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The first large scale analysis of in vitro Absorption, Distribution, Metabolism, Excretion, 

and Toxicity (ADMET) data shared across multiple major Pharma has been performed. Using 

advanced matched molecular pair analysis (MMPA), we combined data from three 

pharmaceutical companies and generated ADMET rules, avoiding the need to disclose the 

full chemical structures. On top of the very large exchange of knowledge, all companies 

involved synergistically gained approximately 20% more rules from the shared 

transformations. There is good quantitative agreement between the rules based on shared data 

compared to both individual companies’ rules and rules published in the literature. Known 

correlations between logD, solubility, in vitro clearance and plasma protein binding also hold 

in transformation space, but there are also interesting exceptions. Data pools such as this 

allow focusing on particular functional groups and characterizing their ADMET profile. 

Finally the role of a corpus of robustly tested medicinal chemistry knowledge in the training 

of medicinal chemistry is discussed. 

Keywords 

ADMET, MMPA, matched molecular pair analysis, data sharing, data mining, big data, 

unsupervised learning, precompetitive research, medicinal chemistry knowledge. 

Introduction 

Medicinal chemistry is a discipline at the borderline of science and technology that 

depends on experience, intuition and knowledge of rules that govern the space of medicinal 

chemistry practice. As such, successful medicinal chemistry optimization has routinely drawn 

on knowledge gained from past experimental observations. Thus it is fair to assume that the 

more data are available (everything else remaining equal), the more knowledge can be 

gained. 
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While more data is desirable, the strategic necessities in a patent-based competitive 

environment allow the public sharing of only a small proportion all of the information 

generated inside pharmaceutical companies. In particular, the composition of chemical matter 

with its associated biological properties is a cornerstone of pharmaceutical patent filing. 

Therefore parties interested in protecting their research must exercise great care in the 

chemical structures they disclose either in a patent or in academic publications not to weaken 

any patent position.  It is therefore unsurprising that only a small proportion of chemical 

structures synthesized and their assay data tested are ever made public. As medicinal 

chemistry knowledge is the understanding of the relationships between chemical structure 

and biological properties, this creates a conflict between gaining knowledge and maintaining 

intellectual property.   

In order to increase our knowledge space, we set out on an experiment to combine 

absorption, distribution, metabolism, and toxicity (ADMET) data from three different large 

pharmaceutical companies (AstraZeneca, Genentech, and Roche; Genentech research and 

Roche research operate independently) and mine the pooled data for relevant medicinal 

chemistry knowledge. MedChemica was used as the intermediary to combine rules. In 

particular, we were interested in whether we could merge ADMET knowledge between the 

companies, and whether we could synergistically increase our medicinal chemistry 

knowledge based upon the joint information pool. 

A solution to sharing large amounts of medicinal chemistry data between companies in 

the patent-based competitive environment is to use matched molecular pair analysis 

(MMPA),
1–7

 since the original structures of the compounds cannot be calculated back if only 

the part of the structure which is involved in the transformation is shared.
8
 MMPA extracts 

transformations that link a pair of compounds. For all pairs that are linked by the same 
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transformation, MMPA calculates aggregate statistics of the property differences to derive a 

rule for the given transformation. In this work we use the term “rule” to indicate a “virtual” 

chemical transformation leading to a change in a physical chemistry or biological endpoint 

where there are enough examples to support an assertion as to how this change influences 

certain given molecular properties. Very rarely, there are transformations where all known 

pairs change property in the same direction, in particular if there are many pairs. 

Nevertheless, even in the presence of exceptions, knowing the most common effects is useful 

to guide whether or not a compound shall be made. The rules therefore capture variability, 

which is a crucial element in medicinal chemistry decision making. Obviously more than one 

pair is needed for a rule to be more than an anecdote; the statistical approach used here 

suggests an absolute minimum of six pairs should be considered in order to form a rule. One 

of the most important attributes of MMPA is its closeness to medicinal chemistry reasoning, 

where talk of “adding a fluorine to block metabolism” or “adding a solubilizing group” are 

common descriptions of underlying thinking. Occam’s razor suggests that the simplest cause 

for a change in a property is the single change in structure. Neighboring groups within the 

molecules involved may also play a causal role, hence, the local chemical environment is 

incorporated into the encoding of the structural change and should allow these effects to be 

partitioned and examined separately.
9
 The only remaining explanations are long range effects 

or non-additivity of chemical changes. Kramer et al showed that SAR non-additivity may be 

masked due to experimental uncertainty in many cases, and in other cases depends on the 

target and binding mode.
10

 

There have been significant studies, already published, describing the application of 

MMPA to ADMET datasets from individual pharmaceutical companies.
2,11,12

 Most of these 

have been supervised analyses, where a particular question is asked such as “what effect does 

hydrogen replacement on an aryl ring have on ADMET properties”
13,14

 or “what are the 
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effects of substituting different heterocycles for phenyls”.
12

 In contrast, here we attempt to 

characterize the entire ADMET rule space. 

Having developed the technology to merge data between companies (details can be found 

in supporting information), the next question becomes: “How many extra rules do we gain 

and is there any degradation in knowledge by merging data between companies?” It is 

relatively obvious that by aggregating pairs from different companies the statistics for some 

rarer transformations will become significant because there are more pairs. However, this 

gain may be obfuscated by noise introduced due to mixing data from assays with the same 

endpoint but run under different conditions.
15

 A major concern is assay comparability: 

although two companies may formally measure the same ADMET attribute, if the assays 

used are different the outcomes may be different. The advantage of MMPA here is that two 

compounds are only compared if they have been measured by the same operator using the 

same method and endpoint. The difference in an attribute between two compounds is then 

calculated. If the assays are merely systematically displaced against other, then the systematic 

displacement is automatically factored out by using differences rather than absolute values. It 

is then possible to test if pairs can be aggregated across different assays and rules identified. 

To validate this, we (a) compare the rules we found by aggregating pair sets across 

companies to rules obtained from one company only and (b) to rules previously published. 

