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Abstract  

Objectives:  To examine whether the Functional Data Analysis (FDA), Statistical Parametric 

Mapping (SPM) and Statistical non-Parametric Mapping (SnPM) hypothesis testing techniques differ 

in their ability to draw inferences in the context of a single, simple experimental design. 

Design: The sample data used is cross-sectional (two-sample gender comparison) and 

evaluation of differences between statistical techniques used a combination of descriptive and 

qualitative assessments.  

Methods: FDA, SPM and SnPM t-tests were applied to sample data of twenty highly skilled 

male and female rowers, rowing at 32 strokes per minute in a single scull boat. Statistical differences 

for gender were assessed by applying two t-tests (one for each side of the boat).  

Results: The t-statistic values were identical for all three methods (with the FDA t-statistic 

presented as an absolute measure). The critical t-statistics (tcrit) were very similar between the 

techniques, with SPM tcrit providing a marginally higher tcrit than the FDA and SnPM tcrit values (which 

were identical). All techniques were successful in identifying consistent sections of the force waveform, 

where male and female rowers were shown to differ significantly (p < 0.05).  

Conclusions: This is the first study to show that FDA, SPM and SnPM t-tests provide consistent 

results when applied to sports biomechanics data. Though the results were similar, selection of one 
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technique over another by applied researchers and practitioners should be based on the underlying 

parametric assumption of SPM, as well as contextual factors related to the type of waveform data to be 

analysed and the experimental research question of interest.  

 

Key Words (3-8):   Statistics, Hypothesis Testing, Waveform, Movement.   



3 
 

A force profile analysis comparison between functional data analysis, statistical parametric 

mapping and statistical non-parametric mapping in on-water single sculling. 

 

Introduction 

The ability to statistically analyse whole movements using biomechanical data is of 

contemporary interest in sport and exercise science1. Movements are often represented by relevant 

biomechanical time-series variables (also referred to as waveforms, curves, etc.). Differences between 

individuals for characteristics of these variables (i.e. the shape of the these curves when observed 

graphically), has led to terms such as movement ‘signatures’ being used2. The most commonly used 

approach for the analysis of these waveform variables however is discrete point analysis (DPA)3, which 

reduces the dimensionality of a waveform by examining pre-selected ‘key’ data points (e.g. maxima or 

minima). Despite its common implementation in applied biomechanics settings, this approach can be 

limiting, as pre-selection of key points is often dependent on a priori knowledge of the movement being 

analysed, and can thus lead to potentially relevant information being discarded3. This can be become 

problematic in biomechanics, as research is can often be exploratory prior to the generation of 

hypotheses when analysing time-series data4.  

Some well-established statistical methods, which allow statistical examination of entire time-

series have increased in popularity in human movement research. These are Functional Data Analysis 

(FDA)5 and Statistical Parametric Mapping (SPM)6. The general concept of FDA is to express discrete 

observations arising from time-series in the form of a function, and then consider each measured 

function as a single observation for subsequent statistical analysis. This has led to the adaptation of 

several accepted statistical practices that are commonly used for data reduction (i.e. PCA), clustering, 

hypothesis testing techniques (i.e. functional linear models) and forecasting (for a comprehensive 

contemporary review see: Ullah & Finch7). Within the realm of human movement analysis, FDA has 

been applied in a range of sports biomechanics studies including, but not limited to, the analysis of race-

walking, running, jumping, weightlifting and rowing8-14. SPM also regards time-series variables as a 

single observation. SPM exploits the use of random field theory (RFT)15 to directly map the 

conventional Gaussian distribution to smooth n-dimensional continua, providing an objective 
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framework for hypothesis testing using parametric statistical concepts. SPM has also been adapted for 

non-parametric analyses16, and this is referred to as Statistical non-Parametric Mapping (SnPM). 

Similar to FDA, SPM (and SnPM) have demonstrated application in human movement contexts such 

as the analysis of biomechanical time-series data in soccer kicking, running and cutting movements and 

landing techniques17-21.  

