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Abstract 
 
Psychoactive substances of the 2C-series (2Cs) are phenethylamine-derived designer drugs that can 

induce psychostimulant and hallucinogenic effects. Chemically, the classic 2Cs contain two 

methoxy groups in positions 2 and 5 of the phenyl ring, whereas substances of the so-called FLY 

series contain rigidified methoxy groups integrated in a 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-

b']difuran core. One of the pharmacological features that has not been investigated in detail includes 

the inhibition of monoamine oxidase (MAO). Inhibition of this enzyme can cause elevated 

monoamine levels that have been associated with adverse events such as agitation, nausea, 

vomiting, tachycardia, hypertension, or seizures. The aim of this study was to extend the knowledge 

surrounding the potential of MAO inhibition for 17 test drugs, which consisted of twelve 2Cs (2C-

B, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-7, 2C-T-21, bk-2C-B and bk-2C-I) and five 

FLY analogs (2C-B-FLY, 2C-E-FLY, 2C-EF-FLY, 2C-I-FLY, 2C-T-7-FLY). The extent of MAO 

inhibition was assessed using an established in vitro procedure based on heterologously expressed 

enzymes and analysis by hydrophilic interaction liquid chromatography-high resolution tandem 

mass spectrometry. Thirteen test drugs showed inhibition potential for MAO-A and 11 showed 

inhibition of MAO-B. In cases where MAO-A IC50 values could be determined, values ranged from 

10 to 125 µM (7 drugs) and 1.7 to 180 µM for MAO-B (9 drugs). In the absence of detailed clinical 

information on most test drugs, it is concluded that a pharmacological contribution of MAO 

inhibition cannot be excluded and that further studies are warranted. 
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1 INTRODUCTION 

Year after year, more and more so-called new psychoactive substances (NPS) enter the drugs of 

abuse (DOA) market with 803 different substances being reported to the United Nations Office on 

Drugs and Crime in the period 2009-2017.1,2 Many NPS show psychoactive effects similar to drugs 

under international control and are often sold via the Internet.1 Although NPS are initially not 

controlled and easily available, they can pose a significant health risk and reports about adverse 

effects are frequently available.3-6 One of the challenges when dealing with this phenomenon is the 

lack of knowledge concerning pharmacokinetics and toxicity since they are marketed without 

(pre)clinical safety studies.7 The 2C-series drugs of abuse (2Cs) are phenethylamine derivatives that 

commonly exhibit a primary amine functionality separated from the phenyl ring by two carbon 

atoms, which differs from their amphetamine counterparts that show a methyl group at the alpha-

position (3Cs) (Figure 1). Within a 2,5-dimethoxyphenethylamine nucleus, a lipophilic substituent 

is commonly present in position 4.8 In the so-called FLY series, the methoxy groups are rigidified 

into a 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran core.9 A number of 2Cs have shown 

psychostimulant and hallucinogenic properties and information gathered from casework suggests 

that intoxicated patients might exhibit either a sympathomimetic toxidrome, serotonin (5-HT) 

toxicity, hallucinogenesis, or combinations thereof.10 The available information on the 

pharmacology of 2Cs indicates that the interaction with serotonin receptor subtypes is one of the 

pharmacological features linked to these substances.9,11-14 Partial agonism at alpha-1 adrenergic 

receptors has also been described for 2C-B.15 In addition, the re-uptake inhibition of the 

monoamines norepinephrine and 5-HT into rat brain synaptosomes was described for 2,5-

dimethoxy-4-ethylphenetylamine (2C-E) and 2C-I.16 At the same time, monoamine oxidase (MAO) 

inhibition may also lead to elevated monoamine levels that have been associated with adverse 

events described in cases of 2C intoxications, which included agitation, nausea, vomiting, 

tachycardia, hypertension, or seizures.10,17-19  

The aim of this study was to extend the knowledge surrounding the potential of MAO 

inhibition (and to determine their IC50 values) for 17 test drugs, which consisted of twelve 2Cs (2C-
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B, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-7, 2C-T-21, bk-2C-B and bk-2C-I) and five 

