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ABSTRACT
We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent
convection of carbon burning in massive stars. Simulations begin with radial profiles mapped
from a carbon-burning shell within a 15 M� 1D stellar evolution model. We consider models
with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning
simulations are very similar to the oxygen-burning case. We performed a mean field analysis
of the kinetic energy budgets within the Reynolds-averaged Navier–Stokes framework. For
the upper convective boundary region, we find that the numerical dissipation is insensitive to
resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower
boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation
suggesting it is not yet numerically converged. We find that the widths of the upper and
lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights,
respectively. The shape of the boundaries is significantly different from those used in stellar
evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at
both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime
found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk
Richardson number, RiB (∝RiB−α , 0.5 � α � 1.0). We thus suggest the use of RiB as a means
to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of
convective boundary mixing.

Key words: convection – hydrodynamics – turbulence – stars: evolution – stars: interiors –
stars: massive.

1 IN T RO D U C T I O N

1D stellar evolution codes are currently the only way to simulate the
entire lifespan of a star. This comes at the cost of having to replace
complex, inherently 3D processes, such as convection, rotation, and
magnetic activity, with generally simplified mean-field models. An
essential question is ‘how well do these 1D models represent real-
ity?’ Answers can be found both in empirical and theoretical works.
On the empirical front, we can investigate full star models, by com-
paring them to observations of stars under a range of conditions,
as well as testing the basic physics that goes into models of multi-
dimensional phenomena by studying relevant laboratory work and

� E-mail: a.j.cristini@keele.ac.uk (AC); r.hirschi@keele.ac.uk (RH);
wdarnett@gmail.com (DA)

data from meteorology and oceanography (remembering that stars
are much bigger than planets, and are composed of high-energy den-
sity plasma). On the theoretical side, multidimensional simulations
can be used to test 1D models under astrophysical conditions that
can be recreated in terrestrial laboratories only in small volumes,
e.g. in National Ignition Facility (NIF) (Kuranz et al. 2011) and
z-pinch device (Miernik et al. 2013) experiments.

1.1 Astronomical tests

The results from the astronomical validation studies are mixed. Ob-
servations of stars confirm the general, qualitative picture of stellar
evolution predicted by 1D models, but reveal significant quantita-
tive differences. A recent example is the work of Georgy, Saio &
Meynet (2014) and Martins & Palacios (2013) who show that the
use of different criteria for convection (i.e. either Schwarzchild

C© 2017 The Authors
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or Ledoux) leads to important differences in the overall
evolution of a massive star, especially for the post-main-sequence
evolution. Without a constraint on which criteria, if either, is the
correct one, this result represents an inherent uncertainty in 1D
models.

These quantitative discrepancies can be reduced by modifying
the treatment of convective boundaries, and more specifically, by
allowing for convective penetration and overshooting (Zahn 1991).
Incorporating a model for mixing beyond the linearly stable con-
vective boundaries (e.g. that given by the Ledoux or Schwarzchild
criteria) introduces additional parameters that can be tuned to im-
prove agreement between model and data (Freytag, Ludwig &
Steffen 1996). However, this approach has several drawbacks be-
yond the obvious one of overfitting so as to preclude a predictive
model. Perhaps the most egregious is that parameter fitting is never
done in a global sense so that different phases of evolution require
different parameters, thus revealing the non-universality of these
models. Another recent example is the finding that stellar models of
red giants agree with Kepler observations only when a metallicity-
dependent mixing length is used (Tayar et al. 2017).

1.2 Computational methods and assumptions

The most obvious way to proceed computationally is by direct
numerical simulation (DNS), in which all relevant scales of the
turbulent cascade are resolved. This is not feasible with present
or foreseeable computer power. The Reynolds numbers for stars
are enormous (e.g. Re ≈ 1018, Arnett, Meakin & Viallet 2014),
simply because stellar dimensions are so much larger than mean-
free paths for dissipation. DNS requires an infeasible dynamic
range in order to include both the microscopic and macroscopic
scales; for example the state-of-the-art DNS work of Jonker et al.
(2013) attained a Reynolds number of 103 with a Péclet number of
unity.

An alternative is possible. The largest eddies contain most of
the energy in a turbulent cascade. Kolmogorov’s second similarity
hypothesis, which posits that the rate of dissipation in a turbulent
flow as well as the statistics in the inertial sub-range do not de-
pend upon the detailed nature of the dissipative process, implies
that it may be unnecessary to resolve the dissipation sub-range to
accurately calculate scales above the Kolmogorov scale, provided
that the behaviour of the sub-grid dissipation is well behaved. This
phenomenology has indeed been supported by detailed numerical
studies (see Aspden et al. 2008). Even early implicit large eddy sim-
ulations (ILES) with relatively coarse resolution (Meakin & Arnett
2007b) gave Kolmogorov dissipation at the sub-grid scale; this is
because they use a finite volume and total variations diminishing
solver (piecewise parabolic method, PPM; see Colella & Woodward
1984), ensuring that mass, momentum, and energy are conserved
and variance is dissipated at the grid scale.

Comparative studies of using DNS to solve the compressible
Navier–Stokes equations and ILES to solve the inviscid Euler equa-
tions using PPM have been performed (Porter & Woodward 2000;
Sytine et al. 2000). Comparisons were made on grids with sizes
from 643 to 10243. Both methods were found to converge to the
same limit with increasing resolution. A factor in deciding whether
DNS or ILES is a more suitable choice depends on whether the
phenomena of interest require resolution of the dissipative range or
not. We currently do not have a compelling argument for resolving
the dissipation range in the current work.

Furthermore, the additional information provided explicitly by
DNS, such as dissipation rates, can often be estimated very accu-

rately when the ILES method is used in conjunction with Reynolds-
averaged Navier–Stokes (RANS) methods; at least in the mean.
This is a point we discuss in Section 4.4 below and in Viallet et al.
(2013), Arnett et al. (2015), and Arnett & Meakin (2016).

1.3 Stellar simulations

ILES simulations sampling a broad range of relevant and in-
creasingly more realistic astrophysics conditions have been under-
taken. Neutrino cooling becomes dominant after helium burning, so
that later stages have increasingly shorter thermal time-scales (see
Arnett 1996, pp. 284–292), which are insensitive to radiative dif-
fusion or heat conduction (high Péclet number,1 Pe � 1). Oxygen
burning has both a relatively simple nuclear-burning process, and
a short thermal time, so that a small but significant fraction of the
burning stage may be simulated (Meakin & Arnett 2007b), with a
Damköhler number,2 Da, approaching 1 per cent (see Table A1 for
estimates of Da for various burning stages).

Many oxygen-burning simulations have been performed, giv-
ing an improved understanding of the process; e.g. Arnett (1994),
Bazan & Arnett (1994), Bazán & Arnett (1998), Asida & Arnett
(2000), Kuhlen, Woosley & Glatzmaier (2003), Young et al. (2005),
Meakin & Arnett (2006), Meakin & Arnett (2007a), Meakin &
Arnett (2007b), Arnett & Meakin (2011a), Viallet et al. (2013), Ar-
nett et al. (2015), Arnett & Meakin (2016), and Jones et al. (2017).

