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21An experimental setup of double pipe heat exchanger fouling test rig was built to investigate the mineral scale
22deposition on different heat exchanger pipe surfaces. Progressive fouling deposition on different material sur-
23faces under the similar solution conditions were observed and analyzed. Measurable data on the progressive
24build-up of scale deposits, deposition rate, as well as the composition and crystal morphology of the deposits
25were studied after each experimental run by analyzing the deposited scale on the test pipes. In this research
26the artificial calcium carbonate deposit on different material surfaces is considered as it is one of the major con-
27stituents of themost scales found in heat exchanging equipment. Fouling on different smooth test pipeswere in-
28vestigated in the centrally located larger concentric pipe heat exchanger. Uniform flow condition near the pipe
29surface was maintained by constant flow rate throughout the system. The calcium carbonate deposition rates
30on five different metal surfaces (Stainless steel 316, brass, copper, aluminium and carbon steel) were investigat-
31ed. The results illustrated an upward trend for fouling rate with time on the tested specimens. The deposition on
32the surfaces showed a linear growth with the enhancement of thermal conductivity of the metals. However, de-
33position on carbon steel metal surfaces did not follow the typical linear trend of thermal conductivity over depo-
34sition as its surface was altered by corrosion effects. In addition, temperature, velocity, and concentration effects
35on fouling deposition were investigated on the SS316 metal surface. It is noted that the fouling deposition in-
36creases with the increase of temperature and concentration due to enhanced deposition potential whereas re-
37duces due to the increase of velocity which enhances shear stress.
38© 2017 Elsevier B.V. All rights reserved.
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48

49

50 1. IntroductionQ6

51 Fouling can be defined as the formation of unwanted deposits on the
52 heat transfer surfaces that impede heat transfer and increase the resis-
53 tance to the flow of working fluids over surfaces [1]. Heat exchangers
54 are of important equipment for industrial processes as they handle a
55 major portion of the total energy consumption [2]. Water is the most
56 common working fluid which is used as a cooling medium in the heat
57 transfer-based processes. It is also used as a process fluid and even as

58a solvent [3]. Many industries tend to locate where an easy access to
59water is available. Rivers, lakes, oceans, etc. are the major sources of
60water. However, water is an universal solvent, that dissolves most of
61the components when they come in contact such as Ca2+ and Mg2+

62and otherminerals on earth [4].When thiswater borneminerals are ex-
63posed to different physical influences, such as heat transfer, friction and
64pressure change, they can revert back into natural solid stage against
65one another and always lead to the formation of deposits on the surfaces
66and cause fouling problems [5,6].
67These fouling layers usually contain calcium carbonate, calcium sul-
68phates, calcium silicate, etc. which possess commonly a very low ther-
69mal conductivity [7]. Hence, it can decrease the heat transfer rate,
70increase pressure fluctuations in heat exchangers and introduce an
71overall loss of industrial output [8,9]. Operating costs are further in-
72creased by frequent shutdowns for cleaning and corresponding usage
73of chemical detergents and sanitizers; which also increase the environ-
74mental impact [10,11]. Mineral scale deposits can produce major
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75 operational problems from poorly treated process waters. Moreover,
76 corrosion may be caused by these mineral deposits [12,13]. Fouling is
77 the source of several problems in equipment, such as deterioration of
78 performance and limiting useful operating life of equipment [14,15].
79 Therefore, studies of the industrial problems regarding this topic are
80 fundamental for understanding the risks associated to the reuse of pro-
81 cess and effluent waters [16].
82 Potential damages towards equipment caused by the formation of
83 scale can be very costly if process water is not treated properly.
84 Chemicals are commonly employed to treat the processwater by indus-
85 tries. Total of 7.3 billion dollars worth chemicals per year in the U.S. re-
86 leased in to the air, dumped in streams and buried in landfills every
87 year. Globally, 40% are purchased by industry for control of the scale
88 in cooling towers, boilers and other heat transfer equipment. That rep-
89 resents more than 2 billion dollars of toxic waste which contribute to
90 trillions of gallons of contaminated water discarded annually on the
91 earth which belongs to all the population of the earth.
92 An environmentally-friendly approach is essential to overcome
93 these fouling problems without the use of chemicals, where most are
94 toxic and/or corrosive. To address this issue, some researches and devel-
95 opment on fouling have progressed significantly over the period of last
96 15-years [17]. The fouling mechanisms are now described in terms of
97 processes associated with the formation, transportation, deposition,
98 and removal mechanism [18]. Major technical issues still remain before
99 water fouling can be recognized as a solved problem [19]. At present,
100 water fouling can be considered as a manageable problem, but at a
101 high cost and usage of chemicals with hazardous influences on the en-
102 vironment [20].
103 In this research work, an automated experimental test rig was built
104 for conducting experiments on the factors affecting fouling rate (differ-
105 ent metal surfaces, temperature, velocity and concentration). Kazi et al.
106 have reported the calcium sulphate deposition on different material
107 surfaces under different circumstances [21]. The present research has
108 focused on the study of deposition of artificially-hardened calcium car-
109 bonate in a double-pipe heat exchanger. This is important to simulate a
110 real case of plant operational process related to the heat exchanger
111 equipment since these two materials (calcium carbonate and calcium
112 sulphate) are considered to be the major constituents of the most
113 scale formed in such equipment [22,23].

