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ABSTRACT  

The research presented in this thesis aims to address the issue of undiagnosed 

diabetes cases. The current state of knowledge is that one in seventy people in 

the United Kingdom are living with undiagnosed diabetes, and only one in a 

hundred people could identify the main signs of diabetes. Some of the tools 

available for predicting diabetes are either too simplistic and/or rely on 

superficial data for inference. On the positive side, the National Health Service 

(NHS) are improving data recording in this domain by offering health check to 

adults aged 40 - 70. Data from such programme could be utilised to mitigate 

the issue of superficial data; but also help to develop a predictive tool that 

facilitates a change from the current reactive care, onto one that is proactive.  

This thesis presents a tool based on a machine learning ensemble for predicting 

diabetes onset. Ensembles often perform better than a single classifier, and 

accuracy and diversity have been highlighted as the two vital requirements for 

constructing good ensemble classifiers. Experiments in this thesis explore the 

relationship between diversity from heterogeneous ensemble classifiers and the 

accuracy of predictions through feature subset selection in order to predict 

diabetes onset. Data from a national health check programme (similar to NHS 

health check) was used. The aim is to predict diabetes onset better than other 

similar studies within the literature. 

For the experiments, predictions from five base classifiers (Sequential Minimal 

Optimisation (SMO), Radial Basis Function (RBF), Naïve Bayes (NB), 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and C4.5 

decision tree), performing the same task, are exploited in all possible 

combinations to construct 26 ensemble models. The training data feature space 

was searched to select the best feature subset for each classifier. Selected 

subsets are used to train the classifiers and their predictions are combined using 

k-Nearest Neighbours algorithm as meta-classifier. 

Results are analysed using four performance metrics (accuracy, sensitivity, 

specificity and AUC) to determine (i) if ensembles always perform better than 

single classifier; and (ii) the impact of diversity (from heterogeneous 
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classifiers) and accuracy (through feature subset selection) on ensemble 

performance. At base classification level, RBF produced better results than the 

other four classifiers with 78%accuracy, 82% sensitivity, 73% specificity and 

85% AUC. A comparative study shows that RBF model is more accurate than 

9 ensembles, more sensitive than 13 ensembles, more specific than 9 

ensembles; and produced better AUC than 25 ensembles. This means that 

ensembles do not always perform better than its constituent classifiers. Of 

those ensembles that performed better than RBF, the combination of C4.5, 

RIPPER and NB produced the highest results with 83% accuracy, 87% 

sensitivity, 79% specificity, and 86% AUC. When compared to the RBF 

model, the result shows 5.37% accuracy improvement which is significant (p = 

0.0332). 

The experiments show how data from medical health examination can be 

utilised to address the issue of undiagnosed cases of diabetes. Models 

constructed with such data would facilitate the much desired shift from 

preventive to proactive care for individuals at high risk of diabetes. From the 

machine learning view point, it was established that ensembles constructed 

based on diverse and accurate base learners, have the potential to produce 

significant improvement in accuracy, compared to its individual constituent 

classifiers. In addition, the ensemble presented in this thesis is at least 1% and 

at most 23% more accurate than similar research studies found within the 

literature. This validates the superiority of the method implemented. 
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 INTRODUCTION 

1.1 INTRODUCTION 

The research reported in this thesis is intended to explore methods through 

which health examination data generated in diabetes can be utilised to predict 

diabetes onset. Diabetes is a major cause of concern and its management is 

inherently a labour-intensive, complex and time-consuming task; requiring 

self-data tracking, medication and behaviour change from patients and a strong 

complementary component from clinicians who go through individual 

examination data to tailor therapy to patient needs [1]–[3]. Diabetes is caused 

by the malfunctioning of the pancreas, which secretes the hormone insulin, 

resulting in elevated glucose concentration in the blood. In some cases, the 

body cells fail to respond to the normal action of insulin. 

Recent estimates suggest that around 3,333,069 adults are now living with 

diabetes in the United Kingdom (UK) [4]. This is an increase of more than 1.2 

million adults compared with ten years ago when there were 2,086,041 

diagnosed cases; and the number is estimated to rise to 5 million by 2025 [5]. 

This figure does not take into account the 549,000 adults estimated to have 

undiagnosed diabetes [5]. According to Diabetes UK [6], almost one in 70 

people in the UK are living with undiagnosed diabetes. Several studies have 

revealed the potential to intervene and halt progression, if traces of diabetes are 

detected early [7]–[9]. Therefore, early identification of those at risk of 

developing the condition is vital so that prevention strategies can be initiated 

through lifestyle modifications and drug intervention [10]–[12].  

On that note, several tools exist that use risk scores or questionnaire to identify 

people at risk of developing diabetes [13], [14]. One such tool is the ‘Know 

Your Risk’ [15] which is intended to help people identify their risk of 

developing Type 2 diabetes within the next ten years. The tool uses seven 
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variables (gender, age, ethnicity, family diabetes history, waist circumference, 

body mass index (BMI) and blood pressure history) for prediction. However, 

Abbasi et al. [16] warns that such simplistic tool may be unreliable because  

prediction is based on superficial data that can be accessed non-invasively. 

Such features cannot be considered sufficient to predict diabetes onset due to 

lack of vital information related to diabetes such as blood glucose 

concentration. Conventional biomarkers such as fasting plasma glucose (FPG) 

[17], glycated haemoglobin (HbA1c) and/or oral glucose tolerance test (OGTT) 

[18] are key features in  diabetes screening. Inclusion of such features would 

lead to robust predictive models that approach full understanding of the 

condition. 

Further research into available predictive models for diabetes onset did reveal 

some tools that use these biomarkers [16] and there is evidence that they 

predict cases slightly better than their simplistic counterparts. However, it 

emerged that the majority of those models were developed based on self-

reported data. This data collection method is commonly used in healthcare but 

has been shown to be affected by measurement error as a result of recall bias 

[19]. For instance, subjects may not be able to accurately recall past events 

[20], [21]. Another concern about such data focusses on response bias, a 

general term used to describe a wide range of cognitive biases that influence 

the accuracy of participants’ responses [22]. For instance, individuals tend to 

report what they believe the researcher expects to see and/or what reflects 

positively on their own abilities, knowledge, beliefs, or opinions [23]. 

According to Nederhof [24], responses of this sort are most prevalent in 

research studies that involve participant self-report. Response biases can have a 

big impact on the validity of data [22], [24]. Thus, the reliability of self-

reported data is tenuous.  

Medical health data obtained from health assessment programmes is a suitable 

alternative. For instance, the National Health Service (NHS) has rolled out a 

health screening programme aimed at identifying adults at high risk of 

developing diabetes [25]. Basically, adults aged 40 – 70 without pre-existing 

conditions are offered a health check to look for traces of five health conditions 
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including diabetes. Treatment usually commence for those who tested positive 

and the rest are invited for re-test in the next 5 years. There is potential through 

advances in computer science, to utilise data from such healthcare programme 

such that they can be used to predict diabetes onset. 

Machine learning is the subfield of computer science used to construct 

computer models (known as algorithms or classifiers) that learns from data in 

order to make predictions on new examples [26]. For example, a single 

classifier can be trained with data from NHS health check so that it can make 

prediction whether a person is likely to develop diabetes before a re-test is due. 

Furthermore, advances in machine learning have given rise to multiple 

classifier learning (also known as ensembles) [27], which is widely known to 

perform better than a single classifier [28]–[32]. An ensemble is constructed by 

training a pool of single classifiers on a given training dataset and subsequently 

combining their outputs with a function for final prediction [33]–[35]. Various 

methods have been proposed for selecting the best pool of classifiers [36]–[38],  

designing the combiner function [29], [31], [39], [40], pruning strategies to 

reduce the number of classifiers within the ensembles [41]–[50], or even 

performance optimisation through feature selection [51]. However, the general 

prerequisite for constructing good ensembles is to ensure that the individual 

base classifiers are both accurate and diverse in their predictions.  [27].  

The research reported in this thesis is intended to build on this knowledge. In 

particular, it examines the effects of feature selection and heterogeneous base 

classifiers on ensemble performance. Five different classifiers are employed for 

the experiment, namely: Sequential Minimal Optimisation (SMO), Radial 

Basis Function (RBF) network, C4.5 decision tree, Naïve Bayes and Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER). The classifiers 

belong to five broad families of machine learning algorithms with different 

operational concepts. The training data is obtained from a health assessment 

programme (similar to the NHS health check). Each classifier is trained on a 

subset of the full dataset that leads to optimum accuracy; and it is expected that 

their operational differences would introduce diversity, ultimately leading to 

the construction of good ensembles. The experimental design follows the 
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Bayesian theory [52] in which all possible probabilities in the search space are 

examined. Thus, all possible combinations of the five classifiers are explored 

and performance compared. 

1.2 RESEARCH AIMS 

This thesis presents experiments conducted with historic health examination 

data, to train machine learning ensembles capable of predicting diabetes onset. 

The aim is to construct a model that is more accurate than similar research 

found within the literature.  

1.3 RESEARCH OBJECTIVES 

Diversity and accuracy of base learners have been identified as vital factors for 

constructing good ensembles. Therefore, the research objectives are: 

1. To exploit diversity from heterogeneous classifiers with differing 

operational principles. Five machine learning classifiers would be 

employed as base learners for the ensemble.  

2. To optimise the accuracy of prediction through feature subset 

selection. A search algorithm would be used to search the feature space 

of the training data in order to select a subset for each of the base 

classifiers that lead to optimum accuracy.  

It is expected that the operational differences from the base classifiers would 

introduce diversity. In addition, the feature subset selected for each classifier is 

expected to optimise their individual accuracy. Predictions from the classifiers 

would be used in all possible combinations to train ensemble models.  

1.4 OUTLINE OF THE CHAPTERS 

The remainder of this thesis is organised as follows: 

Chapter 2 LITERATURE REVIEW: This chapter provides an overview of 

diabetes and its management strategies, with highlights to the relevant 
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features/variables required for screening. Furthermore, the chapter provides a 

concise review of generic ensemble methods and related research in the 

domain. 

Chapter 3 TECHNICAL DESIGN COMPONENTS: This chapter presents a 

detailed description of the technical components used to design the ensemble 

method implemented in this thesis. The idea is to provide the reader with 

detailed information to aid full understanding of the methodology. 

Chapter 4 METHODOLOGY: This chapter sets out the experimental design to 

achieve the research aims and objectives. Detailed procedure is presented on 

how diversity and accuracy can be exploited to construct a good ensemble 

model.   

Chapter 5 RESULTS & ANALYSIS: This chapter sets out the findings from the 

experiments conducted in Chapter 4. Graphical representations are used to 

present the results with in-depth analysis to highlight their meaning and 

relevance to the research aims and objectives.   

Chapter 6 CONCLUSIONS AND LIMITATIONS: This chapter summarises the 

entire research and reviews the findings. It also discusses the constraints on the 

implementation and outlines future work that can be undertaken to improve the 

research. 
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 LITERATURE SURVEY 

2.1 INTRODUCTION 

This chapter provides a brief overview of diabetes, its screening process, 

management challenges and the importance of early detection.  As the project 

is aimed at predicting diabetes onset using multiple classifier models in 

machine learning, the majority of this chapter describes early and recent 

research into ensembles. A review of generic ensemble methods is presented 

with highlights to previous studies comparing the methods. Some formulations 

are presented to uncover the reason that ensembles often perform better than 

single classifiers.  

2.2 DIABETES AND SCREENING PROCESS   

Diabetes is a common life-long health condition where the amount of glucose 

in the blood is too high because the body cannot use it properly. This occurs as 

a result of low or no insulin production by the pancreas, to help glucose enter 

the body cells. In some cases, the insulin produced does not work properly 

(known as insulin resistance). There are 2 main types of diabetes – Type 1 and 

Type 2. However, it is important to note that the research presented in this 

research is focused on Type 2 diabetes among adults (≥ 18 years) only. Other 

types of diabetes include pre-diabetes (i.e., increased risk of developing type 2) 

and gestational diabetes (developed during pregnancy). 

Type 1 is the least common, developed when the body cannot produce any 

insulin – a hormone that helps the glucose to enter the cells where it is used as 

fuel by the body. It is still unclear as to the exact cause of type 1 diabetes, but 

family history appears to be a factor. Onset of Type 1 diabetes is unrelated to 

lifestyle and currently cannot be prevented, although maintaining a healthy 

lifestyle is very important towards its management. This type of diabetes 

usually appears before the age of 40 and accounts for around 10 percent of all 

people with diabetes [53].  
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Type 2 however develops when the body can still produce some insulin, but 

not enough. This type of diabetes is more common and accounts for around 90 

percent of people with diabetes. Age is considered a risk in type 2, with most 

cases developing in middle or older age; although it may appear early among 

some high-risk ethnic groups. For instance, in South Asian people, it often 

appears after the age of 25 [53]. Evidence also shows that more children are 

being diagnosed with the condition, some as young as seven [53], [54]. Type 2 

has a strong link with lifestyle (i.e., overweight/obesity, physical inactivity and 

unhealthy diet).  

Unlike type 1, onset of type 2 diabetes can be prevented or delayed so early 

diagnosis is important so that treatment can be started as soon as possible. Even 

more important is the need to identify individuals at high risk of type 2 

diabetes, because evidence suggests that lifestyle adjustments can help delay or 

prevent diabetes [1]–[3], [11], [55]. A 10 year research study, conducted by the 

Diabetes Prevention Program (DPP), showed that people at high risk of 

developing diabetes were able to quickly reduce their risk by losing five to 

seven percent of their body weight through dietary changes and increased 

physical activity [10], [56]. The study sample maintained a low-fat, low-calorie 

diet and engaged in regular physical activity, five times a week for at least 30 

minutes. As a result, the onset of type 2 diabetes was delayed by an average of 

4 years. The study also indicates that these strategies worked well regardless of 

gender, race and ethnicity.  

With the conventional screening process, type 2 diabetes is often undetected 

until complications appear, and reports shows that undiagnosed cases amount 

to approximately one-third of the total people with diabetes [57]. These cases 

are mostly discovered during hyperglycaemic emergency when the individuals 

have already developed diabetes [58]. In some cases, screening is triggered by 

abnormal readings during health check examination such as the NHS health 

check [25]. For instance, type 2 diabetes is heavily linked to physical inactivity 

and/or being overweight/obese, so abnormal body mass index (BMI) or waist 

circumference during such examination may trigger further screening. The 

benchmark for assessing BMI and waist circumference is shown in Table 2.1. 
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Waist circumference is often measured in centimetre (cm) with measuring tape 

and BMI is calculated using human weight and height as shown in the 

expression ( 1 ).  

 
𝐵𝑀𝐼 =  

𝑊𝑡 𝑖𝑛 𝑘𝑔

(𝐻𝑡 𝑖𝑛 𝑚)2
=  

𝑊𝑡 𝑖𝑛 𝑙𝑏 × 703

(𝐻𝑡 𝑖𝑛 𝑖𝑛𝑐ℎ𝑒𝑠)2
 

 

( 1 ) 

 

Table 2.1: Guidelines for Body Mass Index classification and associated diabetes risk 

(Source [59]) 

 

Further examination commences when an individual meets one or more of the 

above risk factors. Possible tests to assess for diabetes include urinalysis (urine 

test) and blood glucose concentration test, although the latter is the most 

widely used. Common blood-based diagnosis includes fasting plasma glucose 

(FPG) ≥126 mg/dL, 2-hr plasma glucose ≥200 mg/dL obtained during an oral 

glucose tolerance test (OGTT) or glycated haemoglobin test, commonly known 

as HbA1c > 6.5% [14]. The assessment criteria are shown much clearly in 

Figure 2.1.   

The last couple of decades have seen enormous research in diabetes and an 

improved understanding of condition. The risk factors and bio markers are well 

researched and standardised recommendations exist for screening, diagnoses 

and management. However, this does not address the fact that a growing 

number of cases are still undetected. There is need for healthcare providers to 

transition from the current reactive screening process unto a model that is 

proactive so that individuals at high risk would be detected before onset. 