FLY analogs (2C-B-FLY, 2C-E-FLY, 2C-EF-FLY, 2C-I-FLY, 2C-T-7-FLY) (Figure 1). A 

previously published MAO inhibition assay based on heterologously expressed enzymes and 

hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry (HILIC-

HRMS/MS) was applied for this purpose. MAO activity should be assessed using kynuramine 

(KYN) as the non-selective substrate as the formation of the corresponding aldehyde is catalyzed by 

MAO-A and B and followed by non-enzymatic condensation to the product 4-hydroxyquinoline (4-

OHC).  

 

2 EXPERIMENTAL 

2.1 Chemicals and enzymes 

The baculovirus-infected insect cell microsomes (Supersomes) containing human complementary 

DNA-expressed MAO-A or MAO-B (5 mg protein/mL) and wild-type Supersomes without MAO 

activity as negative control (MAO control, 5 mg protein/mL) were obtained from Corning 

(Amsterdam, The Netherlands). After delivery, enzyme preparations were thawed at 37°C, 

aliquoted, snap-frozen in liquid nitrogen, and stored at -80°C until use. 

Amphetamine-d5 was obtained from LGC Standards (Wesel, Germany), selegiline, KYN, 4-

OHC, ammonium acetate, potassium dihydrogenphosphate, and dipotassium hydrogenphosphate 

from Sigma-Aldrich (Taufkirchen, Germany), formic acid (MS grade) from Fluka (Neu-Ulm, 

Germany), acetonitrile, methanol (both LC-MS grade), and all other chemicals from VWR 

(Darmstadt, Germany). 5-(2-Aminopropyl)indole (5-IT) was synthesized21 and provided by the 

Department of Pharmacology and Therapeutics, Trinity Centre for Health Sciences, St James's 

Hospital (Dublin, Ireland). 2C-B tartrate was provided for research purposes before scheduled by 

Hessisches Landeskriminalamt (Wiesbaden, Germany), 2C-I hydrochloride by Landeskriminalamt 

Baden-Württemberg (Stuttgart, Germany), 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) 

hydrochloride by Bundeskriminalamt (Wiesbaden, Germany), and 2,5-dimethoxy-phenethylamine 

(2C-H) and 2,5-dimethoxy-4-nitrophenethylamine (2C-N) by the Department of Forensic 
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Toxicology, Institute of Forensic Research (Krakow, Poland). 5-IT, 2C-B, 2C-I, and 2C-T-2 were 

provided before they were scheduled. 2,5-Dimethoxy-4-methylphenethylamine (2C-D) 

hydrochloride, 2C-E hydrochloride, and 2C-T-7 hydrochloride were purchased from Lipomed AG 

(Weil am Rhein, Germany), 2,5-dimethoxy-4-propylphenethylamine (2C-P) hydrochloride from 

Dejachem (Schwendi, Germany), and 2C-B-FLY hydrochloride from Cayman Chemicals (Ann 

Arbor, USA). beta-Keto-2C-B (bk-2C-B) hydrochloride and bk-2C-I were available from previous 

work.22,23 2,5-Dimethoxy-4-(2-fluoroetylthio)phenethylamine (2C-T-21) hydrochloride was 

obtained in high purity from a research chemicals supplier. 2-(4-Ethyl-2,3,6,7-tetrahydrofuro[2,3-

f][1]benzofuran-8-yl)ethanamine (2C-E-FLY) hydrochloride, 2-(4-(2-fluor)ethyl-2,3,6,7-

tetrahydrofuro[2,3-f][1]benzofuran-8-yl)ethanamine (2C-EF-FLY) hydrochloride, 2-(4-iodo-

2,3,6,7-tetrahydrofuro[2,3-f][1]benzofuran-8-yl)ethanamine (2C-I-FLY), and 2-(4-propylthio-

2,3,6,7-tetrahydrofuro[2,3-f][1]benzofuran-8-yl)ethanamine (2C-T-7-FLY) hydrochloride were 

provided by Synex Synthetics BV, Maastricht, Netherlands.  

