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The prevalence of gastrointestinal (GI) diseases such as Crohn’s disease, which is chronic and incurable, are increasing worldwide. Treatment 

often involves potent drugs with unwanted side effects. The technological – pharmacological combination of capsule endoscopy with ultrasound-

mediated targeted drug delivery (UmTDD) described in this paper carries new potential for treatment of these diseases throughout the GI tract. 

We describe a proof-of-concept UmTDD capsule and present preliminary results to demonstrate its promise as an autonomous tool to treat GI 

diseases.  
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1. Introduction 

Diseases of the gastrointestinal (GI) tract, such as 
inflammatory bowel disease, present a major health problem in 
the developed world, with more than one million people in the 
USA and 2.5 million in Europe affected1. A prominent example 
is Crohn’s disease, a condition affecting 700,000 people in the 
USA and 1.5 million people in Europe at present. Crohn’s 
disease is chronic and incurable, with treatment aiming to 
suppress symptoms and achieve remission. The drugs in use 
range from steroids to more potent biological therapies 
delivered either orally or systemically. In each case they are 
associated with undesirable side effects and damage to healthy 
tissue.  

To make treatment more effective, earlier diagnosis is 
required to minimize complications. Crohn’s disease is most 
prevalent in the small intestine and diagnosis by endoscopy is 
difficult since this technique does not readily reach the small 
intestine. An alternative is video capsule endoscopy (VCE); this 
involves ingesting a small, autonomous capsule containing a 
light source, camera and wireless communication capability. 
VCE has many advantages over traditional optical endoscopy: 
it can visualize the entire GI tract; it is easier to tolerate and less 
invasive for patients; it does not require sedation and it only 
requires a skilled user to analyze the images rather than a skilled, 
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highly experienced operator2. These advantages have motivated 
its use in more than 1.5 million procedures to date worldwide3. 
However, VCE also has some disadvantages: localization is 
poor; capsule positioning is not possible as the capsule currently 
relies on physiological motion to move through the GI tract; and 
retention is possible, particularly in Crohn’s disease and other 
forms of inflammatory bowel disease that can cause strictures.  

Including modalities in addition to video imaging has been 
proposed to make capsule endoscopy more useful. One example 
is “Sonopill”4 (www.glasgow.ac.uk/sonopill), a research 
programme that aims to combine video imaging with other 
diagnostic modalities such as microultrasound and fluorescence 
imaging to allow diagnosis of Crohn’s disease and other 
diseases. A distinct advantage provided by these modalities is 
the ability to image the entire depth of the wall of the GI tract, 
beyond the optically accessible mucosal surface.  

There are also examples of therapeutic capsule endoscopes 
(TCE) that have the potential to deliver therapy, by acting as 
drug delivery devices. Ablation is another possibility that can be 
included in TCE but associated high power demands make it 
difficult to deliver it in capsule format and this approach also 
carries a risk of perforation and peritonitis. Examples of drug 
delivery capsule devices are the Enterion5 and the Intelisite6 
capsules. Both contain a reservoir with a capacity of 
approximately 1 ml that can be emptied by a remote trigger. 
However, neither can be localized or positioned accurately nor 
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can they deliver drugs through the mucosa, limiting their 
efficacy. There have also been attempts to combine drug 
delivery with positioning and localization functions7, 8, however 
these capsules lack the ability to enhance uptake into and 
through the mucosa. A capsule containing a microneedle to 
deliver drugs into the mucosa has also been developed9. 
However, it also cannot be localized or positioned precisely and 
the microneedle could potentially perforate the mucosa.  

One solution to these challenges in TCE is to use an 
ultrasound (US)-mediated targeted drug delivery (UmTDD) 
system. UmTDD could deliver therapeutics at a target location, 
using focused US to release therapeutics from carriers and/or to 
increase drug uptake through the mechanical or thermal effects 
of US. One of the useful bioeffects of focused US is cavitation, 
the stimulation of small gas bubbles exposed to an ultrasound 
pressure field. There are two types of cavitation: stable and 
inertial. In stable cavitation bubbles oscillate but do not rupture 
and in inertial cavitation oscillations reach a level that causes 
bubbles to implode and produce jetting and shock waves. Local 
effects that result from both types of cavitation include 
microstreaming and also the shear forces that cause membranes 
to form pores. Another bioeffect produced by focused US is 
sonoporation, the reversible permeabilisation of cell membranes 
to allow cellular uptake of molecules.  This is usually facilitated 
by the presence of microbubbles (MBs) such as SonoVue 
(Bracco S.p.A, Milan, Italy). The pores formed due to the 
microbubble - cell interaction range from tens of nanometers10 
to two micrometers11. Additional effects of focused US include 
increases in temperature. The effects produced by cavitation, 
sonoporation and heating can be used for tissue ablation, drug 
release from carriers and changes in cell membrane 
permeability12. 