High-quality analysis from MMPA requires large amounts of data, and we will show that 

more data is clearly better with brief examples of analyses that can be made using such a 

massive dataset. We will illustrate the types of analyses that can be done having a rule pool as 

large as ours. We initially present general analyses of correlations of solubility, clearance, 

and PPB rules with logD (pH 7.4) rules. As rules representing general knowledge are always 

accompanied by exceptions, we highlight a few less-intuitive medicinal chemistry rules that 
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counter the general trends. Finally, we give a taste of how such a huge set of rules can be 

used to characterize individual functional groups, a statistical type of analysis which only 

becomes possible once large MMP datasets are available. It is not our intent to hypothesize 

the cause of a particular quoted rule being significant as a thorough exploration of the rules 

has been beyond the scope of this work, and value can be obtained from their knowledge 

without complete clarity as to their causation. 

Methods 

Data extraction 

Data needs to be transformed into a normally distributed variable before MMPA i.e. 

pIC50, log10 (molar solubility), log10(intrinsic Clearance, (CLint)) for in vitro clearance assays, 

log(free/bound) for protein binding etc. Out of range flags were attached where appropriate. 

If there were multiple measurements in the same assay for the same compound then the data 

were aggregated using the following scheme: 

1.     Where there are no qualifiers / out of range flags: 

·    aggregate as median logged value – as this is more representative of true value 

than mean, and less sensitive to outliers 

2.     Where there are some qualified data present: 

·     take the median of the data excluding qualified data: 

  For example: 3, 6, >8, >10, <3, 5, 6: exclude >8, >10, <3, the 

median(3,6,5,6)=5.5 

3. If there are only qualified data present: 
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·       if there is a mixture of > and < then discard the data 

·       if the qualifiers are all < then use the minimum value 

·       if the qualifiers are all > then use the maximum value. 

We used logD7.4, solubility, in vitro microsomal and hepatocyte clearance (human, rat, 

mouse, cynomolgus monkey, dog), Madin Darby Canine Kidney cells (MDCK cells) 

permeability (A-B,  B–A and efflux), cytochrome P450 inhibition (2C9, 2D6 , 3A4 , 2C19 , 

1A2), NaV 1.5 and human ether-a-go-go related gene product (hERG) ion channel inhibition, 

glutathione stability, and PPB (human, rat ,mouse, cynomolgus monkey, dog) assays. We 

have not addressed explicitly the propagation of experimental errors, or the heteroscedasticity 

of assay data.
16

 In keeping with a “Big Data” paradigm we have chosen to include as much 

measured data as possible and to use non-parametric statistics to generate inferences that may 

be more resistant to the effects of noise. 

Matched Molecular Pair (MMP) analysis 

Compound structures were extracted as SMILES, desalted and had their charge corrected 

to the neutral form by applying SMIRKS using the Openeye OEChem toolkit. A set of 

SMIRKS were applied to recursively standardize tautomers to a common form. These were 

not intended to be completely accurate tautomeric forms for a given physical state, but to 

provide a unique canonical standard. For chiral compounds, racemates were excluded from 

the analysis. No further filters were applied to the inclusion of compounds. 

An MMP analysis platform, MCPairs, was used that combines the benefits of the Hussain 

and Rea algorithm
17

 with those of the WizePairZ algorithm.
18

 Compounds were fragmented 

on all noncyclic single bonds except amide (C-N) and sulfonamide (S-N) bonds. 

Fragmentations of up to three cuts were created. Pairs were matched based on a joint constant 

Page 7 of 54

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



part, and the non-identical parts were taken as the transformations. The transformations were 

recorded as SMIRKS with explicit hydrogens to ensure correct aromaticity and 

tautomerization assignment. For a matched pair change, the local chemical structures up to 

four bonds from the point of change were captured, which we classify as the “environment” 

in the same manner as in WizePairZ. Note that within this formalism, two compounds can be 

linked by several transformations. Pairs were only considered if the part encoded in the 

SMIRKS did not make up more than 45% of the molecule and the number of non-hydrogen 

atoms in the changing part of the transformation was 16 or fewer. Pairs were not used if the 

measured activities for both compounds have a qualifier of the same direction, for example 

both compounds were measured as > X. An example for a pair is given in Figure 1. More 

examples can be found in the supporting information Figure S1. 

 

 

 

Molecule Pair                                                   

 

Molecule A         →          Molecule B 

 

 

3 bond environment 

   

     

[c:1]([H])[c:2]([H])[c:3]([H])[c:4]([H])[n:5]>> 

[c:1]([H])[c:2]([H])[c:3]([c:4]([H])[n:5])[C]([H])([H])([H]) 
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Figure 1: Functional group transformation with environment specification of 3 bonds as 

chemical sketch and as SMIRKS notation (examples for other environments can be found in 

the supporting information). The green groups are those being changed in the transformation, 

the red portions of the transformations show the increasing level of environment specification 

increasing in all directions from the point of change. The blue atom numbers correspond to 

the atom mappings in the SMIRKS transformation encoding. 

Software 

Data extraction, manipulation and analysis were performed using scripts written in 

Python
19

 using the Openeye cheminformatics toolkit
20

 for chemical structure manipulation. 

MySQL
21

 was used for database infrastructure and statistical routines were implemented in 

R
22

 using the rpy2
23

 interface to Python. 

Rule merging/ calibration 

MMP identification was carried out within each contributing company behind their 

firewalls.  Data tables of the transformations with the particular biological or physical 

chemistry delta values and associated calculated properties were then supplied to 

MedChemica as a neutral third party. These data tables excluded the original compound 

structures. The overall concept is shown in Figure 2. 

 Complete isolation of different companies’ data was ensured by MedChemica acting as a 

neutral third party and conducting all knowledge extraction through aggregation and filtering. 

This ensured that there could be no “drill down” from any rule to any companies’ 

substructures or data by multiple layers of anonymisation. 
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Figure 2: General assembly and use concept for the Grand Rule Database 

To cover different possibilities, rule statistics were calculated in two different ways. 

