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ABSTRACT Inspired by the Coulter counter and molecular transport across biological pores, in 

the past two decades there has been a tremendous amount of research into the use of nanopores 

as single molecule sensors. Recently, the desire to increase structural resolution and analytical 

throughput has led to the integration of additional detection methods such as fluorescence 

spectroscopy. For structural information to be probed electronically high bandwidth 

measurements are crucial due to the high translocation velocity of molecules. The most 

commonly used solid-state nanopore sensors consist of a silicon nitride membrane and bulk 

silicon substrate. Unfortunately, the photo-induced noise associated with illumination of these 

platforms limits their applicability to high bandwidth, high laser power synchronized optical and 

electronic measurements. Here we present a unique low noise nanopore platform, composed of a 

predominately Pyrex substrate and silicon nitride membrane, for synchronized optical and 

electronic detection of biomolecules. Proof of principle experiments are conducted that show the 

Pyrex substrate substantially lowers ionic current noise arising from both laser illumination and 

platform capacitance. Furthermore, using confocal microscopy and a partially metallic pore we 

demonstrate high signal-to-noise synchronized optical and electronic detection of dsDNA. 
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 Initially inspired by molecular transport across biological pores and the Coulter counter, the use 

of nanopores as single molecule sensors has come into prominence in the past two decades with 

a remarkable quantity of research having been published.1 The most commonly used detection 

method is that of resistive pulse sensing, where analyte molecules are electrophoretically driven 

across an insulating membrane, separating two sides of an electrolyte, via a nanopore. Single-

molecule detection is subsequently provided by the transient reduction in pore conductance from 

the steady-state whilst an analyte is present in the pore. Using this technique, a wide range of 

analytes have now been studied, most commonly single- and double-stranded DNA and proteins, 

with both biological and solid-state nanopores.2–5 

   Recently, the desire to acquire complementary information, increase structural resolution and 

analytical throughput has led to the integration of additional detection methods such as 

transverse electrodes and optical detection via Raman and fluorescence spectroscopy.6–9 The 

integration of fluorescence spectroscopy is of particular value due to its versatility: a range of 

molecular properties can be probed including molecular distance (via FRET), orientation (via 

polarization) and local environment (via quenching).10 In addition, the nanopore platform 

provides the potential to enhance optical detection via control of throughput, incorporation of 

additional photonic structure or use as a zero-mode waveguide.7,11 A number of optical 

configurations have so far been reported, these include the use of wide-field imaging7, liquid 

core anti-resonant reflecting optical waveguides12, total internal reflection fluorescence 

microscopy13,14 and confocal fluorescence microscopy.7 

   For structural information to be probed via resistive pulse sensing, high temporal resolution 

measurements are crucial due to the high translocation velocity of molecules. The most 

commonly used solid-state nanopore sensors consist of a silicon nitride membrane and bulk 
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silicon substrate.15 Unfortunately, the high frequency noise, so-called dielectric noise, associated 

with these platforms high capacitance reduces the signal bandwidth at which molecules may be 

detected. Although integrated measurement electronics and additional dielectric layers can 

reduce background noise consequently increasing operating signal bandwidth16,17, an additional 

noise source exists under laser illumination due to the presence of Si.18 This photo-induced noise 

significantly limits the applicability of these platforms to high bandwidth, high laser power 

simultaneous optical and electronic measurements.   

   Here we present a unique low noise nanopore platform, composed of a predominately pyrex 

substrate and silicon nitride membrane as a platform for the synchronized optical and electronic 

detection of biomolecules.  Pyrex’s high resistivity lowers device capacitance (~71 pF in 1M 

KCl buffer) and therefore high frequency noise enabling sub-5 pA RMS ionic current 

measurements at 10 kHz bandwidth. Furthermore, the absence of a bulk Si substrate means 

photoinduced increases of RMS current are typically sub-pA in magnitude.  