The recent proliferation of these statistical methods in biomechanics is partly due to their 

increasing availability. Software for the implementation of FDA and SPM is freely available and written 

for use with a number of statistical programs. FDA software is available from the 

www.functionaldata.org website, and is designed for use with Matlab, R and S-Plus. Similarly, SPM 

software is available for use from the www.spm1d.org website, and is designed for use with Matlab and 

Python. Despite being different statistical methods for analysing waveform data, there are some 

techniques within FDA and SPM that mirror conventional statistical concepts from classical hypothesis 

testing. One such statistical test is the independent samples t-test. In both FDA and SPM, a t-statistic is 

generated in the form of a continuous trajectory and random data is used to develop a critical t-statistic 

threshold for significance testing between independent samples. At present, the independent sample t-

test has been applied in the context of FDA22, SPM23 and also SnPM24 with biomechanical data. Despite 

this, to the best of the authors’ knowledge there has never been a formal comparison of these statistical 

approaches in the context of human movement data.  

This paper examines the FDA, SPM and SnPM independent sample t-tests when applied to 

sample rowing biomechanics data, to test the hypothesis of gender differences in sculling. 

Understanding gender differences in rowing has practical relevance in sports biomechanics, as it can 

provide insights into the need for gender specific training interventions and evaluation of injury 

mechanisms. At present there is established support for presence of biomechanical differences between 

male and female rowers for discrete biomechanical variables, with peak force and peak power 

differences noted between males and females25. Additionally, patterns of relative force-angle profiles 

(normalized to 100% of maximum force) have also been found to differ relative to gender14. Thus it can 

be hypothesised from these previous findings that differences between these samples of rowers may 

exist in the amount of force application applied across sections of the drive phase, however this is 
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largely an exploratory analysis using each of the statistical approaches. The goal was to qualitatively 

compare the results of FDA, SPM and SnPM for an example dataset, and subsequently to describe 

factors specific to each technique which may yield different outcomes for arbitrary datasets.  

 

Methods 

Following institutional ethical approval and participant consent, ten male (M age = 21.87 + 2.55 

years; M height = 1.91 + 0.06 m; M mass = 87.16 + 9.14 kg) and ten female (F age = 20.73 + 3.65 years; 

F height = 1.82 + 0.06 m; F mass = 72.47 + 7.08 kg) highly trained heavyweight and lightweight scullers 

participated. All rowers were required to have competed in an Australian national age group 

championship or an Australian national open championship (i.e. national level athlete) or represented 

Australia at an under 18, 23, or open level event (i.e. international level athlete) prior to testing.  

Participants were instructed to row a total of 1000 m, composed of four 250 m segments at 

ascending pre-selected stroke rates of 20, 24, 28 and 32 strokes per minute. Only the 32 strokes per 

minute data (i.e., a race representative stroke rate) were analysed. Rowing data was obtained using 

ROWSYS instrumentation (see Smith and Loschner26 for a full description of the system), and the 

propulsive component (relative to the longitudinal axis of the boat) of force was retained and analysed. 

The same ten strokes were selected for the bow and stroke side for each rower (these sides of the boat 

are sometimes also referred to as starboard and port-side). These strokes were performed simultaneously 

and consecutively. For each participant, the drive and recovery phases were identified using the 

horizontal oar angle and only the drive phase was analysed in this study. A linear length normalization 

strategy using an interpolating cubic spline was applied, registering each curve to 100% of the drive 

phase. An average waveform created from each participant’s ten strokes (for both boat-sides) was used 

for further analysis. This resulted in a total of twenty curves for each independent samples t-test. Prior 

to analysis, data was filtered using a dual low-pass Butterworth filter with a cut-off frequency of 5Hz.  