UmTDD relies on transducers as the source of US. These 
are typically large and most commonly applied from outside the 
human body. They are coupled to the skin using US gel or water, 
and focused to an ellipsoidal region inside the body with 
dimensions of the order of 10 mm axially and 3 mm laterally.13 
However, external application has limited usefulness for 
UmTDD as the US beam can be affected by media such as bone 
and gas, which can displace the beam and produce foci in the 
wrong place14. Furthermore, to ensure that the transducer 
remains focused at the desired target and to compensate for 
patient movement, complex arrangements are needed to 
continually readjust the focus. This involves combining US with 
a guidance system such as magnetic resonance imaging and 
increases the required staff skill and cost.  

An approach that overcomes some of the difficulty 
associated with an external US transducer is to configure it 
intracorporeally. As we demonstrate here, this can be achieved 
by housing a focused US transducer in a capsule similar in size 
to a capsule endoscope device, which can then be applied for 
treatment throughout the length of the GI tract. This 
configuration avoids interference from bone and the need for the 
MRI guidance that is presently used: the focused ultrasound 
transducer is embedded in the capsule, which is inside the 
human body, overcoming the bone problem. The capsule also 
moves as the patient moves. Hence, these conventional reasons 

to use MRI no longer apply. Other advantages include the ability 
to use the capsule to monitor drug delivery, localise treatment, 
deliver and direct drugs towards the mucosa and promote uptake 
through the mucosa. One challenge for such intracorporeal 
transducers is the need to miniaturize the focused US transducer 
sufficiently to fit inside a capsule that remains ingestible, while 
retaining its ability to produce bioeffects that improve drug 
efficacy and uptake into the bowel wall. Another challenge is 
the need to include other components necessary for UmTDD in 
the limited space afforded by an ingestible capsule. 

With this as the context, the aim of the work described here 
was the development of a proof-of-concept UmTDD capsule. 
The two main objectives were to determine the potential clinical 
usefulness of a miniature focused US transducer and to 
determine the feasibility of including it and other essential 
UmTDD components in an ingestible capsule. For proof-of-
concept, the capsule was designed to be tethered, to eliminate 
potential difficulties with power delivery. Positioning and 
localization were also absent from the design objectives; instead 
the efficacy of UmTDD in capsule form was addressed in detail. 
Nonetheless, discussion regarding potential solutions to these 
problems is included. Section 2 addresses the necessary aspects 
of capsule development and basic component validation and 
Section 3 presents preclinical results before conclusions are 
drawn in Section 4. 

2. Capsule Development 

This section describes the development of the capsule and 
necessary UmTDD components, including details of the 
fabrication and characterization of the focused US transducers. 

Fig. 1. Schematic of the focused US transducer comprising a PZ54 

piezoceramic bowl, electrical connections to the front and rear faces of 

the piezoceramic, a coaxial cable with OD = 0.3 mm and an additive 

manufactured transducer casing. A backing layer lies beneath the 

piezoelectric bowl. 
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2.1. Miniaturized Focused US Transducer Construction 

A conventional US transducer consists of an active 
piezoelectric element, an acoustic backing layer to damp 
reverberation, an acoustic matching layer to enhance energy 
transfer to and from the acoustic medium, electronic 
interconnects to external instrumentation and a protective 
casing12. However, bioeffects produced by focused US for 
improved drug uptake allow substantial simplification. This 
section describes the development of miniaturized focused US 
transducers that are suitable for this application. 

US waves are produced by vibrations of a piezoelectric 
material in response to an applied AC voltage. In the present 
case, the US is focused to produce bioeffects in the focal region. 
Focusing the US beam can be achieved either by shaping the 
source geometrically or by beamforming with an US array. The 
latter allows electronic control of the beam direction and focal 
point location but involves great complexity in device 
fabrication and electronics. The former method was used in the 
present work, allowing an appropriately simple solution. 