Fortunately, breakthroughs in research, information gathering, treatments and 

communications have provided new tools and fresh ways to practice and 

deliver healthcare. 
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Figure 2.1: A guide for diabetes confirmatory test using HbA1c, FPG and/or OGTT 

(Source: [60]) 

2.3 COMPUTER TECHNOLOGY AND HEALTHCARE   

The use of computer technology in healthcare (commonly known as healthcare 

informatics) has a long and interesting history, thanks to Charles Babbage’s 

ideas on the first analytical computer system in the nineteenth century. It is 

very difficult to trace the origin of a major innovation, especially when it 

involves two or more disciplines (i.e., IT and healthcare). However, evidence 

suggests that healthcare informatics can be traced back to the twentieth century 

[61], [62], specifically in the early 1950s with the rise of computers [63]. This 

has since seen a series of revolutions from mere acquisition, storage and 

retrieval of data to more advanced models centred on patient needs and their 

contribution towards out-of-hospital care. Among the first published accounts 

is Einthoven’s in 1906, where electrocardiograph data were transmitted over 

telephone wires [64]. Other  reports  include the 1957 medical image 

transmission [65], 1961 two way telephone therapy [66], nursing interactions in 

1978 [67], clinician interaction in 1965 [68], education and training in 1970 

and 1973 [69], [70], tele-visits to community health workers in 1972 [71], self-

care in 1974 [72] and other applications.   

A report by the World Health Organisation (WHO) [73] suggests that modern 

applications of IT in healthcare started in the 1960s, driven largely by the 

military and space technology sectors, as well as a few end-user demands for 
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readymade commercial equipment [62], [74]. For instance, the National 

Aeronautics and Space Administration (NASA) developed a manned space 

flight program to monitor and capture astronauts’ health status such as heart 

rate, blood pressure, respiration rate and temperature while aboard. Despite 

these advancements, healthcare informatics saw a huge decline by mid 1980s 

with only one of the early North American programs recorded as still running 

[75]. This was quickly rectified in the early 1990s with an increase in federal 

funding of rural healthcare informatics projects, especially in the United States 

of America [76]. Since then, growth in healthcare informatics has continued to 

encompass information systems designed primarily for physicians and other 

healthcare managers and professionals. With the advent of internet services, 

there is now increasing interest in advanced approaches that analyse and make 

inference using stored data/information. 

2.3.1 DATA DRIVEN APPROACHES TO DIABETES CARE 

Two broad methods with data-driven capabilities in healthcare are heuristics 

based and model-based approaches [77]. The heuristics based approach works 

better with implicit knowledge [78]. Implicit knowledge is not directly 

expressed but inherent in the nature of the subject domain. It is mostly based 

on individual expertise and can be represented by non-standardised heuristics 

that even experts may not be aware of.  

Simple case-based reasoning (CBR) is a good example of heuristics based 

approach for managing knowledge of the implicit nature [20],[39]. CBR 

utilises the specific knowledge of previous occurrences (commonly known as 

cases). Its operating principle is based on retrieving and matching historic cases 

that are similar to current ones, then applying the most successful previous case 

as the solution. To implement CBR, historic cases are structured into problems, 

solutions and outcomes based on the expert’s problem detection strategies, and 

then used to solve new cases. Each structure can be reused and the current case 

can be retained in a case repository for future use. The case repository enables 

one to keep track of the subject evolution, and can be easily upgraded through 

the addition of new cases and possibly the deletion of obsolete ones.  
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That said, Lehmann and Deutsch [79] highlighted some limitations of 

heuristics based approaches, claiming that their role in patient care will be 

limited by the lack of, or incomplete information to develop a case. In 

agreement, Bichindaritz and Marling [80] argued that case-based reasoning 

systems require cooperation between the various information systems which 

may often be impractical or expensive. On that note, Lehmann and Deutsch 

[79] suggested that model-based approaches often based on explicit knowledge 

may be a useful alternative.  

Explicit knowledge is well established, standardised, often available in 

books/research articles and can be represented by some formalism for 

developing knowledge-based systems [77]. Among the methods for 

representing and managing knowledge of the explicit type are the rule based 

reasoning (RBR) approach such as fuzzy logic; and the statistical/data mining 

approach such as machine learning. Model-based approaches have been 

applied successfully in diabetes management. For instance,  Dazzi et al. [81] 

and San et al. [82] presented models aimed at diabetes management using 

neuro-fuzzy inference. Another example is the automated insulin dosage 

advisor (AIDA) – a mathematical model to simulate the effects of changes in 

insulin and diet, on blood glucose (BG) concentration [83],[84]. The authors 

declared the model insufficiently accurate for patient use in BG – insulin 

regulation, but believe there is value in its capability as an educational tool for 

carers and researchers. In fact, Robertson et al. [85] trained an artificial neural 

network (ANN) model for BG prediction with simulated data from AIDA.  

Based on the evidence present, it is fair to say that available knowledge about 

diabetes is of explicit nature and therefore lend itself to the (model-based) 

machine learning approach implemented in this thesis. 

2.3.2 MACHINE LEARNING ENSEMBLES  

Ensembles are machine learning systems that combine a set of classifiers and 

use a vote of their predictions to classify new data points [28], [33], [86]. In a 

standard classification problem, the fundamental training concept is to 

approximate the functional relationship 𝑓(𝑥)  between an input 𝑋 =
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 {𝑥1, 𝑥2, … , 𝑥𝑛} and an output 𝑌, based on a memory of data points {𝑥𝑖, 𝑦𝑖} 

where i = 1, ..., N. Usually The 𝑥𝑖 is a vector of real numbers and the 𝑦𝑖 is a 

real numbers (scalar), drawn from a discrete set of classes. For instance, let p–

dimentional vector 𝑥 ∈ 𝑅𝑝  denote a pattern to be classified, and scalar 𝑦 ∈

{±1} denote its class label. Given a set of 𝑁  training samples {(𝑥𝑖, 𝑦𝑖), 𝑖 =

1,2, … , 𝑁} a classifier outputs a model ℎ that represents a hypothesis about the 

true function 𝑓(𝑥); so that when new 𝑥 values are presented, it predicts the 

corresponding 𝑦  values. An ensemble is therefore a set of classier models 

ℎ1, … , ℎ𝑛 whose individual decisions are combined by weighted or unweighted 

vote to classify new examples.  

The general benchmark for measuring ensembles performance is the accuracy 

of individual classifiers that make them up. According to Hansen and Salmon 

[27], a necessary and sufficient condition for an ensemble of classifiers to be 

more accurate than its constituent members lies within the individual accuracy 

and the diversity of their outputs. A classifier is said to be accurate if its error 

rate is better than random guessing on new 𝑥 values. On the other hand, two 

classifiers are said to be diverse if they make different errors on new data 

points [28]. For instance, consider the classification of a new value 𝑥  using an 

ensemble of three classifiers {ℎ1, ℎ2, ℎ3}. If the three classifiers are not diverse, 

then when ℎ1(𝑥) is correct, ℎ2(𝑥) and  ℎ3(𝑥) will also be correct. However, 

diverse classifiers will produce errors such that when  ℎ1(𝑥) is wrong  ℎ2(𝑥) 

and  ℎ3(𝑥) may be correct, so that a majority vote will classify 𝑥 correctly. 

This informal depiction is fascinating but does not address the question of 

whether it is possible to construct good ensembles. Dietterich [28] addresses 

this question theoretically, using three fundamental reasons. 

Statistical issue – Consider a single classifier searching a space 𝐻  of 

hypotheses to identify the best hypothesis. A statistical problem arises when 

the size of the hypotheses space 𝐻 is disproportionately bigger than the amount 

of training data available. Without sufficient data, the classifier is likely to 

identify many different hypotheses in 𝐻 with same accuracy on the training 

data. By constructing an ensemble out of all of these hypotheses, the model can 
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average their votes and reduce the risk of choosing the wrong one as shown in 

Figure 2.2. The outer curve denotes the hypothesis space 𝐻 while the inner 

curve denotes the set of hypotheses that produced good accuracy on the 

training data. The point labelled 𝑓 is the true hypothesis and it is fair to say that 

averaging the accurate hypotheses would lead to a good approximation to 𝑓. 

 

Figure 2.2: Statistical reason why good ensemble is possible (Source [28]) 

Computational issue: Assuming there is enough training data so that the 

statistical problem is absent, it may still be very difficult computationally for a 

classifier to find the best hypothesis within the search space. Many classifiers 

work by conducting some form of local search that may get stuck in local 

optima. For instance decision trees such as C4.5 grows the tree by using a 

greedy search rule that typically makes the local optimum choice at each stage 

with the hope of finding a global optimum [87]. An exhaustive search would be 

computationally difficult through this means. An ensemble constructed by 

running the local search from many different starting points (e.g., variations of 

the same classifier or even different classifiers) may provide a better 

approximation to the true unknown function than a single classifier as shown in 

Figure 2.3.  
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Figure 2.3: Computational reason why good ensemble is possible (Source [28]) 

Representational issue: It is possible that the true function 𝑓  cannot be 

represented by any of the hypotheses in 𝐻 as shown in Figure 2.4. However, 

this can be achieved through ensemble voting. Thus, by using a weighted or 

unweighted votes of hypotheses drawn from within 𝐻, it may be possible to 

arrive at the true function 𝑓.  

 

Figure 2.4: Representational reason why good ensemble is possible (Source [28]) 

That said, it is important to note that 𝐻 does not always represent the space of 

hypotheses. For instance neural networks and decision trees classifiers perceive 

𝐻 as a space of all possible classifier models rather than hypothesis. As such, 

many research studies have reported asymptotic representation for them [88]–

[90]. This means that, they explore the space of all possible classifier models 

when given enough training data. With a modest training dataset however, they 

only explore a finite set of hypotheses (not classifier models) and stop 

searching when they find a hypothesis that fits the training data. The 
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illustration in Figure 2.4 considers the space 𝐻  as the effective space of 

hypotheses searched by the classifier. 

2.3.3 REVIEW OF ENSEMBLE METHODS AND RELATED RESEARCH 

One of the most active areas of research in ensembles has been to study 

methods for constructing good pool of classifiers. The original ensemble 

method is Bayesian model averaging (BMA) which samples each model within 

the ensemble individually and predictions are averaged and weighted by how 

plausible they are [91], [92]. Several modifications to BMA has given rise to a 

number of ensembles, most notably Buntine’s work to refine Bayesian 

Networks [50], Bagging [36], Boosting algorithm [93], [94] and  efforts by 

Hansen & Salamon to validate the Boosting algorithm [27]. This section 

presents an in-depth discussion about BMA and other general purpose 

ensemble methods applicable to other classifiers. 

2.3.3.1 BAYESIAN MODEL AVERAGING 

When presented with a training sample 𝑆, a standard ensemble outputs a set of 

classier models ℎ1, … , ℎ𝑛 that represents hypotheses about the true unknown 

function 𝑓 . In a Bayesian setting, each hypothesis ℎ  defines a conditional 

probability distribution: ℎ(𝑥) = 𝑃(𝑓(𝑥) = 𝑦|𝑥, ℎ) where 𝑥 is the new sample 

to be predicted and 𝑦 is the class value. The problem of predicting the value of 

𝑓(𝑥) can then be viewed as computing (𝑓(𝑥) = 𝑦|𝑆, 𝑥) . This can be rewritten 

as the weighted sum of all hypotheses in 𝐻 shown in equation ( 2 ). 

 𝑃(𝑓(𝑥) = 𝑦|𝑥, ℎ) = ∑ ℎ(𝑥) 𝑃(ℎ|𝑆)

ℎ ∈ 𝐻

 
 

( 2 ) 

 

This ensemble method can be said to consist of all the hypotheses in 𝐻, each 

weighted by its posterior probability 𝑃(ℎ|𝑆) . According to Bayes rule the 

posterior probability is proportional to the product of prior probability of ℎ and 

the likelihood of the training data. This can be expressed as ( 3 ). 

 𝑃(ℎ|𝑆) ∝ 𝑃(𝑆|ℎ) 𝑃(ℎ) ( 3 ) 
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Bayesian Model Averaging (BMA) primarily addresses the statistical 

characterisation of ensembles discussed earlier.  When the training sample is 

small, many hypotheses ℎ will have significantly large posterior probabilities 

and the voting process can average these to diminish any remaining uncertainty 

about 𝑓. When the training sample is large, it is typical for only one hypothesis 

to produce substantial posterior probability. Thus, the ensemble effectively 

shrinks to contain only a single hypothesis. In complex situations where 𝐻 

cannot be enumerated, it may be possible to approximate the voting process by 

drawing a random sample of hypotheses distributed according to the posterior 

𝑃(ℎ|𝑆). 

The most idealised aspect of the Bayesian rule is the prior belief 𝑃(ℎ). If 𝑃(ℎ) 

completely captures all the knowledge about 𝑓 before the training sample 𝑆 is 

known, by definition one cannot achieve better. In practice however, it is often 

difficult to construct a space 𝐻 and assign a prior 𝑃(ℎ) that captures all prior 

knowledge adequately. It is often the case that 𝐻 and indeed 𝑃(ℎ) are chosen 

for computational convenience and they are known to be inadequate. In such 

cases, the BMA is not optimal and other ensemble methods may produce better 

results. In particular, the Bayesian approach does not address the computational 

and representational problems in any significant way.  

2.3.3.2 INPUT TRAINING DATA MANIPULATION 

In this method, the training data is manipulated to generate multiple 

hypotheses. Basically, the classifier is run several times, each with a different 

subset of the input training samples. This method works particularly well for 

unstable classifiers whose output models undergo major changes in response to 

any change(s) in the input data. For instance, decision trees, neural networks 

and rule based classifiers are known to be unstable [95]–[97]. On the other 

hand, linear regressions, nearest neighbour and linear threshold algorithms are 

generally very stable [28]. 

A common and perhaps the most straightforward way of manipulating the 

input dataset is known as Bagging (derived from bootstrap aggregation [36]). 

On each classification run, Bagging presents the classifier with a training set 
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that consists of a sample of 𝑚  training examples drawn randomly with 

replacement from the original training set of 𝑚 items. Such a training set is 

called a bootstrap replicate of the original training set and the technique is 

called bootstrap aggregation. On average, each bootstrap replicate contains 

approximately 63.2% of the original training set with several training samples 

re-used multiple times. 

Another manipulation method is to construct the training sets by leaving out 

disjoint subsets of the overall data. For example the training set can be 

randomly divided into 10 disjoint subsets. Then 10 overlapping training sets 

can be constructed by dropping out a different one of the 10 disjoint subsets. 

This procedure is commonly employed to construct training datasets for 10 

fold cross validation, so ensembles constructed in this way are sometimes 

called cross validated committees [98]. 

A more advanced method for manipulating the training set is illustrated by the 

AdaBoost algorithm [94]. Like Bagging, AdaBoost manipulates the training 

examples to generate multiple hypotheses. AdaBoost maintains a set of weights 

over the training samples. In each iteration 𝑙 , the classifier is invoked to 

minimise the weighted error on the training set, and it returns a hypothesis ℎ𝑙 . 

The weighted error of ℎ𝑙 is computed and applied to update the weights on the 

training examples. The effect of the change in weights is to place more weight 

on training examples that were misclassified by ℎ𝑙 and less weight on examples 

that were correctly classified. In subsequent iterations therefore, AdaBoost 

constructs progressively more difficult learning problems. 

The ensemble classifier ℎ𝑓(𝑥) =  ∑ 𝑤𝑙ℎ𝑙(𝑥)𝑙  is constructed by a weighted vote 

of the individual classifiers. Each classifier is weighted by 𝑤𝑙 according to its 

accuracy on the weighted training set that it was trained on. AdaBoost is 

commonly applied as a stage wise algorithm for minimising a particular error 

function [99].  

2.3.3.3 OUTPUT TARGET MANIPULATION 
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Another general technique for constructing a good ensemble of classifiers is to 

manipulate the number of classes that are fed to the classifier. Dietterich and 

Bakiri [100] describe a technique for multi-class data called error-correcting 

output coding. Consider a multiclass classification problem where the number 

of classes 𝐾 is more than two (at least > 2). New learning problems can be 

constructed by randomly partitioning the 𝐾 classes into two subsets 𝐴𝑙 and 𝐵𝑙. 

The input data can then be re-labelled so that any of the original classes in set 

𝐴𝑙 are given the derived label  0 and the original classes in set 𝐵𝑙 are given the 

derived label 1. This re-labelled data is then used to constructs a classifier ℎ𝑙. 

By repeating this process 𝐿 times (i.e., generating different subsets 𝐴𝑙 and 𝐵𝑙) 

one would obtain an ensemble of 𝐿 classifiers ℎ1, … , ℎ𝐿. Now given a new data 

point 𝑥 , each classifier ℎ𝑙  classifier will produce a class value (0 or 1). If 

ℎ𝑙(𝑥) = 0, then each class in 𝐴𝑙 receives a vote. If ℎ𝑙(𝑥) = 1 then each class in 

𝐵𝑙 receives a vote. After each of the 𝐿 classifiers has voted, the class with the 

highest number of votes is selected as the prediction of the ensemble. 

