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A New Leaf Venation Detection Technique for Plant Species Classification 

 

 

Abstract 

This paper presents a novel approach to classify the leaf shape and to identify plant species 

using venation detection. The proposed approach consists of five main steps to extract the 

leaf venation including canny edge detection, remove leaf boundary, extract curve, and 

produce hue normalization image and image fusion. Moreover, to localize the edge direction 

efficiently, the lines that extracted from pre-processing, are further divided into smaller 

segments.  Thirty-two leaf images of Malaysian plants are analysed and evaluated with two 

different datasets, Flavia and Acer. The best accuracy is obtained by 99.3% and 91.06% for 

Flavia and Acer datasets respectively. Experimental results show the effectiveness of the 

proposed approach for shape recognition with high accuracy. 

Keywords: Leaf Venation; plant species; features extraction; features selection;  

classification. 

 

1 Introduction 

 

The plant is one of the most important living organisms which is categorized in 

kingdom Plantae.  Although kingdom Plantae is not the largest kingdom it could be found 

everywhere on earth and was the backbone for all any others living organisms.  Since stone-

age, the usages of plants on earth become profoundly important in mankind activity.  

 Based on the plant taxonomy theory, the plant can be identifying based on their 

external structure such as leaf, seed, flower and fruit [1].  However, in this paper, only the 

characteristic of leaves are derived to identify the plant species.   

Performance of leaf recognition is highly depending on the quality and trustworthy of 

the retrieval feature.  However, it is an arduous task to acquire meaningful and unique feature 

from a low variation plant species leaves.  It is more exhausting when implements the 

botanical knowledge in computer vision.  Traditional plant identification use descriptions in 

literature or natural language to discriminate the plant species, namely terminology.  

However, it becomes a strenuous activity to transform them in mathematic logic for computer 

understanding.  Based on [2], the information derived from some significant leaf parts such as 

leaf apex, base, margin and venation are still not well exploited despite those parts of leaves 

are defined as a significant morphological trait and usually used by a specialist to identify the 

plant species. 

Human experts identify the plant by using phenetic such as dichotomous key and 

multi-access key.  Both of this approach require auxiliary of figures, characteristic state and 

description.  According to [3], not less than 50 units of characters are used as plant 

identification keys.  It imparted that the number of characters used should not be less than the 

mentioned numbers otherwise it will be unreliable and unstable.  Those characters can be 

described in the distinctive or characteristic state.  The morphological character of plant 

leaves describes the multi-part of leaves such as leaf venation, shape, margin and so on.  

However, character states for leaf venation are parallel, palmately, pinnately and so on.   



 

2 Related work 

 

For venation, Amlekar et al. [4], Casanova et al. [5], Kadir et al. [6][7][8], Fern et al., [9], 

Mishra et al. [10], Pornpanomchai et al. [11], Rolland-Lagan et al. [12] and De Oliveira 

Plotze and Bruno [13] measured the area, diameter, density, length and width for the leaf 

venation.  However, this measure may influence by many factors such as the methods used to 

detect the leaf venation, the scaling, and the solution of the image.  Therefore, this kind of 

measurement is unreliable and unstable.  From the botanical perspective, it should be 

distinguished by the leaf venation pattern.  The slope of the venation is the important 

measurement to recognize the leaf venation.  Therefore, in this proposed method, by using 

the theory of botanical knowledge, the pattern of leaf venation can be distinguished easily. 

The popular methods that used to detect the skeleton of the leaf are Canny Edge 

Detection with Gradient Magnitude, Ant Colony, Advanced Shape Context, chemical 

solution, Independent Analysis and so on. 

Amlekar et al. [4] claimed that it is the easier way to identify the plant species by 

using leaf venation.  He first removed the noise of the input image then followed by detecting 

the venation by using canny edge detection.  However, he did not stop after getting the leaf 

veins from the output of Canny Edge Detection just like others researchers had done.  He 

continued by finding the gradients of large magnitude to discard the edges which are not 

connected.  Figure 2 shows the research image extracted from his research paper.   

 

 

The method proposed by Syahputra et al. [14] was slightly out of the ordinary.  Most 

of the researchers only had single input image.  However, the author proposed using double 

input image and indicated them as left image and right image.  Firstly, the maximum intensity 

of both images was filtered.  Then, algorithm SAD was proposed to measure the disparity 

between both images in sub-window.  The size of sub-window was not mentioned in their 

published work.   

Mouine et al. [15][16] proposed Advanced Shape Context from SC0 to SC2.  They 

introduced voting set to find the salient point to represent the venation network.  However, 

the salient points included margin point as well, therefore step SC2 is to distinct the margin 

point from salient points.  SC0 represents the margin points and SC1 represents the founded 

salient points.  Figure 3 is the venation network which retrieved from Mouine et al. [15].   

