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Abstract The ability to model the behaviour of arbitrary dynamic system
is one of the most useful properties of recurrent networks. Dynamic ridge
polynomial neural network (DRPNN) is a recurrent neural network used for
time series forecasting. Despite the potential and capability of the DRPNN,
stability problems could occur in the DRPNN due to the existence of the
recurrent feedback. Therefore, in this study, a sufficient condition based on
an approach that uses adaptive learning rate is developed by introducing a
Lyapunov function. To compare the performance of the proposed solution
with the existing solution, which is derived based on the stability theorem for
a feedback network, we used six time series, namely Darwin sea level pressure,
monthly smoothed sunspot numbers, Lorenz, Santa Fe laser, daily Euro/Dollar
exchange rate and Mackey-Glass time-delay differential equation. Simulation
results proved the stability of the proposed solution and showed an average
21.45% improvement in Root Mean Square Error (RMSE) with respect to
the existing solution. Furthermore, the proposed solution is faster than the
existing solution. This is due to the fact that the proposed solution solves
network size restriction found in the existing solution and takes advantage
of the calculated dynamic system variable to check the stability, unlike the
existing solution that needs more calculation steps.

Waddah Waheeb

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, Batu Pahat, Johor, Malaysia

E-mail: waddah.waheeb@gmail.com

Rozaida Ghazali

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, Batu Pahat, Johor, Malaysia

E-mail: rozaida@uthm.edu.my

Abir Jaafar Hussain
Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
E-mail: a.hussain@ljmu.ac.uk



2 Waddah Waheeb et al.

Keywords Dynamic ridge polynomial neural network - Recurrent neural
network - Higher order neural network - Time series forecasting - Adaptive
learning rate - Lyapunov function

1 Introduction

Time series is a sequence of observations for a variable of interest made over
time. Time series is used in many disciplines for things such as daily exchange
rate price, quarterly sales and annually sunspots numbers. Time series fore-
casting is defined as an estimation of the future behaviour of a time series
using current and past observations [30].

Various methods for time series forecasting have been developed. From
statistics-based to intelligence-based, there are a range of methods available
to make a forecast. Intelligent methods such as Artificial Neural Networks
(ANNs) have been successfully used in time series forecasting [9,[22}/34}52].
During training, ANNs use historical data to build a model that has the ability
to forecast future observations.

ANNSs have a non-linear input-output mapping nature that allow them to
approximate any continuous function with an arbitrary degree of accuracy.
ANNSs are less susceptible to model misspecification than other parametric
non-linear methods because the non-linear input-output mapping in ANNs is
generated with little priori knowledge about the non-linearity in the series [37,
52].

Higher order neural networks (HONNs) have been used successfully for
time series forecasting [9,/16122}23,/39}|41]. They have a single layer of train-
able weights which enables faster network training. Ridge Polynomial Neural
Network (RPNN) [43] is a HONN that maintains fast learning and powerful
mapping properties, which makes it suitable for solving complex problems [23].

For time series forecasting, an explicit treatment for the dynamics involved
is needed for neural network models because the behaviour of some time series
signals are related to past inputs that present inputs depend on [24]. For
that, a recurrent version of the RPNN was proposed and named Dynamic
Ridge Polynomial Neural Network (DRPNN) by [24]. Recurrent networks learn
the dynamics of the series over time and store them in their memory, and
then use these memories when forecasting [40]. RPNN and DRPNN have been
successfully applied to forecast time series |9}/22124], with DRPNN the most
suitable for time series forecasting.

Despite the potential and capability of the DRPNN, the problems of com-
plexity and difficulty of training could occur in the DRPNN [22]. To tackle
these problems, a sufficient condition for the convergence of the DRPNN was
derived based on the stability theorem for a feedback network proposed by
Atiya [11]. This solution adjusts the weights of the network to generate net-
work outputs that get as close as possible to the desired output [22]. However,
this solution could be too restrictive in some cases where a large network is
necessary |11]. Therefore, feedback network stability theorem is restrictive and
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causes lower forecasting accuracy with many time series where more accurate
forecasts are needed such as financial or disaster forecasting.