Stock solutions were prepared in water (KYN: 6.25 mM, 4-OHC: 0.1 mM) or methanol (5-IT: 

5 mM, selegiline: 5 mM, 2Cs: 1 mg/mL, each). Stock solutions were aliquoted and stored at -20°C 

until use. To obtain the working solutions used for the incubations, stock solutions or enzyme 

preparations were serially diluted using 100 mM phosphate buffer. Prior to the determinations of 

IC50 values, 2C stock solutions were gently evaporated under nitrogen and dissolved in 

water/methanol (9:1, v/v) to keep the organic solvent content in the final incubation mixtures 

constantly below 1%.24  

 

2.2 Initial MAO inhibition screening 

Final incubation mixtures had a volume of 30 µL and consisted of 1 µg/mL MAO-A or MAO-B, 

the non-selective MAO substrate KYN at concentrations comparable to its Km value (MAO-A: 43 

µM, MAO-B: 23 µM), and 10 µM of one of the potential inhibitors as described before.20 Reactions 

were initiated by addition of the ice-cold enzyme dilution, incubated for 20 min at 37°C, and 

stopped with 30 µL of ice-cold acetonitrile containing 10 µM amphetamine-d5 as internal standard 
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(IS). The mixture was centrifuged for 2 min at 10,000 g, 50 µL of the supernatant were transferred 

to an autosampler vial, and injected onto the HILIC-HRMS/MS apparatus for analysis. All 

incubations were performed in triplicate (n = 3). In addition to these samples, reference samples 

without inhibitor, positive control samples with known inhibitors (MAO-A: 5-IT, MAO-B: 

selegiline, 10 µM, each), blank samples without MAO activity, and interfering samples were also 

prepared in triplicate. Interfering samples were incubated reference samples without inhibitor and 

terminated with ice-cold acetonitrile containing the IS and the test drugs each at a concentration of 

10 µM. A simplified scheme of the initial inhibition screening procedure is given in Figure 2. The 

4-OHC amount, given as the peak area ratio of 4-OHC and the IS, in blank samples without MAO 

activity was subtracted from the 4-OHC amount detected in all other samples. The 4-OHC amount 

detected in reference samples without inhibitor was set at 100% MAO activity and compared to all 

other incubations. For statistical analysis, a one-way ANOVA followed by Dunnett’s multiple 

comparison test (significance level, P < 0.001, 99.9% confidence intervals) by GraphPad Prism 5.00 

(GraphPad Software, San Diego, USA) was used. 

 

2.3 Determination of IC50 values 

MAO-A or B were incubated with the following 10 inhibitor concentrations: 2, 5, 10, 20, 39, 78, 

156, 313, 625, 1250 µM, with the exception of 2C-H that was used in lower concentrations (0.04, 

0.08, 0.15, 0.3, 0.6, 1, 2, 5, 10, 20 µM). All incubations were performed in duplicate (n = 2). All 

other incubation conditions were the same as described above. Reference and blank samples were 

also prepared as described above. The IC50 values were calculated by plotting the 4-OHC formation 

expressed as MAO activity (relative to reference samples) over the logarithm of the inhibitor 

concentration using GraphPad Prism 5.00. 