114 2. Experimental

115 2.1. (i) Apparatus

116 The schematic diagram of the experimental apparatus is presented
117 in Fig. 1. The apparatus consists of two flow loops with two separate
118 tanks containing artificial fouling solution (blue line) and hot water
119 (red line) respectively with a test section (Heat exchanger). The hot
120 flow loop comprises of a frequency controlled magnetic gear pump,
121 N-Flow 25 magnetic flow meter, pipes of different metal surfaces and
122 a thermostatically controlled heater to maintain the heater tank at a
123 constant hot inlet temperature (50 ± 0.5 °C). The hot line outside the
124 test section is insulated thoroughly to prevent heat loss along the
125 flowing line. Also, the cold flow loop contains a jacketed artificial fouling
126 solution tank, frequency controlled magnetic gear pump, transparent
127 HDPE piping for flowing line, Burkert inline paddle wheel flow meter,
128 RW20 digital stirrer and a chiller to maintain the artificial fouling solu-
129 tion at a constant cold inlet temperature (25 ± 0.5 °C). The cold line
130 magnetic gear pump (Araki Magnet Pump) has the specifications of
131 2800 rpm, 1.1 ampsQ7 , 260Wmotor and of capacity 120 L/min,withmax-
132 imum head of 8.6 m.
133 The test section is a counter current double pipe heat exchanger
134 with the length of 130 cm. In this exchanger, the hot water flows into
135 the pipe and cold artificial fouling solution in the annular space of the
136 pipe. The inside pipe is made of different metals with the same dimen-
137 sions (outer diameter of 12.7 mm and inner diameter of 8.48 mm). The

138outer pipe is of transparent HDPE pipingwith the inner diameter (ID) of
13942.1 mm and outer diameter (OD) of 46.8 mm.
140The inlet and outlet temperatures in the hot and cold lines were
141measured using 4 RTD sensors. A PLC program data acquisition system
142was installed for collecting data and automatically maintaining hot
143and cold inlet sections at the specified temperatures. The pressure
144drop variation in both the lines across the test section was measured
145using YOKOGAWA Differential Pressure Transmitter (0–200 mbar).
146During the fouling test, the volume flow rate, pressure drop, inlet and
147outlet temperatures for hot and cold lines were recorded.

1482.2. (ii) Test specimens

149The experimental pipes are 1300mm in lengthwith awall thickness
150of 2.11 mm and outer diameter of 12.7 mm. Five metal pipes (copper,
151aluminium, brass, carbon steel and stainless steel 316) with the same
152dimensions were used in these experiments. The test section pipes
153and the coupons of the same materials were connected by precise ma-
154chining of the inner and the outer threads as the connector. As it can
155be seen in Fig. 2, the couponswere installed in themiddle of test section.
156Characterizations of the fouling deposition on the surfaces were con-
157ducted after completion of the fouling tests.
158The smooth test specimens piping's (Table 1) were used in the as-
159received condition but before installing in the test rig, theywere cleaned
160by rubbingwith awater-soaked cloth and flushingwith hotwater to re-
161move any deposition of grease, oil, etc.