For the FDA, SPM and SnPM t-tests α = 0.05. Prior to conducting the FDA independent t-test, 

the force trajectories were estimated as functions using B-splines5. Data was also smoothed as a part of 

FDA by adding a roughness penalty to the fitting procedure. A very small roughness penalty was used 

(1 x 10-100) to avoid introducing any differences between FDA, SPM and SnPM that were a part of data 
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pre-processing. For FDA, SPM and SnPM a t-statistic trajectory was created across the entire movement 

using the following two equations. The FDA t-statistic [FDA T(t)] was calculated as 27, 28:  

 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇(𝑡𝑡) =  
|𝑥̅𝑥1(𝑡𝑡) − 𝑥̅𝑥2(𝑡𝑡)|

� 1
𝑛𝑛1
𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥1(𝑡𝑡)] + 1

𝑛𝑛2
𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥2(𝑡𝑡)] 

 

 

Where, 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) are the force trajectories for males and females and 𝑥̅𝑥1(𝑡𝑡) and 𝑥̅𝑥2(𝑡𝑡) are 

the pointwise means for the male and female trajectories, n1 and n2 denote the sample sizes in male and 

female trajectories respectively and Var[x1(t)] and Var[x2(t)] denote the variance for male and female 

trajectories respectively. The pointwise t-statistic for both SPM and SnPM [SPM & SnPM T(t)] is 

identical (equation below), however it is directional as the numerator of 𝑇𝑇(𝑡𝑡) is not absolute (similar to 

Welch’s original definition of the conventional t-statistic):  

 

𝑆𝑆𝑆𝑆𝑆𝑆 & 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇(𝑡𝑡) =  
𝑥̅𝑥1(𝑡𝑡) − 𝑥̅𝑥2(𝑡𝑡)

� 1
𝑛𝑛1
𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥1(𝑡𝑡)] + 1

𝑛𝑛2
𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥2(𝑡𝑡)] 

 

 

Calculation of the critical t-statistic for the FDA t-test (FDA-tcrit) was determined using a 

permutation test by randomly shuffling the male and female labels on the trajectories and calculating 

the maximum of 𝑇𝑇(𝑡𝑡) using these new labels28. The maximum number of permutations possible for this 

data was used to create a null distribution (184,756 permutations or 20!/(10!×10!)). For each 

permutation the maximum t-value (tmax) is saved, resulting in a distribution of tmax values. The FDA-tcrit 

is then given as the 100 × (1 – α)th percentile of the tmax distribution. The critical t-statistic for the SPM 

t-test (SPM-tcrit) is given by RFT15 as the solution to: 

 

𝑃𝑃(𝑇𝑇(𝑡𝑡)𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 1 − exp �−� 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑 − 𝐸𝐸𝐸𝐸
∞

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� =  𝛼𝛼 
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Where T(t)max is the maximum value of the continuous trajectory, tcrit is the SPM-tcrit, fpdf(x) is 

the t-statistic’s probability density function and ED is the smoothness-dependent Euler density 

function6. Similar to the conventional t-test, the above equation represents the probability that T(t)max 

exceeds SPM-tcrit when the underlying data refers directly to random processes with Gaussian kernel 24. 

Identically to the FDA-tcrit, the t-statistic for the SnPM t-test (SnPM-tcrit) is calculated using the 

permutation method implemented by Nichols and Holmes16 and is summarized comprehensively in 

Pataky, Vanrenterghem and Robinson24. Again, the maximum number of permutations possible for this 

data was used to create a null distribution (this was 184,756 permutations).  

FDA, SPM and SnPM t-tests were conducted independently, for each side of the boat to test 

for gender differences in the drive phase (continuous application of propulsive force). For each t-test, 

the critical t-statistic and areas of significance between the two groups were reported. Descriptive 

comparisons of the critical t-statistic thresholds for the FDA, SPM and SnPM t-tests and any associated 

areas of significance (or regions) was also used as the criterion for comparing each of the statistical 

techniques.  

 

Results 

For the bow-side, the FDA-tcrit = 3.20, the SPM-tcrit = 3.33 and the SnPM-tcrit = 3.20. FDA, 

SPM and SnPM t-tests each identified two separate parts of the drive phase that differed significantly 

between males and females (α = 0.05). Firstly, a region spreading from 28%-82% of the drive phase 

was found to differ significantly for gender, with each method (FDA p < 0.001; SPM p < 0.001; SnPM 

p < 0.001). Secondly, a region spreading from 90%-96% of the drive phase was found to differ 

significantly for gender with each method (FDA p < 0.001; SPM p = 0.040; SnPM p < 0.001).  