 

2.4 HILIC-HRMS/MS conditions 

Apparatus and conditions were the same as already described.20 A Thermo Fisher Scientific (TF, 

Dreieich, Germany) Dionex UltiMate 3000 Rapid Separation (RS) UHPLC system with a 
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quaternary UltiMate 3000 RS pump and an UltiMate 3000 RS autosampler was used and controlled 

by the TF Chromeleon software version 6.80. The chromatographic system was coupled to a TF Q-

Exactive Plus equipped with a heated electrospray ionization II source (HESI-II). The gradient 

elution was performed on a Macherey-Nagel (Düren, Germany) HILIC Nucleodur column (125 x 3 

mm, 3 µm) using aqueous ammonium acetate (25 mM, eluent A) and acetonitrile-containing 0.1% 

(v/v) formic acid (eluent B). The flow rate was set to 500 µL/min and the gradient was programmed 

as follows: 0– 0.5 min hold 80% B, curve 5; 0.5–3.8 min to 50% B, curve 5; 3.8– 3.9 min to 40% B, 

curve 5; 3.9–5 min hold 40% B, curve 5; 5–5.1 min to 80% B, curve 5; and 5.1–6 min hold 80% B, 

curve 5. Chromatography was performed at 60°C maintained by a Dionex UltiMate 3000 RS 

analytical column heater. The injection volume for all samples was 1 µL. HESI-II conditions were 

modified according to Helfer et al. due to improved robustness: sheath gas, 60 arbitrary units (AU); 

auxiliary gas, 10 AU; spray voltage, 4.00 kV; heater temperature, 320°C; ion transfer capillary 

temperature, 320°C; and S-lens RF level, 60.0.25 Mass calibration was performed prior to analysis 

according to the manufacturer’s recommendations using external mass calibration. Quantification 

was performed using targeted single ion monitoring (t-SIM) and a subsequent data-dependent MS2 

(dd-MS2) mode with an inclusion list containing the exact masses of positively charged KYN (m/z 

165.1022), 4-OHC (m/z 146.0600), and the IS (m/z 141.1434). The settings for the t-SIM mode 

were as follows: micro scan, 1; resolution, 35,000; AGC target, 5e4; maximum IT, 100 ms; and 

isolation window, 4 m/z. The settings for the dd-MS2 mode were as follows: micro scan, 1; 

resolution, 35,000; AGC target, 2e5; maximum IT, 100 ms; isolation window, 4 m/z; and dynamic 

exclusion, 4 s. TF Xcalibur Qual Browser 2.2 software was used for data handling. The settings for 

automated peak integration were as follows: peak detection algorithm, ICIS; area noise factor, 5; 

and peak noise factor, 300. GraphPad QuickCalcs was used for outlier detection (http://graphpad. 

com/quickcalcs/grubbs1), while GraphPad Prism 5.00 was used for statistical evaluation. 

 

3 RESULTS AND DISCUSSION 

3.1 Initial MAO inhibition screening 
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Formation of 4-OHC was measured using HILIC-HRMS/MS and the complete analytical procedure 

was already previously successfully validated.20 The results of the initial MAO inhibition screening 

of the 2Cs are summarized in Figure 3. Suitable incubation conditions were verified using positive 

control samples with known inhibitors (see Figure 2). 5-IT reduced MAO-A activity by more than 

90%, while selegiline almost completely inhibited MAO-B activity, which was in agreement with 

the previous study.20 As only 4-OHC, KYN, and the IS were detected by the analytical method, it 

was mandatory to exclude analytical interferences, such as ion suppression or enhancement caused 

by potentially co-eluting test drugs. Therefore, MAO activity determined from the interfering 

samples was compared to that in the reference samples. The test compounds caused no analytical 

interferences. 

For thirteen test drugs, MAO-A inhibition was observed to some degree. Seven of these drugs 

(2C-B, 2C-I, 2C-T-7, 2C-B-FLY, 2C-E-FLY, 2C-I-FLY, and 2C-T-7-FLY) provided a statistically 

significant reduction of MAO-A activity (***, P < 0.001). However, none of these drugs was able 

to reduce the MAO-A activity by more than 50%, which meant that IC50 values could not be 

determined below 10 µM, as this was the concentration used in the initial inhibition screening. 