1622.3. (iii) Data acquisition

163A programmable logic controller (PLC) was installed and a software
164WinCCwas employed to record the inlet and outlet temperatures of hot
165water passing through the pipe, the mean temperature of tanks, inlet
166and outlet of artificial solution temperatures passing through the annu-
167lar pipe, differential pressure between annular pipe and flow rates of
168hot line and solution line. All the temperatures were measured using
169the RTD-100 sensors. Also, the differential pressure and flow rates
170were recorded by a transmitting 4–20mA signal via PLC to the software.
171The program was set in recoding mode of every 10 min interval and
172continuous up to 4320 min [24].

1732.4. (iv) Experimental procedures

174Fouling rate, fouling resistances and total deposition formed on dif-
175ferent heat exchanger surfaces by varying parameters were conducted
176by using fouling test experiment. Leakage test was performed prior to
177the experimental runs to ensure the suitability and validity of the
178setup and working conditions. The experimental setup was cleaned by
179circulating distilled water and also using chemical cleaning agents
180(Decon 90) before each experimental run to ensure reproducibility of
181data. To accelerate the scaling effect in a short period of time, artificial
182fouling solution containing 300 Q8mg/l CaCO3was prepared using propor-
183tionate amount of calcium chloride (CaCl2) and sodium bicarbonate
184(NaHCO3) in distilled water. Eq. (1) illustrates the calcium carbonate
185formation from the reaction between calcium chloride and sodium bi-
186carbonate in water [25].

ð1Þ

188188189The flow of the artificial fouling solution was varied from 0.15
190to 0.45 m/s and the flow of the hot water through the inner tube
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191 was maintained constant at 1 m/s. The inlet temperatures of the
192 hot and cold flows were set at constant values of 50 ± 0.5 °C
193 and 25 ± 0.5 °C respectively. The solution hardness was

194maintained at a constant value of 300 ± 30 mg/L throughout the
195experiments and the hardness of the solutions were measured by
196EDTA complexometric titration method. The stirrer in the solution

Fig. 1. Double pipe heat exchanger experimental test rig.

Fig. 2. Coupons installation of different materials on heat exchanger surfaces.
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197 tank was operated at 475 rpm to ensure homogeneity of the artifi-
198 cial fouling solution.
199 As a common correlation, Eq. (2) was used to calculate the fouling
200 resistance, Rf, throughout the experimental tests and tomonitor fouling
201 behaviour on the surface of metal.

R f ¼
1

Ufouled
−

1
Uinitial

ð2Þ
203203

Where, Ufouled and Uinitial are the overall heat transfer coefficient for
204 the fouled case and the overall heat transfer coefficient for the initial
205 clean condition, respectively. These overall heat transfer coefficients
206 were calculated by using the Eq. (3).

Q ¼ UAΔTLMTD ð3Þ
208208

Where, Q is the thermal energy of heat transfer section,U is the over-
209 all heat transfer coefficient, A = 2 πRL, is the total surface area of the
210 heat transfer section and ΔTLMTD (Eq. (4)) is the log mean temperature
211 difference, which was determined from the measured temperatures at
212 the inlet and outlet of hot and solution water:

ΔTLMTD ¼ Th;out−Tc;in
� �

− Th;in−Tc;out
� �

ln
Th;out−Tc;in
� �
Th;in−Tc;out
� �

" # ð4Þ

214214

2.5. (v) Measurement and characterization

215 The amount of deposition has been determined by dissolving the de-
216 posited scale in diluted HCl solution and later applied complexometric
217 titration by EDTA. After 72 h fouling test run, the test section pipe was
218 dismantled carefully (without any damage to the deposited scale)
219 from the heat exchanger. Then the calcium carbonate deposited on

220the test section surface was extracted using diluted HCl solution. Soft
221brushwas used to clean the surface and then the solution was collected
222into a beaker and diluted into 1 L using distilled water and the amount
223of calcium carbonate deposition was determined using EDTA-
224complexometric titrationmethod. The couponswere carefully removed
225earlier from the test pipe for characterization of the deposits. The poly-
226morphic composition and crystalmorphology of the scale depositswere
227characterized by x-ray diffraction analysis (XRD) and scanning electron
228microscopy (SEM) respectively. In addition, the elemental analysis was
229checked by energy dispersive spectroscopy (EDS). Optical images and
230photographs were obtained to visually differentiate the fouling deposi-
231tion on different tested surfaces [26].

