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ABSTRACT 
As device sizes scale down, device variations scale 

up. There are two types of device-to-device variations 

(DDV): as-fabricated or time-zero DDV and the time 

dependent variations (TDV). Even if two nano-scaled 

devices were identical at time-zero, they would be 
different after stresses and result in TDV, since the defect 

generation and charging-discharging are stochastic. To 

characterize TDV, statistical properties, such as the mean 

value and standard deviation, are extracted from tests. 

Their accuracy improves as the number of device under 

tests (DUTs) increases. Ageing is time consuming and the 

typical DUTs used are in the range of tens to hundreds. 

There is little information on the accuracy of the 

statistical properties extracted from such a limited DUTs 

and the objective of this paper is to propose a 

methodology to assess it. Based on the defect-centric 

model, the accuracy with a specific confidence level is 

evaluated for a given number of DUTs and a stress level. 

 

INTRODUCTION 
As CMOS technologies enter the nano-meter range, 

device-to-device variations (DDV) become a challenge 

for circuit design and optimization [1-12]. There are two 

types of DDV: the as-fabricated DDV at time zero and the 

time dependent DDV. The as-fabricated DDV has a 

number of origins, such as random discrete dopant, line 

edge roughness, gate work function variation, and FIN 

size variation etc [1]. They have been extensively 

investigated. This work focuses on the time dependent 
DDV (TDV). Under electrical stresses, transistors age 

through charging/discharging either as-grown traps or 

generated traps in gate dielectric [13-20]. Even though 

two devices can be identical at time zero, they become 

different after electrical stresses, because the defect 

generation and the charge-discharge of traps in the gate 

dielectric are stochastic [1-3]. One example is given in 

Fig. 1, where the ageing of two devices is clearly different 

under the same stress biases [9].   

To characterize DDV, the common practice is to 

repeat the same test on multiple devices and extract the 

statistical properties, such as the mean value and standard 

deviation [1-12]. For as-fabricated DDV, the 

measurement is fast and a large number of devices can be 

used in a practical test time. For TDVs, however, device 

ageing can be a time consuming process and the number 

of Device Under Tests (DUTs) used is limited. While the 

DUTs can reach the order of ~ 10
5
 [4] for relative short 

time such as 1000 sec, they are often only in the range of 

tens to hundreds for longer stress time [2-12]. As the 

accuracy of the statistical properties always improve with 

number of DUTs, the question is how accurate they are 

when extracted from a limited number of DUTs. In this 

work, we will develop a methodology to assess this 

accuracy, based on the defect centric model [2-4].  

 

 
 

Fig. 1 An example of time dependent device-to-device 

variation (TDV). Two devices of the same size were 

subjected to the same electrical stress. Their ageing is 

clearly different [9]. 

 

DEFECT CENTRIC MODEL 
The defect centric model [2,3] is based on two 

assumptions. One of them is that the number of traps in 

gate dielectric per device is random and follows the 

Poisson distribution. The other is that the impact of a trap 

on a device in term of parameter shift, such as threshold 
voltage shift ΔVth, follows an exponential distribution. 

This leads to a combined distribution function of [2,3,9], 
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where H is the cumulative distribution, Γ is the Gamma 

function, η is the average impact of one trap on the device 

and Nt is the average number of traps per device. They are 

related to the mean, µ, and standard deviation, σ, by: 
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Once the µ and σ is obtained from the test data, one 

can evaluate Nt and η by eqs. (2) and (3) and in turn the 

statistical distribution by eq. (1). 

 

THE MODEL VERSUS TEST DATA  
For the TDVs induced by the bias temperature 

instabilities, the defect centric model has been verified 

based on extensive amount of tests: 92,000 DUTs from 

4000 process lots [4]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 An example of good agreement between the test 

data (symbols) and the defect-centric model (lines). 

‘Forward’ means the source and drain for stress and 

measurement are the same, while ‘Reverse’ means that 

they were swapped after stresses [9]. 

For the TDVs induced by hot carrier ageing (HCA), 

there is also a good agreement between the model and the 

test data, which were taken after different stress times in 

Figs. 2(a) and 2(b) and different stress biases in Figs. 2(c) 

and 2(d).  

The model predicts that standard deviation is related 

to the mean by a power law, 
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 This again agrees with the test data in Fig. 3 [9]. 

 

 

 
 
Fig. 3 The relation between standard deviation and the 

mean follows the prediction by eq. (4) well [9]. 