The focused US transducer must be small enough to be 
housed in an ingestible capsule with maximum diameter, 
Dcap = 10 mm, and length, Lcap = 30 mm, these dimensions are 
based on commercially available VCE devices. The 
piezoelectric component of choice was a PZ54 piezoceramic 
bowl (Meggitt Sensing Systems, Kvistgaard, Denmark) with 
outer diameter, OD = 5 mm, radius of curvature, RC = 15 mm, 
thickness T = 0.5 mm and corresponding operating centre 
frequency, fc = 4 MHz. PZ54 was developed specifically for 
focused US applications15; compared to other conventional 
piezoceramics such as PZ26 (Meggitt Sensing Systems, 
Kvistgaard, Denmark), it has higher permittivity and Curie 
temperature for better electrical impedance matching, with less 
variation in performance with temperature, allowing greater 
average US energy production. 

A rendering of the fully fabricated transducer is shown in 
Fig. 1 and the fabrication process is described in detail in Fig. 2. 
The piezoceramic bowl is housed in a casing that provides 
structural support for the fragile piezoceramic and helps to form 
the backing layer. This was produced by additive manufacturing 
of ABS plastic using a Replicator 3D printer (MakerBot, New 
York City, USA). The casing diameter is Dcase = 7 mm, and 
length Lcase = 3.5 mm. 

A reflective, low acoustic impedance backing layer was 
used to minimize energy absorption whilst providing physical 
support for the piezoceramic bowl. This comprised a mixture of 
K1 glass microbubbles (3M, Maplewood, MN, USA) and epoxy 
(Epofix, Struers A/S, Denmark) at a mass ratio of 3:1. This ratio 
forms a relatively solid material but with reduced density, thus 
lowering the acoustic impedance. The microbubble-loaded 
epoxy was applied to the rear surface of the bowl inside the case. 
After application, the transducer was placed in an oven to cure 
the backing layer at 70°C for 15 min. 

The silver electrodes as supplied on the PZ54 bowl were 
connected to a coaxial cable, ø = 0.3 mm, using conductive Ag-
filled epoxy (G3349, Agar Scientific, UK). This cable 
minimizes the transducer package size and the diameter of the 
capsule tether. The cable’s inner conductor, ø = 0.1 mm, was 

connected to the rear surface of the transducer, consistent with 
safety. The outer screen was used for the ground connection, 
attached to the front surface of the transducer. The other end of 
the coaxial cable was terminated with an SMA connector.  

2.2. Ultrasound Transducer Characterization 

This section describes characterization of the focused US 
transducers. The output acoustic power and pressure were 
measured to demonstrate that sufficient energy can be generated 
for UmTDD.  

Fig. 2. Fabrication process for miniature focused US transducers. A) 

Piezoelectric material is placed face down on a glass plate. B) Additive 

manufactured case is placed over the piezoelectric material. C) The 

inner cable of the coaxial cable is attached to the rear surface of the 

piezoceramic using conductive silver epoxy. D) Glass-microbubble 

loaded epoxy is applied to the rear surface of the piezoceramic until it 

is flush with the casing. E) Electrical ground connection is attached to 

the side of the casing and connected to the front face of the transducer 

using conductive silver epoxy. F) The rear casing is attached and sealed 

with epoxy. 
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The mechanisms of interaction between US and 
microbubbles are not completely understood yet but they are 
crucial for applications in clinical practice16. Furthermore, the 
literature still lacks standardized reporting of US parameters, 
including methods of exposure and the experimental conditions. 
This makes it difficult to compare existing results17, 18 and means 
a definitive reference for our experiments is not available. 

However, in general it has been found that drug uptake 
efficacy increases with US intensity and decreases with 
frequency19, 20. Research significant for our study was conducted 
by Karshafian et al.19 who investigated systematically the effect 
of US exposure parameters on cell membrane permeability and 
correlated US-induced microbubble disruption with drug uptake 
efficacy. Qiu et al. also reported that acoustic pressures in the 
range 50 - 300 kPa were suitable for reversible sonoporation 
without damage21. 

2.2.1. Acoustic Power Measurement 

Measuring acoustic power is one of the primary results in 
transducer characterization and provides an important 
quantitative description of output. This is also an important 
parameter to know to assess the ability of the fabricated 
transducer to disturb microbubbles in UmTDD. A radiation 
force balance (RFB) is the instrument that allows measuring 
these parameters in both diagnostic and therapeutic US. In an 
RFB the effect of US incident on an absorbing target causes 
displacement from the target’s equilibrium position, which is 
then detected by a precision balance, and the magnitude of the 
equivalent mass is related directly to the radiation force. 

A schematic diagram of the RFB with suspended target 
(Precision Acoustics, Dorchester, UK) is shown in Fig. 3. It can 
measure the total US power radiated in the forward direction 
from transducers operating in the frequency range 1 - 10 MHz. 