Jobin et al. [17] did not mention what method they used to extract the leaf venation.  

However, the output image of leaf venation displayed was considered as displeased output.   

It is while Mishra et al. [10] applied the chemical procedure to remove the leaf pigment but 

remain the leaf veins.  Therefore, the veinlet was apparently and clear.  However, this method 

is time-consuming and troublesome.   

 Cope et al. [18] recommended Ant Colony approach to search for the leaf veins.  This 

method ransacked the potential leaf veins pixel by pixels.  Edge magnitude is the 

measurement to distinguish if the pixel is included in leaf veins or not.  This algorithm is 

complicated, time-consuming and heavy computation  



Li, Chi and Feng [19] used Independent Component Analysis (ICA) to extract the leaf 

venation.  They first divided the sample image into several subcomponents.  Then they used 

ICA to find the possible lines in each subcomponent.   

3 Leaf Venation 

 

 

Leaf venation is the skeleton of leaf and the examples of leaf venation are shown in 

Figure 4.  The skeleton extends from midrib to the leaf blade.  The midrib is the primary 

veins and the veins that extend from primary veins are called secondary veins. The fine veins 

that extend from secondary veins are tertiary veins.  The pattern of leaf veins determines its 

venation states.  The veins consist of vascular tissues and connect from the petiole to the leaf.  

The function of leaf veins is to transport the food, water, saps and soluble ions into the leaf.   

The parallel venation has longitudinal veins and parallels to each other.  Its veins are 

extended from leaf base to leaf apex.  The veins of the pinnate venation are extended from the 

midrib to both sides of leaf margin.  The reticulate venation has net-veined and its veins 

formed a complicated network.  It is formed by midrib, secondary veins and tertiary veins.  

Leaf with only visible midrib is known as nervous and this kind of leaf venation is without 

secondary and tertiary veins.  The palmate venation has several main veins which intersect at 

one point and extend from the leaf base to the tip of lobes. 

 

 

The popular methods that used to extract the feature of leaf venation are Digital 

Morphology, Salient Point, Local Edge Orientation Histogram, Eagle Angle, Fractal 

Dimension, Bifurcation point and so on. 

Amlekar et al. [4] proposed seven morphology features to describe the leaf venation.  

The features used are an area, perimeter, major length, minor length, convex area and 

solidity.  Then they classified them by using k-nearest neighbour classifier (KNN) and back 

propagation artificial neural network (ANN).  He used 173 input image in training mode and 

46 in testing mode.  They got a pretty good result in ANN which was 80.43% and the KNN 

classifier gave a poor result with only 54.35%.   

 As mentioned earlier Mouine et al. [15][16] used Advanced Shape Context SC0 to 

SC2 to find the salient points to represents the venation networks.  Then, they searched and 

queried the features of salient points by using Locality Sensitive Hashing (LSH).  This 

method finds the distance and distinguish between two features and is quite a time-

consuming method.  The plant identification method of Mouine et al. [15] fully relied on 

venation features. However, in the year 2013, they included the shape features by using 

triangular angle area (TAR) and triangular side length (TSL).  Their contribution in plant 

identification was then transformed into the android application (Mouine et al., [16]).   

Casanova, Backes and Bruno [20] normalized the vein network to ensure the venation 

is independent of scale venation.  Then the geometrical data of venation was determined.  

The maximum degree and the average degree of leaf veins were computed.  Then, this 

measurement was then applied to the extracted leaf venation by various thresholds.   



Most of the researchers retrieved the leaf texture with entire leaf, however, Mzoughi 

et al. [2] split the entire leaf into apex and base regions.  After that, they only continued to 

retrieve the texture information of leaf by using Fourier histogram, edge orientation 

histogram and local edge orientation histogram.  Local edge orientation is the revolution of 

edge orientation histogram, the only difference is that the local orientation accumulated the 

orientation within the blob.   

4 Proposed Methodology 

 In this research, botanical features are used to detect the interest regions of leaf part 

and extract the features of leaf part.  Total seven leaf parts are to identify the plant species.  

There are leaf shape, leaf lobes and sinuses, apex, base, margin, venation and texture. In these 

seven features, only texture’s features did not embed botanical features. According to Rao 

(2012), texture had several branches of definition from engineer and natural sciences. In the 

perspective view of engineer, texture is the repetitive pattern. However, for natural sciences, 

texture is the tactile quality of the surface or the sense of touch.  Botanists described leaf 

texture features as thin, waxy, soft, rough and so on. Therefore, we facing problem to 

describe the leaf texture based on the touching information but we able to describe the texture 

features based on the engineer’s perspective which is the repetitive pattern. However, the 

other features detected and extracted based on the botanical knowledge. In this research, we 

have focused on venation detection which is one of the unique properties which could be 

used alone to detect the species. 

