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ABSTRACT 23 

The Mount Polley mine tailings embankment breach on August 4th 2014, in British Columbia, 24 

Canada, is the second largest mine waste spill on record. The mine operator responded swiftly by 25 

removing significant quantities of tailings from the primary receiving watercourse, stabilizing the 26 

river corridor and beginning construction of a new river channel. This presented a unique 27 

opportunity to study spatial patterns of element cycling in a partially-restored and alkaline river 28 

system. Overall, water quality impacts are considered low with Cu, and to a lesser extent V, being 29 

the only elements of concern. However, the spatial pattern of stream Cu loading suggested 30 

chemical (dominant at low flow) and physical (dominant at high flow) mobilization processes 31 

operating in different parts of the watershed. Chemical mobilization was hypothesized to be due 32 

to Cu sulfide (chalcopyrite) oxidation in riparian tailings and reductive dissolution of Cu-bearing 33 

Fe oxides in tailings and streambed sediments whereas physical mobilization was due to erosion 34 

and suspension of Cu-rich stream sediments further downstream. Although elevated aqueous Cu 35 

was evident in Hazeltine Creek, this is considered a relatively minor perturbation to a watershed 36 

with naturally elevated stream Cu concentrations. The alkaline nature of the tailings and the 37 

receiving watercourse ensures most aqueous Cu is rapidly complexed with dissolved organic 38 

matter or precipitates as secondary mineral phases. Our data highlights how swift removal of 39 

spilled tailings and river corridor stabilization can limit chemical impacts in affected watersheds 40 
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but also how chemical mobilization (of Cu) can still occur when the spilled tailings and the 41 

receiving environment are alkaline. We present a conceptual model of Cu cycling in the Hazeltine 42 

Creek watershed.  43 

1. Introduction 44 

On August 4th 2014, a partial embankment breach of the Mount Polley tailings storage 45 

facility (TSF) in British Columbia, Canada, led to the release of approximately 25 Mm3 of mine 46 

tailings and supernatant water into the Quesnel River Watershed (WISE, 2016; Petticrew et al., 47 

2015). The embankment breached due to a geotechnical failure of a layer of glacio-lacustrine clay 48 

in the foundation materials below the dam (Independent Expert Engineering Investigation and 49 

Review Panel, 2015). The Mount Polley event was significant for four reasons. First, at the time 50 

of the accident it was the largest ever documented spill of mine tailings into the environment 51 

(WISE, 2016). Second, among tailings spills, the Mount Polley accident was unusual in that the 52 

tailings are not acid-generating and contain generally low levels of trace metals and metalloids 53 

when compared to typical tailings (Golder Associates Ltd, 2015; Kossoff et al., 2014). Third, the 54 

environmental clean-up operations were swift; within one year of the event a significant volume 55 

of the spilled tailings had been removed from the major receiving watercourse and an extensive 56 

river restoration scheme was under construction (Independent Expert Engineering Investigation 57 

and Review Panel, 2015). Fourth, the Mount Polley spill highlighted the increasing global 58 

environmental risk of such events, due to the growing number of mining operations and higher 59 

waste to ore ratios, and due to the growing vulnerability of these types of environments to extreme 60 

hydro-meteorological events (Hudson-Edwards, 2016).  61 

Following the embankment breach, tailings material initially discharged north into Polley 62 

Lake before forming a ‘plug’ (area known as Polley Flats in Fig.1) that blocked water flowing 63 

from Polley Lake. The tailings material subsequently flowed south-east into Hazeltine Creek and 64 

then discharged into the West Basin of Quesnel Lake. The tailings material initially eroded the 65 

existing valley, both vertically and laterally (SNC-Lavalin Inc, 2015). Subsequently, thick deposits 66 

of tailings (up to 3.5 m thick) occurred primarily near Polley Lake and in Lower Hazeltine Creek 67 

with thinner layers occurring in other parts of the creek. Tailings were deposited within the riparian 68 

zone up to 100 m from Hazeltine Creek. 69 

The ore body at Mount Polley is a typical alkalic porphyry Cu-Au deposit with supergene 70 

enrichment (McMillan, 1996). The dominant ore mineral is chalcopyrite (CuFeS2), but Cu also 71 

occurs as other sulfide (bornite – Cu5FeS4, covellite – CuS, digenite – Cu9S5), silicate (chrysocolla 72 

– (Cu,Al)2H2Si2O5(OH)4.nH2O) and carbonate hydroxide minerals (malachite – Cu2CO3(OH)2) 73 

(Henry, 2009). Importantly, the ore has a low sulfide (0.1 – 0.3 wt. %) and high calcite (5 – 10 wt. 74 

%) content giving it a high neutralization potential. Tailings generated from the processing of 75 

Mount Polley ore also have generally low metal concentrations (mg kg-1: As, 8 – 13; Cd, 0.1 – 0.3; 76 

Cr, 8 – 55; Cu, 65 – 1475; Pb, 4 – 12; Hg, <0.1 – 0.3; Ni, 6 – 36.4; Se, 0.3 – 1.9; V, 86 – 295; Zn, 77 

40 – 82) (SRK Consulting (Canada) Inc, 2015c) when compared to other spilled tailings (Bird et 78 

al., 2008; Hudson-Edwards et al., 2003). 79 

Evidence from water sampling surveys carried out in Hazeltine Creek shortly after the 80 

breach revealed elevated (above British Columbia Water Quality Guidelines – BCWQG (British 81 

Columbia Ministry of Environment (BCMoE), 2017)) filtered concentrations of several metals 82 

(including Cu (maximum: 86 µg L-1) and Se (maximum 33 µg L-1) that have decreased 83 

substantially since the event (Golder Associates Ltd, 2015). Following the breach, Mount Polley 84 
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Mining Corporation implemented an on-going rehabilitation and remediation strategy that has 85 

involved removing tailings from Lower and Upper Hazeltine Creek and construction of a new 86 

rock-lined channel and fish habitat (MPMC, 2015). Early evidence from geochemical 87 

investigations (humidity cell and column tests) suggests Cu has limited environmental mobility 88 

(predicted maximum Cu concentration of 20 µg L-1) due to the low acid generating potential of the 89 

tailings (SRK Consulting (Canada) Inc, 2015c). Overall, this result suggests the tailings may be 90 

relatively non-reactive, thereby limiting the potential long-term chemical impacts of the spill. 91 