The radiation force was then quantified as a change in mass 
using an analytical balance connected to a PC through a serial 
interface. The absorbing target was immersed in a water tank 
with the focused US transducer located above it and excited by 
a signal generator (Agilent 33220A Function/Arbitrary 
Waveform Generator). Dedicated LabView-based software 
(National Instruments, Texas, USA) controlled the RFB and 
signal source and provided data acquisition and automated 
analysis. Raw data refer to the registered mass values converted 
into power using a calibration factor predetermined for various 
temperatures. 

The experiment was performed for different frequencies 
near the operating frequency of the transducer to obtain the 
value that maximized the output power. This frequency was 
subsequently used whilst the peak-to-peak voltage (Vpp) input to 
the transducer was increased from 5 - 10 Vpp with the US output 
power recorded. The resulting data were used to calculate output 
power from the transducer, and linearity and efficiency. The 
procedure was performed three times and averaged. For each 
specific input voltage, the US output power was recorded, and 
the averaged value was calculated. 

The linearity and the efficiency of the transducer were 
calculated.  The linearity can be obtained by comparing the 
acoustic output power measured by the RFB with the electrical 
input power driving the transducer. The electrical input power 
is calculated using Eq. (1). 

 

𝑊𝐼𝑛𝑝𝑢𝑡 =  
𝑉2

𝑅𝑀𝑆

𝑍
=  

(
𝑉𝑝𝑝

2√2
⁄ )

2

𝑍
                       (1) 

 

Where VRMS is the root mean square input voltage and Z is 

the characteristic electrical impedance at the relevant frequency. 
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Fig. 3. Schematic diagram of a radiation force balance with suspended 

target. Focused-US transducer connected to a signal generator was 

placed in a degassed water bath with the focus at the absorber. The 

power was then measured from the change in mass on the balance, 

which is connected to a PC with dedicated software.  
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The general linear relationship between Winput and the averaged 

US output power are shown in Fig. 4. Additionally, the 

efficiency was calculated as the ratio between Winput and the 

averaged US output power, also shown in Fig. 4. The effieciency 

varies between 38 and 47% and averages 42%. At 8Vpp, this 

efficiency translates to power lost to heat of 85 mW. Power lost 

to heat below 100 mW is safe as it ensures the capsule 

temperature remains below the safe limit of 43°C in vivo22. 

2.2.2. Acoustic Pressure Measurements 

The spatial distribution of the US field, including focal 
region, can be obtained using pressure mapping. 

To map the pressure field at low intensities accurately, a 
needle hydrophone (Precision Acoustics, Dorchester, UK) with 
a submersible pre-amplifier and DC coupler was used. The 
hydrophone has a sensitive area of diameter, ø = 0.075 mm; the 
amplitude response is in the range 10 - 20 mV/MPa in the 
frequency range 1 - 30 MHz. 

A commercial US Measurement System test tank (Precision 
Acoustics, Dorchester, England) was used for field mapping. It 
has a three-axis motorized step-and-repeat positioning frame 
covering a test tank filled with degassed water. A dedicated 
LabView-based software is provided with the system to control 
the positioning of the hydrophone within the tank. It also allows 
three different scan types, linear, planar and arbitrary. The 
working configuration of the system used in this study is shown 
in Fig. 5. The transducer was fixed to the tank with the active 
surface in the degassed water and a signal generator used for 
excitation. The hydrophone was mounted on the moving slide 
with the needle directed toward the transducer. The data were 
acquired and stored on a dedicated PC. 

An oscilloscope (InfiniiVision 3024A, Agilent 
Technologies) was used to confirm in real time the input voltage 
and the US signal received. Pressure mapping requires a 
preliminary step to find the US focus in order to align the 

hydrophone. After manually positioning the needle on the 
central axis of the transducer, single step movements were made 
along the main axis (refer to z axis in the coordinate system of 
Fig. 5). When a maximum in acoustic pressure was detected, an 
x-y plane was then scanned to identify the focus coordinates. 

Once the active surface of the hydrophone was positioned 
in at US focus, a planar scan was performed over 5 mm x 5 mm 
with 0.075 mm steps. The displacement step should be smaller 
than the US wavelength, λ = c / f, where c is the speed of sound 
in the water and f the frequency. With c = 1500 m/s and 
f = 4 MHz, the wavelength, λ = 0.6 mm, is much larger than the 
step size. A continuous square wave was applied to the 
transducer at f = 4 MHz, with the voltage varied from 2 - 10 Vpp 
in increments of 2 Vpp. Data was post-processed using both the 
post processing software provided with the system and 
MATLAB. The hydrophone sensitivity, i.e. the relationship 

Fig. 5. Working configuration of system. The hydrophone is in the 

water tank, centred and facing the active surface of the transducer. 
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between input pressure and output voltage was 18 mV/MPa at 
4 MHz; this was used to convert the acquired voltage data into 
pressure information. 