 

METHODOLOGY   
For a given Nt and η, one can construct hypothetic 

devices with the number of traps in each device, nt, 

determined by the Poisson distribution and the threshold 

voltage shift induced by a trap, ΔVth,i, obtained by the 

exponential distribution. The total ΔVth of this device is 

the sum of each-trap induced shift, 
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These hypothetic devices allow one to simulate the 

experiments that use a limited number of DUTs for 

extracting the µ and σ. For example, one test engineer 

used X DUTs can be simulated by generating X 

hypothetic devices for the ‘Test 1’ in Fig. 4. The X ΔVth 

for these devices is then used to evaluate µ and σ, which 

corresponds to one point in Figs. 5(a) and (b), 
respectively. 

Now we assume that a different test engineer is 

doing the same test by using X DUTs again. These X 

DUTs of course can be different from those used by the 

previous engineer and we imitate this by randomly 

generating the second set of X DUTs, labeled as ‘Test 2’ 

in Fig. 4. This will produce another point for µ and σ in 

5(a) and (b), respectively. 



Repeating the same simulation for a sufficiently 

larger number of sets, i.e. the M in Fig. 4, one can obtain 

the distribution of extracted µ and σ for a given X DUTs, 

as shown in Fig. 5. They can then be compared with the 

true µ and σ that is evaluated by eqs. (2) and (3) for the 

given Nt and η used to generate the hypothetic devices. At 

a given level of confidence, the accuracy of µ and σ for a 

specific DUTs can be evaluated, as shown in Fig. 7 and 
Fig. 8. 

 

 
 

 

Fig. 4 An illustration of statistical tests: In a hypothetic 

Test 1, engineer 1 used X DUTs for extracting the µ and σ 

of TDV. In test 2, engineer 2 also used X DUTs, but will 

obtain different µ and σ, because a different set of devices 

were used [10]. 

 

 

Fig. 5 The µ (a) and σ (b) extracted for different number 

of DUTs (X in Fig. 4). For a given X, the tests were 

repeated 1000 times (M=1000 in Fig. 4) [10]. 

 

APPLICATION EXAMPLES  
Device lifetime is typically defined as the time for 

ΔVth reaching 25 ~ 50 mV. The average ΔVth induced by 

one trap, η, is ~ 3.4 mV, evaluated from the slope of the 

fitted line in Fig. 3. This gives an average number of traps 

per device, Nt=ΔVth/η, of 7 ~ 15.  

Fig. 5 shows the distribution for Nt=7.5, when the 

same set of tests were repeated 1000 times, i.e. M=1000 

in Fig. 4. As expected, the statistical spread is larger for 

smaller DUTs in both µ and σ.  

The number of DUTs is not the only parameter 

affecting the spread. Fig. 6 shows that Nt also has an 

impact. The spread reduces for larger Nt, since a larger Nt 

averages out the individual effect of a trap on a device.  

 

 
Fig. 6 The impact of the average number of traps, Nt, per 

DUT on the µ (a) and σ (b) extracted for DUTs=100 when 

the tests were repeated 1000 times (M=1000 in Fig. 4) 

[10].  

 

 
Fig. 7 The dependence of the accuracy of mean value, µ, 

on the number of DUTs used in a test for Nt=10 (a) and 

Nt=40 (b). The accuracy with a 95% confidence is 

marked out for 40 devices [10]. 

 

 

 
Fig. 8 The dependence of the accuracy of standard 

deviation, σ, on the number of DUTs used in a test for 

Nt=10 (a) and Nt=40 (b). The accuracy with a 95% 

confidence is marked out for 40 devices [10].  
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Figs. 7(a) and (b) shows the accuracy of extracted µ 

for Nt=10 and 40, respectively. For Nt=10, µ has an 

accuracy within ±14% with a 95% confidence when 

X=40. It is improved to ±6% when Nt=40. If 1000 DUTs 

were used, the accuracy will be improved to ±2.6% for 

N=10 and ±1.3% for Nt=40. 

For the same DUTs and Nt, the accuracy in σ is less. 
Figs. 8(a) and (b) shows the accuracy of extracted σ for 

Nt=10 and 40, respectively. For Nt=10, σ only has an 

accuracy within ±24% with a 95% confidence when 

X=40. It is improved only to ±22% when Nt=40. If 1000 

DUTs were used, the accuracy will be improved to ±5% 

for Nt=10. 

 

CONCLUSIONS 
Defect generation and charge-discharge of traps in 

gate dielectric are stochastic processes. This induces a 

time dependent device-to-device variations (TDVs). In 

this work, we propose a methodology for assessing the 

accuracy of the statistical properties of TDVs extracted 

from a limited number of DUTs, based on the 

defect-centric model. An increase of either the number of 

DUTs or the number of average traps per device improves 

the accuracy of mean and standard deviation. When the 

average number of traps per device (~ 10) corresponds to 

typical definition for device lifetime, an accuracy for 40 

DUTs is around 14% and 24% for the mean and standard 

deviation, respectively. They are improved to 2.6% and 

5%, when 1000 DUTs are used.  
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