This technique was found to improve the performance of both the C4.5 

decision tree algorithm and the backpropagation neural network algorithm on a 

variety of complex classification problems [100]. In fact, Schapire [101] 

combined AdaBoost with error-correcting output coding to produce an 

ensemble classification method called AdaBoost.OC. The performance of the 

method was found to be significantly better than the error-correcting output 

coding and Bagging methods but essentially the same as another quite complex 

algorithm called AdaBoost.M2. The good thing about AdaBoost.OC is its 

implementation simplicity as it can be applied to any classifier for solving 

binary class problems. 

2.3.3.4 INJECTING RANDOMNESS 

In the backpropagation algorithm for training neural networks, the initial 

weights of the network are set randomly. If the algorithm is applied to the same 

training examples but with different initial weights, the resulting classifier can 

be quite different [102]. This is perhaps the most common way of generating 

ensembles of neural networks. However, injecting randomness into the training 
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set (rather than the classifier) may be more effective. This was proven in a 

comparative study conducted with one synthetic data set and two medical 

diagnosis data sets. Multiple random initial weights on neural network was 

compared to Bagging and 10-fold cross-validated ensembles [98]. The result 

shows that cross-validated ensembles worked best, Bagging second and 

multiple random initial weights third.  

It is also easy to inject randomness into other classifiers such as the C4.5 

decision tree [103][49]. The key decision of C4.5 is to choose a feature to test 

at each internal node in the decision tree. At each internal node C4.5 applies a 

criterion known as the information gain ratio to rank and order the various 

possible feature tests. It then chooses the top ranked feature-value test. For 

discrete-valued features with 𝑉 values, the decision tree splits the data into 𝑉 

subsets depending on the value of the chosen feature. For real-valued features, 

the decision tree splits the data into two subsets, depending on whether the 

value of the chosen feature is above or below a chosen threshold.  

Raviv and Intrator [104] injected noise into the features of bootstrapped 

training data to train an ensemble of neural networks. They drew training 

samples with replacement from the original training data during training. 

Basically, the 𝑥  values of each training sample are perturbed by adding 

Gaussian noise to the input features and this method led to some improvement.  

2.3.3.5 INPUT FEATURE MANIPULATION 

Another general technique for generating multiple classifiers is to manipulate 

the set of input features available for classification. The process (commonly 

known as feature selection) is a very important part of data pre-processing in 

machine learning [86], [105], [106] and statistical pattern recognition [107]–

[110]. Researchers are often faced with data having hundreds or thousands of 

features, some of which are irrelevant to the problem at hand. Running a 

classification task with all the features can result in a deteriorating 

performance, as the classifier can get stuck trying to figure out which features 

are useful and which are not. Therefore, feature selection is often employed as 

a preliminary step, to select a subset of the input data that contain useful 
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features. In addition, feature selection tends to reduce the dimensionality of the 

feature space, avoiding the well-known curse of dimensionality [108]. 

A major disadvantage of feature selection is that some features that may seem 

less important, and are thus discarded, may bear valuable information. It seems 

a bit of a waste to throw away such information that could possibly in some 

way contribute to improving classifier performance. This is where ensembles 

come into play by simply partitioning the input features among the individual 

classifiers in the ensemble. Hence, no information is discarded. Rather, all the 

available information in the training set are utilised whilst making sure that no 

single classifier is overloaded with unnecessary features.  

Initial implementations of feature selected ensembles used random or grouped 

features for training classifiers. For instance, Liao and Moody [111] proposed a 

technique called Input Feature Grouping. The idea was to group the input 

features into clusters based on their mutual information, such that features in 

each group are greatly correlated to each other, and are as little correlated with 

features in other groups as possible. Each member classifier of the ensemble is 

then trained on a given feature cluster. Liao and Moody used a hierarchical 

clustering algorithm [112] to cluster the input features. 

Tumer and Oza [113][114] presented a similar approach but the grouping was 

based on the class values. Basically, for a classification problem with 𝑦 class 

labels, it constructs 𝑦 classifier models. Each model is given a subset of the 

input features, such that these features are the most correlated with that class. 

The individual classifier model outputs are averaged to produce the ensemble 

results. 

In an image analysis problem, Cherkauer [115] trained an ensemble of 32 

neural networks of four different sizes, based on 8 different subsets out of 119 

available input features. The input feature subsets were selected (by hand) to 

group together features that were based on different image processing 

operations. The resulting ensemble classifier was able to match the 

performance of human experts. Similarly, Stamatatos and Widmer [116] used 
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multiple SVMs successfully, each trained using grouped feature subsets for 

music performer recognition.  

On the contrary, Tumer and Ghosh [117] applied a similar technique to a sonar 

dataset with 25 input features. They grouped features with similar 

characteristics and discarded those that did not fit into any group. The results 

show that deleting a few of the input features hurt the performance of the 

individual classifiers so much that the voted ensemble did not perform very 

well. Obviously, this strategy only works when the discarded input features are 

highly redundant. 

Subsequently, researchers started to implement the grouping strategy with 

random selection so that none of the input features is discarded. For instance, 

Ho [118][119] implemented a technique called Random Subspace Method 

using C4.5 decision trees [120] as the base classifier. Subsets of the features 

were randomly selected to train various C4.5 models. At each run, half of the 

total number of features was selected and a decision forest was grown up to100 

decision trees. This technique produced better performance than bagging, 

boosting, and single tree prediction models.  

Other researchers have implemented similar concepts with systematic 

manipulation to the input data. Among them, Bay [121] who applied random 

feature selection to nearest neighbour classifiers with two sampling functions: 

sampling with replacement and sampling without replacement. In sampling 

with replacement, a given feature can be replicated within the same classifier 

model. In sampling without replacement, however, a given feature cannot be 

assigned more than once to the same model. 

It is very clear that the methods discussed so far are very similar in that they 

assign features to each individual classifier model randomly or through some 

form of grouping. However, further strategies have been developed that uses 

more sophisticated selection process. Among them, Alkoot and Kittler [122] 

who proposed three methodical approaches for building ensembles: the parallel 

system, the serial system, and the optimised conventional system. In the 

parallel system, the member classifiers are allowed in turns, to take one of 
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many features such that the overall ensemble performance is optimised on a 

validation set. In the serial system, the first classifier is allowed to take all the 

features that achieve the maximum ensemble accuracy on the validation set. If 

some features remain, a second expert is used, and so on. The optimised 

conventional system builds each expert independently, and features are added 

and/or deleted from the ensemble as long as the ensemble increases 

performance. 

Günter and Bunke [123] proposed an ensemble creation technique based on 

two well-known feature selection algorithms: floating sequential forward and 

backward search algorithms [124]. In this approach, each classifier is given a 

well performing set of features using any of the two feature selection 

algorithms. Opitz [125] implemented a similar concept using a genetic 

algorithm to search and select the most diverse sets of feature subsets for the 

ensemble. Other researcher who used a genetic algorithm include Guerra-

Salcedo and Whitley [126] who applied the CHC genetic search algorithm 

[127] to two table-based classifiers, namely KMA [10] and Euclidean Decision 

Tables (EDT) [128]. Oliveira et al. [129] also used a genetic search algorithm 

with a hierarchical two-phase approach to ensemble creation. In the first phase, 

a set of good prediction models are generated using Multi-Objective Genetic 

Algorithm (MOGA) search [130]. The second phase searches through the 

space created by the different combinations of these good prediction models, 

again using MOGA, to find the best possible combination. 

2.4 SUMMARY 

This chapter describes diabetes along with the various types, diagnosis and 

effects they have on patients. Traditional management strategies were 

explained with highlights to their weaknesses as well as the challenges 

involved in diabetes management. The middle section of the chapter presents 

an evidence based review about two broad methods with data-driven 

capabilities that can be adapted to develop healthcare tools. This looks at the 

type of data required to develop diabetes models and also their accessibility. 
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Conclusions were drawn based on the evidence, that machine learning 

approach is more appropriate for the type of problem addressed in this thesis. 

Further discussions highlighted some fundamental reasons why single classifier 

models fail, and the potentials available through ensembles to eliminate the 

shortcomings. Precisely, single classifiers fail due to statistical, computational 

and representational problems discussed in section 2.3.2. Ensembles have the 

potential to overcome these problems if the constituent classifiers are diverse. 

Indeed, majority of the ensemble methods reviewed in this chapter had 

manipulated either input training data or the class label to train variations of a 

single classifier. The method proposed in this thesis is intended to probe further 

in this direction, by training heterogeneous classifiers rather than variations of 

a single classifier. To ensure optimum accuracy is achieved with each 

classifier, training would be conducted with a subset of the full dataset that 

leads to optimum performance. Feature selection would be used to select the 

subsets for each classifier. The descriptive part of the experiment is provided in 

Chapter 3 to aid full understanding of the method presented in Chapter 4.   
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 TECHNICAL DESIGN COMPONENTS 

3.1  INTRODUCTION 

This chapter presents a detailed description of the technical components used 

to design the ensemble method implemented in this thesis. The idea is to 

provide the reader with detailed information to aid full understanding of the 

methodology in Chapter 4. Concise descriptions of the ensemble member 

classifiers are presented in section 3.2 to highlight their operational properties. 

Brief description of the experimental data is provided in section 3.3 along with 

pre-processing activities to transform the data into useable format. Classifier 

training and performance evaluation methods form the concluding part of this 

chapter. 

3.2 ENSEMBLE MEMBER CLASSIFIERS 

To construct the ensembles proposed in this thesis, five heterogeneous 

classifiers were employed as base learners – Sequential Minimal Optimisation 

(SMO), Radial Basis Function (RBF) network, C4.5 decision tree, Naïve Bayes 

and RIPPER. The classifiers are purposefully selected, to represent the five 

broad families of machine learning algorithms as shown in Table 3.1. The idea 

is to overcome the limited diversity issue that may exist with just using 

variations of a single classifier. For instance, classifiers such as neural 

networks and C4.5 decision trees are often used to construct a variety of 

ensembles due to their sensitivity to change(s) in the dataset. However,  

diversity in such situation is limited to data manipulation [33]. In other words, 

the classifier maintains its operational characteristics, and so errors and biases 

are restricted to its predictive power. This is likely to affect the ensemble 

accuracy, especially if the classifier has some weaknesses that restrict its ability 

to classify the data.  

Consider a colour blind person who has to decide on the car to buy, on the 

basis of different properties such as size, colour and cost. If he decides on the 
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basis of cost alone, his conclusion is likely to differ from further decisions 

based on size or colour. However, his decision involving car colour is only as 

good as his ability to recognise colours properly. Therefore, an aggregate of his 

decisions is likely to be skewed and restricted to his ability. One possible 

solution is to ask a friend who does not have his weakness (i.e., colour 

blindness) to contribute on the car colour; so that he can use this in his final 

judgement. This process has the potential to improve the decision making 

capability of the person. The ensemble method proposed in this thesis 

addresses similar problems. It is intended to manipulate the experimental data 

features, to train heterogeneous base classifiers. A brief description is provided 

(in the following section) of the five member classifiers used for the ensemble. 

This is mainly to highlight their individual operational characteristics 

Table 3.1: Five broad machine learning approaches and associated algorithms considered 

in this chapter. 

 

. 

3.2.1 SUPPORT VECTOR MACHINES (SVM) 

Sequential Minimal Optimisation (SMO) belongs to the Support Vector 

Machine (SVM) family. SVM operation mechanism is based on the principle 

of structural risk minimisation, aimed at minimising the bound on the 

generalisation error (i.e., error made by the learning algorithm on data unseen 

during training) rather than minimising the mean square error (MSE) over the 

data set [131]. Basically, an SVM model uses an associated learning algorithm 

to represent each example data as points in space, mapped so that the examples 

of the class categories are divided by a clear gap as wide as possible [132]. 

New examples are then generated and mapped into that same space; then 

predicted to belong to a class category based on the side of the gap they appear. 

For instance, using the following equation ( 4 ),  
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 𝐷 = {(𝑥𝑖, 𝑦𝑖) ׀ 𝑥𝑖 ∈ 𝑅𝑝,  𝑦𝑖  ∈  {−1, 1}}
𝑖=1

𝑛

 
( 4 ) 

 

where 𝐷 is the training data with a set of n points, the class label 𝑦𝑖 = ±1 

indicating the class to which the point 𝑥𝑖  belongs and 𝑥𝑖  is a 𝑝-dimensional 

vector; the SVM learning algorithm builds a model by finding the maximum-

margin hyper plane (gap) that divides the points 𝑦𝑖 = 1 from 𝑦𝑖 = −1; making 

it a non-probabilistic binary linear classifier. 

In addition to performing linear classification, SVMs can efficiently handle a 

non-linear classification problem by using kernel tricks to map implicitly. 

Basically, mapping their inputs into high-dimensional feature spaces (through 

an underlying nonlinear mapping), before applying linear classification in these 

mapped spaces. SVMs tend to perform well when applied to new data not 

included during training due to its fundamental classification principle i.e., 

generates and maps new examples into the relevant class. Several research 

studies have also found SVM to outperform competing methods in some real-

world applications [133]–[135]. The SVM model examined in this thesis is 

based on John Platt's sequential minimal optimisation (SMO) algorithm [132].  

3.2.2 ARTIFICIAL NEURAL NETWORK (ANN) 

ANNs are powerful computational models capable of computing values from 

inputs. ANNs are inspired by an animal’s central nervous systems (particularly 

the brain) and generally presented as systems of inter-connected neurons [136]. 

The ANN classifier utilised in this thesis is the Radial Basis Function (RBF), 

trained by a logistic regression algorithm applied to K-means clusters as basis 

function.   

Generally, RBF networks have three layers namely, input layer, hidden layer 

with a non-linear RBF activation function and a linear output layer. Its training 

is typically a two-step process. In the first training step, the centre vector 𝑐𝑖 is 

chosen from the RBF functions within the hidden layer. This can be performed 

in several ways such as random sampling from a set of examples. For the 

experiment reported in this thesis, an unsupervised method commonly known 

as K-means clustering was used [136]. In the second step, logistic regression is 
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applied and symmetric multivariate Gaussians fitted to the hidden layer’s 

outputs. Assume that the input is a vector of real number 𝑥 ∈   𝑅𝑛. The output 

is then a scalar function of the input vector 𝜑 ∶  𝑅𝑛 → 𝑅, and is given by ( 5 ) 

 

𝜑(𝑥) = ∑ 𝑤𝑖∅(‖𝑥 − 𝑐𝑖‖)

𝑁

𝑖=1

 

 

( 5 ) 

 

where 𝑁 is the number of neurons in the hidden layer, 𝑐𝑖 is the centre vector for 

neuron 𝑖 , and 𝑤𝑖  is the weight of neuron 𝑖  in the linear output neuron. 

Functions that depend only on the distance from a centre vector are radially 

symmetric about that vector, hence the name radial basis function. For the 

experiment reported in this thesis, all inputs are connected to each hidden 

neuron using the Euclidean distance and the radial basis function is a Gaussian 

represented as ( 6 ). 

 ∅(‖𝑥 − 𝑐𝑖‖) = 𝑒𝑥𝑝[−𝛽‖𝑥 − 𝑐𝑖‖
2] ( 6 ) 

 

The input neurons correspond to the number of features in the dataset, with one 

output neuron. The number of hidden layer neurons was tuned with cross 

validation during training for optimal accuracy. Therefore, parameters 𝑤𝑖 , 𝑐𝑖 

and 𝛽  are determined in a manner that optimizes the fit between 𝜑 and the 

training data. Only one output neuron was used. Like other machine learning 

techniques that learn from data, ANN has been used to perform a wide variety 

of tasks that are difficult using ordinary rule-based methods [127], [128]. 

3.2.3 DECISION (CLASSIFICATION) TREES 

In machine learning, Classification or Decision trees is a classifier 

characterised by repetitive partition of the instance space [96], [137]. 

Generally, classification trees consist of several (non-leaf) nodes connected to 

the leaf nodes. The line connecting two nodes is called an edge (or a branch) 

which specifies a feature condition that splits data into subsequent nodes. A 

node that has no incoming branch is called non-leaf because it signifies the 

root. It starts at the topmost position and may have zero or more outgoing 

edges. An internal or test node has just one incoming branch and two or more 
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outgoing branches. All other nodes are called leaves (also known as terminal or 

decision nodes).  

For example, given a data instance modelled as a vector of many features, to be 

classified into one of two classes; the decision tree grow incrementally 

downward by splitting the data instance into smaller and smaller subsets. A 

subset is known as a node and the first few nodes at the top of the tree are 

essentially the features that contribute to the most information gain from the 

class. The mapping continues with each internal node splitting into more sub-

spaces according to a certain discrete function of the input feature value. The 

branch connecting each split node would specify the feature condition (test) 

that splits them into subsequent nodes. Each test considers a single feature, 

such that the sub-space is partitioned according to the feature’s value. Each leaf 

is then assigned to one group representing the most appropriate class value, or 

a probability distribution over the classes. The structure of this decision tree 

is depicted in Figure 3.1. 