The pressure results are shown in Fig. 6. The output 
acoustic pressure was measured from 9 – 224 mW generating 
pressures in the range 29.5 kPa < pac < 208.1 kPa. With an input 
power of 181 mW, corresponding to pac = 147 kPa, there is a 
beam diameter of 1.5 mm at -6 dB.  

2.3.  Capsule Design 

The system that was developed comprises an insonation 
capsule for autonomous imaging and therapy (SonoCAIT) and 
a soft tether providing electrical connections and other channels. 
At the present stage in proof-of-concept development, wireless 
communications were neglected, however they will be 
addressed in future iterations. SonoCAIT has a pill-like shape 
with the dimensions of a commercial capsule (PillCam Colon, 
Given Imaging Ltd., Yoqneam, Israel) noted previously. Fig. 7. 
(a) shows the 3D computer-aided design model of the first 

prototype, designed with SolidWorks (Dassault Systèmes 
SOLIDWORKS Corp. Waltham, MA). In Fig. 7. (b) the first 
additively manufactured capsule is shown; it was printed in two 
halves which lock together using an Objet Connex 500 printer 
(Stratasys Ltd., Minnesota, USA). 

The housing for the capsule components, i.e. the transducer, 
drug delivery channel and vision module, and the multi-channel 
external tether are also indicated. The focused US transducer is 
as described previously. The vision module comprises a CMOS 
camera and an LED-based illumination board. The camera 
(microScoutCam™, Medigus Ltd., Israel) is cylindrical, Ø 
1.2mm, length 5 mm, with an image area of 492.8 µm × 488.4 
µm and a resolution of 220 × 224 pixels. It is connected to a 
matching video processor which captures and saves images and 
video. The LED-based illumination comprised a printed circuit 
board with four 40 mW white LEDs (OSRAM Opto 
Semiconductors GmbH, Germany) placed at the distal tip of the 
camera.  

The multi-channel external tether is also shown in Fig. 7. 
(a). This has an outer diameter of 2.25 mm and an inner diameter 

Focused-US 

Transducer 

Tether 

Camera and 

Illumination 

Drug 

Delivery 

Channel 

(a) 

10 mm 10 mm 10 mm 

(b) (c) (d) 

Fig. 7. (a): Computer-assisted drawing of the constructed SonoCAIT with components labelled (NB all wiring omitted for clarity). (b): 

Capsule shell produced by additive manufacturing measuring 10 mm in diameter and 30 mm in length. (c): Illumination printed circuit 

board with 4 LEDs in an annular pattern. (d): Miniature CMOS imaging camera, measuring 1.2 mm in diameter and 5 mm in length.  
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of 1.65 mm. The tether houses the power cables for the camera 
and illumination and the signal excitation cable for the 
transducer, along with the drug delivery channel. The latter is 
fine bore polythene tubing with outer diameter 0.96 mm and 
inner diameter 0.58 mm. The tether connects the capsule 
components with the bench-top apparatus for camera/transducer 
control and drug delivery. As a repurposed vascular catheter, the 
tether sheath was designed such that 360º rotation at the 
proximal end results in the same rotation at the distal end which 
can be exploited for positioning the capsule toward the target 
location. 

The aim of SonoCAIT is to deliver drugs to the wall of the 
GI tract. One example of a therapeutic preparation are drug-
filled microbubbles. When these reach the target zone, they must 
be released in close proximity to the wall where the drugs can 
then be released by US.23 That means the US focus and 
microbubbles have to be directed towards the same target. 
Clinical measurements suggest that the size of the lumen of the 
bowel means a suitable distance from the capsule perimeter to 
the target zone is 5 mm. Correspondingly, the capsule was 
designed with the transducer, camera and drug delivery channel 
housed at angles such that they are confocal at this distance, Fig. 
7 (a). 

3.  Capsule Feasibility Testing 

The potential clinical usefulness of SonoCAIT and its 
application in UmTDD was demonstrated experimentally. First, 
two functional tests were set up: A) optical tests to monitor 
camera positioning in the capsule and B) feasibility tests to 
determine miniaturized focused US effects on microbubbles. 
Second, in vitro testing was performed with a small bowel 
epithelium model.  