Assuming that the differences between all pairs are normally distributed, median, standard 

deviation, and standard error of the mean was calculated for each transformation. Since many 

transformation involve censored data (i.e. measured values with “>” or “<” signs), non-

parametric statistics based on a two-tailed binomial test were calculated to detect whether a 

given transformation significantly increases or decreases a property. Since the two-tailed 

binomial test requires at least six pairs for significance at the p=0.05 level, all rules with less 

than six pairs were discarded. An additional feature of this approach is that chemical 

transformations that have only been tried very few times will not be shared amongst 

contributing parties. There is a tension in this choice in that these may be  “emerging” novel 

medicinal chemistry approaches which would be valuable to further explore, but in contrast 
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these may be the “novel” medicinal chemistry approaches being most recently developed 

within a company and for which they wish to maintain an advantage. More details on the rule 

processing can be found in the supporting information. 

When only one company contributed to an ADMET endpoint, the rules extracted by this 

process were added to the grand rule database (GRD). Where biological or physical 

chemistry endpoints could be compared between companies, the statistically significant 

transformations (according to the two-tailed binomial test) were extracted for calibration 

from each company set, and then the intersection set of transformations (those with identical 

canonical SMIRKS) was found.  This intersection set was used to define calibration factors 

between the assays using a two-way Analysis of Variance (ANOVA) procedure.
24

 A 

minimum of 8 transformations in the intersection set was required for calibration. Each of the 

transformations required a minimum of 6 matched pairs. If there were more than 200 

transformations in the intersection set, a random subset of 200 transformations was used. As 

all transformations are mirrored, (A�B and B�A directions) for any given pair of 

transformations, only the positive median direction transformation was used to avoid a 

significant overestimation of the correlation between contributors as obviously delta A�B  =   

-1* delta B�A. The mean change for the set of transformations, the means by contributor 

and the grand mean coefficients were taken from the ANOVA coefficients. The calibration 

factors for each contributor were calculated as the ratio of the grand mean over contributor 

mean. Each contributors data set was then scaled by the calibration factor and re-aggregated 

to generate a ‘common calibrated value’ representing the best estimates for each 

transformation.  Merging all pairs with adjusted differences into rules gave a significant 

synergy benefit, where for example a transformation that had only 3 examples from one 

company, 2 from another and 1 from a third company could now pass the binomial test if all 
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the examples changed the property in the same direction. The scaling procedure is 

schematically shown in figure 3. 

 

 

Figure 3: Linearly displaced assays of different sensitivity 

 The statistical methods appropriate for this comparison have been developed in the 

clinical chemistry arena to allow different laboratories to compare their results against each 

other
25

 and more generally in the meta-analysis of clinical trials.
26

 This is equivalent to the 

established medicinal chemistry practice of recording the ranking of changes in extracting 

knowledge from publications or presentations; the exact values might be different but the 

ranking should be the same. It is reasonable to assume that scientists constructing assays in 
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different organizations will have developed them such that they give the same ranking of 

standard compounds if not an identical numeric result. 

Results 

Rule gain 

Over all the sets of assay data analyzed, 43 million unique structural transformations were 

found.  372,419 of these had more than six examples in any assay and passed the binomial 

test, each forming a medicinal chemistry rule. The distribution and overlap in rules per 

company is shown in figure 4. 

 

Figure 4: The origin of rules by company. The overlaps indicate the rules that contain 

examples from multiple companies, i.e. 58,000 rules had examples from all three companies, 

139,000 rules were derived from company A data only.  

A key question is: “what does a company gain from sharing data with the others”. In 

numeric terms the average gain in rules for a company is 350% - i.e. if a company found 100 

rules from analyzing its own data sets, it would have 450 rules by joining the consortium. On 
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average this indicates how much non-overlap there has been between medicinal chemistry 

practice, with a large number of rules resulting from swapping knowledge from different 

areas.  Also we can calculate the synergistic gain as the increase in number of rules found by 

merging the pairs and analyze the combined set minus the sum of what companies would 

have found individually, the average synergistic gain was 17%.  This is the proportion of 

rules that had too little statistical support in any individual company, but “appear” by 

merging data. Some insight into the question “how large is the medicinal chemistry tool kit“ 

can also be addressed using this dataset, since the number of unique transformations can be 

extracted. For the 372,419 transformations that have been tried enough times to be assessed, 

there were  126,064 different A→B modifications when ignoring the local chemical 

environment. This also suggests that medicinal chemists in different companies are working 

in different areas of chemical space.
27–29

 Analysis of the frequency of matched pairs showed a 

Zipfian distribution as previously reported by Hussain and Rea.
17

 An example is shown for 

one company in the consortium’s contribution of human microsomal clearance data, of the 

400,191 observed matched pairs, there were 303,966 unique SMIRKS. A breakdown of the 

numbers of examples of SMIRKS is shown in Figure 5. 86% of the transformations were 

only observed once, with only 1% being observed six or more times. 
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Figure 5: Distribution of number of pairs per transformation for a single company’s 

human microsomal clearance data 

Scaling factors 

The distribution of calibration factors from all assay comparisons across all properties is 

shown in Figure 6. The calibration factors showed a median of 1.02; 80% of the calibration 

factors lie between 0.78 and 1.15 with two of the  low outliers being assays where different 

technologies were used for signal detection. This suggests that, with appropriate care, the 

combination of data from multiple sources is feasible and that for most properties, different 
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companies operating the same methods for a property determination generate comparable 

changes in measured values. 

 

Figure 6: Distribution of the calibration statistics (median shown in black), count 

indicating the number of assays for a given bin. 

Roche rules vs full dataset 

One of the key questions for merging data between companies is how well these data 

agree with one another, or in other words, if and how much noise is added by merging the 

data. In our approach, we only formed pairs between compounds that have been measured in 
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the same assay. It has been demonstrated that forming pairs between compounds that have 

been measured in assays that formally measure the same endpoint but are run by different 

operators in different places could increase the uncertainty of the rules dramatically, and the 

number of additional pairs gained is unlikely to compensate for the noise introduced.
15

 For 

GRD, we compared the rules gained from a single company database (Roche as an example) 

versus the GRD rules (see figure 7) to compare the rules before and after the merging. 