 

Figure 3.1: Simple Decision tree structure showing the root, internal and leaf nodes. 
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In this thesis, we examined the C4.5 algorithm developed by Quinlan [120]. 

C4.5 uses the concept of information entropy to build decision trees from a set 

of training data. For instance, let the training dataset 𝑆 = 𝑠1,𝑠2, … . 𝑠𝑛   of 

classified samples and each sample 𝑠1,  is a p-dimensional vector containing 

𝑥1𝑖,𝑥2𝑖, … . , 𝑥𝑝𝑖  . The 𝑥𝑗 values represent the features of the sample data, as well 

as the class in which 𝑠𝑖   belong. This operation can be represented 

mathematically as ( 7 ), where entropy 𝐻(𝑠)  represents the amount of 

uncertainty in the dataset 𝑆, (i.e., 𝑆 is the current dataset for which entropy is 

being calculated), 𝑋 is a set of classes in 𝑆 and 𝑝(𝑥) is the proportion of the 

number of elements in class 𝑥 to the number of elements in set 𝑆. 

 𝐻(𝑠) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥)

𝑥∈𝑋

 
( 7 ) 

 

At each (non-leaf) node, C4.5 selects the feature of the data that most 

effectively splits its set of samples into subsets enriched in one of the leaf node 

classes. The splitting criterion is the difference in entropy (called normalised 

information gain) [138]. The attribute with the highest normalised information 

gain is selected to make the decision. The C4.5 algorithm then recurs on the 

smaller subsets. The recursion terminates when all the subsets at a node have 

the same value of the class variable, or when splitting no longer adds 

information gain to the predictions [120]. 

Reduced Error Pruning (REP) [139] was applied to the decision tree as this has 

been proven to reduce tree complexity and possible over-fitting 

[140].  Predictive accuracy was used as pruning operator at each stage to 

identify rules that yield the greatest reduction of error on the pruning set. 

Typically pruning operation would eliminate any node(s) or single 

condition/rule that does not provide additional information [108]. 

3.2.4 NAÏVE BAYES 

Naive Bayes is a simple classification technique based on Bayes’ theorem with 

the naïve assumption that features within a data instance are independent of 

each other [141]. Basically, if we have a data instance 𝒙 represented as a vector 
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of 𝒙𝟏 , … , 𝒙𝒏 features (independent variables), to be classified into class 𝒚𝒋, the 

conditional probability according to Bayes theorem  can be expressed as ( 8 ), 

where 𝑝(𝑦𝑗|𝑥1, … , 𝑥𝑛)  is the probability of instance 𝑥  being in class 𝑦𝑗 ; 

𝑝(𝑥1, … , 𝑥𝑛|𝑦𝑗)  is the probability of generating instance 𝑥 , given class 𝑦𝑗 ; 

𝑝(𝑦𝑗)  is the probability of occurrence of class 𝑦𝑗 ; and 𝑝(𝑥1, … , 𝑥𝑛)  is the 

probability of instance 𝑥 occurring. 

 
𝑝(𝑦𝑗|𝑥1, … , 𝑥𝑛) =

𝑝(𝑥1, … , 𝑥𝑛|𝑦𝑗)𝑝(𝑦𝑗)

𝑝(𝑥1, … , 𝑥𝑛)
 

 

( 8 ) 

 

Consider a school with 100 students, where 60% are boys and 40% are girls. 

The girls wear trousers or skirts in equal numbers and the boys all wear 

trousers. If an observer sees a random student from a distance who is wearing 

trousers, what is the probability that this student is a girl? Using equation ( 8 ), 

1. The probability of the student being a girl, 𝑝(𝐺) is 0.4, since the school 

has 40% girls.  

2. The probability of the student not being a girl is (i.e., a boy),  𝑝(𝐵) is 

0.6, since the school has 60% boys.  

3. The probability of the student wearing trousers given that the student is 

a girl, 𝑝(𝑇|𝐺) is 0.5 since they are likely to wear skirt or trouser. 

4. The probability of the student wearing trousers given that the student is 

not a girl, 𝑝(𝑇|𝐵) is 1 since all boys wear trouser. 

5. The probability of a randomly selected student wearing trousers 

regardless of any other information  𝑝(𝑇) =  𝑝(𝑇|𝐺) 𝑝(𝐺) +

 𝑝(𝑇|𝐵) 𝑝(𝑇|𝐵) 

By substituting these values, equation ( 8 ) can be re-written as ( 9 ). 

 
𝑝(𝐺|𝑇) =

𝑝(𝑇|𝐺) 𝑝(𝐺)

𝑝(𝑇)
=

0.5 × 0.4

0.8
= 0.25 

( 9 ) 

 

Therefore, Bayes’ interpretation is that out of the hundred students from the 

school (60 boys and 40 girls), the observed student is one of 80 who wear 

trouser (60 boys and 20 girls). Since 20/80 = ¼ of these are girls, the 

probability that the student in trousers is a girl is ¼. 
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3.2.5 ASSOCIATION RULE LEARNING 

Association rule classifiers and Decision trees use similar classification 

principles. A propositional rule learning algorithm will be examined using, 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER), 

proposed by Cohen [142]. It uses the concept of association rules with reduced 

error pruning (REP), a very common and effective technique found in decision 

tree algorithms. The RIPPER algorithm is illustrated in Figure 3.2. 

 

Figure 3.2: RIPPER algorithm (adapted from [142]) 

 

3.3 EXPERIMENTAL DATA 

The literature review indicated that simplistic risk assessment models were  

deemed unsuitable for predicting diabetes onset, due to lack of domain 

knowledge caused by limited (and often superficial) data [16]. The 

experimental data described in this section is intended to overcome the 

knowledge deficiency issue. The data obtained from UCI Machine Learning 
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Repository [143], originates from a national study (called index examination) 

conducted on the Pima Indian population in the 1960s [144]. Although the data 

involved a different population, and possibly not representative of the UK 

population; the overall experiment sets the context as to how similar data from 

the NHS could be utilised to identify at an early stage, those at increased risk of 

diabetes, thus reducing the number of undiagnosed cases.  

The Pima Indian data was obtained through a standardised health check 

conducted every two years, in which community residents over 5 years of age 

are tested for diabetes. However, only a fraction of the original data consisting 

of female subjects aged 21 or above was made available in the UCI database. 

The data consists of 768 samples, each defined as a row vector with eight 

features and a class value (i.e., negative or positive). The class value was 

determined by selecting one examination per subject that revealed a negative 

test result for diabetes and met one of the following two criteria: 

1. Diabetes was diagnosed within five years of the examination 

2. Diagnosis test performed five years later was negative 

Of the samples, 500 tested negative and the rest (n = 268) tested positive over 

the 5 year period. Feature characteristics of the sample data are shown in Table 

3.2 and full description of the data is provided in Appendix A. The source did 

not disclose experimental evidence that led to the selected features or indeed 

the total number of features available in the original database. In medical 

science, this decision is often based on expert knowledge drawn from empirical 

evidence. 

Table 3.2: Characteristics of the Pima diabetes dataset from UCI database 
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3.3.1.1 DATA PRE-PROCESSING 

Some abnormalities were evident in the data presented in Table 3.2. For 

instance, a person is considered dead if their blood pressure is zero. Such 

abnormality in the dataset could be due to missing values or human error which 

is common in real life examples. It is also clear that the class categories were 

not equally represented in the experimental data (i.e., 500 negative : 268 

positive instances). Again, this is a common situation in real life example, such 

as the UK where the number of diabetes cases is significantly lower than non-

diabetics. To address these issues, two pre-processing operations are applied as 

shown in Figure 3.3. 

 

Figure 3.3: Data pre-processing operations applied on the original dataset 

For the missing values, all samples with value ‘0’ are eliminated in any of the 

eight features except ‘No of times pregnant’. We assumed that subjects with 

‘0’ value for this feature have never been pregnant. As a result, the total data 

sample was reduced to 419 of which 279 tested negative and 140 tested 

positive. To ensure unbiased estimates of prediction during experiment, it is 

important to address the issue of class imbalance in the dataset. A number of 

approaches have been proposed that could solve this issue. Among them, 

Pazzani et al. [145] and Domingos [146] who proposed a method that assigns 
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distinct costs to training examples. Other researchers [147]–[150] addressed the 

issue by re-sampling the original dataset, either by oversampling the minority 

class and/or under-sampling the majority class  with replacement. Despite their 

efforts, these approaches have been noted not to improve minority class 

recognition. 

In this thesis, we adopted an approach by Chawla et al. [151] commonly 

known as SMOTE (acronym for Synthetic Minority Over-sampling 

Technique). The technique blends under-sampling of the majority class with a 

special form of over-sampling the minority class. In the SMOTE algorithm, 

synthetic examples are generated by operating in feature space of the sample 

dataset. This is achieved by taking each minority class sample and introducing 

synthetic examples along the line segments joining any or all of the k minority 

class nearest neighbours. Detailed description of SMOTE algorithm is provided 

in Appendix A.2. It is important to note that the original version of SMOTE 

was implemented in this experiment, that uses only five nearest neighbours. 

Neighbours from the k (five) nearest neighbours are randomly selected based 

on the amount of over-sampling required. For example, if the amount of over-

sampling needed is 300%, only three neighbours are selected and one sample is 

generated in the direction of each. We adopted this approach to increase the 

minority class (i.e., positive instances) within the revised dataset by 100%, thus 

only one neighbour was chosen for each data sample. As a result, a better 

balance of 279 negative and 280 positive instances is obtained. The feature 

characteristics of the revised dataset are shown in Table 3.3. 

Table 3.3: Characteristics of the revised dataset obtained from the Pima diabetes data 

 

3.4 CLASSIFIER TRAINING METHOD 
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A number of methods exist for training classifiers and the ultimate goal is to 

measure performance. The general concept is to train the classifier using a set 

of data and test the resultant model on a separate dataset not used during 

training. However, there is often limited data samples available (as is the case 

in this research) so maximising data usage becomes very important. To 

maximise the original data, 𝑘 − 𝑓𝑜𝑙𝑑  cross-validation [152] was applied, 

where 𝑘 = 10. In general 𝑘 remains an unfixed parameter but 10-fold cross-

validation is the most commonly used [153].  

In 𝑘 − 𝑓𝑜𝑙𝑑 cross-validation, the original sample is randomly partitioned into 𝑘 

equal sized subsamples. Of the 𝑘 subsamples, a single subsample is retained as 

the validation set for testing the model, and the remaining 𝑘 −  1  subsamples 

are used as training data. The cross-validation process is then repeated 𝑘 times, 

with each of the 𝑘 subsamples used exactly once as the validation data. The 𝑘 

results from the folds can then be averaged to produce a single estimation as 

shown in Figure 3.4.  

 

Figure 3.4: Visual representation of 10-fold cross validation method (Source: [154]) 

The advantage of this method over others is that all observations are used for 

both training and validation, and each observation is used for validation exactly 

once. The method is proven to be statistically better than other similar methods  

in evaluating classifier performance [155], especially when the data is small 

[156]. A brief comparison with other methods is shown in Table 3.4. 
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Table 3.4: Comparing k-fold cross-validation to other methods 

 

3.5 PERFORMANCE EVALUATION 

The performance of machine learning classifier is typically evaluated; using 

values from contingency table, commonly known as confusion matrix (see 

Figure 3.5). The figure displays multivariate frequency distribution of the class 

variables. The rows represent the Predicted class while the columns represent 

the Actual/True class. True positives (TP) and true negatives (TN) denote the 

correct classifications of positive examples and the correct classifications of 

negative examples respectively. Similarly, false positives (FP) represent 

negative examples incorrectly classified into positive class while false 

negatives (FN) represent the positive examples incorrectly classified into 

negative class. 
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Figure 3.5: Simple confusion matrix or contingency table 

 

Based on the contingency table, several measurements can be obtained to 

evaluate classifier performance as shown in Figure 3.6. However, sensitivity, 

specificity and accuracy are the most widely used [157], particularly when 

describing medical data classification [158]. Thus, for the task of predicting 

diabetes discussed in this research, these metrics would be used to determine 

how well (or not) the classifiers performed.  

Accuracy measures the total number of correct predictions (i.e., both positive 

and negative). It is measured by adding TP and TN from the contingency table 

and dividing the value by the total number of predictions made. Unlike 

accuracy where the overall correct prediction is measured as an entity, 

sensitivity (also known as True Positive Rate) only measures the proportion of 

positives that are correctly identified as such while specificity measures the 

proportion of negatives that are correctly identified as such. In other words, 

sensitivity evaluates how good the classifier is at detecting those who are at 

risk of developing diabetes in five years’ time, while specificity estimates how 

likely individuals without diabetes risk can be correctly ruled out.  
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Figure 3.6: Common performance metrics derived from a confusion matrix (Source: 

[157], [159]). 

For any classification experiment, there is often a trade-off between sensitivity 

and specificity. This trade-off can be represented graphically as a Receiver 

Operating Characteristic (ROC) curve [160]. On a ROC curve the 𝑌 axis 

represents the sensitivity or True Positive Rate (TPR) of a classifier and the 𝑋 

axis represents the fall-out or False Positive Rate (FPR). Mathematical 

representation of both TPR and FPR can be seen in Figure 3.6. The ideal point 

on a ROC curve would be (0,100), which means that all positive examples are 

classified correctly and no negative examples are misclassified as positive. In 

cases where the ROC curves of two or more classifiers intersect, area under the 
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ROC (AUC) can be used to establish a dominance relationship between the 

classifiers [161]. Therefore, AUC performance is also considered in this 

research (in addition to accuracy, sensitivity and specificity). 

3.6 SUMMARY 

Five well known classifiers are described in this chapter to highlight their 

operational differences in making predictions on unseen data. It is believed that 

their individual biases would introduce the much needed diversity to improve 

performance at ensemble level. With regards to the experimental data, three 

issues were noted. Some samples have missing values and these were removed. 

There is also an issue with the class imbalance which was resolved using 

SMOTE algorithm. Although a better balance was obtained, issues regarding 

data size and class severability still remain. This was taken into account in the 

method implemented in Chapter 4. By applying feature selection, it is believed 

that the adverse effect caused by features with little or no information gain 

would be reduced. Also the training method (10-fold cross validation) is known 

to maximise the training set when there is data shortage. 
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 METHODOLOGY 

4.1 INTRODUCTION 

This chapter presents an ensemble-based experimental design using five 

heterogeneous classifiers trained on feature selected subset of the original 

dataset. The task is to predict the onset of diabetes. It was noted within the 

literature that accuracy and diversity are the two vital requirements to achieve 

good ensembles [27]. Single classifiers such as neural network and C4.5 

decision trees are known to produce diverse models due to their sensitivity to 

change(s) in the dataset. However, diversity (i.e., individual bias) in such 

situations are limited to data manipulation only [33].  

A number of methods were discussed in section 2.3.3 for manipulating data 

and selecting the features that lead to optimum results. However, it is fair to 

say that majority of the methods used random assignment of features or some 

form of feature grouping. It is believed that improvement can be achieved by 

utilising enhanced statistical feature assignment techniques applied to 

heterogeneous base classifiers. Therefore, the method presented in this Chapter 

exploits diversity in form of heterogeneous base classifiers. To ensure optimum 

performance, each classifier is trained with specific feature subset of the 

training data that leads to optimum accuracy. The approach is described 

explicitly in section 4.1. A concise description of the feature selection approach 

is presented in section 4.2.1; and the meta-classification approach is presented 

in section 4.2.2. 

4.2 DESIGN AND IMPLEMENTATION 

Five classifiers (described in Chapter 3) are employed as base learners namely: 

Sequential Minimal Optimization (SMO), Radial Basis Function (RBF), C4.5 

decision tree, Naïve Bayes (NB) and Repeated Incremental Pruning to Produce 

Error Reduction (RIPPER). Each classifier is trained with a subset of the full 

dataset selected with best-first search algorithm [162]. Outputs from the 
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classifiers are used as input to train a K-Nearest Neighbour (K-NN) [167] 

(meta-classifier), in order to make a final prediction. All possible combinations 

of the five classifiers are explored, using both the full training dataset and 

feature selected subsets. It is expected that individual biases of the classifiers 

would introduce diversity, and the induced feature subsets would improve 

accuracy; ultimately leading to construction of good ensembles. To maximise 

the modest data size available for this experiment, 10-fold cross validation was 

used during training. The experimental process is shown in Figure 4.1. 