 

 For the features of leaf shape, it is distinguished based on the botanical knowledge.  

The terminology of the features is translated into the computer languages.  For the features of 

lobes and sinuses, the numbers and the location of lobes and sinuses acted as the features of 

lobes and sinuses.  For apex and base, the pattern of apex and base curvature is used to 

interpret them by using botanical features.  Finally, the teeth pattern is used to represent the 

features of margin.  Leaf venation is to find the features of the pattern of skeleton based on 

botanical features.   

Our proposed method does not affect by the noise and the threshold which had been 

used by Canny Edge Detection. This is because we use Hue normalization and image fusion 

to filter out the noise and unrelated curved.  The leaf venation is presented in a single 

dimensional for multiple curves which is easy to undergo analysis their characteristic. This all 

can be seen in Figure 1.  

 

4.1  Leaf Venation Detection 

 The proposed approach consists of five main steps to extract the leaf venation as 

displayed in Figure 5.  First of all, canny edge detection is used to detect the edge existed in 

the leaf samples like many other researchers did.  However, the output image from canny 

edge detection is not that satisfactory, the detected edge not necessary is leaf veins.  For 

example the leaf boundary is also the output of Canny Edge Detection, however, it is not leaf 

venation, so the second step is to remove the leaf veins.  The output of the Canny edge 



detection is in two dimensional, which it hard to analysis and the detected point is like 

scanning line by line which the lines does not form.  Step 3 is to re-arrange the scatter point 

into curve which is 1-dimensional which is easy to do analysis later. Then step 4 hue 

normalization is to increase the contrast of leaf and leaf venation which is used in step 5 to 

distinguish which curve is leaf veins and which curve is fake curve for leaf venation.  To 

improve the extracted venation, another 4 techniques are used which are remove leaf 

boundary, extract the venation in curve vector, finding hue normalization and finally fuse 

them.   

   

Step 1: Canny edge detection 

First of all, convert the sample image to grayscale image, then using canny 

edge detection with two different thresholds (lower threshold and higher threshold) to 

detect the existing edge in the sample image (Algorithm 1).  The detected edge 

includes leaf venation, leaf boundary and unwanted false curve.  The output image is 

denoted as 𝐶𝑎𝑛𝑛𝑦𝐼𝑚𝑎𝑔𝑒.  However, many of the researchers use this to detect the 

leaf venation and without applying any further process to enhance the leaf venation 

image.   

           Algorithm 1: Canny Edge Detection (Step 1) 

Input: Image 

Output: Output image from Canny Edge Detection, CannyImage 

Begin: 

GrayImage  rgb2gray(Image) 

CannyImage  edge(GrayImage, ‘canny’ , [0.4 1]) 

End 

Step 2: Remove leaf boundary 

Binarized the sample image, found the edge of the leaf by using canny edge 

detection and named the output image as LeafBoundary.  Since the CannyImage 

includes the leaf boundary which is not considered as leaf venation, therefore there is 

a need to exclude or remove the leaf boundary from CannyImage and named the 

desired output image as boundaryOff_image.  To get boundaryOff_image, it can be 

obtained by finding the differences of CannyImage and LeafBoundary (equation 1 or 

2).   

 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑂𝑓𝑓_𝑖𝑚𝑎𝑔𝑒 =  𝐶𝑎𝑛𝑛𝑦𝐼𝑚𝑎𝑔𝑒 − 𝐿𝑒𝑎𝑓𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦        (1) 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑂𝑓𝑓_𝑖𝑚𝑎𝑔𝑒 ∈ 𝐶𝑎𝑛𝑛𝑦𝐼𝑚𝑎𝑔𝑒 ∩ 𝐿𝑒𝑎𝑓𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑐        (2) 

Where parameter of boundaryOff_image is the image where excluded the leaf 

boundary.  In mathematics, it is called CannyImage complement LeafBoundary. This 

process can be summarised in Algorithm 2.   

            Algorithm 2: Remove leaf boundary (Step 2) 

Input: Image 



Output: Canny image complement leaf boundary, boundaryOff_image 

Begin: 

BinaryImage  im2bw(Image) 

LeafBoundary  edge(binary image, ’canny’ , [0.4  1]) 

boundaryOff_image  CannyImage – LeafBoundary 

End 

Step 3: Extract curve 

The line and curve are a mix up together and display in the 

boundaryOff_image in two-dimensional form.  In order to simplify the process of 

filtering the unwanted curve and line, there is a need to extract the line and curve from 

boundaryOff_image.  The extracted line and curve are stored in the parameter of 

curve separately (Equation 3).   

𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒𝑖(𝑋, 𝑌) ∈ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑂𝑓𝑓_𝑖𝑚𝑎𝑔𝑒,           (3) 

Where, 𝑖 = {1, … , 𝑡𝑜𝑡𝑎𝑙𝐶𝑢𝑟𝑣𝑒}             

All connected pixel in eight directions is saving in curve array separately.  

Each single curve stores its coordinate position in X-axis and Y-axis.  Finally, the 

unconnected pixel are then forming 𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒𝑖(𝑋, 𝑌).  The parameter 

totalCurve is denoted as the total number of curve and line which is able to capture 

from boundaryOff_image.  This process can be summarised in Algorithm 3.   

            Algorithm 3: Extract venation curve (Step 3) 

Input: boundaryOff_image 

Output: 𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒𝑖(𝑋, 𝑌) 

Begin:  

//this is a function and can be found in Algorithm 4.2 

Call extractCurve(boundaryOff_image) 

End 

 

Step 4: Produce Hue normalization image 

Most of the leaf is green because of the presence of chlorophyll. This molecule 

absorbs most of the energy of the light spectrum except green light, therefore, in the 

human eye, most of the leaves are in green colour.  However, in some special case, in 

nature, some plant have others colour of leaves.   

 

Most of the leaves veins have very close colour to their leaves.  The intensity 

of leaves veins and leaves are very close too.  Therefore, to better separate the leaves 

veins from leaves there is a need to undergo the process of hue normalization.  

Intensity range of hue is 0 to 255.  However, if the leaf is green the colour range used 

only from 42.5 to 85 intensity, if the leaf colour is purple, the range is around 170 to 

212.5 [24] , but the others intensity is no use.  Therefore, hue normalization able to 

rescales the colour intensity values between leaves vein and leaves which able to 



increase the contrast between the hue range of leaf lamina and leaf venation.  After 

rescaling, the intensity distribution of leaves veins and leaves are more apparent as 

shown in Figure 6.   

HSL, HSV and HIS colour space (Hue-Saturation-Lightness, Hue-Saturation-

Value and Hue-Saturation-Intensity) are basically more human perceptive.  According 

to Joblove and Greenberg [21], HSL model is based on the traditional colour making 

procedures, for example in painting activity, they mix up the brightly coloured 

pigment with various proportional of black or white to lighten or darken the colour.  

Therefore, in this research, the RGB (Red, Green and Blue) images are encoded to 

HSL (Hue-Saturation-Lightness).   

RGB is a powerful colour model to represent a colour feature in the machine.  

However, this colour model is less human perceptive and this kind of colour modal 

does not follow the human vision system.  The other colour model can be used to 

represent the colour feature such as YIQ, YUV, YCbCr are device dependent and 

colour model like Munsell, CIE XYZ, CIE L*U*V* and CIE L*a*b* are device 

independent but is less human perception.  Table 1 described the colour model and its 

classification. 

Hue (H) represents the dominants wavelength in the light spectrum that is able 

to perceive by the human visual system.  Hue is usually measured in a degree of a 

circle which means 360 degrees.  Hue ranges can be easily classified to red, green, 

blue, orange, yellow, indigo and so on.  This colour attribute is unaffected by shadow 

caused by the light source.  Therefore, Hue is suitable to use to segment the leaf 

venation and lamina.  However, since the colour of leaf lamina and leaf venation are 

usually very near, the process of normalization to the hue intensity is needed to find 

the contrast of leaves and leaves venation.  The computation is displayed in Algorithm 

4 and in equation 4 to 12.   

Algorithm 4 : Produce hue normalization image (Step 4) 

Input: Image 

Output: Hue normalization image 

Begin: 

R  Image( : , : , 1) 

G  Image( : , : , 2) 

B  Image( : , : , 3) 

𝑅𝐺𝐵𝑚𝑎𝑥  maximum value in RGB 

𝑅𝐺𝐵𝑚𝑖𝑛  minimum value in RGB 

C  the difference of maximum value in RGB and minimum value in RGB 

IF maximum value in RGB is R 

H  (G-B)/C 

ELSE IF maximum value in RGB is G 

H  2 + (B-R)/C 

ELSE IF maximum value in RGB is B 

H  4 + (R-G)/C 

End IF 



 

