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Abstract

Stripped-envelope supernovae (SE-SNe) are a subset of core-collapse supernovae; the

explosive death of a massive star. Their defining characteristic is the lack of promi-

nent He and/or H envelope suggesting significant mass loss prior to explosion. Their

progenitors may be high mass single stars (> 30 M�) or lower mass stars that are

stripped via binary interaction. Since their discovery as a separate population in 1983,

and until recently, the data on these objects steadily increased. SN discoveries have

increased year on year since the early 2000s with the advent of targeted and untargeted

surveys looking at the skies for transient objects. As a result, some of these surveys

have amassed photometric and spectroscopic data on a large number of SE-SNe. The

last few years has seen this data made available, dramatically increasing the number of

objects with data. I present an investigation into the bulk properties of SE-SNe, using

a large database accumulated from public sources, the Palomar Transient Factory, the

Public ESO Spectroscopic Survey of Transient Objects, and my own observations.

I begin the investigation by constructing and analysing the largest set of bolometric

light curves of SE-SNe to date – 85 objects. The light curves are analysed to derive

temporal characteristics and peak luminosity Lp, enabling the construction of a lumi-

nosity function. Subsequently, the mass of 56Ni synthesized in the explosion, along

with the ratio of ejecta mass to ejecta kinetic energy, are calculated. It is found that

broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous sub-

types with a combined median Lp, in erg s−1, of log10 (Lp)= 43.00 compared to 42.51

for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL

synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb,
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with median MNi = 0.34, 0.16, 0.14, and 0.11 M�, respectively. SNe Ic-BL, and to a

lesser extent SNe Ic, typically rise quicker than SNe Ib/IIb; consequently, their light

curves are not as broad.

Next I examine the spectroscopic properties of these SNe using analytical methods. For

He-rich SNe, the presence of H becomes the focus. The strength, velocity, and ratio

between absorption and emission of H are measured, along with additional analysis of

He I lines, in order to categorize the SNe. The He-poor SNe are ordered according to

the number of absorption features N present in the spectra, which is a measure of the

degree of line blending. The kinetic energy per unit mass Ek/Mej is strongly affected

by mass at high velocity, and such situations principally occur when the outer density

profile of the ejecta is shallow, leading to the blending of lines. Using the results, the

existing SE-SN taxonomic scheme is adapted

I then present the data and analysis of 19 SE-SNe observed since 2012. These SNe

are analysed within the context of the earlier findings in this work, as well as exam-

ining the ejecta mass distributions as derived from an analytical light curve model.

The results support the assertion that SE-SNe reside in a parameter space which is

still under-sampled as approximately 20 – 25 percent of these objects have properties

that deviate significantly from that of the bulk population. The statistics of the ejecta

mass distributions also provide evidence that these SNe arise from relatively low mass

progenitors (< 25 M�) as the mean ejecta mass for all SN types is 2 – 4 M�. Further-

more, distribution of ejecta mass appears unimodal, which suggests that SE-SNe are

preferentially arising from one channel; stars that undergo binary interaction.

Understanding SE-SNe is important as their stripped pre-explosion progenitor stars are

hot, making them sources of ionizing radiation. Their explosions influence their local

environment by injecting energy, both radiative and kinetic, and seeding the ISM with

the ashes of nucleosynthesis. Finally, they are a source of neutron stars and stellar

mass black holes in the universe, which gives rise to other astrophysical events such as

X-ray binaries, pulsars, and strong gravitational wave events.

SIMON JOHN PRENTICE MAY 29, 2018
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3.4 A comparison of the ∼ 6200 Å feature between SN Ia, SN Ib, and SN Ic 84

3.5 The velocities of the absorption line ∼ 6200 Å if attributed to Si II 6355 85
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Chapter 1

Introduction

Supernovae (SNe) are amongst the most energetic events in the universe with a typical

integrated radiative emission of ∼ 1049 erg, kinetic energy ∼ 1051 erg, and, if the

explosion mechanism involves the catastrophic collapse of the iron core of a massive

star, ∼ 1053 erg emitted in the form of neutrinos (Janka, 2017).

Historically SNe were classified according to the presence/absence of hydrogen in their

spectra. Type I SNe had no spectral evidence for H and the light curves reached a

single peak before decaying. Type II SNe showed strong H P-Cygni features in their

spectra and were defined by a light curve that rose to a peak after a few days before

settling on to a “plateau” phase where the luminosity remained almost constant for

some period of weeks/months before decreasing dramatically on to a linear decay. It

was identified that the type II SNe contained spectroscopic features of elements that

were readily available in stars; H, He, Na, Ca, O, Fe, whereas SNe I consisted of alpha

chain elements, the result of explosive silicon burning. Thus, it was theorised that Type

I SNe were the result of the thermonuclear explosion of a white dwarf while type II SNe

are the result of the collapse of the iron core in a massive star; core-collapse supernovae

(CC-SNe). The plateau phase in the type II light curve occurs as a recombination wave

passes through the H envelope of the exploded star, as this occurs at approximately

constant temperature and radius so the luminosity remains the same.

A subset of CC-SNe show light curves more akin to Type I SNe but with the signs of

1
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The classical view of supernovae
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little H
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Figure 1.1: The traditional view of SN classification. The “stripped-envelope SNe” sub-types,
and the focus of this thesis, are in bold red text.

stellar material in the ejecta. The key difference between these SNe and the canonical

type II SNe is the lack of strong H lines in the spectra. Thus the light curves are

explained by the absence of the recombination phase revealing that these SNe have

been stripped almost entirely of their outer H envelope; these are “stripped-envelope

supernovae” (SE-SNe, SNe Ibc). The volume-limited rates of CC-SNe in the local

universe were presented in Shivvers et al. (2017). Here it was found that SNe II account

for ∼ 70 percent of all CC events while SE-SNe are the remaining 30 percent.

1.1 The classical view of SE-SN classification

As previously described, supernovae are traditionally classified along a single axes;

the spectroscopic presence or absence of hydrogen. Stripped envelope supernovae

straddle the two groups in classification with the traditional classification scheme (see
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Figure 1.1), from least stripped to most stripped, named as IIb, Ib, Ic. If a SN Ic shows

broad spectral lines then it can be labelled as “broad lined” leading to the addition of

“BL” to the classification; Ic-BL. These highly blended lines are not restricted to SNe

Ic, for example the case of broad lined SN IIb 2003dh (Hunter et al., 2009; Mazzali

et al., 2009) which had very broad lines in its early spectra before displaying a strong

Hα signature and narrower lines closer to maximum light.

An important note – technically superluminous supernovae of type I (Gal-Yam, 2012)

are SE-SNe, as these show spectral similarity to some SNe Ic after maximum light

indicating severe stripping. They are omitted from these studies into SNe Ibc, and

throughout this thesis, because their photometric and spectroscopic appearance, and

physical properties are differentiated enough from traditional SNe Ibc (e.g., Nicholl

et al., 2015) to justify a different classification. It is only in the nebular phase that these

objects begin to look similar (they show the emission lines common to H-poor core-

collapse events). Furthermore, their ejecta and especially their luminosity (Erad ∼

1052 erg) is likely powered differently to traditional SE-SNe; rotational energy from a

compact object rather than radioactive decay (Inserra et al., 2013).

In this section I give a brief overview of the SE-SN sub-groups and identify key fea-

tures.

1.1.1 SNe IIb

The defining characteristic of SNe IIb is that they show prominent H P-Cygni lines in

their spectra. The strength of the Hα emission is significantly less than that of SNe IIP

however, and their light curves are more similar to SNe Ia in terms of the main peak

luminosity being powered by the decay chain of 56Ni.

Some SNe IIb show an initial peak and declining phase (see Section 1.2). This early

peak is attributed to the shock cooling tail of the stellar envelope following shock-

breakout (SBO). If there is an SBO cooling tail then the spectra of SNe IIb approxi-

mately a day after explosion can be defined by a featureless blackbody (T ∼ 150, 000
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K at peak), that over the course of a few days, cools and gives way to strong H lines.

He P-Cygni features become apparent after some amount of time, this is dependent

upon the SN and the amount of H in the outer shell. This can range from shortly

after explosion to a few days after maximum, as was the case of SN 1993J where the

He-lines did not appear until 18 – 20 days after explosion (Matheson et al., 2000b).

SNe IIb account for ∼ 34 percent of SE-SNe (Shivvers et al., 2017).

1.1.2 SNe Ib

Removal of the H envelope to the level where H no longer leaves a spectroscopic

signature, leaves a He-star. The explosion of a star in this phase results in spectra

that display strong He I λλ 4472, 5876, 6678 lines for several weeks, although these

eventually fade as the photosphere disappears. This supernova is that of type Ib, and

they account for ∼ 36 percent of SE-SNe (Shivvers et al., 2017).

1.1.3 SNe Ic

The loss of both the H and He envelope prior to explosions leads to a type Ic SN. Spec-

troscopically they show lines associated with elements found within massive stars, e.g.,

Fe II, Si II, Na I, O I, Ca II, Mg II. The diversity in line profiles and line velocities is a

defining feature of this SN subgroup. SNe Ic spectral line profiles can range from nar-

row, low velocity lines (e.g., SN 2007gr Hunter et al., 2009) to broad, highly blended,

high velocity lines (e.g. SN 1997ef; Iwamoto et al., 2000; Mazzali et al., 2000). The

kinetic energyEk of these objects can also span more than an order of magnitude; from

1051 erg to a few 1052 erg (“hypernovae”; Iwamoto et al., 1998). That Ek encompasses

such a large range of energies suggests different explosion mechanisms exist to power

these SNe as the hypernovae require a large energy reservoir that efficiently transfers

energy to the ejecta (Woosley et al., 1994; Mazzali et al., 2014). Note, that the term

“hypernova” was originally used to describe type Ibc SNe that showed broad lines in

their spectra (e.g., GRB-SN 1998bw, SN 200ap, SN 1997ef) which is commensurate
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with a high specific kinetic energy. However, since the discovery of superluminous su-

pernovae in 2005 (SN 2005ap; Quimby et al., 2007), which may also have Ek ∼ 1052

erg but with a specific kinetic energy of ∼ 1 [1051 erg]/M�, the term “hypernova” has

fallen out of use.

Shivvers et al. (2017) determined that “normal” SNe Ic are∼ 22 percent of all SE-SNe

while those with broad lines are ∼ 4 percent.

1.1.4 Gamma-ray burst supernovae

The most energetic SE-SNe are those associated with gamma-ray bursts (GRBs). These

events are rare and seen to large redshifts due to the energetic and beamed high energy

transient that signals the beginning of core collapse. There are 16 spectroscopically

confirmed GRB-SNe, two XRF-SNe, and at least 13 GRB-SNe assumed from GRB

afterglow light curve bumps.

The closest GRB-SN observed was also the first; SN 1998bw/GRB 980425 at a redshift

of z = 0.0085 (Galama et al., 1998). It was noted for its unusually broad lines, an

indication of very high velocity ejecta, large ejecta massMej∼ 10 M�, and high kinetic

energy ∼ 40 × 1052 erg (Iwamoto et al., 1998). Its peak absolute B-band magnitude

of MB = −18.88 ± 0.05 mag made it the most luminous SE-SN known at the time,

and comparable with luminosities of SNe Ia, as can be seen when considering MB

averages of −18.28 mag (SNe Ia), −16.68 mag (SN Ibc), and −15.69 mag (SNe II)

(Galama et al., 1998). The next closest GRB-SN was SN 2017iuk associated with

GRB 171205A at z = 0.037. With a median redshift of z = 0.49, and only two with

z < 0.1, it is clear that collecting data of these SNe is difficult. K-corrections are non-

negligible, leading to the flux peak occurring at redder wavelengths and if these SNe

are dim, they may also be obscured by the GRB afterglow.

As of yet, GRBs have only been associated with broad lined type Ic SNe.
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1.2 SE-SN Light curves

Almost all SE-SN light curves are in the same category as type I SNe, that is, they rise

over the course of a few weeks to a peak luminosity before decaying onto a somewhat

linear slope. The energy to power the light curves comes from the decay chain of 56Ni

> 56Co > 56Fe, with the time to peak determined by the distribution of 56Ni in the

ejecta and the diffusion time scale/opacity of the ejecta.

As previously mentioned in the context of SNe IIb, if the progenitor star is suffi-

ciently extended then it may be possible to observe the cooling of the ejecta following

shock-breakout (SBO) at early times. This is rare however and is assumed to occur in

stars that have extended envelopes prior to explosion (for example Arcavi et al., 2011;

Soderberg et al., 2012; Piro and Nakar, 2013; Piro, 2015). As the shock from core-

collapse traverses the envelope of the exploding star it preferentially deposits energy

in the outer layers. The luminosity of the initial event, and the duration of cooling

are directly related to the size of the emitting region and the diffusion time of pho-

tons through unshocked material, and thus, the size of the progenitor star at CC and

the mass loss rate of the star immediately prior to CC (Ensman and Burrows, 1992;

Matzner and McKee, 1999; Svirski and Nakar, 2014b; Ohtani et al., 2018). It has also

given rise to discussion on compact and extended progenitor stars for SNe IIb (Cheva-

lier and Soderberg, 2010). These are normally the most H-rich SNe IIb, e.g. SN

1993J (Nomoto et al., 1993), SN 2011fu (Morales-Garoffolo et al., 2014a), SN 2013df

(Morales-Garoffolo et al., 2014b), and SN 2016gkg (Tartaglia et al., 2017), other SNe

IIb that are caught early, for example SN 1996cb (Qiu et al., 1999), SN 2011dh (Arcavi

et al., 2011), and SN 2011ei (Milisavljevic et al., 2013b) do not have a shock-cooling

tail.

Two SNe Ib have shown early peaks in their light curves; SN 1999ex, where an early

peak was seen in the U -band (Stritzinger et al., 2002), and peculiar SN 2008D which

was observed serendipitously at explosion by the Swift telescope as it observed SN

2007uy (Malesani et al., 2009). In the case of SN 2008D, the initial peak has been

attributed to the failed break-out of a relativistic jet (Mazzali et al., 2008) or SBO
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cooling within an optically thick wind (Chevalier and Fransson, 2008; Modjaz et al.,

2009; Balberg and Loeb, 2011; Svirski and Nakar, 2014a).

Another notable example is seen with GRB-SNe, where the afterglow from the GRB

(Galama et al., 1997; Bloom et al., 1998; Lipkin et al., 2004) masks the SN light at early

times. This effect can be weak, as in the case of SN 1998bw/GRB 980425 (Galama

et al., 1998) or strong (e.g., SN 2003dh/GRB 030329 Mazzali et al., 2003; Matheson

et al., 2003).

Taddia et al. (2016) reported a double peaked light curve associated with the type Ic

iPTF15dtg which they attribute to SBO cooling from low mass (< 0.045 M�) mate-

rial surrounding the progenitor out to ∼ 500 R�. They ruled out interaction with a

companion, shock-breakout from the progenitor surface, or magnetar powered shock

breakout.

There are two examples of highly unusual double-peaked light curves for which the

first peak is not explained by SBO as their time-scales are considerably longer but

the luminosity relatively low; SN 2005bf (Tominaga et al., 2005; Maeda et al., 2007;

Tanaka et al., 2009b) and PTF11mnb (Taddia et al., 2018a). In these SNe the first peak

is attributed to a normal SN-like explosion which is powered by radioactivity, while

the later peak is powered by a magnetar which is spun up by some accreted material.

Magnetars as a source of radiative energy have been invoked for superluminous super-

novae (e.g., Dessart et al., 2012; Kasen et al., 2016; Moriya et al., 2017; Nicholl et al.,

2017; Wang et al., 2017) and the luminous GRB-SN 2011kl supernova (Greiner et al.,

2015).

1.3 Spectra - The photospheric and nebular epochs

SE-SNe have two clearly defined spectroscopic phases; photospheric and nebular, see

Figure 1.2. These are based upon the physical processes that form the spectra.

The photospheric phase lasts from explosion to around a few weeks past maximum



1.3. Spectra - The photospheric and nebular epochs 8

0.0 0.2 0.4 0.6 0.8 1.0

Rest-frame wavelength [ ]

0.0

0.2

0.4

0.6

0.8

1.0

S
ca

le
d
 f

lu
x
 +

 c
o
n
st

a
n
t

4000 5000 6000 7000 8000

IIb

Ib

Ic

Ic-BL
Photospheric

4000 5000 6000 7000 8000

IIb

Ib

Ic

Ic-BL

Nebular

Figure 1.2: Example Liverpool Telescope/SPRAT spectra of SE-SNe in the photospheric and
nebular phases. The important feature at nebular times is the [O I] λλ6300, 6363 line, and note
the absence of non-host Hα emission even in the SN IIb.

light for a typical SE-SN. During this time the spectra are characterised by an un-

derlying black body that shows absorption and emission lines corresponding to the

composition and velocity of the ejecta above the photosphere. Photons emitted from

the photosphere undergo a series of scattering and absorption/re-emission events (e.g.,

Mazzali and Lucy, 1993; Mazzali et al., 2000). This process leads to a redistribution

of flux from shorter wavelengths to longer wavelengths. Spectra at these epochs probe

the outer layers of the ejecta and provide information about the state of the star pre-

explosion. With a good time-series of early spectra, spectroscopic modelling can be

used to determine the proportion and mass of elements in the ejecta as a function of

velocity. This method of “abundance tomography” (Sauer et al., 2006; Ashall et al.,

2014; Mazzali et al., 2017) is particularly useful for SE-SNe, where the type of pro-

genitor star is often unknown. Also, the spectra in this phase can be used to map the

density profile of the SN ejecta in the line-of-sight and so early data provide the best

estimate of the kinetic energy because it is contained in the highest velocity material.

The left panel of Figure 1.2 shows photospheric phase spectra for a few different types

of SE-SNe.
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The nebular phase (right panel, Figure 1.2) can begin from 40+ days with the emer-

gence of the Na I D and Ca II NIR emission lines, but is fully seen around ∼ 100 d

when the [O I] λλ6300, 6363 dominates the spectrum. During this time the ejecta be-

comes diffuse and increasingly transparent to the decay products of 56Co (gamma rays

and positrons) except for electrons, which can be scattered to high kinetic energies by

interaction with the gamma-rays and positrons. Positrons become the primary source

of energy in the ejecta as time progresses because their velocity is significantly less

than the speed of light so they diffuse slower. These non-thermal electrons then ex-

cite the surrounding gas into meta-stable states, and the eventual de-excitation of these

states leads to emission lines. That meta-stable states, which lead to the emission of

photon energies corresponding to forbidden and semi-forbidden lines, are able to exist

demonstrates the low-density nature of the ejecta at this time. The most prominent

nebular phase emission lines are associated with elements found in massive stars; O,

Ca, Mg, Na, Fe, Si. The strongest of these are [O I] λλ6300, 6363, Ca II] λλ7291,

7324, Ca II near infra-red triplet, and O I λ7773 (e.g., Filippenko et al., 1993; Mazzali

et al., 2010). Because the He and/or H shells have largely been stripped away in a

SE-SN event, oxygen makes up a significant fraction of the mass of the ejecta. Hence

the luminosity of the [O I] line can be used as a diagnostic for ejecta mass (see, for

example, Uomoto and Kirshner, 1986; Chugai, 1994; Elmhamdi et al., 2003). This

method depends upon various assumptions with regards to the excitation efficiency of

the non-thermal electrons, the O temperature, and the fractional mass of O excited by

the electrons. This method was used by Valenti et al. (2012) to demonstrate that SN

2011bm, with its unusually broad light curve, contained 5− 10 M� of O, out of a total

ejecta mass of 7− 17 M�, making it the most massive SE-SN ever observed.

1.4 Explosion mechanisms

Exploding a star was thought to be relatively straight forward; the collapse of the

Fe core releases ∼ 1053 erg of gravitational potential energy, which is more than

enough to account for the ∼ 1051 in kinetic energy required to unbind the envelope. In
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the standard core-collapse model (e.g., Colgate and White, 1966; Bethe and Wilson,

1985), at ∼ 1.4 M� the electron-degenerate Fe core collapses under the pressure of

the overlaying material. The Fe nuclei and e− within the core undergo electron cap-

ture, p + e− → n + νe, which further removes the electron degeneracy pressure and

rapidly compresses the innermost part of the core down to nuclear densities, leading to

a proto-neutron star (PNS). At aboutMPNS ∼ 0.5 M� the equation of state stiffens and

the PNS “bounces”; it passes maximum compressibility and then rebounds to a slightly

larger radius. This bounce sends a shock through the in-falling material above and in-

stantly dissociates it into protons and neutrons. In the “prompt mechanism” this shock

then continues and unbinds the star, however, explosion modelling has been unable to

explode a star in this method (see Buras et al., 2006; Janka et al., 2007). The dissocia-

tion of nuclei is endothermic and robs the shock of energy, leading it to stall against the

ram-pressure of the in-falling material at the shock radius Rs ∼ 100 − 200 km above

the surface of the PNS. However, the cross-section of these newly-dissociated protons

and neutrons to neutrinos is relatively large, and with the high neutrino flux emitted

from the cooling of the PNS, and large densities in this region there is heating by neu-

trinos in the “gain” layer between below Rs. After a few hundred ms the heating can

provide enough energy to reinvigorate the shock and explode the star; this is the “de-

layed neutrino-heating mechanism” (Janka et al., 2006; Janka, 2012), see Figure 1.3.

The kinetic energy imparted via this method is somewhat self-regulating and limited

to a few 1051 erg because the expansion of the ejecta reduces the reaction rate of the

neutrinos and nucleons. 1D explosion models still fail to explode the model stars in

many cases. More success can be obtained with 2D models (Janka et al., 2016) and in

3D models (e.g., Takiwaki et al., 2012; Müller and Janka, 2015; Roberts et al., 2016).

Multi-D models have also shown the importance of asymmetries in the material above

Rs, which leads to low pressure regions at the Si/Si-O interface, and allows the shocked

material to push through and unbind the star. This is important for fast-rotating models

where neutrino luminosities are lower (Summa et al., 2018).

The dissociated material behind the shock is the source of radioactive 56Ni, as these

protons and neutrons rapidly burn up the alpha chain to iron group elements; primarily
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Figure 1.3: Panels describing the moment of core-collapse and explosions of a star (Janka,
2012)

56Ni.

Alternate explosion methods have been suggested to explain extreme events. Woosley

(1993) introduced the “collapsar” model to explain GRBs, and this has been extended

to explain GRB-SNe (Dessart et al., 2017). In this model explosive silicon burning

can occur in the accretion disk around a newly-formed black hole or at the edges of

the jet launched by this object (see Barnes et al., 2017). High velocity 56Ni has been

required in the models of GRB-SNe (e.g. SN 2016jca/GRB 161219A; Ashall et al.,

2017), confirming that the latter is a possibility.

Rapidly rotating compact objects contain a large amount of rotational energy. For a

1.4 M� neutron star (NS) with a rotation period of∼ 1 ms (close to the break-up limit)

this can be at least 2.5×1052 erg (Mazzali et al., 2014) or an order of magnitude higher

if the NS is more massive (Metzger et al., 2015). These objects contain enough energy

to explain the kinetic energies of GRB-SNe, ∼ 1052 erg, and with a sufficiently high

magnetic field (1015 G; magnetars) can transfer this energy in just a few seconds. The

magnetar must promptly collapse to a black hole (and presumably launch a GRB) in
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order to avoid influencing the light curve of the SN (as happens with superluminous

supernovae; Inserra et al., 2013; Nicholl et al., 2017). It should be noted that millisec-

ond magnetars are seen in the Galaxy (e.g, Olausen and Kaspi, 2014), but these are

spun down slowly over thousands of years rather than in a quick burst as is required

here.

Finally, the ability to explode a star is also connected to the core mass at the time of

core collapse. It has been seen in explosion simulations that stars of masses greater

than MZAMS∼ 30 M� are difficult to explode as they do not form a PNS and instead

collapse directly to a black hole (Woosley and Heger, 2007; Janka, 2012; Sukhbold

et al., 2016). In this regard, O’Connor and Ott (2011) find that the black hole formation

time tBH is proportional to the post-bounce compactness ξ−3/2
2.5 , which is a measure of

the density of the innermost 2.5 M�. If a black hole forms within ∼ 0.5 s then the SN

fails because the shock cannot be re-energised. This leads to “islands of explodability”,

between 20 and 60 M�, where some mass ranges (e.g., 25 – 32 M� and 50 – 55 M�)

are more likely to explode than others.

1.4.1 Asphericity

Modelling of explosions suggests that asphericity is important for re-invigorating the

shock and exploding the star. This can translate into global asymmetries in the ex-

plosion. To investigate asymmetry in explosions there are two methods. The first is

by measuring polarisation, because emission from a spherically symmetric surface has

no overall polarisation then a polarised signal indicates that the emitting region is not

spherically symmetric. Spectropolarimetry provides more information as to polarisa-

tion across different wavelengths. As the spectra are formed by photon interaction with

material in the ejecta, the distribution of this material can be revealed through spec-

tropolarimetry. This method has been used to investigate the SN Ic 2007gr (Tanaka

et al., 2008) peculiar SN Ib 2005bf (Tanaka et al., 2009a), SN IIb 2008aq (Stevance

et al., 2016), SN IIb 2008ax (Chornock et al., 2011), SN IIb 2011dh (Mauerhan et al.,

2015), and peculiar SN Ic-BL 2014ad (Stevance et al., 2017). In each case a significant
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degree of polarisation was detected revealing that the explosions were asymmetric to

some degree.

The next method is by examining the line profile of the [O I] λλ 6300,6363 emission

line as this is sensitive to the velocity and physical distribution of O in the ejecta (see

Figure 1.4). A spherically symmetric shell of emitting material produces a “flat-top”

line profile to a distant observer. In aspherical explosions, particularly those associated

with jets, the bulk of the high velocity material exits at the poles, while low velocity

material (primarily O) is found in an equatorial torus, rather than a shell, having been

disrupted along the jet axis. If the SN is viewed down this axis, then the distribution

of the O-rich material is somewhat planar with little material moving in the direction

of the observer. The absence of this material removes the outer wings of the [O I] line,

transforming the box like profile into a sharp single peak. However, viewed equatori-

ally, the effect is to remove the bulk of the material moving tangentially to the observer.

Thus, if one imagines the “flat-top” profile but removes some amount of flux at the rest

wavelength of the line then the result is a double peaked emission. The widths of the

peaks are dependent on the velocity differential δv of the material moving directly to-

wards and away from the observer (Mazzali et al., 2005; Maeda et al., 2008; Tanaka

et al., 2009c) but see Milisavljevic et al. (2010) as double peaked emission can also

arise from the doublet nature of the [O I] line. In this case the peaks are relatively

close together with an equivalent δv ∼ 3000 km s−1.

Asphericity will affect the observables of the SN. Light curve rise times and peak lu-

minosities can be changed depending upon the position of the observer with respect to

the explosion as different angles can have different distributions of material, leading

to different photon diffusion times and 56Ni distributions. Differences in line-of-sight

velocity will affect the spectra through differences in line blending and measured line

velocity, and material distributions are reflected in line strength (Tanaka et al., 2007;

Barnes et al., 2017). Physical characteristics (e.g., ejecta mass, kinetic energy) de-

rived from modelling of light curves and spectra are also subject to change if spherical

symmetry is assumed in the model.
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Figure 1.4: Figure from Mazzali et al. (2005) showing how the [O I] λλ6363, 6300 line profile
changes for an asymmetric explosion depending upon the position of the observer.

1.4.2 Relativistic ejecta

Radio observations of non-GRB related SE-SNe have revealed detections and non-

detections (Chevalier and Fransson, 2006; Soderberg et al., 2006). Non-detections

place limits on the density of material surrounding the progenitor star and the maxi-

mum velocity of the ejecta. Notable detections are seen with SN 2002ap (Soderberg

et al., 2006), SN Ic 2007gr (Paragi et al., 2010) but see Soderberg et al. (2010), SN Ic-

BL 2009bb (Pignata et al., 2011), SN Ic PTF11qcj (Corsi et al., 2014), SN Ic PTF12gzk

(Horesh et al., 2013) and Ic-BL 2012ap (Margutti et al., 2014b). The presence of bright

radio emission (SNe 2009bb and 2012ap) has been interpreted as the deceleration of

mildly relativistic ejecta (0.1 − 0.6c) as it sweeps up material around the explosion

site. This relativistic ejecta is energised by a short-lived “central engine”, either a

black hole or neutron star. Figure 1.5 shows how Ek derived from the optical emission

compares withEk from the radio, in relation to purely hydrodynamic explosion models

(Tan et al., 2001) and those with extended energy injection (Lazzati et al., 2012). The

presence of mildly relativistic ejecta may suggest a failed GRB, with the jet failing to

escape the envelope of the star (Margutti et al., 2014b).
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Figure 1.5: Kinetic of SE-SNe energy of in optical (square) and radio emission (circles)
as a function of ejecta velocity (given by Γβ where Γ is the shock Lorentz factor and β
is the shock velocity; (Tan et al., 2001)). Optical to radio slopes are shown for purely
hydrodynamical models, short-lived central engines, and long-lived central engines (Ek∝
(Γβ)−5.2, (Γβ)−2.4, (Γβ)−0.4 respectively). Radio detections in some non-GRB SE-SNe in-
dicate mildly relativistic outflow consistent with the short-lived central engine model.

1.5 Progenitors

The progenitor stars of SE-SNe are largely unknown, because the type of progenitor

depends on the MZAMS of the star that gives rise to a Ibc event, which depends upon

how the mass is lost. Solar metallicity single stars of MZAMS > 25 M� can lose

sufficient mass to explode as Ibc events and will be > 10 M� at the time of explosion.

If a neutron star (1.4 M�) is left as a remnant then the ejecta masses of the resulting

SN will also be > 10 M�. Comparatively, stars of lower mass (12 – 25 M�) can also

explode as SE-SNe if they are stripped of their outer envelope by binary interaction.

These stars will have a final mass of 2 – 8 M�, which will lead to SNe with ejecta

masses ∼ 1− 7 M�. Given that 70% of massive stars in the Milky Way are estimated

to be close enough to undergo mass transfer (Sana et al., 2012), the latter method has

the potential to be the dominant pathway to SNe Ibc.

Here, I outline several ways of estimating the the final and MZAMS masses of SNe Ibc

progenitor stars and highlight the tension between different methods.
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1.5.1 Direct detection

There have been a few direct detections of the progenitors of SE-SNe, and for these the

majority are H/He-rich SNe IIb. Typically such a detection requires identification of

a progenitor candidate in pre-explosion imaging (see Kilpatrick et al., 2017) or wait-

ing until the SN has faded and comparing the colour excess between pre-explosions

and post explosion images in order to determine colour of the progenitor star. The

colour or spectral energy distribution (SED) of the star allows it to be placed within a

Hertzsprung-Russell (HR) diagram. Then, from the possible evolutionary tracks that

can lead to that position, estimates on theMZAMS of the star can be made. This method

carries considerable uncertainties, as the final position of the star in the HR diagram is

dependent upon the star’s metallicity, rotation, and most importantly, method of mass

loss. Single stars must be considerably more massive than those stripped by binary

interaction to end up in the same position in the HR diagram at the point of explosion

(Eldridge et al., 2013).

The pre-explosion star of SN 1993J was a red K-type supergiant with MZAMS ∼ 17

M� (Smartt, 2009; Aldering et al., 1994), SN 2008ax a helium star which originally

had MZAMS = 10 – 14 M� (Crockett et al., 2008) or a B/A supergiant (Folatelli et al.,

2015) (but see Arcavi et al., 2011), SN 2011dh was a yellow supergiant (YSG) at the

time of explosion and had MZAMS= 13± 3 M� (Maund et al., 2011), SN 2013df was

likewise a YSG withMZAMS = 13−17 M�. Most recently, SN 2016gkg was an A-type

or F-type star at the time of explosion with MZAMS= 15 − 20 M� (Kilpatrick et al.,

2017; Tartaglia et al., 2017)

There has been one detection of the progenitor of a SN Ib to date; this is associated

with iPTF13bvn and appears to have been a low mass He-star with MZAMS 10 − 20

M� and with evidence for a binary companion (Cao et al., 2013; Eldridge and Maund,

2016; Fremling et al., 2014; Bersten et al., 2014; Eldridge and Maund, 2016) although

Groh et al. (2013) suggest that progenitor was a single massive WR star with MZAMS

in the region 31 – 35 M�. However their model ejecta masses are of the order of 8

M� which is considerably larger than the 2 – 4 M� suggested by the light curve and
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spectra (Fremling et al., 2016; Bersten et al., 2014).

The search for the progenitor of a SN Ic is ongoing, however, if, as expected these

stars are in a Wolf-Rayet phase at explosion they may be difficult to see in optical HST

data as they primarily emit in the UV. The most recent potential progenitor candidate

is for that of Ic-7 SN 2017ein (Van Dyk et al., 2017). It may be some 18 months before

the results of work on this is known however as the SN will have to fade substantially

before analysis of the pre- and post-explosion regions can be undertaken.

1.5.2 Theoretical stellar evolution: single stars as progenitors of

SE-SNe

The theoretical evolution of massive stars can be used to test what kind of progenitors

lead to SE-SNe. As long as the pre-explosion star has lost its outer envelope of H/He it

can be considered a candidate for a SE-SN event (ignoring whether or not such a star

will explode). Mass loss rates of massive stars is dependent upon initial mass, rotation,

and metallicity. Mass loss via winds is greater for higher metallicity because winds

are driven by radiation pressure on spectral lines, which increases with the proportion

of heavy elements (Castor et al., 1975; Vink, 2017). This leads to the expectation

that the ratio of SNe II to Ibc, and SNe Ib to Ic, increases as metallicity decreases.

The rotating models of Georgy et al. (2009, 2012) (Figure 1.6) show that, for various

metallicities, SNe Ic occur in stars with MZAMS> 30 M� while SNe Ib are the result

of stars MZAMS between 20 − 30 M�. Interestingly their models suggest that a NS

forms for all stars with MZAMS between 8 − 120 M�. Their final ejecta masses are

significantly greater that that inferred from the light curves and spectra of SE-SNe

with M(Z = 0.004) > 10 M�, M(Z = 0.008) > 9 M�, M(Z = 0.02) > 8.5 M�,

and M(Z = 0.04) > 5M�. The lowest ejecta mass from their models is 4.9 M� for a

MZAMS= 120 M� star at Z = 0.04. Similar results were found by Groh et al. (2013)

when considering rotating and non-rotating models at solar metallicity (Figure1.7).

The SN types in these works are defined by the mass of H and He left in the evolved

star prior to explosion; SNe Ic have no H and He < 0.6 M�, SNe Ib have no H and
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Figure 1.6: Figure from Georgy et al. (2009) showing the type of SN produced for a star of
initial mass between 20 – 120 M� as a function of metallicity. Here, SNe Ic arise from stars
> 30 M�and SNe Ib from stars 20 − 30 M�. At very low metallicities almost all stars retain
some amount of H.

He > 0.6 M�, SNe IIb have 0− 2 M� of H. However, these abundances are greatly in

excess of those found by Hachinger et al. (2012), where spectral modelling shows that

He and H features appear when more than 0.06 − 0.14 M� of He and less of H exists

in the ejecta.

1.5.3 Theoretical stellar evolution: Binaries

Mass loss from single star evolution would suggest that very massive stars only lead to

SE-SNe. Indeed, the rates of SE-SNe are considered inconsistent with that of purely

single stars, under the assumption of a Salpeter initial mass function (IMF) (Smith

et al., 2011). If mass loss is greater in more massive stars then we should expect to

see far fewer SNe Ic compared to SNe IIb than we do. This does assume however that

IMFs do not vary with metallicity and in regions of significant star formation. As a

contrast, it has been seen in the 30 Doradus star forming region that there is an excess

of stars with MZAMS> 30 M� (Schneider et al., 2018).

Nevertheless, interaction between binary stars allows for mass transfer from one to
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Figure 1.7: SN type as a function of initial mass at solar metallicity for rotating and non-rotating
single star models from Groh et al. (2013). SNe Ic occur in stars > 30 M�.

the other or for mass to be lost from the system during a common envelope phase

(Nomoto et al., 1994). This process provides another pathway for a star to be stripped

of its outer layers and explode as a type Ibc SN. SNe Ib and IIb were investigated in

a grid of binary models with initial mass between 10 –18 M� by Yoon et al. (2017),

for solar and LMC metallicity. They find that SNe Ib and IIb can be replicated for a

variety of orbital periods, see Figure 1.8, and that the final masses of these stars were

between 3 and 8 M�, which is in line with those derived from modelling of the SNe

(e.g., Lyman et al., 2016; Taddia et al., 2016). However, they were unable to strip the

stars sufficiently of He to produce SNe Ic.

The Binary Population and Spectral Synthesis code (see Eldridge et al., 2008, 2017)

has shown that binary interaction plays an important role during the evolution of the

progenitors of SE-SNe. Eldridge et al. (2013) provided limiting magnitudes to the

progenitors of 12 SE-SNe by examining archival HST and deep ground-based imaging.
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Figure 1.8: From Yoon et al. (2017) from stars in binary systems as a function of initial mass
and metallicity of the primary.

Their results suggest that the progenitors stars are not missed by chance, rather they

indicate that they are mostly stars of mass < 25 M�.

1.5.4 Observational evidence for binary companions

Observational evidence for a significant binary fraction can be found through different

analytical routes. The most obvious method is to check the explosion site after the SN

has faded. This had led to the discovery of companion stars for three SNe IIb; SNe

1993J, 2011dh, and 2001ig (Maund et al., 2004; Folatelli et al., 2014; Fox et al., 2014;

Maund et al., 2015; Ryder et al., 2018), although the extent to which the primary and

secondary interact is unknown.

Crockett et al. (2007) performed analysis on HST images of the explosion site of the

broad lined SN 2002ap and limited the mass of a potential companion to < 20 M�.
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Zapartas et al. (2017) used a mix of population synthesis simulations and observations

to place an upper limit on a main sequence companion of 8− 10 M�. They in turn use

this to limit the progenitor mass of SN 2002ap to < 23 M�, which is consistent with

that found by Mazzali et al. (2002). The explosion site of SN 1994I was examined

by Van Dyk et al. (2016) using the HST, this allowed them to place upper limits on a

companion of ∼ 10 M�.

By examining explosion sites Kuncarayakti et al. (2017) favour the evolutionary path-

way that allows SE-SNe to arise from single and binary stars, but not single stars alone.

Graur et al. (2017a) suggest that the relative numbers of SE-SNe to SNe II in different

galaxies is a result of a binary, rather than single star, progenitor pathway.

Smith et al. (2018) identified a group of WN3/O3 stars that are isolated and likely

the result of mass stripping from binaries, with MZAMS 10-18 M� and speculated that

these are likely progenitors of SNe Ib and Ibn.

The theoretical prediction is that SNe II can occur in stars of solar metallicity and

masses< 25 M� (Groh et al., 2013), or∼ 19 M� for SNe IIP (Georgy, 2012), although

observational evidence suggests these SNe arise from stars with MZAMS 12 – 16 M�

(Valenti et al., 2016). However, this could be due to an underestimate of the dust in the

local environment of the progenitor star, leading to redder colours and an underestimate

of the age (Beasor and Davies, 2016).

Eldridge et al. (2013) note that the H-free phase of a star with < 20 M�, stripped by

binary interaction, is likely < 104 years, so the stars in the pre-explosion He-star phase

are rare and this explains why they are not seen in the Galaxy.

The Cassiopeia A SN remnant (SNR) is the only known remnant of a SE-SNe, in this

case a SN IIb that exploded ∼ 1680. It provides the best and closest opportunity to

examine the local environment of a type Ibc SN. The properties of the remnant are

consistent with a 10 – 25 M� progenitor and asymmetries in the remnant distribution

may be the result of a common-envelope phase (Krause et al., 2008). However, work by

Kochanek (2018) shows that there are no high mass stars in the local vicinity, and that

if there was a companion present when the SN exploded it had M < M�. Kochanek
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(2018) suggest that the system may have been disrupted before the explosion, leading

to a runaway star.

1.6 Host galaxies, metallicity, and stellar populations

Observations of the explosion site years after the SN light had faded away allows one to

measure the metallicity of the explosion location, look for binary companions, estimate

the star formation rate, and estimate the age of the local stellar population.

There have been numerous studies published in the last decade investigating the metal-

licity of these regions. By linking host metallicity to host mass it is assumed that

metallicity is the dominant factor in SE-SN subtypes through metallicity-dependent

mass loss. If single massive single stars are the primary progenitor of SNe Ibc then it

should be expected that they are found primarily in high metallicity environments.

