.01 0.99 BD indicator M unknow NR is STOP 
0.8 0.2 no indicator M aware NR is FTG 
0.6 0.4 no indicator M aware NR is STOP 
0.99 0.01 no indicator M unknow NR is FTG 
0.7 0.3 no indicator M unknow NR is STOP 
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L3: 
Short Of MP MP sufficient 
0.9 0.1 

L4: 
not account accounted 
0.9 0.1 

L5: 
safe unsafe 
0.75 0.25 

L6: 
TP Yes TP No 
0.9 0.1 

L7: 
_ satisfy conce 

0.8 0.2 
rned 

T. R- 

good mngmt poor mngmt 
0.2 0.8 

Mý 

AssB presented AssB absented T 
0.2 0.8 CO left early 
0.99 0.01 stayAt BD 

N: 
overloaded not 

overloaded 
H2 L4 L5 

0.8 0.2 no DI fitted not account safe 
0.95 0.05 no DI fitted not account unsafe 
0.1 0.9 no DI fitted accounted safe 
0.8 0.2 no DI fitted accounted unsafe 
0.1 0.9 DI fitted not account safe 
0.2 0.8 DI fitted not account unsafe 
0.05 0.95 DI fitted accounted safe 
0.2 0.8 DI fitted accounted unsafe 

o: 
no BHCP BHCP 

installed 
L8 

0.1 0.9 good =gmt 
0.99 0.01 poor mngmt 
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P: 
BD indicator no indicator L8 
0.95 0.05 good mngmt 
0.05 0.95 poor mngmt 

o: 
M aware M unknow L8 
0.99 0.01 good mngmt 
0.01 0.99 poor mngmt 

R: 
NR is FTG NR is STOP U 
0.99 0.01 poor SSO 
0.1 0.9 good SSO 

T: 
CO left early Stay At BD L3 U V 
0.99 0.01 shortOf MP poor SSO earlier HSO 
0.95 0.05 shortOf MP poor SSO normal 
0.9 0.1 shortOf MP good SSO earlier HSO 
0.8 0.2 shortOf MP good SSO normal 
0.9 0.1 MP sufficient poor SSO earlier HSO 
0.1 0.9 MP sufficient poor SSO normal 
0.1 0.9 MP sufficient good SSO earlier HSO 
0.05 0.95 MP sufficient good SSO normal 

U: 
poor SSO good SSO W L7 
0.1 0.9 clear satisfy 
0.05 0.95 clear concerned 
0.95 0.05 vague satisfy 
0.2 0.8 vague concerned 

V: 
earlier HSO normal L6 
0.9 0.1 TP Yes 
0.1 0.9 TP No 

W: 
clear vague L8 
0.95 0.05 good mngmt 
0.05 0.95 poor mngmt 
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Appendix B- The Conditional Probability Tables for 

Minimal Cut Sets model 

Source of the data used in the Conditional Probability Tables 

Historical Statistic Experts Judgement Author's Assumption 
MCS 1 
MCS2 x 
MCS3 
MCS4 x 
Al x 
A2 x 
B x 
C1 x 
C2 x 
D 
E2 x 
E3 
Fl x 
F2 
G1 x 
G2 x 
H1 
H2 
J x 
K1 x 
K2 
L3 
L4 x 
L5 x 
L6 x 
L7 x 
L8 
M1 x 
M2 x 
Ni x 
N2 
O x 
P 

R x 
Ti 
T2 
U x 
V 
W 
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Netica (CoGF) 4.08 Win, (C) 1992-2008 Norsys Software Corp. 
Command Line: HeraldFE-MCS. neta" 
Compiled to 34 cliques, with total table size (including sepsets) of 654. 

MCS 1: 
capsized safe Al B Cl 
0.1 0.9 no water no Anti FSE reach CP 
0.1 0.9 no water Anti FSE existed reach CP 
0.01 0.99 no water no Anti FSE under CP 
0.01 0.99 no water Anti FSE existed under CP 
0.99 0.01 flooding no Anti FSE reach CP 
0.2 0.8 flooding Anti FSE existed reach CP 
0.1 0.9 flooding no Anti FSE under CP 
0.05 0.95 flooding Anti FSE existed under CP 

MCS2: 
capsized safe Al B C2 
0.1 0.9 no water no Anti FSE reach CP 
0.01 0.99 no water no Anti FSE under CP 
0.1 0.9 no water Anti FSE existed reach CP 
0.01 0.99 no water Anti FSE existed under CP 
0.99 0.01 flooding no Anti FSE reach CP 
0.1 0.9 flooding no Anti FSE under CP 
0.2 0.8 flooding Anti FSE existed reach CP 
0.05 0.95 flooding Anti FSE existed under CP 

MCS3: 
capsized safe A2 B Cl 
0.2 0.8 no water no Anti FSE reach CP 
0.01 0.99 no water no Anti FSE under CP 
0.2 0.8 no water Anti FSE existed reach CP 
0.01 0.99 no water Anti FSE existed under CP 
0.99 0.01 flooding no Anti FSE reach CP 
0.1 0.9 flooding no Anti FSE under CP 
0.2 0.8 flooding Anti FSE existed reach CP 
0.05 0.95 flooding Anti FSE existed under CP 