The application of a confocal microscope to a hybrid nanopore-zero mode waveguide platform 

is perhaps the most powerful technique for directly probing a single nanopore due to localised 

excitation volumes on the order of a zeptolitre and single photon resolution.7,19 For this 

technique, a partially metallic nanopore is crucial so that no propagation modes for incident light 

exist within the nanopore. Using platforms coated with aluminium, we demonstrate synchronized 

optical and electronic detection of biomolecule translocation events. Aluminium was chosen due 

to its high extinction coefficient and high reflectivity at the desired wavelength (488 nm).20   This 

enabled the use of membranes composed of only 30 nm thick aluminium and 20 nm thick silicon 

nitride, therefore providing a small nanopore volume whilst also ensuring low transmittance of 

light across the pore and bulk membrane. We show signal-to-noise ratios of up to 15.6 are 
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possible for the optical detection of  Yoyo-1 labelled 5 kbp DNA (7.5 base pairs to one dye 

molecule) within 0.1M KCl at a temporal resolution of 0.5 ms.  

 

Results and Discussion  

   A unique low noise nanopore platform was used in this study in order to mitigate 

photoinduced ionic current noise. This device is composed of a nanopore within a pyrex 

substrate based SiNx (Py-SiNx) platform (Figure 1A) instead of a typical Si substrate based SiNx 

(Si-SiNx) platform (Figure 1B). Both platform types were fabricated so that their photoinduced 

noise characteristics could be compared within a typical 0.1 M KCl electrolyte (Materials and 

Methods). The devices contained a 20 nm thick SiNx free standing membrane (Py-SiNx: 5 µm ⨯ 

5 µm, Si-SiNx: 50 µm ⨯ 50 µm) into which 5-30 nm diameter nanopores were milled using a 

JEOL 2010F transmission electron microscope.  

   Simultaneous optical and electrical measurements were enabled by mounting nanopore devices 

in an optical cell, using a coverslip as a base. This enabled illumination of the nanopore using a 

custom-built confocal microscope (Figure 1E, Materials and Methods).21 Briefly, nanopores were 

illuminated using an optical configuration employing a 488 nm continuous-wave solid-state laser 

(Sapphire 488LP, Coherent) and a 60x water immersion objective (1.20 NA, UPLSAPO 60XW, 

UIS2, Olympus). Fluorescence emission was split into two bands, 500-580 nm and 640-800 nm, 

before detection by two avalanche photodiodes and logged via a DAQ card at 100 kHz. A 

transmembrane potential was applied to nanopores using an A-M systems 2400 patch-clamp 

amplifier with Ag/AgCl electrodes. Unless otherwise stated the analogue signal was low pass 

filtered at 10 kHz before digitization at 100 kHz. Synchronised optical and electrical data 
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acquisition was enabled through the use of hardware and a custom LabView program for optical 

data acquisition (Figure 1E). Briefly, optical data acquisition using the Labview program was 

triggered by a TTL pulse, generated via a DAQ card once electrical data acquisition was initiated 

using Strathclyde Electrophysiology Software (WinWCP V4 8.4).    

As a result of Pyrex’s high resistivity (400 MΏΏ m), Py-SiNx platforms have lower capacitance 

(~71 pF in 1M KCl buffer)  and therefore exhibit lower dielectric and input capacitance noise 

than Si-SiNx platforms (Boron doped, Si substrate resistivity: 1-30 ΏΏ cm).22Consequently, with 

the laser turned off, the level of electrical noise for Py-SiNx platforms was lower than that for Si-

SiNx platforms. For example, the standard deviation of ionic current at 0 mV bias, with the laser 

turned off, for a ~ 27 nm diameter nanopore was only 4.02 ± 0.02 pA for a Py-SiNx platform 

compared to 26.9 ± 0.9 pA for a Si-SiNx platform. Furthermore, bypassing the low pass Bessel 

filter integrated within the amplifier, a Py-SiNx platform provides a standard deviation of only 

6.74 pA at 0 mV bias. There is also a substantial difference in the response of the devices to laser 

illumination. Figure 2A shows the baseline ionic current at 0 mV bias for a nanopore within a 

