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ABSTRACT: 

AIMS: Relatively little is known about the health outcomes associated with very low plasma 

concentrations of high density lipoprotein cholesterol (HDL-C) mainly because of the small 

numbers of individuals with such extreme values included in clinical trials. We therefore 

investigated the association between low and very low HDL-C concentration at baseline and 

incident all-cause-mortality, death from malignant disease (i.e. cancer), and with fatal or non-

fatal incident coronary heart disease (CHD) in individuals from the Reasons for Geographical 

And Racial Differences in Stroke (REGARDS) study.  

METHODS AND RESULTS: Analysis was based on 21,751 participants from the 

REGARDS study who were free of CHD, other cardiovascular disease and cancer at baseline 

and were categorized by baseline HDL-C into <30 mg/dL (very low), 30 -<40 mg/dL (low), 

and ≥40 mg/dL (reference). A series of incremental Cox proportional hazards models were 

employed to assess the association between the HDL-C categories and outcomes. Statistical 

analysis was performed using both complete case methods and multiple imputations with 

chained equations. After adjustment for age, race and sex, the hazard ratios (HRs) comparing 

the lowest and highest HDL-C categories were 1.48 (95% confidence interval [CI]: 1.28, 1.73) 

for all-cause mortality, 1.35 (95%Cl: 1.03, 1.77) for cancer-specific mortality and 1.39 (95%Cl: 

0.99, 1.96) for incident CHD. These associations became non-significant in models adjusting 

for demographics, cardiovascular risk factors and treatment for dyslipidemia. We found 

evidence for an ‘HDL paradox’ whereby low HDL (30-<40 mg/dL) was associated with 

reduced risk of incident CHD in black participants in a fully-adjusted complete case model 

(HR 0.63; 95%CI: 0.46, 0.88) and after multiple imputation analyses (HR 0.76; 95%CI 0.58, 

0.98). HDL-C (<30 mg/dL) was significantly associated with poorer outcomes in women for 

all outcomes, especially with respect to cancer mortality (HR 2.31; 95%Cl: 1.28, 4.16) in a 

fully-adjusted complete case model, replicated using multiple imputation (HR 1.81; 95%CI 

1.03, 3.20).  

CONCLUSIONS: Low HDL-C was associated with reduced risk of incident CHD in black 

participants suggesting a potential HDL paradox for incident CHD. Very low HDL-C in 

women was significantly associated with cancer mortality in a fully-adjusted complete case 

model.  

Key words: Cholesterol, Coronary Heart Disease, HDL, Malignant Disease, Mortality. 
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INTRODUCTION 

In the 1970s, the Framingham Heart Study (FHS) demonstrated an inverse correlation 

between plasma high density lipoprotein cholesterol (HDL-C) concentrations and coronary 

heart disease (CHD) risk1, an observation that was consistent with previous descriptions of the 

role of HDL in reverse cholesterol transport 2 and which prompted investigations into the 

therapeutic potential of HDL-elevating interventions. Despite early promise 3, recent trials with 

niacin or cholesteryl ester transfer protein (CETP) inhibitors failed to demonstrate that 

treatment to raise HDL-C resulted in improved CV health outcomes4, 5. A study employing 

Mendelian randomization demonstrated that several polymorphisms, which raised HDL-C did 

not reduce the risk of myocardial infarction (MI) 6. Furthermore, it has recently been shown 

that a rare variant of the scavenger receptor B1 is associated with increased HDL-C and an 

increased risk of CHD 7. These data suggest that HDL-C is not implicated in the causal pathway 

of atherosclerosis.  

The accumulation of evidence therefore casts doubt on HDL-elevation as a therapeutic 

strategy. However, the risk conferred by low HDL-C can be ameliorated – a post-hoc analysis 

of the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating 

Rosuvastatin (JUPITER) trial has shown benefit of statins in this respect 8, 9. Thus, the inverse 

relationship between HDL-C and clinical outcomes necessitates careful study to enable 

identification of patients at risk and to offer risk reduction therapies where they are available. 

While individuals with HDL-C <40 mg/dl are recognized at being increased risk of 

cardiovascular (CV) events, currently relatively little is known about the health outcomes 

associated with very low (<30 mg/dl) HDL-C. Most studies conducted to date have been 

underpowered to detect such differences. One observational study including 43,368 subjects, 

429 of whom had HDL-C <15 mg/dl, showed that most cases of very low HDL-C were 
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associated with secondary causes and that mortality was significantly elevated when HDL-C 

concentrations were <15 mg/dl 10.   

We analyzed data from the REasons for Geographical And Racial Differences in Stroke 

(REGARDS) study to investigate the relationships between low (30 to 39.9 mg/dL) and very 

low (<30 mg/dl) concentrations of HDL-C and CHD incidence, death and all-cause mortality. 

In light of previous observations of inverse relationship between HDL-C and cancer11 we also 

included malignant disease as an endpoint in our analysis. The large size of the cohort and the 

recruitment strategy of the REGARDS study allowed these relationships to be investigated in 

racial subgroups and for comparisons to be made between the sexes. 

 

METHODS 

REGARDS study population 

The REGARDS longitudinal cohort study recruited 30,239 community-dwelling subjects 

between January 2003 and October 2007 12. Participants were selected from commercially 

available lists and recruited through a combination of mail and telephone contact. Because of 

a focus on geographic and racial disparities in stroke mortality, blacks were oversampled 

(44%), as were residents of the southeastern U.S. Stroke Belt states (56%) 12, 13. The Stroke 

Belt states were defined as North Carolina, South Carolina, Georgia, Tennessee, Alabama, 

Mississippi, Arkansas, and Louisiana, with the remaining 44% of the participants selected from 

the remaining 40 contiguous U.S. states 12, 13 

Eligibility criteria included having a name and telephone number in the Gensys database, 

black or white race, English-speaking, aged 45 and older, absence of conditions associated with 

a life expectancy of less than 5 years, living in the community, and not being in or on a waiting 

list for a nursing home. Potential participants with diagnosed malignancy at baseline were 

excluded, those with medical conditions that would preclude long-term participation, and being 
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cognitive impairment as judged by the telephone interviewer 12. The participation rate was 

estimated as 33%, similar to other studies 13 . 

The REGARDS study protocol was approved by the Institutional Review Boards 

governing research in human subjects at the participating centers. All participants provided 

informed consent. 

 

Data collection 

For those agreeing to participate, the telephone interviewers conducted an interview to 

assess cardiovascular disease (CVD) risk factors and medical history. An in-person assessment 

for direct measurement of risk factors (blood pressure, anthropomorphic characteristics, 

electrocardiogram) and collection of blood and urine samples was conducted approximately 2 

to 3 weeks after the telephone interview. Participants (or their surrogates) were contacted by 

telephone at 6-month intervals to detect suspected CVD events and death, with medical records 

associated with suspected events retrieved and adjudicated by a physician panel.  Additionally, 

surveillance for death was performed by use of online sources such as the Social Security Death 

Index and the National Death Index. Cause of death was established by physician review of 

medical history, medical records (when available), interviews with next-of-kin or proxies, 

autopsy reports, death certificates, and the National Death Index. Details of the study design 

are provided elsewhere 12. 