MCS4: 
capsized safe A2 B C2 
0.2 0.8 no water no Anti FSE reach CP 
0.01 0.99 no water no Anti FSE under CP 
0.2 0.8 no water Anti FSE existed reach CP 
0.01 0.99 no water Anti FSE existed under CP 
0.99 0.01 flooding no Anti FSE reach CP 
0.1 0.9 flooding no Anti FSE under CP 
0.2 0.8 flooding 

- 
Anti FSE existed reach CP 

0.05 0.95 flooding Anti FSE existed under CP 
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Al, 

no water flooding HI Fl 
0.05 0.95 over 18Kts Bow opened 
0.99 0.01 over 18Kts Bow closed 
0.7 0.3 under 18Kts Bow opened 
0.99 0.01 under 18Kts Bow closed 

A9. 

no water flooding HI F2 
0.05 0.95 over 18Kts Bow opened 
0.99 0.01 over 18Kts Bow closed 
0.7 0.3 under 18Kts Bow opened 

10.99 0.01 under 18Kts Bow closed 

B: 
no Anti FSE Anti FSE existed 
0.99 0.01 

c1. 

reach CP under CP GI 
0.8 0.2 unstable 
0.2 0.8 stable 

C2: 

reach CP under CP G2 
0.8 0.2 stable 
0.2 0.8 unstable 

D: 
TBH 80cm non TBH E2 E3 J 
0.05 0.95 deficient ED loading 

_. 
empty in 2 hrs 

0.9 0.1 deficient ED loading more than 2 hrs 
0.01 0.99 deficient no ED OP empty in 2 hrs 
0.1 0.9 deficient no ED OP more than 2 hrs 
0.05 0.95 sufficient ED loading empty in 2 hrs 
0.1 0.9 sufficient ED loading more than 2 hrs 
0.01 0.99 sufficient no ED OP empty in 2 hrs 
0.01 0.99 sufficient no ED OP more than 2 hrs 

E2: 
deficient sufficient 
0.9 0.1 

E3: 
ED loading no ED OP 
0.8 0.2 
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Fl: 
Bow opened Bow closed K1 Ml 
0.01 0.99 No D Check AssB presented 
0.99 0.01 No D Check AssB absented 
0.001 0.999 recheck AssB presented 
0.1 0.9 recheck AssB absented 

F2: 
Bow opened Bow closed K2 M2 
0.01 0.99 No D Check AssB presented 
0.99 0.01 No D Check AssB absented 
0.001 0.999 recheck AssB presented 
0.1 0.9 recheck AssB absented 

G1: 
unstable stable Ni D 
0.95 0.05 overloaded TBH 80cm 
0.2 0.8 overloaded non TBH 
0.1 0.9 not overloaded TBH 80cm 
0.05 0.95 not overloaded non TBH 

G2: 
stable unstable N2 D 
0.95 0.05 overloaded TBH 80cm 
0.2 0.8 overloaded non TBH 
0.1 0.9 not overloaded TBH 80cm 
0.05 0.95 not overloaded non TBH 

HI: 
over 18Kts under 18Kts 
0.9 0.1 

H2: 
no DI fitted DI fitted 
0.99 0.01 

J: 
empty in 2 hrs more than 2 hrs 0 
0.1 0.9 no BHCP 
0.9 0.1 BHCP installed 

K1: 
No D Check recheck p 
0.05 0.95 BD indicator 
0.9 0.1 no indicator 
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K2- 

No D Check recheck R 
0.1 0.9 M aware NR is FTG 
0.5 0.5 M aware NR is STOP 
0.99 0.01 M unknow NR is FTG 
0.5 0.5 M unknow NR is STOP 

L3: 
shortOf MP MP sufficient 
0.9 0.1 

L4: 
I not account accounted 

0.9 0.1 

L5: 
safe unsafe 
0.75 0.25 

L6: 
TP Yes TP No 
0.9 0.1 

L7: 
satisfy concerned 
0.8 0.2 

L8: 
good mngmt poor mngmt 
0.2 0.8 

M1: 
AssB presented AssB absented Ti 
0.2 0.8 CO left early 
0.99 0.01 stayAt BD 

M2: 
AssB presented AssB absented T2 
0.2 0.8 CO left early 
0.99 0.01 stayAt BD 

Ni: 
overloaded not overloaded H2 L4 
0.9 0.1 no DI fitted not account 
0.1 0.9 no DI fitted accounted 
0.2 0.8 DI fitted not account 
0.05 0.95 DI fitted accounted 
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N2: 
overloaded not overloaded H2 L5 
0.1 0.9 no DI fitted safe 
0.9 0.1 no DI fitted unsafe 
0.05 0.95 DI fitted safe 
0.2 0.8 DI fitted unsafe 