Modjaz et al. (2008) compared the explosions sites of GRB-SNe and SNe Ic and found

that the latter occurred in more metal rich regions. The host galaxies of CC-SNe found

by the Palomar Transient Factory (PTF) were investigated by Arcavi et al. (2010).

They found that SNe IIb, Ib, and Ic-BL preferentially occur in dwarf galaxies, hence

low metallicities, while SNe Ic dominate in high mass galaxies. Graur et al. (2017b)

found SNe Ic and Ib were under-represented in low mass galaxies, but that SNe IIb

were well represented in both low and high mass galaxies, their findings for SNe Ib

and IIb thus being in contrast with Arcavi et al. (2010). Sanders et al. (2012) found

that the metallicity at the sites of SNe Ib and Ic could not be differentiated statistically,

and that Ic-BL SNe were found in lower metallicity environments with apparently

younger stellar ages. Anderson et al. (2012) find that SN Ibc are more often associated

with H alpha emission compared with SNe IIP, with the interpretation that the pro-

genitors stars had a higher MZAMS than Type II SNe because these SNe would come

from younger stellar populations. Galbany et al. (2016) examined the hosts of nearby

(0.005< z <0.03) SNe and found that SNe Ic and II occur in more metal rich galaxies

than SNe Ib, IIb, and Ic-BL, even accounting for biases in targeted surveys (which tar-
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get more massive and therefore more metal-rich galaxies). They use this information to

suggest that SNe Ib are the result of binary interaction and that at least some SNe Ic are

the result of single star evolution. Kuncarayakti et al. (2017) performed a similar anal-

ysis and found that upper limits on the age of stellar populations also favoured some

low mass < 25 M� progenitors for SE-SNe, although their results suggested that these

stars were typically younger and hence more massive than those associated with type II

SNe. The work of Graur et al. (2017a) shows that SE-SNe occur in galaxies of higher

mass, lower specific star formation rate, and higher metallicity than SNe II. Maund

(2018) concludes that the positions of SNe Ic in the host galaxies supports progenitors

MZAMS> 30 M�, but notes that this is in tension with the much lower ejecta masses

found through light curve modelling, see Section 1.7. The PMAS/PPak Integral-field

Supernova hosts Compilation (PISCO) (Galbany et al., 2018) again found that SNe

Ic are found in environments with higher metallicity than other SN types, and with

higher star formation rates (SFR). More of these SNe occur in regions with a stellar

age between 0-40 Myrs. Contrastingly, the authors found that SNe IIb had a significant

contribution from regions where the populations were assumed to be 40 Myrs old or

greater, which they noticed was older than the SN IIP populations. SNe Ib were found

to reside in stellar populations of assumed age between those of SNe Ic and SNe IIb.

However, using H II regions to determine stellar population age is not necessarily ro-

bust as these regions can survive for a few tens of millions of years, which is enough

time for several generations of massive stars and for less massive stars to evolve and

explode (Crowther, 2013).

The presence of SNe Ic in regions of high metallicity does tend to support the argument

that at least some of these SNe arise from single stars. However, this is countered by

the presence of Ic-BL and GRB-SNe in low metallicity environments, both of which

are highly stripped and yet the latter of which are known to come from high mass stars

(Ashall et al., 2017).
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1.6.1 Pre-explosion mass loss, CSM interaction and flash spectroscopy

The rate of mass loss in massive stars, in the final years before core-collapse, is not well

understood. Svirski and Nakar (2014b) note that X-ray light curve associated with SN

2008D can be explained by emission through a thick wind, and that the density of this

wind at larger radii, given through radio observations, suggests that the mass loss rate

of the pre-SN star increased by an order of magnitude ∼ 10 days before explosion.

Precursor outbursts have been seen at the locations of stars before they explode (Ofek

et al., 2014; Margutti et al., 2014a; Fraser et al., 2013; Arcavi et al., 2017; Benetti

et al., 2018). Typically, these outbursts are associated with H-rich SNe, and the subse-

quent explosions show significant interaction between the SN ejecta and the expelled

material (SNe IIn). The exception to this is the tentative pre-cursor eruptions seen with

non CSM interacting SN Ic PTF11qcj (Corsi et al., 2014). SN interaction with the

circumstellar medium is not uncommon; if the SN is deficient in H and shows signs

of interaction with He-rich CSM then narrow lines of He (plus other atomic species,

chiefly O and Ca) are produced as kinetic energy from the ejecta is processed into

radiative energy. These SNe are labelled “Ibn” to denote that they have narrow emis-

sion lines (see, for example Matheson et al., 2001). The interaction with He-rich CSM

suggests that the progenitor star was undergoing a period of mass loss shortly before

explosion.

The SN Ib 2014C was seen to interact with hydrogen in its vicinity ∼ a year after

explosion (Milisavljevic et al., 2015a; Margutti et al., 2017). This has been interpreted

as material ejected due to binary interaction in the preceding 103 − 104 years, with a

possible mass loss rate of ∼ 1 M�yr−1 in short periods (Margutti et al., 2017).

There are very rare examples of He-poor SNe interacting with material in their im-

mediate environment, although the physical processes that lead to the interaction and

the actual supernova classifications are not well constrained. SN 2010mb (Ben-Ami

et al., 2014) was an unusual He-poor SN, highly luminous with a very slowly evolv-

ing light curve. Its spectrum showed strong emission from [O I] λ 5577 compared to

[O I] λλ6300, 6363 which required high densities and was interpreted as interaction



1.7. Bulk studies 25

between the SN ejecta and material ejected a few years previously. Ben-Ami et al.

(2014) estimate Mej ∼ 13 M� and suggest that this was a pulsational pair-instability

SN (PPISN). The classification of the SN as a type Ic is suspect, as the SN spectrum

is not immediately obvious in the superimposed interaction + continuum + supernova

spectra. As a candidate for a PPISN, it is unlike canonical SNe Ic which are driven by

core collapse and the formation of a compact remnant.

Comparatively, SN 2017dio (Kuncarayakti et al., 2017) was a SN Ic with strong H

interaction. The absence of He lines in the spectra from either the SN or the CSM

led to the interpretation that the SN ejecta was interacting with the wind from the

companion star.

Very early detection of a SN (< 1 day) may allow observation of narrow emission

lines resulting from the photo-ionization and recombination of the CSM. This was first

noticed for the type IIb SN 2013cu (Gal-Yam et al., 2014), which showed strong but

short-lived emission signatures of H, He I, He II, C IV, and N IV in its optical spectra,

some 15.5 hours after explosion. From this, Gal-Yam et al. (2014) were able to observe

the composition of the CSM around the SN and infer that it showed Wolf-Rayet-like

wind signatures, suggesting that the progenitor of the SN was a WN(h) star, a Wolf-

Rayet star which shows narrow traces of hydrogen.

1.7 Bulk studies

In recent years the amount of data available on SE-SNe has increased significantly,

and with this the studies typically involve larger data sets. Key to this are the release of

multi-colour photometry for 25 SE-SNe (Drout et al., 2011), nearly 100 CfA spectra

of SE-SNe (Modjaz et al., 2014), the corresponding multi-colour photometry (Bianco

et al., 2014), and 20 Sloan Digital Sky Survey Supernovae (Taddia et al., 2015). In

total this changed the number of photometrically well-sampled SE-SNe from the 30s

to the 80s, and those with both spectra and pre-peak photometry from less than 10 to

approximately 20.
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Prior to 2014 the largest studies on SE-SNe had been conducted primarily focused on

either spectra (Filippenko, 1997; Matheson et al., 2001), or photometry (Clocchiatti

and Wheeler, 1997; Drout et al., 2011). The work by Filippenko (1997) and Matheson

et al. (2001) characterised the spectra of SE-SNe and became the standard for clas-

sification and observable properties. Clocchiatti and Wheeler (1997) investigated the

late time decay slope of the bolometric light curves of SE-SNe. This was updated by

Wheeler et al. (2015) who demonstrated that SE-SNe show more heterogeneity in their

late-time light curves than they do around peak. Drout et al. (2011) took 25 SNe Ibc/II

and used multi-band light curves, as well as taking R-band data as a proxy for the

bolometric emission, to estimate the characteristics of the SNe.

However, the largest analysis at this time was the analysis of the bolometric light curves

of 61 SE-SNe (Cano, 2013), although the sample in this study was weighted towards

GRB-SNe (20 out of 61). Their results suggest that for SE-SN subtypes of Ib, Ic, Ic-BL

and GRB/XRF SNe, the latter are more massive at <Mej> ∼ 6 M�, while the other

SNe have a median Mej∼ 3.5− 4 M�.

Pritchard et al. (2014) used Swift data to analyse the UV emission of 13 SE-SNe (3

GRB/XRF-SNe, 6 Ib, and 4 IIb). They find that SE-SNe are UV-faint, with the excep-

tion of SNe that have a shock-cooling tail (some SNe IIb) or a GRB-afterglow.

Lyman et al. (2016) used the bolometric light curves of 38 stripped-envelope super-

novae to derive physical parameters (peak luminosity, rise and decay rates) of these

objects. They find that SNe Ib and Ic have similar parameters, and infer from that that

they have similar progenitors. They also note that SNe IIb are largely homogeneous

in their physical characteristics. They use the analytical light curve models of Arnett

(1982) to estimate ejecta masses for the objects in their sample and find that the SNe

are all similar in ejecta mass, but that those SNe that are associated with GRBs, or

show broad-lines, are more energetic and synthesise more 56Ni.

The effectiveness of deriving statistics from the number of objects available is affected

by the need to subdivide the total number of SNe into their smaller sub-populations.

For example, the work of Pritchard et al. (2014) contained only SNe Ic associated with
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GRBs.

Taddia et al. (2015) used data from the Sloan Digital Sky Survey SN survey II (SDSS-

II) to build a set of 20 SN Ib/c bolometric light curves and their corresponding prop-

erties. Likewise Taddia et al. (2018b) analysed 34 SE-SN light curves of the Carnegie

Supernova Project. They suggest a correlation between the late time linear decay (in

magnitude units) and the post peak decay rate. The derived ejecta masses of 1.1− 6.2

M� for the SNe in their sample.

1.8 Thesis outline

In the subsequent chapters I will detail my investigation of stripped-envelope super-

novae. This definition excludes SLSNe and interacting SNe; the latter because the

interaction power the light curves and prevents properties of the SN being extracted.

I start by analysing of the largest sample of bolometric light curves to date (Chapter 2);

this chapter was published as Prentice et al. (2016). In Chapter 3 I examine the spectra

of SNe from this database, plus my own observations, and categorise the spectra ac-

cording to H/He line strength and line broadness. I then use this to show how intrinsic

physical characteristics are connected to these properties. This chapter was published

in Prentice and Mazzali (2017). In Chapter 4 I present the observations I have under-

taken from 2015 – 2018, plus the PESSTO SNe observed during this time, and any

further SNe whose data I have been given to analyse, and compare this with properties

of SNe updated from the original bolometric light curve database. Finally, a general

conclusion and suggestions for future work will be presented in Chapter 5.



Chapter 2

Bolometric light curves

The bolometric light curve of a SN, in a basic sense, is a measure of energy transfer

from the interior to the exterior of the ejecta. During the photospheric phase the energy

source is assumed to be located deep within the ejecta and must pass through the mate-

rial above it. Thus, the bolometric light curve of is a function of ejecta mass Mej, 56Ni

mass MNi, 56Ni distribution, opacity κ, ejecta velocity, and the degree of asphericity.

This chapter, published in Prentice et al. (2016), investigates the bulk properties of the

bolometric light curves of SE-SNe during the photospheric phase. Some consideration

is also given over the the multi-band colour evolution of the SNe during this phase.

2.1 Database

I compiled a list of data for SE-SNe which are publicly available in the literature. Over

100 were found, typically covering a period of ∼ 20 years. In most cases, the data

were found in studies involving single objects. However, larger datasets have recently

been published. Bianco et al. (2014) presented 64 SNe Ib/c observed by the Harvard-

Smithsonian Center for Astrophysics (CfA) SN group in the period 2001 to 2009. 20

SNe Ib/c from the SDSS-II were analysed by Taddia et al. (2015) using data from Sako

et al. (2014). Consequently, the number of SNe available more than doubled in less

28
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than a year. In addition to this, I gained access to the Palomar Transient Factory (PTF)1

(Law et al., 2009) and the intermediate Palomar Transient Factory (iPTF) archives,

increasing the number of SNe available. Thus, the total number of SNe in the initial

database is as follows:

• Public — single object — ∼ 50

• Public — CfA — 64

• Public — SDSS II — 20

• Public — Swift — 15

• iPTF/PTF — 128.

2.1.1 Selection criteria

With a large database of SNe, the next step was to consider what was required from

the dataset. To build a consistent group of bolometric LCs it was necessary that, as

best as possible, the photometry from SN to SN was well sampled over the same rest-

frame wavelength range. Ideally, the sample should have shown good coverage in the

wavelength range corresponding to the bulk of the SN light (i.e., between the V and

R bands), which also corresponds to the turnover in the spectral energy distribution

(SED) around bolometric peak. It should also have sufficient coverage in adjacent

bands in order to build SEDs across a uniform wavelength range and, as I wanted to

derive time-dependent parameters from the SN peak, it was essential that the coverage

included this epoch. This led to the following two criteria for inclusion in our sample:

• The peak of the SN must be observed in the B, V , and R bands or equivalents.

• The temporal coverage must have been sufficient that the rise and/or decay time

from half-maximum luminosity to maximum luminosity could be derived or the

explosion date well constrained.

1www.ptf.caltech.edu
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These restrictions immediately ruled out more than 70% of the literature SNe, with the

majority lacking observations at peak or sufficient coverage in multiple filters. This

affected the CfA and Swift set considerably. Only half of the CfA sample showed a

clear photometric peak, and for SNe observed solely by Swift the lack of observations

redward of the UVOT V band means that the peak of the SED, and hence the bulk of

the light, was missed in every case. Of the PTF/iPTF SNe, most had to be rejected

because they were observed only in the r band.

Table 2.1 lists the 85 SNe that fulfilled the criteria. The sample consists of 25 SNe Ib,

21 SNe Ic, 12 SNe Ic-BL, 10 GRB-SNe, 15 SNe IIb, and 2 SNe Ibc. (The SNe Ibc

have an ambiguous classification; the data were not of sufficient quality to distinguish

between the Ib and Ic subclasses.) SNe with full optical and near-infrared (NIR) cov-

erage allowed the construction of an effective bolometric light curve as opposed to a

pseudo-bolometric optical variant.

Table 2.1: The database of 85 SNe

SN Type µ z E(B − V )MW E(B − V )host references

[mag] [mag] [mag]

1993J IIb 27.8 -0.000113 0.071 0.1 (1)

1994I Ic 29.6 0.0015 0.03 0.3 (2)

1996cb IIb 29.95 0.0024 0.12 negligible (3)

1998bw GRB-SN 32.76 0.0087 0.052 negligible (4),(5)

1999dn Ib 32.93 0.0093 0.052 0.1 (6)

1999ex Ib 33.44 0.0114 0.02 0.28 (7)

2002ap Ic-BL 29.5 0.0022 0.071 0.008 (8),(9),(10)

2003bg IIb 31.68 0.0046 0.02 negligible (11)

2003dh GRB-SN 39.21 0.168 0.025 negligible (12)

2003jd Ic-BL 34.43 0.019 0.06 0.09 (13)

2004aw Ic 34.31 0.016 0.021 0.35 (14)

2004fe Ic 34.28 0.018 0.0210 - (15)

2004gq Ib 32.09 0.0065 0.0627 0.095 (15)

2005az Ic 33.14 0.0085 0.0097 - (15)

2005bf Ib 34.62 0.019 0.045 negligible (16)

2005hg Ib 34.68 0.021 0.0901 - (15)

2005hl Ib 34.92 0.023 0.073 - (17)

2005hm Ib 35.85 0.035 0.048 - (17)

2005kl Ic 31.64 0.0035 0.0219 - (15)

2005kr Ic-BL 38.91 0.134 0.087 - (17)

2005ks Ic-BL 38.21 0.099 0.05 - (17)

2005kz Ic 35.31 0.027 0.046 - (15)

2005mf Ic 35.27 0.027 0.0153 - (15)

2006T IIb 32.68 0.0080 0.0647 - (15)

2006aj GRB-SN 35.61 0.033 0.097 negligible (18),(19),(20)

2006el IIb 34.25 0.017 0.0973 - (15)

2006ep Ib 33.93 0.015 0.036 - (15)

2006fe Ic 37.41 0.07 0.098 - (17)

2006fo Ib 34.58 0.021 0.025 - (15)

14475a Ic-BL 39.17 0.149 0.072 - (17)

2006jo Ib 37.63 0.077 0.032 - (17)

2006lc Ib 34.13 0.016 0.057 - (17)
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2006nx Ic-BL 38.97 0.137 0.108 - (17)

2007C Ib 32.15 0.0059 0.0363 0.73 (15)

2007D Ic-BL 34.84 0.023 0.2881 - (15)

2007Y Ib 31.29 0.0046 0.022 0.09 (24)

2007ag Ib 34.78 0.020 0.025 - (15)

2007cl Ic 34.84 0.022 0.02 - (15)

2007gr Ic 29.84 0.0017 0.055 0.03 (21)

2007kj Ib 34.3 0.018 0.0691 - (15)

2007ms Ic 36.09 0.039 0.184 - (17)

2007nc Ib 37.91 0.087 0.025 - (17)

2007qv Ic 38.11 0.095 0.048 - (17)

2007qx Ic 37.71 0.08 0.023 - (17)

2007ru Ic-BL 34.04 0.016 0.27 negligible (22)

2007sj Ic 36.09 0.039 0.032 - (17)

2007uy Ib 32.48 0.0065 0.022 0.63 (23)

2008D Ib 32.48 0.0065 0.02 0.63 (27),(15),(28)

2008ax IIb 29.82 0.0019 0.022 0.278 (25),(26)

2008bo IIb 32.06 0.005 0.0513 0.0325 (15)

2008hw GRB-SN 42.35 0.53 0.42 negligible (15)

2009bb Ic 33 0.00988 0.098 0.482 (29)

2009er Ib 35.9 0.035 0.0389 - (15)

2009iz Ib 33.8 0.014 0.0729 - (15)

2009jf Ib 32.64 0.0079 0.112 0.05 (30)

2010as IIb 32.17 0.0073 0.15 0.42 (31)

2010bh GRB-SN 36.94 0.059 0.12 0.14 (32)

2010ma GRB-SN 42.40 0.552 0.019 0.04 (32)

2011bm Ic 34.95 0.022 0.032 0.032 (33)

2011dh IIb 29.48 0.0020 0.035 0.05 (34)

2011ei IIb 33.09 0.0093 0.059 0.18 (35)

2011fu IIb 34.36 0.019 0.068 0.015 (36)

2011hs IIb 31.91 0.0057 0.011 0.16 (37)

2011kl GRB-SN 43.09 0.677 0.019 0.038 (38)

2012ap Ic-BL 33.45 0.012 0.045 0.4 (39)

2012bz GRB-SN 40.31 0.28 0.037 negligible (40)

2013cq GRB-SN 41.19 0.34 0.02 0.05 (41)

2013cu IIb 35.23 0.026 0.011 negligible (42)

2013df IIb 31.65 0.0024 0.017 0.08 (43)

2013dx GRB-SN 39.04 0.145 0.04 0.10 (44)

2013ge Ibc 31.87 0.0044 0.02 0.047 (45)

PTF09dh/2009dr Ic-BL 37.60 0.076 0.022 - -

PTF10gvb Ic-BL 38.26 0.098 0.022 - -

PTF10inj Ib 37.31 0.066 0.01 - -

PTF10qif Ib 37.26 0.064 0.0587 - -

PTF10vgv Ic 34.01 0.015 0.145 - (49)

PTF11bli Ibc 35.81 0.034 0.013 - -

PTF11jgj Ic 36.15 0.04 0.027 - -

PTF11klg Ic 35.26 0.027 0.03 - -

PTF11qiq Ib 35.66 0.032 0.066 - -

PTF11rka Ic 37.61 0.074 0.03 - -

PTF12gzk Ic 33.8 0.014 0.14 negligible (48)

PTF12os IIb 31.89 0.0045 0.045 - (50)

iPTF13bvn Ib 31.89 0.0045 0.0278 0.0437 (46),(47)

iPTF14dby Ic-BL 37.54 0.074 0.048 - (51)

References: (1) Richmond et al. (1994), (2) Richmond et al. (1996), (3) Qiu et al. (1999), (4) Clocchiatti et al. (2011), (5) Patat et al. (2001), (6) Benetti et al. (2011), (7)

Stritzinger et al. (2002), (8) Foley et al. (2003), (9) Gal-Yam et al. (2002), (10) Tomita et al. (2006), (11) Hamuy et al. (2009), (12) Deng et al. (2005), (13) Valenti et al.

(2008), (14) Taubenberger et al. (2006), (15) Bianco et al. (2014), (16) Anupama et al. (2005), (17) Taddia et al. (2015), (18) Pian et al. (2006),(19) Mirabal et al. (2006), (20)

Kocevski et al. (2007), (21) Hunter et al. (2009), (22) Sahu et al. (2009), (23) Roy et al. (2013), (24) Stritzinger et al. (2009), (25) Pastorello et al. (2008), (26) Taubenberger

et al. (2011), (27) Mazzali et al. (2008), (28) Modjaz et al. (2009), (29) Pignata et al. (2011), (30) Valenti et al. (2011), (31) Folatelli et al. (2014), (32) Bufano et al. (2012),

(33) Valenti et al. (2012), (34) Marion et al. (2014), (35) Milisavljevic et al. (2013a), (36) Kumar et al. (2013), (37) Bufano et al. (2014), (38) Greiner et al. (2015), (39)

Milisavljevic et al. (2015b), (40) Melandri et al. (2012), (41) Melandri et al. (2014), (42) Gal-Yam et al. (2014), (43) Morales-Garoffolo et al. (2014b), (44) D’Elia et al.

(2015), (45) Drout et al. (2015), (46) Fremling et al. (2014), (47) Srivastav et al. (2014), (48) Ben-Ami et al. (2012), (49) Corsi et al. (2012), (50) Fremling et al. (2016), (51)

Corsi et al. (2016)
aSN 14475 was discovered in 2006 as part of the SDSS-II SN survey.
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2.2 Constructing the bolometric light curve

2.2.1 Missing data

In order to derive the bolometric luminosity of a SN at a particular date, an SED con-

structed from the photometry is required. Thus, it was essential that there was photom-

etry in the relevant bands at that time, which was not always the case. In order to attain

temporal uniformity, the worst-sampled band was chosen to be a reference point and

the remaining bands were fit with a linear spline. The magnitudes were interpolated

on the dates of the reference band. Early-time data points are especially important as

they help determine the rise time of the SN and constrain t0, the time of explosion.

However, these epochs also tended to be sparsely sampled, often with observations in

just a couple of bands.

To obtain estimates of the early-time bolometric data points, two methods were used to

extrapolate missing photometry provided that at least two bands were available and one

of them was a V -band equivalent (e.g., an effective wavelength around 4000–5000 Å).

If the temporal gap between the first date in two adjacent bands was no greater than a

few days, then either a constant colour was assumed or the mean colour evolution of

similar SN types was adopted. If it was not possible to use this method, but there were

sufficient pre-peak data, then extrapolations were done via a low-order polynomial fit

to the data. As per the previous method, this technique was limited to time periods

on the order of a few days. Care was taken to avoid extrapolating early-time data

points based upon the behaviour of the light curves near peak, as this would have

underestimated the rate of change. Given the uncertain nature of the shape of the light

curve outside the observed dates, large errors of ∼ 1 mag on the extrapolations were

assumed.
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2.2.2 GRB-SNe and afterglow subtraction

The desire to include as many GRB-SNe as possible in the database is compromised

by the difficulty in deconvolving the SN light from that of the GRB afterglow and host

galaxy. For some SNe (e.g., SN 1998bw), the afterglow is negligible, so optical emis-

sion is dominated by SN photons; however, this is not usually the case. To calculate

the afterglow component of the light curve, the spectrum is considered to follow a

simple relation given by Fν(t, ν) ∝ t−αν−β . I defer to the literature for the numerical

values of the temporal and spectral indices and subtract the afterglow flux from the

SEDs as required, these values are unique to each GRB. Additionally, it is common

in the literature to fit the afterglow-SN-host light curve with a template SN based on

SN 1998bw (Cano, 2013), but this method is not adopted here to avoid biasing any

temporal characteristics that may be extracted from the light curve.

There are approximately 20 GRB-SNe given in the literature. Most are photometri-

cally associated with the GRB (e.g., they show a late-time bump in the light curve), but

unfortunately the majority of these are poorly observed, with few data points in only

a few bands and showing large afterglow contamination. Consequently, the number of

usable GRB-SNe is greatly restricted. It is an unfortunate irony that GRB-SNe in gen-

eral have the best-known explosion date yet the most poorly constrained photometry.

SN 2003dh / GRB 030329

To form as complete a sample as possible, the light curve of SN 2003dh from Deng

et al. (2005) is included in the database. The ultraviolet-optical-infrared (UVOIR)

light curve is the result of synthetic photometry from spectra and a mean bolometric

correction, derived from SN 1998bw, added to the photometric data. A consequence

of this is that I do not desconstruct the light curve to obtain a BVRI variant and use the

data as is.
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Table 2.2: Redshift statistics of sample SNe by spectral type

Type Median z Mean z Range N
GRB-SNe 0.224 0.279 0.0087–0.677 10
Ic-BL 0.075 0.069 0.0022–0.149 12
Ic 0.022 0.031 0.0015–0.095 21
Ibc 0.019 0.019 0.0044–0.034 2
Ib 0.018 0.025 0.0045–0.087 25
IIb 0.0050 0.0076 < 0.0258 15

2.2.3 Distance

A primary goal of this study was to present a self-consistent set of bolometric light

curves. In order to achieve this, it was necessary (where possible) to obtain a distance

modulus for each SN adopting a standard cosmological model. Thus, the distance

modulus of each SN was taken from the NASA/IPAC Extragalactic Database (NED)2

for the host galaxy using the standard NED cosmological model (H0 = 73.0 km s−1

Mpc−1, Ωm = 0.27, ΩΛ = 0.73) and corrected for Galactic motion toward Virgo, the

Great Attractor, and the Shapley Supercluster. These distances are entirely redshift-

dependent and calculated from a cosmological model rather than measured, thus µ is

taken as an absolute value throughout, this also aids easy conversion of individual SN

peak luminosity values to different distances.

Figure 2.1 shows the redshift distribution of SNe within the database. 88% lie at z <

0.1, with the median being z = 0.0189. Statistics for the redshift distribution by

spectral type are given in Table 2.2

2.2.4 Extinction

Correcting for E (B − V )tot is important if one is to derive accurate values based

upon luminosity. There are two main sources of line-of-sight attenuation; one asso-

ciated with the Milky Way – E (B − V )MW – and one associated with the host galaxy

E (B − V )host.

2https://ned.ipac.caltech.edu/
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Figure 2.1: Redshift distribution of the SNe in the sample. The vast majority of SNe are found
at z < 0.1, as demonstrated in the inset. It is clear that the high-z regime is dominated by
GRB-SNe.

The values ofE (B − V )MW adopted here were either taken from the literature or from

the dust maps of Schlafly and Finkbeiner (2011). Literature values of E (B − V )host

were only used if calculated from spectra, such as using the relationship between the

equivalent width of Na I D absorption lines andE (B − V )host (Poznanski et al., 2012).

However, it was apparent that approximately half the SNe in my database do not have

spectroscopically derived E (B − V )host.

A comparison of the meanE (B − V )MW andE (B − V )host of the SNe in this sample

gives 〈E(B − V )MW〉 = 0.059 mag and 〈E(B − V )host〉 = 0.135 mag. Thus, on aver-

age the intrinsic attenuation is the greater of the two and failure to include the effect

of host reddening results in less-luminous bolometric LCs for those SNe. By taking

the host-galaxy reddening to be zero for some SNe, which is the lowest value possible,

and then attempting to include them in population statistics I am actively biasing the

distributions.
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Table 2.3: E (B − V )host statistics of different sub-populations.

SN Population N Median Mean
[mag] [mag]

IIP, IIL, II, IIb, IIn 25 0.081 ±0.130
0.026 0.130

Ib 22 0.2235 ±0.305
0.157 0.30

Ic, Ic-BL 27 0.174 ±0.187
0.116 0.244

GRB-SN 22 0.0325 ±0.006
0.024 0.040

As I want to maximise the number of SNe in the distributions, but do not want to

include bolometric light curves calculated with zero host-extinction, I make the follow-

ing assumption – SNe of a similar type have, on average, similar values forE (B − V )host.

Thus, I searched the literature for core-collapse SNe, including all SNe II, and built a

set of host-galaxy extinction functions by type. The host galaxies of observed GRB-

SNe are known to be different from those of other core-collapse SNe in terms of metal-

licity (e.g., Modjaz et al., 2008; Graham and Fruchter, 2013) — so if the extinction is

dependent on host, host inclination, and SN type, then the distributions should reflect

this. A description of this work is presented in Appendix A, with the results given in

Table 2.3.

For SNe without a literature value for E (B − V )host I construct two bolometric light

curves; one with no correction for intrinsic reddening and one which corrects for the

median E (B − V )host of that SN type. They are then used in the following way:

• The uncorrected bolometric light curve is used whenever the LC is plotted in-

dividually, or the properties of that individual SN are given in a table. This is

the LC constructed with the fewest assumptions but any properties related to the

luminosity should be considered a lower limit.

• I use the median E (B − V )host corrected bolometric LC in distributions. This

works on the basis that the extinction would be typically around this value and

the number of SNe overcorrected would balance the number of SNe undercor-

rected. This increases the spread of the distribution but provides a better estimate

of the median and mean than using lower limits.
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All reddening corrections were applied using the extinction law given by Cardelli et al.

(1989).

2.2.5 Constructing the SED

To construct the SED the photometry was corrected for Galactic extinction in the ob-

server frame and, if possible, corrected for host extinction in the rest frame. Uncer-

tainties in reddening were included in quadrature. When the monochromatic flux,

calculated from the photometry (see Bessell et al. 1998; Fukugita et al. 1995), was

shifted to the rest frame wavelength it was also multiplied by (1+z), which is a useful

approximation in the absence of spectroscopically derived K-corrections. The process

of flux conversion depends upon the filter system used. Data in the literature cover

more than twenty years of observations and over this period there has been a shift in

the usage of filters from Johnson-Cousins (J-C) UBVRIJHK (and minor variations) to

SDSS type filters (u′g′r′i′z′) or some combination of these, as well as space telescope

specific filters such as those on the Swift-UVOT. The two main standards use different

flux units with the J-C system being based on Vega and SDSS on AB. As default all

SEDs are constructed in units of erg s−1 cm−2 Å
−1. This required conversion of the

SDSS filters which was achieved by using the relation λfλ = νfν .

The rest frame flux was fit with a linear spline to create SEDs over the range 3000 Å to

10000 Å for UBVRI-equivalents, 4000 Å to 10000 Å for BVRI-equivalents, and 10000

Å to 24000 Å for NIR.

2.2.6 From SED to pseudo-bolometric luminosity

The rest-frame SEDs were then integrated over the wavelength range, assuming zero

flux outside the limits. The effect due to redshift and the subsequent blueshifting of

the effective wavelengths of the photometry is small (a few percent) out to z ≈ 0.1.

Beyond this, the bluest bands start to be shifted outside the integration range and the

reddest effective wavelength shifts to a more central position; in this regime, the largest
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uncertainty comes from the behaviour of the tail of the SED. If there is photometry in

bands with effective wavelengths longer than I/i′, I incorporate these into the optical

SEDs, as they are blueshifted into the optical wavelength range or close to it.

I note that one might be tempted to fit a blackbody emission curve to the SEDs, but

this is erroneous as the spectrum of a SN is not a blackbody. During the photospheric

phase, the UV suffers line blanketing, the severity of which is related to the amount

of iron-group elements (Mazzali, 2000) and the velocity of the ejecta, which causes

line broadening. The photons scattered in this process eventually escape at redder

wavelengths creating a flux excess at these points (e.g., Mazzali and Lucy 1993). In

the nebular phase (> 60 days), the spectrum is dominated by line emission as the

optically thin ejecta are excited via energy deposition from the γ-rays and positrons

emitted during the decay of 56Ni to 56Fe (Mazzali et al., 2005).

The uncertainties were carried through the integration by evaluating the integral at the

upper and lower errors of the flux. Once the bolometric flux was determined it was

converted to bolometric luminosity using the distance.

2.3 Pseudo-bolometric light curves

In order to compare bolometric light curves effectively, a set of BVRI, UBVRI, and NIR

(or equivalent) LCs were produced, where the data allowed. Table 2.4 lists the bands,

total wavelength range, and reference name for the different light curves. Within the

sample, 84 SNe have a BVRI LC, 44 have a UBVRI LC, and 24 have a NIR LC. Various

extensions of the LCs can be made by combining the data (e.g., UBVRINIR). In most

cases, the NIR is less well sampled than the optical, so to construct an optical-NIR

LC the ratio between the two datasets was calculated for coincident dates. This was

subsequently fit with a linear spline, and the NIR flux was deduced by interpolation

of the ratio and the value of the optical flux on the dates when NIR observations were

absent. When the optical LC extended beyond the NIR, the flux ratio was kept constant

beyond the boundaries.
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Table 2.4: SED integration wavelength range and terminology.

Constituent bands Wavelength range (Å) Nomenclature
BV RI/g′r′i′z′ 4000–10,000 BV RI
UBV RI/u′g′r′i′z′ 3000–10,000 UBV RI
JHK 10,000–24,000 NIR
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Figure 2.2: The ratio of the U/u′-band flux to the UBV RI flux as a function of time. Open
symbols represent SNe that have not had host-galaxy extinction corrections applied. The high
host extinction of PTF12os is apparent in this diagram as the U/u′ flux is negligible. The
temporal evolution of peculiar SN Ib 2005bf is a noteworthy feature

Finally, the temporal evolution of the light curve was corrected to the rest frame and set

with a fiducial t(0) at the time of maximum luminosity with the following caveat: any

peak caused by early-time shock breakout (e.g., SN IIb 2013df Van Dyk et al., 2014)

is ignored, and the later peak powered by radioactive decay is selected. In the case of

peculiar SN Ib 2005bf, with its double-peaked light curve (Tominaga et al., 2005), I

took the first peak to be the result of the decay of 56Ni and the second peak a different

energy-injection process, specifically a magnetar (Maeda et al., 2007). For a different

interpretation, see Folatelli et al. (2006).
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Figure 2.3: The ratio of NIR flux to BVRINIR flux. Only dates when the optical and NIR
observations were coincident are included.

2.3.1 The contribution of U to UBV RI

Figure 2.2 gives the time-dependent contribution of the U/u′-band flux to the total

UBV RI flux. As expected, the SNe are bluer at earlier times than later. Table 2.5

shows the statistics for the sample at bolometric peak by spectral type and with/without

host-extinction corrections applied. Note that the statistics are derived from two over-

lapping populations and there is a bias in the non-host-corrected SN Ic values caused

by a few SNe with poorly constrained u′ photometry. The SNe Ic-BL are demonstra-

bly bluer at this epoch than other SN types with a U flux contribution of ∼ 20% as

opposed to ∼ 16% for the other types (host-extinction correction included). However,

note the small sample size in some cases.

2.3.2 NIR contribution

Figures 2.3 and 2.4 show the contribution of the NIR to the BVRINIR and UBVRINIR

light curves, respectively. The median, mean, and standard-deviation statistics are

given in Table 2.5. There are insufficient numbers to split the sample into subtypes, so

I perform the analysis on all available SNe, regardless of whether there is a host-galaxy
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Figure 2.4: The ratio of NIR flux to UBVRINIR flux. Only dates when the optical and NIR
observations were coincident are included.

extinction value. I find that around peak, mean ≈ median, with a standard deviation

of ∼ 4% in both cases. It is possible that there is a bias in the sample given that the

total number in each case is 18 and 12, which represents 21% and 14% of the total

database, respectively. To test the probability of the statistical values being returned

by chance, I run a Monte-Carlo simulation in which I randomly place 85 SNe with a

uniform distribution in a NIR/ONIR “box” of varying width. From this box, 18 SNe

(12 for NIR/UBVRINIR) are randomly selected and their bulk median/mean ratio and

standard deviation measured. I define an acceptable parameter set as 0.9 < ratio < 1.1

and standard deviation < 0.4; there is no constraint on the values of median or mean,

only their ratio. If the returned values fulfil these criteria then it is considered a hit.

I perform 5000 runs for each window and return P (ratio) = hit/runs. The results are

sensitive to the allowed variation in the ratio and the standard deviation, both of which I

choose to be in excess of the measured values. I find that for NIR/BVRINIR, a window

of > 0.16 gives P < 0.025, while for NIR/UBVRINIR, a window of > 0.18 gives

P < 0.064. I conclude that the observed median and mean are not a sampling bias

caused by too few SNe; they represent typical values.

The contribution of the NIR is generally small throughout with the exception of SN

2005kl, which was extremely red and has a NIR to optical ratio > 1; consequently, it
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Table 2.5: Flux-ratio statistics at bolometric peak.

U-band contribution to UBVRI with host extinction
Type median mean standard deviation
SNe Ic-BL/GRB-SNe 0.20 0.20 0.03
SNe Ic 0.15 0.15 0.02
SNe Ib 0.16 0.20 0.05
SNe IIb 0.16 0.17 0.06

U-band contribution to UBVRI without host extinction
Type median mean standard deviation
SNe Ic-BL/GRB-SNe 0.18 0.19 0.07
SNe Ic 0.16 0.19 0.09
SNe Ib 0.13 0.15 0.07
SNe IIb 0.11 0.14 0.07

NIR contribution to optical/NIR
Type median mean standard deviation
NIR/BVRINIR 0.17 0.17 0.04
NIR/UBVRINIR 0.14 0.15 0.03

has been omitted from Figure 2.3. Bianco et al. (2014) noted that this SN occurred in

an H II region of NGC 4369, a galaxy with a high continuum gradient. They also do

not attribute the red colour to high intrinsic extinction. Spectra of the object show that

it is dominated by galactic emission and displays a red continuum. Accordingly, the

red colour is attributed to host-galaxy extinction. On this basis it has not been included

in the process of determining the NIR flux fraction.

2.4 Light-curve statistics

2.4.1 Light curves

The BV RI LCs are shown by spectral type in Figures 2.5 and 2.6. The peak luminos-

ity ranges from 5.6× 1041 erg s−1 to∼ 2.1× 1043 erg s−1, a factor of∼ 100. Note that

this range does not include PTF12os or SN 2005kl, both of which suffer from signif-

icant but unquantified host-galaxy extinction. 18 of the SNe available have sufficient

photometry to be able to construct UBVRINIR light curves. These SNe represent our

“gold” sample and are shown in Figure 2.7. In some cases, the light curves are lower
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Figure 2.5: BVRI light curves of all Type Ic variants in the sample. SNe denoted by open
markers have not been corrected for host-galaxy extinction. Markers may differ from the legend
to aid the eye.

limits owing to the lack of information on host extinction.

The BVRI pseudo-bolometric light curves are shown en-masse in Figure 2.8. The final

light curves will be uploaded to WISeREP3 (Yaron and Gal-Yam, 2012).

2.4.2 Luminosity distributions

The luminosity distribution (see, for example, Li et al., 2011) for the BVRI sample,

which includes those SNe where the median host-galaxy extinction has been included,

is shown in Figure 2.9. Table 2.6 gives the statistics of the distribution; median and

mean, while the standard deviation represents the intrinsic scatter within each distri-

bution. The collective SN Ic-BL/GRB-SN group is most luminous, and while this is

somewhat driven by the GRB-SNe, it can be seen from Figure 2.5 that SNe Ic-BL

are typically more luminous than other SNe Ic. The least-luminous subpopulation is

SNe IIb. The standard deviation derived for each subset shows that there is consider-

able overlap between SNe Ic, SNe Ib, and SNe IIb. Figure 2.10 shows the luminosity

function for the 18 SNe with UBV RINIR photometry.