Eleven test drugs resulted in some MAO-B inhibitions and nine substances (2C-B, 2C-D, 2C-E, 2C-

H, 2C-I, 2C-N, 2C-T-7, bk-2C-B, and bk-2C-I) induced a reduction in MAO-B activity that was 

highly significant (***, P < 0.001). However, only 2C-H reduced MAO-B activity by more than 

50%, which resulted in a corresponding IC50 value below 10 µM (Table 1).  

 

3.2 Determination and comparison of IC50 values 

In order to save time and costs, IC50 values for MAO-A and B inhibition were only determined in 

cases where the test drugs revealed a statistically highly significant (***, P < 0.001) inhibition 

during the initial screening phase. All incubations for the IC50 value determinations were performed 

in duplicate, in contrast to triplicate incubations during the initial MAO inhibition screening, to 

reduce workload and number of samples in accordance with the previous study.20 In total, seven 

IC50 values of MAO-A inhibitors and nine IC50 values of MAO-B inhibitors were determined and 
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listed in Table 1. For MAO-A inhibition, IC50 values were determined between 10 (2C-T-7-FLY) 

and 125 µM (2C-B and 2C-I). For MAO-B inhibition, IC50 values were found to range between 1.7 

(2C-H) and 180 µM (2C-T-7).  

As far as the potential clinical relevance of MAO inhibition based on IC50 values was 

concerned, plasma concentrations obtained from the case report literature (Table 1) might be 

worthy of consideration even though only limited information is available. Usually, case reports 

involving fatal or non-fatal intoxications are the only information source and difficult to interpret 

due to individual variation and/or poly-drug intoxication. In those reports, dosage, time of 

ingestion, and route of application remain often unclear. Postmortem concentrations are particularly 

problematic as they can be affected by postmortem redistribution.26,27 Although the presence of 

some 2Cs on the DOA market is documented,28,29 few case reports involving drug consumption 

appear to be available. For example, plasma concentrations from individual patients have only been 

reported for 2C-P and 2C-T-7.17,19 In the first case, a 19-year-old male ingested approximately 25 

mg 2C-P, which was sold as 2C-B, and was admitted to the emergency department with severe 

hallucinations, mydriasis, tachycardia, agitation, and confusion.17 In the second case, a 20-year-old 

male died after he had been insufflating approximately 35 mg of 2C-T-7 and quantification was 

subsequently performed in postmortem samples.19 The IC50 values determined in this study were 

higher than the plasma concentrations reported for 2C-P and 2C-T-7. However, as they were 

measured in individual cases, their significance remains unclear. Shulgin and Shulgin published 

their experiences with numerous phenethylamines, which included information about synthesis, 

dosage and duration of effects.8 These data are available for all 2Cs tested in this study with 

exception of the two bk-2Cs and FLY analogs. For some compounds, such as 2C-D or 2C-N, higher 

doses were described than those estimated in the previously mentioned case reports. Consequently, 

higher doses are expected to lead to higher plasma concentrations. However, it must be considered 

that concentrations detectable in certain tissues are often higher than in plasma due to lipophilicity 

or active transport processes. A brain-to-plasma concentration ratio of 13.9 was described for 2C-B 

in rats.30 Elevated concentrations in the liver, the main metabolizing organ, are also more than 



 

10 
 

likely to be encountered.31 From this perspective, a contribution to the clinical effects of MAO 

inhibition can perhaps not be excluded.  