Py-SiNx and Si-SiNx platform, as laser power is raised to 580 µW in magnitude. Assuming a 

cylindrical geometry, the pores have an approximate diameter of 27 nm based on the measured 

pore conductance (Py-SiNx conductance: 25.5 nS, Si-SiNx conductance: 25.4 nS).1 The standard 

deviation of the ionic current standard increases by 780.1 ± 25.8 pA (2864.2 ± 95.1%) for the Si-

SiNx platform compared to only 0.9 ± 0.1 pA (17.6 ± 1.4%) for the Py-SiNx platform (Figure S1, 

Supporting Information). Figure 2B and 2C show power spectrums densities (PSDs) for both 

platforms with the laser off and at ~580 µW laser power. Interestingly, a broad peak centred at 

~225 Hz exists at ~580 µW laser power for the Si-SiNx platform. Both photo-induced heating of 

the electrolyte and surface charge change for silicon nitride nanopores have previously been 
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reported.23,24 However, the frequency dependence of this noise source is inconsistent with that of 

surface charge protonation noise or temperature dependant thermal and dielectric noise.22,25 

Furthermore, this peaks absence within the Py-SiNx platforms power spectrum suggests the 

source of noise is related to the Si substrate. The optical transparency of the SiNx membrane and 

photon energy (2.54 eV) is sufficient for electron-hole pair generation in the Si substrate (band 

gap ~1.1 eV), reported to promote photoreduction of H+ at p-type Si interfaces.26 We therefore 

suspect, as previously reported, that the increase in noise is via electrochemical reaction at the 

silicon-electrolyte interface.18   

The small increase of noise for Py-SiNx platforms stems from an increase in pore conductance 

with laser illumination and is a result of flicker noise scaling with the square of the ionic current 

and thermal noise being directly proportional to pore conductance.22,27 Figure 3A shows current-

voltage characteristics and corresponding conductance’s at 0 mV bias for a ~7 nm diameter pore 

(conductance: 4.0 nS at 0 mV) at laser powers up to ~596 μW. Increases in noise for this 

nanopore are minor: sub-pA at 0mV, 100mV and 200mV bias across the entire laser power range 

(Figure 3B). The linear scaling of pore conductance with laser power may be a result of increases 

in pore surface charge and local heating of the electrolyte. 23,28 Previous studies suggest 

temperature change is likely to be small. For instance, the absorption coefficient of water for 488 

nm wavelength light (0.0144 m-1) is significantly lower than for 1064 nm wavelength light (12 

m-1) which has been reported to increase temperature at a rate of 20 K per mW. [4,9] 

Furthermore, introduction and translocation of 5 kbp DNA (0.75 nM), using this nanopore, 

revealed a reduction of translocation frequency by 25.8 ± 1.5% and 60.4 ± 5.6% at ~74 µW and 

~204 µW laser power respectively (Figure S2, Supporting Information). An increase in surface 

charge is expected to reduce translocation frequency due to higher electro-osmotic flow, whilst 
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the opposite trend is expected from local heating due to lower solution viscosity.23,29–31 These 

findings suggest that increases in surface charge are the primary source of conductance change. 

By assuming changes in pore conductance were due to an increase in surface charge density 

alone, an expression which provided conductance as a function of laser power was derived and 

fit to the inset within Figure 3A (Supporting Information, Equation 3). This expression provided 

an estimate of 27.9 mC m-2 for the surface charge density with the laser turned off and and 20.0 

mC m-2 W-1 for the rate of change of surface charge. Both values are in good agreement with 

literature.23,25 

PSDs of the ionic current at 200 mV and 0 mV bias were fit with Sn(f) =Af−α and Sn(f) 

=B+Cf+Df2, respectively, where f is frequency; A is the amplitude of flicker noise; B of white 

(thermal) noise; C of dielectric noise and D of input capacitance noise (Figure 3C). 22,32As 

expected, this analysis revealed an increase in the amplitude of both flicker noise and white 

(thermal) noise with laser power (Figure S3, Supporting Information). Due to dielectric and input 

capacitance noise’s dependence on frequency (∝  F and ∝  F2 respectively), for these power 

spectrum analysis was conducted on ionic current data low pass filtered at 20 kHz to increase the 

fitting range and certainty of extracted parameters. No significant dependence of the amplitude 

of either dielectric or input capacitance noise on laser power was found (Figure S4, Supporting 

Information).  

