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Abstract 

Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in 

African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ 

from those from forested sites in many aspects of behavior and ecology. DNA polymerase gene targeting PCR 

detected AdV in 36,7% (69/188) of fecal samples. We detected five groups of strains within the HAdV-E and 

two distinct groups within the HAdV-C species based on partial hexon sequence. All detected AdVs from the 

Issa Valley are related to those from nearby Mahale and Gombe National Parks suggesting chimpanzee 

movements and pathogen transmission.  
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More than 50 years ago Jane Goodall started her chimpanzee research in Gombe, Tanzania. Her behavioral study 

triggered an interest in the Eastern chimpanzee (Pan troglodytes schweinfurthii) [1], later expanding to include 

investigation into zoonotic diseases. More recently, much work has been conducted on pathogen prevalence and 

transmission in free-ranging great apes, stimulated also by the range of important zoonotic viral infections, like 

simian immunodeficiency virus [2, 3], simian foamy virus [4], simian T-lymphotropic virus type I [5], and ebola 

[6]. The human adenoviruses (AdV) have zoonotic roots as well, originating from at least four independent 

transmission events from African great apes [7] . 

Adenoviruses are non-enveloped icosahedral dsDNA viruses; all simian and human AdVs belong to the genus 

Mastadenovirus (family Adenoviridae), including seven species of Human mastadenovirus (HAdV-A to -G), and 

in the 2016 release of the International Committee on Taxonomy of Viruses (ICTV) taxonomy, also eight species 

of Simian mastadenovirus (SAdV-A to -H), and many unassigned species. Recently, several other new AdV 

species from primate hosts were proposed [8–10], however, these have not yet been adopted by the ICTV. In 

wild chimpanzees HAdV-A to -F and SAdV-A  have been identified [11], but all available whole genome 

sequences originate from cell cultures or captive animals [12, 13]. Frequent shedding of AdV in feces [12] 

allows non-invasive studies on AdVs in wild animals in their natural habitat, allowing scientists to assess the 

diversity of circulating strains, their phylogenetic relationships and evolution [7, 11]. 

Adenoviral infections are reported from three out of four chimpanzee subspecies (Figure 1); no data from the 

Nigeria-Cameroon chimpanzee P. t. ellioti are available. Chimpanzees were recognized as the ancestral host of 

the HAdV-E species and of one clade within HAdV-C species [7], whilst HAdV-A to -G and SAdV-A were 

sporadically detected as a result of rare cross-transmission events (Figure 1). Savanna-mosaic dwelling 

chimpanzees differ from those from forested sites in many aspects of behavior, diet and ranging, and hence in 

the pattern, rate, and level of social interactions [14]. Such differences may consequently affect the spectrum and 

diversity of pathogens circulating in the community [15]. Adaptation of chimpanzees to arid environments may 

reveal adaptations of early hominids, which evolved in a similar type of habitat [16]. All the AdV studies to date 

have been conducted in forest-dwelling chimpanzees. Today, research on savanna-mosaic chimpanzees 

continues at three sites: Semliki (Uganda), Fongoli (Senegal) and Issa Valley (Tanzania) [16–18], however, none 

of these populations has been investigated for the diversity of AdVs. 

In the present study, 188 fecal samples from nonhabituated eastern chimpanzees (P. troglodytes schweinfurthii) 

inhabiting the Issa Valley, western Tanzania were collected during 2012 and 2013. As chimpanzees were 

unhabituated at the time, researchers collected fecal samples from opportunistic encounters with chimpanzees, 

and from under fresh chimpanzee nests built the previous night. The entire region is one of the driest and most 

open chimpanzee habitats, with an altitudinal range of 900– 1800 m above sea level. The habitat is dominated by 

savanna (Miombo) woodland, characterized by Brachystegia and Julbernardia trees [18]. The population density 

of Issa chimpanzees is estimated to be ~0.25 individuals/km2 [19]. All fecal samples (10 – 20 g) were preserved 

in equal volume of RNAlater (Sigma-Aldrich, USA), stored at -20 °C on site and subsequently shipped to the 

Czech Republic, where they were kept at -20/-80 °C until DNA extraction by PSP Spin Stool DNA Kit (Stratec, 

Germany). Adenovirus-positive samples were detected by nested PCR targeting conserved DNA polymerase 