3http://wiserep.weizmann.ac.il/
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Figure 2.6: BVRI light curves of SNe Ib and SNe IIb in the sample. Open symbols represent
SNe without a correction for host-galaxy extinction. Markers may differ from the legend to aid
the eye.
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Figure 2.7: 18 UBVRI+ NIR pseudo-bolometric light curves constructed from optical and NIR
photometry. Open symbols represent SNe without correction for host-galaxy extinction

Table 2.6: The BVRI log10

(
Lp/erg s−1

)
luminosity-function statistics.

Type Median Mean Standard deviation N
SNe Ic-BL/GRB-SNe 42.81 42.78 0.29 21
SNe Ic 42.29 42.36 0.28 21
SNe Ib 42.33 42.34 0.27 25
SNe IIb 42.19 42.14 0.26 15
SNe Ibc and GRB-SN 2003dh not included
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Figure 2.8: 84 BVRI light curves of all SN types in the sample. GRB-SN 2003dh is not included
because it lacks a BVRI light curve. Note that GRB-SN 2013cq is extremely noisy, and its peak
luminosity is constrained by a Hubble Space Telescope observation (Melandri et al., 2014).
Open symbols represent SNe without corrections for host-galaxy reddening.
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Figure 2.9: The BVRI pseudo-bolometric luminosity distribution of 82 SNe. The two SNe of
Type Ibc are not included owing to ambiguity in their classification, nor is SN 2003dh owing
to the lack of a BVRI LC. This distribution includes SNe with a correction for the median
host-galaxy extinction of that type applied. The dark-green region represents the overlap of
the blue and green distributions. The luminosity distribution for the combined green and blue
distributions is shown in white.
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Figure 2.10: The luminosity distribution derived from the peak luminosity of the 18 UBVRINIR
light curves in the sample. Median host-galaxy extinction is assumed in three cases for statis-
tical purposes. Colours are as described in Figure 2.9.
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2.4.3 Parameter values and statistics

With the bolometric light curves complete, it is now possible to begin determining their

properties. The following parameters are of interest:

• Peak luminosity — Lp

• Rise time from explosion to Lp — tp

• Rise time from Lp/2 to Lp — t−1/2

• Decay time from Lp to Lp/2 — t+1/2

• Light-curve width — t−1/2 + t+1/2

• Nickel mass — MNi

• Ratio of ejecta mass to kinetic energy — M3
ej/Ek

The statistics were found using the set of BVRI and UBVRINIR-equivalent LCs. The

first step was to determine the values ofLp, t−1/2, and t+1/2. A fourth-order polynomial

was fit to each light curve around the peak using CURVE FIT from the PYTHON SCIPY4

package. If the photometric coverage was sufficient, then the three parameters could

be determined. However, in most cases only Lp plus one other of the temporal values

was directly measurable. In the instances where the photometric observations did not

extend sufficiently far before or after Lp to return t−1/2 or t+1/2, it may have been

possible to extrapolate to this time if the initial/final luminosity was sufficiently close

to Lp/2. In an attempt to derive t−1/2, a second-order polynomial was fit to the early-

time observations up to the time of peak luminosity, provided a sufficient number of

observations was available. If the fit could converge to a solution within two days of

the boundary data point it was accepted. Conversely, on the rare occasion when t+1/2

could not be taken directly from the observations, the late-time data were fit with a

linear function and extrapolated out to five days to find a solution. The extrapolations

were inspected visually for irregularities and accepted if they seemed reasonable. To

4www.scipy.org
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derive estimates of the uncertainty, the upper and lower photometric errors were fitted

in a similar fashion as previously described. In some cases, it was not possible to

determine one or more of these parameters, and so these SNe are omitted from the

initial studies involving this parameter.

Table 2.7 gives the median temporal characteristics as derived from the BVRI group; I

note that these values remain consistent with those derived for the UBVRI, BVRINIR,

and UBVRINIR samples. I caution that the median width is not the sum of the median

values of t−1/2 and t+1/2 but is the median of the sum of the two parameters for SNe

where both have been derived. This means that the median width is drawn from a

smaller sample size than either t−1/2 or t+1/2. In particular the large median value of

t+1/2 for SNe Ic is largely driven by the extremely broad light curves of SNe 2011bm

(Valenti et al., 2012) and PTF11rka, neither of which can be included in the calculation

of median width because they lack a value for t−1/2. The relationship between t−1/2

and t+1/2 is considered in more detail in Section 2.6.2.

In Appendix B, Table B.1 and Table B.2 give the values derived for individual SNe

from the BVRI sample and the UBVRINIR-equivalent sample, respectively.

2.4.4 Determining Errors

The error in any particular value derived is related to the uncertainties in the photom-

etry and the extinction. In certain situations the photometric errors are very small,

perhaps unjustly so, which is the cause of very small uncertainties in the values deter-

mined in this section. Very small uncertainties lead to a higher degree of certainty in

a value than is justified, and they have the effect of biasing possible correlations be-

tween parameters by increasing the weighting of the values for a particular SN. Ideally,

a well-observed SN with good Galactic and host-galaxy extinction would have such an

effect, but there are some SNe which fall short of this standard display extremely small

uncertainties in their photometry. It can be seen in the LCs of these SNe that the uncer-

tainties are unjustified, as they show variability which is greater than the photometric

errors bars.
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Table 2.7: Median temporal values derived from the BVRI data.

Type t−1/2 (N) t+1/2 (N) Width (N)
(days) (days) (days)

SNe Ic-BL/GRB-SNe 8.6±1.9
1.1 (15) 15.1±1.0

2.0 (14) 24.7±2.7
2.3 (11)

SNe Ic 9.3±2.6
1.1 (11) 19.2±4.7

5.4 (15) 23.8±7.3
5.4 (7)

SNe Ib 11.2±2.2
1.4 (11) 17.0±2.8

2.9 (23) 26.4±3.6
3.9 (11)

SNe IIb 10.1±1.2
0.4 (11) 15.3±2.8

1.6 (15) 25.4±2.3
0.8 (11)

2.4.5 Rise time

The parameter with the largest uncertainty is rise time, tp, principally because it re-

quires well-covered photometry pre-peak and because of the uncertain behaviour of the

light curve at very early times. Generally, only GRB/XRF SNe have an observed value

of t0 and hence a well-constrained tp, although the explosion time of SNe IIb with

prominent early-time emission (e.g., SN 1993J, Matheson et al. 2000a; SN 2013df,

Van Dyk et al. 2014; SN 2011dh, Arcavi et al. 2011; SN 2013cu, Gal-Yam et al. 2014)

caused by the cooling of the stellar surface following shock breakout (Woosley et al.,

1994) can be estimated to within a day or two of explosion. If the SN is found in a

host galaxy that is regularly observed, then t0 can be constrained between the detection

and nondetection dates assuming that 〈dL/dt〉 is sufficiently large at early epochs so

as to minimise the “dark time” (the period between explosion and detectability) of the

SN (e.g., PTF10vgv; Corsi et al., 2012). Of course, this method is limited to the time

interval between the two dates, which ideally should be on the order of a few days.

Values for tp from the literature are given in Table 2.10.

2.4.6 Comparison between optical and optical/NIR light curves at

peak

I took the step of plotting the UBVRI luminosity at maximum versus UBVRINIR maxi-

mum luminosity to investigate the possibility of determining some form of “bolometric

correction” for the much larger BVRI-only sample. The results of this test are shown

in Figure 2.11. It is apparent, at a glance, that all SNe in this set follow a very tight
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correlation between the two values, and while caution must be exercised when dealing

with values in log-log space, it appears that a simple linear fit would produce the de-

sired results. The data were fit with a simple linear polynomial of the form given by

the equation

log(LUBV RINIR) = a1 + a2 log(LUBV RI) (2.1)

The best fit gives a1 = 1.62 and a2 = 0.96 with the standard deviation of the residual

distribution equal to 0.02, which is adopted as the uncertainty in the fit. The SN with

maximum displacement from the best-fit line shows a difference of < 20% between

the value returned from the polynomial and the photometric value.

Overall, it appears that the variation in spectral shape is less important outside the

optical wavelengths. This correlation is also very strong for BVRI against BVRINIR.

Thus, the conversion to fully bolometric luminosity requires little more than a simple

multiplicative factor that is proportional to the optical flux. This implies that, around

peak luminosity, the absorption and re-emission of photons as they diffuse through

the ejecta happens primarily in the optical regime. Consequently, the NIR region is

effectively the Rayleigh-Jeans tail of a blackbody with a temperature that gives an

optical integrated flux similar that of the SN optical SED.

2.5 Pseudo-bolometric to fully bolometric

The disparity in number of SNe with BVRI data compared with UBVRINIR data

presents a challenge to efforts to reveal the statistics of the explosion, especially the

luminosity distribution and the mass of 56Ni synthesised in the first seconds after core

collapse. Here I detail how I construct fully bolometric peak luminosity values for all

the SNe in the sample using the results from earlier sections.
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Figure 2.11: UBVRI+NIR peak luminosity as a function of UBVRI peak luminosity. The
correlation appears to be independent of SN type. The grey area represents the 1σ uncertainty
in the fit determined by the standard deviation of the residuals. The error bars are representative
of the uncertainty only in the NIR contribution. Open symbols represent GRB-SNe.

2.5.1 The conversion method

To minimise the amount of uncertainty in each SN, the shortest method of obtaining the

fully bolometric peak luminosity was used. The details of this procedure are outlined

here.

Conversion from BVRI to UBVRI at peak

Approximately half of the SNe in the database lack U/u′ photometry. To compensate

for this, I use the results of Section 2.3.1 and apply a correction to account for the

missing photometric band to the BVRI flux of these SNe. I use Table 2.5 to assign a

correction value depending on SN type and whether there is a value for host-galaxy

extinction. I assume the errors are commensurate with the standard deviation of each

distribution. As a justification, I note that from Table 2.5 the median U fraction is

always between 15% and 20%.
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Conversion from UBVRI to UBVRINIR

There are two pathways to convert the UBVRI flux to UBVRINIR flux. In the first

instance I can use the NIR data where they exist and combine their peak value with

that of the UBVRI flux. The second method utilises Equation 2.1 and the values for the

UBVRI to UBVRINIR conversion as given in Section 2.3.2.

UBVRINIR to fully bolometric

I finalise the conversion of UBVRINIR Lp to a fully bolometric value by assuming a

10% contribution from unobserved wavelengths. I justify this value by integrating a

Planck function at temperatures between 4000 K and 8000 K, which is typical for SE-

SNe at peak, and comparing the flux ratio of our UBVRINIR wavelength range to that

of the flux outside it. I find that the UV and far-infrared can account for between∼ 7%

and ∼ 20% of the total flux but is typically ∼ 10%. If I assume some reprocessing of

UV photons into the optical regime then this value can be lower. Thus, I take the error

to be +10%–5%. I do not attribute any particular fraction of this amount to IR or UV,

the latter of which is small for SE-SNe (Pritchard et al., 2014).

2.5.2 Luminosity distribution for the bolometric sample

The resulting fully bolometric luminosity distribution for the entire SN sample is

shown in Figure 2.12 and the statistics are shown in Table 2.13. The SN Ic/Ic-BL/GRB-

SN group remains the most luminous population. SNe Ic and SNe Ic-BL can be found

throughout this distribution while GRB-SNe occupy the upper end.
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Figure 2.12: Fully bolometric luminosity distribution of the entire sample. Median host-galaxy
extinction is adopted when the actual value is absent. Colours are as described in Figure 2.9.

Table 2.8: Spearman rank correlation results for Lp against t+1/2

Type ρ p-value N
All −0.02 0.84 69
GRB-SNe −0.8 0.10 5
Ic-BL −0.14 0.76 7
Ic 0.30 0.24 17
Ib −0.07 0.77 23
IIb 0.22 0.43 15

2.6 Temporal properties

2.6.1 Lp as a function of t+1/2

The value of Type Ia SNe for cosmological studies owing to the correlation between

B-band peak and light-curve decline over 15 days (Phillips, 1993) is well known. All

previous attempts to find a similar relation for core-collapse SNe have returned nega-

tive results (Drout et al., 2011; Lyman et al., 2014). Figure 2.13 shows how the BVRI

pseudo-bolometric peak of our sample compares with t+1/2.

The results of a Spearman rank correlation test on Lp and t+1/2 are given in Table 2.8.

With p-values > 0.05 throughout, it is apparent that there is no equivalent “Phillips
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Figure 2.13: Lp as a function of t+1/2 for the BVRI-equivalent light curves. There is no
correlation between either parameter. Open symbols represent GRB-SNe.

Table 2.9: Spearman rank correlation results for t+1/2 against t−1/2

Type ρ p-value N
All 0.66 0.000005 39
GRB-SNe 0.69 0.19 5
Ic-BL 0.30 0.62 5
Ic 0.93 0.0008 8
Ib 0.69 0.018 11
IIb 0.68 0.022 10

relation” for any SN type used here, thus confirming earlier studies and indicating that

the dynamics of the explosion mechanism of SE-SNe and the relationship to the ejecta

is non-uniform.

2.6.2 Is there a relationship between t−1/2 and t+1/2?

Photometric coverage in not consistent across the whole sample, so a full set of tempo-

ral parameters is available only for a small number of SNe. Motivated by the desire to

maximise the statistics derived from our sample, I examined temporal parameter values

as a function of other temporal characteristics where the values were known. A plot

of t−1/2 and t+1/2, Figure 2.14 suggests that a correlation exists. SNe that showed an

excess of luminosity caused by shock breakout and non-radioactive power have been
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Figure 2.14: t+1/2 as a function of t−1/2. The dashed line is the line of unity and Open symbols
represent GRB-SNe. All SNe have t−1/2 < t+1/2.

omitted, which further strengthens the apparent correlation between the two proper-

ties. The results of a Spearman rank correlation are given in Table 2.9 and shows that

indeed, the entire same is well correlated, as are SNe Ic, Ib, and IIb with p-values

< 0.05. Again, the numbers in each sample are small.

However, this is at odds with the results of Taddia et al. (2015), where the Kolmogorov-

Smirnov (K-S) tests on the value of ∆m−10 (rise) and ∆m15 (decay) for the r band for

40 SNe indicated that they were drawn from the same population and that no correla-

tion between the rise and the decay of the light curve around maximum light.

Consequently, I performed a similar analysis on my t+1/2 values. Figure 2.15 shows

t+1/2 as a function of t−1/2. It can be seen that although there is a general trend to a

slower decline for a slower rise, there is a considerable spread in the values. I plot-

ted cumulative distribution functions (CDFs) for all t+1/2 values derived in the sample

and split them by type, as seen in Figure 2.16. K-S tests indicate that most of the

distributions are drawn from the same population (P > 0.05) with the exception of

the SN Ic/IIb group (P = 0.048), although the SN Ic/Ic-BL group returns P = 0.061

which is marginally over the threshold. I can attribute this entirely to the presence

of broad light curve SNe Ic 2011bm and PTF11rka in conjunction with the relatively

small number of SNe throughout: 12, 14, 23, and 13 for SNe Ic-BL, Ic, Ib, and IIb, re-
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Figure 2.15: The t−1/2 and t+1/2 values for the SNe in the sample with both parameters. The
range of values in t+1/2 is readily apparent despite a trend of the decay time to increase as the
rise time increases. SNe Ib are shown in green, Ic-BL/GRB-SNe are red, Ic are blue, IIb are
black, and Ibc are yellow.

spectively. It is clear that these two SNe disproportionately affect the sample, because

without their presence the SN distributions are very similar, sharing a similar median

t+1/2 of ∼ 15 days. The implication is that one should not treat the SN subtypes sep-

arately, at least for this sample size. Next I performed a K-S test on the entire sample

of t−1/2 and t+1/2. With P = 2× 10−10 it is clear that the two are not drawn from the

same population.

My results are contrary to those in Taddia et al. (2015), I find a clear correlation be-

tween the characteristic rise times and decay times.

However, despite the while the trend is toward a longer decay for a longer rise, the

variance along the trend, which is not measured by the Spearman rank correlation,

makes it unreliable as a method for converting one to the other.

2.6.3 Correlation between tp and t−1/2

It is pertinent to see if the time for rise to peak of the SN is in some way correlated

with the rise from Lp/2 to Lp, as it would lead to a method to estimate the SN rise
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Figure 2.16: The cumulative distribution function of all the t+1/2 values in the sample sorted by
spectral type. The effect of the extremely slowly declining Type Ic SNe 2011bm and PTF11rka
on the SN Ic CDF is clearly seen.

time from t−1/2. The limitations of such an assessment are apparent, as few SNe have

known explosion times. Thus, I take the GRB-SNe with their known t0, some of the

SN IIb set (because their explosion times can be constrained from the initial shock-

breakout peak), plus any SN with well-constrained explosion time owing to the short

interval between nondetection and detection. Figure 2.17 shows tp against t−1/2; it is

apparent that there is some correlation which appears to be independent of SN type.

Using a linear fit as before, defined as

tp = αt−1/2, (2.2)

I find α = 1.5. To determine uncertainties in the fit I took the standard deviation

of the distribution of the residuals as described previously, which I find to be 1.68

days. SNe were omitted from the fitting procedure if the early-time emission was

dominated by shock breakout. These were typically SNe IIb or GRB-SNe for which

t−1/2 was poorly constrained owing to two components, and well-defined explosion

times heavily influenced the result.
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Figure 2.17: tp as a function of t−1/2 for SNe in the sample having both parameters. The black
line represents the best fit to the data incorporating errors in both the ordinate and abscissa.
The grey region represents the standard deviation of the residuals from this line, which is taken
to be the uncertainty in the fit. Open symbols represent GRB-SNe.

2.6.4 Inferred rise time tp

Table 2.10 shows the inferred rise time for the sample as derived by the previously

described correlation. Note that the rise times for GRB-SN 1998bw (∼ 16 days) and

GRB-SN 2006aj (∼ 10 days) are recovered within the uncertainties of the extrapolated

explosion time. Notable exceptions are as follows. (i) SNe that show relatively slowly

declining shock break-out emission so that it is a non-negligible contributor to the flux

of the SN during the rise (e.g., SN 2008D, SN 2011hs). (ii) The case of SN 2011kl,

associated with ultra-long GRB 111209A (Greiner et al., 2015); this SN is interesting

with regard to the explosion mechanism.

First, I must consider an explanation for the correlation between t−1/2 and tp. This can

be explained by the interplay with 56Ni→ 56Co→ 56Fe energy injection and the light-

curve rise time, which is itself a function of opacity, ejecta mass, and photospheric

velocity (Arnett, 1982). Because the derivative of the energy injection rate is constant,

the shape of the light curve is determined solely by the diffusion time. Altering the

diffusion time means the peak may move, but the way the light curve rises to the

peak retains the same relative shape provided the nickel distribution remains located



2.7. Explosion properties 59

centrally. This is not necessarily the case for an alternate energy source such as a

magnetar, where the magnetar rotational energy can be deposited into the ejecta on a

timescale much less, or much greater, than the diffusion time, or the case where shock

breakout (particularly for SNe IIb) or GRB afterglow contribute to the optical flux. For

all GRB-SNe, except SN 1998bw where the GRB afterglow was negligible, afterglow

subtraction is a major issue for accurately determining t−1/2; fortunately, the need for

this value is made redundant by a known explosion date.

2.7 Explosion properties

2.7.1 The synthesis of 56Ni

With the fully bolometric Lpeak and tp, it is now possible to estimate the amount of
56Ni synthesised in the explosion. To obtain a value for MNi, I used the formulation

from Stritzinger and Leibundgut (2005) which is based upon “Arnett’s rule” (Arnett,

1982): the approximation that the maximum luminosity of a SN powered by the decay

of 56Ni is equal to the energy released by radioactive decay at that time:

MNi

M�
=Lp ×

(
1043erg s−1

)−1

×
(
6.45× e−tp/8.8 + 1.45× e−tp/111.3

)−1
(2.3)

I use equation 2.3 to evaluate MNi for the BVRI, UBVRINIR, and the fully bolometric

sample. I adopt the exact value of tp if known; failing that, I adopt the t−1/2 to tp

conversion (Equation 2.2) to reduce the propagation of uncertainties. The result of

this is given in Table B.3. The MNi distribution for the whole sample, highlighting

SNe Ic/Ic-BL and GRB-SNe, is shown in Figure 2.18, whereas Figure 2.19 the whole

sample emphasises SNe Ib and SNe IIb. The spread of synthesisedMNi varies between

SN types. The SN Ic group shows the largest spread while the SN Ib and SN IIb

populations cluster toward the lower end of the distribution. The normal (i.e., non-
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Table 2.10: Rest-frame tp values.

SN Literature tp (days) tp from t−1/2 (days)
1993J 19.15±0.03 16.32±1.65
1994I 12.25±0.21 8.77±1.66
1996cb - 16.99±1.65
1998bw 15.86±0.18 15.41±1.69
1999dn 13.92±2.84 -
1999ex 18.35±0.04 14.60±1.65
2002ap 13.01±0.00 10.23±1.65
2003bg - 16.62±1.66
2003dh 12.65±1.66 -
2003jd 12.50±0.18 14.83±1.73
2004fe - 14.68±1.65
2005bf 18.32±0.35 -
2005hm - 19.93±1.67
2005kr - 11.41±1.67
2005ks - 12.37±1.66
2006T - 14.15±1.65
2006aj 9.59±0.04 10.73±1.66
2006ep - 18.00±1.65
2006fe - 15.83±1.71
2006jo - 10.37±1.65
14475 - 10.50±1.76
2006lc - 13.84±1.65
2006nx - 14.28±1.70
2007Y 18.76±0.35 14.69±1.75
2007gr 13.15±0.23 13.50±1.65
2007ms - 22.23±1.67
2007nc - 17.73±1.80
2007qx - 15.09±2.76
2007ru 10.24±0.05 -
2007sj - 14.54±1.66
2007uy 19.08±0.28 -
2008D 19.29±0.23 20.95±1.66
2008ax 19.28±0.13 16.05±1.65
2008hw 12.31±0.10 -
2009bb 12.63±0.10 10.50±1.65
2009iz - 21.83±1.65
2009jf 21.27±0.16 17.74±1.71
2010as 12.44±0.12 15.29±1.65
2010bh 12.74±0.10 5.20±1.68
2010ma 10.33±4.34 -
2011bm 34.59±0.15 -
2011dh 15.71±0.02 15.25±1.65
2011ei 17.73±0.03 16.22±1.65
2011hs 8.59±0.06 12.21±1.65
2011kl 15.17±0.07 10.90±1.66
2012ap 13.19±0.31 13.69±2.12
2012bz 13.49±0.22 15.57±1.65
2013cq 13.00±2.00 -
2013cu 9.01±0.08 10.90±1.65
2013df 21.79±0.10 21.99±1.65
2013dx 12.26±5.48 -
2013ge - 18.88±1.70
PTF10vgv - 10.35±1.69
PTF11bli - 20.63±1.66
PTF11jgj - 22.07±2.17
PTF11klg - 16.39±1.68
PTF12gzk 16.35±0.46 -
iPTF13bvn 15.95±0.10 14.23±1.65
iPTF14dby - 22.46±1.68
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Figure 2.18: The 56Ni distribution for the fully bolometric sample with the normal SNe Ic
and the SNe Ic-BL/GRB-SNe in blue and red, respectively. Consistent with our procedure for
the bulk analysis, corrections for median host-galaxy extinction have been applied. The bulk
nickel-mass distribution, for SNe where the nickel mass can be derived, is shown in white.

broad-lined) SNe Ic also include the non-GRB-SN with the largest nickel mass, SN

2011bm, which is a consequence of its exceptionally broad light curve. Figure 2.20

gives peak bolometric luminosity as a function of MNi for the sample.

2.7.2 Characteristic timescales, kinetic energy, and ejecta mass

The rise time of the SN is linked to the powering mechanism, the spatial distribution

of 56Ni, the opacity of the ejecta (κ), the mass of the ejecta (Mej), and the photospheric

velocity at luminosity peak vph via the formulation for the parameter τm given by

Arnett (1982),

τm =
√

2

(
k

βc

) 1
2
(
Mej

vph

) 1
2

. (2.4)

For ejecta of uniform density undergoing spherically symmetric free expansion (R(x, t) =

v(x)t), I can convert vph to Ek via Equation 2.5,

Ek =
3

10
Mejv

2
ph, (2.5)
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Figure 2.19: The 56Ni distribution for the fully bolometric sample with the normal SNe Ib and
SNe IIb in green and black, respectively. Corrections for median host-galaxy extinction have
been applied. The white region is the same as in Figure 2.18.
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Figure 2.20: Peak bolometric luminosity as a function of nickel mass. Open symbols represent
GRB-SNe.
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which leads to

τm =

(
κ

βc

) 1
2
(

6M3
ej

5Ek

) 1
4

, (2.6)

where c is the speed of light and β is a constant of integration with value of ∼ 13.7.

The parameter τm, which defines the scale time of the light curve, is similar to the

rise time of the SN but typically lower by ∼ 2 days. However, by assuming that

tp ≈ τm, I can estimate a value for M3
ej/Ek for a range of opacities; see Table B.4.

Note that this model assumes that κ is independent of time and constant across the

ejecta — but this is not true for any SN, especially SNe Ib and SNe IIb. In these

cases the opacity of the He shell is extremely low owing to the paucity of He lines in

the optical. Consequently, the value for Mej derived from τm underestimates the total

mass of the ejecta because the photons emitted from the photosphere diffuse through

this shell with little overall interaction (also see Wheeler et al., 2015). Furthermore,

Ek is approximated by assuming a constant density throughout the ejecta. This is not

the case and the density profile of the ejecta defines the total kinetic energy, this is

discussed further in Chapter 3. On this basis no value is calculated for Mej or Ek,

and so M3
ej/Ek is left as the scaling for the light curve rise time (assuming all other

parameters are constant). Finally, to test the overall accuracy of this method I compare

these results with that of spectral modelling, (see Mazzali et al., 2000, 2002, 2003;

Sauer et al., 2006; Mazzali et al., 2009, 2013, 2017), although even these methods are

still sensitive to the estimated explosion date and ∼ 30% in Mej (Ashall et al., 2017).

I plot Lp and MNi as a function of M3
ej/Ek in Figures 2.21 and 2.22. There is consider-

able scatter in each plot, but for a given value of Lp or MNi the value of M3
ej/Ek tends

to be higher for SNe Ic, SNe Ib, and SNe IIb compared with SNe Ic-BL. The width of

SN 2011bm leads to a large value for M3
ej/Ek, which in turn necessitated the use of

a logarithmic abscissa. These distributions (Ic/Ib/IIb against Ic-BL/GRB-SNe) can be

approximated by considering the means and standard deviations of the two parameters

in the x and y directions. The distributions overlap in the M3
ej/Ek direction (∼ 3± 2.5

against ∼ 0.9 ± 0.7 respectively), and in the MNi direction (∼ 0.14 ± 0.05 against

∼ 0.34 ± 0.2), however, with a mean log10 (Lp) of 43.0±0.3 erg s−1 for Ic-BL and

42.44±0.25 erg s−1 for the rest of the SNe, the 1 sigma region of these two distribu-



2.8. Comparison with multiband photometry 64

10-1 100 101

M 3
ej /Ek

42.0

42.2

42.4

42.6

42.8

43.0

43.2

43.4

B
o
lo

m
e
tr

ic
 l
o
g
(L

p
) 

[e
rg

 s
−

1
]

Ic Ic-BL/GRB-SNe Ib IIb Ibc

Figure 2.21: Peak bolometric luminosity as a function of M3
ej/Ek. Open symbols represent

GRB-SNe. Grey filled symbols represent the results of spectroscopic modelling and shows
that the two methods are broadly consistent for positioning of SN types with SNe Ic, Ib and IIb
occupying the lower right region and SNe Ic-BL (including GRB-SNe) taking the upper left.

tions do not overlap in the y direction and so they do not overlap at all. This shows that

there are two different distributions in Figure 2.21.

2.8 Comparison with multiband photometry

2.8.1 Deriving multiband parameters

The multiband photometry of each SN was fit using the same process as described

in Section 2.4.3. The raw photometry was dereddened for Galactic extinction in the

observer frame and host-galaxy extinction in the rest frame, where possible.

2.8.2 Colour curves

The diversity of filters used in the observations implies that there is no single colour

that can be used to represent every SN in the sample as is; this requires the use of some

filter conversion to homogenise the sample. I utilise the colour corrections of Jordi

et al. (2006) to convert B and V to g′ and R to r′, so as to present the g′ − r′ colour for
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Figure 2.22: Nickel mass as a function of M3
ej/Ek. Open symbols represent GRB-SNe. Grey

filled symbols represent the results of spectroscopic modelling, as in Figure 2.21, the results
are broadly consistent.

all of the SNe. This is the most sensible choice for conversion because g′ lies between

B and V while r′ lies blueward of R, so the conversions fall between the available

photometry. I note that this process is not perfect and stellar colour transformations

can be poor for emission-line objects. However, it should be less of an issue during the

photospheric phase (. 40 days) when the spectrum can be more closely approximated

by a blackbody.

As a test of the accuracy of this conversion I utilise SN PTF12gzk, which has pho-

tometry in UBVRIgriz. I find that the transformed colour falls within the uncertainties

of that determined directly from the photometry, giving confidence that this method is

sufficiently accurate within the bounds of the photometric uncertainties.

I take the approach of plotting the colours of all SNe at z < 0.05 with extinction cor-

rections applied only when the reddening is known. The limit on distance is chosen so

as to minimise the need for K-corrections, which become more important at z > 0.05.

This importance is amplified by the behaviour of g′ and r′, as they lie on opposite sides

of the SED peak for most SNe until times much later than the peak of the bolometric

LC. The behaviour of the K-correction is dependent on the underlying spectrum, the

epoch, and the redshift, which can have a dramatic effect on the colours as g′ and r′
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can be corrected in opposite directions. For example, at ∼ 10 days past bolometric

maximum and in the z < 0.05 regime, the K-correction in the g′ band is typically ∼ 0

mag, but it begins to rise rapidly to∼ 0.1 mag as z tends to 0.05. In the r′ band the be-

haviour is more complex, with the low-z K-correction taking small positive or negative

values but tending toward lower values as z increases. At other times the behaviour

can be different and more extreme, especially with increasing redshift. Hence, I limit

this effect by restricting the sample to low z.

Figure 2.23 shows the g′ − r′ colour evolution over the photospheric phase; SNe with-

out known host-galaxy extinction are plotted in transparent markers to separate them.

When host extinction is applied the spread of colours narrows, and at ∼ 10 days past

bolometric peak it forms a “bottleneck”; see Figure 2.24. This behaviour is similar to

that seen by Drout et al. (2011) in the V − R colours of their sample, and was sim-

ilarly observed for SNe with g − r by Taddia et al. (2015). The colour evolution of

SN 2005bf is unique and appears to reflect the light curve, with the blue dips being

approximately coincident with the luminosity peaks. If one was to take the second

peak as the bolometric maximum, then the colour curve would shift to the left by 20

days and line up with the other SNe. Type IIb SN 2011hs, Ehost(B−V ) = 0.16±0.07

mag (Bufano et al., 2014), is a notable outlier in Figure 2.24. Bufano et al. (2014)

find that g′ − r′ is ∼ 0.6 mag around the time of g′ maximum and there is a ∼ 0.5

mag difference between the colours of SN 2011hs and SN 2008ax. The result here is

comparable, with g′ − r′ ≈ 0.6 mag in the few days before bolometric maximum and

a similar difference between the two SNe, which is consistent with the period around

g′ maximum. It may be that the host extinction has been underestimated in this case,

or it could be indicating that not all SNe sit within the main distribution.

Figures 2.25 and 2.26 show the colour evolution of SNe split by spectral type for all

SNe Ic and SNe Ib/IIb, respectively. The “bottleneck” is more readily apparent in the

SN Ic/Ic-BL/GRB-SN population than it is for SNe Ib/IIb, providing further caution

in attempting to use colours as a basis of determining host extinction. Note that for

clarity, uncertainties are not shown in these figures.



2.8. Comparison with multiband photometry 67

20 10 0 10 20 30 40 50

Rest-frame time since bolometric tmax [days]

0.5

0.0

0.5

1.0

1.5

g′
−
r′
 [

m
a
g
]

SN 2005hl

SN 2005hm

SN 2006lc

SN 2007Y

SN 2007ms

SN 2007sj

SN 2008ax

SN 2013cu

PTF11bli

PTF11jgj

PTF11klg

PTF12os

SN 2004fe

SN 2004gq

SN 2005az

SN 2005bf

SN 2005hg

SN 2005kl

SN 2005kz

SN 2005mf

SN 2006T

SN 2006el

SN 2006ep

SN 2006fo

SN 2007C

SN 2007D

SN 2007ag

SN 2007cl

SN 2007kj

SN 2008D

SN 2008bo

SN 2009er

SN 2009iz

SN 1993J

SN 1994I

iPTF13bvn

SN 1996cb

SN 1999dn

SN 1999ex

SN 2002ap

SN 2003bg

SN 2003jd

SN 2004aw

SN 2006aj

SN 2007gr

SN 2007ru

SN 2007uy

SN 2009bb

SN 2009jf

SN 2010as

SN 2011bm

SN 2011dh

SN 2011ei

SN 2011fu

SN 2011hs

SN 2012ap

SN 2013df

SN 2013ge

PTF10vgv

PTF11qiq

PTF12gzk

SN 1998bw

Figure 2.23: g′ − r′ colour of the SNe in the sample at z < 0.05. Open markers indicate SNe
where E(B−V )host is not known. To see how correcting the colour curves for host extinction
affects the spread, see Figure 2.24.
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Figure 2.24: g′ − r′ colour curves of the SNe in the sample at z < 0.05, sorted by spectral
type, showing before (left) and after (right) correction for host extinction. SNe of Types Ic,
Ic-BL, Ib, IIb, Ibc, and GRB-SNe are shown in blue, red, green, black, yellow, and dark red,
respectively.
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Figure 2.25: g′ − r′ colour of the SNe Ic in the sample at z < 0.05. Open markers indicate
SNe where E(B − V )host is not known.
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Figure 2.26: g′− r′ colour of the SNe Ib and SNe IIb in the sample at z < 0.05. Open markers
indicate SNe where E(B − V )host is not known.
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Table 2.11: Effective wavelength when photometry
peak matches bolometric peak.

SN Type Median λ (Å) 〈λ〉 (Å) σ (Å)
Ic-BL 5449 5369 536
GRB-SNe 4869 5065 419
Ic 5616 5452 826
Ib 5416 5454 500
IIb 5308 5277 334

2.8.3 Comparing the multiband and bolometric peak time

The time of peak of the photometry is a function of the effective wavelength of the

band, with blue bands peaking earlier than red bands (Taddia et al., 2015). This can

be explained by the evolution of the underlying spectrum and the cooling of the pho-

tosphere, although absorption features can affect the temporal evolution of the pho-

tometry. By using the photometry and interpolating the time of peak between the

bands I can estimate the wavelength peak that coincides with tp. Table 2.11 gives the

average wavelength where the photometry would peak at tp; it can be seen that the

values are around that of the V band, λeff = 5505 Å. For GRB-SNe the SED can be

“contaminated” by afterglow flux, which is preferentially blue, leading to a bluer SED

peak. Unfortunately, it is hard to account for GRB afterglow beyond simple empiri-

cal methods (see Section 2.2.2). For comparison, the spectra of GRB-SN 1998bw are

red, broad-lined, and almost featureless owing to the comprehensive reprocessing of

optical photons to lower frequencies by the high-energy ejecta.

2.8.4 Bolometric corrections

In the era of large-scale surveys [e.g., PTF, iPTF, the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS); the future Large Synoptic Survey Tele-

scope (LSST) and the Zwicky Transient Facility (ZTF)], where the number of tran-

sients discovered has increased (and will continue to increase) by orders of magnitude,

it is apparent that with a limited number of telescopes available, long-term multiband
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follow-up observations of single objects become more time consuming. Bolometric

corrections are a useful way of approximating the bolometric luminosity from a single

band or colour (Lyman et al., 2014), which in turn enables the determinations of the

bolometric properties of the SN. To this end, I investigate the bolometric corrections

(BCs) in single bands for our database.

The BC is defined as

Mband − BC = Mbol. (2.7)

To estimate the BC, I subtract Mbol at the time of bolometric peak from Mband at the

time of peak in that band and calculate a distribution. The mean and standard deviation

of each distribution is given in Table 2.12; the standard deviation is taken to be the error

of the bolometric correction δBC. It is apparent that the band with the least scatter is

R, where δBC = 0.13 mag, followed by I (δBC = 0.18 mag); r′ and i′ are less

constrained, with δBC = 0.28 mag and 0.27 mag (respectively). This is an issue for

calculating BCs via this method because it relies on the spectral differences of each

SN being outside the band in question. If R (λeff = 6580 Å) and I (λeff = 8060 Å)

define such a region, then it should be expected that i′ (λeff = 7630 Å) would also be a

tracer for the bolometric luminosity, but the scatter is actually considerably greater for

this band. The reason behind this could possibly be systematics (e.g., relatively poor

photometry), but this would have to be applicable to a large number of observations

across many years to avoid being lost in the noise of better observations.

There is insufficient evidence to suggest that any particular band is a superior tracer

of the bolometric light curve at peak. Additionally, if one were to apply the BC to

some SNe, the returned luminosity would be poorly constrained. This is because the

standard deviation of the spread of residuals from the BC, which is taken to be the

uncertainty in the resulting luminosity, corresponds to approximately a quarter of the

value returned. Here I have yet to even consider errors in the input photometry. Given

that the spread of SN luminosities typically ranges between 1042 erg s−1 and 1043 erg

s−1, this uncertainty represents a significant fraction of the parameter space; hence, the

BCs are not applied here.
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Table 2.12: Bolometric corrections derived
from single-band photometry.

Band Mean BC (mag) σ (mag) N
B 0.19 0.27 40
g′ −0.058 0.33 12
V −0.34 0.21 40
r′ −0.43 0.28 27
R −0.45 0.13 25
i′ −0.38 0.29 27
I −0.51 0.18 24

2.9 Discussion

2.9.1 Biases

It would be remiss to fail to appreciate the biases involved in the data used for this

study. SNe were rare discoveries until the early/mid 1990s. Typically fewer than

20 per year were discovered, but as technology improved and more large-scale sur-

veys were initiated, the number count increased from a few tens per year to the few

hundred discovered each year now (e.g., Gal-Yam et al., 2013a). However, telescope

time and funding are of limited supply; thus, the sample of SNe is affected in numer-

ous ways. For example, many of the SNe are objects of interest; they display some

unusual property that makes them targets for follow-up observations when they are

spectroscopically confirmed, or they are nearby and bright. This is especially true of

GRB-SNe and XRF-SNe, which are discovered only as a result of the detection of the

high-energy transient event with which they are associated. Consequently, GRB-SNe

and XRF-SNe are found at much greater distances that other SE-SNe and in different

host environments.

Some SNe are serendipitous discoveries in surveys designed for research in other ar-

eas, typically searches for SNe Ia, so unless the SE-SN is an object of interest it is not

monitored. Furthermore, if a SE-SN is discovered as a result of a targeted survey in

which particular galaxy types are observed at regular intervals because they display a

propensity for SNe, then events that occur in less optimal environments will be missed.



2.9. Discussion 73

This means that the SNe in this sample are a mix of targeted (e.g., Lick Observatory

Supernova Search; LOSS, the Chilean Automatic Supernova Search; CHASE, most

amateur discoveries) and untargeted surveys (e.g., PTF, the Catalina Real-time Tran-

sient Survey; CRTS, ATLAS).

Intrinsically fast evolving and dim supernovae may well also be missed. Even with

wide-field surveys that have a regular cadence these objects are hard to identify against

other dim and fast evolving transients (e.g., comets, stellar flares), automated pipelines

may not be optimised to flag such objects. Additionally, highly extinguished SNe may

be missed. This could be because the host has a high inclination or that the SN occurs

close to the nucleus.

The cost of observing transients over numerous bands has resulted in an increase of

single-band observations of SNe. If spectra are available it may be possible to estimate

the bolometric properties of the the SN by assuming its evolution is the same as that of

a SN with a similar spectrum. Finally, observations favour SNe in less dusty regions

of the host galaxy and those that are intrinsically luminous because their apparent

brightness is greater. This leads to sampling of a larger comoving volume for more

luminous SNe (Malmquist bias).