In an attempt to overcome the stability problems for DRPNN; in this work
a sufficient condition based on an approach that uses adaptive learning rate
is developed by introducing a Lyapunov function. Such approach has been
used effectively with different recurrent ANNs models such as fully connected
recurrent networks [31], recurrent wavelet elman neural network [33] and self-
recurrent wavelet neural network [54].

The contributions made by this study are as follows:

— To tackle the problems of complexity and difficulty of training for DRPNN,
a sufficient condition based on an approach that uses adaptive learning rate
is developed by introducing a Lyapunov function. Then, we applied it for
time series forecasting.

— A comparative analysis of the proposed solution with the existing solu-
tion was completed using six time series, namely Darwin sea level pres-
sure, monthly smoothed sunspot numbers, Lorenz, Santa Fe laser, daily
Euro/Dollar exchange rate and Mackey-Glass time-delay differential equa-
tion.

— The forecasting performance of DRPNN with the proposed solution was
compared with other models in the literature.

The remainder of this study is organized as follows. In Section 2, we review
the dynamic ridge polynomial neural network and the existing solution for its
stability. In Section 3, we present the proposed solution. Section 4 describes the
experimental design. Section 5 presents results and discussion. The conclusion
is given in Section 6.

2 Related works

The following subsections describe the dynamic ridge polynomial neural net-
work and stability issue found in it.

2.1 Dynamic ridge polynomial neural network (DRPNN)

Time series forecasting requires explicit treatment of dynamics because present
inputs of the time series depend on some past inputs [22]. Neural networks with
recurrent connections are dynamic systems with temporal state representa-
tions. Due to their dynamic structure, they have been successfully used for
time series forecasting [14,22}36]. Dynamic ridge polynomial neural network
(DRPNN) is a recurrent neural network. It has the extension architecture and
functionality of the feedforward ridge polynomial neural network (RPNN). By
incorporating the recurrent connection, DRPNN is better able to model the
dynamics of time series as compared to RPNN and many other higher order
neural networks techniques as found in [9}21,22}[24].
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The structure of DRPNN is shown in Fig. [Il DRPNN is constructed from
a number of increasing order of Pi-Sigma units [42] with the addition of a
recurrent connection from the output layer to the input layer. This recurrent
connection feeds the network output to the summing nodes in each Pi-Sigma
units, thus allowing them to see the resulting output of the previous sample.
All weights are fixed to unity except the weights link the inputs with the first
summing layer as shown in Fig.

y(t+1)

Transfer function

Pi-Sigma blocks

Adjustable weights

Inputs

Fig. 1: Dynamic Ridge Polynomial Neural Network. Z' denotes the time delay
operator.

DRPNN uses a constructive learning algorithm based on the asynchronous
updating rule of the Pi-Sigma unit. That means that DRPNN starts with a
small basic structure, then grows by adding Pi-Sigma unit of increasing order
to its structure as the learning proceeds until the desired mapping task is car-
ried out with the required degree of accuracy. Real Time Recurrent Learning
algorithm [51] is used to update network weights. The output of the DRPNN
network are given by:

k
yt+1) ~o (Z Pi(t+ 1>> (1)

i=1

%

Pt +1) = [] (hs(t +1)) (2)

Jj=1

m—+1
hi(t+1) =Y wy;Zy(t) (3)
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B zg(t) 1<g<m
Zg<t>—{y(t) e (W

where k is the number of PSNN blocks, ¢ is a non-linear transfer function,
m is input vector dimension size, w is a trainable weight, x is an input and
y(t) is network output at previous time step.