(DPOL) gene. Consequently, 1800 nt long fragments of hexon gene (spanning all 7 hypervariable regions) were 

amplified from selected samples, primers used are listed in Online Resource [9]. All adenoviral sequences were 

deposited to GenBank (accession numbers MF176075-MF176106 for DPOL and MF176107-MF176134 for 

hexon gene). Herein used names for the candidate AdVs follows Wevers et al. [11] using abbreviations derived 

from the host species and continuous numbering. The nucleotide dataset including all available respective 

sequences from chimpanzees and representatives from other hosts was aligned and guided by CLUSTALW 

amino acid alignment [20]; poorly aligned regions were eliminated by Gblocks [21]. We compared the hexon 

gene nucleotide sequences to those from 213 isolates available in GenBank (see Online Resource) by Maximum 

Likelihood method (ML) using PhyML [22] and the best evolution model (GTR+G+I) was chosen based on 

likelihood ratio test computed in R [23]. 
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Based on DPOL targeting PCR, AdV DNA was detected in 36,7 % (69/188) of the screened samples. As the Issa 

chimpanzees were not habituated at the time of sample collection, it was not possible to attribute the fecal 

samples to specific individuals. Detection rate of AdVs in our sample set is generally lower than the published 

prevalence in chimpanzees from Democratic Republic of Congo (42 %), Cameroon (38 %), and Republic of 

Congo (69,6 %)  in P.t.troglodytes or 51 % in P. troglodytes spp. sampled across Africa [7, 12, 24].   

To survey circulating AdV strains among the Issa chimpanzees, we sequenced 33 random samples resulting in at 

least one DPOL and/or hexon partial sequence. Preliminary BLAST analysis revealed the presence of HAdV-C 

and HAdV-E. Co-infection with different HAdV species or strains was observed in six samples based on both 

DPOL and hexon sequences, but DPOL sequences were used for AdV interspecies co-infection identification 

only. In five samples we detected co-infection of HAdV-C and HAdV-E and one sample was infected by two 

distinct HAdV-E strains (Figure 2). AdV coinfection rate in wild chimpanzees has been described in detail only 

for central chimpanzees from Odzala-Kokoua National Park (Republic of Congo) on a very limited number of 

individuals (16 AdV positive from 23 tested), where six of 16 infected individuals (37,5 % ) carried more than 

one AdV species [24]. In our dataset, we detected six coinfections in 33 sequenced samples (18,2 %). However, 

presented rates of AdV co-infections are probably underestimated due to the restraints of PCR product cloning 

approach. The AdV diversity and common multiple infections are reflected also in frequent recombination 

events reported in AdVs [25]. 

The highly conserved sequence of a DPOL gene ensured the detection of AdVs, but did not allow the proper 

differentiation of AdVs allocated to the same species. Thus, a hexon based phylogenetic analysis was performed 

(Figure 2). The overall topology of a DPOL-derived tree (data not shown) was in accordance with the hexon 

tree. 

In Issa chimpanzees, we detected five new groups of strains clustering within the HAdV-E. These AdV species 

have been described in chimpanzees, bonobos (P. paniscus) and humans [7, 11, 24, 26] and chimpanzees are 

considered be the ancestral host [7]. Three of our HAdV-E groups, namely PtroAdV 17-19, evince 93-96% 

pairwise hexon nucleotide sequence identity to different sequences acquired from captive chimpanzees (Table). 

Relatedness of sequences from wild and captive chimpanzees confirms the persistence of chimpazee AdV strains 

in captivity. The only identified HAdV-E sequence to date was contracted via horizontal transmission - from 

chimpanzee to human, not the opposite [7]. The last two groups of HAdV-E isolates (PtroAdV-21 and -22) 

clusters closely to previously described AdV strains from P. t. schweinfurthii from Uganda (Table, Figure 2).  