   Increases in the amplitude of thermal noise (B) are in line with conductance changes as 

predicted using a thermal noise model, B=4kBTG, where T is temperature and G pore 

conductance. For instance, at 596 µW laser power the amplitude of thermal noise increased by 

35% ± 9.1% and pore conductance increased by 25% (Figure 3a, inset). It is important to note 
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that closer scrutiny of the dependence of flicker noise amplitude on laser power reveals that 

surface charge change may not solely be responsible for changes in pore conductance. 	  Previous 

studies have shown that nanopores which exhibit low flicker noise (<1 pA2 / Hz at 1 Hz) are well 

described by Hooges relation, SFlicker = aI2/f, where the normalised noise amplitude (a) is given by 

a=α/Nc where Nc is the number of charge carriers and α is the Hooge parameter. 33–35 Although, 

the Hooge relation was not verified for these nanopore platforms, for example using different 

ionic strength electrolytes 17,33, low flicker noise was indeed exhibited at 200 mV bias ( ~ 1 pA2 / 

Hz at 1Hz for 596 µW laser power). If surface charge increases with the power of laser 

illumination, the normalised noise amplitude (a) should decrease with laser power due to an 

increase in the number of charge carriers. Surprisingly, the normalised noise amplitude (a) is 

approximately constant across the laser power range with a mean of 3.56 ± 0.17 × 10-7 (Figure 

S3, inset, Supplementary Information). This suggests that rises in the magnitude of flicker noise 

are not due to an increase in the number of charge carriers and compromises the principle of 

conductance change via surface charge change for this system. This conclusion is of course 

strongly hinged on the Hooge relation being obeyed for these platforms, future experiments will 

focus on verifying this. Regardless of the mechanism responsible for conductance change, the 

increase of only flicker and thermal noise indicates that the pyrex platform enables ionic current 

measurements at a noise floor defined by the magnitude of conductance change induced by laser 

illumination. 

   Synchronised Detection. The low light induced noise of Py-SiNx nanopore devices make 

them ideal for utilisation with confocal microscopy for synchronised optical and electronic 

detection of biomolecules. Previous studies have demonstrated the advantages of a hybrid 

nanopore-zero-mode waveguide platform: reduced background photon noise, the ability to 
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precisely localise a molecule within the optical probe volume and control of throughput.7,36 This 

powerful technique involves illumination of a partially metallic nanopore where, crucially, the 

lateral dimensions of the nanopore mean no propagation modes exist for the incident light. As a 

result, light inside the aperture decays evanescently resulting in confined excitation volumes on 

the order of a zeptolitre (1×10-21). It is important pore length is not increased substantially by a 

metallic layer, as changes in pore conductance induced by a translocating molecule are inversely 

proportional to pore length.37 Thus Py-SiNx platforms were coated with 30 nm thick aluminium 

via electron beam evaporation before milling of a sub-30 nm diameter pore. This structure was 

selected as it provided a small nanopore volume whilst also ensuring low transmittance of light 

across the pore and bulk membrane. Transmittance of light across the bulk membrane is 

significantly attenuated, with a reduction in the electromagnetic field intensity across a 30 nm 

thick Al membrane of ~20 dB (10log10|E|2). 20Furthermore, at the wavelength of interest (488 

nm), the ZMW cut-off diameter is 215 nm ensuring attenuation of light intensity along the pore-

axis.20 Assuming the ZMW was fabricated using a perfect conductor, the intensity of light decays 

according to  the below expression where h is pore depth, Ih is intensity at depth h, Io is initial 

intensity, λc is the cut-off wavelength and λm is the wavelength of incident light.38Using this 

equation, a reduction of intensity by 99.6% is expected at a depth of 5 nm within a 10 nm 

diameter pore. It should be noted that this only an estimate as attenuation is lower for real metals, 

due to a finite skin depth.39 

𝐼!
𝐼!
= 𝑒𝑥𝑝 −

4𝜋ℎ
𝜆!