Sum squared error is used as a standard error measure for training the
network as follows [22/24]:

E@+1%:%§:dt+nz (5)

where

e(t+1)=d(t+1)—y(t+1) (6)

where d(t + 1) is the desired output and y(¢ + 1) is network output. At every
time, the weights between inputs ¢ and sigma [ are updated as follows:

OE(t+1)
Awg = —n * (&Ugl> (7)
where 7 is the learning rate. The value of %Il) is determined as:
OE(t+1) Oe(t+1)
v e(t+1)x* Dwg (8)
de(t +1) Oy(t+1)
dwg 0 ©)
gl Wyl
OE(t+1) dy(t+1)
T 1) 2222 1
D = e+ 1)« L (10)
Ay(t+1) _ y(t+1) . OP,(t+ 1) (11)
8wgl 0Py (t + 1) 8wgl
From to , we have:
Ay(t +1) , i Ay(t)
45@;7:@@H»* IT n+1) *Zﬂw+wwﬂﬂw%af(m)

J=1,5#1

Assume DY as the dynamic system variable, which is defined as a set of
quantities that summarizes all the information about the past behavior of the
system that is needed to uniquely describe its future behavior [26], where DY
is:

_oy(t+1)

Y R
Dyt+1) = 5k (13)
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Substituting into , we have:

dy(t+1)

DY (t+1
gl( + ) 6wgl

J=1,51
(14)
The initial values are D)(t) = 0, and y(t) = 0.5 to avoid zero value of
DY(t) =0 [22l224).
Weights updating rule is derived by substituting into then ,
such that

Awg =nxe(t+1) *D;/l(t—l—l) (15)
Finally,
wyr = wy 41 Nwg (16)

2.2 Stability issue for DRPNN

The ability to model the behaviour of arbitrary dynamic system is one of the
most useful properties of recurrent networks. Hence, the recurrent feedback in
DRPNN enhances its forecasting performance as found in [9}22,24]. Despite
the potential and capability of the DRPNN, the problems of complexity and
difficulty of training could occur in the DRPNN [22]. These problems can be
summarized in two main points. First, calculating the gradients and updating
the weights of the DRPNN is difficult because the dynamic system variables
affect both the gradient and the output. Second, the learning error may not be
monotonically decreasing which could lead to long convergence time. To tackle
these problems, a sufficient condition for the convergence of the DRPNN was
derived based on the stability theorem for a feedback network proposed by
Atiya [11].

This stability theorem adjusts the weights of the network to generate net-
work outputs that get as close as possible to the desired output [22]. According
to [22], the condition for DRPNN to converge based on the feedback network
stability theorem is described by:

M+2

Ak
1
maz Z (Wr(ar+2)| * H > Wl < tmazl ] (A7)
k=1L=1

=1 S=1,5#L m=1

where A is the number of PSNN blocks, Wy (yr42) is the weights that link the
recurrent node with hidden layer nodes, and f is a nonlinear transfer function.

The pseudo code used to update the weights of DRPNN based on the
feedback network stability theorem is as follows:

= (1) x| [T st +1) | #(Z4(t) + wimpay x D (1))
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Algorithm 1 Constructive learning algorithm for the DRPNN with feedback
network stability theorem

Set Epochip = 0.

Assign suitable values to €tpreshoids 7, 7, Or, 0 and Epochinreshold-

loop
Calculate P; using Equation

A:
for all training samples do
Calculate actual network output using Equation
Calculate the dynamic system variable using Equation
Update weights by applying the asynchronous update rule in Equation
> START STABILITY CALCULATION
Network stability calculation for both sides in Equation
> END STABILITY CALCULATION
end for
Calculate current epoch’s error (e.)
if €c < €threshota or Epochip > Epochipreshota then
Stop learning
end if
Epochip <+ Epochrp +1
€p — €c
if |(ec — €p)/€ep| > r then
Go to Step A
else
> START STABILITY CHECKING
if Stability condition in Equation is not satisfied then
Stop learning
end if
. > END STABILITY CHECKING
Pk — Pk
T4 T *0n
IR
k+—k+1
end if
end loop

where €ipreshoia: Mean Squared Error (MSE) threshold for the training
phase; €, €,: the training MSE’s for the current epoch and previous epoch,
respectively; r: threshold for successive addition of new PSNN blocks; 7: initial
learning rate; d,., d,: decreasing factors for r and 7, respectively; k: degree of
PSNN, as well as Epochrp, and Epochipresholq : number of training epochs
and maximum number of epochs to finish training, respectively.