Two distinct groups of our strains were identified within the HAdV-C species. The first one, formed by our 

sequences PtroAdV-15.1 and -15.2, is closely related to PtroAdV-9 from P. t. schweinfurthii. The second group 

of our strains, PtroAdV-16.1 to -16.4, clusters with PtroAdv-6 (P. t. schweinfurthii), and with two sequences 

from captive chimpanzees (SAdV-31.1 and -31.2). As the closest relatives of Issa AdV HAdV-C strains have 

already been detected in eastern chimpanzees (PtroAdV-6 and PtroAdV-9, both from Ngamba Island, Uganda), 

we can confirm wide distribution of this subclade among the P. t. schweinfurthii in East Africa. HAdV-C of 

human, gorilla, chimpanzee and bonobo cluster in clearly distinct clades (Figure 2) with topology reflecting the 

co-evolutionary processes during hominine evolution [7], which suggests strict host specificity of these viruses.  

The third most abundant AdV species detected in chimpanzees (Figure 1), HAdV-B, was not detected at Issa. 

We also did not detect any HAdV-A, -D, -F or SAdV-A strains in the Issa population. HAdV-D seems to be 

exclusively limited to human hosts. The only HAdV-D sequence from P. t. schweinfurthii (Uganda) is likely the 

result of an isolated human to chimpanzee cross-species transmission event [11]. HAdV-A and -F were reported 

from P. t. verus  and P. t. schweinfurthii only in few sporadic cases [7, 11].  

Figure 1 shows all sequences of AdV strains reported from wild chimpanzees and bonobos. In most of the 

research sites HAdV-B, -C and -E have been identified. Issa chimpanzees host several strains of HAdV-C and 

HAdV-E, which is in accordance with report from Mahale Mountains National Park, Tanzania [26]. 

Unfortunately, sequences of Mahale isolates are not available in any public database, but based on published 

phylogenetic trees and corresponding relationships, we can assume that the Mahale isolate clone_327 is closely 

related to the PtroAdV-21 isolate. Strain PtroAdV-1 identified in another Tanzania locality, Gombe [11], clusters 
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closely to our PtroAdV-22 strains. These findings suggest the circulation of related strains not only in the 

Greater Mahale Ecosystem (including Issa and Mahale), but even in the Greater Gombe Ecosystem. Despite 

geographical isolation of Tanzania chimpanzees confirmed by their lower genetic diversity [27], relatedness of 

AdV strains from Issa to those from Gombe and Mahale localities confirms that the Malagarasi river is not an 

absolute barrier to chimpanzee movements and pathogen transmission [28]. 

The absence of strains of presumptive human origin, together with the fact that human AdV strains are not 

reported even from habituated chimpanzee communities with much higher contact with humans, suggests high 

host specificity of these viruses even in phylogenetically closely related hosts.   
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Fig.1 Distribution map of wild chimpanzee AdV species. Localities of all so far published AdV species are 

numbered. Herein described study site, Ugalla (Tanzania), is highlighted in red. Host range is displayed 

in colour: bonobos (P. paniscus) in brown, and chimpanzee subspecies (P. t. verus, ellioti, troglodytes, 

schweinfurthii) in blue, red, orange and green.  

Fig.2 A maximum likelihood phylogenetic tree based on partial nucleotide sequences of hexon gene. (a) Overall 

topology of the tree of all AdV species (b) detailed view of HAdV-E species clade (c) detailed view of 

HAdV-C species clade. Node-supports refer to bootstrap values (figures above 50% from 1000 displayed 
only). AdVs described in this study are marked with red branches and their names and abbreviations 

refer to the host species and strain. Five pairs of symbols indicate co-infection detected from one sample. 

The origin of already published AdVs addresses to the localities marked in the Figure 1 or to the samples 

from Democratic Republic of Congo (DRC), captive animals (ZOO), research centers (RC) or cell 

cultures (CC); three Atadenovirus sequences used as an outgroup and all non-primate Mastadenovirus 

sequences are not displayed (for details see Online Resource). 