However, column tests, while very useful, cannot entirely replicate environmental conditions in 92 

complex field sites, especially at the interface between deposited tailings and the river corridor, 93 

where temperature, daylight, microbial activity, redox potential, pH and hydrology are constantly 94 

changing. Watershed-scale investigations of trace metal dynamics are therefore required to 95 

supplement existing laboratory-based microcosm data and to determine the environmental risk of 96 

residual tailings in the stream corridor. 97 

The Mount Polley tailings spill presents a unique opportunity to study water quality 98 

impacts and water-sediment interactions in a receiving watercourse whose valley morphology was 99 

re-set by the spill event and whose channel has subsequently been modified and realigned. Since 100 

the event, there have been several environmental impact studies conducted by consultants on 101 

behalf of Mount Polley Mining Corporation (Golder Associates Ltd, 2015; Minnow 102 

Environmental Inc, 2015; SNC-Lavalin Inc, 2015; SRK Consulting (Canada) Inc, 2015a, b). The 103 

initial impacts of the spill on Quesnel Lake have also been documented (Petticrew et al., 2015). 104 

However, this work represents the first peer-reviewed study of the chemical impacts of the tailings 105 

spill on the primary receiving watercourse. Our specific objectives were to: (1) establish the spatial 106 

pattern and sources of element loading (specifically Cu) in Hazeltine Creek and (2) assess the 107 

potential for residual alkaline tailings in a partially-restored river corridor to influence short- to 108 

long-term aqueous chemistry.   109 

 110 

2. Methods 111 

2.1. Study site 112 
Mount Polley Cu and Au mine is located approximately 275 km south-east of Prince 113 

George, British Columbia, Canada (Fig. 1). Hazeltine Creek is the main outlet of Polley Lake, 114 

draining an area of 112 km2, and flowing approximately 9.5 km into Quesnel Lake. Bedrock 115 

geology in the catchment is dominated by Mesozoic (252 – 66 Ma) basaltic and andesitic volcanic 116 

assemblages. The upper watershed sits partially within Late Triassic (235 – 201 Ma) alkalic 117 

intrusions that host the porphyry mineralization (McMillan, 1996). 118 

Prior to the spill, the Hazeltine Creek corridor was well forested with an average bank full 119 

width of 5 m and consisted of riffle-pool sequences and a bedload of predominantly cobbles and 120 

gravel (SNC-Lavalin Inc, 2015). Following the spill, a thick deposit of tailings (typically 1 m deep, 121 

but in some locations > 3.5 m) was deposited near the dam and in parts of upper Hazeltine Creek. 122 

Most of Upper Hazeltine Creek experienced rapid and steep erosion and eventually a thin layer of 123 

tailings deposition (10 to 20 cm deep). At approximately 4800 – 4900 m and 5600 – 6600 m 124 

downstream of the TSF, the spilled tailings were funneled through narrow canyons resulting in 125 

incision to bedrock and the removal of fine-grained sediments from within the channel zone. 126 

Within Lower Hazeltine Creek, the floodplain was eroded, and tailings and native material were 127 

deposited to depths from 0.15 to 1.5 m. Average bank full channel width after the breach was 18 128 

m.   129 
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 130 

2.2 Water analyses and modelling  131 
A synoptic sampling mass balance approach was utilized to identify the spatial pattern of 132 

constituent concentrations and loads in the Hazeltine Creek watershed and to study the main 133 

hydrological and geochemical processes driving the observed patterns. The synoptic mass balance 134 

methodology for management of mine pollution was developed by the U.S. Geological Survey 135 

(USGS) as part of the Abandoned Mine Lands Initiative and is based on synchronous water quality 136 

and flow measurements made at multiple locations across a catchment that provide detailed spatial 137 

assessments of pollutant sources (Kimball et al., 2002). Water sampling and discharge 138 

measurements were acquired under low flow conditions in 2015 and high flow conditions in 2016. 139 

Low flow sampling was performed using the velocity-area method at 10 stream sites on August 140 

2nd 2015 (denoted as ‘stream site’ in Fig. 1; flow range was 140 – 250 L s-1 and typical of long-141 

term values for August (based on 91 measurements taken over spring, summer and autumn from 142 

1995 to 2014) (Knight Piesold Ltd, 2014)). At the time of sampling, much of the tailings had been 143 

removed in Lower Hazeltine Creek and two sedimentation ponds were operating to settle out 144 

suspended particles prior to entry to Quesnel Lake (Fig. 1). Samples were also collected at 12 145 

locations where water was flowing from riparian tailings into the creek from seeps or drainage 146 

ditches (denoted as ‘inflow site’ in Fig. 1). In-situ pore water samples were collected (from 10 cm 147 

and 20 cm depth) at three locations in Hazeltine Creek using a stainless steel piezometer and 148 

peristaltic pump. Four additional water chemistry and flow measurements (using the tracer dilution 149 

technique) were collected in Hazeltine Creek under high flow conditions (flow range was 600 - 150 

680 L s-1 and typical of long-term spring freshet values (Knight Piesold Ltd, 2014)) in July 2016 151 

in order to investigate potential water quality impacts during fall storm events or spring snowmelt. 152 

Measurements from four creeks in the Quesnel River Watershed that were unaffected by the 153 

tailings spill were also collected in July 2016 in order to establish the magnitude of impact in 154 

Hazeltine Creek compared to the regional baseline.  155 

Total and filtered (0.45 µm) cation (Al, Ca, K, Mg, Na, Si) and trace element concentrations 156 

(As, Cd, Cu, Cr, Fe, Mo, Mn, Ni, Pb, Se, V, Zn) were determined by inductively coupled plasma 157 

– optical emission spectroscopy (Thermo Scientific iCAP 6500 Duo) and – mass spectroscopy 158 

(Thermo X-series 1), respectively. Filtered anion concentrations (Cl, F, SO4) were determined by 159 

ion chromatography (Dionex ICS-2500). Speciation-solubility calculations, using the measured 160 

aqueous concentrations of the Hazeltine Creek water and inflow samples, were carried out using 161 

the PHREEQC code and the wateq4f.dat. thermodynamic database distributed with the code (Ball 162 

and Nordstrom, 1991; Parkhurst and Appelo, 1999). Additional information on the quality control 163 

and sampling and analytical protocols can be found in the electronic Supplementary Information. 164 