t1:1 Table 1
t1:2 Physical properties and Ra of different heat exchanger materials at 300 K.Q1

t1:3 Materials Properties at 300 K

t1:4 p (kg/m3) Cp (J/kg·K) K (W/m·K) Ra (μm)

t1:5 Stainless steel 8238 468 16 1.27
t1:6 Carbon steel 7850 502 90 2.34
t1:7 Brass 8530 380 109 2.18
t1:8 Aluminium 2702 903 250 2.16
t1:9 Copper 8960 385 401 2.22

R²= 0.9839
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Fig. 3. Validation of the experimental run results with standard equations.
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Fig. 5. Total depositions on different heat exchangermaterials at 50 °C and 25 °C at hot and
cold water inlet respectively, 0.15 m/s solution flow and 300 mg/l concentration.

Fig. 6. Deposition rate as the function of time on different heat exchanger materials.
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232 3. Results and discussion

233 3.1. (i) Data validation and reproducibility

234 Fig. 3 illustrates the validation of the experimental results by corre-
235 lating with the following equations:
236 Maiga et al. [27] (Eq. (5))

Nu ¼ 0:085 Re0:71 Pr 0:35 ð5Þ238238

Dittus and Boelter [28] (Eq. (6))

Nu ¼ 0:023 Re0:8 Pr0:4 ð6Þ
240240

Pak and Cho [29] (Eq. (7))

Nu ¼ 0:021 Re0:8 Pr0:5 ð7Þ
242242

Gnielinkski equation [30] (Eq. (8))

Nu ¼
f
8

� �
Re−1000ð Þ Pr

1þ 12:7 f
8

� �0:5
Pr

2
3−1

� � ð8Þ

244244

Where the friction factor is

f ¼ 0:78 ln Re−1:64ð Þ−2

246246

The data was also reproduced and the results showed that there is a
247good agreement between two similar runs as seen in Fig. 4. The current
248setup shows that the current experimental test rig yielded a promising
249result for conducting fouling tests.

2503.2. (ii) Fouling on various surface materials

251The effect of these metals' nature (copper, aluminium, carbon steel,
252brass and stainless steel 316) on the deposition of calcium carbonate

Fig. 7. Fouling resistances as the function of time based on different heat exchanger
materials at 50 °C and 25 °C at hot and solution inlet respectively, 0.15 m/s solution flow
velocity and 300 mg/l concentration.

Fig. 8. Images of calcium carbonate deposition on different metal surfaces.
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253 scale was studied in a series of experiments [31,32]. The total deposi-
254 tions after fouling test on different heat exchanger metal surfaces are
255 shown in Fig. 5. It can be seen that copper and stainless steel-316
256 show the greatest and lowest quantities of deposition, constituting
257 841.68 and 190.38 mg, respectively.
258 It can be seen in Fig. 6, the depositions of calcium carbonate on five
259 different heat exchanger surfaces are in the sequence of; copper N alu-
260 minium N carbon steel N brass N stainless steel. Fig. 7 illustrates the foul-
261 ing resistance under the effect of different materials. It can be observed
262 that the deposition tends to be asymptotic which is consistentwith pipe
263 flow investigations for all the materials. Kazi et al. obtained similar re-
264 sults for the deposition of calcium sulphate on different heat exchanger
265 materials which were consistent with the values of their thermal con-
266 ductivities [21].
267 The effect of various heat exchanger surfacematerials on surface de-
268 position has beenmentioned in several studies [33,34] in which the de-
269 position on substrates was consistent with their thermal conductivity
270 values, i.e. copper N aluminium N brass N stainless steel. The experimen-
271 tal results appear to correlatewell with thermal conductivity for copper,
272 aluminium, brass and stainless steel, which implies the increase in the
273 deposition with thermal conductivity enhancement.
274 Moreover, this research indicates that the carbon steel material did
275 not follow the thermal conductivity trends where it is expected to
276 yield lower fouling deposition compared to brass. As seen in Fig. 7, the
277 fouling resistance of carbon steel material at about 1500min is dramat-
278 ically increased and overstep the fouling resistance of brass and moved
279 nearer to the aluminium. Severe corrosion was observed on the carbon
280 steel and due to this the deposition on carbon steel metal surfaces has
281 altered due to the corrosion effects (promoted by the rough surfaces).
282 Fig. 8 (a–e) shows the crystallization deposition on the different

283materials at 0.15m/s. It is obvious fromFig. 8 (e) that the corrosion foul-
284ing is severe on carbon steel.

