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8 Abstract The Younger Dryas interval (YD) was a

9 period of widespread, abrupt climate change that

10 occurred between 12,900 and 11,700 cal yr BP

11 (10,900–10,000 14C BP). Many sites in the Northern

12 Hemisphere preserve a sedimentary record across the

13 onset of the YD interval, including sites investigated

14 in sedimentary basins located in central Mexico

15 (Chapala, Cuitzeo, Acambay), the Basin of Mexico

16 (Tocuila), and northern Mexico (El Cedral). Deposits

17 consist of lacustrine or marginal lake sediments that

18 were deposited during the Pleistocene and the

19 Holocene. At the Tocuila and Acambay sites, Pleis-

20 tocene fossil vertebrate assemblages, mainly mam-

21 moths (Mammuthus columbi), are found in association

22 with a distinctive organic layer, sometimes called the

23 black mat that formed during the YD. At the Chapala,

24 Cuitzeo, Acambay, and Tocuila sites the black mats

25contain a suite of distinctive microscopic and miner-

26alogical signatures and are accompanied by a sharp

27change in the depositional environments as supported

28by diatom and pollen studies reported here. The

29signatures include magnetic, Fe-rich microspherules,

30silica melted droplets with aerodynamic shapes (tek-

31tites), large amounts of charcoal, and sometimes

32nanodiamonds (Cuitzeo), all of which were deposited

33at the onset of the YD. The geochemistry of the

34microspherules indicates that they are not anthro-

35pogenic, authigenic or of cosmic or volcanic origin,

36and instead, were produced by melting and quenching

37of terrestrial sediments. Here, we present the stratig-

38raphy at five field sites, the analyses of magnetic

39microspherules, including major element composition

40and scanning electron microscopy images. All of these

41materials are associated with charcoal and soot, which
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42 are distinctive stratigraphic markers for the YD layer

43 at several sites in Mexico.

44 Keywords Stratigraphy � Lacustrine � Magnetic

45 microspherules � Abrupt change in

46 paleoenvironments � Charcoal

47 Introduction

48 The Younger Dryas boundary (YDB) impact hypoth-

49 esis proposes that multiple extraterrestrial impactors

50 collided with the Earth at *12,900 cal yr BP. One

51 impactor either exploded above or on the Laurentide

52 ice sheet causing destabilization of the ice sheet. It is

53 proposed that the impacts occurred over a short span of

54 a few days or less, affecting parts of four continents

55 (Firestone et al. 2007), The impact triggered extensive

56 biomass burning coeval with YD climate change

57 (Kennett et al. 2015), an abrupt cooling from*12,900

58 to 11,700 cal yr BP, in which temperatures almost

59 returned to ice age conditions in several parts of the

60 world, including Europe, eastern North America, and

61 Mongolia (Carlson et al. 2007; Choi et al. 2014).

62 Firestone et al. (2007) further suggested that the YD

63 climate episode is associated with declines/reorgani-

64 zations of human populations in North America,

65 coincident with the mass extinction of 35 species of

66 vertebrates, mainly megafauna, such as mammoths,

67 camels, mastodonts and sabre-toothed cats.

68 These impacts deposited impact-related proxies,

69 including highly ornamented magnetic micro-

70 spherules, high-temperature meltglass (tektites), car-

71 bon spherules, glass-like carbon, aciniform carbon

72 (soot), and nanodiamonds (Firestone et al. 2007; Tian

73 et al. 2011; Bunch et al. 2012; Kinzie et al. 2014;

74 Wittke et al. 2013). Many of the YDB sites previously

75 studied were dated to approximately 12,900 cal yr BP

76 (Kurbatov et al. 2010; Kennett et al. 2015). The impact

77 hypothesis has generated heated opposition and crit-

78 icism. Some of the criticism is focused on the age

79 uncertainty of this proposed event (Meltzer et al.

80 2014). In order to calculate the most precise age

81 possible, Kennett et al. (2015) performed Bayesian

82 analyses, using the IntCal-13 calibration curve for 354

83 radiocarbon dates from 23 different stratigraphic

84 sections in 12 countries. This study showed that the

85 age of the YDB event falls between 12,835 and

8612,735 cal yr BP (10.9 14C ka BP radiocarbon years)

87at a 95% probability, and this age coincides with the

88onset of the YD cooling episode (Kennett et al. 2015).

89However, Cooper et al. (2015) propose that a pre-

90YD warming episode led to the demise of the

91megafauna. On the other hand, it was proposed that

92the disruptions both in human and animal populations

93were likely due to impactors that produced extensive

94fires and clouds of atmospheric dust and soot, resulting

95in a decreased insolation that severely affected

96photosynthesis (Firestone et al. 2007). At many of

97the YD-age sites investigated, the reorganization/

98decline in human populations and megafaunal extinc-

99tions are proposed to have occurred immediately

100before the deposition of a dark organic-rich sedimen-

101tary layer, sometimes called a ‘‘black mat,’’ suggesting

102a strong correlation of the black mat layer with

103wildfires and climate change (Firestone et al. 2007).

104For example, at several Clovis Palaeoindian sites in

105the USA (Murray Springs, Arizona; Blackwater Draw,

106New Mexico; and Topper, South Carolina) (Fig. 1),

107the black mat forms a distinctive stratigraphic marker

108at the onset of the YD climate change and is marked by

109peak abundances of charcoal fragments from a major

110episode of biomass burning. Holliday (1985) and

111Quade et al. (1998) initially described the black mats

112as sapropels and Scott et al. (2010) suggested that the

113black mats are associated with algal blooms and fungi.

114Similarly, Haynes (2008) interpreted the black mats as

115resulting from algal production related to swampy,

116high spring discharge and a high water table under

117cold and humid conditions. More recently, Harris

118Parks (2016) studied 25 different black mats in

119Arizona, New Mexico, Texas, and Nevada, conclud-

120ing that the organic matter found in the layers was

121derived from herbaceous taxa.

122Although some black mats, especially those in

123northern Europe, are associated with wildfires (Fire-

124stone et al. 2007), most researchers agree that some

125black mats formed primarily because of major envi-

126ronmental changes that occurred at the beginning of

127the YD cooling episode, which resulted in major

128changes in atmospheric and oceanic circulation pat-

129terns (Firestone et al. 2007). The most widely accepted

130explanation is that the YD climate change resulted

131from the alteration of oceanic circulation by a massive

132meltwater pulse into the Arctic Ocean (Tarasov and

133Peltier 2005; Carlson et al. 2007; Carlson 2010;

134Renssen et al. 2015) that triggered the shutdown of the
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135 Atlantic Meridional Overturning Circulation

136 (AMOC). Alternatively, some researchers propose

137 that YD climate change was produced by an unusual

138 combination of different processes, such as an

139 increased atmospheric dust load, due to reduction in

140 atmospheric levels of methane and nitrous oxide

141 (Renssen et al. 2015). Firestone et al. (2007) added an

142 additional component by proposing that an extrater-

143 restrial impactor triggered the meltwater flooding that,

144 in turn, resulted in the shutdown of the AMOC, which

145 initiated the YD cooling episode.