As a result of the physical impacts of the tailings spill in Hazeltine Creek, the stream was not 165 

considered to be fish habitat at the time of this study. However, even though the stream is currently 166 

not significantly utilized by aquatic organisms, aquatic habitat is an intended future use in the 167 

longer term. Therefore, water quality was assessed based on comparisons to British Columbia 168 

Water Quality Guidelines (BCWQG) (British Columbia Ministry of Environment (BCMoE), 169 

2017). The 0.45 µm fraction is defined as ‘filtered’ in this study and is not intended to be 170 

representative of the truly dissolved fraction. 171 

 172 

2.3 Sediment analyses 173 
The concentration of Cu in within-channel sediments, deposited at the channel margin 174 

along Hazeltine Creek, were measured in the field by portable X-ray fluorescence (pXRF) (Niton 175 
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XLp 300) with an analysis time of 60 seconds. Polished blocks of selected samples of tailings 176 

deposited soon after the 2014 spill, and of sediments and ochres remaining in the floodplain in 177 

2016 (denoted as ‘tailings site’ in Fig. 1), were examined under low vacuum with the BSE detector 178 

on the Mineral Liberation Analysis (MLA) 650 FEG ESEM at Queen’s University, Canada. SEM-179 

MLA has previously been used in environmental mineralogical studies to characterize and quantify 180 

mine waste metal- and metalloid-bearing phases (Bromstad et al., 2017; DeSisto et al., 2016). A 181 

Cu-bearing Fe oxide phase was added to the library of minerals included in the SEM-MLA 182 

software, for which Fe oxides with c. >0.1 wt% Cu could be detected and mapped. 183 

 184 

3. Results and discussion 185 

3.1 Water quality impacts 186 
Stream pH values were generally greater than 8.5 throughout the entire reach but ranged 187 

between a high of 9.3 in Upper Hazeltine Creek (HC-5) and a low of 7.5 in Lower Hazeltine Creek 188 

just upstream of the sedimentation pond (HC-9) (Supplementary Table S1). Prior to the dam spill, 189 

the mean pH of Hazeltine Creek was reported as 8.2 (Minnow Environmental Inc, 2009). Diel 190 

variation in stream pH (Supplementary Fig. S1) recorded opposite the TSF over a 4-day period 191 

(30th July to 2nd August 2015) showed a range from 7.0 – 8.7 before and on the day of the synoptic 192 

sampling (2nd August). Some variation on the day of synoptic sampling may reflect enhanced 193 

photosynthesis due to clear skies (Gammons et al., 2015) and lower water levels due to the 194 

operation of a streamflow control device (a weir was installed to control flow during stream 195 

reconstruction). The pH values of sampled inflows (range: 7.8 – 8.7) were generally lower than 196 

stream samples (range: 7.5 – 9.3) (Supplementary Table S1), particularly at sites in Upper 197 

Hazeltine Creek, suggesting that the inflow waters pHs were buffered by mixing with the stream 198 

water. The pH values of inflow and stream waters were more similar in Lower Hazeltine Creek 199 

suggesting mixing of subsurface water and stream water in this reach. This result may explain the 200 

spatial variation of stream pH with more buffering capacity existing in Upper Hazeltine Creek. 201 

The high buffering capacity of stream water (range: 139 – 178 mg L-1 CaCO3) in Hazeltine Creek, 202 

combined with the high calcite and low sulfur content of the spilled tailings (SRK Consulting 203 

(Canada) Inc, 2015b), explains the alkaline pH of the stream water. Concentrations of most major 204 

ions (filtered, mg L-1: Ca, 44 – 357; K, 19 – 117; Mg, 8 – 77; Na, 8 – 120; Si, 3 – 11) were highest 205 

in inflows in Upper Hazeltine Creek, and gradually decreased in the downstream direction 206 

(Supplementary Table S1 and Supplementary Table S2).  207 

Total and filtered (0.45 µm) concentrations of Cd, Mo, Ni, Pb, Se and Zn in Hazeltine 208 

Creek stream water were found to be less than British Columbia Water Quality Guidelines 209 

(BCWQGs – filtered concentrations, µg L-1: Cd, 1; Mo, 500; Ni, 150; Pb, 170; Se, 2; Zn, 97). 210 

Filtered As (range: 7 – 8 µg L-1) and Cr (range: 2 – 5 µg L-1) concentrations were slightly above 211 

environmental standards (BCWQGs – µg L-1: As, 5; Cr, 1) but Cr concentrations were comparable 212 

with pre-event concentrations (range: <1 – 4 µg L-1) (Golder Associates Ltd, 2015). Fe and Mn 213 

(and Al) concentrations were within aquatic environmental standards and similar to pre-event 214 

concentrations (Golder Associates Ltd, 2015). Filtered V concentrations (range: 7 – 12 µg L-1) 215 

were elevated compared to pre-event concentrations (median: 1 µg L-1) (Golder Associates Ltd, 216 

2015) suggesting further investigation into the fate and behaviour of this element is warranted. 217 

However, the main element with elevated concentrations was found to be Cu; total (range: 7 – 28 218 

µg L-1) and filtered (range: 7 – 23 µg L-1) concentrations were above environmental guidelines 219 

(BCWQGs – µg L-1: Cu, 6) throughout Hazeltine Creek and increased with distance downstream 220 
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(Supplementary Table S1 and Fig. 2a). In Upper Hazeltine Creek, around the area known as the 221 

Polley Flats (0 – 3000 m below Polley Lake weir), Cu was higher in inflows than in the stream 222 

water (Fig. 2b). This result suggests that the inflows were receiving Cu from residual tailings and 223 

caused an increase in stream Cu in this part of the watershed. However, inflow Cu concentrations 224 

farther downstream (3000 – 8500 m below Polley Lake weir) were more similar to, or lower than, 225 

stream water concentrations in Lower Hazeltine Creek, suggesting surface inflow waters were not 226 

the only source of Cu in the watershed.  227 

 228 

3.2 Sediment quality impacts 229 
pXRF survey of within channel sediments along the entire length of Hazeltine Creek 230 

revealed elevated Cu concentrations throughout the river corridor at the time of our sampling in 231 