𝜆!
𝜆!

!

− 1  
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   Before attempting synchronised detection, independent optical and electronic measurements 

of the translocation of 5kbp DNA were conducted to assess the viability of this platform for 

single molecule detection.  Excellent signal-to-noise for both electronic and optical signals was 

provided by these nanopore platforms. Figure 4A shows a typical ionic current trace for a ~19 

nm diameter nanopore (conductance: 49.6 nS) within a 1M KCl electrolyte, after introduction of 

5 kbp DNA (2.6 nM) and application of a 100 mV bias. Corresponding event durations and 

amplitudes were extracted and are shown by a contour plot in figure 4B. Translocation events of 

linear and folded DNA molecules are easily distinguished and are labelled as type 1 and 2 events 

respectively.3 

      For optical detection, DNA was labelled with Yoyo-1 at ratio of 7.5 base pairs to one dye 

molecule.  Yoyo®-1 was selected as its absorbance maximum (491 nm) is close to the 

wavelength of the laser (488 nm). The fluorescence of Yoyo®-1 is quenched by chloride ions, 

however a 0.1M KCl electrolyte provided good signal-to-noise with this binding ratio. Figure 4C 

shows an example optical trace for 500-580 nm wavelength fluorescence at 200 mV bias and 

~17µW laser power illumination, after the introduction of labelled DNA (0.85 nM) to a 30 nm 

diameter pore (conductance: 25.7 nS). The presence of a translocating DNA molecule within the 

optical probe volume results in a burst of fluorescence. Corresponding dwell times and event 

amplitudes were extracted, using a custom Matlab script, and are shown within a contour plot in 

figure 4D. Signal-to-noise is excellent: the ratio of mean pulse height (28.5 ± 11.6 photons per 

0.5 ms) to background photon counts (1.85 ± 0.65 photons per 0.5 ms) is 15.6 ± 8.3. The dwell 

time within the optical channel is larger than that would be expected in the electronic channel. A 

fit of a log-normal probability distribution function to a histogram of event duration provided a 

mean of 78.3 ± 3.9 ms. This is a result of a molecule which has left the nanopore being detected 
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optically until it has left the focal plane via a combination of diffusion and electrokinetic 

phenomena. 7   

Synchronised optical and electrical data acquisition was enabled through the use of hardware 

and a custom LabView program for optical data acquisition (Figure 1B). Synchronization of 

optical and electrical signals was verified by illuminating a ~14 nm diameter nanopore 

(conductance: 9.1 nS) with 1.87 mW laser power in finite intervals using an optical beam shutter 

(Thorlabs, SHO5). Photoinduced increases in pore conductance were correlated with an increase 

of background fluorescence from the pore surface, detected within the red channel of the optical 

set-up (λ~ 640- 800 nm). Cross-correlation of the two signals was conducted, for a total of 14 

pulses, to quantify any delay in acquisition. This indicated that the electronic signal trailed the 

optical signal by an average of 0.18 ± 0.02 ms (Figure S5, Supporting Information). This delay is 

close to the difference in rise-time of the two signals, 0.17 ± 0.08 ms, indicating that data 

acquisition was indeed synchronized. 

      To demonstrate synchronised detection, we introduced Yoyo-1 labelled 5kbp DNA (0.790 

nM) to a platform containing two pores (~10 nm and ~6 nm diameter, total conductance: 9.1 nS). 

Figure 5A shows a sample of the recorded ionic current (I (t) and optical fluorescence (F (t)) 

signals at ~16µW laser power and -400 mV applied bias. A total of 191 events were detected in 

the optical channel and 206 events in the electronic channel: a 92.7% synchronized detection 

efficiency. The slightly lower quantity of events in the optical channel is in part due to the longer 

dwell time of DNA within the optical detection volume resulting in amalgamation of consecutive 

translocation events.  Accounting for such events provides an efficiency of 93.7%.  Efficiency 

could be improved further by using an alternate fluorescent dye, for example Alexa Fluor 488  
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whose fluorescence is not quenched by halides, this was deemed unnecessary for this proof of 

principle experiment.  