For the stroke side, the FDA-tcrit = 3.18, the SPM-tcrit = 3.33 and the SnPM-tcrit = 3.18. FDA, 

SPM and SnPM t-tests each identified one part of the drive phase that significantly differed between 

males and females (α = 0.05). This region spread from 26%-82% of the drive phase was found to 

significantly differ for gender with each method (FDA p < 0.001; SPM p < 0.001; SnPM p < 0.001). 

For the bow-side and stroke-side comparisons, the t-statistic trajectories for the FDA, SPM and SnPM 

methods can be seen in Figure 1.  
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Figure 1:  Results of the FDA, SPM and SnPM t-tests for gender differences. Top left: mean and 

standard deviation clouds for the male rowers (blue) and female rowers (red) for the bow-

side. Top right: mean and standard deviation clouds for the male rowers (blue) and female 

rowers (red) for the stroke-side. Middle left: The bow-side pointwise FDA t-statistic, with 

the FDA-tcrit (green). Middle right: The stroke-side pointwise FDA t-statistic, with the FDA-

tcrit (green). Bottom left: The bow-side pointwise SPM and SnPM t-statistic, with the SPM-

tcrit (blue) and the SnPM-tcrit (red). Bottom right: The stroke-side pointwise SPM and SnPM 

t-statistic, with the SPM-tcrit (blue) and the SnPM-tcrit (red). 

 

Discussion 

This study compared the results of the FDA, SPM and SnPM t-tests in the identification of 

differences in propulsive force application for gender using a sample rowing data set. All three 

techniques provided similar results, and in each case significant differences were identified for gender, 

with significantly different sections of the force curve present across both sides of the boat. These 

sections were identical for each t-test. All three t-tests demonstrated that male rowers were significantly 

more likely to apply a higher level of force leading into and away from the point of maximum force on 

both sides of the boat. As anticipated, these results are consistent with previous findings related to 

kinetic differences between male and female rowers25.  

From a statistical perspective, there are several noteworthy findings for future application of 

these techniques in biomechanics. The t-statistics calculated as a part of each approach were numerically 

identical, with the exception that the SPM and SnPM t-statistics are directional, and thus provide a 

potentially more informative graph for inspection of differences between independent groups. Of 

particular note, the SPM Matlab function ttest2 and the SnPM Matlab function 

nonparam.ttest2 allow the possibility for conducting either a one-tailed or two-tailed t-test, 

whereas the tperm_fd Matlab function for the FDA t-test only provides a two-tailed option. This is 

something that should be considered when setting the alpha level for future use of the FDA technique.  
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The FDA-tcrit, SPM-tcrit and SnPM-tcrit values were very similar (with the FDA-tcrit and the 

SnPM-tcrit providing identical values). This led to global consistency between the techniques in 

identifying of statistically significant sections of difference between genders for their respective force 

curves.  Two sections of the curve were identified for the bow-side and one section of the curve was 

identified for the stroke-side. The small differences in tcrit values between each of these techniques is 

partly due to the different processes implemented for the generation of the null distribution. Generally 

speaking, parametric hypothesis testing techniques (e.g. cross-sectional, longitudinal, regression, etc.), 

are typically considered to be a part of the general linear model (GLM) framework. SPM applies the 

GLM framework to n-dimensional data29, 30, by fitting a GLM at each data point in a time-series, 

followed by parametric inference and corrections for multiple comparisons via RFT6. Such parametric 

approaches assume that the residual trajectories are normally distributed. Conversely, permutation tests 

such as the FDA and SnPM t-tests in the present study are nonparametric and rely on the less inclusive 

assumption of exchangeability: under the permutation-test null hypothesis31. In the present study, both 

groups of curves are believed to be generated by a single distribution, where the independent and 

identically distributed observations are exchangeable. It is entirely plausible that these different 

(parametric vs non-parametric) approaches for generation of the null distribution, could have led to the 

small difference noted between the tcrit for SPM and the tcrit for non-parametric tests (FDA and SnPM). 