 

Figure 4.1: Experimental process of the base training feature selected subsets and 

ensemble training with K-NN algorithm. 

The entire process of the ensemble method can be divided into the following 

three phases: 

i. Feature selection to partition the original dataset into various subsets for 

each classifier. Selection is done with Best-first search algorithm; 
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ii. Classifier training with 10-fold cross-validation, to measure 

classification accuracy. Each classifier is used to validate the feature 

subset selected with Best-first search and the subset that leads to 

optimum accuracy is retained; 

iii. Training at ensemble level with K-NN algorithm. Results obtained from 

each classifier are used as input to train K-NN algorithm in all possible 

combinations; order to make a final prediction. 

In a nutshell, all the five base classifiers are used to estimate the merits of the 

features selected with Best-first search algorithm. This is done by conducting a 

search through the feature space with best-first search algorithm [166] and 

validating the eligible feature combinations with the classifier accuracy. All the 

available data (n = 559) was used during this process. The idea is to identify 

the best feature subset for each classifier. To maximise the use of data, the 

subsets are validated by applying 10-fold cross-validation during classifier 

training. Detailed description of the feature selection and cross validation 

process is shown in Figure 4.2.  

To construct the ensemble, stacked generalisation strategy (commonly known 

as stacking) was employed. This involves training the predictions of two or 

more classifiers on a given dataset, with an independent or meta-classifier. 

Each of the output vectors from the pool of five base learners were applied in 

all possible combinations (i.e., pairs, then in threes, fours and all five) to train 

several ensemble models. K-NN algorithm was used as the meta-classifier. By 

exploiting outputs from the five base classifiers in all possible combinations, a 

total of 26 ensemble models were trained. The results are compared to identify 

the ensemble with the highest performance, using predictive accuracy. 

Sensitivity, specificity and Receiver Operative Curve (ROC) metrics were also 

measured and analysed to highlight their significance in the experiment.  

In the next sections, in-depth discussion is provided for the feature selection 

and stacking approach implemented. This is intended to highlight their 

importance towards the ensemble method implemented. Where necessary, 

references are made to other generic methods to justify our approach. 
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Figure 4.2: Detailed diagram of feature selection (with Best-First search) and 10-fold 

cross validation 

4.2.1 FEATURE SELECTION APPROACH 

The feature selection method adopted in this research wraps each classifier up 

in a feature search algorithm [166] to select the best subset for each classifier. 

Unlike most approaches where features are evaluated individually and 

independent of the classifier, the approach adopted in this research uses the 

classifier together with the search algorithm to induce the best feature subset 

for the classifier.  
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Consider an illustrative example where the sample data contains ten features. A 

search algorithm applied independent of classifier would use an evaluation 

function that relies solely on properties of the data to rank each feature in terms 

of effectiveness. If the top five features {1, 2, 3, 4, 5} are selected and the rest 

discarded, there is no guarantee that this would lead to better performance. One 

or more of the discarded features may provide some useful information when 

used together with the top five. Also, features 6, 7 and 8 might not be much 

worse than feature 5, and so could be useful to consider.  

In this thesis, features are not assumed to be independent and so advantages 

may be gained from looking at their combined effect. Also, by using the 

accuracy of the classifier to evaluate the selected feature subsets, the approach 

presented in this thesis will pick out features which work well together for each 

classifier. For instance, each of the five classifiers may take different but 

overlapping set of features {1,2,5,7,8}, {1,3,4,6,8}, {2,4,5,6,7}, {2,3,5,6,7} 

and {1,2,3,4,7}. The output of the five classifier models will then be combined 

to train a k-NN algorithm. 

The best-first search algorithm [162] is used to search the feature space. The 

algorithm performs a search by greedy step-wise process augmented with a 

backtracking facility. Basically, the algorithm explores the space of features by 

expanding the most promising node 𝑛  chosen according to a heuristic 

evaluation function 𝑓(𝑛)  which may depend on the promise of node 𝑛 , 

difficulty of solving its sub-problems, quality of solution represented by node 𝑛 

and/or the amount of information gained [166][167]. The heuristic evaluation 

used in this research is focused on correlation and diversity of the selected 

feature subset, to gauge its merit. It takes into account the usefulness of 

individual features for predicting the class label as well as the level of 

correlation among them. This idea is motivated by the hypothesis that good 

subsets contain features that are highly correlated with the class but 

uncorrelated with each other [168].  

In fact, the same principle was applied in the classical test theory where an 

external variable of interest is determined by a composite test (i.e., the sum or 

average of individual tests). Consider the procedure for awarding a bachelor’s 
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degree in computing. Accurate prediction of a person’s success is measured 

from a composite of modules measuring a variety of traits (e.g., ability to code, 

ability to write critically etc), rather than from any one individual module 

which measures a restricted scope of trait. In this thesis, the features are 

individual modules that measure the traits related to the class label (variable of 

interest). The heuristic can be formalised as ( 10 ) 

 
𝑀𝑒𝑟𝑖𝑡𝑠 =

𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 

 

( 10 ) 

 

where 𝑀𝑒𝑟𝑖𝑡𝑠 is the heuristic merit of a feature subset 𝑆 containing 𝑘 features, 

𝑟𝑐𝑓 is the average feature – class correlation, and 𝑟𝑓𝑓 is the average feature – 

feature correlation. The numerator can be thought of giving an indication of 

how predictive a feature subset is, while the denominator indicates how much 

redundancy there is among them. The result is a scalar value that varies 

between 0 (good) and 1 (bad), so lower values indicate better merit. 

In simple terms, the best-first algorithm attempts to search with the heuristic to 

predict how close the end of a path is to zero, and those paths which are judged 

to be closer are extended first. Consider a scenario where a search is initiated 

by expanding the first successor of the parent node. If the successor's heuristic 

is better than its parent, the successor is set at the front of the queue (with the 

parent reinserted directly behind it), and the loop restarts. However, if the 

parent is better, the successor is inserted into the queue (in a location 

determined by its heuristic value). Figure 4.3 depicts a complete feature search 

loop with backtracking to evaluate the remaining successors (if any) of the 

parent. 
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Figure 4.3: Best-First Algorithm with greedy step-wise and backtracking facility 

4.2.1.1 DIRECTION OF FEATURE SELECTION 

The feature search experiment conducted in this research uses a bi-directional 

selection approach. This was mainly due to the greedy nature of best-first 

search algorithm and associated drawbacks of using single direction approach. 

Best-first search algorithm is known to be too greedy and prefers states that 

look good very early in the search.  

In a forward selection approach, the algorithm starts with a preferred feature 

and incrementally adds in all the other features. For each step, the feature that 

satisfies some heuristic function is added to the current feature set, (i. e., one 

step of the best-first selection is performed) and the new subset evaluated with 

the associated classifier. The new feature is only kept if there is a notable 

increase in accuracy. The algorithm also verifies the possibility of improving 

the criterion if some feature is excluded. In this case, the worst feature is 

eliminated from the set by back tracking along the line of the goal node. The 

selection proceeds dynamically increasing and decreasing the number of 

features until the desired subset 𝑑  is reached. Figure 4.4 gives a general 
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overview of forward search algorithms, expressed using the state-space 

representation.  

 

Figure 4.4: A generic template for forward search (Source: [169]) 

At any point during the search, there will be three types of states, namely: 

1. Unvisited: States that have not been visited yet. Initially, this is every 

state except 𝑥𝐼.  

2. Dead: States that have been visited, and for which every possible next 

state has also been visited. A next state of 𝑥 is a state 𝑥′ for which there 

exists a 𝑢 ∈ 𝑈(𝑥) such that 𝑥′ = 𝑓(𝑥, 𝑢). In a way, these states are 

dead because there is nothing more that they can contribute to the 

search (i.e., there are no new leads that could help in finding a feasible 

plan). 

3. Alive: States that have been encountered, but possibly have unvisited 

next states. Such states are considered alive because initially, the only 

alive state is 𝑥𝐼.  

The set of alive states is stored in a priority queue 𝑄, for which a priority 

function must be specified. The only significant difference between various 

search algorithms is the particular function used to sort 𝑄. The illustration in 

Figure 4.4 assumes a First-In First-Out queue. Initially, 𝑄 contains the initial 

state 𝑥𝐼 . A while loop is then executed, which terminates only when 𝑄  is 
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empty. This will only occur when the entire feature space has been explored 

without finding any goal states, which results in a FAILURE. In each while 

iteration, the highest ranked element 𝑥 of 𝑄 is removed. If 𝑥 lies in 𝑋𝐺, then it 

reports SUCCESS and terminates; otherwise, the algorithm tries applying 

every possible action 𝑢 ∈ 𝑈(𝑥) . For each next state 𝑥′ = 𝑓(𝑥, 𝑢)  it must 

determine whether 𝑥′is being encountered for the first time. If it is unvisited, 

then it is inserted into 𝑄; otherwise, there is no need to consider it because it 

must be either dead or already in 𝑄 [169]. 

As evident from the forward selection template Figure 4.4, the selected subset 

is not assessed in the context of others not included yet. This argument is 

illustrated with the example in Figure 4.5, in which the circles represents three 

features and the values within them represent the accuracy on a classifier. 

Feature 2 produces better accuracy by itself than either of the two other ones 

taken alone and will therefore be selected first by forward selection. At the next 

step, when it is complemented by either of the two other features, the resulting 

accuracy will not be as good as the one obtained jointly by the two features that 

were discarded at the first step.  

 

Figure 4.5: Illustration of forward and backward selection drawbacks with 3 features 

On the contrary, a backward search starts with the full feature set and performs 

the search until the desired dimension 𝑑 is reached. Therefore, it may outsmart 

forward selection by eliminating at the first step the feature that by itself 

provides the best accuracy to retain the two features that together perform best. 



65 | P a g e  

 

On the other hand, if for some reason only a single feature is required, 

backward elimination will have gotten rid of the feature that works best on its 

own. 

In view of these drawbacks, a bidirectional search was utilised in the 

experiment reported in this thesis. Figure 4.6 shows the combination of both 

forward and backward search.  

 

Figure 4.6: A generic template for bi-directional search (Source: [169]) 

One tree is grown from the initial state, and the other is grown from the goal 

state. The search terminates with success when the two trees meet and failure 

occurs if either priority queue has been exhausted. Predictive accuracy is used 

as performance validator at each search loop. 
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4.2.2 STACKED GENERALISATION  

Stacked generalization (known as stacking) is a way of combining multiple 

models, that introduces the concept of a meta learner [170]. Unlike bagging 

and boosting, stacking is normally used to combine models of different types 

such as the one described in this thesis. The procedure is as follows:  

1. Manipulate original data into 10 disjoint sets. 

2. Train each base classifier on 10 − 1 sets. 

3. Test the base classifiers on the hold out set; and repeat steps 1 – 3 until all 

the 10 sets have been used once for testing 

4. Average the predictions on all the sets 

5. Using the predictions from (4) as the inputs, and the correct responses as 

the outputs, train a higher level learner. 

Traditionally, ensembles are often combined through voting (majority wins) or 

averaging the results. However, steps 1 to 4 in stacking are the same as cross-

validation which makes this method more rigorous. Instead of using a winner-

takes-all approach, we combined the base classifiers using k-NN as shown in 

Figure 4.7.  

 

Figure 4.7: Stacked generalisation using five base learners 

The nearest neighbour is a nonparametric method, where a new observation is 

classified based on the learning set that is closest to the new observation, with 

respect to the covariates used [163]–[165]. The determination of this similarity 
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is based on distance measures. For instance, let 𝐿 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛𝐿} be a 

training set of observed data, where 𝑦𝑖 ∈ {1, … , 𝑐} denotes class membership 

and the vector 𝑥′𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)  represents the feature values. The nearest 

neighbour determination is based on an arbitrary distance function 𝑑(. , . ). So 

for a new observation (𝑥, 𝑦) , the nearest neighbour (𝑥(1), 𝑦(1)) within the 

training set is determined by 𝑑(𝑥, 𝑥(1)) = 𝑚𝑖𝑛𝑖(𝑑(𝑥, 𝑥𝑖)) and the class of the 

nearest neighbour �̂� = 𝑦(1), is selected as prediction for 𝑦. 

For the experiment reported in this thesis, euclidian distance is used as the 

distance function. The Euclidean distance between two points 𝑥𝑖 and 𝑥𝑗 is the 

length of the line segment connecting them (𝑥𝑖𝑥𝑗̅̅ ̅̅ ̅)  [171]. Therefore, the 

distance function can be represented as ( 11 ), where 𝑥𝑗  represents the 𝑗𝑡ℎ 

nearest neighbour of 𝑥. 

 

𝑑(𝑥𝑖, 𝑥𝑗) = (∑(𝑥𝑖𝑠 − 𝑥𝑗𝑠)2

𝑝

𝑠=1

)

1

2

 

 

( 11 ) 

 

We recognise a possible drawback of this distance measure, particularly when 

the class distribution is skewed. For instance, examples of a more frequent 

class may dominate the prediction of the new example, due to their large 

numbers [172]. Thus, a basic majority voting by distance may be biased by the 

class common among the k nearest neighbours. A common scheme to 

overcome this problem is to assign weight to the contributions of the 

neighbours, so that the nearer neighbours contribute more to the average than 

the more distant ones. In this thesis, the class of each of the k nearest points is 

multiplied by a weight proportional to the inverse of the distance from that 

point to the test point. In other words, each neighbour is assigned a weight 1 𝑑⁄ , 

where 𝑑 is the distance to the neighbour. 

4.3 SUMMARY 

The ensemble method proposed in this chapter seeks to utilise the individual 

biases of different learning algorithms to select the best training subsets. Unlike 
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most approaches where features are selected individually and independent of 

the classifier, the approach uses a search algorithm to select the most diverse 

but useful features from a dataset; and subsequently validates their plausibility 

with the classifier for which they were selected.  

Another issue addressed in this chapter is how ensemble models can be 

constructed to account for complexities in the training data class distribution as 

a result of oversampling. When faced with complex learning problems that 

involve highly unbalanced data sets, researchers often modify the class 

distribution of the training set. However, these modifications are rarely done in 

a systematic manner and additional measures are not considered to address the 

effects of any change in the distribution. In describing the proposed ensemble 

method, this chapter discussed in depth the oversampling method used with a 

clear understanding of how changes made to class distribution affects learning. 

In particular, explanation was provided to why the originally majority class 

may dominate the feature space, thereby causing undue bias in predicting new 

examples. This was addressed in three key strategies by optimising the training 

data through k-fold cross validation; personalising feature subset selection at 

base level through validation with the classifier; and using a weighting system 

at ensemble level training so that the learning set that is closest to the new 

observation contribute more to the average than the more distant ones. 
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 RESULTS & ANALYSIS 

5.1 INTRODUCTION 

This chapter presents the results from the proposed ensemble method described 

in Chapter 4. The results are analysed with a modular approach so that 

individual components of the method are discussed appropriately. The 

performance of the classifiers at base training level with the full dataset is 

presented in section 5.2, followed by performance at base training level with 

feature selected subsets in section 5.3. Section 5.4 covers the ensemble level 

training with full dataset and feature selected subset. This includes a 

comparative study between the most accurate ensembles from both groups; to 

measure the impact of feature selection towards improving ensemble accuracy. 

The results are also compared with similar studies that used the same dataset 

within the literature. 

5.2 BASE LEVEL PERFORMANCE WITH FULL TRAINING SET 

This section presents the classifier performance at base level on the full 

training dataset. The results shown in Table 5.1, are intended to be a 

benchmark against which the ensembles would be measured, to determine if 

improvement was made. Detailed analysis is provided for each of the four 

performance metrics, to highlight their relevance to the experiment.  

Table 5.1: Results of base learner training with full experimental data 

 

It appears from Table 5.1, that the RIPPER and RBF models are the most 

accurate (accuracy = 78%). However, it may be argued that an accuracy value 

of 78% is low. There is increasing evidence that redundant features, class 

imbalance and skewed class distribution affects classifier accuracy [173]–
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[176]. Although SMOTE is quite effective in increasing the minority class, it 

does not eliminate possible performance degradation in complex data situations 

where the classes are overlapping. SMOTE generates synthetic data based on 

the distance to the closest minority instance. Therefore, the generated samples 

may be spread across both minority and majority instances in class coupling 

situations, hence reducing the performance of classification. In fact, this is the 

case in our experimental data shown in Figure 5.1; in which the two classes 

overlap so much that SMOTE cannot get a good sense of the distribution. The 

figure depicts a 2D scatter plot in which the BMI feature is plotted against the 

other features within the dataset (see Appendix A.4 for scatter plots of the other 

features). The red data points represent negative instances while the blue data 

points represent positive instances. 