There are several consequences for our study. First, the luminosity distributions are

effectively luminosity distributions for z < 0.1 because only the GRB-SNe and some

SNe Ic-BL are sampled at higher redshifts. Second, the luminosity distributions them-

selves may be overestimating the median luminosity if the non-detection of low-luminosity

SNe is a significant issue. This is unquantifiable because rates of intrinsically dim SNe

are unknown; however, a low-luminosity, nearby SN would be an object of interest

(provided this is not a consequence of reddening). Our study shows that there ap-

pears to be a clear reduction in the number of SNe with log(Lp) ≈ 41.7, yet there are

clearly well-sampled SNe significantly below this luminosity. Given that the majority

of these SNe are found at low redshift, and so would be observable at these luminosi-

ties, it appears that intrinsically dim SNe are not being missed in large numbers in the

comoving volume that are being sampled. It must also be considered that SNe with

relatively low ejecta and nickel masses are not seen; for example, SN 1994I was found
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Table 2.13: Median values for the fully bolometric sample.

SN Type log(Lp) MNi (M�)

Ic-BL/GRB-SNe 43.00±0.21
0.21 0.34±0.13

0.19

Ic 42.51±0.06
0.36 0.16±0.03

0.10

Ib 42.50±0.10
0.20 0.14±0.04

0.04

IIb 42.36±0.26
0.11 0.11±0.04

0.04

to haveMej < 1M� (Iwamoto et al., 1994), while SN 2007Y synthesised just 0.051M�

of 56Ni. This raises interesting questions of the SN mechanism and whether there is a

lower limit on ejecta mass and nickel synthesis. Finally, I consider the effect of pecu-

liar objects on our sample. This is generally minimised because peculiar objects (e.g.,

SN 2003bg, Mazzali et al. 2009; PTF12gzk, Ben-Ami et al. 2012; SN 2011bm, Valenti

et al. 2012) do not constitute a significant proportion of each subtype, and if there are

enough of them they become subtypes in their own right (e.g., SNe Ic-BL, GRB-SNe).

I note that a good example of observational bias toward interesting objects is seen with

the number of GRB-SNe that could be included in this study. There are 10 GRB-SNe

that fulfil the criteria for inclusion, and this represents a significant fraction of those

discovered.

2.9.2 Explosion characteristics

The median population statistics and relevant 1σ uncertainties for the fully bolometric

sample are given in Table 2.13. As per Table 2.6, a hierarchy of peak luminosities

is evident, with SNe Ic-BL/GRB-SNe generally more luminous than the SN Ic, IIb,

and Ib populations. In terms of MNi, I find that most types of SNe synthesise similar

amounts of 56Ni with the exception of the broad-lined SNe Ic, where the median value

for MNi is more than double that of the others. Additionally, the median t−1/2 is found

to be shorter for these SNe compared to their less-energetic cousins. The degeneracy

betweenMej and Ek in Equation 2.6 means that without photospheric velocities, found
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from spectral modeling, it is not possible to tell whether the typically narrower light

curves of the SNe Ic is a consequence of smaller ejecta masses, more energetic explo-

sions, or some amount of 56Ni in the outer ejecta. Ejecta with significant amounts of
56Ni mixed into the outer layers will rise more quickly as the diffusion time for the

photons emitted in these regions will be less than that emitted more centrally. The

models of Arnett (1982) assume that all light-curve powering sources are located cen-

trally; if 56Ni is located further out, then this model will return less-accurate values for

the light-curve parameters.

2.9.3 Photometry

The scatter of light-curve colours at peak is unsurprising; there is no homogeneous

explosion mechanism for SE-SNe as there is for SNe Ia. The reason for the narrowing

of the colour curves after ∼ 10 days is harder to explain. Attempts have been made

to use this as a way of deriving host-galaxy extinction (e.g., Drout et al., 2011; Taddia

et al., 2015), but this method is sensitive to the underlying spectrum, K-corrections,

the quality of the photometry, the colours used, and the type of SN. It may have most

applicability for low-redshift SNe.

The SNe Ic-BL appear to have bolometric peak coincident with the SED peak to the

blue side of V, comparable to SNe IIb which are known for their blue spectra. This

cannot be accounted for in the scatter of the distribution, as it falls short of covering the

effective wavelength of V. A thorough investigation of this result cannot be undertaken

with photometry and will require the use of spectra.

2.10 Summary

I have taken 85 SE-SNe from the literature and used the available photometry to build a

set of optical pseudo-bolometric light curves and optical/NIR bolometric light curves.

By using the same method and the same cosmological model, the database is as self-
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consistent as possible. The photometry was corrected for Galactic and host-galaxy

extinction where such information was available. I found that fewer than 50% of the

SNe had known host extinction values, so I searched the literature for SNe Ib/c and

SNe II with this information known. From these data a series of distributions was

constructed, and the median host extinction for each SN type was found and used as

an estimate to correct for reddening when deriving bulk statistics.

The light curves were then analysed to reveal the peak luminosity and various temporal

properties which were used to investigate the characteristics of SE-SNe. The analysis

revealed that t−1/2 is correlated with t+1/2 but showed significant scatter around this

value. K-S tests of the cumulative distribution functions for the decay times of the SNe

revealed that most were likely drawn from the same population with the exception of

SNe Ic/Ic-BL and SNe Ic/IIb. However, the presence of the Type Ic SNe PTF11rka

and 2011bm, which display broad light curves, and a relatively small sample size skew

the SN Ic CDF. Conversely, it is found that the SNe Ib and IIb generally take longer to

rise than the SN Ic population. Using the equations of Arnett (1982), one can estimate

the mass to kinetic energy ratio of the ejecta, which is related to the rise time. These

properties are degenerate and can only be fully determined via spectral modelling;

consequently, I make no comment on the size, mass, or structure of the progenitor star.

It was also found that, in the absence of a known explosion time, the rise time of a

light curve could be estimated from t−1/2. A comparison between the peak values

of the UBVRI pseudo-bolometric light curves and UBVRINIR light curves of those

SNe having enough data to build both revealed that a tight correlation forms in the

Lp,UBV RI–Lp,UBV RINIR parameter space that is independent of SN type, allowing the

conversion of one value to the other. These relationships were then used to produce

bolometric statistics for nearly all of the SN database.

It is shown that SNe Ic-BL and GRB-SNe occupy the upper part of the SE-SN luminos-

ity distribution, with SNe IIb at the bottom. SNe Ic and SNe Ib show similar median

peak luminosities. Using an approximation of “Arnett’s law,” the amount of 56Ni syn-

thesised in the core collapse of the stars that eventually go on to form the SN Ic-BL

population is on average twice that of SNe Ic, Ib, and IIb. This is partly driven by the



2.10. Summary 77

fact that all GRB-SNe are broad-lined and luminous.

The colour curves of the multiband photometry in the sample were analysed. The

peak magnitude, time to peak, t−1/2, and t+1/2 were calculated for each band and

compared with those of the bolometric light curve. To determine the colour curves

and the colour at maximum, for each SN BgVRr photometry was converted to g′ and r′

where necessary. Our results confirm that there is evidence of a narrowing in the spread

of g′− r′ for SNe with Milky Way and host-galaxy extinction corrections applied at ∼

10 days past bolometric maximum, though there is still a large range of possible values

in this region. It is shown that the approximate wavelength of temporally coincident

peaks between the multiband photometry and the bolometric LC occurs around the

peak of the V band (λeff = 5505 Å) for all but GRB-SNe, which are blueward of

this. The photometry allowed us to investigate the possibility of using single-band

observations and a BC to derive the bolometric parameters. The smallest spread in

values was found for the R and I bands, but this was not replicated with i′, which has

an effective wavelength between these two Johnsons-Cousins filters. The uncertainties

involved would lead to poorly constrained luminosities; thus, I reject the notion of

using a single band as a proxy for the bolometric light curve at peak.

The importance of knowing the host-galaxy extinction cannot be understated. The peak

luminosity of a SN, and all of the subsequent characteristics derived from that, depend

on knowing this property. As such, I suggest that future work involving SE-SNe place

a high priority on calculating or estimating the extinction at the source. This could

be done through medium/high-resolution spectra and analysis of the Na I D absorption

lines, via some method involving the colour evolution, or preferably both. If the colour

method is used it is imperative that K-corrections are included. It is appreciated that

these methods are not without their problems, however, and further analysis of the

extinction in the environments of SE-SNe is needed.

Finally, each subtype presented here suffers from small-number statistics; hence, I

identify the need for well-sampled SE-SN follow-up observations, particularly in volume-

limited surveys, in order to improve the statistics and enhance our understanding of the

evolutionary paths of massive stars.



Chapter 3

Spectral analysis and classification

In Chapter 2 I investigated the physical properties derived from the bolometric light

curves of 85 stripped envelope supernovae. These were sorted according to subtype

and revealed that SNe Ibc are largely heterogeneous in their light curve behaviour.

In this chapter I will consider the properties of SE-SNe that can be derived through

analysis of their spectra.

The analysis of photospheric-phase spectra reveals important information about the

physical properties of the SN. Unlike the bolometric light curves, physical information

can by obtained directly from the spectra in the form of line velocities and equivalent

widths. Several questions can be asked of the spectra of SE-SNe

• Is there a continuum in H line strength between H-rich and H-poor SNe?

• Is there a continuum in He line strength between He-rich and He-poor SNe?

• Can line blending be quantified?

In this chapter spectra are examined using empirical methods to classify and sort via

envelope stripping and line blending. The results are then compared with parame-

ters found through spectral models and the results used to investigate the relationship

between different physical characteristics and SN type.

78
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3.1 Method - Visual inspection

The SNe analysed here are listed in Table C.1 and were mostly selected from the SE-

SNe database of Chapter 2 so as to provide comparative light curve properties, in par-

ticular the epoch of each spectrum with reference to bolometric maximum. I increased

this sample by also including Ic-BL SN 1997ef (Mazzali et al., 2000; Iwamoto et al.,

2000) and Type Ic SN 2004dn (Drout et al., 2011; Lennarz et al., 2012) as the former is

an interesting object spectroscopically and the latter had photometry that was not pre-

viously available. I also include preliminary analysis on Type Ic SNe 2012ej, 2016P,

2016iae (Prentice et al. in preparation) and 2016coi1 (Prentice et al., 2018). The pub-

lic spectra for each SN were downloaded from WISeRep2 (Yaron and Gal-Yam, 2012)

and supplementary photometry from the Open Supernova Catalog (OSC)3 (Guillochon

et al., 2016).

Each spectrum was shifted to the rest-frame wavelength as given in Table C.1 however

the spectra were not corrected for any kind of extinction, for two reasons. The first

is that, even though Galactic extinction is known, host extinction is usually unknown

and as host extinction normally dominates Galactic extinction then the bulk of the to-

tal extinction is unknown. Secondly, the analysis performed here relies on relative

flux rather than absolute flux and is derived over ∼ 1000 Å regions which are small

enough to mitigate the differences associated with extinction differential over wave-

length. However, for aesthetic reasons extinction corrections were applied to plotted

spectra if E(B − V ) > 0.1 mag.

The next step was to visually inspect the spectra in our sample in bins of 5 days, from

−12.5 to +12.5 days from bolometric maximum. If there were multiple spectra in each

bin I chose the spectrum closest in time to the mid-point however, I also considered S/N

and would prefer a spectrum if it was significantly better than the others. To mitigate

the possibility of bias in the grouping, the spectra were not labelled with either name

or classification.
1aka ASASSN-16fp
2http://wiserep.weizmann.ac.il/
3https://sne.space/
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Figure 3.1: A visualisation of the two-axes categorisation of the spectra of the SNe. SNe
IIb and Ib predominantly fell into the narrow-line and H/He-rich upper left quadrant. While
some SNe IIb appeared to have slightly broader lines than others, the broad lined type IIb SNe
2003bg was a clear outlier. The SNe Ic, devoid of H and He, were sorted according to line
broadness.

I grouped the spectra along two axes; hydrogen line strength, and broadness of absorp-

tion lines. This produced a sequence of He-rich SNe from IIb to Ib while the clear

absence of H/He lines in SNe Ic created an immediate separation between these and

SNe Ib/IIb. The “line broadness” axis was dominated by the sequence of SNe Ic from

narrow lined to broad lined. This is visualised in Figure 3.1.

An example of the Hα line filtering process is demonstrated in Figure 3.2, which shows

this region for a single pre-max spectrum for each SN sorted by the apparent strength

of the absorption feature.

I then followed two separate analytical pathways which I describe in Section 3 for the

SNe Ib/IIb (He-rich) and Section 5 for the SNe Ic (He-poor).
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Figure 3.2: A simple example of a visual comparison between the Hα region of the SNe Ib/IIb
sample at t < tmax, with one spectrum per SN, sorted by apparent relative strength of the
absorption to emission component. The red line represents the Hα absorption while the dashed
line represents the rest wavelength of Hα, the blue line represents the position of He I 6678 Å at
the velocity as derived from He I 5876. The Doppler shifted He I 6678 Å line is used to provide
a lower limit to the velocity of the H absorption, but is not always present in early spectra.
Ideally analysis of a single SN should be performed using many spectra with a clear temporal
evolution to a few days beyond tmax. The spectra have been normalised to their maximum flux
and smoothed with an Savitzky-Golay filter.
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3.2 He-rich SNe: The issue of hydrogen

The presence of hydrogen in SE-SNe has previously been discussed in the literature

with Elmhamdi et al. (2006) and Deng et al. (2000) using SYNOW to identify Hα in

various SNe Ib while Branch et al. (2006) and Parrent et al. (2016) find that SNe Ic

as well as SNe Ib may have some remaining H. Tominaga et al. (2005) found signs of

hydrogen in the peculiar Type Ib SN 2005bf while Fremling et al. (2016) presented the

possibility of weak H in the optical and infrared spectra of SN Ib iPTF13bvn. Folatelli

et al. (2014) suggested using used the H velocity profile as a way of separating SNe

IIb and H-rich SNe Ib into different groups. Hachinger et al. (2012) used non-local

thermodynamic equilibrium (NLTE) models to determine that less than 0.1M� of H

can be present in SNe Ib before H lines begin to appear, but they speculated that the

Hα line may be a Hα/Si II blend.

Figure 3.3 shows the canonical Type IIb SN 2011dh (Bersten et al., 2012; Arcavi et al.,

2011; Ergon et al., 2014; Soderberg et al., 2012); the P-Cygni profiles of the hydrogen

Balmer series are prominent in the spectra. On the other hand, there is also SN Ib

1999dn (Deng et al., 2000; Benetti et al., 2011) for which it is unclear if there is H

present in the spectra. The P-Cygni profile at the position of the Hα line (∼ 6200 Å) is

weak and there is no indication of the higher Balmer lines. This line could also be due

to Si II λ 6355 as in SNe Ic and Ia; a discussion of this can be found in Section 3.2.1,

however I will refer to this feature as Hα throughout the discussion of He-rich SNe.

3.2.1 Hα or Si II 6355?

The positive identification of Hα in H-poor SNe is complicated due to the possible

presence of the Si II 6355 Å line. This line is such that it differs from Hα by ∼ 10, 000

km s−1, meaning that the ∼ 6200 Å feature could represent Si II at 6, 000 km s−1 or

Hα at 16, 000 km s−1, both of which are valid velocities for these atomic species in SN

ejecta. The presence of Si II in SE-SNe is not unexpected because SNe Ic, like SNe

Ia, show an absorption feature associated with this ion (see, for example, Parrent et al.,



3.2. He-rich SNe: The issue of hydrogen 83

4000 5000 6000 7000 8000 9000

Rest-frame wavelength [ ]

0.0

0.2

0.4

0.6

0.8

1.0

S
ca

le
d
 f

lu
x
 +

 o
ff

se
t

IIb SN 2011dh

Ib SN 1999dn

He I

Hα/Si II?
He I

Fe II

He I/Fe II

Hγ?

He I/Ca II

Figure 3.3: A comparison of the pre-peak spectra of Type IIb SN 2011dh and Type Ib SN
1999dn. Highlighted in red on the SN 2011dh spectrum are the Balmer series of absorption
lines associated with Hα−εwhich indicate a H rich outer ejecta. Comparatively, in SN 1999dn,
aside from a feature in a similar position to Hα there is no clear indication of the higher Balmer
lines.

2016). I show the ∼ 6200 Å region for examples of SNe Ib, Ic, and Ia in Figure 3.4.

In SNe IIb the absorption component of the Hα P-Cygni profile dominates any con-

tribution from Si II, which is also likely constrained to a shell that is below the photo-

sphere for some significant period of the evolution of the SN. Indeed, the unambiguous

identification of this ion in SNe IIb is extremely difficult as the Hα line remains suffi-

ciently dominant in the spectrum well past the photospheric phase (∼ +40 days).

If SNe Ib are considered, the lack of higher Balmer lines in the spectra, in addition

to the potential presence of Si II, makes identification of the atomic species responsi-

ble for the feature at ∼ 6200 Å ambiguous. Matters are further complicated by the

evolution in the spectra. H lines are expected to be stronger at very early times be-

cause little else is above the photosphere and Si II should be restricted to layers well

below that of the H envelope (Sauer et al., 2006; Nakamura et al., 2001; Hachinger

et al., 2012). As time progresses a Si II line should become more prominent as the

photosphere recedes in velocity space, revealing the deeper laying ejecta. Conversely,

H should reach a limiting velocity corresponding to the bottom of the shell with the

line becoming progressively weaker as the ejecta expand and the optical depth of the
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Figure 3.4: A comparison of the ∼ 6200 Å feature between SN Ia SN 2011fe (Mazzali et al.,
2014), SN Ic 2004fe (Modjaz et al., 2014), and SN Ib 2007Y (Stritzinger et al., 2009). In SNe
Ia and Ic this feature is attributed to Si II 6355, for SNe Ib such an assertion is less certain due
to the presence of He in the outer ejecta which means that Si is buried deeper in the ejecta
and there is a possibility of H in the outer layers of the ejecta. In SNe Ic and Ia the feature
immediately redward of Si II 6355 is C II 6580 while in SNe Ib this line is dominated by He I

6678.

H envelope decreases. If the relative velocity of the two shells is ∼ 10, 000 km s−1

then it may be possible for the∼ 6200 Å feature to transition from being H-dominated

to being Si II-dominated, with little more than an asymmetrical absorption component

to indicate that this has happened.

I investigate this degeneracy by calculating the velocity of the∼ 6200 Å feature for our

SN Ib sample and for narrow-lined SNe Ic while insisting on a logical stratification to

the ejecta (Hachinger et al., 2012; Iwamoto et al., 1994) so that vH > vHe > vSiII. The

final discriminator is to ensure that the absorption feature does not extend significantly

redwards of 6355 Å, the rest wavelength of the Si II line, as this would represent an

unphysical situation. The result is shown in Figure 3.5.

With the exception of SN 2007uy and PTF12gzk most of the SNe occupy a similar

region in the time/velocity plane. However, the velocities of SNe Ic are typically higher

than those of SNe Ib. In addition to this, some SNe Ib show velocities that drop below

that of the rest wavelength of the Si II line, which is a situation that is irreconcilable

with the line being of that element. In most cases, for both SN types, the line disappears
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Figure 3.5: The velocities of the absorption line ∼ 6200 Å if attributed to Si II 6355. The
line is followed from the time it unambiguously appears until it disappears or the feature is
ambiguous. On average the velocity for SNe Ib is lower than that for the Ic SNe, though there
are exceptions, notably Type Ib SN 2007uy where the velocity is extremely large. For some
of the SNe Ib the feature drops below the rest-frame wavelength of Si II 6355, an unphysical
situation indicating that the line is not produced by Si. For comparison is the Si II velocity for
Type Ia SN 2014J (Ashall et al., 2014)

before it reaches a static velocity that would be indicative of the base of a shell.

The disappearance of the line in SNe Ib represents a serious problem if the feature at

∼ 6200 Å is attributed to Si II. With a He shell above the Si layer, the Si II strength

should increase with time as more Si is exposed by the receding photosphere. Instead

it is seen that the ∼ 6200 Å feature is strong initially (line strength for this feature is

presented via equivalent width in Section 3.2.4) before fading and disappearing around

ten days after peak. This is likely an issue with opacity, where the line forming region

has insufficient density and so τ ∼ 1. If this is the case then the line-forming region

should be in the outer layers of the ejecta, which is inconsistent with the position of a

Si shell. For SNe Ic there is no He envelope and so Si should be exposed rapidly as the

photosphere sits within the CO core material.

This reasoning does not mean that the presence of the Si II ion can be ruled out, but it

does mean that H is taken to be a valid source for the line opacity and so I henceforth

refer to the ∼ 6200 Å feature in SNe Ib as Hα.
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3.2.2 H and He Line velocities

The velocity evolution for H and He is calculated from the Hα and He I 5876 Å lines

using the maximum depth of the absorption feature and in most cases the lines were

sufficiently well defined with no evidence of blending. However, at early times and

shortly after maximum the features can be blended or less pronounced. In a situation

whereby an absorption feature shows two minima I would consider the later evolution

of the feature in order to attribute the minima to the correct species. The line velocities

for each SN were fit with a low order spline and an approximate velocity was calculated

for every day relative to maximum light. This was then used to calculated the mean

velocity of all the SNe in each daily bin.

The velocity measurements are shown in Figure 3.6 for Hα and He I 5876. The veloc-

ities are broadly consistent with those found in Liu et al. (2016) for a slightly different

data set. There is a continuum of vH values but little overlap between SN sub-types.

The situation for He I is different as the velocities do show considerable overlap, al-

though some SNe Ib can show higher line velocities in individual cases. The He I 5876

measurement is of importance because the identification of this line is not ambiguous

and will provide a useful reference point with regard to the structure of the SN ejecta.

Finally, the Hα feature itself is transient, especially in SNe Ib, and its lifetime can be

limited to ∼ 10 d past maximum light.

3.2.3 Is there evidence of Hα in the nebular phase?

Absorption

Modelling of the nebular data of SN 1993J at ∼ 150 days by Houck and Fransson

(1996) indicates that an absorption feature around 6380 Å, on the blue-wing of the

[O I] 6300, 6363 Å line, is Hα absorption corresponding to a shell with width ∼ 1000

km s−1 and an expansion velocity of ∼ 10, 000 km s−1. Maurer et al. (2010) find that

similar absorption features can be found in the [O I] line for other SNe of Type Ib and
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Figure 3.6: (Top) The Hα velocity curves for SNe IIb (black) and SNe Ib (green). For clarity
no error bars are included but uncertainties are typically less than ±500 km s−1. The SN Ib
velocities are typically higher than that for SNe IIb. (Bottom) The He I 5876 Å velocity curves,
these lines show far more overlap in the values between subgroups than for hydrogen although
SNe Ib show higher velocities on average.
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Figure 3.7: The nebular profile of Type IIb SN 2011fu at +281 days. The green region high-
lights the “flat-top” emission profile that is occasionally seen in He-rich SE-SNe, the dashed
line at 6563 Å gives the rest wavelength of Hα, and the red region shows a possible absorption
by Hα on the [O I] 6300, 6363 emission line. (Inset) The two dotted lines at 6300 and 6363 Å
demonstrate that although the [O I] is a doublet, of which the 6300 Å component is the stronger
part of the two, the split feature is not due to the doublet nature of the line. This line profile is
common, but not ubiquitous, to He-rich SE-SNe. Various SNe IIb are in black, SNe Ib 2009jf
and 2008D in blue, and Type Ic SN 2011 is included for reference in red.

IIb, as demonstrated for SN 2011fu in Figure 3.7, which they attribute to Hα. Thus,

from this absorption feature a velocity can be calculated which would be expected to

correspond to the densest part of the H shell, the base. The nebular Hα velocity as a

function of the minimum photospheric Hα velocity is shown in Figure 3.8. Some of

the SNe appear to have similar photospheric and nebular phase velocities while others

do not. To test a possible linear correlation I apply the Pearson correlation coefficient

to the data, the corresponding values of r = 0.33 suggests a weak correlation but at a

p-value = 0.32 this is not significant.

Another cause of a double-peaked [O I] emission line is asphericity (Mazzali et al.,

2005; Maeda et al., 2008), whereby the principle mass of O is ejected in a torus lead-

ing to a line profile that is viewing-angle dependent. This could be typical of a more

energetic explosion, as is characteristic of some SNe Ibc, while the only compara-

tively energetic Type IIb is SN 2003bg Mazzali et al. (2009); Hamuy et al. (2009). It

cannot be discounted that there is some degree of asphericity in the explosion of SNe

IIb contribute to the splitting of the [O II] line. Indeed, both SN 2005bf (Tominaga
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Figure 3.8: The velocity of the Hα absorption profile on [O I] 6300, 6363 during the nebular
phase as a function of minimum photospheric velocity for the supernovae in our sample and
that of SN 2001ig (Maurer et al., 2010). The dotted line represents the line of unity. Velocity
measurements were approximated to the nearest integer value and an uncertainty of ±0.5 in-
cluded. There is a tendency for some of the SNe for the two velocities to take similar values but
there are also some clear outliers, most notably SN 2011fu where vneb is amongst the largest
measured and vphot the lowest.

et al., 2005) and SN 2008D (Mazzali et al., 2008) have been suggested to have sig-

nificant deviations from spherical symmetry and their nebular [O I] line profiles are

split. Another clue can be determined by the profile of [O I] 5577, where by intrinsic

asymmetries should be apparent in this line as well, but this is not seen.

An alternative approach to asphericity is considered by Morales-Garoffolo et al. (2014a)

with respect to SN 2011fu, whereby they attribute the double peak to a “blob” of O at

∼ 4000 km s−1 in the direction of the observer. To investigate this possibility further

the nebular profiles of several Type IIb and Ib SNe are plotted in the inset of Figure 3.7.

Typically they all show some degree of offset with respect to the doublet lines, all in

the direction of the observer with velocities of∼ 2000−3000 km s−1, and most have a

peak centred on 6300 Å. Neither approach is wholly convincing because every SNe IIb

shows a blueshifted double peaked [O I] emission (with the exception of SN 2011hs

where the [O I] line is single peaked but shows a high of asymmetry). The probability

that all the SNe show motion towards the observer, or are viewed from the same angle,

is very small. Yet such a thing would be required for all the nebular [O I] lines to be
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Table 3.1: The profile of [O I] at nebular epochs

SN Type SN Type
Double Single

1993J IIb 2007Y Ib
1996cb IIb 2011hs* IIb
2003bg IIb 1999dn Ib
2008ax IIb 2007kj Ib
2011dh IIb iPTF13bvn Ib
2011ei IIb 2005hg Ib
2011fu IIb 2007C Ib
2005bf Ib
2010as IIb
2008D Ib
2009jf Ib
2004gq Ib

blueshifted or double peaked. I also conclude that the horns of the O I 6300, 6363

emission are not due to a doublet component. A similar conclusion was reached by

Modjaz et al. (2009) and Tanaka et al. (2009c) in relation to SN 2008D, although the

latter did attribute the line profile to a toroidal O distribution contaminated with host

[O I] emission. Milisavljevic et al. (2010) investigated the nebular spectra of 5 SE-SNe

and concluded that the [O I] line profile was probably not a consequence of toroidal

ejecta or non-spherical geometry (in contrast to Modjaz et al., 2008) but instead sug-

gested that the profile could be due to internal scattering or that the far side of the ejecta

could be obscured by dust.

It is clear there are a variety of views as to the nature of the double-peak in He-rich

SNe, our results, in conjunction with those of Houck and Fransson (1996); Maurer

et al. (2010) suggest that Hα absorption may well be responsible for this feature. The

reason for single profile nebular phase [O I] lines in H-poor He-rich SNe is that there is

insufficient densities of H at late times, this could be reflected in the transient nature of

the absorption line during the photospheric phase where it disappears before reaching

a constant velocity. The profile of the nebular emission lines for the He-rich SNe in the

sample are given in Table 3.1 and it can be seen that the more H-rich SNe show double

peaked emission while those with less H can show single-peaked emission.
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Emission

I now consider if it is possible to see Hα emission in the nebular phase. SNe IIb

typically show a flat-top emission feature centred on the rest wavelength of Hα which

has been attributed to the [N II] 6548, 6583 doublet (Jerkstrand et al., 2015) from

N in the He shell, see Figure 3.7. However, I take the initial view that this feature

could also be due to Hα, likely as a result of X-rays from ejecta/CSM interaction

exciting the unshocked H shell (e.g., Houck and Fransson, 1996; Maurer et al., 2010;

Matheson et al., 2000a; Maeda et al., 2015). I investigate this possibility by measuring

the velocity of the redward edge of the feature, which defines the upper limit of the

expansion velocity, although this is sensitive to density. I also consider the edge of the

flat top, which represents the inner boundary (hence velocity) of the shell containing

the line-forming region. Our results suggest that the apparent “minimum” velocity is

always lower than the lowest H velocity derived in the photospheric phase. Inspection

shows that the maximum and minimum velocities derived for the ∼ 6500 Å region

is broadly consistent with the He I 5876 velocities found in the photospheric phase

which would tend to agree with the assessment of Jerkstrand et al. (2015) though some

emission component due to Hα cannot be ruled out (For a discussion on Hα emission

in the He shell see Maurer et al., 2010).

3.2.4 Hα and He I 5876 Equivalent width

The equivalent width EW for Hα, and for comparison He I 5876, is calculated in

order to establish the temporal evolution of the line strength and to provide another

comparative characteristic between the lines. The continuum level for the wavelength

region in question was approximated by fitting the spectra with either a quadratic or

linear spline in a range of a few thousand angstroms either side of the feature. Each

continuum fit was inspected by eye and in most cases provided a reasonable fit to the

continuum level. In the few instances where the fit was clearly inaccurate the spectrum

was removed from the sample. The EW is then:
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Figure 3.9: A demonstration of the results of the equivalent width fitting code. A pseudo-
continuum, either linear or quadratic, is fit to the normalised and smoothed spectrum around
the absorption feature. The yellow shaded region is then used to calculate EW .

EW =

∫ λb

λa

[1− F (λ)/Fc(λ)] dλ (3.1)

where λa and λb are the wavelength boundaries, F (λ) is the flux of the spectrum at λ

and Fc(λ) is the continuum flux at λ. The largest sources of uncertainty come from the

continuum fit and the boundary limits. In the former case the problem arises when there

are significant emission peaks masking the underlying continuum. In the latter case

one would ideally want to place limits at the edges of the absorption feature but multi-

component lines require some estimation of where the boundary is. Fortunately these

two uncertainties are rarely seen together, as spectra with prominent emission also tend

to have well defined absorption profiles and spectra with multi-component lines tend

to have less emission. A demonstration of this procedure is shown in Figure 3.9.

The curves of the total meanEW of Hα, and He I 5876, for the He-rich SNe are shown

in Figures 3.10. Our results are consistent, in terms of relative positioning of the EW

curves of the SN types, with Liu et al. (2016) for their sample, see Figure 3.11. Our

actual values differ but this can be explained by the different methods used to process

the spectra and calculate EW , the definition of “continuum”, and different samples of

SNe.
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Figure 3.10: (Top) EW as a function of time for the Hα absorption feature. The strong H
absorption of the SNe IIb is prominent, and show considerable scatter, but there is overlap with
the strongest Hα lines of the SNe Ib sample. (Bottom) The same but for He I 5876, this line
grows in strength over time but is especially strong in some SNe Ib.
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In Figure 3.10 it can be seen that EW of Hα is weak in some SNe IIb shortly after

explosion. This is because the temperature of the ejecta at this epoch is sufficient to

ionize H and so there is little neutral H above the photosphere to provide line opacity.

As the photosphere cools the absorption increases in strength to around bolometric

maximum. For the SNe Ib the feature is typically weaker although the line strength of

some SNe Ib overlaps with that of the weaker SNe IIb.

The EW of the He I 5876 line (Figure 3.10) is quite similar for most of the SNe with

the line increasing in strength over time. This occurs because the photosphere grad-

ually exposes the denser regions of He in addition to the increased γ-ray flux as the

photosphere moves towards more 56Ni rich regions which allows non-local thermody-

namic equilibrium (NLTE) excitation of the exposed He (Lucy, 1991).

3.2.5 Hα emission to absorption ratio fem/fabs

As previously noted, the SNe were ordered based upon the relative strength of the H

features, especially Hα, and it is apparent that there is a diversity of spectral shape

within this region. In particular the relative intensity of the absorption component to

the emission component varies amongst SNe and as a function of time within each SN.

I define a value fem/fabs, which is the ratio of the maximum intensity of the emis-

sion peak, relative to the local continuum, to the minimum intensity of the absorption

trough. The local pseudo-continuum is calculated by using a linear function fitted to

two points either side of the features and the errors on the ratio calculated by allowing

these points to vary by 40 Å as shown in Figure 3.12. fem and fabs are then calculated

by taking the absolute value of the continuum-subtracted maximum/minimum inten-

sity. This value is derived from the P-Cygni profile and so is a useful measure of the

extent of the envelope and the distribution of material within it. Very H-rich SNe have

dominant emission peaks due to an extended H envelope.

I then calculate the mean of this value for early-time up to tmax but because spectral

coverage is not so ordered as to provide one spectrum per day for every SN I interpolate
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Figure 3.11: The EW curves of Hα and He I λ 5876 from Liu et al. (2016). Similarity in
evolution and relative positions of the EW curves for the SN types can be seen with respect to
Figure 3.10



3.2. He-rich SNe: The issue of hydrogen 96

the value of fem/fabs between an early epoch, usually defined as the earliest possible

spectrum, to the spectra around tmax. I then take a value for each day and divide by the

total number of days to give a pre-peak 〈fem/fabs〉 and repeat this method for EW . On

this basis I aim to smooth out any weighting due to clustering of spectral observations

and return a robust 〈fem/fabs〉 and 〈EW 〉 that is representative of the early data. A

final point is that I omitted the early phases of SNe that displayed indications of shock-

breakout because the lack of lines in these SNe is reflective of high ionisation and not

low neutral H opacity.

Typically the errors are relatively small, with the largest errors appearing when the

emission component is weak. There is a note of caution with regard to this measure-

ment in that the Doppler shifted absorption of He I λ 6678 can be present as a “v”

shaped feature on top of the Hα emission. The effect can be to reprocess photons

in the region between 6563 Å and the absorption feature effectively flattening the re-

gion around the emission peak. This will decrease the value of fem and so decrease

〈fem/fabs〉. In theory this could lead to a SN positioned marginally in one subclass

moving to the H-poor subclass below. However, this effect is mitigated in several ways;

i) by the decaying strength of Hα emission and increasing strength of He I absorption

over time, ii) that we’re considering pre-peak data when the former is strongest and

the latter weakest, and iii) when Hα emission is clear, it is easy to “subtract” the He I

absorption from the profile. Thus the SNe most affected by this are the ones already

weakest in H – SNe Ib, hence their classification will not change.

3.2.6 Other Balmer lines

Lines of the Balmer series other than Hα are normally a prominent feature of Type

IIb SNe, however the identification of these lines in some of the SNe IIb is not clear.

In Figure 3.13 it is shown that Type IIb SN 2010as lacks prominent Hβ and Hγ lines

whereas Type Ib SN 2005bf shows hints of Hβ in its spectra. Similar features are not

seen in other SNe in the sample because, in the regime under examination, Hβ must be

strong enough to have some influence on the spectrum but not so strong that it forms
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Figure 3.12: A demonstration of the fem/fabs process. A smoothed and normalised spectrum
is fit with a short linear continuum and the difference between the flux of the continuum and
flux of the base (absorption) and peak (emission) is calculated. the ratio fem/fabs is returned
as an absolute value. Errors are calculated by allowing the limits of the continuum to vary over
40 Å.

a line which, along with S/N, limits numbers. Without the higher Balmer lines, the

certainty of H being present in the ejecta diminishes significantly. This is why it is

useful to trace the evolution of these lines and the properties of the Hα profile across

the range of He-rich SNe as it demonstrates the pathway from H-rich to H-poor ejecta.

3.3 He-rich SNe - Reclassification

This work has shown the Hα region provides a continuum of line profiles and strengths

for those SNe canonically classified as Type IIb (H-rich) and Type Ib (H-poor). I seek

to re-evaluate these SNe in line with the degree of envelope stripping using the Hα line

as the discriminator. In Figure 3.14 I plot 〈EW 〉 as a function of 〈fem/fabs〉 for spectra

up to the time of maximum light, giving a comparison of line strength against the line

profile, Table 3.2 gives the values per SN. Examination of the figure shows that the

IIb SNe take the most extreme values of 〈fem/fabs〉 and 〈EW 〉 but there are regions

of some similarity. While it may be compelling to view the distribution as evidence

of two clear classes the separation is actually an artefact of the classification process.
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Table 3.2: 〈fem/fabs〉, 〈EW 〉, and classification of the He-rich SNe.

SN 〈fem/fabs〉 〈EW 〉 Old Classification New Classification
[Å]

SN2008bo 1.10 70.2 IIb IIb
SN2011ei 2.06 93.7 IIb IIb
SN2006T 1.96 97.5 IIb IIb
SN2011hs 1.35 67.3 IIb IIb
SN2011fu 2.74 28.8 IIb IIb
SN2011dh 1.99 94.1 IIb IIb
SN2003bg 2.34 75.2 IIb IIb
SN1993J 3.16 35.6 IIb IIb
SN2010as 0.32 78.3 IIb IIb(I)
SN2008ax 0.54 108.0 IIb IIb(I)
SN2006el 0.45 69.1 IIb IIb(I)
SN1996cb 0.90 129. IIb IIb(I)
SN2008D 0.68 27.7 Ib Ib(II)
SN2005bf 0.37 46.7 Ib Ib(II)
SN1999dn 0.53 47.5 Ib Ib(II)
SN2006ep 0.32 21.1 Ib Ib(II)
SN1999ex 0.77 49.3 Ib Ib(II)
SN2007kj 0.61 38.4 Ib Ib(II)
SN2007Y 0.89 45.4 Ib Ib(II)
SN2009jf 0.30 13.4 Ib Ib
SN2009iz 0.21 26.3 Ib Ib
SN2007uy 0.07 45.1 Ib Ib
SN2005hg 0.26 14.9 Ib Ib
iPTF13bvn 0.29 42.7 Ib Ib
SN2009er 0.26 26.6 Ib Ib
SN2004gq 0.28 18.3 Ib Ib
SN2006lc 0.10 39.8 Ib Ib
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Figure 3.13: Example spectra of Type IIb SN 2010as and Type Ib SN 2005bf showing the
regions (blue) occupied by Hα − δ at v ∼ 14, 000 − 17, 000 km s−1. In SN 2010as, at 13 d
before maximum, there is no clear indication of the H lines other than Hα and nor do these lines
appear at later times. In SN 2005bf (1 d before the first peak) there is a notch on the emission
profile which may be an indication of Hβ, but there is no evidence of H lines at wavelengths
shorter than this and this feature disappears after a few days.

In this case there is a “race to the middle ground” as over time SNe are classified due

to spectral similarity with earlier SNe and their spectra become reference spectra (e.g.,

Modjaz et al., 2015) which broadens the definition until the two labels meet at some

position in the middle. This appears to be linked to the visibility of the Balmer lines at

λ shorter than Hα. The consequence of this is that the distinction between H-rich and

H-poor SNe becomes arbitrary and does not reflect the continuum of H abundances.

Using these characteristics as a way of defining the Hα feature I propose the following

classification system for the SNe listed in Table 3.2.

SNe IIb

These SNe have a pre-peak 〈fem/fabs〉 > 1 indicating an emission dominated P-Cygni

profile. These SNe are H-rich and all display a prominent series of Balmer lines in

their spectra well past peak. In our sample every SN that falls into the IIb category

was originally classified as a Type IIb SN and remains so here. In Figure 3.15 I show

SN2011fu as an example for this group and demonstrate its evolution over the course
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Figure 3.14: 〈EW 〉 of Hα as a function of 〈fem/fabs〉 before peak, with this ratio being pre-
sented in logarithmic space for clarity. The plot is segmented to show that some SNe (red) have
a flux excess 〈fem/fabs〉 > 1, so the emission component dominates the absorption compo-
nent, these SNe also tend to have moderate to large EW values. The group in the blue region
have 0.3 < 〈fem/fabs〉 < 1.0, denoting absorption dominance but they also have strong lines
with 〈EW 〉 > 60 Å. Below this is a group (green) with similar line profiles but overall weaker
line strength with 20 < 〈EW 〉 < 60 Å. Supernovae with either very absorption dominated line
profiles and/or weak lines are found in the yellow region. The SNe appear to split between SNe
Ib occupying the green and yellow regions while the SNe IIb are in the red and blue regions,
because they are classified by similarity to reference spectra. This figure indicates there is a
transition from Type IIb to Type Ib SNe through the blue and green regions as these SNe are
separated by line strength. The distinct separation between SNe Ib and IIb is due to the “race
to the middle ground” that occurs due to classification by spectral similarity.
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Figure 3.15: The evolution of representative spectra for SNe in the groupings related to the Hα
〈EW 〉/ 〈fem/fabs〉 plane over the course of a month from the earliest spectrum available with
an approximate cadence of 7 days. The dashed lines are placed at the rest wavelength of Hα
and Hβ while the blue regions signify 8, 000 < vH < 20, 000 km s−1 and define the region of
interest. (Top left) H-rich IIb SN 2011fu shows many defining characteristics of SNe IIb; a hot
shock-breakout phase early on followed by very prominent H lines with a strong Hα emission
component. (Top right) SN 2010as is an example of the IIb(I) group, clearly the Hα profile
is weaker than in SN 2011fu and decays strongly over time. The later spectra are He I and
Fe II dominated blueward of Hα with no sign of Hβ. (Lower left) SN 2007Y, a member of the
Ib(II) group, shows indications of a moderate to weak Hα line but there is ambiguity due to the
presence of He I 6678, which cuts in to the Hα emission region. The early line profile shows
some similarities to that of SN 2011fu and SN 2010as. (Lower right) The Type Ib SN 2009jf
displays a weak feature around 6200 Å which is very quickly overwhelmed by He I 6678. The
presence of any amount of H is unclear here and it may be possible to entirely attribute the line
to Si II.