3.1. Primary Functional Testing 

The arrangements for the optical and focused US feasibility 
experiments included a signal generator to drive the transducer, 
a syringe pump connected to the drug delivery channel, a DC 
power supply for video illumination and the video processor for 

the camera. During the experiments, SonoCAIT was immersed 
in a glass beaker of degassed water. 

3.1.1. Optical Assessment 

The aim of this experiment was to verify the orientation and 
alignment of the components enclosed in SonoCAIT. Alignment 
is particularly important because the camera may not be able to 
record the regions of interest and/or the US beam may not reach 
the target with the correct intensity if these components are 
misaligned.  

To align the camera, Ø 65 µm microbubbles (3M, 
Maplewood, MN, USA) mixed with degassed water were 
passed through the DDchannel using the syringe pump 
(BRAUN perfusor FM Pump IV Infusion syringe pump B, 
Braun Medical Ltd., Sheffield, UK) and monitored with the 
camera. The goal of this test was to confirm that the camera 
could detect the bubble stream and to ensure that the MBs were 
central in its field of view (FoV). 

Microbubbles were passed through the drug delivery 
channel as described above and images were acquired, Fig. 8 
(a). Initially the MB stream was off centre from the camera FoV. 
This was corrected by repositioning the camera within the 
capsule with subsequent images showing the MB stream in the 
centre of the FoV, Fig. 8 (b), confirming that the camera and DD 
pathway converged at the same point. 

3.1.2. Focused US Effect on Microbubbles 

The arrangements to characterize the microbubble behavior 
at the focus of the transducer were the same as above. 
Microbubbles were passed through the drug delivery channel 
and the US transducer was driven at 181 mW, corresponding to 
an acoustic pressure of 147 kPa and acoustic output power of 
58.1 mW, at f = 4 MHz. The capsule was designed such that the 
radiation force should push the MB stream towards the bowel 
wall to facilitate drug uptake. 

Housing the US transducer within SonoCAIT together with 
the camera, illumination and drug delivery channel revealed the 
ability of acoustic radiation forces to influence MBs. Fig. 9 (a) 
shows the MB stream approaching the US focus with a velocity 

(a) (b) 

Fig. 9. (a): MB stream leaving the drug delivery channel and 

approaching the US focus. (b): MBs after changing direction due to 

the acoustic radiation forces exerted at the US focus. 

(a) (b) 

Fig. 8. (a): Initial result before alignment. Microbubbles were 

clearly off centre as indicated by arrow. (b): After camera and 

delivery channel adjustment, the microbubble stream was central to 

the FoV. 
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of 0.82 mm/s and Fig. 9 (b) shows a change in its direction by 
approximately 90º due to acoustic radiation force generated 
when the transducer is excited, with a final velocity of 
0.45 mm/s. The superimposed arrows in Fig. 9 (a) and (b) 
indicated the directions of the stream. Drugs are frequently 
coupled with MBs for UmTDD, either by containing the drug 
inside the MB or by attaching it to the MB shell12, 24. 
Therefore, our system can redirect the drug - MB combination 
towards the target site (i.e. towards the transducer focus), with 
the consequent capability to enhance drug efficacy. 
Supplementary video 1 shows the MB redirection in real time. 
Importantly, the ability of the US in the capsule to redirect the 
MB shows that focused-US transducer, drug delivery and 
camera converged to the same point. 

3.2. In Vitro Study of Miniaturized Focused US Effects 

To determine the potential biological efficacy of focused 
US in miniaturized capsule form, in vitro tests were performed 
using cultured human colon cancer (Caco-2) cells. Once 
differentiated and polarised, Caco-2 cells mimic the enterocytes 
lining the small intestine25, forming cellular junctions and apical 
microvilli.  Enzymes and transporters present in the Caco-2 cells 
reflect those found in the small intestine epithelium. Such 
differentiated Caco-2 cells are approved by the Food and Drug 
Administration as a model of the small intestine26.  

3.2.1. Cell Culture 

Caco-2 cells were maintained in DMEM (Thermo Fisher 
Scientific, Waltham, MA, USA) supplemented with 10% FBS 
(GE Life Sciences, Chicago, USA), 1% NEAA (Thermo Fisher 
Scientific, Waltham, MA, USA) and 0.5% Penicillin 
Streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) 
under sterile conditions. Cells were seeded on ThinCert 
suspended membranes (Greiner Bio-One, Kremsmunster, 
Austria) at a density of 500,000 cells per 12-well filter. 
Transepithelial electrical resistance (TER) measurements were 

recorded every three days using a Millicell-ERS meter 
(Millipore, Billerica, MA, USA) to assess barrier function of the 
epithelial layer. TER was calculated using Eq. (2). 