The feedback network stability theorem was used with recurrent networks
for problems such as pattern recognition and time series forecasting as shown
in Table [I However, this solution is restrictive in some cases where a large
network is necessary [11] or when working with constructive learning because
it stops the learning with small number of hidden units. Furthermore, when we
are working with time series forecasting, we are considering only the problem of
learning trajectories, not learning fixed points [12]. Therefore, another solution
is needed to solve network size restriction and overcome stability issue.
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Table 1: Studies used the feedback network stability theorem

Model name Problem Stability theorem role

RBP [13] Time independent pat- Used to guarantee a solution
tern recognition for the network

RPSN (28] Differential pulse code Used to derive a condition for
modulation image cod- RPSN to converge
ing

RPSN [29] Time series forecasting  Used to derive a condition for

RPSN to converge
DRPNN [22] Time series forecasting ~ Used to derive a condition for

DRPNN to converge
Hybrid neural network  Classification of graph  Used to guarantee the conver-
|25] structured data gence of the state vector

DRPNN = Dynamic ridge polynomial neural network
RBP = Recurrent backpropagation
RPSN = Recurrent pi-sigma neural network

3 Proposed solution for DRPNN stability issue based on Lyapunov
function

In an attempt to overcome the stability problems for DRPNN;, in this work a
sufficient condition based on an approach that uses adaptive learning rate is
developed by introducing a Lyapunov function. Such approach has been used
effictively with different models such as fully connected recurrent networks [31],
recurrent wavelet elman neural network [33|, Adaptive Network based Fuzzy
Inference System [44], dynamic neural network [53] and self-recurrent wavelet
neural network [54].
First, let us define a Lyapunov function as follows:

V(t) = =€(t) (18)
where e(t) represents the error that is calculated by differencing the desired
value from the predicted value. We use this error function because the DRPNN
model is used to minimize it.

According to Equation (L8)), the change in the Lyapunov function can be
determined by:

AV() = V(E+1) ~ V() = 3 [t +1) — ()] (19)

The error difference can be represented by [33},53]:

e(t+1) =e(t) + Delt) (20)

e(t+1) 2 e(t) + [8§S)] Aw (21)
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where Aw represents the weight change. Based on Equations @D, and
, we have:

e(t+1) 2 e(t) —nxe(t)« [DY (1)]" * DY (1) (22)

e(t+1)=e(t)(1—nx [DY ()] « DY (1) (23)
From Equations and , AV (t) can be represented as:

AV(t) = %n +e2(t) « [DY(0)]" « DY (1) (n+ [DY ()]« DY (1) —2)  (24)

AV(E) = gne @)+ (I DY (1) 1) 0+ (I DY (1) |1)° —2)  (25)

where || . | is the Frobenius norm which is calculated by using trace func-
tion [44].
A sufficient condition to ensure stability is AV (¢) < 0. Therefore, Equation

leads to:

<n< —————5 26
"D 1) 2
Notice that Equation suggests an upper bound of 7 for a sufficient con-
dition to ensure stability in DRPNN. If the learning rate is controlled to be
within the bounds in Equation , the convergence and the stability are guar-
anteed based on the analysis of a Lyapunov function, as derived in
Al
The pseudo code that we will use for DRPNN to update its weights based

on Lyapunov function is as follows:

Algorithm 2 Constructive learning algorithm for the DRPNN with Lyapunov
function

Set Epochip = 0.
Assign suitable values to €ipreshold, 1, 75 Or, 0y and Epochipreshold-
loop
Calculate P; using Equation
A:
for all training samples do
Calculate actual network output using Equation
Calculate the dynamic system variable using Equation
> START STABILITY CHECKING
if n outside the bounds in Equation then
Stop learning
end if

> END STABILITY CHECKING
Update weights by applying the asynchronous update rule in Equation
end for
Calculate current epoch’s error (e.)
if €c < €threshold O Epochip > Epochipresholda then
Stop learning
end if
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Epochrp < Epochip + 1
€p  €c
if |(ec — €p)/€p| > r then
Go to Step A
else
Pk — Pk,
r 4 1r*d,
1N =N * 0y
k+—k+1
end if
end loop

4 Experimental design

The aim of this section is to provide a step by step methodology that we
will use to compare the performance between the proposed solution and the
existing solution to forecast time series.