In this analysis, we included REGARDS study participants who fasted overnight prior to 

their study visit, were not missing any explanatory variables of interest, had valid 

measurements of total cholesterol, HDL-C and triglycerides. Because the complete case 

method of analysis has been shown to underestimate risks, especially in black women, we then 

reanalyzed the data, imputing missing values using multiple imputation with chained equations 
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(MICE) 14, 15. REGARDS participants with a history of CHD at baseline were excluded from 

the incident CHD analysis.  

Laboratory assays were conducted as previously described 16. Samples were centrifuged 

an average of 97 min after collection and serum or plasma separated and shipped overnight on 

ice packs to the University of Vermont as previously described17. On arrival, samples were 

centrifuged at 30,000 g at 40C and either analyzed (general chemistries) or stored at below -

800C. C-reactive protein (CRP) was analyzed in batches by particle enhanced 

immunonephelometry using the BNII nephelometer (N High Sensitivity CRP; Dade Behring, 

Deerfield, IL) with interassay coefficients of variation of 2.1-5.7%. Cholesterol, HDL-C, 

triglycerides, and glucose were measured by colorimetric reflectance spectrophotometry using 

the Ortho Vitros Clinical Chemistry System 950IRC instrument (Johnson & Johnson Clinical 

Diagnostics, New Brunswick, NJ) 18. LDL-C was calculated using the Friedewald formula 

from total cholesterol, HDL-C and triglycerides 19 

Demographic factors included participant age, race (black/white) and sex. Measures of 

socio-economic status (SES) included self-reported income level (<$20k, $20k-$34k, $35k-

$74k, ≥$75k) and education level (less than high school, high school graduate, some college, 

college graduate). Alcohol consumption (some, none), physical activity (none, 1-3 times/week, 

4 or more times/week), and current cigarette smoking were assessed during the baseline 

telephone interview. Diabetes was defined as self-reported diabetes medication use or fasting 

glucose ≥126 mg/dL. Body mass index (BMI) (kg/m2) and systolic blood pressure (mmHg) 

were measured during the in-home visit. Albumin-to-creatinine ratio (ACR ≥30 vs <30 mg/g), 

estimated glomerular filtration rate (eGFR) through the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation 20, CRP <1 mg/L, 1-3 mg/L, ≥3 mg/L), low density 

lipoprotein (LDL) and triglycerides were measured through specimens. Use of statins, other 

lipid-lowering medications (fibrates or niacin) and steroids was based on medication inventory. 
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Endpoints 

The three endpoints of interest were: 1) death from any cause, 2) death from malignant 

disease, and, 3) incident fatal or non-fatal CHD, each at or before December 31, 2013 (the last 

date where adjudication of the cause of death was available). The definition of incident CHD 

has been previously described as an incident definite or probable non-fatal MI or CHD death 17. 

MI was classified based on published guidelines and consideration of clinical signs and 

symptoms consistent with ischemia; a rising and/or falling pattern of biomarkers over at least 

6h with a peak at least twice the upper limit of normal; and electrocardiogram (ECG) or other 

imaging findings consistent with ischemia. REGARDS study participants or proxy respondents 

were contacted every 6 months via telephone to assess incident CHD events. Medical records 

were retrieved for adjudication for suspected events. When fatal CHD events were reported, 

interviews with next-of-kin or proxies, medical records in the last year of life, death certificates 

and autopsy reports were examined to determine if a CHD event was the main underlying cause 

of death. Non-fatal MIs and fatal CHD events were adjudicated by trained clinicians following 

published guidelines 21-23. For all analysis of incident CHD, those participants with baseline 

CHD (self-reported MI, coronary artery bypass grafting, angioplasty or stenting, or evidence 

of MI via ECG) were excluded. 

Cancer mortality was recorded regardless of cancer type, as previously described 24. 

Cancer mortality was assessed through semi-annual telephone follow up, death information 

from participant proxies, linkages with the Social Security Death Index (SSDI) as well as the 

National Death Index (NDI). Date of death was confirmed using death certificates, SSDI and/or 

NDI, and cause of death was adjudicated by a committee of experts using all available 

information as recommended by national guidelines 17. 
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Statistical analysis 

HDL-C categories were defined by fasting HDL-C measurement into the following 

categories: ‘very low’ HDL-C (<30 mg/dL), ‘low’ HDL-C (30-<40 mg/dL) and ‘normal’ HDL-

C (≥40 mg/dL) (reference value). To assess the association between the HDL-C categories and 

each outcome, a series of incremental Cox proportional hazards models were employed on 

complete cases: Model 1) adjustment for demographic factors (age, race, sex); Model 2) 

additional adjustment for SES (income level and education level), alcohol consumption, 

physical activity, smoking and BMI; Model 3) additional adjustment for diabetes, estimated 

eGFR, ACR, CRP, statin use, other lipid-lowering medication use, steroid use, and, Model 4) 

additional adjustment for LDL-C and triglycerides. Statistical interactions in the minimally-

adjusted model (Model 1) and final model (Model 4) were used to examine whether the 

associations between HDL-C category and the outcomes varied by sex and race, separately. In 

a separate analysis, Model 4 was used to interrogate the data using multiple imputation with 

chained equations (MICE) 14, 15. For the incremental proportional hazards models, the level of 

significance was set at 0.05, and 0.10 for the interaction analyses 25. A sensitivity analysis 

further explored whether the association between HDL-C category and each outcome changes 

over time, using a joint Wald test of time-varying HDL-C effects in Model 4. Additional 

sensitivity analyses examined continuous HDL-C using restricted cubic splines in Model 4 as 

well as HDL-C quintiles in Models 1 and 4. SAS 9.4 (SAS Institute, Inc.) and R 26 were used 

for all complete case statistical analyses and Stata 14.2 for multiple imputation analyses. 

 

 

RESULTS 

Baseline characteristics 

Of the 21,751 participants that met the complete case inclusion criteria (Supplemental 

Figure 1), 45% of them were male and 39% were black. The mean age was 64.6 (±9.4) years. 
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With respect to HDL-C, 748 (3.4%) participants were in the very low (<30 mg/dL) HDL-C 

category; 4038 (18.6%) in the low (30 - <40 mg/dL), and 16965 (78.0%) were in the normal 

(≥40 mg/dl) category.  

Age, BMI, eGFR, educational status, income, physical activity, smoking, statin use and 

CRP were broadly similar between the categories. Participants in the low and very low HDL 

categories were more likely to be male, white, and to have diabetes than participants with 

normal HDL. HDL category was directly correlated with LDL-C and inversely correlated with 

triglycerides. Baseline characteristics for the population (stratified by HDL-C category) are 

shown in Supplemental Table 1. Detailed number of events and populations for each 

HDL*race and HDL*sex group is presented in Supplemental Table 2. Hazard ratios (HRs) 

describing the association between HDL-C category and risk of all-cause mortality, mortality 

from malignant disease and incident CHD are presented in Supplemental Table 3, and HRs 

describing the association between HDL-C quintile and each outcome of interest by race and 

sex are presented in Supplemental Tables 4 and 5, respectively. Relative hazard of each 

outcome using continuous HDL-C through restricted cubic splines by race and sex are 

presented in Supplementary Figures 2-7. 

  

Relationship between HDL-C category and all-cause-mortality 

The mean person-years follow-up (SD) for all-cause mortality was 7.2 (2.5) years. 