Silicon burning is the most complex burning phase, complicated
by active nuclear weak interactions, and requires a large additional
computational effort. The evolution time-scale is of the order of
days (Da ∼ 1 and Pe � 1). Early simulations of silicon burning
(Bazán & Arnett 1997) used a nuclear reaction network consisting of
123 nuclei. Meakin (2006) and Arnett & Meakin (2011a) performed
2D simulations of concentric carbon-, oxygen-, and silicon-burning
shells using a 37 species network for several convective turnovers
about one hour prior to core collapse. Couch et al. (2015) simulate
the final three minutes of silicon burning in a 15 M� star, using
the FLASH code (Fryxell et al. 2000) with adaptive mesh refinement,
and a nuclear reaction network of 21 species. An initial study of
silicon burning with a large network (∼120 nuclei) has been carried
out by Meakin & Arnett (in preparation). The carbon, oxygen, and
part of the silicon shell of an 18 M�, unrelaxed spherical star have
also been simulated, in a full-sphere simulation with low resolution
(400 × 148 × 56) by Müller et al. (2016).

Early phases of stellar evolution are harder to simulate because
they are generally characterized by very small Damköhler numbers
(slow burning) and very low convective Mach numbers (slow mix-
ing). Several studies have targeted hydrogen- or helium-burning
phases. Meakin & Arnett (2007b) performed a fully compress-
ible simulation of core hydrogen burning on a numerical grid of
400 × 1002, with the driving luminosity boosted by a factor of
10. Gilet et al. (2013) adopt the low Mach number solver MAESTRO

(Almgren, Bell & Zingale 2007) to simulate core hydrogen burning
on a numerical grid of 5123. This type of solver removes the need

1 The Péclet number is the ratio of the time-scale for transport of heat
through conduction to the time-scale for transport of heat through advection,
or Pe = vL/χ , where v and L are the characteristic velocity and length-scale
of the flow and χ is the heat diffusivity (e.g. Lautrup 2011, p. 380).
2 The Damköhler number is the ratio of the advective time-scale to the
chemical/nuclear time-scale (Damköhler 1940), or Da = τ c /(qXi/εnuc),
where τ c is the convective turnover time and εnuc, q, and Xi are the energy
generation rate, specific energy released, and abundance fraction for the
dominant nuclear reaction, respectively.
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to follow the propagation of acoustic waves, and allows for longer
time-steps than a fully compressible solver, but would neglect any
important kinetic energy transfer due to acoustic fluxes.

We have performed novel calculations of a yet to be simulated
phase of evolution, the carbon phase in a massive star, which we
studied in a burning shell within a 15 M� massive star. Carbon
burning is the first neutrino-cooled-burning stage, thus allowing
radiative diffusion to be neglected (Pe � 1) and slightly simplify-
ing the numerical model. It is characterized by a larger Damköhler
number than earlier, radiatively cooled stages, alleviating the com-
putational cost. The initial composition and structure profiles are
simpler than those of more advanced stages, because the region
in which the shell forms is smoothed by the preceding convective
helium-burning core. Finally, as the first neutrino dominated phase
of nuclear burning it plays an important role is setting the size of
the heavy element core which subsequently forms and in which a
potential core-collapse event may take place. We are particularly in-
terested in the structure of convective boundaries and composition
gradients, in this sense we explore the effects of resolution (zoning)
upon the simulations. Composition is treated as an active scalar,
and coupled to the fluid flow through advection and the equation of
state (EOS).

The structure of the paper is as follows. In Section 2, we dis-
cuss the stellar model from which the initial conditions for our
hydrodynamic models were selected. In Section 3, we describe our
simulation model set-up. Our results and analysis of the hydrody-
namic models are presented in Section 4. We compare our models to
similar simulations in Section 5. Finally, in Section 6, we summarize
our results.

2 IN I T I A L C O N D I T I O N S

2.1 The 1D stellar evolution model

To prepare the input for the 3D carbon-burning simulations, we
calculated a 15 M�, solar metallicity, non-rotating model until the
end of the oxygen-burning phase using the Geneva stellar evo-
lution code (GENEC; Eggenberger et al. 2008). The default input
physics used in GENEC to calculate this model includes: a nuclear
reaction network of 23 isotopes using the Nuclear Astrophysics
Compilation of Reaction Rates (NACRE) (Angulo et al. 1999) tab-
ulated reaction rates; EOS describing a perfect gas, partial degen-
eracy, and radiation; opacity tables from the OPAL group (Rogers,
Swenson & Iglesias 1996) and Alexander & Ferguson (1994) for
high and low temperatures, respectively; mass loss estimated ac-
cording to the prescriptions by Vink, de Koter & Lamers (2001) and
de Jager, Nieuwenhuijzen & van der Hucht (1988); concentration
and thermal diffusion; convection treatment using mixing length
theory (MLT) with αml = 1.6 (Schaller et al. 1992); convective
boundary positions determined using the Schwarzschild criterion
(Schwarzschild & Voigt 1992); and penetrative convective over-
shoot (Zahn 1991) up to 20 per cent (Stothers & Chin 1991) of the
pressure scaleheight for core hydrogen and helium burning only.

Fig. 1 presents the evolution of the convective structure of this
15 M� model. Convectively unstable regions are indicated in this
figure by shaded areas with colour indicating the convective Mach
number, which slowly rises as the star evolves, being lowest in the
core and highest in the envelope.

2.2 An overview of stellar convection parameters

In order to place the results of our carbon shell simulations into the
broader context of stellar convection over the lifetime of the star, as

Figure 1. Structure evolution diagram of the 15 M� 1D input stellar model.
The horizontal axis is a logarithmic scale of the time left before the predicted
collapse of the star in years (the last model in this simulation is before the
end of silicon burning, but since the time-scale of silicon burning is so short
this does not affect the plot for the earlier phases) and the vertical axis is
the mass in solar masses. The total mass and radial contours (in the form
log10(r) in cm), are drawn as solid black lines. Shaded areas correspond to
convective regions. The colour indicates the value of the Mach number. The
red vertical bar around log[time left in years] ∼1.5 represents the domain
simulated in 3D, and the time at which the 3D simulations start, relative to
the evolution of the star.

well as inform the construction of initial states for future simula-
tions, we have estimated key quantities for most of the convective
zones in the 15 M� model (Fig. 1). These quantities include the
bulk Richardson number, RiB (equation A5); convective velocity, vc

(equation A6); Mach number, Ma (equation A7); Péclet number, Pe
(equation A8); and Damköhler number, Da (equation A10). These
values and the methods by which they have been calculated are
presented in Appendix A. These are order of magnitude estimates
intended to show trends between different stages of evolution.

One additional key property of the advanced convective regions
in massive stars is the radial extent (see the radial contours in Fig. 1).
For the mass range that we consider, such convective regions typi-
cally span only a few pressure scaleheights (0.2–5), convection, in
this case, is classified as shallow.3 Consequently, convective mo-
tions might be expected to resemble at least some characteristics
of the classical description of convective rolls proposed by Lorenz
(1963), a hypothesis that shows some validity according to the re-
sults of Arnett & Meakin (2011b).

Referring to Table A1, the 1D model (shown in Fig. 1) shows a
general increase in the convective velocities and the Mach, Péclet,
and Damköhler numbers as the star evolves. Some additional trends
of interest include the following.
Convective velocity. The convective velocities range from about
5 × 104 cm s−1 during the early phases to a few times 106 cm s−1

during the advanced phases.
Mach number. The Mach number ranges from a few times 10−4 (val-
ues lowest for helium and carbon burning) to close to 10−2 (several
times 10−2 for 3D simulations). Note that the Mach number may
still increase further during silicon burning and the early collapse
as found by Arnett (1996) and Müller et al. (2016).
Péclet number. The Péclet number is always much larger than one,
with a minimum around 1000 during hydrogen burning and up

3 An example of deep convection is in the envelopes of red giants, which
extends over many pressure scaleheights.
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to 1010 during the advanced phases. Radiative effects may still
dominate at smaller scales as discussed in Viallet et al. (2015)
and they certainly play an important role during the early stages
of stellar evolution. As mentioned in Section 1, for most of the
convective phases, the evolutionary time-scale is much larger than
the advective time-scale (Da ∼10−7 for hydrogen burning). Only
during the later stages of evolution do these time-scales become
comparable (Table A1; Da >10−4).