Interestingly, an increase in ionic current upon exit of a DNA molecule from the pore is 

observed in 77.7% of events (160 events). This phenomenon was also observed for Py-SiNx 

platforms which contained a single nanopore, with and without Al (data not shown). Resistive 

pulses are a result of a decrease in the flux of ions across the pore and consequently pore 

conductance whilst a molecule is present. The mechanism responsible for a peak in ionic current 

(mean duration: 0.08 ± 0.03 ms, mean amplitude: 197.0 ± 37.9 pA) is less clear. If the diameter 

of the nanopore is close to that of dsDNA (2.2 nm) and its double layer (λD = 0.97 nm for 0.1M 

KCl), this phenomenon can arise due to the release of accumulated electrolyte ions at the pore 

entrance after translocation and analyte double layer effects such as diffusive currents and 

concentration polarisation.40–42 However, the nanopore dimensions (~10 nm and ~6 nm) are 

larger than that of a single DNA molecule and hence these mechanisms are unlikely to be 

significant. Instead, we suspect this peak in ionic current arises from electrostatic enhancement 

of counter-ion concentration at the pore exit due to molecule surface charge.43 Menestrina et al 

have previously reported a decrease and subsequent increase in current upon entry and exit of 

negatively charged 410 nm diameter PMMA particles across a 1400 nm diameter pore for 

electrolyte concentrations <200mM KCl.43 We believe that the peak in ionic current arises 

predominately due to this mechanism. We are not fully certain why this phenomenon is only 

observed in 77.7 % of events, but this may be a consequence of differing conformations of DNA 

upon leaving the pore. 

      A histogram of resistive pulse height revealed a single cluster of events with a mean 

amplitude of 196.4 ± 67.8 pA (Figure 5C, inset).  The corresponding molecule diameter was 
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estimated, neglecting surface charge effects, using the expression derived by Smeets et al as 4.57 

± 1.41 nm.37 This indicates that molecules translocated predominately in a folded conformation.  

A histogram of the resistive pulse duration, shown in figure 5b, was fit with the 1D linear 

translocation probability density function reported by Ling et al, F1(t) = (L/(4πDt3)1/2e–(L – νt)2/4Dt, 

where v is drift velocity, L is the length of 5kbp dsDNA and D is the diffusion coefficient.44The 

length of unfolded 5 kbp DNA is 1.7 µm; the Ling distribution indicated a molecule length of 

1.064 µm confirming that molecules were folded during translocation. The mean translocation 

time and drift velocity were 0.283 ms and 3.76 mm/s, which are in good agreement with 

literature. 3,15  

Synchronisation was verified by calculating the cross-correlation of I (t) and F (t) over a 84.6 

second sample containing 84 translocation events. Cross-correlation yielded a single peak and 

showed that molecules were detected electronically first, with a delay of 90 µs before optical 

detection (Figure 5E). This lag is close to the mean duration of the peaks in ionic current 

associated with the exit of molecules from the pore (0.08 ± 0.03 ms) and is a result of the 

evanescent decay of incident light along the pore axes. The delay in detection indicates that the 

effective optical observation volume is indeed confined to the far region of the pore. 

 

Conclusion  

We have demonstrated synchronised optical and electronic detection of biomolecules using a 

unique low noise nanopore platform. The presence of a Pyrex substrate substantially lowers ionic 

current noise arising from both laser illumination and platform capacitance. Moreover, the use of 

a partially metallic pore as a zero-mode waveguide provides excellent optical signal-to-noise due 
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to a reduction of background photon noise and the ability to precisely localise a molecule within 

the probe volume.  

This platform provides scope for high bandwidth and high laser power synchronised optical 

and electrical detection of biomolecules. This has an array of potential applications such as 

probing the translocation mechanism, enhanced conformational analysis (e.g. via single-particle 

FRET) and superior analyte discrimination within complex solutions. Furthermore, functionality 

could be enhanced by incorporation of appropriate photonic structure for control of local 

temperature, via plasmonic heating, and enable single molecule thermodynamic and kinetic 

biophysical studies.31,45 For example, one can envisage experiments involving the modulation of 

temperature and subsequent probing of structural dynamics using electronic and optical 

detection. Ultimately, the application of these low noise platforms to synchronised optical and 

electronic detection enhances nanopore sensitivity and increases both the range of molecules 

which can be studied and potential applications of these sensors.  