2015 (Fig. 3). Copper concentrations in material present on the floodplain surface up to 50 m 232 

distance from the channel ranged from 88 to 1020 mg kg-1.  These values exceeded both the 233 

threshold effect level (TEL: 37.5 mg kg-1) and predicted effect level (PEL: 197 mg kg-1) for Cu 234 

(British Columbia Ministry of Environment (BCMoE), 2015), and also the mean Cu 235 

concentrations of Hazeltine Creek sediments before the breach (Minnow Environmental Inc, 236 

2015). The Cu concentrations reported were comparable to other rivers affected by tailings spills 237 

(Bird et al., 2008; Hudson-Edwards et al., 2003; Kossoff et al., 2014) and historical mining 238 

operations (Gilchrist et al., 2009; Macklin et al., 2006). Cu concentrations were elevated in both 239 

silt-sized material, believed to reflect tailings-dominated material (range 89 – 419 mg kg-1) and 240 

sand-sized material, believed to reflect magnetite-rich sands (range 72 – 800 mg kg-1). The highest 241 

concentrations occurred in the magnetite sands in the second canyon between 5700 and 6700 m 242 

(Fig. 3). 243 

 244 

3.3 Stream copper loading and source areas 245 
Synoptic sampling of streamflow and stream Cu concentrations is used here to identify and 246 

quantify sources of Cu to Hazeltine Creek under low flow conditions. Flow measurements are 247 

presented in Supplementary Fig. S2. Spatial profiles of filtered and total Cu loading show a general 248 

increase downstream of the Polley Lake weir (Fig. 2c); the maximum filtered (453 g day-1) and 249 

total (549 g day-1) loads were recorded at HC-8. The primary source of total (67%) and filtered 250 

(68%) Cu loading in Hazeltine Creek was the reach from HC-1 to HC-6 (0 – 4000 m) which 251 

comprised residual tailings in Upper Hazeltine Creek (Fig. 2c; source area #1). In this reach, 252 

filtered Cu loads increased consistently and there was no difference between cumulative (the sum 253 

of all loadings in the reaches where a positive change in loading was measured) and measured 254 

filtered Cu loads (Supplementary Fig. S3), suggesting there was no chemical attenuation 255 

(precipitation or adsorption) of Cu here. Total loads exhibit a similar profile to filtered loads in 256 

this reach aside from a slight decrease in load between HC-3 and HC-4. The general increase in 257 

Cu loading through this reach is most likely due to inflow waters with elevated filtered and 258 

particulate Cu concentrations that are draining the residual tailings (Fig. 2b). The increase in 259 

filtered and total loads between HC-5 and HC-6 was probably due to surface and/or subsurface 260 

inflows that were not sampled. The secondary source of total (33%) and filtered (32%) Cu loading 261 

was the reach from HC-6 to HC-10 which comprised the two bedrock canyons and Upper 262 

Hazeltine Creek (Fig. 2c; source area #2). Copper loading through this reach was more variable 263 

than further upstream but a notable increase in total and filtered loads occurred through Canyon 2 264 

(HC-8) followed by similar magnitude decreases downstream of the canyon in Lower Hazeltine 265 

Creek (HC-9). A slight increase in loads downstream of the sedimentation pond (HC-10) prior to 266 



7 

 

discharge into Quesnel Lake was probably due to elevated Cu concentrations in the sedimentation 267 

pond (Fig. 2b). Considering stream Cu loading in the entire watershed, the differences between 268 

cumulative and measured Cu loads suggests 18% and 39% of the total and filtered Cu, respectively, 269 

added to Hazeltine Creek along its course was attenuated prior to discharge into Quesnel Lake 270 

(Supplementary Fig. S3). The alkaline stream water and high calcite and low sulfur content of the 271 

Mount Polley tailings undoubtedly limits mobilization and transport of Cu and other trace metals 272 

in Hazeltine Creek (Nordstrom, 2011). Nevertheless, the gradual increase in Cu concentrations 273 

and loads in the stream suggests aqueous and total Cu phases were influencing stream chemistry 274 

(Fig. 2). The following sections present results and discussion aimed at elucidating the mechanisms 275 

that may be responsible for the observed spatial pattern of Cu loading.   276 

 277 

3.4 Copper mobilization and transport 278 
The primary source of stream Cu loading identified in 2015 was the residual tailings (0 – 279 

4000 m) in Upper Hazeltine Creek. Whilst on-going remediation activities in Hazeltine Creek have 280 

removed much of the spilled tailings, substantial volumes remain in the river corridor (most 281 

notably in the Polley Flats area opposite the TSF in Upper Hazeltine Creek) intermixed with 282 

natural materials. Groundwater seeps and drainage ditches in Upper Hazeltine Creek that were 283 

connected to Hazeltine Creek in 2015 contained elevated concentrations of filtered (up to 37 µg L-284 
1) and total Cu (up to 148 µg L-1) (Fig. 2b, 4a). At the water pH values measured in these inflows, 285 

Cu is predicted to have been present principally as Cu(II) hydroxide (Cu(OH)2), with Cu(II) 286 

carbonate (CuCO3) also present in some samples. Speciation modelling of inflow waters indicates 287 

cuprite was saturated (SI = -2 to +2) (Supplementary Table S3), and minor amounts of cuprite and 288 

chrysocolla were identified in SEM-MLA, suggesting these minerals exerted a solubility control 289 

over Cu in these waters. The presence of elevated filtered Fe (up to 194 µg L-1), Cu (up to 38 µg 290 

L-1) and SO4 (up to 966 mg L-1) in these inflows (Fig. 4a, b, d) suggests weathering of chalcopyrite 291 

(CuFeS2) was occurring in the tailings in source area #1 (Fig. 2c). In addition, SEM-MLA 292 

investigations provide evidence of chalcopyrite altering directly to Cu-bearing Fe oxides, possibly 293 

ferrihydrite, in the tailings (Fig. 5a, b; Supplementary Figure S4). Such Cu-bearing Fe oxide is a 294 

commonly-observed product for alkaline oxidation of chalcopyrite (Vaughan and Coker, 2017; 295 