Unadjusted Kaplan-Meier curves showed that, compared with participants in the normal HDL-

C category, all-cause mortality was higher in patients with low, or very low HDL-C (Figure 

1). In Cox proportional hazard models adjusted for age, race, and sex (Model 1), participants 

in the low category of HDL-C had greater risk of death with the HR 1.15 (95% confidence 

interval [CI]: 1.06, 1.25) and the mortality in the very low HDL-C group was greater still 1.48 

(95%CI: 1.28, 1.73), thus demonstrating a monotonic relationship between HDL-C and 
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mortality. Similar results were seen after further adjustment for education level, income level, 

alcohol consumption, physical activity, smoking and BMI (Model 2). Further adjustment 

(Models 3 and 4) attenuated this relationship, as did analysis by MICE (Supplemental Table 

3). There is no evidence that the association between HDL-C category and all-cause mortality 

changes over time (p=0.12).  

In the fully-adjusted model (Model 4), statistically significant differences were observed 

between males and females in the relationship between HDL-C and all-cause mortality (p for 

interaction = 0.08) with numerically larger HR in females (HR 1.31, 95%CI: 0.88, 1.95 for 

HDL-C <30 mg/dL). However, no statistically significant differences between sexes were 

observed when MICE was employed (Table 1). Neither complete case analysis (Model 4) nor 

MICE demonstrated a statistically significant interaction of race with respect to all-cause 

mortality (Table 2). Treating HDL-C continuously, no differences in association with all-cause 

mortality were observed by race (p=0.65; Supplemental Figure 2), but the interaction between 

HDL-C and sex was statistically significant (p<0.01; Supplemental Figure 3). 

 

Relationship between HDL-C and cancer-specific mortality 

The mean person-years follow-up (SD) for cancer-specific mortality was 7.8 (2.8) years. 

Unadjusted Kaplan-Meier curves showed that, compared with participants in the normal HDL-

C category, the rate of cancer mortality was increased in patients with low or very low HDL-

C (Figure 2), which were apparent before 2 years and extend through 10 years of follow up. 

In Cox proportional hazard models adjusted for age, race, and sex (Model 1), participants in 

the low and very low categories of HDL-C had increased risk of cancer-specific mortality - HR 

1.14 (95%CI: 0.99, 1.32) and 1.35 (95%CI: 1.03, 1.77), respectively, and this trend continued 

through models 2, 3 and 4 with gradual effect attenuation, and the effect was not observed with 

MICE (Supplemental Table 3). There is no evidence that the association between HDL-C 
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category and cancer-specific mortality changes over time (p=0.08). In the fully-adjusted model 

(Model 4), using complete case analysis, statistically significant differences were observed 

between males and females in the relationship between HDL-C and cancer-specific mortality 

(p for interaction = 0.014). In females, the very low category of HDL-C was strongly associated 

with the higher risk of cancer (HR 2.31, 95%CI: 1.28, 4.16) compared with men (HR 0.88, 

95%CI: 0.64, 1.21) (Table 1). The difference between cancer mortality between males and 

females was also seen when MICE was employed (p=0.033). Neither complete case analysis 

(Model 4) nor MICE demonstrated a statistically significant interaction of race with respect to 

cancer-specific mortality (Table 2). Examining HDL-C continuously, no differences in 

association with cancer-specific mortality were observed by race (p=0.62; Supplemental 

Figure 4), but the interaction between HDL-C and sex was statistically significant (p<0.01; 

Supplemental Figure 5). 

 

Relationship between HDL-C and incident CHD 

The mean person-years follow-up (SD) for all-cause mortality was 7.0 (2.6) years. 

Unadjusted Kaplan-Meier curves showed that, compared with participants in the normal HDL-

C category, rates of incident CHD were increased in patients with low, or very low HDL-C 

(Figure 3), which were apparent before 2 years and extend through 10 years of follow up. In 

adjusted Cox proportional hazard models (Models 1-4) the observed effect was gradually 

attenuated together with subsequent adjustments (Supplemental Table 3). There is no 

evidence to suggest that the association between HDL-C category and incident CHD varies 

over time (p=0.08). 

Subgroup analysis of the fully-adjusted model (Model 4) using the complete case method 

demonstrated statistically significant effects of sex (Table 1) (p for interaction = 0.008) and 

race (Table 2) (p for interaction = 0.018). The analysis of the relationship between HDL-C and 
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incident CHD in females showed that low HDL-C (30-39.9 mg/dL) was significantly 

associated with a reduced risk of incident CHD (HR 0.57, 95%CI: 0.38, 0.86); conversely, very 

low HDL-C was non-significantly associated with greater risk (HR: 1.57, 95%CI: 0.69, 3.58). 

In males, a different relationship was seen with no effect of low HDL-C (HR 1.04, 95%CI: 

0.85, 1.28), or very low HDL-C (HR: 0.82, 95%CI: 0.55, 1.22) on incident CHD. However, 

these sex differences were not replicated when analysis was performed using MICE (Table 1). 

In whites, participants in the low HDL-C category had a similar incidence of CHD as those in 

the normal (reference) category (HR 1.09, 95%CI: 0.88, 1.35), similar results were seen with 

very low HDL-C (HR 0.92, 95%CI: 0.61, 1.39). Black participants in the low HDL-C category 

were at significant lower risk of incident CHD than those with normal HDL-C (HR 0.63: 

95%CI: 0.46, 0.88), and a similar trend (however not significant) was seen with the very low 

HDL-C group (HR: 0.82, 95%CI: 0.40, 1.68). The significant interaction of race in complete 

case analysis was preserved when MICE analysis was employed (p for interaction = 0.054) 

(Table 2). Significant differences in the association between continuous HDL-C and incidence 

of CHD were observed by both race (p=0.02; Supplemental Figure 6) and sex (p=0.04; 

Supplemental Figure 7). 

 

DISCUSSION 

Our study has demonstrated that HDL-C tertiles were inversely monotonically associated 

with all-cause mortality and cancer-specific mortality in a minimally-adjusted model. A similar 

trend was seen with the relationship between HDL-C and the risk of incident CHD. Analysis 

of racial subgroups revealed that blacks in the ‘low’ and ‘very low’ HDL-C categories 

experienced fewer incident CHD events than those with ‘normal’ HDL-C using both complete 

case and MICE analysis methods. Thus, in this population, our data suggest an ‘HDL paradox’, 

raising the possibility of the existence of an inverted U- or J-curve phenomenon. Subgroup 
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analysis of a fully-adjusted complete case model revealed striking differences between males 

and females. The interaction with sex was significant for all three outcomes, with low HDL-C 

being prognostic of poorer outcomes in females than in males in each case. In particular, in 

females, ‘very low’ HDL was strongly associated with cancer-specific mortality, whereas such 

an effect was not seen in males. This interaction of sex was also observed in MICE analysis, 

however the effect was slightly attenuated (HR goes from 2.31 in complete case to 1.81 in 

MICE). It has long been recognized that population-level HDL-C concentrations are higher in 

adult females than males 27. Thresholds for diagnosing low HDL-C differ between the genders 

(<40 mg/dL in men and <50 mg/dL in women) 28. A similar inverse relationship between HDL-

C and incident cancer has been previously observed in a Chinese cohort study including 17,779 

participants29. Furthermore, a study-level meta-analysis of 625,000 participants demonstrated 

a 36% lower incidence of cancer for every 10 mg/dl increase in HDL-C11. The fact that our 

study complements findings conducted in very different demographic groups and using 

different methodologies is reassuring.  