3.3. He-rich SNe - Reclassification 102

of a month.

IIb(I)

The IIb(I) group are defined by 0.3 < 〈fem/fabs〉 < 1 and 〈EW 〉 > 60 Å. They

typically show strong H line profiles pre-peak but these lines weaken greatly over

time. Their mean Hα P-Cygni profile is dominated by the absorption component and

in some cases the remaining Balmer series lines can be weak or even unidentifiable.

Of our sample all these SNe were originally classified as Type IIb and I use SN 2010as

as a representative for this group in Figure 3.15.

Ib(II)

The Ib(II) group shows approximately half the Hα line strength of the IIb(I) group,

20 < 〈EW 〉 < 60 Å, but occupy the same 〈fem/fabs〉 range. There is no obvious

indication of the Balmer series of lines above Hα here. The SNe that are found in

this region were all originally classified as Type Ib, however, analysis suggests that

the SNe in this group have some amount of H in their ejecta but that it is relatively

small compared to the IIb and IIb(I) groups, and so they represent the transition point

between H-rich and H deficient SNe. An example of this group, SN 2007Y, is shown

in Figure 3.15.

Ib

The final group is defined by typical SNe Ib. The SNe have weak absorption features

around 6200 Å but the sheer lack of strength in emission is such that 〈fem/fabs〉 < 0.3.

The weak feature, in conjunction with He I line scattering in the same region, results in

an ambiguous identification of this line. The 6200 Å line could be due to a very small

mass of H or due to Si II. I use SN 2009jf as the representative of this group and plot

it in Figure 3.15.
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Figure 3.16: A spectrum of Type Ic SN 2004aw (Taubenberger et al., 2006) showing the ions
that are responsible for the most prominent absorption features in a typical Type Ic SN. As with
any expanding atmosphere, the lines are blue shifted in relation to the velocity of the material
that is responsible for the line forming regions, in this case by 10, 000 − 15, 000 km s−1. The
diversity of type Ic spectra is principally a product of the velocity and degree of blending of
these lines.

3.4 He-poor SNe: Type Ic

The initial analysis described in Section 3.1 showed that there was a clear division

between the He-rich SNe and the He-poor SNe; those of Type Ic (for an innovative

investigation into the presence of He in SNe Ic see Modjaz et al., 2015). Unlike the

He-rich SNe, in which the spectra are dominated by H and or He lines, SNe Ic are

dominated by Fe II, Si II, O I, Ca II, and possibly Mg II and C II as shown in Figure 3.16.

Here SNe Ic are analysed within the context of line broadening because this is the

defining characteristic used to classify them. If the SN shows “narrow” lines (e.g. SN

1994I Filippenko et al., 1995) it will be labelled as a Type Ic, while if the SN has

“broad” lines it will be labelled Ic-BL. Unfortunately, the definition of “broad-lined”

is subjective and tells us little about the properties of the spectra other than the SN has

broader lines than SN 1994I. To confuse matters, the earliest spectrum of SN 1994I

also showed shallow, broad lines before giving way to narrower features a day later,

as shown in Figure 3.17. Had SN 1994I exploded a decade later then it is probable

that it would have been classified as Ic-BL, at least initially. With more data it is now
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Figure 3.17: A comparison of the first spectrum of SN 1994I a few days after explosion (black)
with Ic-BL SNe SN 2003jd (top) and SN 2002ap (bottom). The spectrum of SN 1994I shows
similarities with both SNe and although it is considered a typical SN Ic and the lines narrow
shortly after this time, it does demonstrate the subjective nature of the Ic-BL categorisation.

possible to quantify the degree of line broadening and provide useful information in

the classification scheme.

3.4.1 Methodology - Counting features

I adopt a straight forward method to analyse the spectra of SNe Ic by counting the

number of absorption features N that are visible. By doing this I take a measure of

the degree of line blending which can then be related to Mej, Ek, and the properties of

their light curves. The intention is that this procedure should be easily replicable and

provide information about the explosion characteristics but without the need for more

complex analytic methods or modelling.

The first step is to note the constraints this method must work under, thus one must

account for the range of wavelengths covered by different spectrographs and their re-

spective S/N and “a feature” must be defined in such a way that is not ambiguous. With

this in mind I take a core wavelength range of 4000−8000 Å as this is within the range

of most spectrographs. I then define a set of characteristic features within this range

and one outside, as defined by the lines given in Table 3.3. I include the Ca II NIR
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Table 3.3: Prominent spectral lines used to determine N

Ion λ/ [Å]
Fe II 4924
Fe II 5018
Fe II 5169
Na I 5895
Si II 6355
O I ∼7774 triplet
Ca II NIR triplet

triplet because it is often, but not always, covered by spectroscopy and its presence is

ubiquitous in SE-SNe. Furthermore I can infer properties of this line by observing the

O I 7774 triplet as well as the Ca II H&K lines if the spectrum extends sufficiently far

to the blue. For the former case the shape of the line will indicate a lack of blending if

the line is sufficiently narrow and the spectrum extends far enough to capture the rise

of the red-wing of the line. For the latter the velocity of Ca II can be measured, given

that velocities of less than∼ 27, 000 km s−1 are unlikely to result in line blending. The

C II 6580 Å line, which is normally identifiable, is not counted because it is relatively

weak and is close in velocity space to the much stronger Si II line.

Next, the lines in the spectra are examined noting which are blended and which are

absent, and calculating the line velocity from the bottom of the absorption profile.

Velocities are measured up to 30,000 km s−1, although values in excess of this are

difficult to measure as such velocities also lead to line blending.

Note that by attributing a feature to one of these lines I do not suggest it is a positive

identification of that element. This is especially relevant to the region occupied by

Na I D and Si II 6355 as several unidentified features can appear here. Thus I count a

maximum of two features in this region. I define a feature as being a significant change

in the spectrum that cannot be attributed to noise. Finally, I do not count all the visible

features in a spectrum because each feature should be identifiable in other SNe spectra

and the evolution of these features should be easily traceable.
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Noise and other sources of contamination

The method of counting features is sensitive to the resolution and noise of the indi-

vidual spectra. Noisy spectra make feature identification difficult particularly if there

are groups of lines in close proximity to each other (e.g., the Fe II lines around 5000

Å) or in the case where features become very broad and shallow, such as with hyper-

novae (e.g., SN 2002ap and SN 1998bw). I provide an example of how resolution and

S/N affects the spectra in Figure 3.18. Additionally, contamination from emission by

other processes (e.g., host-galaxy, GRB afterglow) must also be considered because

such processes can mask the SN spectrum leading to an absence of certain absorption

lines which results in a flat region of the spectrum. This can be a serious problem

for GRB/XRF SNe because the afterglow flux follows a power law decay in tempo-

ral and wavelength space which means that the contribution to the total flux from this

component is stronger during the critical early phases.

To deal with this the first option is to check spectra taken shortly before and after the

spectrum in question. This may allow a more robust estimate of the lines and their

evolution at the epoch in question rather than relying on the noisy spectrum. The

second option is to give a lower limit to the number of features. Given that noise

primarily affects the Fe II lines around 5000 Å this provides an uncertainty of 2 lines.

If the noise was excessive enough to mask other lines then the spectrum would be

rejected.

Broad lines and Ek/Mej

The importance of N is that it is a measure of the degree line blending and broadening

in SNe, which is linked to the intrinsic density profile of the ejecta and which in turn

affects Ek. The total kinetic energy Ek of the ejecta is a measure of the energy of the

explosion while ejecta mass,Mej, can give indications as to the zero-age main sequence

(ZAMS) mass of the progenitor whereby a larger Mej correlates with a greater MZAMS

(Nomoto et al., 1994). Ek/Mej is the specific kinetic energy, giving the kinetic energy

per unit mass, and as Ek is dominated by high velocity material it is also related to the
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Figure 3.18: An example the effect of resolution (left) and S/N (right) on spectra. (Left) A
spectrum of SN 2016iae has been binned in progressively larger wavelength bins. The key
Fe II λλ 4924 and 5018 lines cannot be differentiated with a wavelength resolution greater than
∼ 44 Å. (Right) The same spectrum with random noise. Between a S/N of 5 and 3.3 the Fe II

lines cannot be distinguished.
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explosion mechanism. This is due to the fact that the total Ek is sensitive to the shape

of the outer part of the ejecta density profile because a shallower density profile adds

mass, and therefore opacity, at higher velocities. The addition of a small amount of

mass a v > 25, 000 km s−1 can add ≈ 1052 erg to the kinetic energy (see, for example,

Mazzali et al., 2000, 2013; Nakamura et al., 2001).

3.5 Results

Figure 3.19 shows the results found when applying this method to three SNe covering

narrow to broad absorption features. The need for good S/N is clearly seen when

considering the Fe II regions.

N evolves differently over time for each SN but during the period before peak, and

for some days afterwards, N increases as a function of time and never decreases. At

later times the identification of features becomes more difficult as the continuum flux

decreases, especially in the blue near the Fe II lines, and the density of the outer ejecta

decreases sufficiently to significantly reduce opacity in some lines, in addition to this

the structure of the spectra becomes more complex as low velocity elements become

more prominent. The evolution ofN before this epoch is towards 6 and 7 in most cases

but in some situations (e.g. SN 1998bw, PTF10vgv (Corsi et al., 2012)) significant line

blanketing around 5000 Å masks Fe II lines in this region, restricting the value of N .

As an example of the evolution of N , Figure 3.20 shows the tmax spectrum and the

evolution of N in relation to the light curve for four SNe in our sample; SN 1998bw

(Patat et al., 2001), SN 2002ap (Mazzali et al., 2002; Foley et al., 2003), SN 1994I

(Richmond et al., 1996; Filippenko et al., 1995; Sauer et al., 2006), and SN 2007gr

(Valenti et al., 2008; Mazzali et al., 2010). There is clear diversity in the shape and

temporal characteristics of each SN and the evolution of N is not predictable or uni-

form although N never decreases with time. This latter behaviour allows upper limits

on N to be placed at times earlier than the first spectrum.
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Figure 3.19: An example of SNe with different N , the lines counted towards N are denote
by the grey regions. (Top) A spectrum of SN 2011bm with N = 7, as can be seen the Fe II

4924 and 5018 lines are clearly unblended. Because of the limited wavelength range of many
spectrographs I do not count anything blueward of the Fe II 4924 line, however, if present the
Ca II H&K lines can be used to limit the velocity of the Ca II shell. The absorption feature
directly blueward of the Fe II 4924 line is a further series of Fe II lines. (Middle) SN 2004aw
shows blended Fe II lines although the rest of the designated features are unblended. (Bottom)
A spectrum of SN 2002ap indicating severe line blending. The Fe II lines are completely
blended as are O and Ca. The Si II 6355 feature is broad, however it is not blended with
the Na I D line, which itself is not clearly apparent. It may be appearing around ∼ 5700 Å but
is not counted here.
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Figure 3.20: (Left) The normalised and offset bolometric light curves of our reference SNe.
The number of features N in the spectra is shown as a function of epoch, the evolution of
N is not entirely predictable as shown by SN 2002ap where N = 3 before maximum but
rapidly evolves to N = 7 shortly after maximum while SN 1994I takes much longer to reach
N = 7. (Right) The maximum light spectra of the reference supernovae, the number of features
counted and their location. The Ca II NIR triplet is present in SN 2007gr at this epoch however
the spectrum does not extend sufficiently far to the red to show it, while in SN 2002ap there
is enough evidence in spectra around this epoch to suggest that the lines are in the process of
separating.
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N at t−1/2, tmax, and t+1/2

N can be evaluated as a function of time but because of the discrete values of N

and the different temporal characteristics of each SN I consider just the value of N

at comparative epochs in the evolution of the LC. The time of bolometric maximum

tmax is used as a fiducial t0. I also consider two other reference times, the first is t−1/2,

which is the time taken for the light curve to rise from Lp/2 to peak luminosity Lp,

t−1/2. The second is t+1/2, the time taken for the light curve to decay from Lp to Lp/2.

These times are used to investigate the number of features in the spectra scaled to a

similar epoch in the evolution of the light curve. Spectra are selected within a bin

around ±2 days for t−1/2, ±4 days for tmax and ±6 days for t+1/2, where the windows

reflect the fact that a day represents a greater proportion of the evolved time earlier in

the light curve.

In some cases there was sufficient photometry to measure t−1/2 for individual bands

but insufficient photometry to construct a bolometric LC. To compensate for this I

took the SNe with bolometric t−1/2 and investigated how the multi-band t−1/2 varied

in comparison. It is found that t−1/2 for the gVR bands were generally within two days

of the bolometric t−1/2, and for most SNe it was closer to one day. Thus, for SNe

which lacked a bolometric t−1/2 but had earlier photometry I used the t−1/2 for VRg,

prioritised by their respective order.

Table 3.4 gives the line velocities and overall N of SNe with spectra at t−1/2 while

Table 3.5 gives the same for spectra at tmax ± 4 days. Finally, the spectral velocities at

t+1/2 are given in Table 3.6; I do not list N here because the degree of blending in the

Fe II region between 4500 − 5000 Å is ambiguous owing to the decaying strength of

these lines in some of the spectra. If the S/N is sufficiently good then in most cases N

takes a value of 6 or 7. The post peak evolution of He-poor SNe spectra is discussed

in Section 3.8.2.
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Table 3.7: Common line blending combinations

N Description
3 Fe II blend, Si II, O I/Ca II blend
4 Same as N = 3 but with visible Na I

6 Fe II 4924 and 5018 blended, all other lines separate
7 All lines separate

3.5.1 The effect of line-blending on N

The value of N is a discrete number and there is a prevalence for certain values which

correspond to particular sets of line blending, which are listed in Table 3.7. Figure 3.19

shows three example SNe with the features highlighted. The effect of line blending and

broadening is apparent as one looks down the plot and the importance of the Fe II 4924

and Fe II 5018 lines, and O I and Ca II NIR to the value of N is also apparent.

The blending of absorption features gives clues as to the shape of the density profile

of the ejecta and, by proxy, Ek. In this section I discuss the situations in which lines

transition from being blended to being separate.

Line velocity and spread, and the effect on line blending

The two main regions of interest are the blending of Fe II 4924, Fe II 5018, and the Fe II

5169, 5169, 5235 group with each other and the blending of the O I 7774 triplet and

Ca II NIR triplet. In velocity space the Fe II lines are separated by ∼ 5600 km s−1 (for

Fe II 4924 and 5018) and ∼ 10, 500 km s−1 (for Fe II 5018 and Fe II 5169) while the

O I 7774 triplet and Ca II NIR lines are separated by∼ 27, 000 km s−1. This represents

a good sampling of log-spaced velocity, which is why line blending is sequential. Thus

from this cursory analysis one can expect that very high velocity ejecta is required to

blend O and Ca II, whereas the Fe II lines require a less substantial velocity differential.

Note that it is not sufficient for the ejecta to be high velocity; the values given here are

the velocity differentials, that is the spread ∆v over which the atom or ion must provide

sufficient opacity. If the lines were simply offset by 27, 000 km s−1 then O I 7774 and

Ca II NIR would not blend, as can be seen in PTF12gzk (Ben-Ami et al., 2012) where
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Figure 3.21: (Left) The evolution of the Fe II 4924 and 5018 features in SN 2002ap; the grey
dashed line represents the lines shifted by ∼ 10, 000 km s−1. The two lines emerge out of
the broader feature over a period of two days. (Centre) The same as SN 2002ap but for SN
1994I. The velocity of the Fe II lines is ∼ 10, 000 km s−1 but they are weaker and take longer
to appear in terms of light curve evolution than for SN 2002ap. (Right) The evolution of the
O I and Ca II blend for SN 1998bw. At −11 days there is an indication of material contributing
to the opacity which would match Ca II at ∼ 15, 000 km s−1, however it is not possible to say
if this is Ca II or not. After peak the Ca II NIR triplet lines become prominent at a velocity of
∼ 13, 000 km s−1.

the line velocities are typically > 20, 000 km s−1 but 〈N〉 = 6.

Deblending

Figure 3.21 shows how various lines become deblended in the spectra, although it is

noticeable that this tends to occur around or after peak in most SNe. The broad-lined

supernovae provide a useful study into this process because they represent the largest

possibility for change in the spectra. Lines deblend as the opacity velocity differentials

decrease because of ejecta expansion and the changing slope of the density profile.

3.5.2 〈N〉 as an aid to classification

Having established how I countN and what it represents I now consider 〈N〉, the mean

N , which is calculated from the t−1/2 and tmax spectra and is used as a measure of the
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pre-peak spectral evolution. In the absence of spectra at t−1/2 the earliest spectrum

after this time is used, alternatively the value at tmax is used. If there are no spectra

at tmax then N(tmax) is interpolated from spectra before and after. 〈N〉 is taken to be

an integer and so non-integer values are rounded up. In general N(t+1/2) cannot be

used to reliably estimate 〈N〉 and the issues affecting post-maximum classification of

SE-SNe are discussed in Section 3.8.2.

Using this information it is now possible to adjust the existing classification system to

include information about the degree of line blending in the SNe, which is done by

including 〈N〉 in the “Ic” nomenclature and dispensing with the ambiguous “Ic-BL”.

For example, broad-line Ic SN 2002ap becomes “Ic-4”, whereas narrow lined Ic SN

2007gr becomes “Ic-7”. Table 3.8 gives the new classification for the SNe used here.

This method is advantageous because the relative degree of line broadening between

SNe is clearly given.

Figure 3.23 shows representative spectra for SNe of type Ic-3, Ic-4, Ic-6, and Ic-7 while

Figure 3.22 shows how many SNe fall into each Ic-〈N〉 category. That there appears

to be as many SNe with significant line blending compared to those with well defined

lines is partly a consequence of a bias in the prioritisation of SN observations and of

these SNe tending to be more luminous on average (Prentice et al., 2016).

3.6 Taxonomy

In Section 3.5.2 〈N〉 was established as a means of characterising the spectra of SNe

Ic, and in Section 3.7 I compare 〈N〉 with physical parameters derived from the bolo-

metric light curves of the SNe. From this it can be seen that 〈N〉 is weakly correlated

with line velocity, as would be expected, but no correlation with any other property.

Consequently, with two addition parameters, I can further expand on this method by

including vSiII at peak in units of 1000 km s−1, and t+1/2 in days, which gives Ic-

〈N〉
(
vp,SiII/t+1/2

)
. These measurements provide a useful at-a-glance comparison be-

tween He-rich SNe. This taxonomic scheme is applied to the He-poor SNe in our
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Table 3.8: Ic classification including information on N

SN Ic〈N〉
1994I Ic-6
1997ef Ic-4
1998bw Ic-3
2002ap Ic-4
2003jd* Ic-4
2004aw Ic-6
2004dn Ic-6
2004fe Ic-6
2005az Ic-7
2006aj† Ic-6
2007gr Ic-7
2009bb Ic-6
2010ah Ic-3
2010bh* Ic-3
PTF10vgv Ic-5
2011bm Ic-7
2012ej Ic-7
PTF12gzk Ic-6
2016P Ic-6
2016coi Ic-4
2016iae Ic-7
† 〈N〉 is an upper limit, from tmax spectrum only
*Lower limit due to contamination or poor S/N

2 3 4 5 6 7 8
〈N〉

0

1

2

3

4

5
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8

9

C
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t

Figure 3.22: The number of SNe within the category Ic-〈N〉. The values 〈N〉 = 3, 4, 6, 7
represent common sets of line blends whereas the Ic-5 group appears to be transitional between
Ic-4 and Ic-6, however, there is just one example; PTF10vgv. There is uncertainty in the
categorisation of a few SNe due strong host-galaxy emission lines (e.g., SN 2016P), which is
not reflected here.
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Figure 3.23: The t−1/2, tmax, and t+1/2 spectra of four representative SNe for the SN Ic
classification scheme presented in this work. Only the first two spectra are used in defining 〈N〉,
the last is given to show spectroscopic evolution. (Top left) GRB-SN 1998bw is a model for the
Ic-3 group, and it displays blended Fe II lines, O I and Ca II, and a single Si II feature until well
after maximum. The deblending of the Fe II lines is affected by the depressed flux blueward of
5000 Å. (Top right) Here SN 2002ap is used to show the effects of early deblending. The early
spectrum shows similarity to SN 1998bw at a relative epoch. The grey dotted spectra are a few
days later than the reference spectra and are used to show the evolution of the O I/Ca II blend.
By maximum SN2002ap has deblended O I and Ca II lines, a distinct Na I line and the Fe II

lines, while still blended, are beginning to separate. (Lower left) SN 1994I shows the evolution
of Ic-6 SNe. Generally the only blend is of the Fe II 4924 and 5018 lines and these separate
shortly after maximum. Notice that, except for similarities between SN 2002ap and SN 1994I
at t+1/2, particularly around 4500 - 5500 Å and 6200 to 7000 Å. (Lower right) Ic-7 are well
demonstrated by SN 2007gr, the lines are narrow and well defined throughout.
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Table 3.9: The reclassification of SNe Ic

SN Previous classification Reclassification
1994I Ic Ic-6(11/9)
1997ef Ic-BL Ic-4(13/45)
1998bw GRB-SN Ic-3(15/16)
2002ap Ic-BL Ic-4(9/16)
2003jd* Ic-BL Ic-4(13/14)
2004aw Ic Ic-6(11/21)
2004dn Ic Ic-6(9/15)
2004fe Ic Ic-6(8/u)
2005az Ic Ic-7(11/29)
2006aj* GRB-SN/Ic-BL Ic-6(21/14)
2007gr Ic Ic-7(7/15)
2009bb Ic-BL Ic-6(20/13)
2010ah Ic-BL Ic-3(18/17)
2010bh* GRB-SN Ic-3(32/9)
PTF10vgv Ic Ic-5(7/10)
2011bm Ic Ic-7(6/43)
2012ej Ic Ic-7(7/20)
PTF12gzk Ic Ic-6(17/24)
2016P Ic-BL Ic-6(u/14)
2016coi Ic-BL Ic-4(14/20)
2016iae Ic Ic-7(9/14)
*〈N〉 Lower limit due to contamination or poor S/N
u: insufficient data to calculate

sample in Table 3.9. Note that for GRB-SNe the reclassification does not supersede

the “GRB-SN” label and I find that all SNe associated with GRBs are classified as Ic-3.

Figure 3.24 shows the distribution of t+1/2 for all the SNe Ic in the sample used here,

plus those from Prentice et al. (2016) that did not make the cut here. This figure is a

useful reference when considering how a value of t+1/2 sits in relation to other SNe. It

is apparent that t+1/2 < 20 d in most cases but that in a few extreme examples t+1/2

can be around double this.

3.7 〈N〉 in relation to other parameters

〈N〉 is a measure of line blending, reflecting the density profile of the ejecta above

the photosphere which has an effect on Ek/Mej. However, more information can be
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Figure 3.24: For reference, the distribution of t+1/2 for 34 SNe Ic. As noted in Section 3.5,
t+1/2 is usually calculated from the bolometric light curve but the VRgr bands also provide
good approximations.

extracted from the spectra and from the light curves so there exists a series of properties

that can be investigated in relation to 〈N〉 which should help reveal the properties of

SE-SNe and the diversity within. From the spectra I can extract line velocities for most

SNe (principally those that do not show excessive line blending), or provide estimates

on the ejecta velocity, and by using photometric information the temporal and physical

characteristics of the LCs can be compared with 〈N〉.

3.7.1 〈N〉 in comparison with line velocities

Of interest are the line velocities at maximum as a function of 〈N〉, shown in Fig-

ure 3.25, of Si II, Fe II, and O I, the first of which is taken as an approximation of the

photospheric velocity vph. It can be seen that a possible relationship may exist between

〈N〉 and the velocities of Si II, and Fe II, although some uncertainty in measurements

of 〈N〉 adds to the scatter of the values. A test using the Pearson correlation coefficient

on vSiII yields r = −0.54 and p = 0.029 which suggests that as p < 0.05 the correla-

tion may be statistically significant, but this is based on a very limited data sample of

16. Comparatively, for vFeII and a sample size of 13 I find r = −0.43 and p = 0.15
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Figure 3.25: Line velocities around maximum light of Type Ic SNe as a function of 〈N〉.
(Top left) The Si II line velocities show a possible relationship between the velocity of the
photosphere and 〈N〉, there is uncertainty with 〈N〉 in some SNe due to contamination from
other emission sources, poor S/N, restricted wavelength or temporal coverage. (Top right) The
same as before but for Fe II (note vFeII ≈ vCaII), the relationship between line number and the
velocity of a line is also present. The number of visible iron lines is related, at least partially,
to the iron velocity because this series of lines (Fe II 5169, 5169, 5235) represents two sources
of blending when considering 〈N〉. The positioning of SN 1998bw and SN 2002ap in this plot
is interesting because the Fe II lines in these SNe at this epoch are on the verge of deblending
(This is discussed in Section 3.5.1. (Lower left) the O I lines do not show the same relationship
with 〈N〉 and are more scattered, however this is partially because it has not been possible to
estimate the O I velocity when it is blended with the Ca II NIR triplet.
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suggesting that a correlation is not significant. It is likely that the sample sizes here are

far too small to extract any meaningful analysis however.

Should a correlation between 〈N〉 and line velocities be expected? Line broadening

is associated with high energy ejecta which places some material at high velocities.

That some SNe show broad lines but their peak velocities settle around the typical

value of SNe Ic (SN 1998bw, SN 20002ap) while others retain high velocity lines,

either blended (SN 2006aj, SN 2010bh)) or unblended (PTF12gzk) is indicative of the

energy distribution in the ejecta. In the former case the energy is primarily ejected into

material in the outer layers creating a high velocity region with a flatter density profile.

The most energetic SNe tend to be associated with GRBs.

3.7.2 〈N〉 and light curve parameters

Having considered how various line velocities relate to 〈N〉 one can investigate the

relationship between 〈N〉 and properties of the light curve: t−1/2, Lp, MNi, and t+1/2

which is plotted in Figure 3.26. The values for these three properties are taken from

Prentice et al. (2016) and their derivation described therein. The optical (4000−10000

Å) pseudo-bolometric Lp is used here in order to maximise the available SNe.

It appears that 〈N〉 is weakly correlated with Lp, however this is driven by the GRB-

SNe, which are exclusively Ic-3 and significantly more luminous on average than other

He-poor SNe, and the choice of SNe used here. In the absence of the GRB-SNe there

is no relation between Lp and 〈N〉, nor is there a correlation with any of the other

parameters investigated.
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Figure 3.26: Second parameters when considering 〈N〉. (Top left) t−1/2, (top right) optical
pseudo-bolometric peak luminosity Lp, (lower left) MNi as derived from the previous value of
Lp, (lower right) t+1/2. Lp and MNi include host-galaxy extinction when known but some are
lower limits, SN 2004dn in particular appears heavily extinguished. None of the parameters
individually show a correlation with 〈N〉 but they are all related to each other through the
photon diffusion and ejecta expansion times scales (Arnett, 1982). SN labels as the same as in
Figure 3.25
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3.8 Discussion

3.8.1 He-rich SNe

The method for characterising the ∼ 6200 Å region used for the He-rich SNe has

allowed for the separation of these SNe into four separate groups defined by where

they sit in the 〈EW 〉/〈fem/fabs〉 plane, which represents the degree of certainty that

there is H in the ejecta. For the IIb and IIb(I) sub-groups this is definite as the Hα P-

Cygni profile is a prominent feature and Hβ and Hγ are present in most cases. For SNe

Ib(I) the presence of H is likely, implied by the transition in strength of the ∼ 6200

Å feature across the IIb(I) SNe to the Ib(II) SNe, but supporting evidence such as

higher Balmer lines is absent and the spectra are dominated by strong He I from early

epochs. Si II 6355 may well account for some of the opacity that results in the ∼ 6200

Å absorption feature. The Ib group displays a weak absorption around the 6200 Å

region, and an even weaker emission peak, that is most likely attributable to Si II 6355,

with little, if any, contribution from Hα. If H is present in these SNe it is likely diffuse

very soon after explosion and so provides little opacity.

The analysis presented here suggests that most He-rich SNe are not stripped down to

their He layer but retain some amount of H in their ejecta. Four of the SNe IIb (1993J

2011hs, 2011dh, 2011fu) display an early rapidly decaying phase in their light curve

that can be interpreted as cooling of the stellar surface following shock-breakout. The

timescale of shock-breakout, and its luminosity are related to the radius of the progen-

itor, ejecta mass, and explosion energy (see Nakar and Piro, 2014; Piro, 2015). A more

extended progenitor has a longer cooling timescale and greater luminosity, which is

expected to be seen in the light curve as a rapid initial peak (∼ half a day) followed

by decline over a few days (for a more extended envelope). No such early time emis-

sion is seen for any other IIb or IIb(I) SNe in our sample and, while for most of the

SNe this could be due to lack of detection at a sufficiently early time, the lack of a

declining phase in the light curve puts an upper limit on the extent of the progenitor’s

envelope. This discrepancy has been used to make the case that SNe IIb can occur
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from both compact (∼ a few solar radii) and extended (∼ a few hundred solar radii)

progenitors (e.g., Bersten et al., 2012; Folatelli et al., 2014). Interestingly, two of the

Ib(II) SNe have shown a similar emission; the peculiar SN 2008D/XRF080109 (Maz-

zali et al., 2008; Soderberg et al., 2008; Modjaz et al., 2009), and SN 1999ex (Hamuy

et al., 2002; Stritzinger et al., 2002) where the early emission has been attributed to

shock-breakout from the stellar surface, or in the case of SN 2008D, to the failure of

a relativistic jet to pierce the stellar envelope Mazzali et al. (2008). Our results are

consistent with more H-rich SNe also being more extended.

3.8.2 He-poor SNe (SNe Ic)

A comparison of Ek/Mej with N

It was noted in Section 3.4 that a small amount of mass at high velocity can increase

the kinetic energy of the ejecta by nearly 1052 erg and that Ek/Mej was significantly

affected by the shape of the outer density profile. The variation in density profile can

be explained by small masses of material projected to high velocities, as could happen

in the case of an asymmetric explosion. In this case one may expect to see widely

separated peaks in the nebular phase [O I] 6300, 6363 Å line (see Mazzali et al., 2005;

Maeda et al., 2008) and relatively broad, but not necessarily blended, lines for an off

axis jet (e.g., SN 2003jd) or extremely broad and long-lived absorption features as with

GRB-SNe if viewing the jet on-axis (this would also explain why the GRB is detected

in some Ic with low 〈N〉 and not in others4).

I now compare 〈N〉 with Ek/Mej derived from spectral modelling or hydrodynamic

simulations, as these are most reliable for calculating Ek. Simpler methods (e.g., “Ar-

nett”) cannot account for the changes in density profile of the ejecta and so only provide

coarse estimates of the kinetic energy. The number of SNe available for this kind of

analysis is small, so there are just a few key examples which fortunately cover a good

range of Ek/Mej. Figure 3.27 shows the relationship between Ek/Mej and the number

4Although the detection rate for GRBs is not 100 percent
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Figure 3.27: Ek/Mej as a function of 〈N〉 for SNe with the former values derived from spectral
modelling rather than analytical methods. The plot indicates that, for SNe with such values
available, 〈N〉 is related to Ek/Mej. That the two parameters should be linked is a product
of the outer density profile whereby a small amount of high velocity mass results in a large
increase in kinetic energy. SN 2006aj is an unusual case because 〈N〉 is difficult to define
as it is likely that the spectra are contaminated by other sources of emission. This plot also
demonstrates the need for more SNe Ic to be modelled spectroscopically as the commonly
used analytical methods cannot account for the diverse range of density profiles.

of features for the SNe that fulfil our requirements. It can be seen that Ek/Mej scales

with smaller 〈N〉 although the case of SN 2006aj is extremely uncertain as the pre-max

spectra show contamination from the host-galaxy and the XRF afterglow (Pian et al.,

2006).

The density profile of the ejecta is an important part of what defines the value of

Ek/Mej (Mazzali et al., 2013). It is typically modelled with a steep index before reach-

ing a turn-over at lower radial coordinates (Mazzali et al., 2000). In a simple model I

can define three cases:

Case 1: A steeper density profile provides more mass towards the core, at lower veloci-

ties. The photosphere evolves slower through velocity space in this environment as the

increasing density of the material passing through the photospheric boundary offsets

the decrease in density due to expansion. Line formation should be relatively narrow

in velocity space as the opacity outside the photosphere rapidly drops due to the steep

profile. This is typical of larger 〈N〉.
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Case 2: Flatter density profiles can project more material to higher velocities. For a

fixed mass M such a profile would have a higher overall Ek than for a steeper density

profile, however the photosphere would recede more rapidly in velocity space. Such a

profile should allow somewhat broad, but not necessarily blended, lines which would

reduce in velocity rapidly. Ek/Mej would be larger than for Case 1.

Case 3: A steep density profile with a flatter outer part has already been discussed, but

to summarise it would result in long-lived blended lines as the photosphere recedes

slowly in the steep part of the density profile but the flatter part provides sufficient

opacity to greater velocities resulting in line blending. This allows the larger mass

of the steeper density profile to combine with the larger kinetic energy of the flatter

density profile leading to a larger Ek/Mej than Case 2. This situation would result in a

very low 〈N〉.

A relationship between 〈N〉 and the outer density index n is suggested in that a lower

value of one represents a lower value of the other. For SN 1998bw n = 2 and 〈N〉 = 3,

while for SN 1994I n = 7 and 〈N〉 = 6. It may be possible that with more work a set

of models could be used to provide an analytical estimate of the total kinetic energy of

the SN by using 〈N〉 as a proxy for n.

Post-peak spectral similarity

I have considered spectra at times before and around maximum light. However, many

SNe are classified at a later epoch and while it is clear that early spectra, even with

relatively poor S/N, can be categorised but it is not clear that this true of later times.

Table 3.6 indicates that the line velocities of many SNe fall within a relatively narrow

range that does not correspond with their velocities at earlier times. In Figure 3.28

I plot the spectra of several supernovae where the spectra appear to be similar. The

epochs are all post-maximum but vary in relation to the evolution of the light curve

(i.e., they are not all around t+1/2). While the order of spectra are grouped in terms of

early spectral similarity it is clear that, aside from the Ic-7 SNe (SN2011bm and SN

2007gr, where the narrow lines remain prominent), the remaining SNe have spectral
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Figure 3.28: Various spectra that appear somewhat similar post-maximum, this is particularly
the case for the top five SNe for which 〈N〉 = 3, 3, 3, 5, 5 respectively . Only the spectra of
Ic-7 SN 2011bm and Ic-7 SN 2007gr show clear deviation from the general characteristics of
the other spectra. I include a version of the observed SN 2011bm spectrum where 20 percent
noise has been introduced, which shows that S/N is important for classification after peak as
this spectrum could be mistaken for belonging to the group of spectra above it.

similarity on at lease one occasion during their evolution. To test the effect of noise

on the Ic-7 SNe I include two versions of the same spectrum of SN 2011bm in which

I artificially introduce noise at the 20 percent level to one of the spectra. Both the

noisy and observed spectra show similarity to the spectra above them in the region

redward of 5000 Å. The key difference is in the region between 4000− 5000 Å where

the Fe II lines lose their definition with increasing noise. While it is still possible to

see a positive comparison between the two SN 2011bm spectra and that of SN 2007gr

it is also possible to see similarity between the noisier SN 2011bm spectrum and the

spectra above. A further increase in noise also increases the ambiguity of the spectrum

and could make misclassification more likely. Such problems may well occur often

as classification spectra are typically taken with shorter exposure times than science

spectra and consequently a lower S/N. This can have an effect on the statistics of SN

rates as post-peak classification is ambiguous.
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Sample size

Our sample has relatively few SNe with spectra or light curves early enough to inves-

tigate N at t−1/2. Although this number increases for tmax, it is evident that with 5

subgroups more data is required in order to effectively probe the parameter space. I

can trace three issues that result in a dearth of numbers. The first is biases in obser-

vations, where rare SNe such as GRB-SNe or those with broad lines are followed in

more detail than normal SNe Ic. The second is data with low S/N; it is understandable

that spectroscopy can be time intensive for all but the brightest targets but information

on the SN is lost if S/N is too low. The third is the lack of data made publicly available,

which is especially relevant to spectra which cannot be accommodated in the literature

in the way light curve information can. A significant proportion of the data on Wis-

eRep has been supplied by 2014 Harvard-Smithsonian Centre for Astrophysics (CfA)

data release (Modjaz et al., 2014). More data will allow more robust analysis to build

on this work.

3.9 Conclusions

The publicly available spectra for the SNe in the sample of Prentice et al. (2016), plus

that of SN 1997ef, SN 2004dn, and unpublished data for SN 2012ej, SN 2016P, SN

2016coi, and SN 2016iae has been analysed, using an empirical method to group the

spectra according to the presence and strength of H lines, He lines, and line broad-

ening. From this, there was found to be a clear distinction between SNe of Type Ic

(He-poor) and those of Type Ib/IIb (He-rich), the analysis then proceeded along two

separate pathways

3.9.1 He-Rich SNe

The He-rich SNe were analysed for the presence and strength of H in their spectra.

Measurements were made of the velocity, equivalent width, and ratio of absorption to
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emission of the feature around 6200 Å which is typically attributable to Hα. An alter-

nate explanation for this feature could be Si II 6355 as is found in Type Ia and Ic SNe,

however the analysis presented here suggests that, while Si II 6355 may contribute to

the opacity in this region, Hα is more likely the dominant component for most He-rich

SNe.

The spectra were also examined for the presence of Balmer lines beyond Hα, which are

prominent in H-rich SNe but rapidly decrease in strength with decreasing Hα strength.

It is found that some classical IIb SNe do not display clear H absorption beyond Hα

while some SNe Ib show hints of these features that are broadly in line with a contin-

uum of H line strength.

The mean pre-peak contrast ratio between 〈fabs/fem〉 and the mean pre-peak equivalent

width 〈EW 〉 have been used to systematically categorise the ∼ 6200 Å feature, and

from this the He-rich SNe are able to be placed into four groups:

• IIb - H-rich, Hα emission dominates absorption

• IIb(I) - moderately H-rich, Hα absorption dominates emission

• Ib(II) - Likely shows some Hα but lacks any definite signatures. Like IIb(I) but

with a weaker line profile

• Ib - Weak 6200 Å feature, probably Si II dominated

An emission dominated Hα feature relates to a strong P-Cygni line profile, which is

indicative of an extended H envelope. Such a large distribution of emitting material

in the outer ejecta is incompatible with the location and abundances of Si found in

He-rich SNe. Finally, the results here are consistent with the conclusions driven from

analysis of the early time declining phase of the light curve of some SNe IIb in that the

most H-rich SNe are also the most extended because their outer envelope would be H

dominated.
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3.9.2 Type Ic SNe

The method adopted to analyse the spectra of type Ic SNe was to count the number of

absorption features N present in the spectra at key epochs. 7 key features have been

selected due to their prominence and ubiquity in SE-SNe spectra, because they allow

for an investigation into the velocity spread over which blending occurs, and due to

the wavelength constraints of commonly used spectrographs. Because line blending is

related to the specific kinetic energy of the ejecta this is a useful diagnostic for classi-

fication and provides information about the properties of the SNe without resorting to

more complex processing methods.