 
𝑇𝐸𝑅 = (𝑅 −  𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙) ∗ 𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒           (2) 

 
Where R is the resistance read from the meter, Rcontrol is the 
resistance across a membrane with no cells present and Amembrane 

is the area of the membrane on which the cells are grown. After 
21 - 25 days, Caco-2 cells represent an accepted model of the 
small intestine, attaining a TER in the range 500 - 1000 Ωcm2, 

27, 28.  

3.2.2. Focused US Effect of TER 

Cells were sonicated with a focused US insonation system29 
with exactly the same US transducer design and excitation 
system as in SonoCAIT.  Only the casing and connector were 
altered to allow interchangeability between transducers and 
sterilization.  

 To measure TER during sonication, Caco-2 cells grown on 
ThinCerts as described in Section 3.2.1 were transferred to the 
insonation system and the focused US transducer and TER 
probe were inserted into the well (Fig. 10). A continuous, 
sinusoidal waveform was applied to the transducer with an input 
power of 181 mW, corresponding to an acoustic pressure pac = 
147 kPa and acoustic power Wout = 58.1 mW. Focused US was 
applied for time t = 6 minutes.   

The original resistance decreased between 6 - 7% during the 
insonation in all three cases. After insonation (Figure 11).  TER 
recovered to its initial value after 11 - 12 mins in Samples 1 and 
2. However, in sample three it recovered to only 97.6 % of its 
initial value and did so more slowly. The reason for the 
difference in Sample 3 is not known. Variability in cell packing 

Fig. 10. Set up showing location of focused US transducer and TER 

probe in relation to cell layer. The focused US transducer is driven by a 

waveform generator. The TER probe measures the resistance across the 

cell layer and sends the reading to the TER meter. 

TER Meter 

Signal 

Generator 

Cell Layer 

Focused US 

Transducer 

Fig. 11. TER (shown as percentage of starting value) versus time for 

three samples. The insonation time for each sample was 6 minutes. 

For all samples, there is a drop of 6-7% after t = 6 mins before the 

TER plateaus and begins to recover.  
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is a possible reason but is unlikely as cells in all three samples 
were seeded at identical densities and the prolonged growth 
period before measurements were taken should ensure even 
distribution in all samples.   

TER is a measure of the barrier function of cells28, 30. 
Therefore, the drop in TER during insonation is an indication of 
decreased barrier function in response to US. A temporary 
release of intercellular junctions, such as tight junctions, or an 
increase in cell membrane permeability could be responsible. 
Either of these effects could increase drug uptake.  That means, 
using the miniature focused US transducers at relatively low 
excitation voltage could facilitate drug uptake.  

4. Conclusions  

This paper presents a proof-of-concept device for TCE that 
could ultimately be applied as an UmTDD system in the GI 
tract.  

The capsule included a bespoke, miniature focused US 
transducer prepared specifically for this purpose in-house. A 
vision module including illumination and miniature CMOS 
imaging camera were sourced commercially and a drug delivery 
channel was set up. PZ54 (Meggitt Sensing Systems, 
Kvistgaard, Denmark) was chosen as the transducer material for 
its combination of high piezoelectric activity and high 
permittivity resulting in an improved power level for a small 
size. The vision module comprised a Micro ScoutCam 1.2 
(Medigus, Yoqneam, Israel) small enough to fit into the capsule 
and custom-designed LED illumination. The drug delivery 
channel was fashioned from fine bore polythene tubing and 
delivery was achieved with an external syringe pump. These 
components were assembled in a shell made with additive 
manufacturing with a repurposed intravascular catheter acting 
as a tether. The focused US transducer exhibited good linearity 
and adequate efficiency, and provided a maximum acoustic 
power of 58.1 mW and acoustic pressure of 146 kPa with 8 Vpp 
excitation, making it suitable for reversible sonoporation as 
described by Qiu et al.21 The camera, drug delivery channel and 
focused US transducer were arranged confocally.  