The results of this study suggest the possibility that HDL-C may be prognostically useful 

in clinical practice beyond the calculation of CVD risk, particularly for women. The poor 

predictive value of HDL-C against CHD among the whole population in this study is consistent 

with results obtained by Mendelian randomization 6 that demonstrate that a causal relationship 

between low HDL-C and MI is unlikely. Our results are consistent with those of Tada et al. 

who conducted an observational study of subjects attending hospital in Japan and whose HDL-

C was measured for any reason 10. Out of a cohort of 43,368 patients, 429 were found to have 

‘extremely low’ HDL-C (<15 mg/L), and mortality was greatest in this group. During the 

median 175 days follow up period, 106 patients in this group died. It is possible that infectious 

diseases are partially responsible for excess mortality in participants with very low HDL-C. 

Our study did not investigate this hypothesis, however recent findings from the Copenhagen 
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City Heart Study indicate that HDL-C <31 mg/dl (almost identical to our ‘very low’ HDL-C 

group) was associated with a HR of 1.75 for infectious disease compared with normal HDL-

C30. This likely reflects the important roles of HDL in immunity and the modulations of HDL 

function during infectious and inflammatory states. HDL particles influence the activity of 

monocytes, macrophages, dendritic cells and T- and B- lymphocytes by altering the cholesterol 

content of lipid rafts31. HDL limits the potential for bacterial lipopolysaccharide to induce 

inflammatory reactions31. However, rapid reductions of HDL-C have been observed during 

acute infections31, and inflammatory states can result in ‘dysfunctional’ HDL which can exert 

pro-inflammatory effects32. Similarly, cytokine release associated with the inflammatory 

response to tumours has been associated with reduced plasma concentrations of HDL-C33. 

Probably the remaining question is whether the relationship between low HDL-C and poor 

outcomes is causal, or whether low HDL-C occurs secondary to another condition, which 

results in morbidity and mortality. Rader and de Goma reviewed the causes of low HDL-C, 

which they divided into artifactual causes (e.g. assay interference by paraproteinemia), primary 

(monogenic) causes (e.g. ApoA-I deficiency or mutation, Tangier disease, heterozygous 

deficiency of ATP-binding cassette transporter A1 [ABCA1], lecithin cholesterol 

acyltransferase [LCAT] deficiency), all of which are uncommon and secondary causes (e.g. 

anabolic androgenic steroids, malignancy and idiosyncratic response to fibrates) 34. In the 

recent study by Tada et al., most cases of low HDL-C were attributable to secondary causes. 

As many as 80 (75%) of the causes of death were either from malignancies, inflammatory 

diseases, or major bleeding, in contrast to a relatively low mortality from CVD (10%) 10. That 

observation is consistent with the finding of this study that low HDL-C was a better predictor 

of all-cause mortality and cancer mortality than it was for incident CHD in complete case 

analysis. However, the results of these studies may not be directly comparable in this respect 

because Tada et al. included in their analysis all patients found to have low HDL-C, whereas 
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in this study, participants with malignancy at baseline were not included in REGARDS and 

patients with CHD at baseline were excluded from the analysis. Thus, in contrast to the study 

by Tada et al, in which most of the very low cases of HDL-C were attributable to secondary 

causes, our study might be considered to focus on the lowest identifiable levels of primary low 

HDL-C. This is reflected in different cut-off points in the categorization of ‘extremely low’ 

HDL: <20 mg/dL in Tada et al, compared with ‘very low’ <30 mg/dl in this study, which 

resulted in 3.5% of our population being included in this group.  

Recent findings suggest that the inverse relationship between HDL-C and triglycerides 

low HDL-C could be attributed to hypertriglyceridemia via augmentation of CETP activity 35. 

Furthermore, the incidence of diabetes was much greater in participants with low and very low 

HDL-C, than those in the ‘normal’ category. The existence of dysfunctional, pro-inflammatory 

HDL-C in diabetes has been described elsewhere36. In this study, the prognostic effects of 

HDL-C in the whole study population were attenuated when the Cox-regression model 2 

correcting for BMI was applied, and further attenuation was seen with Model 3, which corrects 

for diabetes (among other factors). 

Our results suggest a protective effect of HDL-C against cancer. Several lines of 

investigation indicate that such an effect is biologically plausible. Apolipoprotein A-1, the 

constituent lipoprotein of HDL-C has been demonstrated to inhibit tumour development in 

mouse models of ovarian cancer37 and melanoma38 and L-5F, an apolipoprotein mimetic has 

been shown to inhibit tumor angiogenesis39. Other components of the cholesterol efflux / 

reverse cholesterol transport pathway may be involved in the regulation of malignancy. It has 

recently been demonstrated in mouse models that knockout of ATP-binding cassette 

transporters ABCA1 and ABCG1 is protective against melanoma growth and metastasis 40. 

Few populations have a sufficient number of black participants to powerfully assess racial 

differences in the role of HDL and disease risk.  A potentially new finding of this study is the 
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association of lower CHD risk in blacks with HDL-C levels <40 mg/dl, thus apparently 

exhibiting an ‘HDL paradox’. These results, however, should be interpreted with caution, 

especially as the relatively small numbers of participants in the racial subgroups of patients 

with low HDL-C weakened the statistical power of these analyses. Nevertheless, it should be 

noted that the phenomenon was observed after both complete case analysis and MICE, 

reducing the likelihood of an artifactual finding. This is an interesting finding that requires 

further investigation, perhaps in other large cohorts and registries. Racial differences in the 

prognostic utility of HDL-C in CVD risk prediction have been observed before, and a similar 

paradoxical effect of very low HDL-C has been observed in Asians 41. A previous analysis of 

data from black participants in the REGARDS study failed to find an association between low 

HDL-C (defined as <40 mg/dl in men or <50 mg/dl in women) and incident CHD 42. Trends 

indicating similar paradoxically protective effects of ‘low’ or ‘extremely low’ HDL-C were 

seen in other subgroups (all-cause mortality in males and whites; cancer mortality in males; 

and incident CHD in males). None of these latter trends were statistically significant, however 

it is possible that the study was underpowered to detect such effects because of the relatively 

small number of participants in the ‘low’ and ‘extremely low’ HDL-C categories. Differences 

in outcomes in different racial groups may reflect varying prevalence of genetic traits relating 

to HDL-C. Associations of HDL-C, CVD, and genetic variants have been discussed elsewhere 

43, 44 and recently a rare variant of the scavenger receptor B1 has been found to be associated 

with increased HDL-C and an increased risk of CHD 7. Further investigations of this type may 

open the possibility for personalized risk prediction after genetic testing. 

 

Study strengths and limitations  

The large sample size, long period of follow up, and rigorous approach to data collection 

in the REGARDS study make this cohort an extremely useful tool to explore relationships 
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between biomarkers and risks of disease. Nevertheless, such an approach to research has 

several limitations. Observational studies, such as this, cannot demonstrate causality and are 

vulnerable to bias by unknown or unmeasured factors. In this analysis, we have performed both 

complete case and MICE analysis in order to address these difficulties. Complete case analysis 

has the limitation that it can underestimate risks in some subgroups. MICE analysis assumes 

that the probability a variable is missing depends only on observed covariates is based on the 

missing-at-random assumption and is sensitive to departures from this assumption, 

increasingly so with larger amounts of missing data 45. Thus, we have provided both analyses 

for comparison and for completeness.  