146 European and North American YD-age black mat

147 deposits are nearly always associated with a diverse

148 assemblage of unusual, impact-related proxies,

149 including Fe-rich, dendritic microspherules, high-

150 temperature meltglass, nanodiamonds, iridium, plat-

151 inum, osmium, along with charcoal and burnt

152 biomass. This association led Firestone et al. (2007)

153to suggest that the formation of the black mats at

15412,900 cal yr BP resulted from the YDB impact

155event that triggered abrupt YD climate change that, in

156turn, produced widespread environmental change and

157extensive wildfires. Alternatively, some researchers

158(Haynes 2008; Scott et al. 2010) suggested that YDB

159microspherules are associated with volcanic ash or

160are simply produced due to the normal, daily influx of

161meteoritic debris. However, Wittke et al. (2013)

162demonstrated that the composition of YDB spherules

163is inconsistent with a volcanic or meteoritic origin,

164and instead, they appear to result from surficial

165terrestrial sediments that were melted by the extrater-

166restrial impacts. Israde-Alcántara et al. (2012) and

167LeCompte et al. (2012) have demonstrated that

168spherules are present only in the YDB strata and do

169not occur in sediments above or below, supporting an

170impact-related origin.

Fig. 1 Location of Mexican studied sites: (a) Tocuila, (b) Lake

Acambay, (c) Lake Cuitzeo, (d) Lake Chapala, (e) El Cedral.

Also in triangles are shown the locations of several YD sites

from USA: (1) Daisy Cave, California; (2) Arlington Canyon,

California; (3) Murray Springs, Arizona; (4) Lindenmeir,

Colorado; (5) Bull Creek, Oklahoma; (6) Blackville, South

Carolina; (7) Topper, South Carolina; (8) Kimbel Bay, North

Carolina; (9) Newtonville, New Jersey
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171 Similar climatic and associated sedimentation

172 changes, along with impact-related proxies, such as

173 melted microspherules, have been observed at the time

174 of the YD in stratigraphic sections at nearly 40 sites

175 across five different continents, mainly in the Northern

176 Hemisphere These include sites in the USA (Firestone

177 et al. 2007; Kennett et al. 2009) (Fig. 1), Europe

178 (Andronikov et al. 2011), east Asia (Andronikov et al.

179 2013), Greenland (Kurbatov et al. 2010), Venezuela

180 (Mahaney et al. 2010a, b), and in lake sediments from

181 Lake Cuitzeo inMexico (Israde-Alcántara et al. 2012).

182 The Pleistocene–Holocene boundary has been identi-

183 fied in several lakes in Central America, including

184 Lake Peten Itza (Bush et al. 2009), La Chonta Bog in

185 Costa Rica (Islebe and Hooghiemstra 2006) and Lake

186 Chalco in central Mexico (Lozano Garcı́a and Ortega

187 Guerrero 1994). All the lakes show a warm Bølling-

188 Allerød interstadial (pre-12,900 cal yr BP) with a

189 cooler YD (12,900 to 11,500 cal yr BP), followed by a

190 warm interval from 11,500 cal yr BP to the present. In

191 these lakes the two peaks in pollen that bracket the YD

192 with the presence of of Alnus,Quercus and Pinuswere

193 observed. All these records indicate higher lake levels

194 during the YD.

195 At Lake Chalco, forest pollen almost disappeared

196 during the YD and was only observed at the end of YD

197 interval (Lozano Garcı́a and Ortega Guerrero 1994). A

198 similar behavior was observed at Lake Cuitzeo

199 (Fig. 1). In other neighbouring lakes inside the

200 Chapala graben, further detailed sampling is needed

201 to find YDB proxies. Correlation of the YD with other

202 lake records is sometimes difficult because the sedi-

203 ments are disturbed by tectonism or bioturbation.

204 A 6.61 m long littoral core was collected from the

205 littoral zone of Lake Zirahuén (Ortega et al. 2010). At

206 3.73 m depth, with a date of 10,290 ± 60 C14 yr BP, it

207 is evident that there is a sharp irregular contact

208 overlying laminated oozes with gray laminae contain-

209 ing epiphytic taxa (Cocconeis placentula). Overlying

210 this deposit, in discordance, an organic-rich, sandy silt

211 shows an isolated peak of magnetic susceptibility. In

212 these organic-rich, sandy silts, diatoms change to a

213 planktonic community dominated by Aulacoseira

214 ambigua indicating an abrupt change in sedimentation

215 and in the diatom associations with more turbid and

216 wetter conditions (slightly higher lake levels) than

217 previously. A characteristic algal bloom represented

218 by a Pediastrum increase and the disappearance of the

219 fern, Isoetes in the same interval (at 3.73 m depth)

220indicates an ecological reorganization at the Pleis-

221tocene–Holocene boundary (Torres-Rodrı́guez et al.

2222012).

223In the Zacapu lake basin, west of Lake Cuitzeo, a

224trend to dry conditions during the late Pleistocene is

225interrupted by a 10 cm thick tephra interlayered with

226clays dated to 9750 C14 yr BP. In these strata, a peak

227of magnetic susceptibility has a positive correlation

228with high percentages of Total Organic Carbon (TOC)

229that are interpreted as an episode of humidity (Ortega

230et al. 2002). Further detailed sampling is needed to

231locate YDB proxies at this site.

232Anomalous organic-rich black mat layers, often

233containing proxies of biomass burning, such as peak

234concentrations in charcoal and soot, have been found in

235several lacustrine basins in Mexico (Israde-Alcántara

236et al. 2012). Ornamented Fe-rich microspherules have

237been found at the Pleistocene–Holocene boundary at

238several of these sites. This study examines YD black

239mat layers and the characteristics of magnetic

240spherules found at several sites in Mexico.

241Objectives

242The general objective was to reconstruct the stratig-

243raphy and paleoenvironments during the Pleistocene/

244Holocene transition at five sites in Mexico. Some sites

245contained megafaunal remains in marginal lake

246deposits, as at the Tocuila and Acambay sites. In

247particular, it was attempted to identify the presence of

248YD sediment layers and to study their characteristics,

249particularly the record of diatoms, pollen, soot and

250magnetic spherules. These sites are associated with

251paleolakes or recently drained lakes (Fig. 1) and

252include: (a) Tocuila lake margin; (b) Lake Acambay,

253(c) Lake Cuitzeo; (d) Lake Chapala, (e) El Cedral

254springs/marshes. The stratigraphy and reconstruction

255of the paleoenvironment were investigated across the

256boundary between the late Pleistocene and early

257Holocene.

258Methodology

259Field outcrops (trenches) were cleaned using a shovel

260and trowel at the Tocuila and El Cedral sites, sampling

261sediments every 20 cm or where changes in sedimen-

262tation occurred.
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263 At Lake Acambay and Lake Cuitzeo cores were

264 acquired using a long-gear coring system using

265 pneumatic pressure, at 1 m intervals. At Lake Chapala

266 a Usinger piston coring system was used. All the

267 sediment cores were sampled every 10 cm. The

268 Acambay and Cuitzeo cores are stored in refrigeration

269 at the University Michoacana and the Chapala core is

270 under refrigeration at the University of Guadalajara

271 (Fig. 1).

272 Stratigraphy

273 The description of the stratigraphic sequence and type

274 of sediments in both field outcrops and lake cores was

275 made with special emphasis on the late Pleistocene

276 and early Holocene sediments, especially before,

277 during, and after the YD transition.