2C-B, 2C-I, and 2C-T-7 were identified as moderately potent MAO-A inhibitors with IC50 

values of 46 (2C-T-7) or 125 µM (2C-B and 2C-I). However, the corresponding FLYs were shown 

to be more potent MAO-A inhibitors with IC50 values of 10 (2C-T-7-FLY), 13 (2C-I-FLY), and 19 

µM (2C-B-FLY). As MAO-A is predominantly catalyzing the deamination of 5-HT,32 its inhibition 

is likely to contribute to increasing 5-HT levels, which could be clinically relevant. For example, in 

the case of 2C-I intoxication, 5-HT toxicity has been observed as a clinical feature.18 The MAO-A 

activity related to different 2C-B or 2C-B-FLY concentrations is depicted in Figure 4. 2C-E-FLY 

provided an IC50 value of 18 µM comparable to the above-mentioned FLYs, whereas 2C-EF-FLY 

showed only weak MAO-A inhibition during the initial inhibition screening procedure.  

The FLYs were found to be inactive as MAO-B inhibitors with the exception of 2C-E-FLY, 

which resulted in weak MAO-B inhibition during the initial inhibition screening. In contrast, almost 

all classic 2Cs (apart from 2C-P and 2C-T-21), and the two bk-2Cs showed MAO-B inhibition 

potential. While 2C-B and 2C-I moderately inhibited MAO-B with IC50 values of 58 and 55 µM, 

respectively, the inhibition by bk-2C-B and bk-2C-I was found to be more potent resulting in IC50 

values of 14 and 15 µM, respectively. These findings revealed that the replacement of bromine by 

iodine did impact on MAO-A or B inhibition. The MAO-B activity related to different 2C-I or bk-

2C-I concentrations is depicted in Figure 5.  

2C-H was shown to be the most potent MAO-B inhibitor with an IC50 value of 1.7 µM. 

However, Shulgin and Shulgin reported 2C-H to only result in weak psychoactive effects in animal 

assays.8 In comparison, 2C-D and 2C-E revealed higher IC50 values of 24 and 124 µM, 

respectively, whereas 2C-P only provided weak MAO-B inhibition potential during the initial 

inhibition screening. The MAO-B inhibitory potency of 2C-N (IC50 value 66 µM) was comparable 

to that of 2C-B or 2C-I. 

A previous study identified the MAO and cytochrome P450 isoforms involved in the 

deamination of 2C-B, 2C-D, 2C-E, 2C-I, 2C-T-2, and 2C-T-7.33 MAO-A and B were shown to be 
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the predominant enzymes involved in formation of their aldehydes and the studied 2Cs had a higher 

affinity to MAO-A than B.33 As the present study identified these compounds with exception of 2C-

T-2 as inhibitors of MAO-B, a competitive inhibition mechanism might be possible.  

Nevertheless, as some 2Cs and 2C-B-FLY were described to have affinities to 5-HT receptor 

subtypes within the nM range9,11-14, MAO IC50 values within the µM range are expected to play 

only a minor role in the pharmacological effects after consumption of recreational doses. However, 

a contribution of MAO inhibition to the clinical effects observed in intoxication cases cannot be 

excluded.  

 

4 CONCLUSIONS 

The presented study identified various 2C-, and FLY-related test drugs as MAO inhibitors. A 

previously published inhibition assay was successfully applied for initial inhibition screening 

followed by IC50 value determinations. The FLYs were identified as MAO-A inhibitors, whereas 

the classic 2Cs with or without beta-keto functionality exhibited MAO-B inhibition potential. 2C-T-

FLY and 2C-H were identified as the most potent MAO-A or B inhibitors with IC50 values of 10 or 

1.7 µM, respectively. The estimation of a clinical relevance of MAO inhibition based on IC50 

values however was challenging given the lack of information regarding plasma concentrations of 

these test drugs. Nevertheless, the extent to which the clinical pharmacology of the evaluated test 

drugs involves MAO inhibition warrants further investigation.  
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LEGENDS TO THE FIGURES 

 

FIGURE 1 Chemical structures of the investigated test drugs of abuse. 