Hue  60 * H 

𝐻𝑢𝑒𝑚𝑖𝑛  minimum value in Hue but not included 0 

𝐻𝑢𝑒𝑚𝑎𝑥  maximum value in Hue but not included 1 

𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛   (Hue - 𝐻𝑢𝑒𝑚𝑖𝑛) . /( 𝐻𝑢𝑒𝑚𝑎𝑥 - 𝐻𝑢𝑒𝑚𝑖𝑛) 

Display the image of 𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

End 

𝑀 = max (𝑅, 𝐺, 𝐵)               (5) 

𝑚 = min (𝑅, 𝐺, 𝐵)               (6) 

𝐶 = 𝑀 −𝑚                (7) 

𝐻′ =

{
 
 

 
 

𝐺−𝐵

𝐶
, 𝑀 = 𝑅

2 + 
𝐵−𝑅

𝐶
, 𝑀 =  𝐺

4 + 
𝑅−𝐺

𝐶
, 𝑀 =  𝐵

              (8) 

𝐻𝑆𝑉ℎ𝑢𝑒 = 60 𝑋 𝐻
′                           (9) 

𝐻𝑢𝑒𝑚𝑖𝑛 = min(𝐻𝑆𝑉ℎ𝑢𝑒) , 𝑤ℎ𝑒𝑟𝑒 𝑅𝑎𝑛𝑔𝑒𝐻𝑢𝑒𝑚𝑖𝑛  ≠ 0          (10) 

𝐻𝑢𝑒𝑚𝑎𝑥 = max(𝐻𝑆𝑉ℎ𝑢𝑒) , 𝑤ℎ𝑒𝑟𝑒 𝑅𝑎𝑛𝑔𝑒𝐻𝑢𝑒𝑚𝑎𝑥  ≠ 1          (11) 

𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 
𝐻𝑆𝑉ℎ𝑢𝑒− 𝐻𝑢𝑒𝑚𝑖𝑛

𝐻𝑢𝑒𝑚𝑎𝑥− 𝐻𝑢𝑒𝑚𝑖𝑛
             (12) 

Step 5: Image Fusion 

Figure 6 shows a zoom image for certain part of the leaf to shows the 

normalized Hue intensity of HSL in leaves vein and leaves.  This figure had proven 

that leaves venation have an apparent difference in intensity after applying 

normalization process.  In human eyes, the leaf lamina and leaf venation can be easily 

differentiated.  However, it is difficult to teach the machine to differentiate the leaf 

lamina and leaf venation.   

First of all, the intensity range for leaf lamina and leaf venation is computed.  

The intensity range for leaf venation in hue normalization image should be different.  

Both of them had their own intensity range.  However, the intensity range of these 

two parts varies from plant species.  Therefore, the easy way to find their intensity 

range for leaf lamina and leaf venation is to find the intensity of their longest straight 

curve from step 3.  In this research, it is assumed that the longest straight curve is the 

primary leaf vein.  Equation 13 to 14 shows the equation to find the primary vein.   

  

𝐼𝑛𝑑𝑒𝑥𝐿𝑉 = 𝑖𝑛𝑑𝑒𝑥(max(𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒)))         (13) 

𝐿𝑉𝑒𝑖𝑛(𝑋, 𝑌) = 𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒𝐼𝑛𝑑𝑒𝑥𝐿𝑉(𝑋, 𝑌)            (14) 

The intensity range of the longest straight curve (primary vein), 𝐿𝑉𝑒𝑖𝑛(𝑋, 𝑌) 

can be extracted by finding the minimum and maximum intensity of the longest 

venation.  The minimum intensity found in longest venation is the lowest intensity in 



the range for leaf venation, 𝑅𝑉𝑙 (equation 15).  In reverse, the maximum intensity 

found in longest venation is the highest intensity range for leaf venation, 

𝑅𝑉ℎ(equation 16).   

𝑅𝑉𝑙 = min (𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐿𝑣𝑒𝑖𝑛(𝑋), 𝐿𝑣𝑒𝑖𝑛(𝑌)))         (15) 

𝑅𝑉ℎ = max (𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐿𝑣𝑒𝑖𝑛(𝑋), 𝐿𝑣𝑒𝑖𝑛(𝑌)))         (16) 

The parameter 𝑀𝑉𝑖 of each curve are obtained by finding the mean of intensity 

for curve pixel in ℎ𝑠𝑣𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 image.  Then checks whether the 𝑀𝑉𝑖 for curve 

(𝑉𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑣𝑒𝑖) is in range between lowest intensity for leaf veantion, 𝑅𝑉𝑙 and 

highest intensity range for leaf venation, 𝑅𝑉ℎ.  If they are in range, the curve is kept as 

valid venation, otherwise the curve is being removed.   