For carbon and oxygen burning, Pe �106. This is a consequence
of neutrino cooling, which shortens the thermal time-scale but does
not affect the radiative/conductive cooling rate. The specific entropy,
S, obeys

dS/dt = ∂S/∂t + (1/ρ)∇·vρS = ε/T − (1/ρT )∇·Frad, (1)

where ρ, v, T , and Frad are the density, flow velocity, temperature,
and radiative flux, respectively. ε = εnuc + εν is the net heating from
nuclear burning and neutrino cooling. If ε = 0, Rayleigh’s criterion
for convection may be derived (Turner 1973). If Frad = 0 then the
condition for simmering convection during a thermal runaway may
be found (Arnett 1968).
Bulk Richardson number. Another important result relates to the
bulk Richardson number which is a measure of the stiffness of the
convective boundary, as well as of the boundary mixing rate. A key
factor in RiB is the buoyancy jump at the boundary (equation A4)
which has contributions from both entropy and mean molecular
weight (μ) gradients. At the start of burning, the thermal component
of the entropy gradient dominates. However, as nuclear burning
proceeds, the μ gradient increases and starts to dominate over the
thermal component. Even during the hydrogen-burning phase where
the convective core continuously recedes, the μ gradient ultimately
dominates over the thermal component.

The Richardson number4 measures the ratio of potential energy
from stable stratification to the turbulent kinetic energy (TKE) at
the boundary, and so provides an asymptote for entrainment solu-
tions; mixing is limited by the energy available. The actual rate of
entrainment depends also upon the effectiveness with which that
energy is deposited in the stable layer rather than being advected
back into the convective region (which may be related to the Péclet
number). DNS simulations (e.g. Jonker et al. 2013) typically use
Pe ∼1, appropriate for air and not far from Pe ∼7 which may be
more appropriate for water. Experiments usually have comparable
Péclet numbers.

During the advanced burning stages (C, Ne, O, and Si burning),
the convective core grows during most of the stage and the boundary
becomes ‘stiffer’ as μ gradients increase. As the end of the burning
stage is approached, the convective regions recede and the boundary
stiffness decreases as the μ gradient is weakened.

We compared the bulk Richardson number between different
phases and found in general that the boundary was at its ‘stiffest’
during the maximum mass extent of the convective regions, and
‘softest’ at the very end of each burning stage. The values we
estimated for RiB for core carbon and oxygen burning (see Table A1)
agree well with the trend described above. The evolution of RiB

for the other core-burning stages, however, does not necessarily
follow the same trend. This is partly due to the fact that it is not
straightforward to estimate RiB from a 1D model. In particular, it is

4 Here, we use the bulk Richardson number to denote a global measure of
the stiffness of boundaries, but do not preclude the possibility that other
varieties of Richardson number may eventually prove advantageous (e.g.
Arnett et al. 2015).

Figure 2. Convective structure evolution diagram of the 15 M� stellar
model used as initial conditions in a 3D hydrodynamics simulation friendly
format. The horizontal axis is the time relative to the start of the 3D simu-
lations (τ hydro). The vertical axis is the radius in 109 cm. Mass contours in
solar masses are shown by black lines and nuclear energy generation rate
contours by coloured lines, dark red corresponds to 109 erg g−1 s−1, and
the remaining colours decrease by one order of magnitude. Blue and pink
shading represent regions of negative and positive net energy generation,
respectively. Grey-shaded areas correspond to convective regions. The ver-
tical red bar indicates the start time and radial extent of the hydrodynamical
3D simulation. The physical time of the simulation is on the order of 1 h,
still much shorter than the time-scale of this plot.

not easy to define the integration length, 	r to be used in calculating
the buoyancy jump defined in equation (A4) (see Cristini et al. 2016,
for additional details).

RiB, and thus the character of stellar convective boundaries, can
be expected to vary significantly during the course of stellar evo-
lution. Therefore, developing a convective boundary mixing model
that incorporates this information would be a major advancement
over most of the models currently in use.

Finally, the lower boundary of the convective shells are con-
sistently found to be stiffer than the upper boundary. This has
important implications for astrophysical phenomena that involve
convective boundary mixing (CBM) at the lower boundaries of con-
vective shells. For example, the onset of novae (Denissenkov et al.
2013a), and flame front propagation in S-asymptotic giant branch
stars (Denissenkov et al. 2013b) which can change the model from
being an electron-capture supernova progenitor to a core-collapse
supernova progenitor (Jones et al. 2013).

2.3 Initial model for 3D hydrodynamic simulations

We focus in this study on the second carbon-burning shell of the
15 M� star shown in Fig. 1. Choosing the carbon shell as opposed
to the core allows us to study two physically distinct boundaries
rather than one.

Fig. 2 presents a Kippenhahn diagram for the carbon shell region.
The vertical red bar in this figure shows the time at which the
simulations start as well as the vertical extent of the computational
domain used. The horizontal axis shows the age of the star relative to
its age at the start of the 3D hydrodynamic simulations. We can see
in Fig. 2 that the 3D simulations correspond to the initial phase of
the carbon-burning shell, during which the convective shell grows
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in mass in the 1D model. The physical time of the 3D simulations,
however, is on the order of hours, much shorter than the time-scale
on the horizontal axis. Furthermore, the bottom of the convective
shell is stable (horizontal mass contour for 1.2 M�). Thus, we do
not expect strong structural re-arrangements (not considered in the
3D simulations as we are using a constant gravity, see Section 3.3)
to occur over the time-scale of the 3D simulations. The mass extent
of the computational domain is 0.4 M� < M < 2.1 M� and as can
be seen in Fig. 2, the domain contains a stable radiative zone on
both sides of the convective shell.

3 3 D H Y D RO DY NA M I C S I M U L AT I O N S

3.1 The physical model

We compute 3D hydrodynamic simulations using the PROMPI code
(Meakin & Arnett 2007b). PROMPI is a finite-volume, Eulerian code
derived from the legacy astrophysics code PROMETHEUS (Fryxell,
Müller & Arnett 1989), which uses the PPM of Colella & Woodward
(1984). PROMPI is parrallelized using the message passing interface
(MPI). The base hydrodynamics solver can be complemented by
several microphysics prescriptions: the Helmholtz EOS of Timmes
& Swesty (2000); an arbitrary nuclear reaction network; self-gravity
in the Cowling approximation (e.g. pg. 86 of Prialnik 2000) relevant
for deep interiors; multispecies advection; and radiative diffusion
(although neglected in these simulations).

PROMPI solves the Euler equations (inviscid approximation), given
by:

∂ρ

∂t
+ ∇ · (ρ v) = 0; (2)

ρ
∂v

∂t
+ ρ v · ∇v = −∇p + ρ g; (3)

ρ
∂Et

∂t
+ ρ v · ∇Et + ∇ · (p v) = ρ v · g + ρ(εnuc + εν); (4)

ρ
∂Xi

∂t
+ ρ v · ∇Xi = Ri, (5)

where p is the pressure, g the gravitational acceleration, Et the total
energy, Xi the mass fraction of nuclear species i, and Ri the rate of
change of nuclear species i.

While there is evidence that magnetic fields will be generated
in deep interior convection (e.g. Boldyrev & Cattaneo 2004) and
that rotational instabilities (e.g. Maeder et al. 2013) may play an
important role in shaping convection, we focus purely on the hy-
drodynamic aspects in the current study, which remains a problem
of significant complexity with many outstanding issues.