In common with many other studies, our analyses are based upon measurement of plasma 

lipids at a single point in time, and could be confounded by undiagnosed disease (particularly 

malignancies) at baseline. LDL-C in this study was calculated by the Friedewald equation, and 

therefore likely represents the sum of LDL-C, lipoprotein (a) and intermediate-density 

lipoprotein cholesterol 19. Greater precision could have been obtained by direct measurement 

of LDL-C, however as the focus of this study was HDL-C, this would be unlikely to affect our 

findings. Other investigators have described a phenomenon of falsely low measurements of 

HDL46, although such artifactual errors are likely to be rare. However, even with this potential 

measurement error the associations discussed were sufficiently strong for detection; and 

importantly we do not know why measurement error would differ between racial groups, and 

as such would not affect the interesting observations with respect to race. In this investigation, 

similar to the results of other investigators 10, there was a very uneven distribution of patients 

across the categories of HDL-C, limiting statistical power, in particular in the very low category 

of HDL, and precluding the study of even lower categories of HDL-C. Since our analysis 

includes all available participants for effect estimation, we are unable to investigate the 

potential confounding of female-specific measures such as menopause or hormone replacement 



 18 

therapy on the relationship between HDL-C and our endpoints. Our study focuses only on 

health outcomes associated with low HDL-C. Health outcomes associated with exceptionally 

high HDL-C will be investigated in future studies. 

 

Conclusions 

Low HDL-C was associated with increased risk for all-cause mortality, cancer mortality, 

and incident CHD in a minimally-adjusted model, however the effect was attenuated in fully-

adjusted model. When complete case analysis was used, for all three outcomes considered, the 

sex-HDL-C interaction was significant with poorer outcomes associated with low HDL-C in 

women than men. Further, the relationship with cancer mortality appears to be specific to 

women. Using both complete case analysis and MICE, we observed the existence of an ‘HDL 

paradox’, whereby low HDL-C associated with lower risk of incident CHD was observed in 

black participants of the REGARDS study. 
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Table 1: Hazard ratios (HRs) describing the association between HDL-C category and risk of all-cause mortality, mortality from malignant disease 
and incident CHD by sex.  

 Complete Case Model 1* Complete Case Model 4* MICE Model 4* 

Female Male Female Male Female Male 

All-cause 
mortality 

HDL 
Strata 

<30 
mg/dL 

2.42 (1.64, 3.56) 1.35 (1.15, 1.59) 1.31 (0.88, 1.95) 0.90 (0.81, 1.07) 1.14 (0.83, 1.57) 0.79 (0.56, 1.11) 

30 - < 40 
mg/dL 

1.48 (1.27, 1.72) 1.04 (0.94, 1.15) 1.04 (0.89, 1.22) 0.90 (0.81, 1.00) 1.05 (0.91, 1.21) 0.88 (0.75, 1.04) 

>40 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p<0.0001 p=0.08 p=0.16 

Cancer-
specific 

mortality 

HDL 
Strata 

<30 
mg/dL 

3.31 (1.87, 5.88) 1.13 (0.84, 1.54) 2.31 (1.28, 4.16) 0.88 (0.64, 1.21) 1.81 (1.03, 3.20) 0.44 (0.24, 0.83) 

30 - < 40 
mg/dL 

1.33 (1.01, 1.76) 1.07 (0.90, 1.27) 1.07 (0.80, 1.42) 0.97 (0.82, 1.16) 1.09 (0.83, 1.45) 0.86 (0.63, 1.19) 

>40 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.003 p=0.014 p=0.033 

Incident 
CHD 

HDL 
Strata 

<30 
mg/dL 

2.75 (1.23, 6.18) 1.29 (0.89, 1.88) 1.57 (0.69, 3.58) 0.82 (0.55, 1.22) 1.07 (0.60, 1.90) 0.92 (0.50, 1.70) 

30 - < 40 
mg/dL 

0.86 (0.58, 1.28) 1.29 (1.06, 1.57) 0.57 (0.38, 0.86) 1.04 (0.85, 1.28) 0.82 (0.63, 1.07) 1.23 (0.92, 1.63) 

>40 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.041 p=0.008 p=0.35 
Abbreviations: HDL-C – high density lipoprotein cholesterol; CHD – coronary heart disease; MICE – Multiple Imputation by Chained Equations 
*Model 1 estimates are adjusted for age, race and sex. Model 4 estimates are additionally adjusted for education level, income level, alcohol consumption, physical activity, current smoking, body 
mass index (BMI), diabetes, albumin-to-creatine ratio (ACR), estimated glomerular filtration rate (eGFR), use of statins, use of other lipid-lowering medications (fibrates/niacin), use of steroids, 
high sensitivity C-reactive protein (hsCRP), low density lipoprotein cholesterol (LDL-C), and triglycerides. 



 29 

Table 2. Hazard ratios (HRs) describing the association between HDL-C category and risk of all-cause mortality, mortality from malignant 
disease and incident CHD by race.  

  
Complete Case Model 1* Complete Case Model 4* MICE Model 4* 

Black White Black White Black White 

All-cause 
mortality 

HDL Strata 

<30 mg/dL 1.67 (1.26, 2.22) 1.43 (1.20, 1.70) 1.19 (0.89, 1.59) 0.88 (0.74, 1.06) 0.96 (0.72, 1.28) 0.96 (0.82, 1.12) 

30 - < 40 
mg/dL 1.15 (1.00, 1.32) 1.15 (1.04, 1.27) 0.93 (0.81, 1.07) 0.94 (0.84, 1.05) 0.93 (0.81, 1.07) 0.99 (0.90, 1.10) 

>40 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.64 p=0.21 p=0.61 

Cancer-
specific 
mortality 

HDL Strata 

<30 mg/dL 1.43 (0.82, 2.50) 1.32 (0.97, 1.80) 1.11 (0.63, 1.95) 0.99 (0.72, 1.37) 1.03 (0.58, 1.81) 0.93 (0.66, 1.31) 

30 - < 40 
mg/dL 1.17 (0.91, 1.49) 1.13 (0.95, 1.35) 1.05 (0.82, 1.34) 0.98 (0.81, 1.18) 0.97 (0.72, 1.32) 1.00 (0.84, 1.19) 

>40 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.95 p=0.87 p=0.98 

Incident 
CHD  

HDL Strata 

<30 mg/dL 1.18 (0.58, 2.39) 1.51 (1.02, 2.22) 0.82 (0.40, 1.68) 0.92 (0.61, 1.39) 0.76 (0.50, 1.17) 1.06 (0.83, 1.35) 

30 - < 40 
mg/dL 0.81 (0.59, 1.12) 1.42 (1.16, 1.74) 0.63 (0.46, 0.88) 1.09 (0.88, 1.35) 0.76 (0.58, 0.98) 1.06 (0.91, 1.24) 

>40 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.014 p=0.018 p=0.054 
 

Abbreviations: HDL-C – high-density lipoprotein cholesterol; CHD – coronary heart disease; MICE – Multiple Imputation by Chained Equations. * Model 1 estimates are adjusted for age, race 
and sex. Model 4 estimates are additionally adjusted for education level, income level, alcohol consumption, physical activity, current smoking, body mass index (BMI), diabetes, albumin-to-
creatine ratio (ACR), estimated glomerular filtration rate (eGFR), use of statins, use of other lipid-lowering medications (fibrates/niacin), use of steroids,  
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FIGURES’ LEGENDS:  

Figure 1: Unadjusted Kaplan-Meier survival curves with estimates for survival probability for 

all-cause mortality for each of the three HDL-C categories.  