278 Radiocarbon dating

279 Sampleswere selected for 14CAMS radiocarbon dating

280 based on high TOC values in sediment cores, or by

281 sampling visible charcoal levels, charcoal fragments or

282 mollusc layers in field outcrops. The AMS radiocarbon

283 dates were obtained from the National Ocean Sciences

284 Accelerator Mass Spectrometry (NOSAMS) facility at

285 Woods Hole (Massachusetts); Beta Analytic Labora-

286 tories (Miami); Oxford Radiocarbon Facility, UK and

287 the Geochronology Laboratory of the National Taiwan

288 University. The results were calibrated using theOxCal

289 (version 4.2) (Bronk-Ramsey 2005) with the IntCal-13

290 calibration curve (Bronk-Ramsey 2009). All dates are

291 expressed in radiocarbon years (14CBP), calendar years

292 before present (cal yr BP), or thousands of calibrated

293 years BP (ka BP), depending on the previously

294 published dates. In the text, we mostly use uncalibrated

295 radiocarbon dates (14C BP), but their calibrated equiv-

296 alents are included in Table 1.

297 Microspherule analysis

298 Using a strong, neodymium magnet, Fe-rich magnetic

299 grains were isolated from a slurry prepared from

300 sediments following the technique developed by

301 Israde-Alcántara et al. (2012). Afterwards, those

302 magnetic particles were wet sieved using sieves from

303 [150 to[53 lm that were visually screened, hand-

304 picked, and observed under a binocular zoom stere-

305 omicroscope. Carbon spherules were also extracted

306from a sediment slurry by flotation and hand picked for

307investigation. After selection, the magnetic micro-

308spherules and carbon spherules were fixed to SEM

309stubs for observation and analysis by energy-disper-

310sive X-ray spectroscopy (EDS) undertaken on a JEOL

311JSM-6480LV scanning electron microscope using

312standard analytical techniques.

313Organic material

314In the black sediments Total Organic Carbon (TOC)

315was determined with a UIC S014 coulometer coupled

316to a CM 5130 acidification module, based on the

317titration of a solution containing the CO2 produced by

318the calcination of sediments. Samples were crushed

319and 0.025 g of sediment was weighed, then placed on

320sterilized ceramic trays and dried in an oven. The

321percentage of organic carbon (TOC) was estimated by

322subtracting the TIC from the percentage of total

323carbon (TC) in each sample.

324Pollen analysis

3251 cm3 sediment samples were processed using routine

326pollen techniques (Faegri and Iversen 1989), using

327HCl, KOH, HF, and acetolysis to digest the samples. A

328minimum of 100 pollen grains was counted for each

329sample when possible because the samples contained

330few pollen grains in general. Only taxa with abun-

331dances[5% were plotted in the pollen diagrams. For

332Cuitzeo we displayed the pollen graph in grains/gm of

333sediment in order to compare with the number of

334spherules per gram of sediment. For this we weighed

335one cm3 of sediment to prepare the pollen samples.We

336expressed the number of grains/gm of sediment. Pollen

337diagrams are reported for the Tocuila andCuitzeo sites,

338but the El Cedral site had very few pollen grains

339preserved, so a full count was not possible.

340Diatoms

341Sediments were sampled for diatoms, taking a 1 cm3

342every 10 cm at all sites, except at Tocuila, which was

343sampled every 20 cm. Each sample of 0.5 g of dried,

344bulk material was boiled in 30% hydrochloric acid at

345100 �C to remove carbonates and repeated with

346hydrogen peroxide to eliminate organic matter. Sam-

347ples were rinsed with distilled water until a neutral pH

348was reached. It was not necessary to use nitric acid to
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354354354354354354 obtain cleaned frustules. Samples were mounted on

355 coverslips using Naphrax (refraction index = 1.7).

356 Diatoms were identified using an Olympus Bymax 50

357 light microscope at a magnification of 1000x. Taxo-

358 nomic identification was based on Krammer and

359 Lange Bertalot (1997a, b, 2004), and was compared

360 with previous studies of Mexican taxonomy (Israde-

361 Alcántara et al. 2010; Almanza Alvarez et al. 2016).

362 Generally, a minimum of 400 diatoms were counted

363 per slide, except when there were insufficient num-

364 bers, in which case, at least 200 diatoms were counted

365 per slide (Battarbee et al. 2001). Frustules were

366 counted only when more than a half of the frustule

367 was clearly identifiable and expressed as percentage

368 values. The main representative taxa are shown in the

369 diagrams with an abundance of[5%. Diatoms were

370 not preserved at the El Cedral site.

371 Results

372 Stratigraphy and paleoenvironments

373 Five studied sites in Mexico included lacustrine and

374 nearshore lake margins (Fig. 1) with altitudes varying

375 from 1528 m a.s.l. at Lake Chapala to 2533 m a.s.l. at

376 the drained, marshy Lake Acambay. In Fig. 2, the

377 stratigraphic sequences and thicknesses for each layer

378 are shown. The sites are mainly located in the Trans-

379 Mexican Volcanic Belt (TMVB), which formed as a

380 result of subduction of the Cocos and Rivera Plates

381 under the North American Plate and a NE-SW and an

382 E-W preferential fault and fracture system has devel-

383 oped since the Miocene that produced calcalkaline

384 volcanism (De Mets and Stein 1990) and a series of

385 lacustrine basins aligned along the graben in west

386 central Mexico (Israde-Alcántara et al. 2010). Only

387 the El Cedral site is located on the Central High

388 Plateau in Mexico at its boundary with the TMVB.

389 The stratigraphy at each of the sites ca. 1 m before

390 and 1 m after the YD is described, including the main

391 pollen and diatom taxa. In Fig. 2, the stratigraphic

392 sequences and thicknesses for each layer are shown.

393 Tocuila

394 The Tocuila site, rich in mammoth fossils is located

395 close to a former shoreline of Lake Texcoco in the

396 state of Mexico. The site was originally excavated and

397studied by Morett et al. (1998). Subsequently, Siebe

398et al. (1999), González and Huddart (2007) and

399González et al. (2014) discussed the stratigraphy,

400mammoth fossils, tephras, lahars and the diatom and

401pollen record at this site. The original excavation

402trench has been converted into an in situ museum,

403where it is possible to observe a channel infilled by a

404lahar derived from the Upper Toluca Pumice (UTP), a

405tephra marker for the Basin of Mexico. At least seven

406mammoths were found embedded in this lahar. The

407lake sediment sequence preceding the lahar can be

408observed in the north wall of the field museum (see

409Fig. 2a). The base of the sequence consists of black,

410basaltic ashfall (Sample 1), correlated with the Great

411Basaltic Ash and dated by Mooser (1967) to

41228,600 ± 200 14C BP. This stratum is overlain by

413oxidized sandy silt covered by a fine sand layer

414containing several bone fragments. Toward the top,

415the sediments become sandier and are covered by an

416irregular thickness (10–20 cm) layer of charcoal-rich,

417black fine silt. This organic-rich, black layer, contains

418magnetic Fe-rich microspherules and tektites at a

419depth of 1.70 m, reaching a peak concentration of

420260 microspherules (msph) per kg. An AMS 14C date

421for this black mat layer (González et al. 2014) is

42210,800 ± 50 BP 14C BP. The lake sequence was then

423eroded by a lahar channel which was filled with lahar

424deposits composed of reworked Upper Toluca Pumice

425ash. This ash is *10,500 14C BP and it is associated

426with the Nevado de Toluca Volcano activity (Arce

427et al. 2003; González and Huddart 2007). Two

428mammoths in the lahar sequence were radiocarbon

429dated to 11,100 ± 80 14C BP and 11,255 ± 75 14C

430BP. The calibrated age range of the mammoth bones is

43113,154–12,820 cal BP which overlaps the youngest

432part of the age range of the 12,835–12,735 cal BP for

433the YDP impact event (Kennett et al. 2015). The age of

434the mammoths may be coeval with the YDB event, but

435quite possibly it is older because the stratigraphy of the

436site. Finally, the sequence is capped by more lake

437sediments and an in situ rhyolitic ash dated to

43810,016 ± 39 14C BP (Table 1).