Algorithm, 5: Image fusion (step 5) 

Input: Venation Curve 

Output: Enhanced leaf venation 

Begin: 

IndexLV  find which venation curve is longest straight curve and get its index 

LVein(X, Y)  finding the X and Y axis coordinate in longest Venation Curve 

//finding the lowest intensity range for leaf venation 

𝑅𝑉𝑙  min(𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐿𝑣𝑒𝑖𝑛(𝑋), 𝐿𝑣𝑒𝑖𝑛(𝑌))) 

//finding the highest intensity range for leaf venation 

𝑅𝑉ℎ  max (𝐻𝑢𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐿𝑣𝑒𝑖𝑛(𝑋) , 𝐿𝑣𝑒𝑖𝑛(𝑌))) 

 

For each venation curve 

𝑀𝑉𝑖  finding the average intensity for VenationCurve 

IF the average 𝑀𝑉𝑖 is within 𝑅𝑉𝑙 and 𝑅𝑉ℎ 

This curve is valid venation and store it 

Else 

This curve is invalid and eliminate 

End IF 

End For 

 

Display image of the deformation of valid leaf venation 

 

End 

 

4.2  Leaf Venation Feature 

 To localize the edge direction efficiently, the lines that extracted from pre-processing, 

are further divided into smaller segmented lines called L.  Every line segment is bounded by 

two distinct endpoints with ten continuous pixels linked between starting point, 𝑃𝑠𝑡𝑎𝑟𝑡 and 

ending point, 𝑃𝑒𝑛𝑑.  L is a subset of B, 𝐿 ∈ 𝐵  and L is a line segment which parameterized as 

Equation 17.  The parameters t should be natural number which is a whole number that is 

positive number but excluded zero.  However, in this situation, the t value is 10. 

 𝐿 = {𝑢 + 𝑡𝑢 |𝑡 > 0, 𝑡 ∈ 𝑁} , 𝑤ℎ𝑒𝑟𝑒 N = {1,2,3, … }          (17) 



 The parameter u represents the starting point, 𝑃𝑠𝑡𝑎𝑟𝑡 of line segment and 𝑢 + 𝑡𝑢 

represents the ending point  𝑃𝑒𝑛𝑑 of line segment.  Above statement is presented as Equation 

18 and 19.   

𝑃𝑠𝑡𝑎𝑟𝑡 = 𝑢               (18) 

𝑃𝑒𝑛𝑑 = 𝑢 + 𝑡𝑢               (19) 

 In this case, line segment is assumed as the hypotenuse of right triangle as presented 

in Figure 7.  The line 𝐴𝐵⃗⃗⃗⃗  ⃗ represents the line segment, point A represents the start point of line 

segment, 𝑃𝑠𝑡𝑎𝑟𝑡 and B denoted the end point of the line segment, 𝑃𝑒𝑛𝑑.  However, the dash 

line 𝐴𝐶⃗⃗⃗⃗  ⃗ denotes the horizontal distance and the dash line 𝐶𝐵⃗⃗⃗⃗  ⃗ represents the vertically 

distance.  The angle of the line segment (angleL) can be obtained by using Equation 20.   

 The directional line segment encodes in eight directional which is 𝐴𝑛𝑔𝑙𝑒𝑖, 𝑖 = { 0°,

45°, 90°, 135°, 180°, 225°, 270°, 315° } or equivalent to 𝑅𝑎𝑑𝑖𝑎𝑛𝑖, i = {0,
π
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π
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,
3𝜋
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, π,

5π

4
,
3π

2
,
7π

4
 }.  However, for the line segment which is bended, arbitrary and deviated from 

being straight line is denoted as curve or strands and it is non-directional line segment.  In 

total, the line segment is grouped into nine directional unit which are 0°, 45°, 90°, 135°,

180°, 225°, 270°, 315° 𝑎𝑛𝑑 𝑐𝑢𝑟𝑣𝑒.  The traditional edge histogram is excluded from the 

existence of curve.  However, in leaf venation especially the tertiary venation it presence in 

strand condition.   

 The line segment which lay along starting point 𝑃𝑠𝑡𝑎𝑟𝑡 and ending point 𝑃𝑒𝑛𝑑 called 

directional line segment.  Conversely, the non-directional lines do not lie straight but 

diverged and deviated.  Non-directional lines are then grouped in curve unit.  Equation 20 is 

used to determine whether the line segments are directional lines or non-directional lines.   