Figure 2: Unadjusted Kaplan-Meier survival curves with estimates for survival probability for 

cancer mortality for each of the three HDL-C categories. 

Figure 3: Unadjusted Kaplan-Meier survival curves with estimates for survival probability for 

incident coronary heart disease for each of the three HDL categories. 

 
 
 
 
 
 
 
 
 
 
  



Supplementary Table 1. Baseline characteristics of participants by HDL category (n = 21751). 

 HDL-C 
< 30 mg/dL 

HDL-C 
30 - <40 mg/dL 

HDL-C 
40 + mg/dL 

Overall n (%) 748 (3.4) 4038 (18.6) 16965 (78.0) 
Continuous Variables, Mean (±SD) 

Age (years) 65.2 (9.0) 64.5 (9.2) 64.6 (9.4) 
Body Mass Index (kg/m2) 30.6 (5.5) 30.5 (5.7) 28.9 (6.2) 
Estimated GFR (CKD-EPI equation) 79.1 (21.8) 83.4 (19.9) 86.4 (19.3) 
LDL-C (mg/dL) 99.4 (33.9) 111.4 (33.1) 116.5 (34.8) 
Triglycerides (mg/dL) 197.0 (82.5) 157.5 (71.6) 114.2 (54.7) 

Categorical Variables, N (Column %) 
Men 633 (84.6) 2854 (70.7) 6282 (37.0) 
Black 179 (23.9) 1283 (31.8) 6997 (41.2) 
Education    
     Less than High School  94 (12.6) 477 (11.8) 1882 (11.1) 
     High School Graduate 172 (23.0) 1041 (25.8) 4374 (25.8) 
     Some College 209 (27.9) 1091 (27.0) 4540 (26.8) 
     College Graduate and More 273 (36.5) 1429 (35.4) 6169 (36.4) 
Income    
     Less than $20k 111 (14.8) 619 (15.3) 2894 (17.1) 
     $20k-$34k 168 (22.5) 945 (23.4) 4092 (24.1) 
     $35k-$74k 273 (36.5) 1330 (32.9) 5095 (30.0) 
     $75k and above 121 (16.2) 698 (17.3) 2858 (16.8) 
     Refused 75 (10.0) 446 (11.1) 2026 (11.9) 
Alcohol Consumption 234 (31.3) 1411 (34.9) 6685 (39.4) 
Physical Activity    
     None 251 (33.6) 1378 (34.1) 5584 (32.9) 
     1-3 times per week 274 (36.6) 1455 (36.0) 6228 (36.7) 
     4 or more times per week 223 (29.8) 1205 (29.8) 5153 (30.4) 
Current Smoking 128 (17.1) 680 (16.8) 2265 (13.4) 
Diabetes 256 (34.2) 1071 (26.5) 2861 (16.9) 
Fibrate Use 49 (6.6) 149 (3.7) 257 (1.5) 
Statin Use 255 (34.1) 1449 (35.9) 5135 (30.3) 
Other Lipid-lowering Medication Use 69 (9.2) 268 (6.6) 511 (3.0) 
Steroid Use 18 (2.4) 112 (2.8) 577 (3.4) 
Urinary Albumin/Creatinine Ratio>30 mg/g 154 (20.6) 680 (16.8) 2221 (13.1) 
C-reactive protein    
     < 1 mg/L 160 (21.4) 898 (22.2) 4714 (27.8) 
     1 - < 3 mg/L 236 (31.6) 1387 (34.4) 5695 (33.6) 
     3+ mg/L 352 (47.1) 1753 (43.4) 6556 (38.6) 
LDL and TG Combination Category    
     LDL <100, TG <150 129 (17.3) 933 (23.1) 4627 (27.3) 
     LDL ≥100, TG <150 120 (16.0) 1307 (32.4) 8934 (52.7) 
     LDL <100, TG ≥150 266 (35.6) 650 (16.1) 1002 (5.9) 
     LDL ≥100, TG ≥150 233 (31.2) 1148 (28.4) 2402 (14.1) 

 
*Abbreviations: HDL-C – high density lipoprotein cholesterol; GFR – glomerular filtration rate; CKD-EPI 
equation – chronic kidney disease – epidemiology collaboration equation; LDL-C – low density lipoprotein 
cholesterol; TG – triglycerides. 
 



Supplementary Table 2. Number of events and populations for each HDL*race and HDL*sex group. 
 

 

Overall Black White Female Male 

Number of 
Events / 

Population 

Crude Incidence Rates 
per 10,000 person-years 

follow-up 

Number of 
Events / 

Population 

Crude Incidence Rates 
per 10,000 person-

years follow-up 

Number of 
Events / 

Population 

Crude Incidence Rates 
per 10,000 person-

years follow-up 

Number of 
Events/Pop

ulation 

Crude Incidence Rates 
per 10,000 person-

years follow-up 

Number of 
Events / 

Population 

Crude Incidence Rates 
per 10,000 person-

years follow-up 

All-
cause 

mortality 

HDL 
Strata 

<30 
mg/dL 192/748 357.2 (311.7, 409.4) 50/179 421.6 (321.7, 553.5) 142/569 339.0 (289.5, 397.0) 26/115 353.8 (242.7, 515.9) 166/633 357.8 (309.1, 414.1) 

30 - < 
40 

mg/dL 
761/4038 260.7 (243.4, 279.4) 252/1283 282.7 (250.8, 318.6) 509/2755 251.1 (230.8, 273.3) 187/1184 229.6 (200.0, 263.8) 574/2854 272.8 (251.9, 295.4) 

>40 
mg/dL 2557/16965 209.5 (201.8, 217.6) 1114/6997 229.5 (216.7, 243.0) 1443/9968 196.4 (186.7, 206.5) 1293/10683 169.7 (160.9, 178.9) 1264/6282 275.9 (261.5, 291.1) 

Overall Event 3510/21751 224.2 (217.1, 231.5) 1416/8459 241.4 (229.5, 254.0) 2094/13292 213.8 (205.1, 222.9) 1506/11982 177.0 (168.5, 185.9) 2004/9769 280.3 (268.6, 292.5) 

Cancer-
specific 

mortality 

HDL 
Strata 

<30 
mg/dL 58/748 100.5 (77.8, 129.8) 13/179 103.9 (60.6, 178.2) 45/569 99.6 (74.5, 133.2) 12/115 145.1 (82.3, 255.9) 46/633 92.4 (69.3, 123.2) 

30 - < 
40 

mg/dL 
255/4038 80.6 (71.4, 91.0) 81/1283 84.0 (67.8, 104.2) 174/2755 79.1 (68.2, 91.7) 56/1184 60.7 (46.7, 78.9) 199/2854 87.3 (76.0, 100.2) 