2853.3. (iii) Fouling under effect of velocity

286Fig. 9 illustrates the effect of flow velocity (between 0.15 and
2870.45 m/s) on the fouling deposition rate. It is obvious from Fig. 9, that
288the CaCO3 deposition rate is inversely proportionate to velocity. Several
289researchers have reported the similar results [35,36]. This could be

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000

D
e

p
o

s
it

i
o

n
, 

g
/
m

2

Time, min

0.15 m/s

0.3 m/s

0.45 m/s

Fig. 9. Calcium carbonate depositions as the function of time under different velocity
conditions on SS316L, 50 °C hot water inlet, 25 °C solution inlet and 300 mg/l
concentration.

0

50

100

150

200

250

300

350

50 60 70

190.38 ± 30

260.66 ±30

310.62 ±30

T
o

t
a
l
 
d

e
p

o
s
i
t
i
o

n
/
m

g

Inlet Temperature/ degree Celcius

Effect of Inlet Temperature on CaCO
3
Deposition 

Total deposition /

mg

Fig. 10. Total depositions on SS316L under effect of temperature, at 25 °C solution inlet,
0.15 m/s solution flow velocity and 300 mg/l concentration.

0.0001

0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 1000 2000 3000 4000 5000

F
o

u
l
i
n

g
r
e

s
i
s

t
a

n
c

e
,
m

2
.
K

/
W

Time, min

Fouling resistance underdifferent hot inlet

temperature

70degreeC

60degreeC

50degreeC

Fig. 11. Fouling resistance of deposition on SS316L under effect of hot inlet temperature at
25 °C solution inlet, 0.15 m/s solution flow velocity and 300 mg/l concentration.

0.0002

0.00015

0.0001

0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 1000 2000 3000 4000 5000

F
o

u
l
i
n

g
 
R

e
s

i
s

t
a

n
c

e
,
 
m

2

.
K

/
W

Time,Min

Fouling resistance under effect of different

concentration

500mg/L

400mg/L

300mg/L

Fig. 12. Fouling resistance of deposition on SS316L under effect of concentration at 50 °C
and 25 °C at hot and solution inlet respectively and 0.15 m/s solution flow velocity.

Fig. 13. Total depositions on SS316L under effect of concentration, at 50 °C and 25 °C at hot
and solution inlet respectively and 0.15 m/s solution flow velocity.

6 K.H. Teng et al. / Powder Technology xxx (2017) xxx–xxx

Please cite this article as: K.H. Teng, et al., Calcium carbonate fouling on double-pipe heat exchangerwith different heat exchanging surfaces, Pow-
der Technol. (2017), http://dx.doi.org/10.1016/j.powtec.2017.03.057

http://dx.doi.org/10.1016/j.powtec.2017.03.057


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

290 attributed to the significant removal of scale particles from the fouling
291 deposition formation at higher velocities due to increased shear stress
292 near the boundary wall of metal surfaces at the liquid-solid interface
293 [37–39].

2943.4. (iv) Fouling under effect of hot inlet temperature

295Fouling under the effect of inlet temperature was conducted on
296stainless steel 316L at the constant velocity of 0.15 m/s. Calcium

Fig. 14. Image (a) and crystal morphology (b & c) of calcium carbonate formation at 300 mg/l, 50 °C and 25 °C at hot and solution inlet respectively and 0.15 m/s solution flow velocity.

Fig. 15. Image (a) and crystal morphology (b & c) of calcium carbonate formation at 400 mg/l, 50 °C and 25 °C at hot and solution inlet respectively and 0.15 m/s solution flow velocity.
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297 carbonate is an inversely soluble salt against temperature. Hence, it can
298 be predicted that the composition of calcium carbonate scale deposits
299 can be influenced by varying temperature [40,41]. As it can be seen in
300 Fig. 10, higher inlet temperature induces higher total deposition on
301 the SS316 material. In addition, longer induction period of scale forma-
302 tion at 50 °C in comparison to that at 70 °Cwas reported in Fig. 11. It in-
303 dicates that the induction period of fouling depends strongly on the
304 temperature. Similar results were reported by Mullin [42] where he

305expressed the relationship between induction period and temperature
306in Eq. (9).

log Tint
−1

� �
¼ A−

Ea
2:303RT

ð9Þ
308308

Where, Ea is the molar activation energy for nucleation (J/mol), R is
309the universal gas constant, which is 8.3145 J/K.mol and A is a constant
310value.