 

Figure 5.1: Scatter plot showing class separation and distribution between BMI and other 

features of the experimental dataset. 

Despite the likelihood of performance degradation due to overlapping class, the 

accuracy obtained with the balanced dataset (Table 5.1) is considerably better 

than that obtained with the imbalanced data before SMOTE was applied (see 

Appendix A.3). That said, there has been some interesting research to modify 

the location and direction of synthetic data generation implemented by SMOTE 

algorithm. Among them, Batista et al. [177] who combined SMOTE and 

Tomek Links [178] to delete synthetic samples located in the area of the 

minority data. Ramentol et al. [179] applied the rough set theory to improve 

synthetic data generated by SMOTE. Han et al. [180] divided the dataset into 

three locations based on the amount of majority data in the nearest neighbours 

of minority data. Bunkhumpornpat et al. [181] focused on finding the safe area 
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to perform over sampling based on the ratio between the number of minority 

data and the nearest neighbours.  

To determine the superior model between RBF and RIPPER in terms of 

accuracy, there is a need to look at the parameters from which the value was 

calculated. The numerical value of accuracy represents the proportion of both 

true positive and true negative in the selected population, thus assumes even 

class balance with equal error cost. This is not always the case in real world 

examples and certainly not in the research reported in this thesis where the 

abnormal class is disproportionately lower; and the cost of misclassifying an 

abnormal example as normal is much higher. Consider the binary classification 

of the UK population as either positive or negative in terms of diabetes. Recent 

estimates suggest that 4.6% of the population are affected [182], leaving 95.4% 

normal cases. A diabetes prediction model that classified all the majority class 

correctly and all the minority class wrong would give a very high  accuracy of 

95.4%. This result is misleading because such model (although with high 

accuracy) failed to identify those at risk of developing diabetes. In fact, this is 

the case in our experiment as shown in the contingency Table 5.2. Compared to 

RBF, the RIPPER model predicted more instances correctly ( 𝑇𝑃 + 𝑇𝑁 =

437). However, predictions of the minority class are proportionately lower 

with the RIPPER model (𝑇𝑃 = 223). The nature of the model discussed in this 

chapter requires a fairly high rate of correct detection in the minority class 

(positive) and allows for a small error rate in the majority class. This means 

that there is higher consequence of misclassifying a person at high risk of 

developing diabetes as normal. 

Table 5.2: Contingency table produced at base level experiment with full training dataset 

 

Given that the RBF model produced relatively higher true positives (𝑇𝑃 =

229) with lower false positives (𝐹𝑃 = 51), it is fair to say that RBF performed 
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slightly better than RIPPER in terms of accuracy. This comparison can be seen 

more clearly in Figure 5.2. 

 

Figure 5.2: Performance comparison between RBF and RIPPER models trained on full 

dataset 

The result in Figure 5.2 is even more interesting when we use performance 

metrics that disassociates the errors (or hits) that occurred within each class. 

From the results in Table 5.2, it is possible to derive two performance metrics 

that directly measure the classification performance on the positive (sensitivity) 

and negative (specificity) classes independently. Unlike predictive accuracy, 

both performance measures are prevalence-independent, as their values are 

inherent to the test data and not the actual prevalence in the population of 

interest [183]. The sensitivity value measures the percentage of positive cases 

correctly classified as belonging to the positive class while specificity measures 

the percentage of negative cases correctly classified as belonging to the 

negative class.  

Both metrics are mostly useful in medical science where the target class 

(positive) is often smaller with heavy consequence if misclassified; so the 

trade-off between the two are considered carefully to get a good balance. 

Consider the results presented in Figure 5.2, where the RBF model produced a 

higher sensitivity, but lower specificity than the RIPPER model. From a 

medical view point, the RBF model could be seen as predicting based on the 

rare positive cases such as athletes (low specificity), in order to reduce the risk 

of missing those unusual cases where an active person might be at high risk of 

developing diabetes (high sensitivity). Although the specificity value is slightly 
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higher with the RIPPER model, the cost of incorrectly identifying those 

without risk (specificity) is lower. Therefore, decisions as to which model to 

choose would largely be in favour of RBF. 

The trade-off between sensitivity and specificity of a classifier can be 

represented graphically using a receiver operating characteristic curve (ROC). 

The position of each point on the ROC indicates the trade-off between 

sensitivity and specificity and the area under the ROC (AUC) measures its 

discrimination to give an indication of how accurate the prediction is. For 

instance, consider the predictions of the RBF model in which individuals were 

already classified into two classes (negative or positive). If one data instance is 

drawn at random from each of the classes to validate the model, the patient at 

increased risk of developing diabetes should be classified into the positive 

class. The AUC is the percentage of randomly drawn pairs for which this result 

is true (i.e., RBF correctly classifies the two patients in the random pair). A 

rough guide for classifying AUC is the traditional academic point system 

shown in Table 5.3. 

Table 5.3: A guide for classifying the Accuracy of a model using AUC (Source: [158]) 

 

In view of this knowledge, it can be said that the RBF model (AUC = 0.85) 

was more capable of classifying instances into the correct class than the 

RIPPER model (AUC = 0.79). Furthermore, giving consideration to 

performance on the other metrics, the RBF model produced the best results and 

thus, used as benchmark for measuring the ensemble performance.  

5.3 FEATURE SELECTED SUBSETS AND PERFORMANCE 

This section presents the selected features for each base classifier based on 

best-first bi-directional search. Each base classifier was trained on the selected 

feature subset and performance recorded as shown in Table 5.4. The aim is to 
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compare the results with individual performances obtained during training with 

the full dataset (see Table 5.4). Detailed analysis is provided for each of the 

five classifiers, to highlight any improvement(s) and their relevance at 

ensemble level.  

Table 5.4: Selected features for each classifier and performance based on the subsets  

Features Naïve 

Bayes 

RBF SMO C4.5 RIPPER 

No of times pregnant      

Fasting plasma glucose      

Diastolic blood pressure      

Triceps skin fold      

2-hr Serum Insulin      

Body mass index      

Pedigree function      

Age      

      

Number of features selected 4 6 6 7 7 

Number of subsets evaluated 72 104 88 96 96 

Merit of selected subset  0.231 0.181 0.222 0.086 0.138 

Accuracy 0.77 0.79 0.76 0.78 0.78 

Sensitivity 0.79 0.77 0.77 0.76 0.76 

Specificity 0.75 0.80 0.75 0.80 0.81 

AUC 0.84 0.85 0.84 0.80 0.80 

As noted in Chapter 4, the central premise of this phase of the experiment is to 

remove features that are either redundant or irrelevant, without incurring much 

loss of information. However, it is important to note that redundant and 

irrelevant features are two distinct notions that must be interpreted in context. 

A relevant feature may be redundant in the presence of another relevant feature 

with which it is strongly correlated. In fact, this is evident in Table 5.4  where 

variations of the features are selected by each classifier; and each feature is 

selected at least once. This shows that features are selected based on 

correlation induced by individual classifier biases.  

Interestingly, blood glucose and blood pressure are among the few features 

selected by all the five classifiers. This reinforces literature evidence that such 

bio markers are very important to develop robust predictive models that 

approach full understanding of diabetes. Two additional features within the 

experimental dataset (i.e., tricep skin fold and diabetes pedigree function) were 

also selected by all the classifiers. Their selection supports research evidence 

about the correlation between both features and diabetes onset. According to 
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Chandra et al. [184], skin fold thickness is mandatory to identify progression to 

diabetes. Freeman et al. [185] and Zuchinali et al. [186] also highlights the 

importance of tricep skin fold in predicting diabetes onset. Likewise, diabetes 

pedigree has been applied successfully to identify individuals at high risk of 

developing diabetes [187]. Diabetes pedigree function in the dataset holds 

information about diabetes history in relatives and the genetic relationship of 

those relatives to the patient. It provides a general idea of the hereditary risk 

the patient might have with the onset of diabetes. The results in Table 5.4, 

particularly the new observation highlights the benefits of feature selection to 

the ensembles implemented in this thesis. 

The best-first search algorithm goes through the forward and backward passes, 

features are added or removed and subsets are evaluated based on accuracy and 

the heuristic described in section 4.2.1. Subset evaluation continues until a stale 

search condition is reached from node expansions. Therefore, the number of 

subsets evaluated varies with each classifier. For instance, Naïve Bayes 

produced stale search after 72 subsets with maximum merit of 0.231. Using the 

performance guide in Table 5.3, the merit of all subsets can be said to fall 

within the ‘good’ and ‘excellent’ range. Note that the merit value varies 

between 0 (good) and 1 (bad), thus Table 5.3 was interpreted backwards. It is 

also important to note that the merit values are classifier dependent and 

therefore renders cross comparison irrelevant.  

Unlike the merit of subset values, cross comparison between the classifiers 

could be made with the other performance metrics shown in Table 5.4 (i.e., 

Accuracy, Sensitivity, Specificity and AUC). However, there is little value in 

this analysis since all the classifiers would be used at ensemble level, 

regardless of their individual performance. On the other hand, there is value in 

comparing the results for each classifier with the full training set and the 

feature subset, to determine if improvements were made.  

To measure the differences in predictive accuracy, Mc Nemar’s test was 

conducted with each classifier’s predictions before and after the feature 

selection process. Mc Nemar’s test [188]–[190] is a non-parametric test on a 

2x2 classification table to measure the difference between paired proportions. 
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This means that two discrete dichotomous variables with the classification data 

must be identified to produce 4 possible outcomes arranged in a 2×2 

contingency table as shown in Table 5.5.  

Table 5.5: Possible results of two classifier algorithms (Source: [189]) 

 Classifier B failed Classifier B succeeded 

Classifier A failed 𝑁𝑓𝑓 𝑁𝑓𝑠 

Classifier A succeeded 𝑁𝑠𝑓 𝑁𝑠𝑠 

𝑁𝑓𝑓 denotes the number of times both classifiers failed to classify instances 

correctly and 𝑁𝑠𝑠 denotes success for both classifiers. These two values do not 

give much information about the classifiers’ performances as they do not 

indicate how their performances differ. However, the other two parameters 

(𝑁𝑠𝑓 𝑎𝑛𝑑 𝑁𝑓𝑠), shows cases where one of the classifier failed and the other 

succeeded indicating the performance discrepancies.  

For the test analysed in this section, predicted class values are recorded and 

compared with true class values before and after feature selection is applied to 

the dataset. Classifier A represents all instances where there is a hit (i.e., true 

positive and true negatives) between the predicted and true class for each 

classifier trained on full dataset. Classifier B represents all instances where 

there is a hit (i.e., true positive and true negatives) between the predicted and 

true class for each classifier trained on feature selected subset. The difference 

between the proportions were calculated and expressed as a percentage with 

95% confidence interval according to Sheskin [191]. The P-values are also 

calculated based on the cumulative binomial distribution to measure the 

significance of any difference in performance. When the P-value is less than 

the conventional 0.05, the conclusion is that there is a significant difference 

between the two proportions.  

It is not possible to compare sensitivity, specificity and AUC values with Mc 

Nemar’s test. This is mainly because their values are not dichotomous and 

therefore could not be expressed in a form suitable for Mc Nemar’s test. 

Nonetheless, these metrics are discussed in statistical terms and comparisons 

made within the context of the experiment being analysed (similar to the 

analysis in section 5.2). 
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5.3.1 NAÏVE BAYES PERFORMANCE COMPARISON 

This section presents the results for the Naïve Bayes classifier model. As 

shown in Figure 5.3, accuracy of classification B model (with selected feature 

subset) is marginally better than Classification A model (with full training set).  

 

Figure 5.3: Naïve Bayes performance with full training set vs selected feature subset 

using Accuracy, Sensitivity, Specificity, AUC and Mc Nemar’s test.  

The total number of instances classified correctly is higher in classification B 

with reduced errors (i.e., False negatives and False positives). However, the Mc 

Nemar’s test result shows that the accuracy difference between the two models 

is marginal. 74.6% of the instances are correctly classified before feature 

selection (Classification A = 1) and 76.9% are correctly classified after feature 

selection (Classification B = 1). The difference before and after feature 

selection is 2.33% with 95% confidence interval from -2.74% to 7.39%, which 

is not significant (P=0.4066, n=559). Slight improvements are also recorded 

for the sensitivity (2%), Specificity (3%) and AUC (1%). Visual 

representations of the results are shown in Figure 5.4. 
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Figure 5.4: Graphic representation of Naïve Bayes performance trained on full dataset vs 

feature subset 

5.3.2 RBF PERFORMANCE COMPARISON 

Mixed results are obtained with RBF as shown in Figure 5.5. Predictive 

accuracy is marginally higher in classification B (1%) and the total number of 

instances classified correctly is higher in classification B (n = 439) than 

classification A (n = 434). However, the hits on true positive instances were 

higher in classification A (n = 229), compared to classification B (n = 226). 

This situation is not good at this training level but may well contribute in 

identifying the negative instances at ensemble level. 

According to Mc Nemar’s test result, the accuracy difference between the two 

models is highly marginal (0.89%) with 95% confidence interval from -1.40% 

to 3.19%, which is not significant (P=0.5424, n=559). 77.6% of the instances 

were correctly classified before feature selection (Classification A = 1) and 

78.5% were correctly classified after feature selection (Classification B = 1).  

 
Figure 5.5: RBF performance with full training set vs selected feature subset using 

Accuracy, Sensitivity, Specificity, AUC and Mc Nemar’s test. 
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Given the slightly higher hits on true positives with classification A, it is not 

surprising that the sensitivity performance was marginally higher (1%). 

Nonetheless, the specificity was higher in classification B (3%) and AUC 

performance was tied at 85%. Visual representations of the results are shown in 

Figure 5.6. 

 
Figure 5.6: Graphic representation of RBF performance trained on full dataset vs feature 

subset 

5.3.3 SMO  PERFORMANCE COMPARISON 

Performances appear very similar between the two classification experiments 

as shown in Figure 5.7. The same predictive accuracy value (76%) was 

recorded for both models. However, the total number of instances classified 

correctly is slightly higher in classification B (n = 427) than classification A (n 

= 425). Similarly, the hits on true positive instances is higher in classification 

B (n = 209), compared to classification B (n = 206).  

 
Figure 5.7: SMO performance with full training set vs selected feature subset using 

Accuracy, Sensitivity, Specificity, AUC and Mc Nemar’s test 

The Mc Nemar’s test result shows that the accuracy difference between the two 

models is marginal. 76.0% of the instances were correctly classified before 
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feature selection (Classification A = 1) and 76.4% were correctly classified 

after feature selection (Classification B = 1). The difference before and after 

feature selection is 0.36% with 95% confidence interval from -1.91% to 2.63%, 

which is insignificant (P=0.8776, n=559).   

Slight improvement was recorded for the sensitivity (1%). This may seem 

insignificant at this training level but may well have bigger impact at ensemble 

level. Visual representations of the results are shown in Figure 5.8, including 

specificity and AUC which were tied at 78% and 85% respectively. 

 

Figure 5.8: Graphic representation of SMO performance trained on full dataset vs 

feature subset 

5.3.4 C4.5  PERFORMANCE COMPARISON 

The results in Figure 5.9 indicate that classification B predictive accuracy (with 

selected feature subset) is marginally better than Classification A (with full 

training set). The total number of instances classified correctly is slightly 

higher in classification B with minimal and perhaps insignificant percentage 

error reduction on False negatives (0.02%); but same error count on False 

positives (n = 72). The Mc Nemar’s test result shows that the accuracy 

difference between the two models is not significant (P=0.7266, n=559). 

Although a greater percentage of instances (77.8%) were correctly classified 

after feature selection (Classification B = 1) compared to 77.5% before feature 

selection (Classification A = 1); the difference is minimal (2.33%) with 95% 

confidence interval from -0.63% to 1.35%.  
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Figure 5.9: C4.5 performance with full training set vs selected feature subset using 

Accuracy, Sensitivity, Specificity, AUC and Mc Nemar’s test 

Similarly, the AUC performance is marginally higher in classification B (80%), 

compared to classification B (79%). Visual representations of the results are 

shown in Figure 5.10, including specificity and specificity performances which 

were tied at 81% and 74% respectively. 