Energy generation during carbon burning proceeds mainly via
fusion of two 12C nuclei. For stellar conditions, considering only
the main exit channels (α and p) will result in no significant errors
(Arnett 1996). The n exit channel branching ratio is only bn = 0.02,
so for this study we only consider energy generation due to the α

and p channels. We estimated the carbon-burning energy generation
rate in our 3D simulations with a slightly modified version of the
parametrization given by Audouze, Chiosi & Woosley (1986) and
Maeder (2009):

ε12C ∼ 4.8 × 1018 Y 2
12 ρ λ12,12, (6)

where Y12 = X12C/12, λ12,12 = 5.2 × 10−11 T9
30, and T9 = T/109.

This simplification to the nuclear physics allows us to represent
the stellar material using only three compositional quantities: the

average atomic mass Ā, average atomic number Z̄, and the carbon
abundance X12C. The mass and charge are required for the EOS
and to represent the mean properties of all other species besides
12C. Thus, the composition is an active scalar, and coupled to the
flow through the EOS and mixing. A further simplification is that
the change of 12C due to nuclear burning was ignored because
of its negligible rate of change relative to advective mixing over
such short time-scales (i. e. the carbon shell is characterized by
a very small Damköhler number, Da ∼10−4, see Table A1). The
key important feature retained with this prescription of the nuclear
burning is the interaction and feedback between the nuclear burning
and hydrodynamic mixing, while keeping computational costs to a
minimum.

Cooling via neutrino losses is parametrized using the analytical
formula provided by Beaudet, Petrosian & Salpeter (1967) which in-
cludes all of the relevant processes: pair creation reactions, Compton
scattering, and plasma neutrino reactions. The cooling is essentially
constant over the simulation time and its details are not important
for our purposes.

3.2 The computational domain

Approximations are necessary to simulate a meaningful physical
time. In this study, we follow the ‘box-in-star’ approach (Arnett &
Meakin 2016) and we use a Cartesian coordinate system and a plane-
parallel geometry. We evolve the model with time-steps determined
by the Courant condition, using a Courant factor of 0.8. Our com-
putational domain represents a convective region of thickness, t,
bounded either side by radiative regions of thickness, t/2. The as-
pect ratio of the convective zone is therefore 2:1 (width:height),
and so a plane-parallel approximation is not ideal and is the first
major simplification of our set-up. We made this choice to allow
us to ease the difficult Courant time-scale condition at the inner
boundary of the grid allowing for longer run-times, as well as better
resolution near convective boundaries. Direct comparison with the
oxygen-burning simulations, which use a spherical grid, suggest
that no significant error results.

In order to study the complete convective region, and also stable
region dynamics (such as wave propagation), we chose to include
the entire convection zone and portions of the adjacent stable re-
gions. The radial extent of the domain in relation to the stellar
model initial conditions is illustrated in Fig. 2 by the vertical red
bar. The computational domain extends in the vertical (x) direction
from 0.42 × 109 cm to 2.30 × 109 cm, and in the two horizontal
directions (y and z) from 0 to 1.88 × 109 cm, see Fig. 3.

We found that the aspect ratio for the convective zone of 2:1 was
the required minimum for unrestricted circulation of turbulent fluid
elements. The radial extent of the computational domain represents
4 × 10−5 of the total radius of the star, which is 4.6 × 1013 cm. At
the chosen evolutionary stage, the shell is expanding, as can be seen
in Fig. 2, and the luminosity is driven by a peak in nuclear energy
generation of ∼109 erg g−1 s−1 at x ∼ 0.9 × 109 cm.

The computational domain uses reflective boundary conditions
in the vertical direction and periodic boundary conditions in the
two horizontal directions. Although the material in the radiative
regions is stable against convection, it has oscillatory g-mode mo-
tions excited by the adjacent convection zone. In order to mimic the
propagation of these waves out of the domain, we employ a damp-
ing region that extends radially between a radius of 0.6 × 109 cm
and the lower domain boundary at 0.42 × 109 cm. The damping
region covers the full horizontal extent of the computational domain
in between these radii. Within this region, all velocity components
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Figure 3. The geometry of the computational domain. Gravity is aligned
with the x-axis. The blue region depicts the approximate location of the con-
vectively unstable layer at the start of the simulation, while the surrounding
green volumes depict the locations of the bounding stably stratified layers.

are reduced by a common damping factor, f, resulting in damped
velocities over the damping region, vd = f v. The damping factor
is defined as

f = (1 + δt ωfd)−1 , (7)

where δt is the time-step of the simulation, ω = 0.01 is the damp-
ing frequency and is a free parameter chosen to correspond to a
small fraction of the convective turnover. fd = 0.5 (cos (πr/r0) +
1), where r is the radial position in the vertical direction and
r0 = 0.6 × 109 cm is the edge of the damping region in the vertical
direction. Using this damping function, fd = 0 at r = r0, where the
damping region starts. This ensures a smooth transition between the
non-damped and damped regions.

To test the dependence of our results on numerical resolution,
we simulated the carbon shell at four different resolutions. These
models are named according to their resolution:lrez - 1283,mrez
- 2563, hrez - 5123, and vhrez - 10243.

Whether a computed flow will exhibit turbulence depends on the
spatial and temporal discretization that is used. In the following, we
explore heuristically the 3D modelling of turbulence on a discrete
grid.

3.2.1 Spatial zoning considerations

A useful dimensionless number for determining the degree of turbu-
lence in a simulation is the effective or numerical Reynolds number,
a discrete analogue of the Reynolds number. It can be defined using
the following arguments.

Kolmogorov (1941) showed that the rate of energy dissipation
at any length-scale, λ (between the inertial range and Kolmogorov
scale), is given by ελ ∼ v3

λ/λ, where vλ is the flow velocity at that
scale. This relation can be applied at the extreme scales of the
simulation, i.e. at the integral scale and the grid scale to give

ε = v3
rms


and ε	x = 	u3

	 x
, respectively, (8)

where 	u is the flow velocity across a grid cell. This velocity
can also be used to define an effective numerical viscosity at the

grid scale

νeff = 	u	x. (9)

For a turbulent system within a statistically steady state,
Kolmogorov (1962) showed that the rate of energy dissipation is
equal at all scales. Applying this equality to equation (8) yields
(with the use of equation 9)

νeff = vrms

(
	x



)4/3

. (10)

Therefore, the effective Reynolds number can be expressed as

Reeff =
(



	x

)4/3

∼ N 4/3
x , (11)

where Nx is the number of grid points in the vertical direction.
In these simulations, this is a slight overestimate as in the vertical
direction only half of the grid points represent the convective region.

Within the ILES paradigm, the effective Reynolds number is
therefore limited by the momentum diffusivity5 at the grid scale
(equation 9), and as demonstrated by equation (11), it is the choice
of spatial zoning that sets an upper limit on the degree of turbu-
lence. The effective Reynolds numbers of our simulations (Nx =
128–1024) therefore range from around 650 to 104, suggesting that
we are within the turbulent regime (Reeff � 1000) for the finer
grids.6

3.2.2 Time-scale considerations

The convective turnover time, τ c (twice the transit time), is the
time needed to set up the turbulent velocity field (Meakin &
Arnett 2007b), following the initial perturbations in temperature
and density. Therefore, the convective turnover time is the minimum
time-scale required for simulating turbulence. For carbon burning,
the turnover time is τ c ∼ 6.7 × 103 s. The maximum time-step
size allowed by the explicit hydrodynamic solver is 	tmax = 	x/cs,
where the sound speed is approximately cs ∼ 4.5 × 108 cm s−1.
Therefore, the minimum number of time-steps needed to simulate
a convective turnover time is N	t ∼ Nx/Ma = csτc/	x for Mach
number Ma. For the hrez zoning (Nx = 512), the required number
of time-steps equates to 8.2 × 105, which would exceed the available
computer resource budget.