0: 
no BHCP BHCP installed L8 
0.1 0.9 good mngmt 
0.99 0.01 poor mngmt 

P: 
BD indicator no indicator L8 
0.95 0.05 good mngmt 
0.05 0.95 poor mit t 

o: 
M aware M unknow L8 
0.99 0.01 good mngmt 
0.01 0.99 poor mngmt 

R: 
NR is FTG NR is STOP U 
0.99 0.01 poor SSO 
0.1 0.9 good SSO 

Tl: 
CO left early stayAt BD L3 
0.95 0.05 shortOf MP 
0.1 0.9 MP sufficient 

T2: 
CO left early stayAt BD V U 
0.95 0.05 earlier HSO poor SSO 
0.1 0.9 earlier HSO good SSO 
0.1 0.9 normal poor SSO 
0.05 0.95 normal good SSO 

U: 
poor SSO good SSO W L7 
0.1 0.9 clear satisfy 
0.05 0.95 clear concerned 
0.95 0.05 vague satisfy 
0.2 0.8 vague concerned 
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V: 
earlier HSO normal L6 
0.9 0.1 TP Yes 
0.1 0.9 TP No 

W: 
clear vague L8 
0.95 0.05 good mngmt 
0.05 0.95 poor mngmt 
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Appendix C- The specifications of sensitivity finding reports 
in Netica 

SENSITIVITY TO FINDINGS 

A report will be displayed to show how much the beliefs, mean value, etc. of the 
target node could be influenced by a single finding at each of the other nodes in the 
net (each is called a' indings node'). The first part of the report has a section for 
each findings node, showing how much it can effect the target node using several 
different sensitivity measures. The second part is a summary table which compares 
the sensitivities for each of the findings nodes. ... Use the summary list of sensitivities 
at the end of the report generated to identify possible findings nodes which will 
provide the most information about the target node. If you want more detailed 
information of how these findings nodes can effect the target node, look up each of 
them in the first part of the report. 

Below are descriptions of each of the utility-free sensitivity measures that Netica 
calculates. First are some notes for interpreting the descriptions. 

Key / Notes 
Definition: In the definitions, "belief' means posterior probability (i. e. conditioned 

on all findings currently entered). In the names of the various measures 
"real" refers to the expected value of continuous nodes or discrete , 
nodes which have a real numeric value associated with each state. 
"expected value" means to take the expectation over a quantit (as y 
described in the onscreen help). 

Range: The minimum and maximum values that this measure can take on. 
Compare: A quantity which is useful to compare the value of this measure against 

(perhaps to express this measure as a percentage). 
Equation: Note that all the conditionals should include all findings already entered 

into the network, so P(q) is really PE, P is really P f, E 
, etc. 

Notation: 
is the query variable 

F is the varying variable 
q is a state of the query variable 
f is a state of the varying variable 

Xq is the numeric real value corresponding to state 
SUM-q means the sum over all states q of Q. It applies to the whole expression following. 
MIN-q 

MAX-q 
are similar to SUM-q 

E(Q) is the expected real value of Q before any findings 
EQ is the expected real value of Q after new finding f for node F 
V(Q) is the variance of the real value of before any findings 
H(Q) is the entropy of Q before any findings 
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RMS is "root mean square", which is the square root of the average of the 

values squared. 

%S" " Tl_v_r 
1Y11111 LILULI LVll 

Definition: 
vl 

Minimum belief that each state q of Q can take due to a finding at F. 

This provides a value for each state. 
Range: [0, P)P (q) if is independent of F 

Compare: P(q) 
Equation: Pmin(q) = MIN-f P 

Maximum Belief 
Definition: Maximum belief that each state q of Q can take due to a finding at F. 

This provides a value for each state. 
Range: [P(a). 11 P(a) if 0 is independent of F 

Rnuatinn- I Pmax(al = MAX-f P(alfl I 

TYKAQ r1knticri- of Relief 

Definition: The square root of the expected change squared of the belief of state q 
of Q, due to a finding at F. This provides a value for each state. This is 
the standard deviation of P(gjf) about P(q) due to a finding at F, with 
the finding at F distributed by P. 

Reference: Spiegelhalter89 & Neapolitan90, p394. They call the square of this 
quantity simply "variance". 

Range: [0,1] 0 if is independent of F 
Compare: P(q) 
Equation: sp(q) = sqrt (Vp(q)) 

Vp(q) =SUM-fP P- PA2 

R�trnnv Recdnctinn (Mutual Information) 

Definition: The mutual information between Q and F (measured in bits). 
The expected reduction in entropy of Q (measured in bits) due to a 
finding at F. 

Range: [0, H0 if is independent of F 
Reference: Pearl88, p321. He has sign of I(T, X) backwards. 

Var mapping: T-> Q, X->F, I ->I 
Compare: H(Q) 
Equation: I= H(Q) - H(QIF) 

= SUM-q SUM-f P log /PP 

Note that the log is base 2, which is traditional for entropy and mutual information, 
so that the units of the results will be "bits". 

More complete documentation will be available at Norsys website: 
www. norsys. com 
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