 

Figure 7: Correlation between predicted changes in logD based on Roche only rules and 

joint companies’ rules. Overall R
2
 is 0.98. Unless stated otherwise, in this and all succeeding 

scatterplots the pale green density ellipse contains 99%. The red line is the line of slope 1, 

intercept 0. The blue line indicates the linear fit. In this case the vast majority of the data lies 

on the 1:1 line between median logD change of -2 and +2 making the density ellipses hard to 

see. 
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For logD, the rules derived from Roche only data and the rules derived from the joint set 

of pairs compare extremely well with an R
2
 of 0.98 and an RMSE 0.09. Overall, there are 

255k logD rules in the GRD and 81,617 rules based on Roche data alone. 

LogD is a relatively simple property to measure, depending on the equilibrium of a 

compound between two different solvents. Other important properties are more complicated, 

and their reproducibility and transferability between companies is likely lower. In Figure 8 

we show the correlation between rules for human microsomal clearance derived from Roche 

data alone and the joint companies’ data. 

 

Figure 8: Comparison between Roche-only and GRD rules for human microsomal 

clearance. Overall R
2
 is 0.76 and RMSE 0.11. 

 

Overall, with R
2
 = 0.76, the correlation for the microsomal clearance rules is lower than 

for logD. Nevertheless, almost all rules agree qualitatively, and only in 64 out of 933  the 

prediction changes from a negative to a positive median difference or vice versa (see 

Supporting Information on how positive, negative, and neutral effects are statistically defined 
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in this work). Some of the rules in GRD shown in Figure 8 are based almost exclusively on 

Roche data. Those obviously lie close to the line of unity. For other rules, there are very few 

pairs from Roche only, and for a subset of those rules, the Roche contributing pairs had 

almost no change in clearance. The rules in that subset are visible as a horizontal line. Being 

more restrictive about the inclusion criteria for the comparison, those apparent lines 

disappear, but the overall correlation is the same (data not shown). 

GRD rules vs previous rules 

Since the overall comparison is very favorable, we were interested in finding out how 

individual rules from GRD compare to previously published rules. In 2015, Huchet et. al. 

published a paper on fluorine effects and their impact on physicochemical properties.
30

 From 

prototypical examples given for logD, we extracted MMPs and compare them with the 

statistics for the closest transformation we could find in GRD (see table 1). 

Fluorine can have a large effect on the pKa of a nitrogen in close vicinity. Therefore, 

transformations were selected with a balance between the number of pairs, chemical 

similarity, and being sure that no ionizable center is affected. We did not find contextually 

very close analogs of the compounds presented by Huchet et. al.. In the congeneric 

transformation series we found, an aromatic ethoxy group is increasingly fluorinated, 

whereas in the Huchet et. al. paper an aromatic propyl group is increasingly fluorinated. 

Nevertheless, the trend reported by Huchet et. al. is the same as the trend we find in GRD: a 

single fluorination reduces logD most strongly, whereas further fluorinations will reduce this 

effect. 

Source Transformation ∆logD ± 

std (nPairs) 
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Huchet 

 

 

-0.7 

GRD 

 

[c:1]([H])[c:2]([c:3])[O:4]C([H])([H])C([H])([H])([H])>>[c:1]([H])[c:2]([c:3])[O:4]C([H])([H])C([H])([H])F 

-0.48 ± 

0.72 (8) 

Huchet 

 

 

-0.6 

GRD 

 

[c:1][O:2][C]([H])([H])[C]([H])([H])([H])>>[c:1][O:2][C]([H])([H])[C]([H])([F])[F] 

-0.11 ± 

0.28 (18) 

Huchet 

 

 

-0.4 

GRD 

 

[c:1][O:2][C]([H])([H])[C]([H])([H])([H])>>[c:1][O:2][C]([H])([H])[C]([F])([F])[F] 

0.21 ± 0.59 

(50) 

Huchet 

 

-0.8 - -1.0 

GRD insufficient examples Insufficient 

examples 

Table 1: Comparison between Fluorine effects published by Huchet et. al. and GRD statistics. 

Here and in all following transformation depictions, the green bar indicates the bonds that 
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separate the constant and the variable part of the transformation. The atoms that are depicted 

and belong to the constant part are the atoms defining the environment of the transformation. 

As a second comparison, we looked at amide/ sulfonamide methylation. In one of the first 

MMP analysis papers, Leach et. al. statistically showed that amide N-methylation increases 

solubility.
2
  Subsequently Ritchie et. al. presented statistics showing that on average, amide 

methylation on aromatic amides reduces logD and increases solubility.
31

 They rationalize this 

behavior with the planarity-breaking effect of aromatic amide N-methylation. In contrast to 

amide N-methylation, they show that sulfonamide methylation always increases logD and 

reduces solubility. The GRD data is in perfect qualitative agreement with their observation 

(see table 2): In our data, aromatic amide N-methylation on average decreases logD by 0.25 

log units and improves solubility by 0.26 log units. In contrast, aromatic sulfonamide N-

methylation increases logD by 0.37 units and decreases solubility by 0.10 log units. Note that 

the rules used here are not merely hydrogen to methyl transformations, but rather specific 

linker transformations as depicted in table 2. 

Transformation ∆logD ± std 

(nPairs) 

 

∆Solubility ± std 

(nPairs) 

 

[c:1][C](=[O])[N]([H])[C:2]([H])([H])([H])>>[c:1][C](=[O])[N]([C:2]([H])([

H])([H]))[C]([H])([H])([H]) 

-0.25 ± 0.45 (190) 

 

0.26 ± 0.87 (144) 

 

[c:1][C](=[O])[N]([H])[C:2]([H])([H])([H])>>[c:1][S](=[O])(=[O])[N]([H])[C

-0.19 ± 0.41 (64) 

 

-0.10 ± 0.48 (23) 
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:2]([H])([H]) 

 

[c:1][C](=[O])[N]([C]([H])([H])([H]))[C:2]([H])([H])>>[c:1][S](=[O])(=[O])[

N]([C]([H])([H])([H]))[C:2]([H])([H]) 

0.79 ± 0.21 (6) 

 

insufficient 

examples 

 

[c:1][S](=[O])(=[O])[N]([H])[C:2]([H])([H])>>[c:1][S](=[O])(=[O])[N]([C]([

H])([H])([H]))[C:2]([H])([H]) 

0.37 ± 0.35 (18) 

 

-0.10 ± 0.67 (17) 

Table 2: Effect of changing a secondary into a tertiary aromatic amide/ sulfonamide on 

solubility. 