>40 
mg/dL 843/16965 63.6 (59.5, 68.0) 348/6997 66.1 (59.5, 73.3) 495/9968 61.9 (56.7, 67.6) 426/10683 47.1 (42.6, 52.0) 417/6282 84.2 (76.6, 92.6) 

Overall Event 1156/21751 68.0 (64.2, 72.0) 442/8459 69.5 (63.4, 76.3) 714/13292 67.1 (62.4, 72.1) 494/11982 53.3 (48.8, 58.1) 662/9769 85.7 (79.4, 92.4) 

Incident 
CHD 

HDL 
Strata 

<30 
mg/dL 36/488 177.1 (144.2, 217.5) 8/134 138.0 (84.5, 225.5) 28/354 188.5 (150.3, 236.3) 6/82 154.2 (85.0, 279.7) 30/406 180.8 (145.2, 225.0) 

30 - < 
40 

mg/dL 
182/3075 119.7 (107.6, 133.2) 44/1026 94.3 (76.0, 117.0) 138/2049 131.1 (116.0, 148.2) 26/966 71.0 (54.8, 91.9) 156/2109 139.1 (123.8, 156.4) 

>40 
mg/dL 604/14192 81.7 (76.7, 86.9) 268/5932 84.2 (76.4, 92.9) 336/8260 80.0 (73.7, 86.8) 312/9305 59.4 (54.2, 65.2) 292/4887 119.1 (109.4, 129.6) 

Overall Event 822/17755 91.9 (87.2, 96.8) 320/7092 86.8 (79.5, 94.8) 502/10663 94.9 (89.0, 101.3) 344/10353 61.4 (56.3, 66.9) 478/7402 128.9 (120.7, 137.6) 
 

*Crude incidence rates and 95% CI were estimated through modified Poisson regression (Poisson regression with robust standard error estimation) 



Supplementary Table 3. Hazard ratios (HRs) describing the association between HDL-C category and risk of all-cause mortality, mortality from malignant 
disease and incident CHD.  
 

 HDL Strata Model 1 
Complete 

Cases 

Model 2 
Complete 

Cases 

Model 3 
Complete 

Cases 

Model 4 
Complete 

Cases 

Model 4 
MICE 

All-cause 
mortality 

<30 mg/dL 1.48  
(1.28, 1.73) 

1.25 
(1.08, 1.46) 

1.07 
(0.92, 1.25) 

0.99 
(0.84, 1.16) 

1.01 
(0.87, 1.18) 

30 - < 40 mg/dL 1.15 
(1.06, 1.25) 

1.05 
(0.96, 1.14) 

0.98 
(0.90, 1.07) 

0.95 
(0.87, 1.04) 

0.99 
(0.90, 1.08) 

> 40 mg/dL 1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

Cancer-specific 
mortality 

<30 mg/dL 1.35 
(1.03, 1.77) 

1.19 
(0.91, 1.57) 

1.10 
(0.83, 1.45) 

1.02 
(0.76, 1.36) 

0.95 
(0.69, 1.30) 

30 - < 40 mg/dL 1.14 
(0.99, 1.32) 

1.07 
(0.92, 1.24) 

1.03 
(0.89, 1.20) 

1.00 
(0.86, 1.17) 

0.96 
(0.82, 1.13) 

> 40 mg/dL 1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

Incident CHD <30 mg/dL 1.39 
(0.99, 1.96) 

1.10 
(0.78, 1.56) 

0.95 
(0.67, 1.34) 

0.90 
(0.63, 1.30) 

0.83 
(0.66, 1.04) 

30 - < 40 mg/dL 1.19 
(1.00, 1.41) 

1.03 
(0.86, 1.22) 

0.97 
(0.81, 1.15) 

0.93 
(0.78, 1.12) 

0.89 
(0.77, 1.03) 

> 40 mg/dL 1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

1.00 
(ref) 

 

*Abbreviations: HDL-C – high density lipoprotein cholesterol; CHD – coronary heart disease; MICE, Multiple Imputation with Chained Equations. Model 1 adjusts for age, race, and sex. 
Model 2 additionally adjusts for education level, income level, alcohol consumption, physical activity, current smoking, and body mass index (BMI); Model 3 additionally adjusts for diabetes, 
albumin-to-creatine ratio (ACR), estimated glomerular filtration rate (eGFR), use of statins, use of other lipid-lowering medications (fibrates/niacin), high sensitivity C-reactive protein (hsCRP), 
and steroid use; Model 4 additionally adjusts for LDL-C and triglycerides. 
 
 
 
 



Supplemental Table 4: Hazard ratios (HRs) describing the association between HDL-C quintile and risk of all-cause mortality, mortality from malignant 
disease and incident CHD by race.  

 
Complete Case Model 1* Complete Case Model 4* MICE Model 4* 

Black White Black White Black White 

All-cause 
mortality 

HDL 
Quintile 

1st 

5-38 mg/dL 1.37 (1.16, 1.63) 1.39 (1.20, 1.60) 0.97 (0.82, 1.16) 0.89 (0.76, 1.04) 0.96 (0.81, 1.15) 0.98 (0.85, 1.11) 

2nd 
39-45 mg/dL 1.16 (0.98, 1.38) 1.25 (1.07, 1.45) 0.93 (0.78, 1.11) 0.96 (0.82, 1.12) 0.92 (0.76, 1.10) 1.04 (0.91, 1.19) 

3rd 
46-53 mg/dL 1.19 (1.01, 1.40) 1.17 (1.01, 1.36) 1.06 (0.90, 1.26) 0.97 (0.83, 1.13) 0.99 (0.83, 1.19) 1.01 (0.88, 1.15) 

4th 
54-64 mg/dL 1.06 (0.90, 1.25) 1.06 (0.91, 1.24) 1.05 (0.89, 1.24) 0.95 (0.81, 1.11) 1.02 (0.85, 1.24) 0.96 (0.84, 1.10) 

5th 
65-166 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.94 p=0.66 p=0.79 

Cancer-
specific 

mortality 

HDL 
Quintile 

1st 

5-38 mg/dL 
1.46 (1.06, 2.01) 1.28 (1.01, 1.64) 1.19 (0.86, 1.66) 1.01 (0.77, 1.31) 1.26 (0.91, 1.74) 0.95 (0.75, 1.22) 

2nd 
39-45 mg/dL 1.46 (1.08, 1.98) 1.10 (0.85, 1.42) 1.27 (0.93, 1.73) 0.98 (0.75, 1.27) 1.15 (0.83, 1.61) 1.04 (0.82, 1.32) 

3rd 
46-53 mg/dL 1.34 (0.99, 1.80) 1.08 (0.84, 1.39) 1.26 (0.93, 1.71) 0.99 (0.76, 1.28) 1.17 (0.83, 1.61) 0.99 (0.78, 1.25) 

4th 
54-64 mg/dL 1.14 (0.84, 1.55) 1.01 (0.78, 1.31) 1.10 (0.81, 1.50) 0.95 (0.73, 1.24) 1.15 (0.81, 1.63) 0.95 (0.75, 1.21) 

5th 
65-166 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.67 p=0.72 p=0.76 