By taking a mean value for N before bolometric maximum and comparing this value

with the velocities of Si II, Fe II, and O I it is found that there is a relationship between

〈N〉 and line velocity, although this should be expected as sufficient mass at high ve-

locity, along with a steep density profile in the outer ejecta, is required to form broad

lines. Comparison with the properties of the SNe light curves (Lp, t−1/2, t+1/2) as

well as MNi reveals that there is no connection between 〈N〉 and any of these proper-

ties. However, the specific kinetic energy Ek/Mej, using values derived from spectral

modelling or hydrodynamical simulations, may be related to 〈N〉. This is because line

blending requires an outer, flatter component to the density profile of the ejecta which

increases the mass at high velocity, and with it Ek, but without significantly increasing

the overall mass. This could be a consequence of ejecta with a jet like structure as is

expected with GRB-SNe. High velocities alone do not translate into a large Ek/Mej. If

the lines are relatively narrow then the density profile is steeper in front of the photo-

sphere.

To reflect the findings here I adapt the common nomenclature for SN classification

by including 〈N〉, vSiII at peak, and t+1/2 so as to give a clearer picture of the degree

of line blending in SNe Ic and to provide physical information about the explosion.

The adopted form of the taxonomical system is as follows: Ic-〈N〉
(
vp,SiII/t+1/2

)
, with

vSiII in units of 1000 km s−1. With this modification the properties of SNe Ic can be

compared at a glance and the arbitrary nature of the “broad-line” definition is removed.



Chapter 4

Observations of SE-SNe

Previous chapters have dealt with the photometric and spectroscopic properties of large

samples of SE-SNe. In particular, in Chapter 3 it was noted that we are now entering

a time when we can begin to see further divisions within the SN classification scheme.

This led to my proposed sub-classifications of SE-SNe in line with the degree of enve-

lope stripping (for He-rich SNe) and for quantifying line blending (SNe Ic). I made an

important note that there is a dearth of well sampled SNe Ibc – those caught early and

with high quality data. This limits the analysis that can be done.

To build on the work already described in Chapters 2 and 3, and to examine the diver-

sity of SE-SN properties from an independent body of data, I now present observations

and analysis of 19 SNe. I will compare the properties of these SNe with those found

in Chapter 2 while utilising the classification scheme presented in Chapter 3. I will be

aiming to see if there are similarities and differences in the properties of these SNe and

to assess if we have well sampled the SN Ibc parameter space.

4.1 Target selection and data sources

In the time frame 2015 – 2017, approximately 6 – 12 objects per year were classified

as SE-SNe. I aimed to follow as many objects as possible with no bias towards those

133
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that may be designated as “objects of interest”, for example GRB-SNe. However,

with limited telescope time, and in order to maximise the scientific potential, I limited

observations to SNe classified pre-maximum light and that were at z < 0.05 in order

that they remain bright enough to observe into the nebular phase. Exceptions to this

only came when I observed objects in collaboration with the Public ESO Spectroscopic

Survey of Transient Objects (PESSTO) and extended PESSTO (ePESSTO) and so was

able to access spectroscopy from larger telescopes.

Of the 19 SNe listed in Table 4.1, 15 of these were obtained as part of my own ob-

serving programmes; these SNe were discovered from 2015 onwards. Three further

supernovae are included as part of the work I led on the PESSTO/ePESSTO observa-

tions of stripped envelope supernovae. The remaining SN is 2012ej, which after some

work, was deemed to have insufficient data to publish as a stand-alone object. Two of

these SNe in this sample have been the subject of published work; GRB-SN 2016jca

(Ashall et al., 2017) and Ic-4 SN 2016coi (Prentice et al., 2018). In the latter we

presented comprehensive photometric and spectroscopic observations of the SN along

with analysis and spectral modelling. This object is discussed briefly in Section 4.4.3

with regards to its unusual nature – residual He in the outer ejecta.

Telescopes and instruments

Primarily, I used the Liverpool Telescope (LT) (Steele et al., 2004) and the Las Cum-

bres Observatory (LCO) network of 2.0 m robotic telescopes (Brown et al., 2013) to

obtain photometric and spectroscopic data. The LT was the primary source of data,

with the LCO network used as an auxiliary source. The 2.0 m Liverpool Telescope

is located in the Northern hemisphere at the Roque de los Muchachos Observatory

(ORM) on the island of La Palma, Spain. The LCO telescopes are located in the North

at the Haleakala Observatory, USA, and South at the Siding Spring Observatory, Aus-

tralia. PESSTO/ePESSTO objects were supplemented with additional spectra from

the European Southern Observatory (ESO) Faint Object Spectrograph and Camera2

(EFOSC2) on the 3.6 m New Technology Telescope (NTT), based at La Silla, Chile.
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On the LT the primary instruments were the optical wide-field camera IO:O for pho-

tometry and the Spectrograph for the Rapid Acquisition of Transients (SPRAT) (Pias-

cik et al., 2014) for spectroscopy. The LCO telescopes are clones of the LT, but the

instrument package is different. On both there is a Spectral optical imaging camera

and a Floyds spectrograph. The latter has variable slit widths, from 1.2” to 6.0” and

a wide wavelength range; 3200 Å to 10000 Å. The low resolution EFOSC2 covers a

wavelength range 3050 – 11000 Å
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4.1.1 Photometric calibration

The nightly photometry from the LT and LCO comes reduced (e.g., bias subtraction,

flat fielding) through their own pipelines. This leaves photometric calibration down to

the user. I developed a short pipeline to align and the calibrate the images in order to

process light curves of the objects observed. This pipeline utilises PYRAF as part of

the UREKA package.

Standard star lists are obtained from the Sloan Digital Sky Survey data releases 4 – 9

and the American Association of Variable Star Observers Photometric All-sky Survey

(APASS). The latter are observed in ugriz and the former in BV gri. Use of the SDSS

stars is preferential as the fields are well observed, with sources to ∼ 24 mag, whereas

the APASS fields can be sparse, with few stars in the field and a limit of ∼ 17 mag.

Host subtraction is desirable for some SNe, particularly if they explode in a bright

H II region. Without host subtraction the late time light curves (∼ hundred days) are

flattened as the host flux begins to dominate over the SN flux. At maximum light

the host-flux is negligible compared to that of the SN. Unfortunately suitable frames

for host subtraction require very good seeing conditions < 1.1 arcsec, a total of 15 –

20 minutes of exposure time per band, and be taken at least three years after the SN

explodes. Hence, given that telescope time is limited, observations of new objects were

prioritised over host-subtraction exposures for the two pre-2014 SNe.

Image preparation

The pipeline flow is shown in Figure 4.1 and was based upon the method described in

Ashall et al. (2014). The pipeline starts aligning the nightly exposures to a reference

image (usually r) using IRAF.DAOFIND to obtain the physical coordinates of sources

within the reference image and then IRAF.IMALIGN to align the remaining exposures

to it. If there are multiple exposures in the same band these are then stacked using

IRAF.IMCOMBINE.



4.1. Target selection and data sources 138

.fits images

iraf.imalign iraf.imcombine iraf.daofind

iraf.phot

Match  
stars

iraf.fitparamsiraf.invertfit

SN 
magnitude 

list

Calibrated 
magnitudes

FWHM-PSF 
choice

FWHM-PSF 
loop

iraf.daofind/

Figure 4.1: Flow diagram of the photometry pipeline. The “FWHM-PSF loop” is shown in
blue, this loop is repeated for varying FWHM-PSF values between 1 and 20 pixels.

Finding instrumental magnitudes

The pipeline begins the “FWHM-PSF loop” – an iteration through a list of Full-width

half-maximum (FWHM) values that define the point spread function (PSF) used, nor-

mally 10 values in the range 1 – 20 pixels. This method evolved because measured

FWHM of the SN did not always return well behaved photometry. Hence the range of

FWHM values allows a variety of possibilities to be tested. Its value is seen further

when, on rare occasions, just one FWHM-PSF value works.

The aligned frames and FWHM-PSF are passed to the main pipeline which uses IRAF.DAOFIND

to find all the sources in the frames. These sources are then passed to IRAF.PHOT which

performs aperture photometry using the FWHM-PSF to find the instrumental magni-

tudes. These sources are then cross-correlated with the RA and DEC of the standard

stars and the supernova via a custom PYTHON script named MATCH STARS which re-

turns a list of the standard stars and their instrumental magnitudes.
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Photometric equations and calibration

This list is passed to IRAF.FITPARAMS which fits a simple linear equation in the form

of

minst = mstandard + Zp (4.1)

whereminst is the instrumental magnitude,mstandard the magnitude of the standard star,

and Zp is the zero point, in order to compare the standard stars with the instrumental

magnitudes and hence calibrate the photometry for a particular band. Note the absence

of a colour term and an airmass term. The exposures are all at approximately the same

airmass, so an airmass term would be effectively zero. On the other hand, a colour

term based on the standard stars was originally used in Equation 4.1 in the form

minst = mstandard + A+B × C (4.2)

where A and B are constants and C is a colour term based upon the calibrate magni-

tudes of the standard stars (e.g., g − r or B − V ). A consistency check found that

the form of the equation without the colour term returned calibrated magnitudes of the

standard stars that were closer to measured magnitudes of those stars, or no worse.

This is because, if one exposure of one of the reference bands in the colour term was

poor, it would then affect the photometry for any other band where this term was used.

The photometric equations and instrumental magnitudes are then passed to IRAF.INVERTFIT

which applies the equations to the sources in the field and returns the calibrated magni-

tudes. The calibrated magnitudes of the SN is extracted from the output and appended

to a list
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Final output

The code then either repeats the “FWHM-PSF loop” with the next FWHM-PSF value

or ends if this process is complete. If complete, the pipeline takes the median magni-

tude for each band from the SN magnitude list as the calibrated photometry of the SN.

Uncertainties on this value are either the standard deviation on the distribution of cal-

ibrated magnitudes or the mean error from the fit to the photometric equations (these

are the errors derived from the least-squares fit applied to find the parameters of the

photometric equations)

Testing

The pipeline developed over the course of 2016 to 2017 and underwent a series of con-

sistency checks during its development in order to determine its reliability. The key test

was to ensure that the calibrated photometry was accurate. To do this, the magnitudes

of the standard stars were compared with those output by the pipeline, as demonstrated

in Figure 4.2. Typically, the pipeline output was found to return the magnitudes of the

standard stars with a median percentage difference of < 2 percent. The best calibrated

stars were those that were bright and unsaturated, while the scatter increased towards

the magnitude limit defined by the exposure time and weather conditions of the night.

The final test is on the actual light curves themselves. If the pipeline is sensitive to

systematics that result in significant (> a few percent) deviations in calibration then this

would show as random scatter in the light curves, or offsets in the case of photometric

observations taken at different latitudes. This is not seen, the light curves are well

behaved when the standard stars are well behaved, the SN has a good S/N, and when

the weather conditions are fine.
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Figure 4.2: Histogram of the percentage difference between r-band standard star magnitudes
and calibrated magnitudes. The absolute mean of the distribution is 0.08 percent, the absolute
median is 0.09 percent (magenta dotted line), and the standard deviation on the distribution is
2 percent.

4.1.2 Spectral data reduction

The amount of spectroscopic data reduction required depends upon the instrument,

the pipeline it passes through before being passed to the user, and the output of that

pipeline.

Spectroscopic data from SPRAT on the LT undergoes a reduction pipeline before be-

ing released to the user (Piascik et al., 2014). Prior to 2017 this required the user to

perform the final step of flux calibrating the spectra. In this case the wavelength cal-

ibrated output of the SPRAT pipeline was calibrated to the sensitivity function of a

spectroscopic standard star via IRAF.CALIBRATE. However, a later adjustment to the

pipeline produced flux calibrated spectra, albeit in relative flux units in most cases.

On the occasions where the source was not automatically located by the SPRAT pipeline

a manual extraction and wavelength/flux-calibration was required. I developed a short

pipeline that wavelength calibrates the spectra to the Xe arc spectra taken the same

night, and then flux calibrates the spectra to the response of the spectroscopic stan-
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dard star. The pipeline uses IRAF.APALL to extract a spectrum from a user defined

aperture (manual centering, trace, and background subtraction). For the nightly arc

exposures, the resulting spectrum is then compared with defined a Xe line list using

IRAF.IDENTIFY to set the wavelength calibration for that night. The wavelength cali-

bration derived from the arc exposure is applied to the object spectrum via IRAF.DISPCOR

using the wavelength calibrated arc spectrum as a reference. This wavelength cali-

brated spectrum is then flux calibrated using the same procedure as described previ-

ously.

Data from the FLOYDS spectrographs on the LCO telescopes also passes through a

pipeline, but this has a tendency to fail at the final step in the process necessitating a

manual extraction of the already flux and wavelength-calibrated spectra.

Aside from LT/SPRAT and LCO/Floyds, spectra from other sources were shared with

me, these are –

• The Device Optimized for the LOw RESolution spectrograph (DOLORES) on

the Telescopio Nazionale Galileo (TNG) located at the ORM

• The Yunnan Faint Object Spectrograph and Camera (YFOSC) on the Li-Jiang

2.4 m telescope (LJT)) at Li-Jiang Observatory of Yunnan Observatories (YNAO)

• Bei-Jing Faint Object Spectrograph and Camera (BFOSC) on the Xing-Long

2.16 m telescope (XLT) at Xing-Long Observation of National Astronomical

Observatories (NAOC)

• Intermediate Dispersion Spectrograph (IDS) on the 2.5m Issac Newton Tele-

scope (INT), at the ORM

• Kast Double Spectrograph on the Shane 3m telescope at the Lick observatory

• DEep Imaging Multi-Object Spectrograph (DEIMOS) located on the Keck II

telescope

• Wide-Field Spectrograph (WiFeS) on the Australian National University 2.3 m

telescope, Siding Spring Observatory (as part of PESSTO)
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4.1.3 Calculating host extinction

Being able to quantify the effect of host extinction of a SN is important in order to

derive properties that relate to the luminosity and the spectral shape. There are two

methods commonly used in the literature. The first method is through measurements of

the equivalent width of the Na I D doublet absorption feature (Poznanski et al., 2012),

although there are limitations to this method when applied to low resolution spectra

(Poznanski et al., 2011). Accurate measurement of the equivalent width of the Na I line

is best achieved with high S/N spectra with good resolution. This method also assumes

a Milky Way type RV = 3.1, which does not necessarily apply to other galaxies (e.g.,

Ashall et al., 2014; Stritzinger et al., 2018b). The choice of continuum will affect

the resulting equivalent width. Also the equations used to derive E (B − V )host are

very sensitive to the equivalent width and when the lines saturate the relationship is no

longer valid.

The second method is through the colour curves of the SN, whereby a “bottleneck”

appears to occur in V −R at ∼ 10 days past R-band maximum (Drout et al., 2011). A

similar relationship was used for g − r (Taddia et al., 2015; Stritzinger et al., 2018b).

However, neither method is without issues. The colour method suffers from large

uncertainties due to the scatter of the host-corrected colour curves (see Chapter 2) and

relies on other methods to define E (B − V )host for the SNe in the distribution in the

first instance.

The equivalent width of the Na I D line is calculated in relation to a “local continuum”,

a line of best fit to the data around the the Na I absorption line. If the intensity of the

Na I absorption is less than the variance (e.g., noise) of the line of best fit minus the flux

then an upper limit is obtained. This method is used to provide a range of values for

E (B − V )host in order to determine the mean extinction and the standard deviation

of the distribution, which is taken to be the uncertainty. While it is found that S/N

and the estimated local continuum affect the value of the equivalent width, the largest

contribution to the error is the uncertainties given in Poznanski et al. (2012). A final

consistency check is to compare the E (B − V )tot corrected spectra with other SNe at
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similar epochs. Late-time spectra are especially useful in this regard as over-correction

leads to abnormally blue spectra.

I calculateE (B − V )host for all the SNe used previously that lacked this, in addition to

those introduced here, using the equivalent width of the Na I D absorption lines while

comparing these values to the that derived from the g − r colour curves. The updated

E (B − V )host values, and new bolometric parameters for previously examined SNe

are presented in Table D.1.

4.1.4 Distances

In Chapter 2, distances were given as the z-dependent distance based upon the given

cosmology. Here, to better reflect the calculated distances to the host galaxy, I use

either the median distance modulus derived from the Tully-Fisher (TF) method, or if

this is not present I use the z-dependent distance. This is because peculiar motions

of galaxies have an important effect on the apparent redshift in the local (z < 0.05)

universe, a region that encompasses the vast majority of the SNe observed here. In

the future, the uncertainty in the distance to local SN hosts may be worthy of further

investigation.

4.1.5 Calculating tp, MNi, and Mej

To determineMNi and the time from explosion to maximum light tp I use the analytical

models of Arnett (1982) as given in Valenti et al. (2008)

L(MNi, t, τm) = MNie
x2 ×

[
(εNi − εCo)

∫ x

0

A(z)dz + εCo

∫ x

0

B(z)dz

]
(4.3)

where A(z) = 2ze−2zy+z2 and B(z) = 2ze−2zy+2zs+z2 with x = t/τm, y = τm/(2τNi),

and s = [τm(τCo − τNi)/2τCoτNi]
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τm is a characteristic time-scale of the model, εNi and εCo are the luminosity per unit

mass of 56Ni and 56Co; i.e., 3.90× 1010 erg s−1 g−1 and 6.78× 109 erg s−1g−1 respec-

tively.

This model assumes homologous expansion, a constant opacity, spherical symmetry,

and that 56Ni is located centrally. The light curve model was fit to the data using a

Monte-Carlo routine that allowed the time of explosion texp, τm and MNi to vary.

The light curve is not fit in its entirety, with emphasis being placed on the rise and the

peak. After this the light curve deviates from the model for two reasons. The first is

that, as the ejecta expands, the opacity to γ-rays decreases and energy escapes. This

simple model assumes full trapping. Next is that the light curve model is that of the

bolometric LC, however, here we deal with pseudo-bolometric light curves, typically

over the range 4000 − 10000 Å, which covers ∼ 70 − 80 percent of the total flux.

Consequently, as the SN evolves, the peak in the spectral energy distribution shifts

red-wards leading to a loss of flux in the integration range compared with the early

epochs. Each case results in an increase in the light curve decay rate and deviation

from the model some weeks after maximum light.

The explosion time texp is limited so that it cannot take a value that is after the date

of discovery, and it must be no more than 35 d before tmax. The reason for this latter

condition is that some light curves find a “best fit” as the tail of the model passes

through the plateau of the light curve peak. When examined in the broader context of

the light curve it is clear that the fit is inappropriate. Information on discovery dates and

corresponding photometry was found via Bright Supernova1 (Gal-Yam et al., 2013b).

For the rise time estimated by the fit to the light curve model, Mej can be calculated by

rearranging Equation 2.4 for mass

Mej =
1

2

(
βc

κ

)
τ 2

mvsc (4.4)

vsc is a scale velocity, a “characteristic” velocity of the ejecta. There are large uncer-

1http://www.rochesterastronomy.org/snimages/
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tainties with this method as κ and vsc are degenerate, and the model is highly sensitive

to tp, which is used to approximate τm. κ is often taken to be 0.07 − 0.1 cm2 g−1

(Chugai, 2000; Cano, 2013; Wheeler et al., 2015; Taddia et al., 2018b), but in reality

is variable throughout the SN ejecta. Defining a “typical” velocity in the form of vsc is

difficult, as the ejecta has a continuous velocity profile. It is commonly taken to be the

photospheric velocity, vph, at maximum light or some estimated expansion velocity.

Measurements used may be that of the Fe II λ 5169 or Si II λ 6355 lines, but these tend

to cover the maximum and minimum measured velocities in the ejecta at peak and lead

to large uncertainties. The photospheric velocity, by definition, is below the velocity

of both these lines.

Here I use κ = 0.07 cm2 g−1, and take vsc to be the velocity of the line with the lowest

velocity at tmax, as an approximation for vph. In the case of He-poor SNe, this is Si II

λ 6355, and for He-rich SNe it is O I λ 7774 if present, He I λ 5876 if not.

4.2 Analysis and results

The intrinsic light curves of the 19 SNe are shown in Figures 4.3, 4.4, and 4.5, with

their associated physical parameters and classification listed in Table 4.1. In Figure 4.6

the extinction corrected g − r colour curves of the SNe are shown compared to the

larger sample. The corrections bring the SNe into the same region as occupied by

other SE-SNe, supporting the consistency of the methods of Poznanski et al. (2012)

and Drout et al. (2011).

The maximum light spectra of the SNe presented here, sorted according to type, are

shown in Figure 4.7. In Figure 4.8 are nebular spectra of those SNe where observations

could be take at a late enough epoch. Table 4.2 lists the spectroscopic observations

presented here, all spectra are presented in Appendix E.
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Table 4.2: Journal of spectroscopic observations

MJD t−tmax Telescope/instrument λ range Exposure time

[rest-frame days] [Å] [s]

SN 2012ej

56170 3 TNG/DOLORES 3000 – 8000 1200

56172 5 TNG/DOLORES 3000 – 8000 1200

56186 19 TNG/DOLORES 3000 – 8000 1500

56213 45 TNG/DOLORES 3000 – 8000 1800

56275 107 TNG/DOLORES 3000 – 10000 2400

56325 157 TNG/DOLORES 3000 – 10000 3600

SN 2013bb

56388.25 -5.6 NTT/EFOSC2 3000 – 10000 1500

56395.20 1.1 NTT/EFOSC2 3000 – 10000 1500

56401.16 7.0 NTT/EFOSC2 3000 – 10000 1600

56508.99 112.9 NTT/EFOSC2 3000 – 10000 2700

56717.27 317.6 NTT/EFOSC2 3000 – 10000 2400

SN 2014L

56688.72 -8.4 ANU/WiFeS 3300 – 9000 1200

56689.30 -7.8 NTT/EFOSC2 3000 – 10000 900

56694.33 -2.8 NTT/EFOSC2 3000 – 10000 900

56696.35 -0.8 NTT/EFOSC2 3000 – 10000 900

56712.60 15.2 ANU/WiFeS 3300 – 9000 1200

56730.60 33.1 ANU/WiFeS 3300 – 9000 1200

56738.51 40.9 ANU/WiFeS 3300 – 9000 1200

SN 2014ad

56730.62 -9.4 ANU/WiFeS 3300 – 9000 1200

56733.51 -6.5 ANU/WiFeS 3300 – 9000 1800

56734.54 -5.5 ANU/WiFeS 3300 – 9000 1800

56735.61 -4.5 ANU/WiFeS 3300 – 9000 1800

56738.46 -1.6 ANU/WiFeS 3300 – 9000 1200
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56744.52 4.3 ANU/WiFeS 3300 – 9000 1000

56749.64 9.4 ANU/WiFeS 3300 – 9000 1200

56763.48 23.1 ANU/WiFeS 3300 – 9000 1800

56768.15 27.8 NTT/EFOSC2 3000 – 10000 900

56770.45 30.1 ANU/WiFeS 3300 – 9000 1200

56777.19 36.8 NTT/EFOSC2 3000 – 10000 1200

57100.31 358.1 NTT/EFOSC2 3000 – 10000 1800

SN 2015ah

57243.42 -5.0 LT/SPRAT 4000 – 8000 1800

57244.51 -3.9 LT/SPRAT 4000 – 8000 1800

57247.55 -0.9 LCO/Floyds 3200 – 10000 1800

57248.32 -0.1 NTT/EFOSC2 3000 – 10000 1200

57249.10 0.5 LT/SPRAT 4000 – 8000 1200

57251.00 2.4 LT/SPRAT 4000 – 8000 1200

57250.55 2.0 LCO/Floyds 3200 – 10000 1800

57253.19 4.6 NTT/EFOSC2 3000 – 10000 900

57253.53 4.9 LCO/Floyds 3200 – 10000 1800

57254.15 5.5 LT/SPRAT 4000 – 8000 1200

57256.49 7.8 LCO/Floyds 3200 – 10000 1800

57257.17 8.5 LT/SPRAT 4000 – 8000 1200

57257.96 9.3 LT/SPRAT 4000 – 8000 1200

57271.52 22.6 LCO/Floyds 3200 – 10000 2700

57277.53 28.5 LCO/Floyds 3200 – 10000 2700

57294.55 45.3 LCO/Floyds 3200 – 10000 3600

57301.22 51.8 NTT/EFOSC2 3000 – 10000 1800

57308.31 58.8 LCO/Floyds 3200 – 10000 3600

57396.5 145.6 Keck/DEIMOS 4000 – 10000 1800

SN 2016P

57408.14 -7.8 LT/SPRAT 4000 – 8000 300

57410.23 -5.8 LT/SPRAT 4000 – 8000 600

57413.29 -2.8 LT/SPRAT 4000 – 8000 600
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57415.30 -0.8 NTT/EFOSC2 3000 – 10000 1500

57423.13 6.8 LT/SPRAT 4000 – 8000 600

57423.34 7.0 NTT/EFOSC2 3000 – 10000 1500

57430.13 13.7 LT/SPRAT 4000 – 8000 700

57434.29 17.8 NTT/EFOSC2 3000 – 10000 1800

57443.28 26.7 NTT/EFOSC2 3000 – 10000 1800

57466.02 49.1 LT/SPRAT 4000 – 8000 400

SN 2016bau

57462.05 -15.0 LT/SPRAT 4000 – 8000 400

57463.07 -14.0 LT/SPRAT 4000 – 8000 400

57464.11 -12.9 LT/SPRAT 4000 – 8000 300

57465.13 -11.9 LT/SPRAT 4000 – 8000 900

57465.89 -11.2 LT/SPRAT 4000 – 8000 300

57466.95 -10.1 LT/SPRAT 4000 – 8000 300

57475.88 -1.2 LT/SPRAT 4000 – 8000 100

57478.94 1.7 LT/SPRAT 4000 – 8000 300

57479.53 2.3 LCO/Floyds 3200 – 10000 250

57480.85 3.6 LT/SPRAT 4000 – 8000 100

57483.91 6.7 LT/SPRAT 4000 – 8000 100

57487.91 10.7 LT/SPRAT 4000 – 8000 300

57488.92 11.7 LT/SPRAT 4000 – 8000 125

57500.36 23.1 LCO/Floyds 3200 – 10000 1250

57508.97 31.6 LT/SPRAT 4000 – 8000 750

57515.91 38.6 LT/SPRAT 4000 – 8000 750

57525.89 48.5 LT/SPRAT 4000 – 8000 900

57703.16 225.1 LT/SPRAT 4000 – 8000 1500

SN 2016coi

57536.19 -13.1 LT/SPRAT 4000 – 8000 200

57537.13 -12.2 LT/SPRAT 4000 – 8000 100

57539.88 -9.5 LJT/YFOSC 3500 – 9200 1800

57540.11 -9.2 LT/SPRAT 4000 – 8000 100
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57541.59 -7.8 LCO/Floyds 3200 – 10000 1200

57541.87 -7.5 LJT/YFOSC 3500 – 9200 1800

57542.17 -7.2 LT/SPRAT 4000 – 8000 100

57546.56 -2.8 LCO/Floyds 3200 – 10000 1200

57548.14 -1.2 LT/SPRAT 4000 – 8000 100

57549.15 -0.2 LT/SPRAT 4000 – 8000 100

57551.14 1.6 LT/SPRAT 4000 – 8000 100

57552.67 3.2 LCO/Floyds 3200 – 10000 1200

57553.07 3.6 LT/SPRAT 4000 – 8000 100

57554.67 5.2 LCO/Floyds 3200 – 10000 400

57557.11 7.6 LT/SPRAT 4000 – 8000 100

57557.53 8.0 LCO/Floyds 3200 – 10000 1200

57558.07 8.6 LT/SPRAT 4000 – 8000 100

57561.04 11.5 LT/SPRAT 4000 – 8000 100

57563.74 14.2 XLT/BFOSC 3600 – 8800 2400

57566.51 17.0 LCO/Floyds 3200 – 10000 1200

57570.59 21.0 LCO/Floyds 3200 – 10000 1200

57574.20 24.6 LT/SPRAT 4000 – 8000 150

57574.59 25.0 LCO/Floyds 3200 – 10000 1200

57575.14 25.6 LT/SPRAT 4000 – 8000 150

57581.01 31.4 LT/SPRAT 4000 – 8000 150

57583.59 34.0 LCO/Floyds 3200 – 10000 1800

57584.72 35.1 LCO/Floyds 3200 – 10000 1800

57588.14 38.5 LT/SPRAT 4000 – 8000 200

57591.58 41.9 LCO/Floyds 3200 – 10000 1800

57593.12 43.5 LT/SPRAT 4000 – 8000 300

57602.65 53.0 XLT/BFOSC 3600 – 8800 2700

57602.68 53.0 LJT/YFOSC 3500 – 9200 1800

57603.53 53.9 LCO/Floyds 3200 – 10000 1800

57613.59 63.9 LJT/YFOSC 3500 – 9200 2700

57613.93 64.2 LT/SPRAT 4000 – 8000 1000
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57614.47 64.7 LCO/Floyds 3200 – 10000 1800

57620.57 70.8 LJT/YFOSC 3500 – 9200 2700

57623.69 73.9 LJT/YFOSC 3500 – 9200 2700

57625.66 75.9 LJT/YFOSC 3500 – 9200 2700

57628.62 78.8 LCO/Floyds 3200 – 10000 1500

57636.50 86.7 LCO/Floyds 3200 – 10000 1500

57636.99 87.2 LT/SPRAT 4000 – 8000 700

57656.36 106.5 LCO/Floyds 3200 – 10000 1800

57661.5 111.6 INT/IDS 3700 – 7600 3600

57662.20 112.3 Lick/Kast 3400 – 10000 2700

57677.20 127.3 LCO/Floyds 3200 – 10000 1800

57678.41 128.5 LCO/Floyds 3200 – 10000 1800

57693.84 143.8 LT/SPRAT 4000 – 8000 1500

57701.32 151.3 LCO/Floyds 3200 – 10000 1800

57703.57 153.5 LJT/YFOSC 3500 – 9200 2400

57724.11 174.0 Lick/Kast 3400 – 10000 1200

57728.84 178.7 LT/SPRAT 4000 – 8000 1500

57736.23 186.1 LCO/Floyds 3200 – 10000 1800

57744.21 194.0 LCO/Floyds 3200 – 10000 1800

57898.5 347.8 Keck/DEIMOS 4000 – 10500 900

57990.94 439.9 LT/SPRAT 4000 – 8000 2400

SN 2016frp

57638.13 0.1 NTT/EFOSC2 3000 – 10000 1800

57638.00 0.0 LT/SPRAT 4000 – 8000 900

57642.28 4.2 NTT/EFOSC2 3000 – 10000 1800

57650.98 12.6 LT/SPRAT 4000 – 8000 900

57651.10 12.8 NTT/EFOSC2 3000 – 10000 1800

57655.19 16.8 NTT/EFOSC2 3000 – 10000 2700

57664.19 25.5 NTT/EFOSC2 3000 – 10000 2700

SN 2016iae

57705.11 -8.6 LT/SPRAT 4000 – 8000 400
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57707.42 -6.3 LT/SPRAT 4000 – 8000 1000

57708.02 -5.7 LT/SPRAT 4000 – 8000 400

57708.58 -5.2 LT/SPRAT 4000 – 8000 1000

57710.01 -3.8 LT/SPRAT 4000 – 8000 400

57710.28 -3.5 NTT/EFOSC2 3000 – 10000 900

57711.26 -2.5 NTT/EFOSC2 3000 – 10000 1500

57712.00 -1.8 LT/SPRAT 4000 – 8000 400

57712.09 -1.7 NTT/EFOSC2 3000 – 10000 1800

57713.09 -0.7 NTT/EFOSC2 3000 – 10000 1800

57714.08 0.2 NTT/EFOSC2 3000 – 10000 1800

57718.24 4.3 NTT/EFOSC2 3000 – 10000 1800

57723.22 9.3 NTT/EFOSC2 3000 – 10000 2700

57740.23 26.3 NTT/EFOSC2 3000 – 10000 1500

57759.22 45.2 NTT/EFOSC2 3000 – 10000 1800

57771.09 57.0 NTT/EFOSC2 3000 – 10000 1800

57779.13 65.0 NTT/EFOSC2 3000 – 10000 2400

57789.08 74.9 NTT/EFOSC2 3000 – 10000 2900

57803.05 88.9 NTT/EFOSC2 3000 – 10000 2700

SN 2016jdw

57756.21 -6.7 LT/SPRAT 4000 – 8000 700

57757.20 -5.8 LT/SPRAT 4000 – 8000 1000

57762.27 -0.8 LT/SPRAT 4000 – 8000 700

57764.27 1.1 LT/SPRAT 4000 – 8000 700

57770.24 6.9 LT/SPRAT 4000 – 8000 500

57788.19 24.6 LT/SPRAT 4000 – 8000 700

57789.10 25.5 LT/SPRAT 4000 – 8000 700

57790.15 26.5 LT/SPRAT 4000 – 8000 900

57812.11 48.0 LT/SPRAT 4000 – 8000 700

57824.20 59.9 LT/SPRAT 4000 – 8000 900

57846.03 81.3 LT/SPRAT 4000 – 8000 900

57866.91 101.8 LT/SPRAT 4000 – 8000 1000
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57892.07 126.5 LT/SPRAT 4000 – 8000 1300

SN 2017bgu

57811.24 -7.0 LT/SPRAT 4000 – 8000 700

57812.27 -6.0 LT/SPRAT 4000 – 8000 700

57813.25 -5.0 LT/SPRAT 4000 – 8000 700

57814.27 -4.0 LT/SPRAT 4000 – 8000 250

57820.24 1.8 LT/SPRAT 4000 – 8000 200

57824.27 5.8 LT/SPRAT 4000 – 8000 200

57828.20 9.7 LT/SPRAT 4000 – 8000 200

57839.17 20.6 LT/SPRAT 4000 – 8000 200

57853.02 34.3 LT/SPRAT 4000 – 8000 250

57902.98 83.8 LT/SPRAT 4000 – 8000 750

57931.90 112.5 LT/SPRAT 4000 – 8000 1000

58000.85 180.9 LT/SPRAT 4000 – 8000 1000

SN 2017dcc

57865.27 -3.5 NTT/EFOSC2 3000 – 10000 300

57866.29 -2.5 NTT/EFOSC2 3000 – 10000 1500

57867.09 -1.7 LT/SPRAT 4000 – 8000 200

57872.08 3.0 NTT/EFOSC2 3000 – 10000 1500

57874.21 5.1 NTT/EFOSC2 3000 – 10000 1500

57879.02 9.8 LT/SPRAT 4000 – 8000 360

57884.93 15.6 LT/SPRAT 4000 – 8000 500

57905.10 35.3 NTT/EFOSC2 3000 – 10000 1800

SN 2017ein

57902.04 -12.5 LT/SPRAT 4000 – 8000 650

57903.88 -10.7 LT/SPRAT 4000 – 8000 250

57906.05 -8.5 LT/SPRAT 4000 – 8000 150

57907.90 -6.7 LT/SPRAT 4000 – 8000 150

57909.88 -4.7 LT/SPRAT 4000 – 8000 150

57911.89 -2.7 LT/SPRAT 4000 – 8000 150

57913.90 -0.7 LT/SPRAT 4000 – 8000 150
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57914.90 0.2 LT/SPRAT 4000 – 8000 210

57917.88 3.2 LT/SPRAT 4000 – 8000 210

57921.94 7.2 LT/SPRAT 4000 – 8000 210

57925.89 11.2 LT/SPRAT 4000 – 8000 210

57932.96 18.2 LT/SPRAT 4000 – 8000 210

57939.94 25.2 LT/SPRAT 4000 – 8000 360

57948.92 34.1 LT/SPRAT 4000 – 8000 600

58055.24 140.2 LT/SPRAT 4000 – 8000 1500

58102.25 187.1 LT/SPRAT 4000 – 8000 1200

SN 2017gpn

57995.06 -7.3 LT/SPRAT 4000 – 8000 900

57996.04 -6.4 LT/SPRAT 4000 – 8000 900

58000.04 -2.4 LT/SPRAT 4000 – 8000 300

58003.01 0.5 LT/SPRAT 4000 – 8000 300

58007.02 4.4 LT/SPRAT 4000 – 8000 300

58015.00 12.4 LT/SPRAT 4000 – 8000 360

58020.09 17.4 LT/SPRAT 4000 – 8000 360

58024.97 22.3 LT/SPRAT 4000 – 8000 360

58030.14 27.4 LT/SPRAT 4000 – 8000 420

58036.93 34.1 LT/SPRAT 4000 – 8000 600

58043.92 41.1 LT/SPRAT 4000 – 8000 600

58074.88 71.8 LT/SPRAT 4000 – 8000 600

58106.87 103.6 LT/SPRAT 4000 – 8000 1000

SN 2017hyh

58070.32 -6.1 NTT/EFOSC2 3000 – 10000 300

58071.07 -5.4 LT/SPRAT 4000 – 8000 1000

58074.23 -2.2 LT/SPRAT 4000 – 8000 600

58077.03 0.4 LT/SPRAT 4000 – 8000 360

58088.11 11.4 LT/SPRAT 4000 – 8000 360

58102.06 25.2 LT/SPRAT 4000 – 8000 360

58108.97 32.0 LT/SPRAT 4000 – 8000 360
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SN 2017ifh

58076.00 -2.5 LT/SPRAT 4000 – 8000 900

58088.09 9.0 LT/SPRAT 4000 – 8000 900

58102.00 22.4 LT/SPRAT 4000 – 8000 1200

58107.96 28.1 LT/SPRAT 4000 – 8000 1200

SN 2017iuk

58102.20 -4.7 LT/SPRAT 4000 – 8000 1200

58107.23 0.0 LT/SPRAT 4000 – 8000 1200

4.2.1 Line velocities

The line velocities for the SNe are calculated as described in Chapter 3 and the result-

ing velocity curves are plotted in Figure 4.9. The Ic-3/4 SNe are not included due to

the large uncertainties in velocity caused by the broad and blended lines. The 6200

Å feature in the H-poor/He-rich SNe is treated as Hα. There are several interesting

features to note

• Type IIb(I) SN 2017hyh has high velocity lines. With a Hα velocity of ∼ 16000

km s−1 and He I velocity of ∼ 11000 km s−1 at maximum light it has more in

common with the velocities of the H-poor/He-rich SNe than the other H-rich

SNe (see Figure 3.6). Its early Fe II line velocity at tmax of ∼ 13000 km s−1

even exceeds that of some He-poor SNe (Figure 3.25; top right panel)

• There is a difference in the behaviour of the Fe II velocity between the He-

rich and He-poor SNe. In the former the velocity tends to decrease throughout,

whereas in the the latter the velocities level off to around 8000 km s−1

• The velocities of He-poor SNe are typically larger than those of He-rich SNe (see

Fe II λ 5169 and Ca II NIR). The Ic-7 velocities have a small range, although the

low velocities of SN 2012ej make it an outlier.
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Figure 4.3: The intrinsic light cures of SNe included in the observations sample (1/3). All
SNe are corrected for E (B − V )tot and cosmological time-dilation. The SN types are listed
in Table 4.1
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Figure 4.4: The intrinsic light cures of SNe included in the observations sample. As Figure 4.3
(2/3).
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Figure 4.5: The intrinsic light cures of SNe included in the observations sample. As Figure 4.3
(3/3)

4.3 Comparison with bulk distributions

Figure 4.10 shows the distributions of t−1/2 and t+1/2 for the SN subtypes. These

distributions include two extra SNe in addition to the sample of Chapter 2; SN IIb(I)

2008aq and SN Ic-7 2004dn, their parameters are listed in Table D.2. The absence of

spectra, sufficiently early spectra, or the quality of the data, means that many of the

SNe in the sample used in Chapter 2 cannot be reclassified into the scheme detailed in

Chapter 3. Additionally, it would be desirable to build distributions based upon a single

SN subtype, however there are insufficient numbers to do this in most cases. Because

of this, the SNe are grouped as IIb + IIb(I), Ib(II) + Ib, Ic-5/6/7, Ic-3/4, GRB/XRF-

SNe. SNe which I have been unable to reclassify are placed in the closest relative

group (e.g., H-rich SNe in IIb + IIb(I))
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Figure 4.6: Updated g − r colour curves of SE-SNe (grey) with inclusion of the new SNe
located at z < 0.05. Markers are H/He-rich (triangles), H-poor/He-rich (squares), Ic-5/6/7
(circles), Ic-3/4 (diamonds), GRB-SNe (stars). Only those SNe with calculated E (B − V )host

are included. The correction forE (B − V )host of the new SNe, independently calculated from
host Na I D line strength, brings them into the larger distribution.
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4.3.1 t−1/2 and t+1/2 distributions

The distributions for the characteristic time-scales t−1/2 and t+1/2 are shown in Fig-

ure 4.10. For all SN types the medians of the respective distributions are comparable.