439Diatoms (Fig. 4) were studied from the same depths

440as the microspherules. A complete set of diatom

441abundance diagrams can be found in González et al.

442(2014). Epiphytic diatoms like Navicula sp., Gom-

443phonema sp. and Pinnularia sp. are found in the lower

444part of the section. Towards the top the assemblage

445changes to the motile benthic Anomoeoneis
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446 sphaerophora, Surirella wetzelii, and Campylodiscus

447 (the last in small percentages). This association is

448 remplaced by Surirella wetzelii and Anomoeoneis

449 sphaerophora. Sample 6 is from the black mat layer

450 and is characterized by Navicula sp., Gomphonema

451sp., and other motile benthic taxa, like Anomoeoneis

452sphaerophora.

453Pollen was analysed at Tocuila (González et al.

4542014), beginning with the Great Basaltic Ash at the

455base of the sequence which shows the presence of

Fig. 2 Stratigraphy and AMS radiocarbon dates (uncalibrated) of the studied sites: a Tocuila trench, b Lake Acambay core, c Lake

Cuitzeo core; d Lake Chapala core and e El Cedral trench. Black mats were present at all the sites
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456 Pinus, Quercus and Alnus. These taxa are in the same

457 proportion as taxa of Asteraceae and Poaceae.

458 Towards the top Pinus species dominate and in the

459 black mat, silty organic-rich layer, that was laid down

460 during the YD interval (see Table 1) there was an

461 increase in the proportion of Alnus.

462 In this black mat layer, there is also a peak

463 concentration of 260 Fe-rich microspherules (msph)

464 per kg (see Tables 2, 3).

465 Recently drained Lake Acambay

466 This site is located in the central portion of the TMVB

467 within the Morelia-Acambay and Tixmadeje E-W

468 fault system (Suter et al. 1992, 2001). It forms part of

469 the northern portion of the Acambay Graben, in which

470 an extensive lake developed during the Last Glacial

471 Maximum (LGM). A sediment core was taken at this

472 site and the stratigraphy is described as follows

473 (Fig. 2b):

474 Interval from 5.28 to 3.95 m depth: This interval

475 has alternating layers of sand and sandy silt becoming

476 silty towards the top of this layer (4.55 m). The silt

477 was dated to 16,296 ± 517 14C BP (see Table 1). The

478contact with the upper layer is erosional, with a silty

479sand and associated with a mammoth mandible and a

480mastodont molar. Both are currently in the local

481Acambay Museum. A date at the top of the layer

482associated with the fossils (at 4.0 m depth) gave an

483uncalibrated date of 12,100 ± 65 14C BP (Table 1).

484An abrupt sediment change is observed from 3.95

485to 3.85 m depth, where there is an interval of peaty,

486carbon-rich, laminated black clay (black mat) which is

487located between two dates: 12,100 ± 65 and

4888510 ± 40 BP 14C BP (see Table 1). Above the black

489mat, the interval from 3.87 to 3.25 m became lami-

490nated, with silty clay toward the top.

491Diatoms

492In the interval from 5.28 to 4.20 m depth, high

493percentages ([70% of the total abundance) of the

494diatoms, Stephanodiscus niagarae and Aulacoseira

495distans were present (Fig. 4b). From 4.20 to 3.95 m

496depth, Aulacoseira distans and Fragilaria capucina

497become the dominant taxa. The presence of this

498assemblage and the disappearance of Stephanodiscus

499niagarae are the result of a lower lake level and

Table 2 Chemical composition of selected microspherules in four studied Mexican sites

Site Weight percent

Spherule C O Fe Al Si Ca Mn Mg S K Na Ti Mo

Lake Acambay 1 14.86 26.66 56.87 0.40 0.63 0.20 0.37

2 3.90 35.28 38.94

3 4.49 34.85 37.70 0.54 0.12

4 3.63 34.98 36.34

5 3.40 31.56 38.97 0.11 0.24

Tocuila 6 35.5 42.12 22.34

7 19.83 50.96 1.64 4.99 16.07 2.02 1.05 0.71 2.07 0.27 0.40

8 7.57 24.56 67.86

9 21.63 29.95 1.21 0.65 19.75

10 7.57 24.56 67.86

Lake Cuitzeo 11 7.58 59.63 1.36 20.80 0.64 0.86 2.39 0.44 0.81

12 4.45 21.21 63.31

13 9.05 87.18 3.75

14 92.90 1.03 0.76 4.50 0.20 0.57

15 4.45 21.21 66.31

Lake Chapala 16 3.04 31.56 38.97 0.11 0.24

17 3.63 23.48 61.53 1.43

Acambay site contains nearly 100% iron oxide, with some C and minor amounts of trace elements in some spherules (Al, Si, Ca, and

Mn), which are most likely surface contamination
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500 increased turbidity. From 3.95 to 3.85 m, diatoms

501 disappear almost completely from the sedimentary

502 record, and this layer becomes an organic-rich black

503 mat.

504 On top of this layer from 3.85 to 3.25 m, diatoms

505 reappear in the record with the presence of Fragilaria

506 species and in small percentages, Epithemia turgida

507 and Eunotia minor.

508 Pollen was not well preserved in the sampled

509 interval.

510 In the organic-rich black mat layer, magnetic Fe-

511 rich microspherules were found, reaching a peak

512 abundance of 200 msph per kilo at a depth of 3.90 m

513 below the surface (Tables 2, 3), and they display a

514 wide variety of forms, including ovoid shapes, and

515 reach sizes of up to 60 lm.

516 Lake Cuitzeo

517 For Israde-Alcántara et al. (2012), obtaining accurate

518 dates for this lake’s strata was difficult because of

519 significant injections of older carbon of unknown

520 origin into the lake basin. Kinzie et al. (2014) used a

521 new date of 12,897 ± 187 cal yr BP from a nearby

522 trench to produce a new age-depth model identifying

523 the YD onset, and this new model supports the

524 conclusion of Israde-Alcántara et al. (2012) that the

525 depth corresponding to the YD onset was correctly

526 identified, based that conclusion on independent

527 palynological and climatic studies of Lake Petén Itzá

528in Guatemala, La Chonta Bog in Costa Rica, Lake La

529Yeguada in Panama, and the Cariaco Basin in the

530Caribbean (Bush et al. 2009; Islebe and Hooghiemstra

5312006; Mahaney et al. 2010a, b). Those studies showed

532that there is only one stratigraphic interval at each site

533that displays extraordinary climatic, environmental,

534and biotic changes, and in each case, this interval

535occurs at or near the age of the YD onset.

536The description of the stratigraphy and the pale-

537oenvironments of a core taken from the depocenter of

538Lake Cuitzeo has been described in Israde-Alcántara

539et al. (2012). Here we discuss the interval from 4.0 to

5402.0 m depth (Fig. 2c) as follows: Overlain by a 22 cm

541epiclastite layer (reworked volcanic sediment), a dark

542green clayey silt is present from 3.78 to 3.40 m in

543depth, becoming laminated toward the top and

544containing abundant gastropod remains. From 3.40

545to 3.03 m, the strata comprise finely laminated black

546clay, overlain by a 17 cm silty clay. Transitionally

547from 3.00 to 2.90 m in depth, the silty clay changes to

548dark, very fine sand with feldspar, halloysite, and

549montmorillonite clasts. From 2.90 to 2.85 m in depth,

550there is a plastic, dark brown clay with abundant

551organic matter and beige-colored, millimeter-sized

552clay clasts, with white veins. Above this stratum, there

553is a texturally mature fine sand, composed mainly of

554albite and mica.