 

Figure 5.10: Graphic representation of C4.5 performance on full dataset vs feature subset 

5.3.5 RIPPER  PERFORMANCE COMPARISON 

Predictive accuracy values appear to be the same (78%) between both 

classification experiments using RIPPER, as shown in Figure 5.11. However, 

the total number of instances classified correctly is marginally higher in 

classification B (n = 438) than classification A (n = 437). There is 

considerable difference in the hits on true positive instances with 223 for 

classification A (before feature selection) and 233 for classification B (after 

feature selection).   
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Figure 5.11: RIPPER performance with full training set vs selected feature subset using 

Accuracy, Sensitivity, Specificity, AUC and Mc Nemar’s test 

That said, the Mc Nemar’s test result shows that the accuracy difference 

between the two models is marginal (0.18%) with 95% confidence interval 

from -2.78% to 3.13%, which is insignificant (P=1.0000, n=559). Nonetheless, 

it is fair to say that any improvement at this level is acceptable because it has 

the potential to add value at ensemble level.   

Slight improvement was achieved with classification B on the sensitivity (3%) 

and AUC (1%) performances. However, specificity value was higher in 

classification A by 4%. In general terms, this seems a bad result for 

classification B but the case is different from a medical view point, and perhaps 

preferable for the purpose of this experiment. The nature of the model 

discussed in this chapter requires a fairly high rate of correct detection in the 

minority class (positive) and allows for a small error rate in the majority class. 

Therefore, classification B could be seen as predicting based on the rare 

positive cases (low specificity), in order to reduce the risk of missing those 

unusual cases at high risk (high sensitivity). Visual representations of the 

results are shown in Figure 5.12. 
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Figure 5.12: Graphic representation of RIPPER performance on full dataset vs feature 

subset 

Recall that the purpose of feature selection in this thesis is mainly to improve 

accuracy at base level. However, it seems from the results that this was only 

achieved to a limited extent.  For example, the predictive accuracy remained 

the same after feature selection was applied to two of the classifiers, namely 

SMO and RIPPER. In addition, where improvements were made (i.e, Naïve 

Bayes, RBF and C4.5), the accuracy differences are statistically insignificant. 

Nonetheless, improvements at this stage (no matter how small) must be viewed 

as positive because it has the potential to add value at ensemble level. 

5.4 ENSEMBLE LEVEL PERFORMANCES 

This section presents the performance results at ensemble level, of all the 

possible combinations of the five base classifiers (i.e., pair-wise, groups of 

threes, fours and all five). In total, 26 ensembles were trained and evaluated 

using predictive accuracy, sensitivity, specificity and AUC as metrics. The 

results (shown in Table 5.6) would be analysed to address the following 

questions: 

4. Do ensembles always lead to better performance than the best 

individual constituent member at base level? (note: RBF model 

preferred at base level and all 4 performance metrics were compared 

separately).  

5. Is the implemented ensemble method fit for purpose?  
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The first question is quite straight forward because it involves direct 

comparison of model performances. The second question however looks into 

any improvement(s) made from the base level. If any, what is the significance 

and how it relates to the data manipulation strategies implemented (i.e., feature 

selection and k-fold cross validation). 

Table 5.6: Performance at ensemble level involving base classifier training (with data 

manipulation) in all possible combinations.  

 

5.4.1 ENSEMBLE VS BASE LEARNER PERFORMANCE  

To establish whether ensembles always lead to better performance than the best 

constituent member, comparison was made between RBF (preferred base 

model) and all the 26 ensemble models. The analyses would be conducted 
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separately for each of the four metrics. This is because performance metrics 

measure different trade-offs in the predictions made by a classifier and it is 

possible for classifiers to perform well on one metric, but be suboptimal on 

other metric(s).  

Performance can vary between classifiers due to a number of reasons such as 

dataset composition, class distribution etc. For instance, classifiers that are 

based on training error minimisation (e.g., C4.5 and RIPPER) tend to do well 

in cases where there is clear separation between the classes within a dataset. 

That said, the focus of investigation in this section is whether ensembles 

always perform better than their constituent base classifiers (in terms of 

accuracy, sensitivity, specificity and AUC). 

Figure 5.13 shows a cross comparison between the 26 ensemble models and 

RBF. Each data point on the graph represents a model and its relative 

performance. As shown in Figure 5.13(a), the RBF model is more accurate 

than some of the ensemble models. In fact, 9 out of 26 ensembles have lower 

accuracy value than RBF. This includes 5 ensemble models that included RBF.  

 

Figure 5.13: Direct comparison of the 26 ensembles and RBF performance based on 

accuracy, sensitivity, specificity and AUC. 

Similar results were observed with the other metrics. As shown in Figure 

5.13(b), RBF model produced better sensitivity than 13 ensembles; and 10 of 

them included RBF. In terms of specificity, RBF performed better than 9 

ensembles as shown in Figure 5.13(c).  This includes 3 ensemble models that 

included RBF. For the AUC, RBF is only second best as can be seen in Figure 
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5.13(d). The result suggests that ensembles do not always lead to better 

performance than its constituent members. In addition, some of the ensembles 

involving the RBF classifier produced lower accuracy than the RBF model on 

its own. This may be due to various reasons. For example, a model that 

contributes very little within the combination is likely to affect the final 

outcome in the same way a redundant feature within a dataset does during 

classification.  

5.4.2 IMPACT OF THE ENSEMBLE METHOD IMPLEMENTED  

This section evaluates the ensemble performances as a result of data 

manipulation at base level. It is important to note that analyses are specific to 

the ensemble method implemented in this thesis. One of the 26 ensemble 

models is selected with justification as the most appropriate for the 

classification task investigated (i.e., correct prediction of diabetes onset).  

Basically, classifier models were selected if they achieved at least 80% in all 

the performance metrics, except specificity. It was decided to accommodate 

those with specificity value of at least 70%, because none of them achieved 

80%. The selection threshold was chosen so that analysis can be focused on the 

area of interest (i.e., the best performing ensembles). Only 4 out of the 26 

ensembles met the set criterion and were selected for further analysis. The 

models are denoted with ‘*’ in Table 5.6. Of the 4 models, the ensemble of 

C4.5+RIPPER+NB clearly performed better on all the metrics, thus selected as 

the preferred ensemble model. Henceforth, this model would be called ‘EN-

mod1’ for simplicity. 

It is clear from Table 5.6, that EN-mod1 performed better than RBF (the 

preferred base model). However, there is a need to examine the extent to which 

this is true. For this, Mc Nemar’s test (shown in Figure 5.14) was used to 

compare their predictions on the experimental data.  Visual representations of 

the results are shown in Figure 5.15. 
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Figure 5.14: EN-mod1 vs RBF performance using Accuracy, Sensitivity, Specificity, AUC 

and Mc Nemar’s test 

83.0% of the instances were correctly classified by EN-mod1 (Classification B 

= 1) and 77.6% were correctly classified by RBF (Classification A = 1).  The 

accuracy difference between both models is 5.37% with 95% confidence 

interval from 0.61% to 10.13%, which is significant (P=0.0332, n=559). The 

result highlights the predictive power of ensembles in complex data situations 

where the base classifiers struggle to improve performance individually. 

Although improvements were noted after feature selection at base level, they 

were so marginal and of no significance.  

 

Figure 5.15: Graphic representation of EN-mod1 vs RBF model performance  

Given the high classification accuracy on the positive class (true positive), it is 

not surprising that the sensitivity is relatively higher (5%) than the best 

recorded improvement after feature selection at base level (3% with RIPPER).  

Slight improvement was also achieved on the AUC performance (1%). 

However, specificity value was higher in classification A (with RBF) by 6%. 

This highlights the need to consider the characteristics of the problem when 

analysing any classification task. As discussed earlier, high sensitivity with low 
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specificity is preferable due to the nature of the task investigated in this thesis. 

In fact, the low specificity value reinforces the decision to lower the threshold 

when selecting the preferred ensemble classifier.  

5.4.2.1 IMPACT OF DATA MANIPULATION 

In order to establish if the feature selection applied at base level contributed to 

EN-mod1 performance and ensemble of c4.5, RIPPER and Naïve Bayes was 

re-trained. This time, the classifiers are trained on the full dataset and their 

predictions combined with k-NN algorithm. This would be called EN-mod2 

and the results are compared with RBF to measure the level of improvement (if 

any). In addition, EN-mod2 would be compared to EN-mod1 as this would 

show the performance difference when trained with and without the feature 

subset. 

Evidently from Figure 5.16, EN-mod2 did not improve the results obtained at 

base level. In fact, RBF performed considerably better on all the metrics. 

Predictive accuracy is better with RBF (78%) in comparison to 72% recorded 

for EN-mod2. This is not surprising because RBF had a hefty lead in terms of 

cases classified correctly. Of the correct classifications, the hits on true positive 

instances is considerably higher with RBF (n = 229), compared to 

classification B (n = 189).  

 

Figure 5.16: EN-mod2 vs RBF performance using Accuracy, Sensitivity, Specificity, AUC 

and Mc Nemar’s test 

According to Mc Nemar’s test result, 77.6% of the instances were correctly 

classified at base level (Classification A = 1) and 72.1% were correctly 

classified after ensemble level (Classification B = 1). The accuracy difference 

between the two models is in favour of classification A (RBF), signified by the 
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negative percentage value (-5.55%), with 95% confidence interval from -

10.74% to -0.35%, which is significant (P=0.0433, n=559).  

 

Figure 5.17: Graphic representation of EN-mod2 vs RBF model performance on AUC. 

Considerable difference in performance was also recorded in favour of RBF on 

sensitivity (14%) and specificity (-4%). Negative difference is preferred for 

specificity due to the nature of the classification problem. Visual representation 

of the AUC results is shown in Figure 5.17, in which RBF performed better by 

7%. 

In this case, it can be noted that no improvement was made at ensemble level 

and the result highlights the negative impact of redundant features on 

classification tasks. However, the same cannot be implied (without proof) for 

all the possible ensembles, should the experiment be re-run on full training 

dataset to include the other 25 ensemble models. Classifiers react differently to 

changes in dataset so it is possible that EN-mod2 combination (c4.5, RIPPER 

and Naïve Bayes) is not among the high performing ensembles when trained on 

full data set. Therefore, the ensemble experiment was re-run to include all 

possible combinations of the base classifiers trained on full dataset. The results 

are shown in Table 5.7.  

Since none of the ensemble models met the selection criteria used earlier (in 

Table 5.6), the criteria was amended to include only those models that 

produced at least 80% in AUC and at least 70% in the other three metrics. Only 

6 of the models met this criteria (denoted with ‘*’ in Table 5.7), thus selected 

for further analysis. Of the 6, the ensembles of ‘RBF+c4.5+RIPPER+NB’ and 
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‘RBF+c4.5+NB’ produced the highest accuracy (76%). In view of the 

classification task investigated, the latter (i.e., RBF+C4.5+NB) was selected as 

the preferred ensemble model due to higher sensitivity (76%) with lower 

specificity (75%). Henceforth, this model would be called ‘EN-mod3’ for 

simplicity. 

Table 5.7: Performance at ensemble level involving base classifier training (without data 

manipulation) in all possible combinations. 

 

It is clear from the result (in Table 5.7) that RBF performed better than EN-

mod3, which makes it pointless to conduct detailed comparison between the 

two. On the other hand, there is value in comparing the performance of EN-

mod3 with EN-mod1 because the performance difference would affirm the 
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significance of data manipulation in the ensemble method implemented in this 

thesis.  

Figure 5.18, shows that EN-mod1 performed considerably better than EN-

mod3 on all the metrics.  

 

Figure 5.18: EN-mod1 vs EN-mod3 performance using Accuracy, Sensitivity, Specificity, 

AUC and Mc Nemar’s test 

EN-mod1 has a hefty lead in terms of cases classified correctly. As a result, the 

accuracy value is considerably better with EN-mod1 (83%) in comparison to 

76% recorded for EN-mod3. Of the correct classifications, the hits on true 

positive instances is considerably higher with EN-mod1 (n = 245), compared 

to classification B (n = 214). According to Mc Nemar’s test result, the 

accuracy difference between the two models is 7.33% in favour EN-mod1, 

with 95% confidence interval from 2.63% to 12.04%, which is significant 

(P=0.0030, n=559).  

 

Figure 5.19: Graphic representation of EN-mod1 vs EN-mod3 model performance on 

AUC. 

Considerable difference in performance was also recorded in favour of EN-

mod1 on sensitivity (11%) and specificity (4%) and AUC (4%). Therefore, it 
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can be said that the ensemble method implemented in this thesis is fit for 

purpose. By manipulating the training data at base level, EN-mod1 model 

made a significant difference from what would have been the best ensemble, if 

feature selection was not applied. A visual representation of the AUC results is 

shown in Figure 5.17. 

5.5 SUMMARY 

The performance of 26 machine learning ensemble models trained with all 

possible combinations of 5 base classifiers was evaluated; and compared to the 

best constituent base classifier. The task is to determine if all the ensemble 

models outperformed the base classifiers; and where improvements were made, 

to measure its significance.  

According to the results, ensemble models tend to yield better results than 

individual constituent classifiers. However this is not a certainty, as various 

factors may affect their ability to improve on performance, particularly at base 

level training. Issues such as redundant features, class imbalance and 

distribution within the training data were found to be major contributors to low 

performance. For instance, performance was relatively lower when the base 

classifiers were trained with unbalanced dataset compared to training with 

balanced dataset (see Appendix A.3).  

The penalty that occurs if redundant features are not eliminated is evident in 

Table 5.7. The result shows that RBF performed better than any of the 26 

ensemble models trained with full dataset. In fact, the penalty of redundant 

feature on accuracy is quite significant as shown in Figure 5.16. Nonetheless, 

the penalty was mitigated through feature selection applied at base level 

training. This is shown in Figure 5.14, where the RBF model is compared with 

the best ensemble model trained with feature selected subset (i.e., EN-Mod1). 

Significant improvement was noted in favour of EN-Mod1. This shows that 

feature selection played a key part to the improved accuracy. 

Further observations from the experiment suggest that the highly desirable 

diversity when training ensembles can be achieved by using base classifiers un-
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related to each other. Much of the previous work on ensemble classifier models 

have focused on a collection of a single base classifier trained in several 

variations. In this research, the base classifiers were selected from five broad 

families of machine learning algorithms. Therefore, each classifier induced a 

model based on its operational characteristics. Although none of them made 

improvement(s) of any significance at base level, the cumulative effect of their 

individual biases contributed to wider knowledge at ensemble level about the 

classification problem being addressed; ultimately leading to significant 

improvement.  

It is important to note that the vast majority of the reported experiments in 

diabetes prediction only enhanced classification accuracy, up to 82% [192]. In 

fact, literature search of all the research conducted with the same dataset 

revealed a total of 70 eligible studies with accuracy results ranging from 59.5% 

to 82% (see Table 5.8). The research reported in this thesis produced 83%, so 

the implemented method can be said to perform relatively better. 

Table 5.8: Research studies conducted with Pima Diabetes dataset 
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 CONCLUSIONS & FUTURE WORK 

6.1 INTRODUCTION 

This chapter restates the purpose of the research reported in this thesis. It 

presents a summary of the main points, results and knowledge contributions of 

the research undertaken from both health and computing perspectives. A 

concise assessment is provided for each point on how they support the purpose, 

and whether they align with or differ from other researchers' findings. 

Conclusions are drawn based on available evidence from the results with 

highlights to the limitations of the research work. A brief section on 

recommendation(s) for future research and practical applications forms the 

closing part of this chapter.  

6.2 RESTATEMENT OF RESEARCH PURPOSE 

The underlying goal of the research reported in this thesis is to examine how 

health examination data, can be utilised effectively to predict diabetes onset. A 

number of risk assessment tools exist that require some simple and easily 

accessible features to determine if a person is at risk of developing diabetes. 

However, such tool cannot be considered reliable due to lack of domain 

knowledge caused by limited (and often superficial) information.  Features 

such as blood glucose concentration have been proven as reliable in diabetes 

screening [17], [18]; as such required to provide sufficient understanding of the 

condition, ultimately leading to better prediction.  

In this research, medical data acquired through diabetes health check program 

was used. The task is to conduct experiments using machine learning approach, 

in order to learn from the data. In particular, the research explores the 

relationship between ensembles and their constituent base classifiers, to 

construct a high performance classifier model for diabetes prediction. Data 

optimisation strategies were applied during the experiment and their impact 
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evaluated. Results were analysed based on four performance measures to 

illustrate the level of achievements made. 

6.3 LIMITATIONS 

Majority of the research limitations revolve around data. The experimental data 

involving from the Pima Indian population is rather small and consists only of 

females aged 20 or over. Although the data was oversampled and measures put 

in place to counter any adverse effect on performance, there is some evidence 

that rebalancing the class distributions artificially does not have much effect on 

the performance of the induced classifier [193], This could be due to a number 

of reasons such as classifier not being sensitive to differences in class 

distributions. It seems that a clearer understanding is required of how class 

distributions affect each phase of the learning process at both base and 

ensemble levels. For instance, in C4.5 decision trees, how class distributions 

affect the node expansion, pruning and leaf labelling. A deeper understanding 

of the basics will lead to the design of better methods for dealing with the 

problems associated with skewed class distributions. 