Another comparison with rules previously identified by Papadatos et. al.
9
 is detailed in 

the supporting information Table S17. We generally find that the rule statistics found in GRD 

compare very well to previously published rule statistics. Differences result from different 

encoding of the environment, sampling (both number of pairs and chemical diversity), and 

inter-company variations in measuring different endpoints (see paragraph on Roche vs. joint 

rules). 

Solubility vs logD 

The most basic physicochemical parameters of relevance for drug design are solubility 

and logD. Initially we explored separating the thermodynamic and kinetic solubility assays. 

However we discovered that the assays, although known to give different absolute values, 

give the same compound rankings therefore rules could be inferred from combining the 

mixed solubility data sets.  This is a quantitative equivalent to medicinal chemistry practice 
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of inferring what are good “solubilizing groups” irrespective of solubility assay. LogD and 

solubility are often highly correlated, with the only other dominant factor apart from 

lipophilicity that influences solubility being the stability of the crystal structure, which can be 

measured by the melting point. 
32

 A plot of the correlation between the solubility and logD 

rules is shown in figure 9. 

 

Figure 9: Solubility vs logD effects, >=20 pairs per rule, n=13453. R
2
 = 0.66, slope = -0.57, 

intercept = 0. Red line: line of slope -1, intercept 0. Unless stated otherwise, in this and all the 

succeeding scatterplots, the dark green ellipse contains 50% of the data. 

Figure 9 shows that logD and solubility are also highly correlated in transformation space. 

The R
2
 is 0.66, with a slope of -0.57. If only rules with at least 50 pairs are considered, the R

2
 

increases to 0.72 (graph not shown).  This means that on average a change of 1 in logD 

translates into a solubility change less than one order of magnitude. However the breadth of 

the distribution should be noted. For isolipophilic transformations, i.e. those with a ∆logD of 

0, the change in solubility can range over +/- 1 log unit. 
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There are a number of rules that have good statistical support but break the 

logD/solubility correlation, three examples are shown in table 3. 

Transformation ∆logD ±std 

 (nPairs) 

∆logSol ±std 

(nPairs) 

 

[C:1]([H])([H])[C:2]([H])([H])[N]1[C]([H])([H])[C]([H])([H])[O][C]([H])([H

])[C]([H])([H])1>> 

[C:1]([H])([H])[C:2]([H])([H])[N]1[C]([H])([H])[C]([H])([H])[C]([H])([H])[

C]([H])([H])[C]([H])([H])1 

0.00 ± 0.67 (91) 0.73 ± 0.72 (87) 

 

[C]([H])([H])([H])[C]([C]([H])([H])([H]))([C:1]([H])([H]))[O:2]([H])>> 

[C:1]([H])([H])[C]([H])([H])[O:2]([H]) 

-0.59 ± 0.49 

(82) 

0.03 ± 0.72 (98) 

 

[c:1]1([H])[c:2]([c:3]([H])[c:4]([c:5][c:6]1[Cl:7])[Cl:8])[C]#[N]>>[c:2]1([H])

[c:1]([H])[c:6]([c:5][c:4]([c:3]1([H]))[Cl:8])[Cl:7] 

0.45 ± 0.64 (50) 0.46 ± 1.02 (65) 

Table 3: Example transformations where the change in logD and Solubility is not as one 

would expect from the logD-Solubility correlation. 

The medians for the examples shown in Table 3 are statistically all very well backed, 

although there is quite some variation for the individual pairs as can be seen from the 

standard deviations. In the first example, an aliphatically N-connected morpholine is 
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exchanged by an aliphatically N-connected piperidine.. In the second example, a tertiary 

dimethyl alcohol is transformed into a primary alcohol. This on average reduces logD by 0.59 

log units, but has almost no effect on solubility. In the last example, a 4-cyano-2,5-

dichlorophenyl is transformed into a 2,5-dichlorophenyl. This transformation increases logD 

by 0.45 log units, but it also increases solubility by 0.46 log units. From this and other 

examples (see supporting information) we have seen, it appears that aromatic cyano groups 

do not help for solubility. In the supporting information, some additional transformations 

with unexpected relationships between the effect on logD and solubility are exemplified in 

Table S5-S7. 

Clearance vs logD 

Reducing lipophilicity is often considered as a common strategy to improve metabolic 

stability. In fact, 19 of GRD’s top 20 rules (see Table S8 in supporting information) that 

decrease liver microsomal clearance and hepatocyte clearance are also accompanied by a 

logD decrease. Figure 10 shows a plot of the median change of microsomal and hepatocyte 

clearance in human and rat against the corresponding median change in logD where we have 

> 20 examples. (Microsomal and hepatocyte clearance data was used as pure Clint values, 

uncorrected for binding.) The plot shows a good correlation between these two properties 

(R
2
=0.40 and 0.30 in human and rat microsomal clearance vs logD and 0.34 and 0.41 in 

human and rat hepatocyte clearance vs logD). The plot suggests that on average a change of 1 

in logD translates into a human or rat in-vitro clearance change of 0.2 -0.4 log units. 
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(a) 

(b) 
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(c) 

(d) 

Figure 10: Median change of logD vs median change of (a) human (n=11,572, R
2
=0.40, slope 

= 0.23) and (b) rat (n=5,056, R
2
=0.30, slope = 0.20) liver microsomal clearance. Median 

change of logD vs median change of (c) human (n=812, R
2
=0.33, slope = 0.31) and (d) rat (n 

= 4,937, R
2
=0.41, slope = 0.24) hepatocyte clearance. Data is only shown for rules based on 

>=20 example pairs for every transformation. 
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There are some transformations that reduce human microsomal clearance while keeping 

logD neutral or even increasing it. Table 4 shows three such examples. 