Hence, as one may guess intuitively, the modelling of smaller ve-
locities requires more time-steps. One option to overcome this issue
is to scale the velocity up by scaling the nuclear energy generation
rate. Scaling the burning rate by a factor of 1000 (this only scales
the velocity up by a factor of 10) reduces the convective turnover
time to τ c ∼ 670 s, and the minimum number of time-steps required
to establish a turbulent flow decreases to N	t ∼ 8.2 × 104, for the
hrez zoning, which is comfortably attainable given the available
computational resources.

3.2.3 Boosting factor

A boosting factor of 103 for the nuclear energy generation rate was
chosen in order for the simulations to match the turbulent driving

5 The actual numerical dissipation of the PPM method is highly complex and
non-linear (Sytine et al. 2000); the highest resolution simulations presented
here seem to capture the effective dissipation accurately.
6 This is supported by visual comparison of our simulations with experi-
mental data (e.g. van Dyke 1982).
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Figure 4. Left: initial radial density (solid) and entropy (dashed) profiles. Right: initial radial buoyancy (solid) and composition (dashed) profiles. 1D stellar
evolution profiles calculated using GENEC (blue) are compared with the same profiles integrated and mapped on to the Eulerian Cartesian grid in PROMPI (green).

observed in oxygen-shell-burning simulations (∼1012 erg g−1 s−1;
Meakin & Arnett 2007b).

In such simulations, there is no need to worry about the effect
that such a boost in driving will have on the thermal diffusion in the
model as it can be safely ignored in the bulk of the convective zone.
This is because thermal diffusivity is negligible in comparison to
the loss of heat through escaping neutrinos produced in the plasma
(Arnett 1996, pp. 284–292), and so thermal diffusion implicitly
only becomes important at the sub-grid scale (see also discussion in
Viallet et al. 2015). Although future studies are needed to confirm
the Péclet number in the boundary layers, Arnett et al. (2015) argue
that thermal diffusivity is also very small in the boundary regions
of the oxygen-burning shell, which would also apply to our boosted
carbon shell. They show that a large Péclet number leads to an
adiabatic expansion of the convective boundary.

This boosting of the driving luminosity does not have any dynam-
ical effect on the shell structure, given the short physical time-scales
of the simulations. The convective velocities and boundary mixing
rates will be increased though, compared to the astrophysical sce-
nario being modelled. A key advantage to this approach is that more
convective turnovers can be simulated for the given physical time
that is being modelled, but it does highlight an important sensitivity
of the hydrodynamic flow to the numerical set-up. Additionally, as
the nuclear luminosity has been boosted the neutrino losses con-
tribute negligibly to the thermal evolution of the model.

3.3 Initial conditions and runtime parameters

The initial vertical extent of the convective region (0.90 × 109 cm �
x � 1.87 × 109 cm) can be seen through the entropy, buoyancy, and
composition profiles in Fig. 4. The convective region is apparent
through the homogeneity of these quantities due to strong mixing,
while the boundaries are defined by sharp jumps.

An initial hydrostatic structure in PROMPI was reconstructed from
the entropy, composition, and gravitational acceleration profiles
taken from the GENEC 1D model. Stellar models do not have regu-
larly spaced mesh points in the radial direction given the fact that
they use a Lagrangian method and so the spatial resolution is some-
times coarse, especially at convective boundaries. For this reason,

the 1D GENEC profiles of the entropy (s), average atomic mass (Ā),
and average atomic number (Z̄) were first remapped on to a finer
grid mesh before linearly interpolating on to the Eulerian grid in
PROMPI. The details of this remapping can be found in Appendix B.

There is no nuclear-burning network in this model, in the sense
that we do not follow the depletion of 12C through nuclear burning,
but only through mixing. The abundance variables Ā, Z̄, and X12C

are somewhat redundant though, as the electron fraction Ye = Z̄/Ā

does not change.
To ensure the model is in hydrostatic equilibrium, the density

ρ (s, p, Ā, Z̄) was integrated along the new radial grid according
to:

∂ρ

∂r
= ds

dr

(
∂ρ

∂s

)
p,Ā,Z̄

+ dp

dr

(
∂ρ

∂p

)
s,Ā,Z̄

+ dĀ

dr

(
∂ρ

∂Ā

)
s,p,Z̄

+ dZ̄

dr

(
∂ρ

∂Z̄

)
s,p,Ā

, (12)

the second term is simplified by enforcing hydrostatic equilibrium
to within a tolerance of 10−10, given by:

dp

dr
= −ρg. (13)

For our plane-parallel geometry set-up, the gravitational accelera-
tion was parametrized by a function of the form g(r) = A/r, with
constant A = 1.5 × 1017 cm2 s−2. The total derivatives ds/dr, dĀ/dr ,
and dZ̄/dr were calculated from the fitted profiles introduced ear-
lier. The partial derivatives ∂ρ/∂s, ∂ρ/∂p, ∂ρ/∂Ā, and ∂ρ/∂Z̄

were calculated using the Helmholtz EOS (Timmes & Arnett 1999;
Timmes & Swesty 2000). Fig. 4 shows the density, entropy, buoy-
ancy, and average atomic mass profiles for the stellar model initial
conditions, and the corresponding initial profiles that were mapped
on to the Eulerian grid in PROMPI.

Simulation time is typically measured in convective turnovers,
τ c = 2 c/vrms, where c is the height of the convective region and

vrms is the global convective velocity, vrms =
√〈

v 2
x

〉 − 〈vx〉 2
(see

Appendix C for a description of this notation). Our simulations
typically span 3–4 turnovers, following an initial transient phase of
around 1000 s.
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Table 1. Summary of simulation properties. Nxyz: total number of zones in
the computational domain (Nx × Ny × Nz), τ sim: simulated physical time
(s), vrms: global rms convective velocity (cm s−1), τ c: convective turnover
time (s), RiB: bulk Richardson number (values in brackets are representative
of the lower convective boundary region), and Ma: Mach number.

lrez mrez hrez vhrez

Nxyz 1283 2563 5123 1,0243

τ sim 3,213 3,062 2,841 986
vrms 3.76 × 106 4.36 × 106 4.34 × 106 3.93 × 106

τ c 554 474 471 513
RiB 29 (370) 21 (259) 20 (251) 23 (299)
Ma 0.0152 0.0176 0.0175 0.0159

Convection is seeded in the hydrodynamic models through ran-
dom perturbations in temperature and density in the same manner
described by Meakin & Arnett (2007b) who also showed that the
subsequent nature of the flow was independent of these seed pertur-
bations. For the vhrez model, convection was not seeded through
perturbations in the 1D stellar model initial conditions, but was
restarted from the hrez model at 980 s, this was done by dupli-
cating each of the cells to double the resolution. Due to limited
computational resources available for this study, the vhrez model
was not simulated for enough convective turnovers in order for the
temporal averaging to be statistically valid. As a result, we only
included this model in part of our detailed analysis.

4 SIMULATION R ESULTS

A summary of the simulation models is presented in Table 1, which
includes the number of zones, physical time simulated, convective
velocity, convective turnover time, bulk Richardson number, and
convective Mach number.

4.1 The onset of convection and time evolution

The temporal evolution of the global (averaged over the convective
zone) specific kinetic energy for all of the models is presented in
Fig. 5. The first ∼1000 s of evolution are characterized by an initial
transient associated with the onset of convection. By ∼1250 s, all of
the models settle into a quasi-steady state characterized by semireg-
ular pulses in kinetic energy occurring on a time-scale of the order
of a convective turnover time. These pulses are associated with the
formation and eventual breakup of semicoherent, large-scale eddies
or plumes that traverse a good fraction of the convection zone before
dissipating, and is a phenomena that is typical of stellar convective
flow (Meakin & Arnett 2007b; Arnett & Meakin 2011a,b; Viallet
et al. 2013; Arnett et al. 2015).