6.4 FUTURE RESEARCH 

Although the experiment addressed the aims of the research with positive 

results, many directions still remain that could improve the performance. For 

instance, data pre-processing with other sampling methods may improve the 

dimensionality issue experienced with the experimental data. SMOTE was 

used in its basic version to oversample the minority class. Perhaps, other 

versions of SMOTE would improve the experimental data. Follow up 

experiment is necessary using other feature search algorithms, feature selection 

methods, and meta-classification methods. Another question that arose during 

the experiment is whether or not the base classifiers contribute equally to the 

training at ensemble level. It is intended to conduct further investigations in 

these directions. In the next sub sections, detailed plan of work is provided for 

each of the future research directions identified. 
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6.4.1 VARIATIONS OF SMOTE  ALGORITHM  

The version of SMOTE applied during the experiment uses the Heterogeneous 

Value Difference Metric (HVDM) [194] to compute the distance between 

examples; and considers a maximum of 5 nearest neighbours for each sample. 

Research into other data sampling methods would lead to a better 

understanding of the dimensionality issue experienced with the experimental 

data. It is intended to conduct further research using other versions of the 

SMOTE algorithm, to see what improvement(s) could be made.  

In particular, the SMOTE + Tomek Links [195] has a built in facility to 

separate the synthetic samples generated by SMOTE. The method uses Tomek 

Links [196] to remove examples after applying SMOTE, that are considered to 

be noisy or lying in the decision border. By definition, a Tomek Links is a pair 

of examples 𝑥 and 𝑦 from different classes, that has no example 𝑧 such that 

𝑑(𝑥, 𝑧) is lower than 𝑑(𝑥, 𝑦), or 𝑑(𝑦, 𝑧) is lower than 𝑑(𝑥, 𝑦), where 𝑑 is the 

distance metric.  

SMOTE + ENN [197] is another version worth considering. According to Prati 

et al [198], Edited Nearest Neighbour (ENN) tends to remove more examples 

than the Tomek Links, so it is expected that a more thorough data cleaning 

would be achieved through this method. For instance, ENN uses three nearest 

neighbours to assess examples from both classes, thus any example that is 

misclassified by its three nearest neighbours is removed from the training set.  

Borderline SMOTE [180] is another variation of SMOTE that considers the 

minority borderline examples, when generating synthetic data. This method 

uses the K-Nearest Neighbour (K-NN) algorithm [165] to identify the k nearest 

neighbours of each minority class example. If a minority class example 𝑋𝑖 has 

more than 
𝑘

2
 nearest neighbors from other classes, then 𝑋𝑖  is considered a 

borderline example that might be misclassified, and 𝑋𝑖 is fed to SMOTE so that 

synthetic examples are generated around it. If however, 𝑋𝑖 has exactly the same 

k nearest neighbours from other classes, then 𝑋𝑖  is considered noisy and no 

synthetic examples are generated for it. 
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SL-SMOTE is another useful method in which an assessment is conducted for 

each minority class, in order to identify its safe level before generating 

synthetic examples. By definition, the safe level of one example is the number 

of positive instances among its K-NN. Synthetic examples are positioned 

closer to the examples with the largest safe level to reduce the chances of 

misclassification.   

It is believed that these methods would be beneficial to the experimental data 

used in this thesis. By applying additional selection measures around the 

minority examples, distinctive classes may be generated, ultimately leading to 

improved performance of the classifiers. Further work is planned to compare 

performance using these methods. In particular, it would be interesting to see 

the results of SMOTE + Tomek Links and SMOTE + ENN which are noted 

within the literature to perform better than the other two versions of SMOTE 

discussed in this section [177][199].  

6.4.2 EXTENDED RESEARCH WITH DIFFERENT WEIGHTED VOTE 

One of the questions that arose during the experiment was whether or not the 

base classifiers contribute equally at ensemble level. In the experiment, K-NN 

was used as meta-classifier to combine the predictions of the base classifiers. 

Classification through this process is done based on the distance between new 

observation and the learning set closest to the new observation. The problem is 

that synthetic data generated through SMOTE are not properly separated, so it 

is possible that some of the nearest neighbours to the new observation are of 

the opposite class. Therefore, weighting was assigned to the contributions of 

the neighbours, so that the nearer neighbours contribute more to the average 

than the more distant ones.  

While this approach produced good ensemble results, there are other directions 

not yet exploited. For instance, K-NN only considers the predicted class label 

and not the performance of the individual classifiers that make up the 

ensemble. Since contributions made by the ensemble members vary, there is a 

need to acknowledge each classifier’s contribution so that those with greater 

information gain would have more votes towards the ensemble prediction.  



98 | P a g e  

 

One way of doing this is to assign weight to each classifier based on its 

probability distribution over the class. When a classifier outputs the most likely 

class that a new sample should belong to, it provides the degree to it believes 

the prediction is true.  This degree of certainty, (commonly known as 

prediction probability) can be utilised to assign weights to the base classifiers’ 

predictions so that those with higher probability on the class contribute more 

towards the ensemble prediction. For instance, given a binary classification 

task with class labels 𝑖 =∈ {0,1}, 𝑁 number of base classifiers, the prediction 𝑦 

by weighted predicted probability 𝑝 is given by ( 12 ), where 𝑤𝑗 is the weight 

assigned to the 𝑗𝑡ℎ classifier. 

 

𝑦 =  arg max
𝑖

∑ 𝑤𝑗𝑝𝑖𝑗

𝑁

𝑗=1

 

( 12 ) 

 

This can be implemented in two ways; a) with equal weight assigned to each 

classifier and b) different weight for each classifier based on some function. To 

illustrate the two methods using a simple example, the base classifiers could 

produce predicted probabilities like the one in Table 6.1.  

 

 

Table 6.1: Simple classification result from three classifiers, showing weighted 

predictions on each class 

 

Using uniform weights 𝑤 = 1, for each classifier, the prediction 𝑦 by average 

probabilities can be computed as: 

𝑝(𝑖0|𝑥) =
0.8 + 0.6 + 0.4

3
= 0.6 

𝑝(𝑖1|𝑥) =
0.2 + 0.4 + 0.6

3
= 0.4 
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𝑦 = 𝑎𝑟𝑔 max
𝑖

[𝑝(𝑖0|𝑥), 𝑝(𝑖1|𝑥)] = 0 

However, assigning different weights {0.1, 0.1, 0.8} would yield a prediction 

𝑦 = 1 

𝑝(𝑖0|𝑥) =
0.1 × 0.8 + 0.1 × 0.6 + 0.8 × 0.4

3
= 0.46 

𝑝(𝑖1|𝑥) =
0.1 × 0.2 + 0.1 × 0.4 + 0.8 × 0.6

3
= 0.54 

𝑦 = 𝑎𝑟𝑔 max
𝑖

[𝑝(𝑖0|𝑥), 𝑝(𝑖1|𝑥)] = 1 

Since both strategies produced different outcomes for 𝑦, it seems logical to 

implement and compare both of them to the result achieved with K-NN 

algorithm. It is intended that further research would be conducted in this 

direction. Prediction probability could be used to calculate weighting function 

such that those with larger values are assigned more weight. 

6.4.3 BASE LEARNER OPTIMISATION AND FURTHER EXPERIMENTS 

WITH EXTERNAL DATASET 

The ensembles reported in this thesis utilises five base classifiers in their 

standard form, learning from a single dataset. Further research is intended to 

optimise the base learners by tuning their hyper-parameters. In the context of 

machine learning, hyper-parameters are parameters whose values are set prior 

to the classifier training process [200]. By contrast, the value of other 

parameters is derived via training and dependent on the data. It may be possible 

to improve performance at base level through this process, ultimately leading 

to improved ensembles. 

All the experiments reported in this thesis are based on a single dataset. It is 

possible that the conclusions drawn from the experiments would hold for other 

datasets, but this is not a certainty. Abbasi et al. [16], argued that the 

performance of a prediction model is generally overestimated in the population 

in which it was developed. Therefore external validation of such model in an 

independent population is essential to broadly evaluate the performance and 
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thus the potential utility of such models in different populations and settings. It 

would be interesting to see if the achieved performance would be replicated, 

given a different dataset. Therefore, it is intended to replicate the research 

using external datasets; and perhaps more base classifiers. 

6.4.4 EXTENDED RESEARCH IN FEATURE SEARCH AND SELECTION  

For the experiment reported in this thesis, only one feature search and selection 

approach was implemented. The approach uses the best-first algorithm to 

search the feature space such that the selected subsets are tested and scored 

with the base classifiers, for optimum performance. This means that each new 

subset is used to train a model, which is tested on a hold-out set. By comparing 

the error rate of the models, scores are allocated to each subset.  

In a separate research, this approach was compared with a different feature 

selection method (known as filter) [201]. Filter methods use statistical measure 

to consider each feature independently, and assign a scoring with regard to 

information gain to the class[202]. Comparison between the two methods have 

been covered by several researchers and there is a general consensus that filters 

do not perform well because features are considered independently [201][203]. 

As a result, further research in this is focused on the various search algorithms 

used for selecting subsets from the feature space. For instance, genetic search 

[204], exhaustive search [205] and greedy hill climbing [206][207] are some of 

the most frequently used search algorithms within the literature. All three 

would be implemented with the feature selection approach used in this thesis.    

6.5 THESIS SUMMARY 

Problems of data are one of the most emphasised factors affecting diabetes 

prediction tools within the literature, particularly superficial data and 

small/skewed data for training. The former was rectified in the research 

presented in this thesis by including vital bio markers most closely associated 

with diabetes development such as blood pressure and glucose concentration. 

In fact, the result obtained during feature selection in (see chapter 5.3), 

validates their inclusion and supports the wider claim about their relevance in 
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diabetes data classification. Blood glucose and blood pressure are among the 

few features selected by all the five classifiers. 

Evidence from this research also aligns with previous research work about the 

adverse effects of the latter problem involving data size. In the comparison 

involving base classifier training with unbalanced and balanced data (see 

Appendix A.3), small data sample coupled with skewed class distribution was 

seen to affect classifier performance. An attempt was made in this thesis to 

address the issue through over sampling the minority class using SMOTE 

algorithm.  

Evidence within the literature suggests that feature selection improves 

performance. This was corroborated by the results in this thesis, particularly 

when the base classifiers trained with feature selected subsets were compared 

to their counterparts trained on full dataset (see chapter 5.3). That said, this 

observation is declared with caution because only one feature selection method 

was investigated herein. Extensive research with other methods would provide 

stronger claims on this note.  

The experiments show that heterogeneous pool of base classifiers is capable of 

producing accurate and diverse ensemble classifiers. The implemented method 

performed a search over all possible heterogeneous model compositions 

involving only five base classifier models. There was significant improvement 

in predictive accuracy when the best ensemble was compared to the best base 

learner. That said, some of the ensemble models produced lower performance 

than the best base classifier. Therefore, the results of the experiment differ 

from any claim(s) within the literature that ensembles always lead to better 

performance than its constituent base classifiers.   

Further observations suggest that feature selection played a major role towards 

the results. This was proven in section 5.4.2.1 in which comparison was made 

between ensembles trained with and without feature selected data. The results 

revealed some poor performance from the latter but validates claims in the 

literature about the effects of redundant data on classifier performance.  
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As noted in the previous chapter (Section 5.5), the accuracy of the ensemble 

method implemented in this thesis is superior compared to other methods 

described in the literature. 70 research studies were found in the literature that 

used the same dataset. Their accuracy results are between 59.5% and 82%, 

which is lower than 83% obtained in this research. 
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APPENDIX A.1 

Detailed description of the experimental datasets, including the source 

information and data characteristics. 

Pima Indians Diabetes Dataset 

Source: 

National Institute of Diabetes and Digestive and Kidney Diseases 

Donor to UCI database: 

Vincent Sigillito (vgs@aplcen.apl.jhu.edu) 

Dataset Information: 

This data contains 768 samples of diabetes examination results that can be used 

to judge the risk of developing diabetes within 5 years. The goal is to classify 

the patient into one of two categories, “positive and negative”. This data set 

includes 500 instances of “negative” and 268 instances of “positive”. The 

instances are described by 9 attributes.  

Several constraints were placed on the selection of these instances from a 

larger database. In particular, all patients here are females at least 21 years old 

of Pima Indian heritage.  

Attribute Information: 

1. Number of times pregnant 

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-Hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)^2) 

7. Diabetes pedigree function 

8. Age (years) 

9. Class variable (0 or 1) 

mailto:vgs@aplcen.apl.jhu.edu
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The providers indicated that there were no missing values in the dataset. 

However, this cannot be true as there are zeros in places where they are 

biologically impossible, such as the blood pressure attribute. It seems very 

likely that zero values encode missing data. Since the dataset donors made no 

such statement, users are encouraged to use their best judgement and state their 

assumptions. 
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APPENDIX A.2 

Detailed description of  SMOTE algorithm 

 

Figure A.2.0.1: SMOTE algorithm (source: [151]) 
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Provided below, is an example of how random synthetic samples are calculated 

from the sample vector.  

Consider a sample (6,4) and let (4,3) be its nearest neighbour. 

 

(6,4) is the sample for which k-nearest neighbours are being identified. 

(4,3) is one of its k-nearest neighbours. 

 

Let: 

f1_1 = 6 f2_1 = 4 so f2_1 - f1_1 = -2 

f1_2 = 4 f2_2 = 3 so f2_2 - f1_2 = -1 

 

The new samples will be generated as 

(f1’,f2’) = (6,4) + rand(0-1)* (-2,-1) 

 

Note: rand(0-1) generates a random number between 0 and 1. 

Here, synthetic samples are generated, by taking the difference between the 

feature vector (sample) under consideration and its nearest neighbour and 

multiplying it by a random number between 0 and 1. The resultant value is then 

added to the feature vector under consideration. This approach effectively 

forces the decision region of the minority class to become more general by 

creating larger and less specific decision regions; rather than smaller and more 

specific regions created through sampling with replacement. As a result, more 

general regions are now learned for the minority class samples instead of those 

being subsumed previously by the majority class samples around them. The 

effect is that classifiers generalize better on the dataset. 
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APPENDIX A.3 

Performance with unbalanced vs balanced dataset for each base classifier. Note 

that unbalanced dataset consists of 419 instances of which 279 tested negative 

and 140 tested positive. The balanced dataset consists of 559 instances of 

which 279 tested negative and 280 tested positive. Comparison with Mc 

Nemar’s test is impossible due to the difference in data size. 

Table A.3.0.1: Tabular representation of Naïve Bayes performance on balanced vs 

unbalanced dataset 

 

 
Figure A.3.0.1: Graphic representation of Naïve Bayes performance on balanced vs 

unbalanced dataset 
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Table A.3.0.2: Tabular representation of RBF performance on balanced vs unbalanced 

dataset 

 

 

Figure A.3.0.2: Graphic representation of RBF performance on balanced vs unbalanced 

dataset 

 

 

Table A.3.0.3: Tabular representation of SMO performance on balanced vs unbalanced 

dataset 
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Figure A.3.0.3: Graphic representation of SMO performance on balanced vs unbalanced 

dataset 

 

 

Table A.3.0.4: Tabular representation of C4.5 performance on balanced vs unbalanced 

dataset 

 

 

Figure A.3.0.4: Graphic representation of c4.5 performance on balanced vs unbalanced 

dataset 
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Table A.3.0.5: Tabular representation of RIPPER performance on balanced vs 

unbalanced dataset 

 

 

Figure A.3.0.5: Graphic representation of RIPPER performance on balanced vs 

unbalanced dataset 
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APPENDIX A.4 

 

Figure A.4.0.1: Data cluster of ‘age’ and other features of the training dataset 

 

Figure  A.4.0.2: Data cluster of ‘family pedigree’ and other features of the training 

dataset 

 

Figure A.4.0.3: Data cluster of ‘bmi’ and other features of the training dataset 
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Figure A.4.0.4: Data cluster of ‘insulin’ and other features of the training dataset 

 

Figure A.4.0.5: Data cluster of ‘skin fold’ and other features of the training dataset 

 

Figure A.4.0.6: Data cluster of ‘blood pressure’ and other features of the training dataset 



128 | P a g e  

 

 

Figure A.4.0.7: Data cluster of ‘blood glucose’ and other features of the training dataset 

 

Figure A.4.0.8: Data cluster of ‘pregnant’ and other features of the training dataset 

 

Figure A.4.0.9: Scatter plot of the experimental dataset showing class distribution and 

density 