Transformation 

Human 

microsomal 

Clearance median 

change ± std 

(nPairs) 

logD 

median change ± 

std 

(nPairs) 

 

[c:1][c]1[c]([H])[n]([H])[n][c]([H])1>> 

[c:1][c]1[c]([H])[n][n]([c]([H])1)[C]([H])([H])[C]([H])([H])([H]) 

-0.34±0.71 

(13)  

0.35±0.45 (15)  

 

[c:1][c]1[c]([H])[c]([H])[c]([H])[c]([H])[c]([H])1>> 

[c:1][c]1[c]([H])[c]([H])[c]([c]([H])[c]([H])1)[Cl] 

-0.32±0.51 

(53)  

0.7±0.74 (117)  

 

[c:1][S](=[O])(=[O])[C]([H])([H])[C]([H])([H])[O][C]([H])([H])([H

])>> 

[c:1][S](=[O])(=[O])[C]([H])([H])([H]) 

-0.59±0.38 

(14)  

0.0±0.11 (19)  

Table 4: Transformations that decrease human microsomal clearance while keeping logD 

constant or even increasing it. 

In the first transformation shown, a potentially reactive pyrazole-NH is protected by an 

ethyl. This increases logD by 0.34 log units, but at the same time on average reduces 

Page 28 of 54

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



clearance by 0.34 log units.
33

 In the second example, a terminal unsubstituted phenyl ring is 

substituted with chlorine in the para position. This leads to a drastic increase in logD by 0.7 

log units, but also to an average decrease in clearance by 0.32 log units. Fluorine in the para 

position of a phenyl ring did not produce same statistical effect as chlorine; details of chlorine 

and fluorine substitution on a phenyl ring are in Table S9 in the supporting information.  In 

the last transformation, an aromatic methoxy-ethyl-sulfone is replaced by a methyl sulfone. 

This on average does not have any effect on logD, but it strongly reduces clearance by 0.59 

log units. In the supporting information (Table S10-12), more examples of transformations 

that reduce clearance while keeping logD constant or even increasing it are provided. 

PPB versus logD 

The optimization of free fraction as a goal is open to debate,
34

 however when chosen as a 

strategy, reducing logD to increase the free fraction is an accepted approach.
35

 We expect to 

observe the general trend between logD and free fraction in our data. In the GRD, changes in 

logD and human free fraction correlate fairly well for rules with more than 20 examples. 

Many outliers belong to the group of transformations where there is a change in anion count 

(colored blue in figure 11). Those are mainly neutral to acidic or acidic to neutral 

transformation changes, which have previously been reported to be “special” for free 

fraction.
36
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(a) 

 

(b) 
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(c) 

Figure 11:  human free fraction vs logD effect: red line = slope -1, intercept 0. (a) Greater 

than or equal to 20 pairs per rule and neutral: R
2
= 0.71, Slope= -0.45, 7942 rules. (b) Rules 

with anion increase not equal to zero: R
2
= 0.06, Slope= -0.03, 192 rules. (c) Rules with cation 

increase not equal to zero: R
2
= 0.90, Slope= -0.58, 738 rules. 

Figure 11 shows that differences in free fraction are highly correlated with differences in 

logD (R
2
= 0.73, Slope= -0.46, 8,680 rules, not visible from these plots), if no anions (e.g. 

acids) are introduced or removed. This is a valuable finding, since it means that ∆logD can be 

used as a good surrogate for human ∆log(free/bound), if no exchange of anions is involved. 

Despite have a huge effect on logD, the addition or removal of anions on average has no 

effect on PPB, as can be seen from figure 11b. The change in logD due to introduction or 

removal of cations, in contrast, is again highly correlated to the change in PPB, as can be seen 

from figure 11c. If the free fraction is low, it becomes very hard to measure, and 

improvements in free fraction can in many cases not be monitored experimentally since they 

are still below the limit of detection. 
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Some free fraction transformations are counterintuitive because logD is either increased 

or constant, but the free fraction increases nevertheless, and an acid is not involved in the 

transformation. Table 5 shows three such examples. 

 

Transformation ∆logD ±std 

(nPairs) 

Hu∆log 

(free/bound ±std 

(nPairs) 

 

[c:1][n:2]([c:3])[C]1([C]([H])([H])[C]([H])([H])[O][C]([H])([H])[C]([H])([H])1)[

C]([H])([H])([H])>> 

[H][C@@]1([C]([H])([H])[C]([H])([H])[C@]([C]([H])([H])1)([H])[O][C]([H])([H

])([H]))[n:2]([c:1])[c:3] 

0.33 ± 0.14 (11) 0.32 ± 0.34 (11) 

 

[c:1][O][c]1[c]([H])[c]([H])[c]([c]([H])[c]([H])1)[C:2]([H])>> 

[c:1][C]([H])([H])[c]1[c]([H])[c]([H])[c]([c]([H])[c]([H])1)[C:2]([H]) 

0.48 ± 0.29 (11) 0.42 ± 0.28 (12) 

 

[c:1][N:2]([C:3]([H])([H])([H]))[c]1[c]([H])[c]([H])[c]([c]([c]([H])1)[C]([H])([H])

[O]([H]))[C]([H])([H])([H])>>[c:1][N:2]([C:3]([H])([H])([H]))[c]1[c]([H])[c]([c]([

H])[c]([H])[c]1[C]([H])([H])([H]))[C]([H])([H])[O]([H]) 

-0.1 ± 0.11 (21) 0.62 ± 0.19 (7) 
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Table 5: Transformations that increase the free fraction and increase or keep logD almost 

constant. 