The clear outlier in the IIb + IIb(I) distribution is SN 2013bb which has a t+1/2∼ 56 d

compared with the median of ∼ 15 d. Unfortunately, the rise was not observed for this

SN. SN Ib 2017bgu is found a little outside the t+1/2 one sigma region of the Ib(II) + Ib

distribution. The rise was not sampled sufficiently well to determine t−1/2 but a by-eye

estimate from the light curve suggests it would be between 10 and 15 d, thus within the

one sigma region. SN 2016coi is a marginal outlier in both t−1/2 and t+1/2 within the

Ic-3/4 distributions, having both values a little greater than one sigma from the median.

A direct comparison of t−1/2 and t+1/2 for each SN can be seen in Figure 4.11. That

SN 2016coi is long in both time scales is apparent, although there are other SNe with

long time-scales.

Both SN 2013bb and 2016coi are “objects of interest” and are discussed further in

Section 4.4

4.3.2 Peak luminosity and MNi distributions

Figure 4.12 shows the log10 (Lp) distributions of this sample, constructed from 4000 –

10000 Å SEDS. Only SNe with an estimated E (B − V )host are used here. Most of the

SNe fall within one sigma of their respective distributions, but there are two clear out-

liers; SN IIb(I) 2017gpn and SN Ib 2016bau. The two main causes for underluminosity

is an underestimate in either E (B − V )host or µ.

SN 2016gpn (in NGC 1343, z = 0.0074) was calculated to have negligibleE (B − V )host,

which was also seen by its position in the g − r colour curves. Distances to the host

galaxy vary from 28.14 mag to 31.73 mag with a mean of 29.79 mag as per the TF

method. A redshift-derived distance gives µ = 32.6 mag. Hence, it is clear that the

distance to the host is uncertain and it is possible that the distance used here is an

underestimate rather than SN 2017gpn being intrinsically dim.
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Figure 4.10: The distributions for t−1/2 and t+1/2 for the SN subtype groupings considered
here. The dashed line represents the median of each distribution and the grey region represents
the one sigma range, within which 68 percent of the values are found. SN 2013bb is a very
clear outlier in the IIb + IIb(I) distribution.
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data means that some extreme SNe (SN 2013bb, SN 2011bm, PTF11rka) are not shown. These
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SN 2016bau faces a similar problem; the TF measurements to the host, NGC 3631

vary from 29.12 mag to 31.67 mag with a z-dependent distance modulus of 31.73 mag.

Adopting the larger distance modulus returns log10 (Lp)= 42.8 erg s−1, which is still

more than one sigma below the median. This implies that SN 2016bau is intrinsically

a dim supernova.

The results for GRB-SN 2017iuk are preliminary but suggest that the SN is at the lower

end of the luminosity distribution, which is occupied by XRF-SNe. At z = 0.039 the

SN is the second closest GRB-SN (after SN 1998bw) but should be sufficiently far into

the Hubble flow that the peculiar motion of the host galaxy can be neglected, however

E (B − V )host is quite uncertain. There are no obvious host Na I D lines in the spectra

and the g − r colour curves suggest that E (B − V )host negligible. GRB-SNe are

known for being discovered in “clean” environments and show little attenuation at

source. In reality this is likely a bias in the observations as the less luminous and

extinguished GRB-SNe are significantly harder to observe at the typical distances for
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Figure 4.12: log10 (Lp) as derived from the 4000 – 10000 Å SEDs for SNe with a calculated
value forE (B − V )host. These distributions reaffirm that found in Chapter 2; SNe Ic are more
luminous on average than He-rich SNe, and GRB-SNe are the most luminous overall. SNe
2017gpn, 2016bau, and 2017iuk are discussed in the text.
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Figure 4.13: MNi calculated from analytical light curve fits to the 4000 – 10000 Å pseudo-
bolometric light curves and distributed according to SN subtype.
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Figure 4.14: Updated log10 (Lp) against MNi including the new SNe introduced here. They
continue to follow the same pattern as found before.

GRB-SNe. SN 2017iuk may just represent the lower part of the luminosity function

that, as yet, remains ooorly-sampled.

The MNi distributions in Figure 4.13 show that 56Ni synthesis is greater in Ic-3/4 and

GRB-SNe than in Ic and He-rich SNe; this echoes the findings of Chapter 2. The new

SNe all fall within one sigma of the median of their respective distributions.

red

4.3.3 log10 (Lp) v MNi v M 3
ej/Ek

In chapter 2 I showed Figures that investigated the relationships between log10 (Lp),

MNi, and M3
ej/Ek. I update these plots in Figures 4.14, 4.15, 4.16 to include the SNe

analysed in this Chapter. As can be seen, the SNe lie in similar regions to those found

previously. There are no very luminous SNe here however, although there are some

low luminosity SNe (SN 2016gpn and SN 2016bau)
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10-1 100 101

M 3
ej /Ek

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
N

i [
M

¯
]

SN2016P

SN2016jdw

SN2012ej

SN2014L

SN2017gpn

SN2017dcc

SN2016iae

SN2017hyh

SN2013bb

SN2016jca

SN2015ah

SN2016bau

SN2017ifh

SN2017bgu

SN2017ein

SN2017iuk

SN2014ad

SN2016coi

SN2016frp

Ic

Ic-BL/GRB-SNe

Ib

IIb

Ibc

Figure 4.16: MNi against M3
ej/Ek updated to include the new SNe in the sample. As before,

the SNe types occupy similar positions with SNe Ic, Ib, and IIb tending towards the lower right
and the more energetic SNe tending towards the upper left.



4.3. Comparison with bulk distributions 170

4.3.4 Ejecta mass

With a large sample of SNe it is now possible to get a clearer picture of the ejecta

mass distributions for the individual subtypes and for all SE-SNe, these are shown in

Figure 4.17 and the individual Mej values listed in Table D.3. It is seen that there

is considerable overlap between the distributions. The method itself comes with two

caveats –

i) For the He-rich SNe it is important to note that helium has little effect on the light

curve because its opacity is low (Piro and Morozova, 2014; Wheeler et al., 2015),

thus Mej may better measure the C/O core mass and underestimate the total ejecta

mass in these SNe. This may be compensated for by dynamical effects however – the

transparent He still needs to be energised, which leads to lower ejecta velocities for

SNe with He and for a fixed Ek/Mej.

ii) An issue may also arise if there is a large velocity gradient (e.g., as found in GRB-

SNe), where a significant fraction of mass can pass through the photosphere before

maximum light, when vph is measured, leading to an underestimate of Mej. This is

why Mej for SN 1998bw, for example, varies between spectral modelling (10 M�–

Mazzali et al., 2013) and light curve fitting (∼5 M�; e.g., this work, Lyman et al.,

2016).

Table 4.3 compares the results of masses derived in this work with those from spectral

or explosion modelling. The methods are broadly consistent in their results. Inter-

estingly, the outliers have large velocity gradients and long rise times (16 – 19 days),

while others with large velocity gradients but short rise times (10 – 12 days, e.g. SNe

2002ap, 2003dh, 2010ah) are in agreement, this supports the statement made previ-

ously about discrepancies. High velocity ejecta in a SN with a long rise time ejects

more mass before tmax when vph is measured at peak and velocities are closer to that

of normal SE-SNe. That the same is not seen for quick-rising SNe suggests that the

key time is the days before tmax, when the density of material passing through the

photosphere is higher than at earlier times but the ejecta velocity at these times is still

relatively high.
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Figure 4.17: Mej distributions and derived using the analytical light curve model of Arnett
(1982).
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Table 4.3: Mej derived here compared with spectral modelling

SN type Mej (this work) Mej (literature) Ref
[M�] [M�]

1993J IIb 3.3 2.5 – 3 (Woosley et al., 1994)
1994I Ic-6 1.04 0.95 (Sauer et al., 2006)
1998bw GRB-SN 4.3 10 (Mazzali et al., 2013)
2002ap Ic-4 2.3 2.5 (Mazzali et al., 2002)
2003dh GRB-SN 6.7 8 (Mazzali et al., 2003)
2003bg IIb-BL 3.7 4 (Mazzali et al., 2009)
2004aw Ic-6 4.2 3-5 (Mazzali et al., 2017)
2005bf Ib-pec 0.9 0.1 – 0.4† (Maeda et al., 2008)
2006aj XRF-SN 2.2 2 (Mazzali et al., 2006)
2008D Ib-pec 2.9 7 (Mazzali et al., 2008)
2010ah Ic-3 3.4 3 (Mazzali et al., 2013)
† From nebular models. O constitutes the majority of Mej in SNe Ibc.

Considering the distributions, the He-rich SNe are found to have Mej between 1 – 4

M�, as do the Ic-3/4 SNe, although the latter are more massive on average. Compara-

tively the Ic-5/6/7 show a large spread of values from 1 M� to 11 M� but with a median

comparable to the He-rich SNe. The GRB/XRF-SNe are comparable in median mass

to the Ic-3/4 SNe but cover a larger range of values.

There are a number of outliers, mostly marginally outside one sigma of the distribu-

tion; SN 2013bb, SN 2016jdw, SN 2014ad are all significantly above their respective

medians while SN 2017dcc is below. SN 2017dcc is an Ic-3 SNe with line velocities

are significantly below those of the archetypal “broad-line” SN 1998bw. An uncertain

rise means that it may be more massive but high mass is not a requirement for highly

blended lines, only high velocities and a large Ek/Mej (e.g., iPTF16asu; Whitesides

et al., 2017).

Comparison with Mej calculated in other samples (Drout et al., 2011; Cano, 2013;

Lyman et al., 2016; Taddia et al., 2015) is given in Table 4.4. Mostly, the ejecta masses

overlap although differences are seen in the medians and means. In these works the

procedure for determining Mej was similar to here; using the method of Arnett (1982),

and in most cases κ = 0.05 − 0.07 g cm−2 was used. However in some cases (Drout

et al., 2011; Cano, 2013) a typical value for vph was used rather than a measured value.

In this work we ensure that the photospheric velocity is always below that of the lowest
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measurable velocity at tmax, though this is not the case in other works and can go some

way to explaining different results (see Table 4.4). It should be noted that no method is

more valid than another here as vsc, of which vph is a proxy, has little physical meaning.

The density of the ejecta is not constant across the velocity profile (e.g. Nomoto et al.,

1994), but this is assumed in Equation 4.4. Thus, it is assumed the majority of mass

resides below vsc, and measurements of line velocities in the spectra may provide some

estimate of this.

Interpreting the results

The overlap in the Mej distributions for different SN sub-types suggests that the pro-

genitors of many of these SNe may be similar. If one assumes a 1.4 M� remnant

then Mej +Mremnant = MCOcore < 5 M� for the vast majority of SNe. Given that if

there are two progenitor pathways, one from low mass with binary interaction and one

from high mass single stars, it should be expected that there would be two distributions

present. The distribution of SNe Ic is very broad, and it may well be possible that it

represents two separate pathways. There is not enough data yet to see if a bimodal

distribution is present. Nor is any bimodality immediately apparent in the ejecta mass

of all the SE-SNe, what is seen is a skewed distribution with more low Mej trailing off

to high Mej.

I interpret this as evidence for a dominance of one pathway over the other, that is, the

low medianMej (∼ 2.5 M�) and unimodality is consistent with stars withMZAMS < 25

M� being stripped primarily via interaction with a binary companion.

Consequences of low MZAMS

It has been shown that SE-SNe occur from low mass progenitors, and that high metal-

licity is not required to strip the star of its outer envelope (as is required in the single

star scenario) so these events can occur earlier in the history of the universe. Conse-

quently, these SNe and their progenitors can have several significant impacts:
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• The MZAMS of type Ibc progenitors overlaps the theoretical MZAMS of SNe II

(12 – 25 M�). Thus, more massive stars typically do not explode, instead they

collapse into black holes. As the binary fraction of massive stars is large, this

gives a source of high mass black holes, such as those for GW150914 (Abbott

et al., 2016). It also means their elemental yields are lost.

• Low mass binary progenitors resulting in SNe Ibc means the formation of NS

binaries. The binary system is required to be close in order to strip the more mas-

sive star, leading to a larger gravitational potential, which in turn may prevent the

system becoming unbound when one or the other star explodes. Consequently,

SE-SNe are likely the progenitor sources of short GRBs and kilonovae.

• The pre-explosion star will be highly stripped and hot – either a WR star or

a He star. These stars emit copious amounts of UV flux which an ionize the

surrounding ISM. My results show that these stars could have been present in

the low metallicity environment of the early universe, thus contributing to the

epoch of re-ionization.

• For an observed fractional rate of events, the O yield per SE-SN is lower for the

binary pathway than for single stars, so the overall O yield per CC-SN decreases.

Removing the metallicity dependence allows type Ibc SNe to explode in the early

universe but their progenitor masses are in the theoretical mass regime of SNe

II meaning that these stars would explode regardless. Conversely, SE-SNe tend

to be more energetic than SNe II so the dynamical impact on CC-SNe on their

local environment may be underestimated.

However, I acknowledge that there are weaknesses in the relationship between MZAMS

of the progenitor and Mej derived here due to the uncertainties in the light curve fit-

ting method and the uncertainty in the total Mej of He-rich SNe. What is required

is spectral modelling in order to investigate the abundance tomography (e.g., the el-

emental abundance as a function of mass and velocity) of the explosion then linking

this back to theoretical models of pre-explosion massive stars. Also, it was previously

mentioned that Mej of GRB-SNe could be underestimated with this method and that
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Table 4.4: Mej statistics in comparison with other work

Type† median mean N
[M�] [M�]

This work
IIb + IIb(I) 2.2±1.5

0.7 2.6±0.9 18
Ib(II) + Ib 2.2±1.0

1.2 2.2±0.9 24
Ic-6 + Ic-7 2.3±1.9

0.9 3.1±2.4 20
Ic-3 + Ic-4 3.0±0.8

0.7 3.1±0.8 11
GRB/XRF-SNe 3.3±3.3

1.1 3.8±1.4 6
Drout et al. (2011)

Ib - 2.0±1.1
0.8 8

Ic - 1.7±1.4
0.9 11

Ic-BL - 4.7±2.3
1.8 4

“Engine-driven SNe” - 3.6±2.0
1.6 3

Cano (2013)
Ib 3.89 4.72±2.77 19
Ic 3.4 4.55±4.51 13
Ic-BL 3.9 5.42± 3.44 9
GRB/XRF-SNe 5.91 6.11± 3.87 20

Taddia et al. (2015)
Ib - 3.6±0.63 6
Ic - 5.75±2.09 3
Ic-BL - 5.39±1.30 4

Lyman et al. (2016)
IIb - 2.2±0.8 9
Ib - 2.6±1.1 13
Ic - 3.0±2.8 8
Ic-BL - 2.9±2.2 9
†See text for how the classification schemes relate

spectral modelling has shown these SNe to have Mej ∼ 10 M� (Mazzali et al., 2003,

2013; Ashall et al., 2017). In this case a bimodality would appear with a second peak

around 10 M�, and in this case it may point to GRB-SNe resulting from a different

population to other SE-SNe. However, as these occur in low-metallicity environments

(Modjaz et al., 2008) their progenitors may still have had significant binary interaction

in order to lose their H and He envelopes.
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4.4 Unusual objects

Three of the SNe observed have some quality that marks them as an “object of interest”.

I briefly discuss these three objects here.

4.4.1 SN 2013bb

It was noted that in the distribution of t+1/2 for H/He-rich SNe, one object was sig-

nificantly outside the mean. This SN is the H/He-rich IIb(I) SN 2013bb. Figure 4.18

shows how the bolometric light curve of this supernova compares with SNe of a similar

type, and is compared with the decay rate of 56Co. It is evident that SN2013bb declines

at a much slower rate than these SNe, and this is seen by how closely it matches the
56Co line. The decay time t+1/2 is extremely long at ∼ 56 d, as traced by the r- and

i-band flux. Such a long time decay time is rare in normal SE-SNe and those examples

that are comparable are expected to have extremely massive cores (e.g., SN 2011bm,

iPTF15dtg Valenti et al., 2012; Taddia et al., 2016)

Unfortunately, the rise of this SN was not observed, and the constraint on explosion

time is limited to the discovery date, which is less than 10 days before maximum light.

A rise time of ∼ 23 days, as derived from the light curve model, is only marginally

longer than that of existing events (e.g, SN 1993J; 21 d). t+1/2 is almost a factor of

4 longer (∼56 days to 13 days) which suggests that the rise time could be longer too,

perhaps between 25-35 days, if one assumes that the rise time and t+1/2 are loosely

proportional. This would increase the ejecta mass to ∼ 9 M�with the methods used

here. The estimated ejecta mass is larger than that of SN 1993J, Mej∼ 1.5 − 3.5 M�

(Nomoto et al., 1993; Filippenko et al., 1993; Woosley et al., 1994) (assuming a 1.4

M� remnant), and that of SN 2003bg (Mazzali et al., 2009), which had ejecta mass

of ≈ 4 M�. Neither SN showed efficient trapping of gamma-rays at late times hence

both showed late decay rates that deviated from that of 56Co, and on this basis it may

be expected that SN 2013bb is significantly more massive then either SN.
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Figure 4.18: The bolometric light curve of SN 2013bb compared with other H/He-rich SNe.
SN 2013bb decays at a much slower rate, one that almost matches the decay rate of 56Co.

4.4.2 SN 2014ad

The spectra of SN 2014ad, Figure 4.19, show broad absorption lines and few distinc-

tive features. At first glance this SN is similar to many Ic-3/4 SNe like SN 1998bw

(Iwamoto et al., 1998) or SN 2002ap (Mazzali et al., 2002), however there are key dif-

ferences. The first is that it is difficult to attribute any particular feature to any series

of lines, with the possible exception of the series of Fe II lines around 4500− 5000 Å.

The Si II line, which is prominent in Ic-3/4 SNe pre-peak is one of two features around

∼ 6000 Å that appear around peak in SN 2014ad. It may be tempting to attribute the

red one to Si II and the blue one to Na I D but in this case the Na I velocity is lower

than half that of Si II, suggesting that this is not responsible for the blueward feature.

In the redder part of the spectrum (7500 – 8000 Å) a broad absorption feature appears,

this undoubtedly contains Ca II NIR as the emission profile can be observed at its rest

wavelength. In Ic-3/4 this absorption feature separates into Ca II NIR and O I λ 7774

around maximum light, however Figure 4.19 shows that this separation does not occur

in SN 2014ad prior to ∼ 38 d. Additionally, the blue side of the absorption profile

represents an O I velocity of > 25000 km s−1 throughout.

Assumptions can be made about line velocities by assuming that Fe II λλ4924, 5018,

5169, Si II λ6355, and Ca II NIR are broadly responsible for the features in the spectra.



4.4. Unusual objects 178

In this case all the line velocities exceed 30000 km s−1 to maximum light.

Note, that the upper limit on O I is not consistent with these velocities and suggests

that O I is not a part of large absorption feature at 7500− 8000 Å.

These velocities are exceedingly high, even compared with the majority of GRB-

SNe. The closest analogue before maximum light of SN 2010bh/GRB 100316D (Cano

et al., 2011; Bufano et al., 2012), which showed consistently high velocities (> 30000

km s−1) in its spectra. After maximum light the ejecta velocity in SN 2014ad decreases

and the SN begins to resemble SN 1998bw (Galama et al., 1998; Patat et al., 2001).

There are some important key differences here that are emphasised on the +29.4 d

(+42.2 d, SN 1998bw) spectrum (Figure 4.19, right). The pseudo-emission peaks at

∼ 5200, 6200, and 7100 Å are in the same place, and the shape of the 5200 Å feature

is similar. However, the two absorption features around 5500 and 6000 Å are different,

with the minima of each feature being closer together in SN 2014ad compared with SN

1998bw. In SN 1998bw, these lines are attributed to absorption by Na I D (blueward)

and Si II λ 6355 (redward) and have vNaI > vSiII, which is typical in SNe Ic. In SN

2014ad however, if the features are also produced by these ions then vNaI < vSiII at

10000 km s−1 and 16000 km s−1 respectively. The Ca II NIR absorption ∼ 8200 Å

also suggests a higher velocity in SN 2014ad than in SN 1998bw at these times.

It is unlikely that the O I λ 7774 line is part of the broad absorption feature around

7500 – 8300 Å either, as the edge of the blue wing of this feature is at v < 25000

km s−1 from −4.9 d, low considering the other line velocities here. This broad feature

is seen at higher velocities pre-peak in SN 1998bw, yet for SN 2014ad and SN 2010bh

they are similar. Another, relatively shallow, absorption feature appears ∼ 7000 Å at

−3.9 d and this is consistent with O I λλ 7774 at ∼ 35000 km s−1. Stevance et al.

(2017) suggest that the ejecta has a high and low velocity O I component, which may

be the reason for the velocity discrepancies here.
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Figure 4.19: The spectra of SN 2014ad in comparison with GRB-SNe 2010bh (left) and
1998bw (right). Up to maximum light SN 2014ad is better represented by SN 2010bh, while
after this the ejecta velocity of SN 2014ad decreases and it begins to look more like SN 1998bw.
Identification of common line transitions in the spectra of SN 2014ad are difficult because the
velocity stratification, which is normally predictable does not appear to be in evidence here;
this is especially relevant to Na I D, Si II λ 6355, and O I λ 7774
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4.4.3 Ic-4 SN 2016coi

SN 2016coi was determined by Yamanaka et al. (2017) to be a SNe Ic with helium.

Prentice et al. (2018) presented a larger data set and analysis of this object with empir-

ical analysis on the spectra and spectral modelling.

Figure 4.20 shows the early time spectra of SN 2016coi in comparison with He-rich

SN 2008D (Modjaz et al., 2009) and Ic-4 SN 2002ap (Gal-Yam et al., 2002). The

positions of the apparent He lines are indicated. It is clear that, as time progresses,

any He present in the ejecta of SN 2016coi does not behave in the same way as that in

He-rich SNe, and in particular the lines attributed to He weaken over time, while the

opposite happens in SN 2008D.

The He I lines all form in the same line forming region, hence a comparison of the

spectra in the velocity space, centred on the rest wavelength of the prominent lines;

those ar 5876 Å, 6678 Å, and 7065 Å provide a useful test of this. Figure 4.21 demon-

strates this by comparing the early spectra of SN 2016coi, for reference the genuine

He-rich SN 2016jdw is included to show the effectiveness of this technique. From Fig-

ure 4.21 it is difficult to prove that the absorption features are aligned and of a similar

shape. This may be due to the highly blended nature of the lines, which would serve to

mask the position of the absorption minima. However, another option is the that lines

themselves are not due to helium and the position of the features with respect to He I

at some Doppler shifted velocity is purely coincidence.

It took spectral modelling to provide some answers to this question, in Prentice et al.

(2018) it was shown that the strong line around 5500 Å could be reproduced by ei-

ther Na or He, but that the abundance of Na significantly exceeded that which would

expected in any massive star in a region approximately one third solar metallicity (As-

plund et al., 2009). The models utilise a He mass fraction of ∼ 3 percent and steadily

decrease this as a function of velocity while the contribution of Na remains constant.

This leads to a steady mapping of the transition from He I to Na I D in the ∼ 6200

Å feature. The results led to the conclusion that residual He was present in the C/O

layer. The abundance tomography of SN 2016coi from Prentice et al. (2018) is shown
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Figure 4.20: From Prentice et al. (2018), the spectra of SN 2016coi (red) in comparison with
Ic-4 SN 2002ap (grey) and He-rich SN 2008D at various epochs. Magenta/blue lines show the
position of Doppler shifted He I and Si II lines The evolution of SN 2016coi is slower than
that of SN 2002ap, which is to be expected as the time-scales are longer for SN 2016coi. It
is noticeable that SN 2016coi has more features visible in the early spectra, especially with
respect to the Na I D line at ∼ 5500 Å. It can also be seen that the SN 2016coi line velocities
are lower than those of SN 2002ap at very early times but are higher by peak. SN 2008D
initially has broad lines that give way to a spectrum with strong narrow lines and dominated by
He at peak.
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Figure 4.21: From Prentice et al. (2018). In order to test line profiles for a common origin we
plot the pre-peak spectra of SN 2016coi, in velocity space relative to the rest wavelength of the
He λ 5876 (blue), λ 6678 (green), and λ 7065 (red) lines. The flux at a common velocity, as
determined by the velocity measured from the 5876 Å, relative to the rest wavelength is used
to normalise each spectral region. For comparison the maximum light spectrum of the He-rich
SN 2016jdw is included, which demonstrates how He forms within a common line-forming
region. In SN 2016coi, the 5876 Å line profile occasionally matches the shape of one of the
other two in either the red or the blue, but at no point do the absorption features well match
each other.
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Figure 4.22: From Prentice et al. (2018), the abundance of SN 2016coi as a function of mass
and velocity (Prentice et al., 2018). The upper panel uses He to explain the feature at ∼ 5300
Å and shows that the He mass fraction remains low. At very early times it has an effect on
spectral line formation before being dominated by Na a week before maximum light. The
lower panel shows an abundance plot for purely Na, this distribution leads to an excessively
large Na abundance for a star of MZAMS∼ 23 M� at one third solar metallicity.

in Figure 4.22.

From this I concluded that SN 2016coi is the best example of a SN stripped of its He

layer but with the C/O shell intact.

4.5 Summary

In this chapter I have presented the observations and analysis of 19 SE-SNe. In Chap-

ter 3 it was noted that there were less than 20 SE-SNe with good spectroscopic and

photometric data coverage (pre-peak photometry, good quality spectra from pre-peak

to nebular phase). This work increases that number by 14 and thus significantly con-

tributes to the body of data on SE-SNe.

Comparison of the SNe with the bulk properties described in Chapter 2, and expanded

with new SNe and under the taxonomic scheme described in Chapter 3 reveals that,
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while many of the SNe are “normal”, several of the objects have some property that

significantly deviates from the mean of the respective distribution.

I have identified three supernovae as significantly unusual objects; SN 2013bb, SN

2014ad, and SN 2016coi. This is in addition to the two GRB-SNe; SNe 2016jca and

2017iuk. SN 2013bb is a very massive type IIb(I) SN with an extremely long t+1/2 of

∼ 53 days. It may be the best example of a H-rich SE-SN that arises from a single star

rather than a binary. SN 2014ad is a highly energetic Ic-3 event, with broad blended

lines that persist at least three weeks past bolometric maximum. This event has been

shown to be highly aspherical in the literature, however no GRB was detected around

its discovery. SN Ic-4 2016coi is the best example of a type Ibc SN stripped down to its

C/O core. Spectral modelling has revealed traces of He in the outer ejecta at a level of

a few percent. This SN is unique in its early spectroscopic evolution with broad lines,

but a very strong feature around 5500 Å.

The most important result of this chapter is analysis of the ejecta mass distributions

for 81 SNe Ibc. The lack of clear bimodality in the distributions and the low median

Mej suggests that these events primarily arise from progenitors of low MZAMS (∼< 25

M�) which are stripped via binary interaction. This low mass pathway removes the

metallicity dependence on SE-SNe events, allowing them to occur in the early universe.

Stripped stars are a significant source of ionizing UV photons, thus the progenitors of

SE-SNe may have contributed significantly to the epoch of re-ionization. There are

further implications as it sets out SNe Ibc as progenitors of short GRBs and kilonovae

while greatly reducing the explodability of more massive stars. If these stars to not

explode they likely collapse to a black hole and are the source of high stellar mass

binaries in the universe.

This work shows the importance in ongoing observations of SE-SNe in order to probe

the parameter space in which they reside and to provide good quality data sets for

spectral modelling, the results of which can then be linked back to theoretical stellar

evolution models and help determine the nature of the progenitor stars.



Chapter 5

Conclusions and future work

In Chapter 2 I presented analysis on the bolometric light curves of 85 SE-SNe. The

resulting distributions of the fully bolometric peak luminosity showed that SNe IIb

were least luminous with a mean log10 (Lp) = 42.36 erg s−1 followed by 42.50 erg

s−1 and 42.51 erg s−1 for SNe Ib and Ic, then 43.00 erg s−1 for Ic-BL category. GRB-

SNe are significantly more luminous than other SN types, this is turn drives the Ic-BL

subgroup to and overall higher luminosity. SNe Ic rise to maximum light quicker than

He-rich SNe and their light curves are not as broad overall. Despite this, MNi is found

to be greater for SNe Ic-BL at 0.34 M� compared with 0.16, 0.14, and 0.11 M� for SN

Ic, Ib, and IIb respectively. It was found that the g − r colour curves show significant

scatter for all SN types.

In Chapter 3 I analysed the spectra of SE-SNe, separating the SNe according to strength

of H, strength of He, and line broadness. I found that those SNe classified as type Ic

naturally separated from the He-rich SNe, thus there were no SNe Ic with obvious He

lines. The He-rich SNe were then ordered according to strength of the H lines, with

emphasis on Hα. It was found that a continuum of line strengths could be deduced

from a 2D plane that maps the equivalent width of the absorption against the ratio

of emission intensity to absorption intensity. The transition region between the two

occurs when the lines of the Balmer series at wavelengths shorter than Hα become too

weak to observe. I then used the position on the 〈EW 〉/〈fem/fabs〉 plane to categorise
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the He-rich SNe into the following groups according to H strength; IIb, IIb(I), Ib(II),

Ib. The presence of H in SNe Ib(II) and Ib(I) is not proven, but the continuum of

properties between IIb(I) and Ib(II) suggests that H contributes significantly to the

feature at ∼ 6200 Å in the latter group.

SNe Ic were categorised according to the mean number of features visible up to tmax, as

give by a set of lines that are common to SNe Ic. This quantified line broadness which

was then related to the specific kinetic energyEk/Mej for each He-poor SN group. The

results show that as 〈N〉 decreases so Ek/Mej increases, with Ek/Mej= 1 for Ic-6/7

SNe, Ek/Mej= 2 for Ic-4, and Ek/Mej= 4 for Ic-3 SNe. This is likely the result of the

explosion mechanism, with Ek in Ic-3/4 SNe being enhanced by the rotational energy

of a rapidly rotating neutron star or black hole.

Finally, in Chapter 4 I presented analysis on the data of 19 SNe, of which 15 were

observed via my own observing proposals. Half of these SNe were observed early

enough, and into the nebular phase, with a sufficient density of observations that they

significantly increase the total number of well observed SE-SNe by nearly 100 percent.

The SNe were analysed within the context of the bulk properties of SE-SNe. Nearly

half the SNe in this sample displayed some property that was more than one standard

deviation from the median of their respective distributions. I also included further

analysis on ejecta mass and demonstrated that there is significant overlap between the

Mej distributions of all SN types. The SNe Ic-5/6/7 distribution has the greatest range,

from 1 – 11 M�. The distribution appears unimodal, which suggests that SE-SNe

preferentially arise from one progenitor channel. With a median Mej ∼ 2.5 M�, which

equates to a ∼ 4 M�, the bulk of the SNe must arise from stars with MZAMS < 25 M�.

GRB-SNe and Ic-3/4 are found to be more massive on average. The results show that

the parameter space of SE-SNe is still under-sampled, justifying further observations

in an era when transient astronomy is going to be more competitive.

Thus I present several key results:

• SE-SNe are heterogeneous in their light curve properties, this makes any attempt

at standardisation as per SNe Ia impossible. Despite this, there is still consider-
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able overlap in the properties of SNe Ic and the He-rich SNe.

• SNe Ib and IIb can be characterised by the strength of their Hα features. This is

related to envelope stripping and shows that these two groups are a continuum

rather than discrete. The transition occurs when the H Balmer lines beyond Hα

are too weak to have any effect on the spectra.

• Line broadness in He-poor SNe can be quantified by simply counting the number

of features present before tmax. This method links back to the specific kinetic

energy, which is related to the explosion mechanism. With a larger sample size

these subgroups and their local environments can be investigated.

• The parameter space in which SE-SNe reside is still under-sampled. A signif-

icant minority of events discovered each year are sufficiently unusual to justify

intense observations an analysis.

• SN 2016coi is the best candidate for a star stripped almost entirely of its He shell

at the time of explosion. Residual He, at the percent level, was found through

spectroscopic modelling as part of work that I led.

• The mass distribution of SE-SNe favours low mass< 25 M� progenitors, stripped

by close binary interaction, for virtually all SNe Ibc. This suggests that few mas-

sive stars explode, rather they collapse directly to black holes. Thus, SE-SNe are

good candidates for NS/NS binary systems and the progenitors of SGRBs/kilonovae,

while massive stars collapse to massive black holes and are sources for BH/BH

binary systems.

5.0.1 Future work

I have shown that SE-SNe are diverse in their overall properties, which suggests a di-

verse range of progenitor stars and explosion pathways. However, there is still much

debate over what kinds of stars give rise to SE-SNe. On this basis I suggest that on-

going observations are important. Firstly, this is to ensure that the parameter space in
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which these SNe reside is fully sampled. Secondly, it must be ensured that the SNe are

well sampled, with good multi-band photometry (near UV to NIR) and time series of

spectra from shortly after explosion to the nebular phase.

I identify two key analytical tools in order to related SNe to their progenitors. The

first abundance tomography, which, though modelling of the early photospheric phase

spectra and identifying the composition of the ejecta, one can map the abundance dis-

tribution to models of stellar cores shortly before explosion and reveal the MZAMS of

the progenitor star.

The second is via nebular phase spectral modelling should be used to construct mass

distributions of the inner cores of the exploded stars, these again can be mapped to

stellar evolution models of massive stars. Importantly, discrepancy between the pho-

tospheric and nebular results may well be indicative of asymmetries in the ejecta. As

early asymmetries in SN ejecta will manifest themselves in the results obtained through

analysis of photospheric phase data compared with the nebular phase, when the ejecta

is optically thin.

The link with progenitor mass, metallicity, and SE-SN location in H II regions can

then be re-examined with the intention of providing a solution to the question of how

“bursty” star-burst regions actually are.

Finally, analysis of early data is also ideal in deriving Ek for the SN, which in addition

withMej gives the specific kinetic energy and potential explosion pathways for the SNe

when compared with the neutrino mechanism or magnetar/BH powering in explosion

modelling.



Appendix A

Host-galaxy extinction

This section formed the appendix in Prentice et al. (2016) and explains the method for

calculating the mean E (B − V )host for different supernova types.

I searched the literature for core-collapse SNe with defined host-galaxy extinction in

order to determine the distribution for the sample as a whole or individually. In addition

to the SNe used in Table 2.1, I have also included SNe from Cano (2013), Pritchard

et al. (2014), Cano et al. (2014), Richardson (2009), Richardson et al. (2006), and other

individual SNe from the literature which failed the criteria described in Section 2.1. I

also include all SNe II on the basis that, while the evolution of these objects may be

different from that of SE-SNe, their position in the host is likely to be similar given

their lifetimes (i.e., in star-forming regions). The total number used was 110.

K-S tests

I performed K-S tests on the sample on a type-by-type basis. If the K-S test revealed

that the distribution was drawn from the same population by having P > 0.05, then

the populations were combined. SNe IIP and SNe IIL were combined into a single

population owing to their small numbers. The interplay between the populations means

that combining similar datasets is a risky task. For example, the SN IIb versus SN Ib
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K-S test returns P = 0.055, which is on the edge of the 5σ limit, yet SN IIb against

SN Ic returns P = 0.38, and SN Ic against SN Ib returns P = 0.487; thus, populations

were combined together only if the chance of the two being drawn from the same

distribution was greater than 40% for all permutations of the individuals within the

group. This limit is high but necessary to reduce the risk in combining datasets into a

larger group that may have a low P value between some of its constituents.

The clear outlier is the distribution given by GRB-SNe, where K-S tests give P < 0.05

for every population. This does not imply that GRB-SN hosts are different from those

of other SNe; the distribution of extinction values can be explained as a combination

of distance and the luminosity function of SNe. I find that GRB-SNe, while more

luminous on average than other SN types, are still limited to Lpeak ≈ 1043 erg s−1

in bolometric luminosity and are typically observed at redshifts much greater than

other SNe. As a result, the sample is biased in two ways. First, these SNe are ob-

served at larger distances because they are associated with GRBs; without this added

high-energy component few, if any, of these SNe would be seen. Second, the limiting

luminosity and distance mean that only the least-attenuated SN light will be observed,

so if a GRB exploded in a dusty environment and had a corresponding SN, it would

not be seen as it would be below current detection limits. Furthermore, if I consider

the entire sample, the non-Gaussian nature of all the distributions may be expected

but their observed shape is determined by similar constraints. The probability that a

SN is detected is reduced for higher local extinctions and lower intrinsic luminosities

because these lower its apparent brightness. Hence, the distribution is more likely to

show SNe with low host extinction, which in turn biases the result in favour of SNe in

“clean” environments.

Thus, there are find four populations:

• SNe IIP, IIL, II, IIb

• SNe Ib

• SNe Ic, Ic-BL
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• GRB-SNe.

The median, upper and lower 34%, mean, and standard deviation for each popula-

tion are given in Table 2.3. The discrepancy in median and mean is caused by the

non-Gaussian distribution, so I use the median extinction as a typical extinction for

SNe of that type and the upper and lower 34% as the 1σ boundaries. This median ex-

tinction and associated uncertainty is then applied to any SN without determined host

extinction. For an individual SN such a correction could be deemed to be misleading;

however, for a large dataset with several SNe utilising this method, I rely on “regres-

sion to the mean” — that is, for each SN where the extinction is underestimated, there

will be a corresponding SN with extinction overestimated, and the uncertainties in this

range provide a balance in terms of numbers centred on the average (the median in this

case). The cumulative distributions are shown in Figure A.1.

To test the accuracy of using this method, I take the SNe from the database with known

host-galaxy extinction (SNe Ic/Ic-BL/GRB-SNe = 15, SNe Ib/IIb = 22) and apply the

median extinction correction when constructing the bolometric light curve. This is

then compared with the case when no host extinction correction is applied and when

the actual extinction is applied. The results are shown in Figure A.3 for the application

of median host extinction, Figure A.2 for the actual values, and Figure A.4 for no

correction. It is apparent that the character of the luminosity function changes when

median E(B − V )host is used in place of the literature value; this is to be expected

around the extremes of the distribution because no SN is being corrected for a large

host extinction but all are being corrected. The statistics returned in Table A.1 show

that the mean and median of the luminosity functions remain similar, giving confidence

in the conversion method to return bulk statistics. However, in the absence of E(B −

V )host the statistics returned are generally lower than the corrected values; again, this

would be expected as they represent a lower limit. It is interesting to note that the

SN Ic median values are very similar for no extinction and the known E(B − V )host,

although this is not reflected in the mean value.



192

0.0 0.2 0.4 0.6 0.8 1.0

E(B−V)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

II, IIL, IIP, IIb, IIn
Ib
Ic, Ic-BL
GRB-SNe

Figure A.1: Cumulative distribution of reddening values for SNe sorted by population.
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Figure A.2: BVRI luminosity function for SNe with their host extinction correction applied
using the values given in the literature. Colours are as described in Figure 2.9.
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Figure A.3: BVRI luminosity function of the same SNe as in Figure A.2 but with a type-
dependent host extinction correction applied. Colours are as described in Figure 2.9.
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Figure A.4: BVRI luminosity function of the same SNe as in Figure A.2 but with no host
extinction correction applied. Colours are as described in Figure 2.9.
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Table A.1: Host extinction tests on peak-luminosity statistics.