Materials and Methods Silicon substrate based silicon nitride (Si-SiNx) devices were 

fabricated from boron doped, <100> crystal orientation, 500 µm thick silicon wafers coated with 

20 nm thick low-stress silicon nitride (SiNx). Briefly, wafers were segmented via 

photolithography and reactive ion etching (RIE) into 10mm х 10 mm chips, each with a central 

square window of SiNx removed. A wet KOH etch was subsequently used to establish a ~50 μm 

х 50 μm free standing SiNx membrane before milling of a nanopore using a JEOL 2010F 

transmission electron microscope. 

   Pyrex substrate based silicon nitride (Py-SiNx) devices were fabricated as follows. Pyrex 

substrates (10 mm x 10 mm, 200 µm thick) were coated with amorphous Si (a-Si, 200 nm thick) 
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on both sides via low pressure chemical vapour deposition. Photolithography and RIE were used 

to ‘open’ a 5 µm x 5 µm window in a-Si on the topside of the wafer before a HF wet etch (49 wt. 

%, 5 minutes) of the exposed pyrex. Photolithography and RIE were then used to define a 

100µm x 100 µm opening in a-Si on the bottom side of the wafer and a HF wet etch (49 wt.%) of 

the exposed pyrex used to merge the two etched chambers. SiNx membranes (20 nm thick) were 

prepared separately via plasma-enhanced chemical vapour deposition onto a Ni-Si platform. 

Poly(methyl methacrylate) (PMMA, 200 nm thick) was then deposited via spin coating, yielding 

a PMMA/SiNx/Ni/Si structure. Addition to a FeCl3 solution dissolved the Ni present, establishing 

a PMMA/SiNx membrane which was added to the topside of the Py-SiNx platform. PMMA was 

subsequently dissolved using acetone and the SiNx membrane secured by depositing 

photodefinable PDMS (10-20 µm thick).46 For synchronised detection using a zero-mode 

waveguide modality, a 30 nm thick aluminium layer was deposited onto the topside of the Py-

SiNx platform (Py-SiNx-Al) via electron beam evaporation before deposition of PDMS. 

   All experiments were conducted using a reported custom-built confocal microscope.47  

Nanopores were illuminated using a 488 nm continuous-wave solid-state laser (Sapphire 488LP, 

Coherent) and a 60x water immersion objective (1.20 NA, UPLSAPO 60XW, UIS2, Olympus). 

Fluorescence emission was split into two bands, 500-580 nm and 640-800 nm, using a dichroic 

mirror (630DCXR) before detection by two avalanche photodiodes (SPCM-‐AQR-‐14, Perkin-‐

Elmer) coupled with a DAQ card (NI 6602, National Instruments) for data logging.  A 

transmembrane potential was applied to nanopore sensors using an A-M systems 2400 patch-

clamp amplifier and Ag/AgCl electrodes. Unless otherwise stated, the analogue signal was 

filtered by an integrated 6 position, four pole low pass Bessel filter at 10 kHz before digitization 
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at 100 kHz using a NI-USB 6259 DAQ card. All electrolytes were buffered using 10mM 

Tris.HCl, 1mM EDTA (pH7).   

Custom Matlab scripts were used for data analysis. Power spectrums were estimated, using a 

fast-fourier transform and 9.75 s duration data sets. To rectify signal attenuation before the cut-

off frequency, power spectrums were normalised by the magnitude response of a four-pole low 

pass Bessel filter at the corresponding low pass filter frequency.47 RMS current was calculated 

using 0.2 s ionic current traces.  

Peak selection criteria for both optical and electrical translocation data was a minimum 

amplitude of 5 standard deviations of the background signal. To account for ionic current noise, 

the baseline of all electrical data was smoothed using an asymmetric least squares smoothing 

algorithm before peak selection.48 
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Figure 1. Schematics of A) Si and B) Pyrex substrate based silicon nitride nanopore platforms. 