The first transformation in table 5 shows the conversion of a 4-methyl tetrahydropyran 

into a methoxy-substituted cyclopentyl. This on average increases the free fraction by 0.32 

log units, but also increases logD by 0.33 log units. The second transformation shows the 

conversion of an O-linker between two aromatic rings into a CH2-linker. LogD is increased 

by 0.48 log units, while the free fraction is increased by 0.42 log units. The last 

transformation in table 5 shows the shift of a methyl group on a substituted phenyl from the 

para to the ortho position.  LogD is not significantly changed, but the free fraction is 

increased by 0.62 log units. More examples can be found in the supporting information Table 

S14-S16. 

Functional group scorecards 

Having a huge and diverse MMP database (over 350k unique structural transformations 

each with more than 6 example pairs) such as the GRD allows for a characterization of 

functional group replacements across many ADMET attributes. For frequently applied 

transformations such as the ones shown in Tables 6 and 7, almost complete “functional group 

scorecards” can be derived to predict the effect of a given frequent transformation on 

ADMET and PhysChem properties, normalized to a common starting structure. The 

scorecards give a quick overview of functional group properties across many different 

attributes relevant to drug design. Differences in the behavior of the pyridine and chloro-

phenyl isomers is, as we might anticipate, smaller for the ADMET attributes where the 

interaction is less specific such as solubility, logD and protein binding, and larger for the 

more specific interactions such as P450 and hERG inhibition. Although we could speculate 
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on the reasons for the regioisomer differences, detailed exploration of the causes of these 

differences is beyond the scope of this work. 

Phenyl to pyridine transformations 

    

Property ∆ ± std (nPairs) ∆ ± std (nPairs) ∆ ± std (nPairs) 

logD* -0.64 ± 0.70 (75) -0.92 ± 0.72 (70) -0.87 ± 0.79 (54) 

Solubility 1.00 ± 0.75 (98) 0.84 ± 0.80 (98) 0.79 ± 0.81 (77) 

hERG -0.39 ± 0.47 (57) -0.36 ± 0.44 (24) 0.12 ± 0.54 (37) 

PPB human* 0.31 ± 0.42 (32) 0.73 ± 0.42 (37) 0.79 ± 0.38 (17) 

human Mic 

Clearance 

-0.11 ± 0.46 (43)* -0.07 ± 0.57 (90) Insufficient 

examples 

human Hep  

Clearance 

-0.28 ± 0.30 (8) -0.14 ± 0.13 (5) -0.04 ± 0.30 (7) 

CYP3A4 

inhibition 

-0.31 ± 0.49 (22) 0.65 ± 0.54 (20) 0.96 ±0.67 (21) 

CYP2D6 

inhibition 

-0.41 ± 0.51 (8) 0.49 ± 0.52 (7) 1.08 ± 0.66 (8) 

CYP2C19 -0.69 ± 0.74 (3) 0.01 ± 1.11 (8) 0.74 ± 0.91 (6) 
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inhibition 

Table 6: Effects of changing a phenyl into a ortho-, meta-, and para -pyridine.* [R1][C] 

instead of [R1][C]([H])([H]) taken as environment due to paucity of pairs. 

O- /m- /p- Chloro substitution on Phenyl 

  
 

 

 

Property ∆ ± std (nPairs) ∆ ± std (nPairs) ∆ ± std (nPairs) 

logD 0.48 ± 0.60 (66) 0.58 ± 0.57 (86) 0.67 ± 0.75 (127) 

Solubility -0.36 ± 0.77 (42) -0.38 ± 0.75 (50) -0.52 ± 0.85 (81) 

hERG -0.04 ± 0.29 (14) 0.16 ± 0.27 (5) 0.38 ± 0.35 (25) 

PPB human -0.33 ± 0.34 (32) -0.49 ± 0.39 (51) -0.54 ± 0.39 (68) 

human Mic Clearance 0.24 ± 0.53 (47) 0.20 ± 0.47 (49) 0.00 ± 0.38 (61) 

human Hep  

Clearance 

0.16 ± 0.38 (7) 0.30 ± 0.29 (16) -0.01 ± 0.37 (20) 

CYP3A4 inhibition 0.29 ± 0.49 (20) 0.27 ± 0.46 (22) 0.27 ± 0.55 (31) 

CYP2D6 inhibition 0.09 ± 0.36 (9) 0.20 ± 0.37 (12) 0.16 ± 0.54 (24) 

CYP2C19 inhibition 0.32 ± 0.70 (5) 0.37 ± 0.61 (8) 0.16 ± 0.68 (14) 

Table 7: Effects of ortho-, meta-, and para -chloro substitution on benzyls. 
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Discussion 

We have determined whether medicinal chemistry ADMET knowledge can be shared and 

enhanced by combining transformations between organizations. Using the MMPA 

technology, knowledge about the effects on ADMET properties of medicinal chemistry 

transformations can be generated based on the joint pair datasets from all participating 

companies. The number of rules gained increases synergistically, since there are cases where 

the significance threshold to define a rule is only reached by adding all pairs linked by the 

same transformation from different companies.  

Examining the effect of the transformations on human liver microsomal stability and 

LogD common to all contributing organizations to those from Roche alone shows excellent 

agreement. This shows that the merging data by the strategy presented in this contribution 

supplements inhouse rules much more than it increases the noise in the rule statistics due to 

mixing pairs measured at different companies. Although an exact quantitative comparison 

with previously published rules is not possible due to different MMPA definitions used in 

different publications, we observe qualitative agreement between the GRD rules and 

published rules.  At first sight the synergistic gain may appear purely quantitative (more 

rules), it is important to realize, however, that the more pairs support those rules, the better 

they become. Therefore, ‘quantity has a quality all its own’ in MMPA. Also, if the pairs come 

from different companies, the structural variety in the underlying pairs most probably 

increases, making the rules more robust. We did not quantify this here, but we believe that in 

future work it would be valuable to develop a metric for quantifying the structural diversity in 

the underlying pairs for each rule as an indicator of robustness. 

The correlation between logD and solubility in transformation space, e.g. the space that is 

relevant for medicinal chemistry optimization, has an R
2
 of 0.66 and agrees very well with 
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previously reported correlations for individual compounds. As such, this experiment confirms 

general basic medicinal chemistry principles. However, there are also a number of exceptions 

to the general logD-solubility rule. We here presented three statistically very well supported 

exceptions as examples, and many more can be found in the GRD. With MMPA-based rule 

databases such as the GRD, medicinal chemists can easily access and use all the “exception” 

rules in prospective design. 