Feasibility tests included passing MBs through the drug 
delivery channel and monitoring the behavior at the US focus. 
We found that the acoustic radiation force from the transducer 
could redirect the MB stream by approximately 90°; however 
substantive quantitative data is still to be obtained. This shows 
that the miniature transducers can direct MBs towards the target 
site, i.e. the transducer focus. Since MBs are often coupled with 
drugs in UmTDD applications24, this has the potential to 
increase the amount of drug delivered to the target site, which 
could improve treatment. The focused US transducer 
configuration was also tested in vitro using an insonation system 
that matched that used in the capsule. Caco-2 cells grown for 
21 - 25 days on ThinCerts (Greiner Bio-One, Kremsmunster, 
Austria) were used as a model of the small intestine, when their 
TER reached 500 - 1000 Ωcm2. TER was measured during 
insonation to investigate the effect of US on barrier function. A 
drop in TER of 6 - 7% occurred during insonation with recovery 
to near starting values within 11 - 12 minutes. The drop in TER 

likely indicates a change in tight junctions and/or to an increase 
in cell membrane permeability. Further experiments will be 
carried out to determine the enhanced drug uptake to which this 
drop in TER corresponds. Both MB and TER experiments were 
carried out in liquids used in vitro, thus providing coupling for 
the US to the tissue model itself. In vivo, there may be liquid-
gas interfaces that could disrupt the US path, although this is not 
the authors experience in tests in a large animal model in vivo. 
It is unclear how much of an effect this may have but further 
investigation remains necessary22. 

Furthermore, we show that SonoCAIT transducers are 
small enough to fit in an ingestible capsule and can produce 
clinically useful effects while maintaining an achievable power 
demand of less than 230 mW. In contrast, focused US 
transducers currently used for non-capsule based UmTDD have 
power demands in excess of 100 W, which is unachievable in 
capsule form. 

Presently, the prototype device is tethered to allow bench 
testing and feasibility studies to be performed. Future iterations 
of the device will be wireless to allow autonomous therapy in 
the GI tract. One means to achieve this which has been explored 
by researchers collaborating with the authors is by utilizing an 
antenna embedded in the outer casing of the capsule31. This 
configuration optimizes space within the capsule whilst 
allowing power to be transmitted to and data to and from the 
capsule. Elsewhere, the authors have explained how the present 
therapeutic capsule may be used in conjunction with a 
diagnostic capsule32 to allow both diagnosis and therapy to be 
accommodated within the same capsule volume as present VCE 
devices. This partitions the system to allow space for the key 
therapeutic functions described here whilst minimizing the 
diagnostic functions required of the therapeutic capsule. 

Positioning and localization functionality was also 
excluded in this study as it was specifically designed to elucidate 
the feasibility of UmTDD as a therapeutic modality for capsule 
endoscopy. However, future iterations of the capsule will 
include positioning and localization functions to enhance 
treatment efficacy. Attempts have been made previously to 
combine positioning with capsule endoscopy: Quirini et al. used 
leg-based locomotion to propel the capsule33; Woo et al. 
proposed that electrical stimulation of the GI muscle could 
provide capsule locomotion34; and Valdastri et al. developed a 
capsule that used an external magnet controlled by a robotic arm 
to propel a capsule containing an internal magnet through the GI 
tract35.  

Presently, the most suitable positioning modality for a 
therapeutic capsule is a system similar to that developed by 
Valdastri et al, making use of external and internal magnets. 
This is because their system is able to move the capsule 
arbitrarily forwards and backwards and to anchor it in place, 
vital functions for UmTDD. In addition, the system by Valdastri 
et al also provides localization through magnetic sensors in the 
capsule. This is necessary to allow diseased regions to be 
identified after diagnosis and to provide feedback to the 
positioning system. Furthermore, magnetic coupling will 
provide capsule contact with the GI wall, necessary for US 
transmission but also creating a problem with a camera that has 



F. Stewart et al. 
 

10 

a focal distance of 5 mm and is currently situated at the surface 
of the capsule. Since a system similar to that developed by 
Valdastri et al. requires internal magnets embedded in the 
capsule, a capsule redesign would be necessary to incorporate 
all components. During the redesign, the camera could be offset 
by 5 mm from the capsule surface, allowing it to focus on the 
bowel wall. 

In summary, our proof-of-concept study revealed 
SonoCAIT as a potentially useful clinical tool. The transducer 
could direct a MB stream with acoustic radiation forces and 
reduced TER across an in vitro model of the gut wall. The 
transducer produced acoustic pressure in the range suitable for 
reversible sonoporation. Extending these results to a clinical 
device could allow drug-filled MBs to be pushed towards the 
wall of the intestine where they would release their contents 
under the influence of US that also simultaneously could 
increase drug uptake. Adding robotic functionality to assist 
localization and positioning would greatly enhance the 
usefulness of the SonoCAIT in localised treatment of GI 
disorders such as Crohn’s disease, which is presently treated 
systemically with drugs that have unwanted side effects and may 
be highly toxic. 
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