When explored in the context of imaging data, permutation tests have been demonstrated to be generally 

more stringent than parametric tests (i.e. stronger control over Type-1 errors) and more robust to random 

noise in imaging measurements31. The results from the present study are somewhat opposed to these 

findings, where the SPM-tcrit was higher than the tcrit for the permutation tests. There are some potential 

reasons for this finding. Firstly, parametric approaches such as SPM make assumptions regarding the 

presence of normality16. Such strategies can become prone to false findings when this underlying 

assumption is invalid. It is possible that this may have influenced results in the present study. 

Additionally, small sample sizes like that noted in the present study (10 trajectories per sample) can 

lead to insufficiently small numbers of permutations for building a null distribution. This can also 

potentially affect calculation of tcrit for the permutation tests, although this was unlikely to have a strong 

affect in the present study as a large number of permutations were used (over 100,000). Given the 
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similarity of all critical t-statistic thresholds, the choice between parametric (SPM) and non-parametric 

(FDA and SnPM) t-tests in the present study had negligible effects on the current results suggesting that 

RFT’s assumption of waveform based Gaussian randomness was reasonable for the current data set, 

with this also previously demonstrated to be true with other biomechanical data24. Similarly, there were 

no notable differences between the functional approach used in the FDA t-test (representing the data as 

coefficients of equations), and the SPM and SnPM methods (where in the present study the data was 

represented as a vector of points). Further to this, the permutation approaches outlined for the FDA t-

test and the SnPM t-test are theoretically identical, with the exception of how the data is represented 

prior to each t-test being conducted (i.e. functional data opposed to a vector or points). To the best of 

the authors’ knowledge, this is the first paper to demonstrate theoretical statistical equivalence between 

these two non-parametric approaches. Additionally, this paper indicates that when smoothing is 

controlled for during FDA, no registration techniques are applied for temporal misalignments of data 

post normalization5, and parametric assumptions underpinning the data hold true, FDA, SPM and SnPM 

results are very similar.  

In light of these results it could be asked whether there is an optimal statistical approach 

amongst FDA, SPM and SnPM when applying the independent samples t-test? In short, the answer is 

that there is no optimal method. There are some reasons however, why researchers and practitioners 

may opt to select one method over another for hypothesis testing of waveform data. Firstly, and as 

outlined by Pataky, Vanrenterghem and Robinson24, the main benefit of SPM (and RFT) tests is that, 

since they assume an analytical model of randomness and they are computationally fast. Conversely, 

non-parametric procedures are computationally slower because they build randomness models 

iteratively. Similar to conventional parametric hypothesis testing approaches, a substantial issue for 

their application is the violation of the assumption for a Gaussian distribution of randomness. Pataky, 

Vanrenterghem and Robinson24 have noted that adherence to the normality assumption should be 

assessed prior to using parametric procedures, either explicitly through a test for normality, or implicitly 

by checking for agreement between parametric and non-parametric results. At present, methods adapted 

for testing normality of waveform data in biomechanical literature is limited, however, some methods 

have been suggested and used in imaging research32, with this being a potential area of exploratory 
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interest in human movement research. Additionally, the FDA and SnPM permutation approaches in the 

present study are less susceptible to spurious results when smaller sample sizes are used, and may be of 

benefit in those contexts in biomechanical research24.  

Some caution is advised however for applying the FDA and SnPM approaches in future 

research. As both of these are non-parametric permutation methods, they rely upon the user to designate 

a suitable number of permutations to build the null distribution. If the maximum number of permutations 

is not selected, this will lead to the generation of a different critical t-threshold every time the test is re-

run using the same data. The authors advise that if possible, future use of these techniques should aim 

to use the maximum number of permutations possible (or use a suitable large minimum number of 

permutations, i.e. 100,000). Unlike FDA and SnPM, the SPM critical t-threshold will always be stable. 