We also showed that clearance is correlated to logD in transformation space, although the 

correlation is much weaker (R
2
 = 0.3 – 0.5). Clearance is a topic particularly well suited to 

MMPA, since beyond simple logD and exposure rules, principles to address clearance are 

almost exclusively based on rules about fragments and their relative stability. Here, we 

present only three rules that go counter to the accepted logD correlation. The supporting 

information contains some more rules, but the most natural way to access all the rules is 

through MMPA-based rule databases, since there are so many rules that it is impractical to 

print them all in a traditional article. With our big dataset, novel and interesting analyses 

about the correlations between species and microsomal and hepatocyte clearance can be 

made, all of which are however beyond the scope of this contribution. 

As a third example, we present the analysis of the correlation between logD and PPB in 

transformation space. We find that the two are highly correlated, if changes in the number of 

anions (mostly acids) are discarded. This is an important finding: it means that in the cases 

where free fraction is very hard to measure, a first estimate can be made using a matched pair 

measurement of logD and the correlation between delta logD and delta log free fraction. 

MMPA was critical in establishing this relationship as normal plots of free fraction versus 

logD are often compromised by the noise generated by very high or low free fraction values 

and the limit of PPB detection.  The real relationship between changes in logD and free 
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fraction could only be revealed thanks to the size of the datasets and the number of rules in 

GRD. 

Relationships between rules are also important and have been explored in the related  

matched molecular series studies.
38

 With a growing body of well-defined rules across 

different properties available for the common transformations, it is possible to create 

functional group scorecards, such as shown above for phenyl Cl- and N-substitution (Tables 6 

and 7). These scorecards enable a quick overview of functional group properties (relative to a 

joint standard) and inform the choice of functional group substitution for property 

optimization. Those can form the basis of analysis across the medicinal chemistry knowledge 

space that may allow induction of A�C rules from the known relationships of A→B and 

B→C. The recent work of Kramer
10

 suggests that this may be possible though the 

contributing transformations need to be very well exemplified to avoid the amplification of 

experimental error when combining rules. Larger datasets than the one considered here may 

be needed to enable these enhancements. 

Finally, such a corpus of knowledge may be used for the training of medicinal chemists.  

Historically medicinal chemists have learnt though their work on projects predominantly 

experientially, a time consuming and potentially unreliable route to gaining expertise.
39

 With 

the possibility of encoding medicinal chemistry knowledge in a consistent, robust, data dense, 

sharable manner, there is an opportunity to accelerate and enhance medicinal chemists’ skills.  

Access to a reference guide to what outcomes are “reasonable” for a given chemical change 

can allow chemists to set proposed compounds within the context of precedents and rank 

compounds in both synthetic tractability and probability of making the desired ADMET 

change. 

Page 38 of 54

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Conclusions & Outlook 

We have demonstrated that significant knowledge can be extracted from large scale, 

unsupervised mining of in vitro ADMET data from multiple pharmaceutical companies.  

Within the organizations collaborating in this work and in those who have been able to 

exploit the data in trial form in universities and not for profit organizations, the knowledge 

has contributed to solving a number of drug hunting project problems leading to several 

publications .
40–42

 We have also shown examples of transformations that run counter to 

established wisdom. These may be useful tools to extricate a drug hunting team from a tight 

optimization corner and more generally to provide opportunities to enhance our 

understanding of the general SAR of the system being studied. Both of these are highly 

desirable goals. 

It is conceivable that the ensemble of rules found through MMPA on large datasets (as 

large as the one studied here or even larger) could form the basis for a statistics-based 

reference for medicinal chemistry, an “encyclopedia of medicinal chemistry tactics”.
37

 In this 

case, it matters less that the underlying pairs have not all been measured at the same place. 

What is really important is to maximize the size of dataset to broaden the resulting corpus of 

rules and the statistical meaningfulness. For PPB, we obtained promising results in an  

analysis based on the partitioning by environment and ion class.  Further partitions by factors 

such as shape or electronic descriptors could also be considered, though a clear mechanistic 

rationale justifying every partition is necessary as the analysis could fall into the traps of 

“data dredging” and generate false rules from statistical artifacts. 

Peter Norvig, a director of research at Google has published on the “Unreasonable 

Effectiveness of Data”,
43

 the concept that with a very large quantity of data, useful 

knowledge can be extracted in the absence of an underlying mechanistic model. For simple in 
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vitro ADMET properties it seems reasonable to suggest that we may be approaching this 

point in medicinal chemistry. It is possible to view the “brute force engineering” approach of 

data mining as inelegant to those more persuaded by a reductionist-theoretical approach to 

compound optimization, however we see these two approaches as being on a continuum. 

Established theories are often built on a modest amount of experimental data, whereas data 

mining transformations brings a vast depth of data with no mechanistic model beyond the 

“fundamental belief” of chemistry that “structure defines properties”. The opportunity to 

enhance our SAR theories for ADMET properties by using the learning from data mining is 

an area as yet under-developed and has the possibility of further accelerating drug hunting. 

As researchers at Pfizer have described it, this is the process of generating tacit knowledge 

from large datasets.
44

 Both the reductionist-theoretical and pragmatic data mining approaches 

should accelerate lead optimization. Given that the urgent and essential goal of drug 

discovery is to deliver safe effective compounds to the clinic, and the continuing decrease in 

drug hunting productivity
45

 the simple truth is that medicinal chemists must increasingly look 

to more efficient practices and reliance on robust predictions and substantiated rules. 

Supporting Information 

The supporting information contains the following information: 

• Additional detail and diagrams showing the capture of the local chemical 

environment round a point of change in a transformation 

• The data merging approach 

• Flowchart showing the method for assigning rules as significant 

• Solubility vs logD plots and confusion tables 

• 72 additional rules in SMIRKS and drawn transformations 
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• Comparison to 7 previously published rules 

• Single company vs GRD comparison confusion tables. 
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