Time series used in the experiments

Six time series have been used in our work, namely Darwin sea level pres-
sure (Darwin SLP), monthly smoothed sunspot numbers (Sunspot), Lorenz
(Lorenz), Santa Fe laser (Laser), daily Euro/Dollar exchange rate (EUR/USD)
and Mackey-Glass time-delay differential equation (Mackey-Glass).

The first time series is the Darwin sea level pressure time series which
consists of monthly values of the Darwin sea level pressure for the years 1882-
1998. The dataset can be downloaded from [1].

A sub-series of the monthly smoothed sunspot time series from November
1834 to June 2001 was downloaded from [4]. This time series is sensitive to
initial conditions because it can be seen as chaotic systems with noise [8|.

The third time series is Lorenz time series obtained from [2]. It is a long
synthetic chaotic time series of 16384 samples. The last 4000 samples are
considered in this work.

Santa Fe laser time series obtained from a far-infrared laser. This time
series has periods of oscillations with increasing amplitude, followed by sudden,
difficult to predict, activity collapses [20]. Santa Fe laser time series can be
downloaded from [6]. Six inputs were used for one-step-ahead forecasting as
reported in [46].

The daily Euro/Dollar (EUR/USD) exchange rate contains 781 observa-
tions covering the period from January 3, 2005 to December 31, 2007 [27]. The
data can be collected from [51[7].

The last time series is the well-known Mackey-Glass time series which is

defined as follows: J t )
x ax(t—71

Pt t
P w1
where t is a variable, x is a function of ¢, and 7 is the time delay. The initial
values of the series are « = 0.2, § = —0.1, (0) = 1.2, and 7 = 17. It is known

(27)
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that with this setting the series shows chaotic behaviour. From the generated
time series, 1000 points were extracted as explained in [35]. This series can be
found in the file mgdata.dat in MATLAB [35] or in [3].

The time series settings used in this research are shown in Table The
used intervals for training and out-of-sample sets for all used time series are

shown in Fig.

Table 2: Time series information.

Time series Input-output data pairs Training Out-of-
samples# | sample
samples#

Darwin SLP l(t —11),2(t — 6),2(t — 3),z(t — 2),z(t — | 933 467
L2t + 1)]

Sunspot z(t—4), z(t—3), z(t—2), z(t—1), z(t); z(t+1)] | 1000 1000

Lorenz z(t —3),z(t — 2),z(t — 1), z(t); z(t + 1)] 2000 2000

Laser z(t —19),2(t — 10),2(t — 9),z(t — 7),z(t — | 1000 9093
1), 2(t); 2(t + 1)

EUR/USD 2(t — 10), 2(t — 5, (2); 2(t + 5)] 625 156

Mackey-Glass | [z(t — 18),z(t — 12), z(t — 6), z(¢); z(t + 6)] 500 500

Network topology and training

Table [3|shows network topology and training parameters used in this paper.
These settings are based on [9,[22,[24] or by trial and error.

Table 3: Network topology and training.

Setting Value
Learning rate (7) range 0.01-1]
Momentum range 0.4-0.8]
Initial weights range -0.5,0.5]

Number of input units

Input points as given in Table

Transfer function

Sigmoid function

Number of output units

One unit

Stopping criteria for DRPNN

— Maximum number of epochs =3000 or,
— After accomplishing the 5th order network learning or,
— Network learning becomes unstable.