𝑙𝑖𝑛𝑒𝑇𝑦𝑝𝑒 (𝐷)  = {
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒, 𝐷 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑜𝑛 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒, 𝐷 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
        (20) 

Where, 

D =  ∑ |𝑌𝑖 − [𝑠𝑙𝑜𝑝𝑒 ∗ (𝑋𝑖 − 𝑃𝑠𝑡𝑎𝑟𝑡(𝑋)) + 𝑃𝑠𝑡𝑎𝑟𝑡(𝑌)]|
𝑁
𝑖=0     

𝑙𝑖𝑛𝑒𝑇𝑦𝑝𝑒 (𝐷)  = {
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒, 𝐷 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑜𝑛 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒, 𝐷 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
   

 The frequency and the number of occurrence of each directional unit are computed.  

Then convert them into a binary pattern.  If the frequency of each directional unit is greater 

than a predefined threshold it is ‘true’ or else it is ‘false’ as presents in Equation 21.   

 𝐻𝐵(x) = {
0, 𝑥 < 𝑡ℎ𝑟𝑒𝑠
1, 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠

             (21) 

 

 Figure 8 compares the angle in a circle with the matrix in angle form and angle code.  

The example of binary edge matrix is presented in Figure 9 (a) and (b) is the binary pattern 

filter which is used to convert the binary edge matrix to the binary directional pattern.  



Equation 22 shows the computation to convert the binary edge matrix to binary direction 

pattern.   

  

BiDirP =  ∑ ∑ (𝑀𝐴𝑖𝑗  ×  𝑀𝐵𝑖𝑗) 
𝐷𝑟
𝑖=1

𝐷𝑐
𝑗=1            (22) 

Where, 

𝑖 = {1,2,3, … , 𝐷𝑟}, 𝑗 = {1,2,3, … , 𝐷𝑐}      

 The result of BiDirP is the summation of multiplication of each in Matrix MA and 

matrix MB.  This result is used to determine the leaves venation state.  Table 2 shows the 

venation type with the reasonable index of BiDirP.  The calculation of index of BiDirP is 

based on the angle of leaf veins. For example, the parallel veins, the veins is 0 degree so the 

angle code for the parallel veins is 22. For the pinnately veins, the veins had one primary 

veins which is 0 degree (22) and two secondary which their angle codes are 21 and 23, 

therefore the index for BiDirP is the summation of 21 , 22 and 23. 

5 Result and Discussion 

 This section presents the comparison between venation detection by using Canny 

Edge Detection and proposed a method.  The proposed method outperformed the traditional 

Canny Edge Detection.  We have employed the presented method on both Flavia and Acer 

datasets with 32 samples. Some of the characteristic of leaf venation in Flavia dataset are 

described in Figure 10. Figure 11 presents the output image of some venation of Acer dataset.   

As can be observed in both Figure 10 and 11, the accuracy of venation detection is 

remarkable free from comparing to previous ones. To reveal the accuracy Canny method is 

shown on the left side of each sample. Our results are shown in the right-hand side of each 

pair images. As an example in Figure 10, top row in the middle which is labelled with 

Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz, our method shows a perfect curacy free 

from any edge and additional required data.  

Figure 12 summarized these steps and shows how the proposed method achieved the goal. 

Canny Edge Detection detects the edge of the image by the intensity changes.  However, 

most of the intensity changes does not mean that, there are leaf venation.  First of all, leaf 

boundary is not the leaf venation, so step 2 is to remove the leaf boundary.  The output of 

Canny edge detection is 2 dimensional, which is difficult to do analysis.  Therefore, we 

extract the curve and make it in one dimensional.  Most cases, leaf are constructed by only 

small range of intensity especially the changes of Hue.  So we used Hue normalization to 

make the leaf and the venation high contrast.  This step makes it possible to differentiate the 

leaf and its venation easily. Image fusion is used to determine whether the curve is leaf veins 

or unwanted curves, then eliminate the unwanted curves. 

 

The proposed method outperformed the other previous works in term of the number 

of the dataset used and the accuracy as more external leaf structure features are applied.  

Table 3 shows that the more features that are integrated into leaf identification, the higher the 



accuracy are.  However, the selection of features plays the key role.  Besides that, 10-fold 

cross validation is applied to reduce the overfitting and improve the accuracy. There is 99.3 

percent of accuracy is achieved using the proposed method.  The accuracy equation is as 

shown as below, 

total number of query

relevant number of images
Accuracy         (23) 

 The obtained results are outperforming than the previous works as the previous works 

are lacking botanical knowledge.  The obtained features are unreliable and not worthy.  For 

example for leaf shape, the length, diameter, width and so on of the leaf should not be used as 

features to recognize the leaf.  The age of the leaf may influence the result.  The other 

features such as the ratio of the venation pixel versus leaf area pixel are considering as 

unreliable too, as the detected venation using different methods and a different magnitude of 

thresholds provided different answers.  By using botanical features, the actual methods to 

recognize the leaf provided accurate features.    