As discussed in Section 3.3, the evolution of the highest resolution
model,vhrez, begins at ∼1000 s, when it was restarted from model
hrez by simply sampling the underlying flow field on to a higher
resolution mesh. As is typical of turbulent flow, this model relaxes
in approximately one large-eddy crossing time as evidenced by the
re-establishment of the TKE balance discussed below (Section 4.4).

Although these simulations do not sample a large number of
convective turnover times (between ∼2 and ∼6; discussed below),
resolution trends are still apparent. The most prominent trend seen
here is the kinetic energy peak associated with the initial transient,
which increases as the grid is refined. This is not linked to the
initial seed perturbations and is most likely related to the decreased
numerical dissipation at finer zoning.

Figure 5. Temporal evolution of the global specific kinetic energy: thin
dashed – lrez; thick dashed – mrez; black solid – hrez; and red solid
– vhrez. The quasi-steady state begins in each model after approximately
1000 s, and only the lrez model kinetic energy appears to have a depen-
dence on the resolution.

A similar trend can also be seen in the quasi-steady turbulent
state that follows the initial transient. Interestingly, in this case,
a resolution dependence only appears to manifest for the lowest
resolution model, lrez. This has an overall smaller amplitude of
kinetic energy as well as a much smaller variance associated with
the formation and destruction of pulses. These properties can be
naturally attributed to a higher numerical dissipation at a lower
resolution, an issue that we return to throughout the remainder of
the paper.

4.2 Properties of the quasi-steady state

Rms fluctuations in density, pressure, entropy, temperature, and
composition centred around their mean background states are shown
for the hrez model in the left-hand panel of Fig. 6. Fluctuations in
the convective region are small and of a similar magnitude for all
quantities except the composition. Near the convective boundary re-
gions, the relative amplitude of the fluctuations is highest, reaching
values around 1 per cent of the mean background state.

Pressure fluctuations can be grouped into a compressible and
an incompressible components. The former describes the acoustic
nature of pressure fluctuations such as when the flow turns and is
compressed. The latter describes the advective nature of pressure
perturbations due to buoyancy effects. The compressible component
of the pressure fluctuations is proportional to a pseudo-sound term,
ρ0 v′2/p0, shown by the dashed line in the left of Fig. 6. This term
is highest in the convective region and has a magnitude similar to
the square of the Mach number, ∼3 × 10−4.

Horizontally averaged rms velocity components for the hrez
model are shown on the right of Fig. 6. These profiles represent an
average over the quasi-steady-state period of the simulation, which
we estimate to occur over four convective turnover times. The total
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3D simulations of carbon burning 287

Figure 6. Left: horizontally averaged rms fluctuations of composition, density, pressure, temperature, and entropy weighted by their average values. The
dashed curve represents a pseudo-sound term. These fluctuations were time averaged over four convective turnover times of the hrez model. Right: rms radial
(thin dashed), horizontal (thick dashed), and total (solid) velocity components, time averaged over four convective turnover times for the hrez model. Local
maxima in the horizontal velocity indicate the approximate convective boundary locations.

rms velocity reaches a maximum of around 4.8 × 106 cm s−1 both in
the centre of the convective region (x ∼ 1.4 × 109 cm) and also near
the lower convective boundary (x ∼ 0.9 × 109 cm). Contributions
to the total velocity are dominated by the radial velocity over the
central part of the convective region, while close to the convective

boundaries the horizontal velocity (vh =
√

v2
y + v2

z ) is the largest

component. The local maxima in horizontal velocities correspond
to the radial deceleration and eventual turning of the flow near
the convective boundaries. Such features are typical of shallow
convective regions and are similarly reported in simulations of the
oxygen-burning shell by Meakin & Arnett (2007b) and Jones et al.
(2017), see their figs 6 and 11, respectively.

The components of the flow velocity for the hrez model are
illustrated by 2D colour maps in Fig. 7. These snapshots of the
flow were taken at 1480 s into the simulation, where the quasi-
steady state has already developed. Each vertical 2D slice in Fig. 7
is taken at the same horizontal (z) position in the x–y plane, at
z = 0.94 × 109 cm (i.e. in the middle of the domain, see Fig. 3 for
the domain geometry). The left-hand, middle, and right-hand panels
show the x, y, and z components of the velocity, respectively. In
the left-hand panel, strong, buoyant up-flows are shown in shades
of red, while cooler, dense down drafts are shown in shades of
blue.

The convective boundaries are apparent in all the velocity com-
ponents from the sudden drop in magnitude. The lower convec-
tive boundary is clearly distinguishable, but the upper boundary
is more subtle with velocities above the boundary represented by
slightly lighter shades of red and blue. In the middle and right-
hand panels, horizontal velocities are strongest near the convec-
tive boundaries (shown by extended patches of dark red and dark
blue colours), this is indicative of the flow turning as it approaches
the boundary. Gravity mode waves excited by turbulence in the
convective region can be seen in the stable region above, and are
shown by lighter shades of red and blue in the upper part of each
panel.

4.3 Turbulent velocity spectrum

We investigate the degree to which our simulations are capturing
the phenomenology of turbulence, including whether or not they
have developed an inertial sub-range, by looking at velocity spectra
of the modelled flows. Spectra were calculated using a 2D fast
Fourier transform7 of the vertical velocity in a horizontal plane at
the mid-height of the convection zone. The results of this transform

are presented in Fig. 8, where the square of the transform, V̂ 2(k)
is plotted as a function of the wavenumber k. These spectra are
time averaged over several convective turnovers, and a 1D profile is
obtained by binning the 2D transform within the ky–kz plane, where
ky and kz are the wavenumbers in the y- and z-directions, respectively
(ky, kz = 0, 2π, 4π, . . . , 2π(N/2), where N is the number of grid
points in one dimension, i.e. the resolution).

A scaling of (k5/3/N) is applied to the velocity spectrum to com-
pensate for its k−5/3 dependence in the inertial range (Kolmogorov
1941). A plateau in the velocity spectra can be seen in all of the
models. This plateau extends over the largest range in wavenumbers
for the vhrez (cyan) case, 10 � k � 500. Although this plateau
in the spectrum is not a formal proof of the existence of an inertial
range, it supports the fact that our simulations (at least in the hrez
and vhrez cases) resolve appropriately the various ranges of the
problem.

These velocity spectra thus demonstrate that our two highest res-
olution PPM simulations posses essential characteristics of a tur-
bulent flow – an integral scale, an inertial range obeying the k−5/3

power law (at least for a sub-range of wavenumbers), and an effec-
tive Kolmogorov length-scale (represented by the grid scale). In our
two lowest resolution runs, on the other hand, the plateau is either
very short or not present, indicating that models with fewer than
5123 zones are probably not very accurate models of turbulence.
This minimum desired resolution is in reasonable agreement with

7 Using the PYTHON package NUMPY.FFT.FFT2.
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Figure 7. Vertical 2D slice (2D plane defined by z = 0.94 × 109 cm, where z is one of the two horizontal directions in the PROMPI simulation) of velocity
components, 1480 s into the hrez simulation. From left to right vx (vertical component), vy, and vz (horizontal components) are plotted. Reds are positive,
blues are negative, and white represents velocities around zero.