Threshold for successive addi- | [0.00001,0.1]
tion of a new PSNN (r)

Decreasing factors for n (dy) 0.8
Decreasing factors for thresh- | [0.05,0.2]

old (5,)
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Fig. 2: Time series used

Since we used sigmoid transfer function and to follow , we scaled

the data in the range [0.2, 0.8]. The equation to scale the data is given by:

. . T — Mineglg .
T = (MATpew — MiNpeyw) * - + Minpew (28)
Maxoig — MiNold
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where & refers to the normalized value, x refers to the observation value,
minegg and maxyq are the minimum and maximum values of all observations,
respectively. minge, and max, e, refer to the minimum and maximum of the
new scaled series.

Performance metrics

In this research work, the performance of the networks was evaluated using
Root Mean Squared Error (RMSE), Normalized Mean Squared Error (NMSE),
training time and network size. Furthermore, we carried out t-test with a
significance level of 0.05 to highlight the significant performance. The equation
for RMSE and NMSE metrics are given by:

Root Mean Squared Error (RMSE):

RMSE = |+ Z(yi - yE)2 (29)

Normalized Mean Squared Error (NMSE):

N
1 A2
NMSE = —— N
SE=No2 ?:1:(% vi) (30)
1 N
2 _ Z 2
1 N
y = —— ; 2
] N_llE:lyt (32)

where N, y and ¢ represent the number of out-of-sample data, actual output
and network output, respectively.

Results and discussion

In this section, the simulation results for the forecasting of the six time series
are presented and discussed. We carried out all simulations on a machine with
Intel Core i7-3770XPU@3.40GHz, and 4GB of RAM.
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Table 4: Root Mean Squared Error (RMSE) improvement of DRPNN 1,qpunov
to DRPNNfeedback-

Time series | DRPNNL apunov] DRPNN ¢ecapack| Improvement to DRPNN fecgback %
Darwin 1.1521 1.2405* 7.13%

SLP

Sunspot 2.7781 2.7781 ~ 0%

Lorenz 0.0876 0.1161* 24.55%

EUR/USD 0.007 0.0079* 11.39%

Mackey- 0.0131 0.0252* 48.02%

Glass

Laser 9.3152 14.9324* 37.62%

Average of improvement % 21.45%

These are the de-normalized results.

*

t-test.

Table 5: Normalized Mean Squared Error

DRPNNLyapunm) to DRPNNfeedback-

, means the DRPNN Ly 4punov has significant performance than DRPNN fcegpack using

(NMSE) improvement of

Time series | DRPNNLyapunov] DRPNNfecgpack| Improvement to DRPNN recgpack %
Darwin 0.1932 0.2239* 13.71%

SLP

Sunspot 0.0016 0.0016 ~ 0%

Lorenz 0.00015 0.00028* 46.43%

EUR/USD 0.0866 0.1092* 20.70%

Mackey- 0.0034 0.0173* 80.35%

Glass

Laser 0.0440 0.1007* 56.31%

Average of improvement % 36.25%

These are the de-normalized results.
*, means the DRPNN4punov has significant performance than DRPNN fccgpack using
t-test.

Best average simulation results

For fair and more robust comparative evaluation, an average of 30 independent
runs are performed for all the neural networks. This was done to avoid any
influence due to initial internal state such as random weights initialization. The
average performance for the two neural networks using RMSE and NMSE
metrics is shown in Table [4] and Table [5] respectively. DRPNN fecgpack and
DRPNN Lyapunov refer to the existing DRPNN with feedback network stability
theorem and the proposed DRPNN with Lyapunov function, respectively. Note
that in these two tables we de-normalized the forecasted value and compared
it with the original desired value.