555From 2.85 to 2.75 m in depth, macro-charcoal

556fragments become much more abundant (Fig. 3). At

5572.65 m, the number of macro-charcoal particles

Table 3 Abundance of microspherules in black mats at different depths in the studied sites: Chapala, Cuitzeo, Acambay and Tocuila

Chapala Cuitzeo Acambay Tocuila

cm Thick Msph cm Thick Msph cm Thick Msph cm Thick Msph

45 10 120

25 10 125

15 5 80

40 20 Nd 10 5 310 20 10 Nd

Above the event 20 20 Nd 5 5 215 10 10 200 10 10 86

Maximum abundance 0 20 394 0 7 2055 0 10 200 0 10 260

Below the event -20 20 153 -10 10 220 -10 10 0 -10 10 0

-40 -20 10 0 -20 10 0 -20 10 0

-30 10 0 -10 10 0

-40 10 0

-80 20 –

Msph microspherule, Nd not determined
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558 reaches an abundance of 8 9 104 per kilo of sediment.

559 At 2.85–2.75 m depth, there is a peak abundance of

560 microspherules at 2055 msphs per kg. The interval

561 from 2.75 to 2.50 m in depth is composed of massive

562 black clay with interlayered gray fine sand. The

563 interval between 2.50 and 2.0 m in depth consists of a

564 grayish green clay that becomes more finely laminated

565and organic towards the top. Silty sands covered by

566epiclastites overlie this stratum.

567Diatoms and Pollen (Figs. 3, 4c): From 3.40 to 2.85

568the freshwater periphytic diatom genus Staurosira is

569dominant, accounting for 100% of the total number of

570diatom valves per gram of dry sediment. Pollen from

571arboreal (Pinus, Quercus and Alnus) and aquatic taxa

Fig. 3 Paleoenvironmental proxies in Lake Cuitzeo based on

diatoms, pollen and macro-charcoal particles. The Cuitzeo core

showed changes in pollen concentration before and after the

event, as pollen concentration is sensitive to climate conditions.

Before the YD event pollen concentration of Pinus, Alnus and

Quercus pollen are high. During the YDB event it is observed, in

only one sample, the presence of Stephanodiscus niagarae

associate to a rapid deepening of the lake

Fig. 4 Some select diatom records from four studied sites:

Tocuila, Acambay, Cuitzeo and Chapala showing the main

paleoenvironmental changes during the Pleistocene–Holocene

transition. The horizontal gray line indicates the position of the

airburst event
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572 maintain low concentrations, reaching maximum

573 values at 2.90 m in depth with 5 9 105 grains/g

574 sediment, and pollen indicates a tendency towards a

575 deeper lake.

576 Transitionally the interval from 3.00 to 2.85 m

577 depth, shows abundant sponge spicules and the

578 frequency of Staurosira decreases. From 3.0 to

579 2.80 m pollen of both arboreal and non-arboreal

580 species markedly decrease toward the top and almost

581 disappears from the basin in this interval. From 2.85 to

582 2.75 m depth Stephanodiscus niagarae forms an

583 almost monospecific community, amounting to

584 *85% of the total diatom taxa, in only one sample.

585 At 2.80 m in depth and all periphytic and saline

586 diatom taxa disappear. Immediately after the Stephan-

587 odiscus niagarae bloom, macro-charcoal fragments

588 become much more abundant, amounting to up to

589 1 9 105macrocharcoal particles per gram of sediment

590 (Fig. 3). Microspherules in the 2.82–2.75 m depth

591 interval, show a peak abundance at 2055 msphs per

592 kg.

593 The interval from 2.70 to 2.50 m in depth is

594 composed of massive black clay with interlayered

595 gray fine sand in which the planktonic diatom

596 Stephanodiscus niagarae disappears, at the the same

597 time as Staurosira construens, a periphytic to plank-

598 tonic diatom, and other epiphytic taxa become dom-

599 inant again. The presence of turbid conditions at that

600 depth is indicated by the diatom Aulacoseira granu-

601 lata, Staurosira construens increases in abundance

602 after the black mat strata, but does not reach percent-

603 ages indicative of the previous warm conditions.

604 Typha pollen (Fig. 3) increases to its maximum, and

605 arboreal and non-arboreal taxa indicates evidence for

606 an increase in forest disturbance in the basin sur-

607 rounding the lake (Israde-Alcántara et al. 2010). In the

608 interval between 2.50 and 2.00 m Stephanocyclus

609 meneghiniana and other saline diatom taxa appear in

610 the early Holocene.

611 Lake Chapala

612 Zárate del Valle et al. (2014) drilled a 27.15 m long

613 core in the depocenter of Lake Chapala, the largest of

614 the lakes in the TMVB. From ca. 27.15 to 26.60 m the

615 core consists of a homogeneous, dark gray, silty clay.

616 At 27.13–27.00 m appears a silty organic horizon that

617 was radiocarbon dated to 12,560 ± 50 14C BP (CHD-

618Ba6). Towards the top the silt become more organic

619(26.60–26.45 m), reaching TOC values of up to 3%.

620A tephra layer in transitional contact was observed

621towards the top at the interval 26.16–26.15 m in depth.

622From 26.15 to 25.00 m., there are sub-laminae of gray,

623clayey silts that are capped by volcanic, silty sands.

624Other tephra layer appear at 25.70 m.

625At the base of the core (Figs. 2d, 4) from the

626depocenter of Lake Chapala diatoms from the Pleis-

627tocene–Holocene boundary at 26.60 m, are character-

628ized by Stephanodiscus niagarae reaching 95% of the

629total of taxa indicating high lacustrine levels and low

630salinity just before the YD. This episode is followed by

631a decrease of lake level and enhanced turbidity

632documented by Aulacoseira granulata with percent-

633ages[80%.

634Pollen from the Pleistocene–Holocene transition

635shows that Pinus is dominant and is followed by

636Quercus, Asteraceae and Poaceae.

637In the interval from 26.60 to 26.45 m, magnetic Fe-

638rich microspherules reach a peak abundance of

639394 msphs per kg, ranging in size between 60 and

64080 lm. They are composed mainly of Fe and Si,

641although some also contain Al (see Tables 2, 3).

642El Cedral

643The El Cedral site is located in the Mesa Central of

644Mexico in the northern state of San Luis Potosı́ and is

645surrounded by Cretaceous carbonate rocks of the

646Sierra Madre Oriental. Intra-basins that formed in the

647Monterrey thrust fault allowed the development of

648ponds fed by hydrothermal activity for several thou-

649sand years. These ponds were an important refuge for

650vertebrates, including megafauna (e.g. mammoths,

651horses). The presence of Paleoindians during the Last

652Glacial Maximum (LGM) was suggested by proposed

653hearths dated at 31,850 ± 1600 14C BP (I-10483)

654(Lorenzo and Mirambell 1986; Mirambell 2012). The

655stratigraphy at El Cedral (Fig. 2e) consists of a 3-m-

656thick gray-white calcrete at the top, interlayered with

657silty carbonate muds (Fig. 5). In the central part of the

658sequence, three 8–10 cm thick, black charcoal- and

659soot-rich layers interrupt the homogeneous calcareous

660sequence (Fig. 5). The oldest black level dates to

66110,350 ± 40 14C BP, and so, was deposited during the

662YD.
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663 There are no diatoms in the deposits but there are

664 ostracods (Darwinila sp.) that appear in the light-

665 yellow silty carbonate mud levels.