Because the dataset used is a collection of the Acer genus samples leaves from many 

others dataset, therefore, there are no previous works found on them.  However, previous 

methods are applied on the dataset to compare with the proposed method.  The comparison is 

shown in Table 4.  The proposed method still outperformed other previous works as the 

accuracy achieved is at 91.6 percent.   

Previous works may give good results to the Flavia dataset which are form from 

higher taxa’s plant, however, when it is from the same genus, the results are not promising.  

Acer dataset form from the plant species of the same genus, therefore, their similarity is very 

high.  The previous work unable to distinguish them.  By embedded the botanical features, 

the achievement in identifying the plant species is promising. 

Conclusion 

To preserve of ecosystems, plant conservation is an urgent necessity in the current area. This 

research proposed a methodology to identify the plant species using leaf venation detection 

based on botanical knowledge. Edge detection, leaf boundary removal, extracting curve, 

producing hue normalization image and image fusion are five steps which completed our 

approach to identify the species. Our experimental results in two different datasets 

demonstrated the effectiveness of the presented method for shape recognition with high 

accuracy. An accurate comparison between presented method and existing ones shows the 

effectiveness of our method. We believe that this idea will seriously affect on plant 

conservation and consequently preserve the ecosystems. 
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Figure 1: Block diagram for the proposed method 

 

 
Figure 2: Leaf image retrieved from Amlekar et al. [4].  (a) Original image (b) grey 

image  (c) leaf venation  

 

 



 
Figure 3: Venation extracted by Mouine et al. [15][16] (a) SC0, margin points  (b) SC1, 

salient points  (c) SC2, salient point excluded margin points. 

 

 
Figure 4: Example pattern for leaf veins 

 

 

 



Figure 5: Leaf venation extraction steps 

 

 

 

Figure 6: Hue intensity of leaves vein and leaves after normalization process 

 

 

 

Figure 7: Line segment act as hypotenuse of right triangle 

 

 

 

(a)          (b)                         (c) 

Figure 8: (a) Angle presented in circle  (b)  Angle presented in matrix form  (c) Angle 

code presented in matrix form according to its angle or directional 



 

 

(a)   (b) 

Figure 9: (a) Binary Edge Matrix, MA  (b) Binary Pattern Filter, MB   

 

 Figure 10: Leaf venation detection in Flavia dataset 



 

Figure 11: Leaf venation detection in Acer dataset 

 

Table 1: Color models classifications, Source from Ibrahim, Selim and Zayed [23]. 

Color Model 
Classifications 

Munsell 
Device independent 

RGB, CMY(K) 
Device dependent 

YIQ, YUV, YCbCr 
Device dependent 

HIS, HSV, HSL 
User oriented-Device dependent 

CIE XYZ, CIE L*U*V*, CIE L*a*b* 
Device independent, color metric 

 

 
 

Figure 12: Output at each and every step. 

 

Table 2: Matching table for venation type with its BiDirP index 

Venation type 
Index of BiDirP 

Parallel  
4 

Pinnate 
14  

Palmate 
31 

Reticulate 
>256 

Uninervous 
0 

 

Table 3: Comparison between our method and previous methods using Flavia dataset 



Author Features Accuracy Dataset Training Testing Species 

Satti, Satya and 

Sharma (2013) 

Shape, colour 93.3% 1907 1742 165 33 

Chaki, Parekh and 

Bhattacharya 

(2015) 

Shape, texture 87.1% 930 620 310 31 

Arun, Emmanuel 

and Durairaj 

(2013) 

Texture 94.7% 250 175 75 5 

Wu et al. (2007) Shape, veins 90.0% 1800 1800 320 32 

Kadir et al. 

(2013b) 

Shape, colour, 

vein, texture  

93.4% 1600 1280 320 32 

Our proposed 

method 

venation 99.06% 1907 1280 627 32 

 

Table 4: Comparison proposed method with previous methods using Acer dataset 

Author Features Accuracy Dataset Training Testing Species 

Wu et al. 

(2007) 

Shape, veins 37.3% 600 450 150 32 

Kadir et al. 

(2013b) 

Shape, colour, 

vein, texture  

62.0% 600 450 150 32 

Arun, 

Emmanuel and 

Durairaj (2013) 

Texture 43.3% 600 450 150 32 

Our proposed 

method 

venation 91.6% 600 450 150 32 
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