As seen from Table [4] and Table 5| the forecasting performance of the
DRPNN yapunov network is significantly better than the DRPNN fccgpack net-
work in all time series except Sunspot time series. The reason for the absence
of any significance in Sunspot is because both networks found best average



Title Suppressed Due to Excessive Length 15

Table 6: Network size and average training time for DRPNNryqpuno» and
DRPNNfeedback~

Network size Avg. training time in seconds
Time series DRPNNLyapuno'u DRPNNfecdback DRPNNLyapunov DRPNNfeedback
Darwin SLP 70 42 199 421
Sunspot 7 7 299 405
Lorenz 36 36 538 463
Laser 80 24 308 412
EUR/USD 50 5 137 234
Mackey-Glass 90 36 65 89
Improvement to | -122% 23.62%
DRPNNfeedback

Network size equals the number of weights and biases.

simulations with same parameters setting and network size. Although the net-
work size for both networks are equal with Lorenz time series as shown in
Table @, there is a significance in the performance with DRPNNy4punov. This
is because the parameter settings for the best average for both networks are
different.

Results in Table [4 and Table |5| show an average 21.45% improvement
in RMSE and an average 36.25% improvement in NMSE with respect to
DRPNN fcedqpact network. That means that using the proposed solution helps
DRPNN to grow and find more suitable parameter settings during training,
thus helping to enhance the forecasting performance for the network. The
summary of Table [6] shows that the proposed solution needs more size than
the existing solution. However, network size does not increase training time.
This is because the proposed solution takes advantage of the calculated dy-
namic system variable to check the stability, unlike the existing solution that
needs more calculation steps. The training time with Lorenz time series for
DRPNN yapunov is bigger than DRPNN fccqpack because it needs more epochs
to learn from this long time series.

Fig. [3| shows the subtraction of the RMSE of DRPNN fcedpacr from the
RMSE of DRPNNyapunos With all time series in the 30 simulations. And for
NMSE, the subtraction results were plotted in Fig. d] In these stem plots,
a stem in the positive y axis means DRPNN4punov has smaller error than
DRPNN feedpack in that simulation experiment, but if the stem is in the nega-
tive y axis, DRPNN fcedpack has smaller error than DRPNNyapunov. As seen
from these stem plots, the majority of the stems are in the positive y axis. We
can also notice the absence of any stem in some simulations especially with
Sunspot time series. This is because there is no difference in the performance.
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Learning analysis for DRPNN 1yqpunov

Fig. [5|shows the evolution of RMSE during the learning of DRPNN 1 yqpunov-
Each spike shown in the figures comes from the introduction of a new Pi-Sigma
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block to DRPNNqpunov- It can be seen from these figures that the learning
curves for DRPNN_ 1 4punov are remarkably stable and RMSE continuously
reduced every time Pi-Sigma block is added to the network. Note that the
RMSE values in these subfigures are normalized values.
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Comparison of the performance of various existing models

In this section, we compare the performance of DRPNNyqpunos With other
models in the literature. For a fair comparison with recent studies, this study
compared the de-normalized results for the DRPNNyqpuno» With de-normalized
published results in the literature.

Tables[7]and [§ show the comparison results for generalization capabilities
using different methods for the Sunspot and Mackey-Glass time series, re-
spectively. As was observed, DRPNN4punov alone outperforms many hybrid
methods. Therefore, hybridizing DRPNNpyqpunov With other models could
produce higher forecasting accuracy. The best RMSE for Darwin SLP, Lorenz,
Laser and EUR/USD time series using DRPNNpyqpunov is 1.1144, 0.04667,
6.54212 and 0.0068, respectively. The best forecasting for DRPNNryupunov
using out-of-sample data are shown in Figs. [} The forecast values were
plotted with respect to observed values, as shown in Fig. which show a
strong relationship between forecasted and observed values with most time
series.

Table 7: Comparison of the performance of various existing models on Sunspot
time series.

Model RMSE NMSE
FNN [19] 6.4905 | 0.0174
ART-FNN [19] 6.2204 | 0.0160
Modified-ART-FNN [19] 5.7173 0.0135
PSNN [47] - 0.0044
FLNN [47] - 0.0015
DRPNN [ apunov (Proposed) 1.9542 | 0.0008
Brain emotional learning-based RFS [38] | - 0.000664

ART, adaBoost.regression and threshold; FLNN, functional link neural network; FNN,
fuzzy neural networks; DRPNN, dynamic ridge polynomial neural network; PSNN,
pi-sigma neural network; RF'S, recurrent fuzzy system.
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Table 8: Comparison of the performance of various existing models on Mackey-
Glass time series.