Yin et al., 2000). Weathering of Mn oxides was also indicated with elevated Mn (up to 7343 µg L-296 
1) and saturation of rhodocrosite in inflow waters (Supplementary Table S3). Oxidation of 297 

chalcopyrite in near-surface tailings followed by rainfall and infiltration of rainwater into the 298 

tailings will dissolve the oxidation products and produce leachate with elevated dissolved Cu, Fe 299 

and SO4. This leachate could be transported through the tailings to groundwater seeps and drainage 300 

ditches through surface run-off and via subsurface flow paths along the tailings / glacial till 301 

interface. The hydraulic residence time of mobilized Cu leachate within the tailings will play an 302 

important role in Cu transport to groundwater seeps and drainage ditches and, ultimately, to stream 303 

water (Fuller and Harvey, 2000; Gandy et al., 2007). Fine-grained material (such as the clay and 304 

silt-sized ‘grey’ tailings) will increase residence time and limit the rate of oxygen diffusion, 305 

thereby maintaining Cu in relatively insoluble forms (Gandy et al., 2007). Evidence from column 306 

and humidity cell tests suggests mineral solubility controls (e.g. ferrihydrite) will limit Cu leaching 307 

in fine-grained tailings where flow paths are longer than half a meter (SRK Consulting (Canada) 308 

Inc, 2015a). Shorter flow paths, such as those that characterize sediments in the riparian zone, are 309 

more likely to remain oxic which could explain the elevated Cu measured in riparian groundwater 310 

seeps and drainage ditches during this study.  311 
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The impact of Cu weathering in the tailings is clearly evident in the increase in total and 312 

filtered Cu concentrations in drainage ditches and inflows, and in the increase in stream Cu loads 313 

between HC-1 and HC-6. Filtered Cu increased through this reach and the relative contribution of 314 

filtered Cu to the overall Cu load increased from 0.5 (at HC-3) to 0.9 (at HC-6). There are three 315 

potential explanations for this. First, the increase could have been due to high filtered 316 

concentrations in subsurface inflows that were not sampled in this study. The valley morphology 317 

in Upper Hazeltine Creek was modified through erosion of natural materials and deposition of a 318 

mixture of tailings and natural materials which buried many smaller tributary inflows to the main 319 

river channel. Inflows from some of these inundated tributaries were evident as seeps in Upper 320 

Hazeltine Creek in 2015 and 2016. Second, complexation with dissolved organic carbon (DOC) 321 

could have increased the solubility of Cu in this reach. Copper is well known to bind strongly with 322 

DOC in aquatic environments, in the form of fulvic and humic acids, and Cu speciation is often 323 

dominated by Cu-organic complexes (Stumm and Morgan, 1996; Tipping et al., 2002). Whilst 324 

DOC concentrations were not measured in the present study (and therefore, not modelled using 325 

PHREEQC in this study), a previous study found that elevated Cu concentrations in drainage 326 

ditches and stream water in Upper Hazeltine Creek, believed to be due to drainage from a cedar 327 

swamp, coincided with elevated concentrations of DOC (SRK Consulting (Canada) Inc, 2016). In 328 

addition, speciation modelling suggested that >93% of dissolved Cu was complexed with organic 329 

ligands (SRK Consulting (Canada) Inc, 2016). Third, kinetic constraints on mineral solubility 330 

could have prevented Cu from precipitating between HC-1 and HC-6. Speciation modelling 331 

suggests stream water from HC-1 to HC-6 was less saturated with respect to cuprite than inflow 332 

waters (Supplementary Table S3). In reality, it is probably a combination of these three processes 333 

that accounts for the behavior of Cu through this reach. Weathering of chalcopyrite in residual 334 

tailings, and erosion / suspension of particulate Cu phases in the stream corridor, caused elevated 335 

total and filtered Cu concentrations in drainage ditches and surface and subsurface inflow waters. 336 

Kinetic constraints in the stream water from HC-1 to HC-6 could then have prevented Cu from 337 

precipitating; in this scenario Cu was most likely complexed with DOC.  338 

Whilst chalcopyrite weathering in riparian tailings may have been the primary source of 339 

Cu loading in Hazeltine Creek, evidence from this study suggests another potential source of 340 

aqueous Cu throughout the stream corridor at the time of sampling. Filtered concentrations of Cu  341 

were found to be elevated (range: 43 – 1017 µg L-1) in sediment pore waters (relative to stream 342 

waters) recovered through in-situ sampling (Fig. 4a and Fig. 6a), suggesting a mechanism of Cu 343 

release was operating in the stream sediments. Release of Cu in the streambed could be related to 344 

either oxidation of chalcopyrite or reductive dissolution of Cu-bearing oxides. Whilst Cu sulfides 345 

can be oxidized in subaqueous environments if the waters contain sufficient oxygen (Todd et al., 346 

2003), an increase in SO4 in pore waters would have been expected to accompany the increase in 347 

filtered Cu as evidence of Cu sulfide weathering, and this was not evident in Hazeltine Creek pore 348 

waters (Fig. 4d and Fig. 6d). A more plausible mechanism for Cu release in the streambed is 349 

reductive dissolution of Cu-bearing Fe oxides given the elevated filtered concentrations of Fe 350 

(range: 63 – 3510 µg L-1) and Mn (18 – 1468 µg L-1) found in sediment pore waters (relative to 351 

stream waters) (Fig. 4b,c and Fig. 6b,c). Filtered Fe and Mn was strongly and significantly 352 

correlated with filtered Cu in the streambed pore waters (Supplementary Figure S4). In addition, 353 

sequential extraction tests conducted on Hazeltine Creek sediment indicates that the reducible 354 

geochemical phase is an important host for Cu (Minnow Environmental Inc, 2015; SRK 355 

Consulting (Canada) Inc, 2015c) and several investigations have highlighted reductive dissolution 356 

as an important mechanism driving aqueous Cu release in the streambed (Calmano et al., 1993). 357 
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Although positive ORP values were recorded in pore waters in this study (Fig. 4f), potentially 358 

suggesting an oxic system, in the absence of low pH (acidic) streambed pore waters, the only 359 

mechanism capable of producing the high filtered Fe and Mn concentrations found in Hazeltine 360 

Creek pore waters was reductive dissolution (Kimball et al., 2016). The highest pore water Cu and 361 