Figure 8. Specific kinetic energy spectrum of the four simulations. Spec-
tra were obtained from a 2D Fourier transform of the vertical velocity (at
the mid-height of the convective region), averaged over several convec-
tive turnovers. The vertical axis corresponds to the square of the Fourier
transform, scaled by a ‘Kolmogorov factor’, k5/3, and a constant (N−1) to
allow easier comparison between resolutions. This scaling highlights the
sub-range of wavenumbers which obey the k−5/3 power law (Kolmogorov
1941). The horizontal axis represents the wavenumber, k. See the text for
more details.

our estimate of the numerical Reynolds number in Section 3.2.1
(Reeff ∼ N 4/3

x ).

4.4 Mean field analysis of kinetic energy

A common method to study turbulent flows is to use the RANS
equations. This reduction of multidimensional data into horizontal
and time-averaged 1D radial profiles allows us to represent the data
obtained from hydrodynamic simulations in the context of 1D stellar
evolution models (Mocák et al. 2014).

We use the RANS framework to calculate the terms of the TKE
equation (details given in Appendix C) and to analyse them. Mo-
mentum diffusion is not included in our simulations as we solve

the inviscid Euler equations within the ILES paradigm. Instead, we
infer TKE dissipation through the truncation errors that arise due
to discretizing these equations (Grinstein, Margolin & Rider 2007),
this provides us with an effective numerical dissipation (εk in equa-
tion C4), which we compute from the residual energy in the TKE
budget.

4.4.1 Time-averaged properties of the TKE budget

The profiles of the mean TKE equation terms (equation C4) for
the lrez, hrez, and vhrez models are shown in the left-hand
panels of Fig. 9, with the inferred viscous dissipation shown by a
black dashed line. These profiles are time integrated over multiple
convective turnovers and normalized by the surface area of the
domain. Bar charts of the mean fields integrated over the domain
are shown in the right-hand panels. Comparing the left-hand panels
of Fig. 9 to fig. 8 of Viallet et al. (2013), we see that the energetic
properties of convection during carbon burning are very similar to
oxygen burning.
Time evolution. The Eulerian time derivative of the kinetic energy,
ρDtEk, is small or negligible over the simulation domain, implying
that over the chosen time-scale the model is in a statistically steady
state.
Transport terms. The transport of kinetic energy throughout the
convective region is determined by the two transport terms, the
TKE flux, Fk, and the acoustic flux, Fp (see Viallet et al. 2013, for
a detailed discussion on these terms).
Source terms. Turbulence is driven by two kinetic energy source
terms, Wb and Wp. The rate of work due to buoyancy, Wb (den-
sity fluctuations), is the main source of kinetic energy within the
convective region, while Wp, the rate of work due to compression
(pressure fluctuations or pressure dilatation) is small. In the con-
vective zone, we generally have Wb > 0, as expected since it is
the main driving term. Near the boundaries, however, there is a
region where Wb < 0. These regions are where the flow deceler-
ates (braking layer) as it approaches the boundary, as already found
and discussed for oxygen burning in Meakin & Arnett (2007b) and
Arnett et al. (2015). We note that the top braking layer is more
extended than the bottom one. The top convective boundary width
is also more extended. We come back to this point in Section 4.5.3.
Dissipation. Kinetic energy driving is found to be closely balanced
by viscous dissipation, εk; a property consistent with the statis-
tical steady state observed. The time- and horizontally averaged
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Figure 9. Left: decomposed terms of the mean kinetic energy equation (equation C4), which have been horizontally averaged, normalized by the domain
surface area, and time averaged over the steady-state period. Time averaging windows are over 2200, 1850 and 1000 s for the lrez (top), hrez (middle), and
vhrez (bottom) models, respectively. Right: bar charts representing the radial integration of the profiles in the left-hand panel. This plot is analogous to the
middle panels of fig. 8 in Viallet et al. (2013).
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Figure 10. Numerical dissipation inferred from the residual TKE for the lower (left) and upper (right) convective boundary regions in the lrez, mrez,
hrez, and vhrez models. The dissipation at each boundary has been normalized by a value at a common position within the convective region near to the
boundary. The hrez and vhrez residual profiles appear to be converging at the upper boundary, suggesting that the representative numerical dissipation here
is physically relevant.

dissipation can be seen to extend roughly uniformly throughout the
convective region, but increases slowly in its amplitude with depth,
tracking the rms velocities. There is almost no dissipation in the
stable layers, where velocity amplitudes are low and turbulence
is absent. Finally, there are notable peaks in dissipation localized
at the convective boundaries. The dependence of these peaks on
resolution is discussed next.

4.4.2 Resolution dependence

We compare models of three different resolutions – the lrez,
hrez, and vhrez models, to determine if any of the physical
results depend on the chosen mesh size. Over the three resolutions,
we find qualitatively similar results but there is significant deviation
at the lower boundary region (∼0.9 × 109 cm). A key question is
whether or not our higher resolution models are able to capture the
physics at boundaries accurately.

At the lower convective boundary (∼0.9 × 109 cm), a peak in
dissipation appears at all resolutions (see dashed line in left-hand
panels of Fig. 9). The peak decreases in amplitude and width with
increasing resolution, indicating that the models are not converged
numerically.

A comparison of the dissipation in this region for all resolutions
is given in the left-hand panel of Fig. 10. Here, the TKE dissipation
is normalized by a value at a common position within the convective
region near to the boundary. This highlights the relative decrease
in this numerical peak with respect to a converged value in the
convective region. A similar plot for the upper boundary is presented
in the right-hand panel of Fig. 10 shows that the dissipation at the
boundary is smooth for both hrez and vhrez models. While in
all cases, the dissipation curves contain some variance due to the
stochastic nature of the flow, the trend with resolution is clear.

4.5 Convective boundary mixing

Entrainment events (similar to entrainment events found for oxygen
burning, see e.g. fig. 23 in Meakin & Arnett 2007b) in the hrez

model can be seen in the left-hand panel of Fig. 11 (see e.g. bottom
left of convective zone where material from below the convective
zone is entrained upwards or top corners of the convective zones
where the material is entrained from the top stable layer). The left-
hand panel shows the average atomic weight fluctuations relative to
their mean, with the velocity field in the (x, y) plane overplotted (the
vertical axis corresponds to the radial/vertical direction, see Fig. 3).

The right-hand panel also shows the velocity magnitude (
√

v2
x + v2

y)

for the same snapshot of the hrez model. In both panels, strong
flows can be seen in the centre of the convective region and shear
flows can be seen over the entire convective region. These shear
flows have the greatest impact at the convective boundaries, where
composition and entropy are mixed between the convective and
radiative regions. Turbulent entrainment within the convective shell
can also be inferred through the radial profile of the buoyancy work,
whereby the positive work near the boundaries (e.g. the magenta
curve of Fig. 9 at ∼0.9 × 109 cm) implies that TKE of overturning
fluid elements near the boundary does work against gravity to draw
stable material into the convective region. This characteristic is
explained in detail and seen in the buoyancy flux profiles of the
oxygen-burning shell in Meakin & Arnett (2007b) (see their section
7.2 and the top panel of fig. 25). This is a very different picture from
the parametrizations that are used to describe convective boundary
mixing in most modern 1D stellar evolution models.

In this section, we start by estimating the position (and its time
evolution) and thickness of the boundaries. We then interpret the
time evolution of the boundary positions in the framework of the
entrainment law. Finally, we compare the upper and lower bound-
aries.