Model RMSE
Fuzzy modeling method with SVD [50] 0.0894
Gustafson-Kessel fuzzy clustering method + KFA with SVD [49] 0.0748
Orthogonal function neural network + recursive KFA based on SVD [48] [ 0.05099
Adaptive fuzzy inference system with local research |55| 0.045465
FLNN [47] 0.03656
Beta basis function neural networks + DE algorithm [17] 0.030
Dynamic evolving computation system [15] 0.0289
Backpropagation Network Optimized by Hybrid K-means-Greedy |45| 0.015
Modified DE and the radial basis function [18] 0.013
PSNN [47] 0.0118
DRPNN/ qpunov (Proposed) 0.0105
Takagi-Sugeno fuzzy system-singleton + simulated annealing [10] 0.00898
Functional-link-based neural fuzzy network-cultural cooperative PSO [32] | 0.008424

DE, differential evolution; FLNN, functional link neural network; DRPNN, dynamic ridge
polynomial neural network; KFA, kalman filtering algorithm; PSO, particle swarm
optimization; PSNN, pi-sigma neural network; SVD, singular value decomposition.
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Fig. 6: Out-of-sample forecasting for Darwin sea level pressure time series
based on the best DRPNNy 4punoy simulation
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Limitations of DRPNNpyapunov

Apart from improved forecasting accuracy and training speed, there is one
main limitation of DRPNNpyupunov compared to DRPNN feedpack, which is
network size. This is because the proposed solution solves network size restric-
tion found in DRPNN fecqpack, which stops the network from growing. This
implies a trade-off between forecasting accuracy and the amount of memory.
Overall, we would favor DRPNN 1y punov 0ver DRPNN yeeqpacr for its more
accurate and faster training, even while sacrificing network size, especially for
some applications such as financial or disaster forecasting that require more
accurate forecasts.

Conclusion

In this study, a sufficient condition based on an approach that uses adaptive
learning rate was developed by introducing a Lyapunov function. This solution
was proposed to tackle the problems of complexity and difficulty of training for
DRPNN. This study demonstrated the effectiveness of the proposed solution
by testing it on six time series. This study compared the proposed solution
with the existing solution which is derived based on the stability theorem
for a feedback network. Simulation results showed that the DRPNN with the
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proposed solution improves the forecasting accuracy as well as the training
speed as compared with the existing solution.

Appendix A

Theorem 1 Letn be the learning rate parameter of the connecting weights of the DRPNNL,yapunov-
Then the convergence and stability are guaranteed if n is chosen as

0<n< —FF—— (A1)
(I DY) llr)
Proof Let us define a Lyapunov function as follows:
L,
V(t) = 56 () (A.2)

According to Equation (A.1), the change in the Lyapunov function can be determined
by:

AV(E) = V(E+1) = V(E) = % [€2(t + 1) — 2(8)] (A.3)
The error difference can be represented by :
e(t+1) =e(t) + Ae(t) (A.4)
de(t)]1T
e(t+1)e(t) + [BT} Aw (A.5)

where Aw represents the weight change. Since,

oe(t) __ou(t)

ow ow (A-6)
DY(t) = 83—5? (A7)
Aw =nxe(t)* DY (t) (A.8)
Thus,
T
e(t+1) 2 e(t) — nxelt) x [Dy(t)] « DY () (A.9)
T
e(t+1) 2 e(t)(1—n* [Dy(t)} « DY (1)) (A.10)
e(t+1) < el —n = [D¥ (0] = DY @) (A1)
e(t+1) < el = (I DY @) [17) (A.12)

if 7 is between the bounds in Equation , the term [|(1—n= (|| DY (t) HF)2|| in Equation
is less than 1. Therefore, the sufficient condition to ensure stability, which is AV (t) <
0, is guaranteed. The error will converge to zero as t — oo, which lead to a stable learning.
This completes the proof of the theorem.
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