Fe concentrations were generally recorded at 10 cm depth but then declined at 0 cm depth (surface 362 

water) suggesting that diffusion of the released Cu to stream water was mediated by 363 

(co)precipitation and / or sorption reactions (Fig. 6). Cuprite was saturated at the sediment-water 364 

interface (0 – 10 cm) (Supplementary Table S3), however ferrihydrite was supersaturated and 365 

sorption of Cu(II) to Fe oxides is well documented in neutral and alkaline systems (Kimball et al., 366 

2016; Koski et al., 2008). Furthermore, evidence from SEM-MLA analysis indicates the presence 367 

of Cu-bearing Fe oxides in the stream sediments (Fig. 5c, d; Supplementary Figure S4). Oxidation 368 

of the tailings chalcopyrite to Cu-bearing Fe oxide could have occurred either before (in the TSF) 369 

or after the 2014 tailings spill (in Hazeltine Creek). However, textural evidence strongly suggests 370 

that some of the Cu-bearing Fe oxides formed as discrete phases following deposition in Hazeltine 371 

Creek; this pattern is particularly evident in the Fe ochre sample collected from a seep mid-way 372 

down Hazeltine Creek (Fig. 5c, d). Also, the chalcopyrite: Cu-bearing Fe oxide ratio decreases 373 

from 0.36 – 0.57 in the 2014 deposited tailings, to 0.19 – 0.24 in the upper part of the Polley Flats, 374 

and to 0.00 – 0.06 in the lower part of the Polley Flats and further down Hazeltine Creek 375 

(Supplementary Table S4). This suggests that chalcopyrite oxidation and/or formation of discrete 376 

Cu-bearing Fe oxides increased in Hazeltine Creek between 2014 and 2016 and with distance 377 

downstream of the TSF. 378 

The secondary source of Cu loading in Hazeltine Creek occurred from HC-6 to HC-10. 379 

The highest loading within this reach appeared to be Canyon 2 (5700 – 6700 m) in Upper Hazeltine 380 

Creek, most likely as a consequence of high water velocities and turbulence that eroded and 381 

suspended streamside and streambed sediments with high Cu concentrations (Fig. 3). Through this 382 

reach, there was a decrease in the relative contribution of filtered Cu to the overall Cu load from 383 

0.9 (at HC-6) to 0.6 (at HC-10), suggesting (co)precipitation and / or sorption of filtered Cu species 384 

may have occurred. It appears that although Cu precipitation from HC-1 to HC-6 was limited by 385 

kinetic constraints, an approach towards thermodynamic equilibrium occurred from HC-6 to HC-386 

10. Evidence for this can be seen in the shift from under saturation (HC-1 to HC-6) to saturation 387 

(HC-6 to HC-10) for cuprite (Supplementary Table S3) and could reflect the reduced number of 388 

inflows in the lower reach that could alter stream chemistry. As well as precipitation of secondary 389 

Cu minerals, Cu sorption to particulate Fe phases (ferrihydrite) could also have been important for 390 

removing filtered Cu (Fig. 5; Supplementary Table S4) (Kimball et al., 2016). Elevated Cu 391 

concentrations in the sedimentation pond at the time of sampling probably caused the slight 392 

increase in Cu loads between HC-9 and HC-10. 393 

Consideration of the evidence presented in this study allows us to derive a conceptual 394 

model of Cu cycling in the Hazeltine Creek watershed (Fig. 7). Oxygen diffusion in streamside 395 

tailings in Upper Hazeltine Creek could drive oxidation of chalcopyrite in near-surface tailings 396 

with reductive dissolution of Cu-bearing Fe oxides potentially occurring in deeper, anoxic tailings 397 

(Fig. 7a). Rainfall and infiltration in the tailings could dissolve the oxidation by-products which 398 

could be transported to drainage ditches and Hazeltine Creek water through surface runoff and / 399 

or subsurface flow. Any free ionic Cu present would probably form aqueous organic complexes 400 

and / or sorb to particulate Fe oxides. Copper mobilization in stream sediments could occur by 401 

reductive dissolution of Cu-bearing Fe oxides (Fig. 7b). The released Cu could form insoluble Cu 402 

sulfides in the stream sediment or diffuse through the sediment-water interface where it would be 403 
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complexed with organic matter and / or sorb to particulate Fe oxides. Finally, physical mobilization 404 

of particulate Cu through Canyon 2 could occur through erosion / suspension of Cu-rich sediments 405 

and streamside tailings in this high-gradient, turbulent and constrained reach.   406 

 407 

3.5 Long-term implications 408 
Following the accident, Mount Polley Mining Corporation acted swiftly and removed most 409 

of the spilled tailings in Lower Hazeltine Creek within a few months of the accident. This strategy 410 

has undoubtedly reduced the short- to long-term chemical impacts in the watershed. Since this 411 

study, further tailings have been removed in Upper Hazeltine Creek, though some tailings still 412 

remain intermixed with natural soil and sediment along parts of the stream corridor. Removal of 413 

spilled tailings is the most common remedial measure taken for tailings dam spills (Kossoff et al., 414 

2014) and has been shown to considerably reduce long-term impacts on ecosystems (Hudson-415 

Edwards et al., 2003). However, despite the relatively low chemical impacts of the Mount Polley 416 

spill, mobilization of particulate and aqueous Cu phases was evident in Hazeltine Creek at the time 417 

of this study and could influence stream chemistry into the future. The processes driving Cu 418 

mobilization are hypothesized to be (in order of decreasing importance): (i) chemical mobilization 419 

in streamside tailings through primary sulfide oxidation, (ii) physical erosion / suspension of 420 

particulate and colloidal phases in residual streamside and streambed tailings, and (iii) chemical 421 

mobilization in streambed sediments through reductive dissolution of Cu-bearing Fe oxides. The 422 

following sections discuss how these processes may evolve in the future and how the chemical 423 

perturbation in Hazeltine Creek compares to pre-event conditions and other mine waste-impacted 424 

watersheds around the world.  425 

Restoration of the Hazeltine Creek river corridor was aimed at limiting further erosion of 426 

tailings and turbidity in the stream. As a result, significant reductions in element concentrations 427 

and turbidity were achieved in the weeks and months after the spill (Golder Associates Ltd, 2015; 428 