666 Fewer than 50 pollen grains were found in the

667 samples analyzed. The few pollen grains in the

668 samples belong to aquatic taxa, such as Cyperus,

669 Typha, Potamogeton, and Chenoamaranthaceae. Ter-

670 restrial pollen grains belonging to Poaceae, Aster-

671 aceae, Quercus, and Pinus were also observed.

672 Results from the EDS analyses of the carbonate

673 fraction of the white deposits show that they contain

674 35.79% Ca and minor amounts of Si, Na, Fe, and Mn.

675 In the black soot deposits, the dominant element is Si

676 and C is followed by Ca, Na, Al and Fe.

677 The three black mats from El Cedral lack Fe

678 microspherules. The oldest is YD in age and the

679 younger two are Holocene in age.

680Scanning electron microscopy (SEM)

681In Tocuila, Lake Acambay, Lake Cuitzeo and Lake

682Chapala, Si-rich and Fe-rich microspherules ocurred

683at the YDB levels (see Fig. 6; Tables 2, 3), but none at

684the El Cedral site. The majority of the microspherules

685were rounded and their structures varied from nearly

686smooth, dendritic, polygonal, cob-like, to complex

687filigree (Fig. 6a–d), and had diameters ranging from 8

688to 130 lm. In some cases, the microspherules dis-

689played a hollow, shell-like morphology that allowed

690observations of the interior of the microspherules

691(Fig. 6b). One microspherule showed a flattened

692bottom, surrounded by a skirt with multiple compres-

693sion rings, indicating the molten microspherule under-

694went significant deformation during a high-velocity

695collision with another particle (6d) (see a similar

696spherule in Fig. 5d in Israde-Alcántara et al. 2012).

697Results of the EDS elemental spectrum for each

698microspherule, indicate that Fe and O are the dominant

699elements in the compositions of most spherules, with

700formation temperatures of[1450 �C, while several

701were dominated by Si, with minor abundances of Al,

702Mg, Ca, Mn, S, K, Na, Ti, and Mo (Table 2). Pieces of

703meltglass (tektites) were also observed (Fig. 6.b.6),

704composed mostly of Fe, Si, and Al and with diameters

705up to about 400 lm.

706Discussion

707Lake sedimentation and paleoenvironments

708At Tocuila the basal tephra correlates to the Great

709Basaltic Ash (GBA 28,600 ± 200 14C BP). The

710sediments contained diatoms and pollen that indicated

711that the ash fell into a shallow lake with a macrophyte

712border in a landscape of open temperate forest.

713Then there was an increase in the lake level with

714high electrolyte content as suggested by the presence

715of Surirella wetzelii, Campilodiscus clypeous and

716other saline taxa.

717Towards the top of the sequence, the lake continued

718to have a high electrolyte concentration with Surirella

719wetzelli and Anomoeoneis sphaerophora. In this

720episode there was an increase in Pinnularia sp., and

721Navicula sp. suggesting the establishment of aquatic

722macrophytes along the lake margin. Arboreal forest

Fig. 5 El Cedral springs site (San Luis Potosi) showing the

three black mat organic layers. See Fig. 2e and Table 1 for the

stratigraphy and radiocarbon dates obtained for the site
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723 taxa was recorded around the lake. This was associated

724 with a wetter environment dominated by Pinus.

725 At 10,800 ± 50 14C BP an environmental change

726 indicating a dilution episode is suggested by the

727 increase of several epiphytic taxa dominated by

728 Navicula sp., Gomphonema sp., the Fragilaria group,

729 Achnanthes sp. and Eunotia sp. (the latter in a small

730 percentage). This floristic composition indicate that

731 the margins of Lake Texcoco had a freshwater marshy

732 environment with cooler conditions (Bradbury 1971)

733 as suggested by an increase in the proportion of the

734 temperate forest tree Alnus. In this layer of YD age,

735there is also a peak concentration of 260 Fe-rich

736microspherules (msph) per kg (see Table 3). Above

737this layer, pollen and diatoms are not well preserved

738and are mixed with rhyolitic ash that fell into a shallow

739lake.

740In Lake Acambay the high percentages of plank-

741tonic taxa dominated by Stephanodiscus niagarae and

742Aulacoseira distans, followed by Aulacoseira granu-

743lata and the planktonic Fragilaria capucina indicates

744that prior to the YD there was a deep but fluctuating,

745turbid lake. In the YDB black mat layer there are no

746diatoms. After the YDB, diatoms colonize again with

cFig. 6 Selected SEM images of magnetic microspherules from the Mexican sites, found in organic-rich layers, showing their

distinctive surface structure. All microspherules display distinctive patterns, indicative of high-temperature melting and quenching. C

was used to coat the samples. a Acambay core; b Tocuila trench; c Cuitzeo core; d Chapala core. a.1 Acambay core—110-lm-long,

aerodynamically shaped, teardrop-like microspherule displaying dendritic surface structure. Contains *85% Fe and O with minor

amounts of trace elements, Al, Si, Ca, andMn, which are most likely surface contamination. Several rounded to sub-rounded objects are

visible on the surface and appear to have been incorporated into the parent object while in a molten state. Composition also shows

*15% C, which most likely represents SEM coating material. a.2 Acambay core—round, 80-lm-wide microspherule displays almost

perfectly formed dendritic texture. Composition is nearly 100% iron oxide, indicating formation temperatures of 1450 �C. The high iron

content and formation temperature preclude an origin by volcanism, which typically produces volcanic glass spherules. Two smaller,

independent spherules are around the larger one. a.3 Acambay core—20-lm-wide microspherule showing dendritic surface. Contains

*73% Fe and O with minor amounts of Al, Si, and C, the latter probably representing SEM coating material. Shows dendritic structure

in which lines of crystallization radiate away from a point at lower left of center, from which the molten particle first began to

crystallize. a.4 Acambay core—70-lm-wide spherule with large polygonal plates, indicating that this spherule stayed molten slightly

longer than spherules with finer textures, giving the crystals more time to grow. The spherule is nearly 100% Fe and O, indicating

formation temperatures of[1450 �C. The small amount of C is likely from the SEM coating. a.5Acambay core—another 70-lm-wide

spherule with polygonal plates. As the plates crystallized, theymet and stopped growing, leaving small gaps between some of the plates.

Composition is nearly 100% Fe and O, with minor amounts of other elements. bUn-numbered, Tocuila trench—part of a 130-lm-wide,

hollow, broken microspherule with well-developed dendritic internal structure displayed on the*7 lm-thick cross-section of the shell.