Additionally, for the non-parametric FDA t-test it should also be noted that a negligible smoothing 

parameter was added to the data as a part of fitting B-Splines to the trajectories. It should be cautioned 

that the addition of a smoothing parameter to previously filtered data is unnecessary, and should be 

avoided in future experimental research. A smoothing parameter was added in the present study as the 

MATLAB software requires the integration of a smoothing parameter as a part of the function fitting 

process.  

Each statistical method also allows for some unique benefits, which may suit researchers 

depending upon the context of their research question and also the type of data involved in the study. 

FDA and SPM are useful for smooth waveform data, however FDA provides researchers with control 

over the amount and type of smoothing, registration of functions to separate amplitude and phase 

variation, and also allows for accurate calculation of derivatives, which can be more effective for 

registering functions in some instances5. It should also be mentioned that FDA techniques would 

generally not be applied using the method outlined in the present study. Despite control over smoothing 

being integral to the comparison of FDA and SPM in this study, smoothing is considered to be an 

integral feature of FDA, and the extent to which data are smoothed normally involves careful 

consideration and pre-selection using approaches such as generalized cross validation (GCV)5.  

There may also be occasions where SPM and SnPM are considered as more suitable alternatives 

to FDA, with one such example being when a variable has important temporal variations in frequency 
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content, thus making it difficult for a single basis expansion approach (B-splines, Fourier, wavelets, 

etc.) to adequately represent the original data as coefficients of an equation (i.e. in the example of 

running gait, high frequency content in ground reaction force at foot-strike and then lower frequency 

content throughout the rest of the stance phase). Additionally, as SPM and SnPM treats data as a vector 

of points, these approaches are more flexible for a priori selection of important regions of interest (ROI) 

on a waveform33, and allows for hypothesis testing to take place on these ROIs (thus influencing 

statistical power), rather than the whole vector. This is not possible within FDA. As a cautionary point 

for the potential user of SPM or SnPM however, choosing smaller regions within a waveform will 

change the critical t-threshold for a given alpha level (as the smoothness of the curve will change, thus 

influencing the outcomes of RFT). Researchers, therefore, must have a strong rationale for pre-selection 

of a section of a movement to be analysed, as the results of an ROI analysis will likely change, when 

compared to SPM or SnPM being applied to the entire time-series33. 

Finally, it should also be acknowledged that there are advancements in FDA beyond the scope 

of the FDA technique applied in the present study34. From the perspective of FDA hypothesis testing 

techniques it appears that there are two main approaches (parametric and non-parametric), which fall 

within basis function approximation methods and overall tests. With reference to procedures concerned 

with testing the equality of coefficients from a basis function approximation, parametric methods 

include the works of Fan and Li35, Cuevas et al.,36 and Spitzner37; and nonparametric methods include 

the work of Zhang and Chen38, Mohdeb et al.,39 and Cao et al.40. The FDA t-test used in the present 

study28 was explored due to its implementation with biomechanical data in experimental human 

movement research, and also the ease with which software can be accessed by applied clinicians and 

researchers from the FDA website.  

 

Conclusion 

The FDA, SPM and SnPM statistical methods all came to the same inferential conclusions (t-

test) using this sample data set, despite possessing alternative approaches for representation of the raw 

time-series data and estimation of the null distribution. As such, it is likely that selection of one 

technique over another will likely be due to the type of data being used and the nature of the 
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experimental research question involved. This is also the first study to demonstrate statistical 

equivalence of the FDA t-test and SnPM t-tests.  

 

Practical Implications 

• The SPM t-test is suited for application to parametric distributions of curves, and may also be 

useful when it is desirable to explore key ROIs on a waveform, or manage a signal with high 

and low frequency content.  

• The SnPM t-test is suited for application to non-parametric distributions of curves, and like 

SPM, may be useful when it is desirable to explore key ROIs on a waveform, or manage a 

signal with high and low frequency content.  

• The FDA t-test is suited for application to non-parametric distributions of curves, and is 

practically useful when fine control over the smoothing and registration (i.e. separation of 

phase and amplitude variation and temporal alignment) of data is of interest for particular 

experimental research questions. 

**These points pertain to current software implementations for each of these techniques. 

Modifications to these software packages may lead to changes in the benefits of some of these 

techniques in the future. 
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