Table The closest related sequences (based on ML tree) for herein described AdV strains and their origin. P-dist 

refers to pairwise hexon nucleotide sequence identity 

 

  p-dist NCBI seq Host 

HAdV-E 

PtroAdV-17.1 – 17.7 95% 
FJ025923 

Simian adenovirus 26 
Captive P.troglodytes 

PtroAdV-18.1 – 18.6 96% 
FJ025918 

Simian adenovirus 25.2 
Captive P.troglodytes 

PtroAdV-19.1 – 19.5 

PtroAdV-20 
93% 

FJ025920 

Simian adenovirus 30 
Captive P.troglodytes 

PtroAdV-21 92% 
JN163983 

PtroAdV-13 

Uganda 

P.t.schweinfurthii 

PtroAdV-22.1 - 22.2 98% 
JN163981 

PtroAdV-11 

Uganda 

P.t.schweinfurthii 

HAdV-C 

PtroAdV-15.1 - 15.2 99% 
JN163979 

PtroAdV-9 

Uganda 

P.t.schweinfurthii 

PtroAdV-16.1 - 16.4 99% 
JN163976 

PtroAdV-6 

Uganda 

P.t.schweinfurthii 

 







Primers used for amplification of DPOL and hexon gene sequences 

Targeted gene Primer Sequence 5'-3' Product  length 

DPOL SAdVpol-F1 AGGCTGTCBGTGTCNCCGTA  

 SAdVpol-R1 GTCTAYAAYATCTGTGGCATGTATGC 998 bp 

 SAdVpol-F2 GGCYAGCACAAANGAGGC  

 SAdVpol-R2 TCGVCTCTGCTGGACCAA 649 bp 

Hexon SAdVhex-F1 TACATGCACATCGCCGGRCAGG  

 SAdVhex1-R1 GGGTAVAGCATGTTRGCWGC cca 1900 bp  

 SAdVhex-F2 CAGGAYGCYTCGGAGTACCTGAG  

 SAdVhex1-R2 AGGTAGTCRTTRAAYGACTG cca 1800 bp 

 

Accession numbers of sequences used in phylogenetic analysis and hidden in collapsed clades in tree in Figure 2: 

HAdV-A: GU191019, AM749299, NC_001460, JN163978 

HAdV-B: AC_000010, KM659156, JN163977, KM659129, FJ025910, FJ025912, JN163986, JN163988, 

KM659132, JN163989, KM659157, FJ025911, FJ025916, AC_000019, HQ292614, KM659172, KU872854, 

FJ025915, FJ025914, JN163987, KU872860, FJ025913, FJ025927, AC_000018, FJ025908, FJ025929, 

KM659171, FJ025909, FJ025928, FJ025930, KM659161 

HAdV-D: JN935766, AB448778, JN226747, JN226760, JN226762, AP012285, JN226746, JN226764, 

EF153474, EF153473, JN226763, AY875648, JN226757, AB605240, FJ169625, FJ619037, JN226751, 

AB448767, GQ384080, JN226759, DQ393829, HQ883276, JN226758, JF799911, JN226752, JN162672, 

JN226749, AB448774, JQ326208, JN226765, AB562587, DQ149628, HM770721, JN163980, JN226748, 

JN226761, FJ824826, JN226753, AJ854486, AP012302, JN226756, AB333801, NC_012959, JN162671, 

JN226750 

HAdV-F: NC_001454, AB728839, JN163973, JN163985 

HAdV-G: DQ923122, DQ792570, JN163993, JN163992, NC_006879, KF053130 

SAdV-A: JN163972, JQ776547, NC_006144, HQ241818 

SAdV-B: EU293065, KP329561, NC_015225, HQ241820, JN880452, JN880451, JN880453, KC693021 

SAdV-C: KC693022, KC693024, KU872851, KU872855, KF053124, KP329562, NC_025828, KC693023, 

KP329565 

SAdV-D: KP329563 

SAdV-E: KP329564, JN163991, JN163995 

SAdV-F: NC_022266, KU872856, KU872857, KU872864 



SAdV-G: NC_020485 

SAdV-H: NC_025678 

Provisional Cercopithecus SAdV: KP274048, KU872858, KU872859, KU872852 

Provisional OWM SAdV: JN163996, JN163999, KU872865, JN163997, JN163998, JN163994 

Non-primate Mastadenoviruses: AC_000012, M81889, NC_012584, HM049560, NC_014899, AC_000189, 

AF083132, AF030154, JN381195, AC_000190, AF258784, NC_027705, AC_000003, EF559262, CAU77082, 

JN252129, NC_015932, NC_016895, GU226970, JN418926, AC_000191, DQ630761, DQ630754, AF289262, 

NC_002702, AF252854, DQ630758, DQ630755, AF282774 

Atadenovirus outgroup: AF036092, AC_000004, U40839 