3113.5. (v) Fouling under effect of concentration

312The effect of fouling solution hardness concentration was conducted
313in this double pipe heat exchanger and details are depicted in Figure 12.
314Kazi et al. reported that high concentration of calcium sulphate has sig-
315nificant impact on deposition of differentmaterials [43]. It was observed
316(Fig. 12) that shortest induction period of less than one hour was

Fig. 16. Image (a) and crystal morphology (b & c) of calcium carbonate formation at 500 mg/l, 50 °C and 25 °C at hot and solution inlet respectively and 0.15 m/s solution flow velocity.

Fig. 17. Deposition on brass material. Fig. 18. Deposition on copper material.
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317 experienced to form scale layer at 500 mg/l concentration while 400
318 and 300 mg/l concentration it took 7 h and 14 h respectively.
319 500mg/l showed highest fouling resistance resulting lowest heat trans-
320 fer rate in the system. This shows that the scale deposition layer formed

321quickly at higher concentration compared to lower concentrations and
322indicates that the induction period of fouling depends strongly on con-
323centration. Similarly, the amount of CaCO3 deposited on SS 316 L at dif-
324ferent fouling solution concentration is presented in Fig. 13. It showed

Fig. 19. XRD analyses of the deposited materials.

Fig. 20. SEM analyses of the deposited materials.
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325 that the amount of deposition is more than double when the concentra-
326 tion is increased from 300mg/l to 500mg/l. This is because at high con-
327 centration, the supersaturation is attained quickly and the circulating
328 solution inside heat exchanger provides high nucleation rate and calci-
329 um carbonate precipitation from solution which eventually deposits on
330 the metal surface.
331 The morphology of the samples was analyzed using scanning elec-
332 tron microscopes (SEM). As seen in Figs. 14 & 15, at concentration of
333 300 mg/l and 400 mg/l, crystalline of calcite which has sharp cubic
334 edge and orthorhombic crystal structure were observed. It can be seen
335 clearly, the crystal morphology is relative smaller in size at 300 mg/l
336 (about 15 μm) compared to about 25 μm in 400mg/l. This crystal struc-
337 ture type enhances the structure to form a robust fouling layer. At
338 500 mg/l, the crystal structure is a bit different compared to the other
339 samples. Fig. 16 shows the crystal morphology of calcium carbonate
340 formed at temperatures of 50 °C and 25 °C for hot and solution inlet re-
341 spectively at the constant solution flow velocity of 0.15 m/s. The mor-
342 phological structure exhibits on the surfaces and look like rougher in
343 nature (16 c). The amorphous CaCO3 appear to be metastable and ag-
344 gregate into larger spherical particles (about 45 μm).The crystals simul-
345 taneously grow larger and accumulate to form a fouling layer of CaCO3.
346 The blunt cubic edge will give the structure less robust compared to
347 sharp cubic structure. From the SEM images it is clear that the deposi-
348 tion at 500 mg/l is a mixture of particulate and crystalline structures.

349 3.6. (vi) Visualization of the fouling test section and crystal morphology

350 Figs. 17 and 18 show the deposition on brass and copper materials
351 respectively. Note that only white deposition formed and no corrosion
352 effects were observed on SS316 and aluminium after the fouling test.
353 However, the deposits formed on the brass surfaces have green and red-
354 dish stains along with white encrustation of calcium carbonate, which
355 indicate that the chemical reaction took place and hence some chemical
356 fouling have observed as seen in Fig. 17. Deposits formed on copper pipe
357 surface observed similarly with the green layer along with white de-
358 posits as seen in Fig. 18. It has happened due to the effect of chemical
359 fouling and crystallization. Similar results were reported by Kazi et al.
360 on calcium sulphate deposition [44]. Moreover, carbon steel observed
361 a severe corrosion after the fouling test. A combination of crystallization
362 fouling and corrosion fouling was observed on the carbon steel surface.
363 In a nutshell, it could be concluded that industrial cooling waters are
364 corrosion contributor of heat exchanger surfaces where there are com-
365 binations of various effects on fouling.