FIGURE 2 Simplified scheme of the initial monoamine oxidases (MAO) inhibition screening 

procedure. (ACN: acetonitrile, IS: internal standard, 5-IT: 5-(2-aminopropyl)indole, KYN: 

kynuramine)  

FIGURE 3 Initial monoamine oxidases (MAO) inhibition screening results using 10 µM of each 

test drug (MAO-A: top, MAO-B: bottom). Percentage of MAO activity represented the percentage 

of 4-hydroxyquinoline (4-OHC) formation in relation to reference incubations without test drug 

(100%). Values are expressed as mean and were tested for significance (n = 3, ***, P < 0.001, **, P 

< 0.01, *, P < 0.1 for 4-OHC formation in incubations with the inhibitor versus 4-OHC formation in 

reference incubations). 

FIGURE 4 MAO-A activity related to different test drug concentrations used for IC50 value 

determination. Data points represent the mean value of duplicate measurements (n = 2). 

FIGURE 5 MAO-B activity related to different test drug concentrations used for IC50 value 

determination. Data points represent the mean value of duplicate measurements (n = 2). 
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TABLE 1 IC50 values (standard errors) determined for 2C-based drugs of abuse and known 

monoamine oxidase (MAO) inhibitors. Reference plasma concentrations in µM were calculated 

from the published data (in µg/L). (PM: post-mortem; n.d.: not determined) 

Test compound Reference plasma concentration, IC50 value, µM 

 µg/L µM MAO-A MAO-B 

     

2C-B 
 

*  125 (1.1) 58 (1.3) 

2C-D 
 

*  n.d. 24 (1.4) 

2C-E 
 

*  n.d. 124 (1.2) 

2C-H 
 

*  n.d. 1.7 (1.1) 

2C-I 
 

*  125 (1.2) 55 (1.3) 

2C-N 
 

*  n.d. 66 (1.1) 

2C-P 
 

1817  0.1 n.d. n.d. 

2C-T-2 
 

*  n.d. n.d. 

2C-T-7 
 

57 and 100 (heart and femoral 
blood, PM)19 

0.2 and 0.4 46 (1.1) 180 (1.3) 

2C-T-21 
 

*  n.d. n.d. 

bk-2C-B *  n.d. 14 (1.1) 

bk-2C-I *  n.d. 15 (1.1) 

2C-B-FLY *  19 (1.1) n.d. 

2C-E-FLY *  18 (1.1) n.d. 

2C-EF-FLY *  n.d. n.d. 

2C-I-FLY *  13 (1.1) n.d. 

2C-T-7-FLY *  10 (1.1) n.d. 

Known inhibitors     

5-IT 
 

15-59034 
 
700-5,100 (PM)35 
 

0.1-3.4 
 
4.0-29 

0.2020  

Selegiline 
 

0.3-1.536 
 

0.002-0.01  0.01720 

* No plasma concentrations reported 
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FIGURE 1. Chemical structures of the investigated test drugs of abuse. 
  



 

17 
 

 

FIGURE 2. Simplified scheme of the initial monoamine oxidases (MAO) inhibition screening 
procedure. (ACN: acetonitrile, IS: internal standard, 5-IT: 5-(2-aminopropyl)indole, KYN: 

kynuramine). 
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FIGURE 3. Initial monoamine oxidases (MAO) inhibition screening results using 10 µM of each 

test drug (MAO-A: top, MAO-B: bottom). Percentage of MAO activity represented the percentage 
of 4- hydroxyquinoline (4-OHC) formation in relation to reference incubations without test drug 

(100%). Values are expressed as mean and were tested for significance (n = 3, ***, P < 0.001, **, P 
< 0.01, *, P < 0.1 for 4-OHC formation in incubations with the inhibitor versus 4-OHC formation in 

reference incubations). 
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FIGURE 4. MAO-A activity related to different test drug concentrations used for IC50 value 

determination. Data points represent the mean value of duplicate measurements (n = 2). 

 
 

 
 

FIGURE 5. MAO-B activity related to different test drug concentrations used for IC50 value 
determination. Data points represent the mean value of duplicate measurements (n = 2). 