MPMC, 2015). However, increases in particulate loading observed in this study suggests physical 429 

erosion and suspension is a mechanism for Cu mobilization even at low flows. This was most 430 

evident in the reach comprising the two canyons, possibly due to higher stream turbulence in this 431 

constricted reach and greater connectivity between the stream and deposited tailings. In the future, 432 

as river flow and water levels rise in response to rainfall or snowmelt, it will come into contact 433 

with, and possibly erode, streamside tailings (intermixed with native materials) that remain dry 434 

during lower flow conditions. This process has been shown to result in order of magnitude 435 

increases in both filtered and total metal loads in mining-affected watersheds (Byrne et al., 2013; 436 

Canovas et al., 2008; Gozzard et al., 2011; Nordstrom, 2011; Runkel et al., 2016) and is evident 437 

in the water samples taken in July 2016 under high flow conditions (Fig. 8 and Supplementary 438 

Figure S2). While transport of Cu was predominantly as filtered load at low flow (64% at HC-9), 439 

particulate-bound load was clearly dominant at high flow (85% at HC-9), probably due to the 440 

erosion of streamside tailings. Construction of fish habitat was underway during the high flow 441 

sampling in 2016 which may also partially explain the observed increases in particulate 442 

concentrations and loads. However, it is not unrealistic to hypothesize that construction activities 443 

in the stream could have a similar effect on particulate transport as high flow events in the future. 444 

Streams in the Quesnel River Basin follow a nival hydrological regime driven by spring snowmelt. 445 

The high flow data for Hazeltine Creek, although based on a limited number of samples, and 446 

collected during construction of fish habitat, suggest that elevated Cu loads due to physical 447 

mobilization of residual tailings could be problematic during the spring months due to snowmelt. 448 
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Chemical mobilization of Cu in streamside tailings should be expected to decrease in the 449 

future due to the gradual exhaustion of reactive materials. This decrease may be superimposed on 450 

by short periods of increased mobilization driven by seasonal oxidation of chalcopyrite under 451 

snow/ice cover and during prolonged dry periods. Subsequent flushing of accumulated weathering 452 

products by snow melt (in spring) and precipitation events (in fall) may drive temporary increases 453 

in Cu concentrations in Hazeltine Creek during these times (Canovas et al., 2008; SRK Consulting 454 

(Canada) Inc, 2016). The important role of reductive dissolution in metal mobilization in 455 

streambed environments has been known for some time (Fuller and Bargar, 2014; Fuller and 456 

Harvey, 2000; Gandy et al., 2007), although it has never been studied in a river system whose 457 

channel morphology was re-set by a tailings spill and subsequent river restoration. Tailings 458 

material is now intermixed with natural sediment in the restored river channel and elevated Cu 459 

concentrations are present in the sediment and pore waters. It is unknown how the actively 460 

evolving hydrogeomorphic environment may affect hyporheic exchange and biogeochemical 461 

processing in the streambed. The future evolution of the geomorphic environment, in response to 462 

high magnitude flow events, will control the functioning of hyporheic processes, including those 463 

that affect Cu cycling (Krause et al., 2011). For example, changes in stream gradient, morphology 464 

and suspended sediment transport, could modify patterns of hyporheic exchange leading to oxic 465 

environments favorable for the oxidation of Cu sulfides (chalcopyrite) (Heppell et al., 2013), 466 

which are the primary host for Cu in Hazeltine Creek sediments (SRK Consulting (Canada) Inc, 467 

2016). Based on the findings of this study, it is recommended that pore water chemistry in 468 

Hazeltine Creek is monitored to chart changes in response to the changing hydrogeomorphic 469 

environment. More widely, hyporheic processes should be included in conceptual models of 470 

element cycling in watersheds affected by mine tailings spills.  471 

There have been a number of recent high-profile mine tailings and mine waste spills (Minas 472 

Gerais, Brazil, 2015; Gold Creek Mine, 2015, USA; Ajka, Hungary, 2010) that highlight the 473 

increasing global environmental risk of such events (Hudson-Edwards, 2016; Mayes et al., 2011). 474 

Many, but not all, examples of mine tailings spills are characterized by acid-generating and 475 

metalliferous materials that can produce severe and long-lasting chemical impacts in receiving 476 

watercourses (Kossoff et al., 2014; Kraus and Wiegand, 2006). This is because acid generating 477 

tailings increase the solubility of metals leading to high stream metal concentrations and loads and, 478 

frequently, negative biological impacts (Taggart et al., 2006). The data reported here suggest the 479 

Mount Polley tailings spill has left a chemical footprint in Hazeltine Creek. However, water and 480 

sediment quality impacts are primarily limited to Cu due to the relatively low metal and metalloid 481 

content of the spilled tailings. It is important to stress that though chemical mobilization of Cu was 482 

apparent in Hazeltine Creek at the time of this study, natural attenuation mechanisms of sorption, 483 

precipitation and complexation in the alkaline stream water limit stream Cu concentrations to 484 

levels only marginally above BCWQGs. Equilibrium modelling of Cu concentration in Hazeltine 485 

Creek suggest an upper limit of 20 µg L-1 (SRK Consulting (Canada) Inc, 2015a) and this figure 486 

is consistent with stream water concentrations (filtered) found in this study (range: 7 – 23 µg L-1). 487 

It is also possible that further removal of tailings since this study may have reduced stream Cu 488 

loading and concentrations below what was recorded in this study. A useful exercise to 489 

contextualize the effects of the tailings spill on water quality and Cu transport is to compare 490 

computed flux (kg yr-1) and yield (kg km2 yr-1) values for Hazeltine Creek (low and high flow 491 

data) with values from unaffected regional watersheds and other mining-affected watercourses 492 

around the world (low flow data only) (Fig. 8). Data for Hazeltine Creek are from sample point 493 

HC-9 to consider watershed flux without the influence of the sedimentation pond that will not 494 
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operate in the long-term. Considering the low flow data, watershed Cu flux is elevated when 495 

compared with the regional background values. However, the Cu yield (volume of Cu weighted 496 

by watershed area) in Hazeltine Creek is only slightly higher than values from Edney Creek 497 