Hollow morphology is the typical result of rapid melting of Fe-rich parent materials, in which volatiles become trapped inside the

spherule. Composition is nearly 100% Fe and O. b.6 Tocuila trench—390-lm-wide piece of meltglass (tektite) showing creases

between multiple lobes that appear to have been fused together while molten. Composition is a mixture of 64% Fe and O with 36% C;

the latter value is too high, to be the result from the SEM coating. This object formed from rapidly mixing and quenching of C and

molten Fe oxide at temperatures[1450 �C. b.7 Tocuila trench—60-lm-wide aluminosilicate microspherule, showing fine-grained

dendritic surface, due to higher Si content. Composition is a complexmix of 16% Si, 5%Al, 2%Ca, 2%Na, 1%Mg, 51%O, 20%C, and

minor amounts of other elements. The spherule is pitted either because it is hollow or because of degassing when molten. b.8 Tocuila

trench—100-lm-wide microspherule showing large, polygonal plates with occasional gaps where plates failed to intersect at

boundaries. Composition is nearly 100% Fe and O, with some C from SEM coating. b.9 Tocuila trench—25-lm-wide, non-impact-

related framboid, commonly found at many YDB sites. Composition is 20% S, mixed with 30% Fe and 22% O, similar to pyrite, with

small amounts of contaminants. Object formed over time authigenically, rather than rapidly like YDB spherules. b.10 Tocuila trench—

*50-lm-wide microspherule displaying a quenched structure. Spherule shows lines of crystallization radiating away from a point at

the lower left, which was the point at which the molten particle first began to crystallize. Spherule in a.3 above displays the same

morphology. Composition is nearly 100% Fe and O, with 8% C from SEM coating. c.11 Cuitzeo core—8-lm-wide silicate spherule

with distinctive patterned surface. With high Si content of 20% with 60% O, 1% Fe, and minor amounts of impurities. c.12 Cuitzeo

core—100-lm-wide microspherule showing a dendritic surface. Composition is nearly 100% Fe and O. c.13 Cuitzeo core -semi-

rounded, non-impact-related titanium-iron oxide (ilmenite) grain, showing eroded edges and planar surfaces without ornamentation.

This is a typical, unmelted grain that is morphologically different than high-temperature, melted spherules. c.14 Cuitzeo core -

unidentified, unmelted, patterned piece of detrital material. Texture suggests possible cracking by desiccation or by brief exposure to

very high temperatures. c.15 Cuitzeo core—130-lm-wide microspherule, showing distinctive polygonal structure, composed of

crystalline plates that stayed molten for relatively longer than other spherules at these sites. d.16 Chapala core—100-lm-wide spherule

with polygonal plates. Composition is nearly 100% Fe and O, with small amounts of contamination by Al and Si. d.17 Chapala core—

65-lm-wide microspherule displaying evidence of deformation which suggests high-velocity collision with another particle. Collision

was energetic enough to formmultiple compression rings around the lip of the bottom surface, along with distinctive striations that lead

away from the collision towards the opposite end of the spherule. Composition is nearly 100% Fe and O, with small amounts of Si and C
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747 the presence of Fragilaria species and in small

748 percentages (less than 5%), Epithemia turgida and

749 Eunotia minor, which indicate a slightly acid marsh.

750 Pollen was not well preserved in the YD sampled

751 interval.

752 In this organic-rich black mat layer, magnetic Fe-

753 rich microspherules were found, reaching a peak

754 abundance of 200 msph per kilo at a depth of 3.90 m

755 below the surface, and they display a wide variety of

756 forms, including ovoid shapes, and reach sizes of up to

757 60 lm (Fig. 6a).

758In Lake Cuitzeo, during the pre-YD the diatom

759communities indicate a shallow lake dominated by

760Fragilaria species and aquatic taxa maintained low

761concentrations. There were low concentrations of

762arboreal pollen (Pinus, Quercus and Alnus) from

763around the lake.

764The transition to YD in Lake Cuitzeo is noted at

7652.85 m and dated to 12,870 years cal yr BP. This

766occurred in a 7–10 cm thick black mat layer, in which

767it was noted a rapid deepening of the lake indicated by

768the diatom Stephanodiscus niagarae in only one

Fig. 6 continued
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769 interval (Fig. 3) and Botryococcus (Israde-Alcántara

770 et al. 2012). Abundance drastically decreases after the

771 event, possibly related to fires that occurred during the

772 event. At 2.85–2.80 both arboreal and non-arboreal

773 species markedly decrease and in the lake mainly

774 Typha remains. At 2.80–2.70 m depth, there is a

775 massive black silty clay with macro-charcoal. The

776 abundance of charcoal suggests widespread fires at the

777 YD boundary around Lake Cuitzeo. At 2.85–2.75 m

778 depth, there is a peak abundance of microspherules at

779 2055 msphs per kg (Table 3; Fig. 6c).

780 At Lake Chapala diatoms from the Pleistocene–

781 Holocene transition (Fig. 4), as at Lake Cuitzeo,

782 record a dominance of Stephanodiscus niagarae,

783 reaching 95% of the total taxa which indicates high

784 lake levels. This episode is followed by a decrease in

785 lake level and enhanced turbidity documented by

786 Aulacoseira granulata at over 80%. Magnetic Fe-rich

787 microspherules with low Al were observed in the

788 interval from 26.60 to 26.45 m, reaching a peak

789 abundance of 394 msphs per kg, with diameters

790 between 60 and 80 lm (Table 3; Fig. 6d).

791 At the El Cedral site, the oldest black mat level,

792 dates to 10,350 ± 40 14C BP, so it’s YD in age

793 (Fig. 2e). The presence of ostracods such as Darwin-

794 ula sp., in the light-yellow colored levels indicate a

795 shallow lake benthos and could be indicative of pools

796 with hydrothermal activity, at temperatures between

797 10 and 30 �C, with neutral pH and dissolved oxygen

798 ca. 14 mg/L (Ruiz et al. 2013).

799 In several cores taken from the studied lake

800 sediments, a distinctive interval interpreted as a black

801 mat was found, in which major sharp environmental

802 changes are identified. In every case, except at the El

803 Cedral site, magnetic microspherules were found

804 associated with this interval, which radiocarbon dates

805 identified as being at, or near, in age to the onset of the

806 YD.

807 Black mats

808 In this study, we have identified distinctive black

809 mat horizons at these Mexican sites. The black mats

810 date at, or near, the YD onset at three of the studied

811 sites: Lakes Texcoco (Tocuila), Cuitzeo and Cha-

812 pala. A fourth site, Lake Acambay, had insufficient

813 dating control, and it can only be said that the black

814 organic-rich layer is late Pleistocene or early

815Holocene in age. These sites are located in lacus-

816trine environments (Cuitzeo, Acambay, and Chapala

817in central western Mexico) and lake nearshore

818(Tocuila, in the Basin of Mexico), but they all

819share similar proxy signatures.

820Black mats at four of the sites (Cuitzeo, Acam-

821bay, Chapala, and Tocuila) display evidence of a

822cosmic impact event, indicated by high-temperature,

823melted microspherules within the black mat layer.

824The microspherules, charcoal and soot are consistent

825with the hypothesis that the YDB impact event

826caused sudden wildfires that consumed the local

827biomass, as in other YDB sites in seven countries

828across three continents (LeCompte et al. 2012;

829Mahaney et al. 2014; Wittke et al. 2013). The depth

830to the YDB layer in the studied lakes varies widely,

831because the local sedimentation rates vary, with the

832YD at 2.80, 3.87 and 1.90 m at Cuitzeo, Acambay

833and Tocuila respectively.

834In some sections there was a sharp unconformity,

835as observed in Lake Cuitzeo and Lake Chapala

836(Figs. 2c, d, 3). In the largest lakes (Chapala and

837Cuitzeo) there was an increase in water depth and

838turbidity during the Pleistocene–Holocene transition.

839In the border of Lake Texcoco, at Tocuila, there was

840a change from more saline conditions to fresh water

841at the YD onset.

842In Lake Acambay there needs to be further dating

843control to establish the age of the sequence, especially

844at the YD interval.