366The x-ray diffraction spectrum (XRD) of the deposited materials on
367copper, aluminium, brass, SS316, and carbon steel are presented in
368Fig. 19 (a-e). It can be seen that the characteristic peaks at 2θ ~ 29.3°,
36923.1°, 36.1°, 39.4°, 47.5°, and 48.7° verified the presence of calcite in
370all the substrates [45]. Deposition on all the metal exhibited the pres-
371ence of binary mixture containing calcite and vaterite and the lack of
372aragonite is obvious [46]. Insignificant peaks of vaterite were observed
373at 2θ ~ 26.7° and 31.4° indicating that its presence is in negligible quan-
374tity. It is noteworthy that copper and carbon steel demonstrate an oxi-
375dation phase representing copper carbonate and Iron oxide hydroxide
376peaks, respectively. Also, due to high intensities of the peaks of the
377metal substrate, the CaCO3 polymorphic peaks were subdued and it
378made identification difficult. We know that the metal intensities were
379five to six times stronger than the CaCO3 peaks due to which some of
380the peaks were subdued and sometimes missed in Fig. 19. Overall,
381pure calcite elements were the dominant component deposited on the
382surface of different metals.
383Fig. 20 (a–e) shows SEM images of calcium carbonate deposition on
384SS316, brass, aluminium and copper and also corrosion products with
385calcium carbonate fouling on carbon steel. It can be clearly seen that
386the size of the crystallites/crystal structure has followed the trends
387of amount of total deposition; copper (about 40 μm) N aluminium
388(about 37.33 μm) N brass (about 20.36 μm) N stainless steel 316
389(about 15 μm).These results are supporting the theory of crystal struc-
390ture size which could determine the fouling deposition rate on the sur-
391faces [47]. On the other hand, SEM images of carbon steel shows the
392combination of calcite and the corrosion products.
393Fig. 21 shows the energy dispersive spectroscopy (EDS) of the com-
394bination of corrosion fouling and crystallization fouling on carbon steel
395materials. The composition of iron oxide and the deposition of calcite
396layer in between the iron oxide are represented as Point 1 and Point 2.

3974. Conclusion

398In these experiments, several variable parameters (velocity, temper-
399ature, concentration and materials effect) were studied systematically.
400In summary, it is observed that the calcium carbonate deposition on
401the surfaces increase linearly with the thermal conductivity of the
402metal. However, deposition on carbon steel metal surfaces did not fol-
403low the linear trend as it has been altered by the corrosion effects. Tem-
404perature has a great effect on the total deposition as well as the
405induction period of fouling deposition formed on the metal surfaces.
406In addition, velocity plays a vital role in determining the fouling

Fig. 21. SEM and EDS analyses of the deposited materials on carbon steel.
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407 deposition thickness. These findings could be good references to use in
408 designing systems and heat exchangers with the enhanced perfor-
409 mance and lifespan which are topics to be addressed in the future
410 research.

411 Nomenclature
412 od Inside pipe outer diameter (mm)
413 id Inside pipe inner diameter (mm)
414 OD External pipe outer diameter (mm)
415 ID External pipe inner diameter (mm)
416 RTD Resistance temperature detector
417 PLC Programmable logic controller
418 Ws Weights of the deposited scale (g)
419 Wf Weights of the fouled coupon (g)
420 WI Weights of the initial coupon (g)
421 Rf Fouling resistance (m2·K/W)
422 Ufouled Overall heat transfer coefficient for the fouled case
423 (W·m−2·K−1)
424 Uinitial Overall heat transfer coefficient for the initial case
425 (W·m−2·K−1)
426 Q Rate of heat gain (W)
427 A Total heat transfer surfaces (m2)
428 ΔTLMTD Log mean temperature difference whichwas determined from
429 the measured temperatures at the inlet and outlet of hot and
430 solution water (K)
431 Thot,in Temperature at hot inlet (K)
432 Thot,out Temperature at hot outlet (K)
433 Tcold,in Temperature at cold inlet (K)
434 Tcold,out Temperature at cold outlet (K)
435 Nu Nusselt number
436 Re Reynolds number
437 Pr Prandtl number
438 f friction factors
439 EDTA Ethylenediaminetetraacetic acid
440 Ra Average surface roughness
441
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