(unaffected tributary of Hazeltine Creek) and similar to Cub Creek (unaffected smaller regional 498 

watershed) which suggests a relatively minor departure from background Cu yield. Comparison 499 

of low flow data with some mining-affected watersheds around the world reveals Cu loads and 500 

yields are generally several orders of magnitude greater than in Hazeltine Creek.  501 

 502 

4. Conclusions 503 
The Mount Polley mine tailings spill in August 2014 was one of the largest on record 504 

(estimated 25 Mm3 of tailings and supernatant water). Valley morphology was significantly altered 505 

in the main receiving watercourse, Hazeltine Creek, through erosion of natural materials and then 506 

deposition of tailings intermixed with natural materials. Although physical disturbance of 507 

Hazeltine Creek was significant, this study has found the chemical impact of the spill to be 508 

relatively low and restricted primarily to particulate and aqueous Cu, which was found to be 509 

marginally above BCWQGs. Although the high calcite and low sulfur content of the mine tailings, 510 

and the alkaline stream water of Hazeltine Creek, limit the potentially mobility of Cu in this 511 

watershed, evidence from this study suggests chemical and physical Cu mobilization were 512 

occurring throughout the watershed at the time of our sampling in 2015 and 2016. Copper sulfide 513 

weathering in streamside tailings was hypothesized to cause elevated stream Cu loads in Upper 514 

Hazeltine Creek. In addition, reductive dissolution of Cu-bearing Fe oxides is thought to have 515 

caused elevated filtered Cu in streambed pore waters, though diffusion of this Cu to surface water 516 

was probably mediated by sorption to Fe oxides at the sediment-water interface. Physical 517 

mobilization was apparently associated with high water velocities and turbulences encountered in 518 

a high gradient, bedrock canyon with elevated stream sediment Cu concentrations. River 519 

restoration focused on the removal of most deposited tailings, re-introduction of riparian 520 

vegetation and the construction of a new stream corridor should, in time, reduce the physical and 521 

chemical mobilization of Cu from residual tailings in Hazeltine Creek. However, this long-term 522 

decrease in Cu transport will be superimposed on by variability driven by: (i) seasonal oxidation 523 

of tailings and flushing of Cu and (ii) high flow events associated with snowmelt and precipitation 524 

in spring and fall, respectively. In the meantime, transport of Cu from Hazeltine Creek to Quesnel 525 

Lake may be slightly higher than before the tailings dam spill. However, given the size of Quesnel 526 

Lake, and the relatively low Cu flux from Hazeltine Creek, this additional Cu load should have a 527 

negligible impact on lake water quality and ecosystem processes. Our data highlights how swift 528 

removal of spilled tailings and river corridor stabilization can limit chemical impacts in affected 529 

watersheds but also how chemical mobilization (of Cu) can still occur when the spilled tailings 530 

and the receiving environment are alkaline. This data can be utilized to help design and implement 531 

future post-spill restoration schemes.  532 

 533 
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691 
Figure 1. Location of study area showing tailings, stream (streamflow and water quality) and 692 

inflow (water quality only) sample sites.  693 

 694 

 695 

 696 

 697 

 698 
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 699 

Figure 2. (A) Spatial profiles of stream total and filtered Cu concentrations with British Columbia 700 

Water Quality Guideline (BCWQG). (B) Spatial profile of stream filtered Cu concentration and 701 

inflow (total and filtered) Cu concentrations. (C) Spatial profiles of total and filtered Cu loads. 702 

Samples were collected in August 2015. 703 
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 704 

Figure 3. pXRF-derived Cu concentrations of sediments in Hazeltine Creek sampled on August 705 

1st 2014. Dotted line and solid line represent British Columbia Ministry of Environment (BCMoE) 706 

Threshold Effect Limits (TEL) and Predicted Effect Limits (PEL), respectively (British Columbia 707 

Ministry of Environment (BCMoE), 2015). The dashed line represents the Hazeltine Creek 708 

average Cu concentration from 1995 – 2003 (Golder Associates Ltd, 2015). Grey vertical bars 709 

represent the locations of two bedrock canyons at 4800 – 4900 m and 5600 – 6600 m below Polley 710 

Lake weir. 711 
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 712 

Figure 4. Summary of (A – C) filtered Cu, Fe, and Mn concentrations (µg L-1), (D) sulfate (mg L-713 
1), (E) pH, (F) ORP (mV) and (G) specific conductivity (µS cm-1) in Hazeltine Creek stream water 714 

(HC), streambed pore waters (PW) and watershed inflows (INF). 715 

 716 
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717 
Figure 5. (a) Backscatter SEM image showing chalcopyrite (white) altered to Cu-bearing Fe oxide 718 

(medium gray) in sample POL5; (b) MLA mineral apportionment of (a); (c) backscatter SEM 719 

image of Fe ochre sample POL13; (d) MLA mineral apportionment of (c) showing abundance of 720 

Cu-bearing Fe oxide. 721 
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 722 

Figure 6. Summary of (A – C) filtered Cu, Fe, and Mn concentrations (µg L-1), (D) sulfate (mg L-723 
1), (E) pH, (F) ORP (mV) and (G) specific conductivity (µS cm-1) in Hazeltine Creek streambed 724 

pore waters (0 cm = surface water).  725 
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 727 
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 729 

Figure 7. Conceptual model of Cu transport and cycling in the Hazeltine Creek watershed 730 

following the mine tailings spill. A = Polley Flats; B = streambed sediments. *Recent evidence 731 

suggests oxidation of chalcopyrite may directly yield Fe3+ (Pearce et al., 2006). 732 

 733 

 734 
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735 
Figure 8. Cu flux and yield for Hazeltine Creek, regional streams (background) and worldwide 736 

streams (mining-affected). Note the logarithmic axes. Hazeltine Creek: HF = high flow; LF = low 737 

flow; T = total load; F = filtered load. Regional streams: WC = Winkley Creek; CedarC = Cedar 738 

Creek; CubC = Cub Creek; EC = Edney Creek. Worldwide streams: AT = Afon Twymyn (Wales) 739 

(Byrne et al., 2013); LC = Lion Creek (USA) (Byrne et al., in press); CC = Cement Creek (USA) 740 

(Runkel et al., 2016); AG = Afon Goch (Wales) (Mayes et al., 2010).  741 