845At the El Cedral springs site, there are three

846different black mat horizons, each resulting from

847marshy environments, as indicated by algae and other

848aquatic herbs and pollen grains of Typha, Cyperus,

849Potamogeton and Chenoamaranthaceae. The oldest

850black mat at the site was dated at 10,350 ± 40 14CBP,

851which is YD in age but it was not dated at the base of

852the deposit. The three black mats lack microspherules

853but have evidence of burning. The two younger black

854mats are Holocene in age and indicate that not all black

855mat origins are related to impact events (Quade et al.

8561998).

857The results from this study suggest that the YD

858climate initiated with a short period of increased

859precipitation which is comparable with other regional

860and hemispheric records across the world. In central

861Mexico after the YD the lakes were characterized by

862low lake levels (Ortega-Guerrero et al. 2010).
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863 Magnetic microspherules

864 Spherules concentration varies from lake to lake (see

865 Table 3) and we suggest this is associated with the

866 distance to impact, conditions of deposition and post-

867 depositional environments, including later weather-

868 ing. At Lake Cuitzeo the largest concentration of Fe

869 micro-spherules was found. For this reason, this site

870 has been studied and dated more intensively (Israde-

871 Alcántara et al. 2012).

872 In Table 3 we report the abundance of micro-

873 spherules found in four Mexican lakes. In Chapala at

874 20 cm below the enriched level a total of 153

875 spherules per kg were counted; towards the top none

876 was detected. In Cuitzeo we report at total of

877 2055 spherules per kg. This is the lake with the largest

878 microspherule abundance. In the upper levels of the

879 core the spherules are up to 45 cm above the black mat

880 deposit, interpreted here as reworking in this highly

881 tectonic lake.

882 In Lake Acambay the same number of micro-

883 spherules were found at the base and center of the

884 black mat.

885 In Tocuila the higest abundance was at the middle

886 of the black mat with 260 spherules per kg and towards

887 the top of the black mat a total of 86 spherules per kg

888 were counted.

889 At the sites the shape of the spherules is often ovoid,

890 polygonal, dendritic or filigreed (Fig. 6a–d), with

891 textures produced by rapid melting and quenching

892 during the impact event (Petaev and Jacobsen 2004).

893 The spherules show a further range of morphologies,

894 including hollow shells (Fig. 6b), and a flattened side

895 with a ‘‘skirt’’ structure caused by a high-velocity

896 collision (Fig. 6d). Andronikov et al. (2016) discussed

897 some possible formation mechanisms for producing

898 hollow magnetic microspherules, such as by de-

899 gassing of volatile elements at high temperatures

900 ranging from*1200 to*2200 �C, the melting point

901 of quartz (Dressler and Reimond 2001).

902 Based on previous studies, the origin of the Fe-rich

903 magnetic microspherules was investigated. First, by

904 comparing those found in the sites to those formed

905 anthropogenically as modern industrial pollution par-

906 ticles (Israde-Alcántara et al. 2012; Wittke et al.

907 2013). Because the Fe-rich magnetic microspherules

908 found are associated with other proxies, such as

909 nanodiamonds (Lake Cuitzeo), and are deeply buried,

910 in some cases, at a depth of up to 14 meters, their depth

911precludes an origin from recent anthropogenic activ-

912ity. Next, magnetic spherules that are known to be

913produced by volcanism were compared in Israde-

914Alcántara et al. 2012. Volcanic spherules are com-

915posed of volcanic glass that is dominated by high

916concentrations of Si and Al, whereas the spherules

917from the studied Mexican sites here are dominantly

918enriched in Fe and O, an elemental composition that

919does not occur in volcanic spherules (Bunch et al.

9202012; Wittke et al. 2013). Also authigenesis was

921considered as a source, but the dendritic surface

922morphology of the spherules indicates rapid, high-

923temperature melting and quenching, which precludes

924authigenesis. Lastly, it was considered whether the

925magnetic spherules might be cosmic in origin, but this

926possibility can be ruled out by the geochemical

927composition of the spherules, which contain very

928low levels ofMg, a key component of cosmic material,

929which typically contains more than 10% MgO. In

930addition, one of the melted microspherules from the

931sites contains titanium, which rarely occurs in cosmic

932material (Bunch et al. 2012; Wittke et al. 2013).

933Thus, the microspherules likely formed from a

934cosmic impact event that melted rocks and surficial

935sediments and soils. This possibility is confirmed by

936comparing the geochemical composition of the micro-

937spherules to those from known impact events, as

938discussed in previous studies, including Bunch et al.

939(2012), Wittke et al. (2013), and references therein.

940Conclusions

941An anomalous black sediment layer, produced during

942the YD interval, was recognized in three different lake

943sites from central Mexico (Lakes Acambay, Cuitzeo

944and Chapala) and also in a nearshore lake environment

945at Tocuila, close to a former shoreline of Lake

946Texcoco in the Basin of Mexico. These black mat

947layers contain large amounts of organic material,

948charcoal, soot, nanodiamonds (only studied at the

949Cuitzeo site, Israde-Alcántara et al. 2012), magnetic

950Fe-rich microspherules (some with aerodynamic

951shapes and evidence of high-velocity collisions) are

952a common feature in four of the five sites analysed.

953These unusual materials were not observed above or

954below the black mat sediments at these sites. Soot and

955charcoal observed in the YD layers are evidence of

956regional fire across areas separated by 1200 km and
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957 are potentially associated with a cosmic impact event

958 of intercontinental dimensions, consistent with the

959 YDB impact hypothesis.

960 Paleoenvironmental reconstructions using pollen,

961 diatoms and geochemical proxies show that for the YD

962 there was major environmental change. These obser-

963 vations are consistent with reports at numerous other

964 YDB sites around the world, suggesting that this event

965 changed climatic patterns in the Northern Hemisphere,

966 as well as parts of the Southern Hemisphere. The

967 Mexican sites suggest that most of the environmental

968 changes resulted from the following:

969 (a) The proposed impactor changed local and

970 regional climate, producing an abrupt change

971 in the structure and composition of vegetation.

972 The lack of vegetation caused an increase in

973 runoff that result in major changes in

974 sedimentation.

975 (b) Widespread wildfires destroyed vegetation bio-

976 mass, creating large amounts of charcoal and it

977 is likely that more sediment moved downhill

978 during rainstorms.

979 (c) Increased precipitation and lake turbidity, pro-

980 duced a rise in lake levels, as indicated by the

981 presence of the diatoms Stephanodiscus nia-

982 garae and Aulacoseira spp.

983 (d) Environmental changes caused by the impactor

984 are likely to have contributed to major changes

985 in the megafaunal and human population and

986 distribution patterns, along with the associated

987 climate changes.

988 (e) The three black mats at El Cedral have no

989 microspherules. The older black mat is YD in

990 age but the obtained date is not from the base of

991 this layer. The other two black mats are

992 Holocene but they require more research to

993 determine their origin.

994 (f) For future work, it is necessary to obtain cores

995 and stratigraphic sections with higher resolution

996 and closer dating control in other areas in

997 Mexico in which the evidence of the YD impact

998 event could potentially be present.
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1093 González S, Huddart D (2007) Paleoindians and megafaunal
1094 extinctions in the Basin of Mexico: the role of the 10.5 K
1095 Upper Toluca Pumice eruption. In: Grattan J, Torrence R
1096 (eds) Living under the shadow: the archaeological, cultural
1097 and environmental impact of volcanic eruptions. Left Coast
1098 Press, Walnut Creek, pp 90–106
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