C) Optical image of a Pyrex substrate (Py-SiNx) platform (scale bar = 10 µm). Two circular 

features are present. The larger feature (diameter: ~19 µm) corresponds to the aperture within the 

pyrex substrate and the smaller feature (diameter: ~2.1 µm) to the free standing silicon nitride 

membrane.  D) TEM image of a ~7 nm diameter nanopore within the free-standing silicon nitride 

membrane of a Py-SiNx platform (scale bar = 10 nm). E) The experimental set-up: an 

epifluorescence optical configuration employing a 488 nm continuous-wave laser; a 60x water 

immersion objective (Obj.) and avalanche photodiode (APD) is used to probe a SiNx nanopore 

(Materials and Methods). When electrical data acquisition is initiated, a TTL pulse is generated 

by the electrical data acquisition (DAQ) card which subsequently triggers optical acquisition. 
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Figure 2. A) Baseline ionic current at 0 mV, under laser illumination, for a ~27 nm diameter 

nanopore in a Si-SiNx (yellow background) and Py-SiNx platform. Different colour traces 

correspond to different laser powers, as indicated by the number (in μW units) beneath each 

trace. The inset is an expanded view of data for the Py-SiNx device. B) Power Spectral Densities 

at 0mV for the Si-SiNx platform with the laser off (blue) and at ~578 μW laser power (red). C) 

Power Spectral Densities at 0mV for the Py-SiNx platform with the laser off (blue) and at ~583 

μW laser power (red). 
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Figure 3. A) Current–Voltage trace for a ~7 nm diameter (conductance: 4.0 nS at 0 mV) Py-SiNx 

nanopore with the laser off (blue) and at ~17 μW (blue), ~201 μW (orange) and ~596 μW (red) 

power. The inset shows pore conductance at 0 mV as a function of laser power. B) Standard 

deviation of ionic current versus laser power with a bias of 0mV (blue), -100mV (green) and -
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200mV (red). C) Power Spectral Densities at 0 mV (blue) & -200mV (red) with the laser power 

at ~596 μW. Black lines indicate fits of S(f) = Af-� and S(f) =  B + Cf + Df2 (where A–D are fitting 

parameters and 0 < α < 2, with exponent α typically close to 1) for data collected at -200mV and 

0mV respectively. 
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Figure 4. A) Baseline-adjusted ionic current trace for electrical 5 kbp DNA translocation 

detection at 100 mV using a ~19 nm diameter pore (conductance: 49.6 nS)  and 1M KCl 

electrolyte. B) Corresponding contour plot of event amplitude versus duration for 100 mV 

electrical detection data.  C) Photon trace (0.5 ms resolution) for optical Yoyo®-1 labelled 5 kbp 

DNA (7.5bp’s : 1 dye) translocation detection at  200 mV bias and ~17 µW laser power  using a 

30 nm diameter pore (conductance: 25.7 nS) and 0.1 M KCl electrolyte. Data corresponds to 

500-580 nm wavelength fluorescence.  D) Corresponding contour plot of event amplitude 

(photons per 0.5ms) versus duration for 200 mV optical detection data. 
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Figure 5. A) and B) Baseline adjusted ionic current and photon trace for Yoyo®-1 labelled 5 kbp 

DNA (7.5bp’s : 1 dye) translocation detection at  400 mV bias and ~17 µW laser power  using 

two pores (~10 nm and 6 nm diameter, total conductance: 9.1 nS) and a 0.1 M KCl electrolyte. 

Data within the optical channel has been re-binned at 2 ms resolution. B) Corresponding 

electrical data histograms of event duration and amplitude (inset) fit with Ling et al and Gaussian 

probability distribution functions, respectively.44 C) Corresponding optical data histograms of 

event duration and amplitude (inset) fit with log-normal probability distribution functions. D) 

Cross-correlation of ionic current and photon counts within the green channel (λ~ 500- 580 nm) 

for a 84.6 second sample containing 84 translocation events.  
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