Literature extinction values
SN Type median mean σ
All Ic 42.69 42.59 0.32
Ib/IIb 42.15 42.17 0.24
bulk 42.23 42.34 0.34

Median extinction values
SN Type median mean σ
All Ic 42.72 42.61 0.38
Ib/IIb 42.17 42.15 0.23
bulk 42.24 42.34 0.38

No extinction correction
SN Type median mean σ
All Ic 42.67 42.47 0.4
Ib/IIb 42.01 41.99 0.2
bulk 42.11 42.12 0.38



Appendix B

Chapter 2 tables

Table B.1: Chapter 2 BVRI pseudo-bolometric light curve statistics

SN Type log(Lp) MNi (M�) tp (days) t−1/2 (days) t+1/2 (days) Width (days)

1993J IIb 42.231±0.068
0.066 0.087±0.015

0.012 19.148±0.033 10.313±0.017 12.808±0.116 23.121±0.118

1994I Ic 42.271±0.346
0.328 0.064±0.080

0.034 12.252±0.211 5.541±0.137 8.522±0.509 14.063±0.527

1996cb IIb 41.871±0.123
0.123 0.034±0.015

0.011 16.993±1.650 10.737±0.000 15.444±0.017 26.181±0.017

1998bw GRB-SN 42.780±0.031
0.023 0.260±0.022

0.016 15.861±0.177 9.734±0.372 15.858±0.779 25.593±0.863

1999dn Ib 42.134±0.084
0.061 0.052±0.023

0.015 13.916±2.841 - 21.827±3.638 -

1999ex Ib 42.335±0.082
0.082 0.106±0.022

0.019 18.349±0.036 9.226±0.053 15.958±0.606 25.183±0.608

2002ap Ic-BL 42.217±0.010
0.006 0.060±0.001

0.001 13.011±0.000 6.466±0.060 15.506±0.165 21.972±0.175

2003bg IIb 42.226±0.027
0.014 0.076±0.012

0.009 16.624±1.656 10.504±0.146 28.374±1.318 38.878±1.326

2003jd Ic-BL 42.795±0.090
0.089 0.219±0.054

0.042 12.504±0.179 9.372±0.505 14.067±0.317 23.439±0.596

2004aw Ic 42.448±0.030
0.044 - - - 21.273±1.340 -

2004fe* Ic 42.152±0.031
0.030 0.057±0.010

0.009 14.680±1.653 9.276±0.101 - -

2004gq Ib 42.087±0.010
0.006 - - - 18.582±0.465 -

2005az* Ic 41.981±0.013
0.015 - - - 27.282±0.146 -

2005bf Ib 42.170±0.025
0.023 0.073±0.006

0.005 18.325±0.351 - - -

2005hg* Ib 42.233±0.010
0.013 - - - 17.943±0.237 -

2005hl* Ib 41.993±0.008
0.005 - - - 21.656±0.667 -

2005hm* Ib 41.958±−0.013
0.041 0.048±0.002

0.008 19.927±1.669 12.591±0.250 14.682±1.455 27.274±1.476

2005kl* Ic 41.485±0.008
0.008 - - - 20.115±0.027 -

2005kr* Ic-BL 42.759±0.072
0.038 0.187±0.059

0.035 11.405±1.669 7.207±0.252 - -

2005ks* Ic-BL 42.291±0.066
0.078 0.068±0.020

0.017 12.368±1.656 7.815±0.142 - -

2005kz* Ic 42.004±0.034
0.031 - - - - -

2005mf* Ic 42.121±0.033
0.024 - - - 17.281±0.493 -

2006T* IIb 42.145±0.011
0.011 0.054±0.007

0.007 14.148±1.651 8.940±0.051 14.433±0.031 23.372±0.059

2006aj GRB-SN 42.685±0.020
0.019 0.138±0.007

0.006 9.587±0.040 6.779±0.155 - -

2006el* IIb 42.041±0.024
0.016 - - - 15.594±0.660 -

2006ep* Ib 41.942±0.012
0.013 0.042±0.005

0.005 18.002±1.653 11.375±0.101 15.034±0.013 26.409±0.102

2006fe* Ic 42.263±0.025
0.026 0.079±0.013

0.012 15.830±1.711 10.002±0.455 19.197±1.431 29.199±1.502

2006fo* Ib 42.164±0.019
0.019 - - - 19.017±0.124 -

14475* Ic-BL 42.558±0.047
0.048 0.110±0.029

0.024 10.501±1.760 6.635±0.613 18.037±1.403 24.672±1.531

2006jo* Ib 42.371±0.020
0.020 0.071±0.013

0.011 10.366±1.651 6.550±0.067 10.081±0.472 16.630±0.476

2006lc* Ib 41.954±0.005
0.008 0.034±0.004

0.004 13.837±1.651 8.743±0.050 14.036±0.050 22.779±0.071

2006nx* Ic-BL 42.847±0.051
0.021 0.276±0.067

0.040 14.279±1.698 9.022±0.401 - -

2007C Ib 42.588±0.085
0.084 - - - 12.373±0.186 -

2007D* Ic-BL 42.121±0.085
0.082 - - - - -

2007Y Ib 41.750±0.064
0.072 0.028±0.005

0.005 18.757±0.350 9.284±0.569 15.327±0.285 24.610±0.636

2007ag* Ib 41.884±0.015
0.014 - - - 20.052±0.673 -

2007cl* Ic 42.077±0.010
0.010 - - - 15.616±0.259 -

195
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2007gr Ic 42.087±0.042
0.043 0.045±0.005

0.005 13.146±0.229 8.530±0.025 15.270±0.081 23.800±0.085

2007kj* Ib 42.017±0.009
0.008 - - - - -

2007ms* Ic 42.319±0.008
0.017 0.122±0.011

0.013 22.231±1.666 14.047±0.231 24.625±0.434 38.672±0.491

2007nc* Ib 42.065±0.064
0.016 0.055±0.015

0.007 17.734±1.800 11.205±0.718 19.059±4.382 30.264±4.440

2007qv* Ic 42.514±0.023
0.022 - - - - -

2007qx* Ic 42.118±0.197
0.041 0.054±0.045

0.013 15.094±2.758 9.537±2.211 - -

2007ru Ic-BL 42.810±0.038
0.009 0.194±0.018

0.005 10.242±0.047 - 14.640±0.485 -

2007sj* Ic 41.961±0.022
0.021 0.036±0.006

0.005 14.542±1.658 9.188±0.164 - -

2007uy Ib 42.675±0.270
0.260 0.241±0.214

0.110 19.075±0.284 - 15.360±1.160 -

2008D Ib 42.125±0.252
0.240 0.069±0.055

0.030 19.293±0.229 13.239±0.194 17.042±0.722 30.281±0.747

2008ax IIb 42.099±0.025
0.024 0.065±0.004

0.004 19.283±0.127 10.144±0.085 15.279±0.318 25.423±0.329

2008bo IIb 41.757±0.011
0.011 - - - 9.240±0.010 -

2008hw GRB-SN 43.156±0.050
0.050 0.496±0.064

0.057 12.307±0.100 - - -

2009bb Ic 42.685±0.123
0.121 0.171±0.057

0.042 12.631±0.095 6.637±0.059 13.060±0.357 19.697±0.362

2009er* Ib 42.724±0.013
0.012 - - - 14.225±0.049 -

2009iz* Ib 42.085±0.010
0.010 0.070±0.006

0.006 21.828±1.650 13.793±0.000 23.220±0.169 37.013±0.169

2009jf Ib 42.478±0.022
0.027 0.169±0.010

0.011 21.267±0.164 11.212±0.444 19.901±0.631 31.113±0.771

2010as IIb 42.524±0.088
0.087 0.117±0.027

0.022 12.442±0.122 9.661±0.024 16.541±0.415 26.202±0.415

2010bh GRB-SN 42.365±0.053
0.053 0.082±0.011

0.010 12.737±0.099 3.287±0.303 9.286±0.884 12.573±0.934

2010ma GRB-SN 43.060±0.234
0.071 0.346±0.444

0.136 10.331±4.338 - 12.450±0.482 -

2011bm Ic 42.705±0.031
0.037 0.427±0.033

0.036 34.586±0.151 - 43.446±1.544 -

2011dh IIb 42.084±0.008
0.012 0.052±0.001

0.001 15.712±0.017 9.638±0.034 14.525±0.119 24.163±0.124

2011ei IIb 41.969±0.089
0.088 0.044±0.010

0.008 17.732±0.033 10.247±0.033 16.893±0.360 27.140±0.362

2011fu IIb 42.338±0.008
0.012 - - - 18.016±0.283 -

2011hs IIb 41.903±0.011
0.012 0.021±0.001

0.001 8.588±0.057 7.718±0.023 11.199±0.263 18.917±0.264

2011kla GRB-SN 43.324±0.166
0.157 - 15.169±0.071 6.889±0.142 12.712±0.355 19.601±0.382

2012ap Ic-BL 42.472±0.162
0.158 0.109±0.052

0.035 13.192±0.308 8.648±1.337 15.546±0.174 24.193±1.348

2012bz GRB-SN 42.795±0.029
0.032 0.240±0.026

0.013 13.491±0.224 9.838±0.066 17.110±0.177 26.947±0.189

2013cq GRB-SN 42.960±0.050
0.100 - - - - -

2013cu IIb 42.661±0.007
0.006 0.125±0.003

0.002 9.009±0.082 6.890±0.031 12.516±0.163 19.406±0.166

2013df IIb 42.198±0.034
0.037 0.091±0.008

0.008 21.793±0.103 13.897±0.101 11.727±0.310 25.624±0.326

2013dx GRB-SN 42.831±0.027
0.032 - - 11.697±1.768 14.389±0.841 26.086±1.958

2013ge Ibc 42.132±0.019
0.024 0.068±0.009

0.009 18.878±1.697 11.928±0.395 19.953±0.285 31.881±0.487

PTF09dh/2009dr* Ic-BL 42.892±0.035
0.03 - - - 18.546±0.247 -

PTF10gvb* Ic-BL 42.775±0.067
0.067 - - 18.179±19.629 14.344±0.483 32.522±19.635

PTF10inj* Ib 42.438±0.157
0.143 - - - 36.035±0.490 -

PTF10qif* Ib 42.455±0.123
0.118 - - - 13.452±1.764 -

PTF10vgv* Ic 42.493±0.065
0.063 0.094±0.029

0.022 10.347±1.687 6.538±0.354 9.969±0.000 16.507±0.354

PTF11bli* Ibc 42.071±0.018
0.018 0.065±0.008

0.007 20.627±1.658 13.033±0.164 - -

PTF11jgj* Ic 42.088±0.022
0.018 0.072±0.010

0.009 22.072±2.170 13.947±1.409 - -

PTF11klg* Ic 42.105±0.144
0.125 0.057±0.030

0.018 16.393±1.678 10.358±0.303 14.530±0.039 24.887±0.306

PTF11qiq* Ib 42.161±0.500
0.010 - - - 17.000±1.000 -

PTF11rka* Ic 42.723±0.050
0.045 - - - 45.781±3.909 -

PTF12gzk Ic 42.708±0.031
0.029 0.226±0.023

0.020 16.345±0.455 - 23.643±0.065 -

PTF12os* IIb 41.409±0.007
0.010 - - - 17.095±0.492 -

iPTF13bvn Ib 41.997±0.012
0.011 0.043±0.001

0.001 15.953±0.098 8.990±0.024 13.582±0.098 22.572±0.101

iPTF14dby* Ic-BL 42.373±0.043
0.042 0.140±0.025

0.022 22.462±1.678 14.193±0.303 20.615±0.884 34.808±0.934

* SN has not been corrected for host extinction. Lp andMNi values are lower limits
aSN 2011kl was primarily powered by a magnetar. The mass of 56Ni synthesised in the explosion was negligible (Greiner et al., 2015)

Table B.2: UBVRINIR pseudo-bolometric light curve statistics.

SN Type log(Lp) MNi (M�) tp (days) t−1/2 (days) t+1/2 (days) Width (days)

1998bw GRB-SN 42.953±0.042
0.026 0.386±0.043

0.026 15.861±0.177 9.445±0.607 14.639±0.894 24.084±1.081

1999dn Ib 42.360±0.191
0.163 0.088±0.073

0.038 13.916±2.841 - 19.790±4.210 -

2002ap Ic-BL 42.373±0.018
0.008 0.086±0.004

0.002 13.011±0.000 6.076±0.130 13.629±0.362 19.705±0.384

2003dh GRB-SN 42.94±0.08
0.09 0.308±0.102

0.083 12.65±1.66 - 15.845±0.590 -

2005bf Ib 42.385±0.033
0.032 0.119±0.012

0.010 18.325±0.351 - - -

2005hg* Ib 42.377±0.029
0.027 - - 12.215±0.051 19.900±0.727 32.115±0.728

2005mf* Ic 42.255±0.095
0.051 - - - 18.696±0.899 -

2006aj GRB-SN 42.839±0.025
0.017 0.197±0.012

0.008 9.587±0.040 6.227±0.526 11.059±4.141 17.285±4.175

2007Y Ib 41.963±0.065
0.099 0.046±0.008

0.010 18.757±0.350 7.406±0.916 11.507±0.916 18.912±1.295
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2007gr Ic 42.258±0.061
0.059 0.066±0.011

0.009 13.146±0.229 7.951±0.051 14.300±0.067 22.251±0.084

2007uy Ib 42.846±0.360
0.318 0.358±0.474

0.188 19.075±0.284 - 12.944±1.512 -

2008D Ib 42.292±0.355
0.305 0.101±0.130

0.051 19.293±0.229 13.697±0.106 16.897±0.606 30.594±0.615

2008ax IIb 42.284±0.037
0.036 0.099±0.009

0.008 19.283±0.127 9.259±0.243 13.262±0.526 22.522±0.579

2009iz* Ib 42.200±0.028
0.024 0.091±0.014

0.012 21.750±1.936 12.959±0.278 25.824±0.893 38.782±0.936

2009jf Ib 42.640±0.034
0.036 0.246±0.022

0.021 21.267±0.164 10.633±0.652 18.821±0.285 29.453±0.711

2011bm Ic 42.880±0.058
0.049 0.638±0.094

0.070 34.586±0.151 - 43.461±1.449 -

2011dh IIb 42.205±0.019
0.016 0.068±0.003

0.003 15.712±0.017 9.837±0.075 13.346±0.045 23.182±0.087

2011hs IIb 42.027±0.017
0.018 0.028±0.001

0.001 8.588±0.057 8.303±0.000 12.072±0.227 20.375±0.227

* SN has not been corrected for host extinction. Lp andMNi values are lower limits

Table B.3: Parameters derived from the fully bolometric Lp values.

SN Type log (Lp) tp (days) MNi (M�)

1993J IIb 42.456±0.109
0.088 19.148±0.033 0.146±0.042

0.027

1994I Ic 42.473±0.409
0.363 12.252±0.211 0.102±0.164

0.059

1996cb IIb 42.082±0.179
0.163 16.993±1.650 0.055±0.036

0.021

1998bw GRB-SN 43.061±0.080
0.046 15.861±0.177 0.496±0.091

0.047

1999dn Ib 42.402±0.229
0.183 13.916±2.841 0.097±0.097

0.044

1999ex Ib 42.544±0.124
0.105 18.349±0.036 0.172±0.058

0.037

2002ap Ic-BL 42.415±0.055
0.028 13.011±0.000 0.094±0.013

0.006

2003bg IIb 42.424±0.086
0.058 16.624±1.656 0.119±0.040

0.024

2003dh GRB-SN 42.981±0.116
0.107 12.65±1.66 0.339±0.153

0.102

2003jd Ic-BL 42.988±0.134
0.115 12.504±0.179 0.341±0.128

0.082

2004aw Ic 42.659±0.063
0.056 - -

2004fe* Ic 42.354±0.099
0.083 14.680±1.653 0.091±0.035

0.023

2004gq Ib 42.388±0.046
0.028 - -

2005az* Ic 42.173±0.086
0.070 - -

2005bf Ib 42.426±0.071
0.052 18.325±0.351 0.131±0.026

0.017

2005hg* Ib 42.418±0.067
0.047 - -

2005hl* Ib 42.167±0.060
0.027 - -

2005hm* Ib 42.237±0.073
0.093 19.927±1.669 0.092±0.025

0.023

2005kl* Ic 41.979±0.080
0.064 - -

2005kr* Ic-BL 43.006±0.117
0.057 11.405±1.669 0.330±0.153

0.073

2005ks* Ic-BL 42.440±0.107
0.087 12.368±1.656 0.096±0.040

0.026

2005kz* Ic 42.212±0.101
0.084 - -

2005mf* Ic 42.296±0.133
0.071 - -

2006T* IIb 42.322±0.054
0.036 14.148±1.651 0.082±0.020

0.014

2006aj GRB-SN 42.880±0.062
0.038 9.587±0.040 0.217±0.034

0.019

2006el* IIb 42.237±0.086
0.063 - -

2006ep* Ib 42.142±0.075
0.060 18.002±1.653 0.067±0.019

0.014

2006fe* Ic 42.533±0.094
0.081 15.830±1.711 0.147±0.053

0.037

2006fo* Ib 42.372±0.099
0.080 - -

14475* Ic-BL 42.753±0.108
0.092 10.501±1.760 0.173±0.077

0.050

2006jo* Ib 42.542±0.086
0.052 10.366±1.651 0.105±0.039

0.023

2006lc* Ib 42.130±0.044
0.030 13.837±1.651 0.051±0.011

0.008

2006nx* Ic-BL 43.032±0.111
0.066 14.279±1.698 0.422±0.181

0.097

2007C Ib 42.749±0.155
0.136 - -

2007D* Ic-BL 42.282±0.156
0.135 - -

2007Y Ib 42.005±0.103
0.119 18.757±0.350 0.051±0.015

0.013

2007ag* Ib 42.085±0.078
0.061 - -

2007cl* Ic 42.282±0.078
0.064 - -

2007gr Ic 42.299±0.099
0.079 13.146±0.229 0.073±0.020

0.013

2007kj* Ib 42.214±0.072
0.055 - -

2007ms* Ic 42.556±0.052
0.041 22.231±1.666 0.211±0.043

0.032

2007nc* Ib 42.260±0.125
0.063 17.734±1.800 0.087±0.040

0.019

2007qv* Ic 42.783±0.062
0.043 - -

2007qx* Ic 42.337±0.207
0.069 15.094±2.758 0.090±0.078

0.025

2007ru Ic-BL 43.033±0.054
0.032 10.242±0.047 0.323±0.044

0.024

2007sj* Ic 42.152±0.074
0.052 14.542±1.658 0.057±0.017

0.011

2007uy Ib 42.887±0.398
0.338 19.075±0.284 0.394±0.604

0.215

2008D Ib 42.333±0.393
0.325 19.293±0.229 0.111±0.167

0.059
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2008ax IIb 42.326±0.075
0.056 19.283±0.127 0.109±0.021

0.014

2008bo IIb 41.972±0.071
0.055 - -

2008hw GRB-SN 43.337±0.095
0.078 12.307±0.100 0.751±0.190

0.127

2009bb Ic 42.863±0.162
0.143 12.631±0.095 0.258±0.119

0.073

2009er* Ib 42.916±0.089
0.072 - -

2009iz* Ib 42.241±0.066
0.044 21.828±1.650 0.101±0.024

0.016

2009jf Ib 42.682±0.072
0.057 21.267±0.164 0.271±0.051

0.035

2010as IIb 42.689±0.158
0.139 12.442±0.122 0.171±0.077

0.048

2010bh GRB-SN 42.600±0.168
0.113 12.737±0.099 0.142±0.068

0.033

2010ma GRB-SN 43.244±0.272
0.098 10.331±4.338 0.529±0.789

0.227

2011bm Ic 42.922±0.096
0.069 34.586±0.151 0.702±0.176

0.106

2011dh IIb 42.246±0.057
0.036 15.712±0.017 0.075±0.011

0.006

2011ei IIb 42.177±0.146
0.129 17.732±0.033 0.072±0.029

0.018

2011fu IIb 42.538±0.045
0.034 - -

2011hs IIb 42.068±0.055
0.038 8.588±0.057 0.031±0.004

0.003

2011kla GRB-SN 43.529±0.174
0.148 15.169±0.071 -

2012ap Ic-BL 42.676±0.203
0.182 13.192±0.308 0.174±0.109

0.062

2012bz GRB-SN 43.005±0.100
0.052 13.491±0.224 0.378±0.105

0.048

2013cq GRB-SN 43.186±0.086
0.117 13.000±2.000 0.555±0.211

0.184

2013cu IIb 42.843±0.067
0.050 9.009±0.082 0.191±0.033

0.022

2013df IIb 42.397±0.074
0.058 21.793±0.103 0.144±0.028

0.019

2013dx GRB-SN 42.962±0.225
0.077 12.261±5.484 0.316±0.417

0.139

2013ge Ibc 42.335±0.077
0.064 18.878±1.697 0.109±0.032

0.023

PTF09dh/2009dr* Ic-BL 43.082±0.078
0.059 - -

PTF10inj* Ib 42.620±0.215
0.186 - -

PTF10qif* Ib 42.636±0.182
0.162 - -

PTF10vgv* Ic 42.682±0.132
0.115 10.347±1.687 0.145±0.076

0.047

PTF11bli* Ibc 42.266±0.081
0.065 20.627±1.658 0.101±0.030

0.021

PTF11jgj* Ic 42.293±0.090
0.072 22.072±2.170 0.114±0.039

0.026

PTF11klg* Ic 42.309±0.208
0.175 16.393±1.678 0.090±0.069

0.036

PTF11qiq* Ib 42.352±0.545
0.057 - -

PTF11rka* Ic 42.905±0.117
0.097 - -

PTF12gzk Ic 42.904±0.077
0.058 16.345±0.455 0.355±0.079

0.052

PTF12os* IIb 41.588±0.047
0.030 - -

iPTF13bvn Ib 42.211±0.067
0.037 15.953±0.098 0.070±0.012

0.006

iPTF14dby* Ic-BL 42.575±0.104
0.087 22.462±1.678 0.223±0.079

0.053

* SN has not been corrected for host extinction. Lp andMNi values are lower limits
aSN 2011kl was primarily powered by a magnetar. The mass of 56Ni synthesised in the explosion was negligible (Greiner et al., 2015)

Table B.4: M3
ej/Ek values for the sample at different opacities.

SN Type
M3

ej

[M�]
/ Ek

[1051erg]

M3
ej

[M�]
/ Ek

[1051erg]

M3
ej

[M�]
/ Ek

[1051erg]

κ = 0.05 g cm−2 κ = 0.07 g cm−2 κ = 0.1 g cm−2

14475 Ic-BL 0.567±0.487
0.295 0.289±0.248

0.150 0.142±0.122
0.074

1993J IIb 6.267±0.044
0.043 3.198±0.022

0.022 1.567±0.011
0.011

1994I Ic 1.051±0.074
0.071 0.536±0.038

0.036 0.263±0.019
0.018

1996cb IIb 3.888±1.745
1.304 1.984±0.890

0.665 0.972±0.436
0.326

1998bw GRB-SN 2.951±0.134
0.130 1.506±0.068

0.066 0.738±0.033
0.032

1999dn Ib 1.749±1.928
1.047 0.892±0.984

0.534 0.437±0.482
0.262

1999ex Ib 5.286±0.041
0.041 2.697±0.021

0.021 1.321±0.010
0.010

2002ap Ic-BL 1.336±0.000
0.000 0.682±0.000

0.000 0.334±0.000
0.000
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2003bg IIb 3.561±1.646
1.221 1.817±0.840

0.623 0.890±0.411
0.305

2003jd Ic-BL 1.140±0.067
0.064 0.582±0.034

0.033 0.285±0.017
0.016

2004fe Ic 2.165±1.153
0.823 1.105±0.588

0.420 0.541±0.288
0.206

2005bf Ib 5.257±0.415
0.392 2.682±0.212

0.200 1.314±0.104
0.098

2005hm Ib 7.352±2.790
2.170 3.751±1.423

1.107 1.838±0.697
0.543

2005kr Ic-BL 0.789±0.573
0.370 0.403±0.293

0.189 0.197±0.143
0.092

2005ks Ic-BL 1.091±0.713
0.477 0.557±0.364

0.243 0.273±0.178
0.119

2006T IIb 1.868±1.037
0.731 0.953±0.529

0.373 0.467±0.259
0.183

2006aj GRB-SN 0.394±0.007
0.007 0.201±0.003

0.003 0.098±0.002
0.002

2006ep Ib 4.896±2.062
1.566 2.498±1.052

0.799 1.224±0.515
0.391

2006fe Ic 2.928±1.487
1.075 1.494±0.759

0.549 0.732±0.372
0.269

2006jo Ib 0.538±0.434
0.269 0.275±0.221

0.137 0.135±0.109
0.067

2006lc Ib 1.709±0.974
0.681 0.872±0.497

0.347 0.427±0.243
0.170

2006nx Ic-BL 1.938±1.100
0.770 0.989±0.561

0.393 0.485±0.275
0.193

2007Y Ib 5.771±0.443
0.419 2.945±0.226

0.214 1.443±0.111
0.105

2007gr Ic 1.393±0.100
0.094 0.711±0.051

0.048 0.348±0.025
0.024

2007ms Ic 11.388±3.817
3.049 5.810±1.948

1.556 2.847±0.954
0.762

2007nc Ib 4.611±2.176
1.606 2.353±1.110

0.819 1.153±0.544
0.401

2007qx Ic 2.420±2.316
1.341 1.235±1.182

0.684 0.605±0.579
0.335

2007ru Ic-BL 0.513±0.010
0.009 0.262±0.005

0.005 0.128±0.002
0.002

2007sj Ic 2.085±1.126
0.800 1.064±0.575

0.408 0.521±0.282
0.200

2007uy Ib 6.173±0.377
0.360 3.149±0.192

0.184 1.543±0.094
0.090

2008D Ib 6.460±0.312
0.301 3.296±0.159

0.154 1.615±0.078
0.075

2008ax IIb 6.447±0.172
0.169 3.289±0.088

0.086 1.612±0.043
0.042

2008hw GRB-SN 1.070±0.035
0.034 0.546±0.018

0.018 0.267±0.009
0.009

2009bb Ic 1.187±0.036
0.035 0.606±0.018

0.018 0.297±0.009
0.009

2009iz Ib 10.585±3.582
2.856 5.401±1.828

1.457 2.646±0.896
0.714

2009jf Ib 9.537±0.297
0.290 4.866±0.151

0.148 2.384±0.074
0.072

2010as IIb 1.117±0.044
0.043 0.570±0.023

0.022 0.279±0.011
0.011

2010bh GRB-SN 1.227±0.039
0.038 0.626±0.020

0.019 0.307±0.010
0.009

2010ma GRB-SN 0.531±1.628
0.471 0.271±0.830

0.240 0.133±0.407
0.118
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2011bm Ic 66.714±1.170
1.154 34.038±0.597

0.589 16.678±0.292
0.289

2011dh IIb 2.842±0.012
0.012 1.450±0.006

0.006 0.710±0.003
0.003

2011ei IIb 4.609±0.034
0.034 2.352±0.017

0.017 1.152±0.009
0.008

2011hs IIb 0.254±0.007
0.007 0.129±0.003

0.003 0.063±0.002
0.002

2011kl GRB-SN 2.468±0.047
0.046 1.259±0.024

0.023 0.617±0.012
0.011

2012ap Ic-BL 1.412±0.137
0.127 0.720±0.070

0.065 0.353±0.034
0.032

2012bz GRB-SN 1.544±0.105
0.100 0.788±0.054

0.051 0.386±0.026
0.025

2013cq GRB-SN 1.332±1.029
0.649 0.679±0.525

0.331 0.333±0.257
0.162

2013cu IIb 0.307±0.011
0.011 0.157±0.006

0.006 0.077±0.003
0.003

2013df IIb 10.517±0.201
0.198 5.366±0.103

0.101 2.629±0.050
0.050

2013dx GRB-SN 1.054±3.570
0.955 0.538±1.821

0.487 0.263±0.892
0.239

2013ge Ibc 5.921±2.433
1.858 3.021±1.241

0.948 1.480±0.608
0.465

PTF10vgv Ic 0.534±0.443
0.272 0.273±0.226

0.139 0.134±0.111
0.068

PTF11bli Ibc 8.440±3.059
2.404 4.306±1.561

1.226 2.110±0.765
0.601

PTF11jgj Ic 11.066±5.037
3.751 5.646±2.570

1.914 2.767±1.259
0.938

PTF11klg Ic 3.367±1.605
1.181 1.718±0.819

0.602 0.842±0.401
0.295

PTF12gzk Ic 3.328±0.387
0.356 1.698±0.197

0.181 0.832±0.097
0.089

iPTF13bvn Ib 3.020±0.075
0.073 1.541±0.038

0.037 0.755±0.019
0.018

iPTF14dby Ic-BL 11.869±3.963
3.168 6.056±2.022

1.616 2.967±0.991
0.792



Appendix C

Chapter 3 tables

201



202

Table C.1: Database of SNe in Chapter 3

SN z Original classification Reclassification References
SN1993J -0.0001 IIb IIb (1) (2)
SN1994I 0.0015 Ic Ic-6(11/9) (3) (4)

SN1996cb 0.002 IIb IIb(I) (3) (5)
SN1997ef 0.012 Ic-BL Ic-4(13/45) (3) (5) (6) (7)
SN1998bw 0.0085 GRB-SN Ic-3(15/16) (8)
SN1999dn 0.0093 Ib Ib(II) (9) (10) (5) (11)
SN1999ex 0.011 Ib Ib(II) (12)
SN2002ap 0.0022 Ic-BL Ic4-9/6 (13) (14) (3) (15) (16)
SN2003bg 0.0046 IIb IIb (17) (18)
SN2003jd 0.019 Ic-BL Ic-4(13/14) (3)
SN2004aw 0.016 Ic Ic-6(11/21) (3) (19)
SN2004dn 0.013 Ic Ic-6(9/15) (3) (20)
SN2004fe 0.018 Ic Ic-6(8/u) (20) (3)
SN2004gq 0.0065 Ib Ib (3)
SN2005az 0.0085 Ic Ic-7(11/29) (3)
SN2005bf 0.019 Ib Ib(II) (21) (3)
SN2005hg 0.021 Ib Ib (3)
SN2006T 0.008 IIb IIb (3)
SN2006aj 0.033 XRF-SN Ic-6(21/14) (22) (23) (3)
SN2006el 0.017 IIb IIb(I) (3)
SN2006ep 0.015 Ib Ib(II) (3)
SN2006lc 0.016 Ib Ib (3)
SN2007Y 0.0046 Ib Ib(II) (24)
SN2007gr 0.0017 Ic Ic-7(7/15) (25) (3)
SN2007kj 0.018 Ib Ib(II) (3)
SN2007uy 0.0065 Ib Ib(II) (3)
SN2008D 0.0065 Ib Ib(II) (26) (27) (28)
SN2008ax 0.0019 IIb IIb(I) (3) (29) (30) (31)
SN2008bo 0.005 IIb IIb (3)
SN2009bb 0.0099 Ic-BL Ic-6(20/13) (32)
SN2009er 0.035 Ib Ib (3)
SN2009iz 0.014 Ib Ib (3)
SN2009jf 0.0079 Ib Ib (33) (3)
PTF10vgv 0.015 Ic Ic-5(7/10) (34)
SN2010ah 0.050 Ic-BL Ic-3(18/17) (35)
SN2010as 0.007 IIb IIb(I) (36)
SN2010bh 0.059 GRB-SN Ic-3(32/9) (37)
SN2011bm 0.022 Ic Ic-7(6/43) (38)
SN2011dh 0.002 IIb IIb (39) (40)
SN2011ei 0.0093 IIb IIb (41)
SN2011fu 0.0185 IIb IIb (42) (43)
SN2011hs 0.0057 IIb IIb (44)
PTF12gzk 0.0137 Ic Ic-6(17/24) (45)
SN2012ej 0.009 Ic Ic-7(7/20) (48)
iPTF13bvn 0.0045 Ib Ib (46) (47)
SN2016P 0.0146 Ic-BL Ic-6(u/14) (48)

SN2016coi 0.0036 Ic-BL Ic-4(14/20) (49)
SN2016iae 0.004 Ic Ic-7(9/14) (48)
References: (1) (Matheson et al., 2000a), (2) (Barbon et al., 1995), (3) (Modjaz et al., 2014), (4) (Filip-
penko et al., 1995), (5) (Matheson et al., 2001), (6) (Iwamoto et al., 2000), (7) (Mazzali et al., 2000), (8)
(Patat et al., 2001), (9) (Deng et al., 2000), (10) (Benetti et al., 2011), (11) (Taubenberger et al., 2009),
(12) (Hamuy et al., 2002), (13) (Gal-Yam et al., 2002), (14) (Chornock et al., 2013), (15) (Mazzali et al.,
2002), (16) (Foley et al., 2003), (17) (Hamuy et al., 2009), (18) (Mazzali et al., 2009), (19) (Tauben-
berger et al., 2006), (20) (Harutyunyan et al., 2008), (21) (Folatelli et al., 2006), (22) (Pian et al., 2006),
(23) (Sonbas et al., 2008), (24) (Stritzinger et al., 2009), (25) (Valenti et al., 2008), (26) (Modjaz et al.,
2009), (27) (Malesani et al., 2009), (28) (Mazzali et al., 2008), (29) (Taubenberger et al., 2011), (30)
(Pastorello et al., 2008), (31) (Milisavljevic et al., 2010), (32) (Pignata et al., 2011), (33) (Valenti et al.,
2011), (34) (Corsi et al., 2012), (35) (Corsi et al., 2011), (36) (Folatelli et al., 2014), (37) (Bufano et al.,
2012), (38) (Valenti et al., 2012), (39) (Arcavi et al., 2011), (40) (Ergon et al., 2014), (41) (Milisavljevic
et al., 2013b), (42) (Morales-Garoffolo et al., 2014a), (43) (Kumar et al., 2013), (44) (Bufano et al.,
2014), (45) (Ben-Ami et al., 2012), (46) (Cao et al., 2013), (47) (Srivastav et al., 2014), (48) (Prentice
et al., in prep.) (49) (Prentice et al., 2018)
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Table D.1: Derived E (B − V )host for previously used SNe and updated parameters

SN E (B − V )host log10 (Lp) MNi

[mag] [erg s−1] [M�]
2004fe 0.05±0.04 42.18±0.04 0.06±0.01
2005az 0.2±0.1 42.2±0.2 0.08±0.03
2005hg 0.3±0.2 42.4±0.4 0.18±0.05
2005kl 0.2±0.1 41.7±0.1 0.026±0.009
2005mf 0.05±0.04 42.18±0.07 0.06±0.01
2006T 0.15±0.1 42.3±0.2 0.09±0.04
2006el 0.01±0.005 42.05±0.02 0.062±0.004
2006ep 0.025±0.02 41.96±0.03 0.037±0.003
2006fe 0.1±0.05 42.36±0.09 0.08±0.02
2006fo 0.1±0.05 42.25±0.08 0.06±0.01
2006jo 0.03±0.02 42.41±0.03 0.080±0.007
2006lc 0.15±0.1 42.2±0.2 0.06±0.02
2006nx negligible no change no change
2007ag 0.15±0.05 42.04±0.08 0.046±0.009
2007kj negligible 42.017±0.009 no change
2007ms negligible no change no change
2007qx 0.13±0.05 42.3±0.3 0.09±0.03
2009er 0.01±0.005 42.77±0.01 0.218±0.007
2009iz negligible no change no change
PTF10vgv 0.01±0.005 42.50±0.06 0.10±0.02
PTF12os 0.29±0.08 41.9±0.1 0.04±0.01

Table D.2: New SNe included in Chapter 4

SN Type µ z E (B − V )MW E (B − V )host log10
(
Lp

)
MNi t−1/2 t+1/2 references

[mag] [mag] [mag] [erg s−1] [M�] [d] [d]
2004dn Ic-6 32.82 0.013 0.042 0.3±0.2 41.7±0.2 0.03±0.01 10.8±0.1 16.8±0.6 (1),(2)
2008aq IIb 32.53 0.007972 0.04 0.04±0.03 42.00±0.04 0.041±0.009 9.6±0.6 17±3 (1),(2), (3)
References: (1) (Modjaz et al., 2014), (2) (Bianco et al., 2014), (3) (Stritzinger et al., 2018a)
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Table D.3: Mej of literature SNe

SN tp vph Mej

[d] [ km s−1] [M�]
PTF10vgv 11.6 9000 1.3
PTF12gzk 19.9 16000 7.0
PTF12os 17.5 5500 1.8
1993J 21 7000 3.3
1994I 10.2 9000 1.0
1996cb 16.7 7000 2.1
1997ef 15 15000 3.7
1998bw 16.1 15000 4.2
1999dn 18.0 9000 3.2
1999ex 18.0 6000 2.1
2002ap 12.6 13000 2.2
2003bg 17.5 11000 3.7
2003dh 12.6 38000 6.6
2003jd 13.7 13000 2.6
2004aw 17.0 13000 4.1
2004dn 16.5 7500 2.2
2004fe 15.1 8000 2.0
2004gq 15.3 12000 3.1
2005az 21.0 11000 5.3
2005bf 13. 5000 0.9
2005hg 17.3 7000 2.3
2005mf 15.1 9000 2.2
2006T 18.2 6000 2.2
2006aj 9.78 21000 2.2
2006el 21. 8000 3.8
2006ep 14.8 7000 1.6
2006fe 12.5 6000 1.0
2006fo 12.7 5500 0.9
2006jo 10.8 9000 1.1
2006lc 16.1 5000 1.4
2006nx 16.3 13000 3.8
2007C 9.3 9000 0.8
2007Y 15.7 5000 1.3
2007ag 15.1 8000 2.0
2007cl 14.9 9000 2.2
2007gr 14.1 7000 1.5
2007kj 12.3 6000 0.9
2007ms 20.6 8000 3.7
2007ru 12.0 19000 3.0
2007uy 16 15000 4.2
2008D 18 8000 2.9
2008aq 15.1 6000 1.5
2008ax 20.1 6000 2.6
2008bo 15.2 5000 1.2
2009bb 13.4 20000 3.9
2009er 13.2 13000 2.4
2009iz 20.4 5000 2.3
2009jf 20.4 7000 3.2
2010ah 13 18000 3.3
2010as 16.2 6000 1.7
2010bh 9.85 32000 3.4
2011bm 38 7000 11.
2011dh 20 7000 2.8
2011ei 19.4 9000 3.7
2011fu 17.0 7000 2.2
2011hs 13.1 6000 1.1
2012ap 12.5 16000 2.7
2013df 21.7 7000 3.6
2013ge 18.0 9000 3.2
iPTF13bvn 17.5 6000 2
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Figure E.1: The spectra of type Ic-7 SN 2012ej. Epochs are relative to tmax. Spectra may be
truncated to remove noise.
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Figure E.2: The spectra of type IIb(I) SN 2013bb.
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Figure E.3: The spectra of type Ic-7 SN 2014L.



210

4000 5000 6000 7000 8000 9000 10000 11000

Rest-frame Wavelength [ ]

6

5

4

3

2

1

0

1

S
ca

le
d
 f

lu
x
 +

 o
ff

se
t

−7.8 d

−4.9 d

−3.9 d

−2.8 d

−0.0 d

+5.9 d

+11.0 d

+24.8 d

+29.4 d

+31.7 d

+38.4 d

+359.7 d

⊕ ⊕

Figure E.4: The spectra of type Ic-3 SN 2014ad.
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Figure E.5: The spectra of type Ib SN 2015ah.
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Figure E.6: The spectra of SN Ic-6 2016P.
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Figure E.7: The spectra of SN Ib 2016bau.
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Figure E.8: The spectra of SN Ic-4 2016coi (1/5). Published in (Prentice et al., 2018).
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Figure E.9: The spectra of SN Ic-4 2016coi (2/5). Published in (Prentice et al., 2018).
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Figure E.10: The spectra of SN Ic-4 2016coi (3/5). Published in (Prentice et al., 2018).
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Figure E.11: The spectra of SN Ic-4 2016coi (4/5). Published in (Prentice et al., 2018).
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Figure E.12: The spectra of SN Ic-4 2016coi (5/5). Published in (Prentice et al., 2018).
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Figure E.13: The spectra of type Ib SN 2016frp.
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Figure E.14: The spectra of SN Ic-7 2016iae.
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Figure E.15: The spectra of SN Ib 2016jdw.
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Figure E.16: The spectra of SN Ib 2017bgu.
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Figure E.17: The spectra of SN Ic-3 2017dcc.



224

4000 5000 6000 7000 8000

Rest-frame Wavelength [ ]

7

6

5

4

3

2

1

0

1

S
ca

le
d

 f
lu

x 
+

 o
ff

se
t

−10.2 d

−8.4 d

−6.2 d

−4.3 d

−2.4 d

−0.4 d

+1.5 d
+2.5 d

+5.5 d

+9.6 d

+13.5 d

+20.6 d
+27.5 d

+36.5 d

+142.5 d

+189.4 d

⊕ ⊕

Figure E.18: The spectra of SN Ic-7 2017ein.
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Figure E.19: The spectra of type IIb(I) SN 2017gpn.
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Figure E.20: The spectra of type IIb(I) SN 2017hyh.
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Figure E.21: The spectra of SN Ic-3 2017ifh.
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Figure E.22: The spectra of GRB-SN 2017iuk.
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