Incident 
CHD 

HDL 
Quintile 

1st 

5-38 mg/dL 
1.22 (0.81, 1.83) 1.84 (1.35, 2.49) 0.77 (0.50, 1.17) 1.03 (0.74, 1.44) 0.81 (0.59 (1.11) 1.30 (1.03, 1.63) 

2nd 
39-45 mg/dL 1.59 (1.10, 2.29) 1.62 (1.18, 2.21) 1.12 (0.77, 1.62) 1.09 (0.78, 1.51) 0.99 (0.71, 1.37) 1.28 (1.01, 1.60) 

3rd 1.36 (0.95, 1.96) 1.56 (1.14, 2.12) 1.07 (0.74, 1.55) 1.14 (0.83, 1.57) 1.01 (0.73., 1.40) 1.28 (1.01, 1.60) 



46-53 mg/dL 

4th 
54-64 mg/dL 

1.63 (1.15, 2.31) 1.06 (0.75, 1.49) 1.48 (1.04, 2.10) 0.89 (0.63, 1.25) 1.43 (1.01, 2.02) 1.01 (0.79, 1.29) 

5th 
65-166 
mg/dL 

1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.009 p=0.013 p=0.005 
Abbreviations: HDL-C – high density lipoprotein cholesterol; CHD – coronary heart disease; MICE – Multiple Imputation by Chained Equations. *Model 1 estimates are adjusted for age, race 
and sex. Model 4 estimates are additionally adjusted for education level, income level, alcohol consumption, physical activity, current smoking, body mass index (BMI), diabetes, albumin-to-
creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), use of statins, use of other lipid-lowering medications (fibrates/niacin), use of steroids, high sensitivity C-reactive protein 
(hsCRP), low density lipoprotein cholesterol (LDL-C), and triglycerides. 

  



Supplemental Table 5: Hazard ratios (HRs) describing the association between HDL-C quintile and risk of all-cause mortality, mortality from malignant 
disease and incident CHD by sex.  

 
Complete Case Model 1* Complete Case Model 4* MICE Model 4* 

Female Male Female Male Female Male 

All-cause 
mortality 

HDL 
Quintile 

1st 

5-38 mg/dL 1.87 (1.57, 2.24) 1.02 (0.87, 1.20) 1.12 (0.93, 1.35) 0.74 (0.62, 0.88) 1.12 (0.96, 1.30) 0.74 (0.61, 0.90) 

2nd 
39-45 mg/dL 1.42 (1.21, 1.66) 0.91 (0.77, 1.08) 1.09 (0.92, 1.28) 0.76 (0.64, 0.91) 1.14 (1.00, 1.30) 0.74 (0.61, 0.90) 

3rd 
46-53 mg/dL 1.38 (1.19, 1.59) 0.87 (0.74, 1.04) 1.16 (1.00, 1.35) 0.80 (0.67, 0.95) 1.09 (0.96, 1.23) 0.80 (0.66, 0.97) 

4th 
54-64 mg/dL 1.12 (0.97, 1.29) 0.89 (0.74, 1.06) 1.05 (0.90, 1.21) 0.85 (0.71, 1.02) 0.97 (0.85, 1.09) 0.98 (0.80, 1.19) 

5th 
65-166 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p<0.0001 p=0.003 p=0.001 

Cancer-
specific 

mortality 

HDL 
Quintile 

1st 

5-38 mg/dL 1.95 (1.43, 2.65) 0.94 (0.71, 1.23) 1.46 (1.05, 2.03) 0.79 (0.59, 1.06) 1.34 (1.01, 1.78) 0.61 (0.43, 0.87) 

2nd 
39-45 mg/dL 1.74 (1.33, 2.27) 0.80 (0.60, 1.07) 1.51 (1.14, 1.99) 0.74 (0.55, 1.00) 1.47 (1.15, 1.88) 0.56 (0.40, 0.78) 

3rd 
46-53 mg/dL 1.38 (1.07, 1.79) 0.84 (0.63, 1.13) 1.26 (0.97, 1.65) 0.82 (0.61, 1.11) 1.21 (0.96, 1.53) 0.68 (0.49, 0.96) 

4th 
54-64 mg/dL 1.09 (0.84, 1.41) 0.89 (0.65, 1.22) 1.04 (0.80, 1.35) 0.86 (0.63, 1.18) 1.03 (0.82, 1.29) 0.91 (0.64, 1.29) 

5th 
65-166 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p<0.0002 p=0.002 p=0.002 

Incident 
CHD 

HDL 
Quintile 

1st 

5-38 mg/dL 1.33 (0.84, 2.11) 1.32 (0.94, 1.86) 0.71 (0.44, 1.15) 0.84 (0.58, 1.20) 1.17 (0.88, 1.55) 0.92 (0.64, 1.31) 

2nd 
39-45 mg/dL 1.85 (1.32, 2.60) 1.21 (0.85, 1.73) 1.22 (0.86, 1.73) 0.89 (0.62, 1.28) 1.46 (1.16, 1.85) 0.72 (0.51, 1.01) 

3rd 
46-53 mg/dL 1.93 (1.42, 2.62) 0.98 (0.68, 1.43) 1.43 (1.04, 1.95) 0.79 (0.54, 1.15) 1.44 (1.15, 1.81) 0.74 (0.52, 1.04) 

4th 
54-64 mg/dL 1.57 (1.15, 2.13) 0.93 (0.63, 1.39) 1.33 (0.98, 1.82) 0.85 (0.57, 1.27) 1.29 (1.03, 1.61) 0.80 (0.56, 1.15) 



5th 
65-166 mg/dL 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 

p for interaction p=0.024 p=0.022 p=0.22 
Abbreviations: HDL-C – high density lipoprotein cholesterol; CHD – coronary heart disease; MICE – Multiple Imputation by Chained Equations. * Model 1 estimates are adjusted for age, race 
and sex. Model 4 estimates are additionally adjusted for education level, income level, alcohol consumption, physical activity, current smoking, body mass index (BMI), diabetes, albumin-to-
creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), use of statins, use of other lipid-lowering medications (fibrates/niacin), use of steroids, high sensitivity C-reactive protein 
(hsCRP), low density lipoprotein cholesterol (LDL-C), and triglycerides. 

 
 
 



 

 
Supplementary Figure 1. The final flow-chart of the sample size.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 2: Adjusted all-cause mortality ratios using HDL-C restricted cubic splines by race, relative to white participants with HDL-C of 40 
mg/dL.  

 

  



Supplemental Figure 3: Adjusted all-cause mortality ratios using HDL-C restricted cubic splines by sex, relative to female participants with HDL-C of 40 
mg/dL.  

 

  



Supplemental Figure 4: Adjusted cancer mortality ratios using HDL-C restricted cubic splines by race, relative to white participants with HDL-C of 40 
mg/dL.  

  



Supplemental Figure 5: Adjusted cancer mortality ratios using HDL-C restricted cubic splines by sex, relative to female participants with HDL-C of 40 
mg/dL.  

 

  



Supplemental Figure 6: Adjusted incident CHD ratios using HDL-C restricted cubic splines by race, relative to white participants with HDL-C of 40 mg/dL.  

  



Supplemental Figure 7: Adjusted incident CHD ratios using HDL-C restricted cubic splines by sex, relative to white participants with HDL-C of 40 mg/dL. 
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