4.5.1 Estimating convective boundary locations

Entrainment at both boundaries pushes the boundary position over
time into the surrounding stable regions. In order to calculate the
boundary entrainment velocities, first the convective boundary posi-
tions must be determined in the simulations. In the 3D simulations,
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3D simulations of carbon burning 291

Figure 11. Left: vertical cross-section of the absolute average atomic weight fluctuations relative to their mean within the convective region. The
colour map represents the logarithm of compositional fluctuations (|A′

/A0|) relative to the mean. Arrows show the vertical component and one hori-
zontal component of the velocity vector field, (vx, vy) (the vertical axis corresponds to the radial/vertical direction, see Fig. 3). The direction of the

arrows indicates the direction of this vector field in the x–y plane, and their length the magnitude of the velocity vector,
√

v2
x + v2

y , at that grid point.

Right: vertical cross-section of the same velocity vector field plotted as arrows in the left-hand panel. The colour map represents the velocity mag-
nitude in cm s−1. Both snapshots were taken at 2820 s into the hrez simulation. A movie of the velocity magnitude is available on this webpage:
http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations/very-high-resolution-movie-of-the-c-shell/view.

the boundary is a 2D surface and is not spherically symmetric as
in 1D stellar models. In order to estimate the radial position of a
convective boundary we first map out a 2D horizontal boundary
surface, rj, k = r(j, k), for j = 1, ny; k = 1, nz, where ny and nz

are the number of grid points in the horizontal y- and z-directions.
We estimate the radial position of the boundary at each horizontal
coordinate to coincide with the position where the average atomic
weight, Ā, is equal to the average between the mean value of Ā

in the convective and the corresponding radiative zones as defined
in equation (A3). The standard deviation of the position, σ r, rep-
resents the amplitude of the fluctuations of the vertical position of
the boundary across the horizontal plane due to the fact the bound-
ary is not a flat surface. Our method is a valid but not a unique
way in which to calculate the boundary position. See Sullivan
et al. (1998), Fedorovich, Conzemius & Mironov (2004), Meakin &
Arnett (2007b), Liu & Ecke (2011), Sullivan & Patton (2011), van
Reeuwijk, Hunt & Jonker (2011), Garcia & Mellado (2014), and
Gastine, Wicht & Aurnou (2015) for a discussion of alternative defi-
nitions. The time evolution of the boundary position and its standard
deviation are plotted in Fig. 13.

4.5.2 Convective boundary structure

While stellar evolution codes describe a convective boundary as a
discontinuity (see the composition profile in the right-hand panel
of Fig. 4, for example), 3D hydrodynamic simulations show a
more complex structure. A boundary layer structure is formed
between the convective and stably stratified regions. This can be
seen from the apparent structure of the mean fields, at ∼0.9 × 109

and ∼1.9 × 109 cm, in the left-hand panels of Fig. 9, which repre-
sent the approximate locations of the lower and upper convective
boundaries, respectively.

The buoyancy in the convective boundary regions is negative,
as seen in the Wb profiles of Fig. 9. In these regions, approaching

fluid elements are decelerated and radial velocities greatly reduced.
As horizontal velocities increase, the plumes turn around and fall
back into the convective region. This is similar to the description by
Arnett et al. (2015, see their fig. 5 and text therein).

4.5.3 Convective boundary thickness estimates

We estimate the thickness of the convective boundaries using the
jump in composition, Ā, between convective and stable regions.
We denote the average composition (averaging removes stochastic
fluctuations in composition) in the, lower stable, convective, and
upper stable regions as, Āl, Āc, and Āu, respectively. We consider the
boundary region to extend between 99 per cent and 101 per cent of
the respective positions coincident with such compositional values.
For each boundary, we signify such values by the appendage of a
subscript − (99 per cent) or + (101 per cent) to the composition of
each region. Explicitly, the lower boundary thickness is defined as,

δrl = r
(
Āc+

) − r
(
Āl−

)
. (14)

The upper boundary thickness is similarly defined as,

δru = r
(
Āu+

) − r
(
Āc−

)
. (15)

In addition, we also considered defining the boundary thickness us-
ing gradients in composition and entropy, and the jump in entropy
at the boundary. We found that these other methods gave quanti-
tatively similar results. In Fig. 12, we illustrate the estimation of
the boundary thickness using equations (14) and (15) for the final
time-step of each simulation. The radius of each profile has been
shifted, such that the boundary position, r (see Section 4.5.1), of
each model coincides with the boundary position of the vhrez
model. With such a shift, it is easier to assess the dependence of the
boundary shape on resolution.

The extents of the convective boundaries are marked by filled
squares for each simulation. Filled circles represent the individual
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Figure 12. Radial compositional profiles at the lower (left) and upper (right) convective boundary regions for the last time-step of each model. The radius
of each profile is shifted such that the boundary position, r (see Section 4.5.1), coincides with the boundary position of the vhrez model. In this sense, it
is easier to assess the convergence of each model’s representation of the boundary at the final time-step. Individual mesh points are denoted by filled circles.
Approximate boundary extent (width) is indicated by the distance between two filled squares for each resolution. The initial composition profile calculated
using GENEC is shown in black (for a qualitative comparison only). See the corresponding text (Section 4.5.3) for details of the definition of the boundary width.

Table 2. Table summarizing bulk and boundary region properties for each
model. vrms – global rms convective velocity (cm s−1); c – convective region
height (cm); ve – entrainment velocity (cm s−1); δr – boundary region width
(cm); δr/Hp – ratio of the boundary region width to the average pressure
scaleheight across the boundary; τ b – boundary entrainment time (s); and
RiB – bulk Richardson number. Values in brackets correspond to the lower
boundary.

lrez mrez hrez vhrez

vrms 3.76 4.36 4.34 3.93
(106)
c 1.08 1.04 1.03 1.09
(109)
ve 1.78 (−0.44) 2.01 (−0.39) 2.15 (−0.30) 1.59 (−0.46)
(104)
δr 13.2 (10.3) 12.5 (5.1) 9.9 (3.3) 9.6 (2.9)
(107)
δr/Hp 0.41 (0.36) 0.36 (0.17) 0.29 (0.11) 0.28 (0.10)
τ b 7.4 (23.4) 6.2 (13.1) 4.6 (11.0) 6.0 (6.3)
(103)
RiB 29 (370) 21 (259) 20 (251) 23 (299)

mesh points, indicating the resolution of each simulation. Note that,
the composition profile labelled as model GENEC is from the 1D
stellar model, and was used as part of the initial conditions for all
of the 3D models, so serves only as a qualitative comparison. The
exact thickness of each boundary is shown in Table 2, along with
their fraction of the local pressure scaleheight.

In Fig. 12 (right-hand panel), it can be seen that the composition
gradient at the top boundary is nearly converged between all resolu-
tions and varies only mildly between the lowest resolution case and

the other models. The composition gradient at the lower boundary
(left-hand panel), on the other hand, varies significantly between the
lrez and hrez models, while between the hrez and vhrez, the
boundary shape appears to have nearly converged although is still
narrowing slightly. These trends are confirmed by the quantitative
estimates of the boundary widths presented in Table 2.

The thickness determined from the abundance gradients is larger
than the standard deviation, σ r, of the boundary location (corre-
sponding to the mid-points of the abundance gradients plotted in
Fig. 12) shown as shaded areas in Fig. 13. This is expected since
the fluctuations of the boundary location do not take into account its
thickness or width, but only the location of its centre (mid-point).
These fluctuations of the boundary location can be compared to
fluctuations in the height of the ocean surface due to the pres-
ence of waves. The fact that the width determined from the abun-
dance gradients (given in Table 2) is significantly larger means that
there is mixing across the boundary. A promising candidate for this
type of mixing is the Kelvin–Helmholtz instability which would
give rise to the shear motions seen in Fig. 14. This figure shows
sequential slices of the flow velocity across the left section of the
upper convective boundary region. Such shear mixing is induced
by plumes rising from the bottom of the convective region and
turning around at the boundary (see also the shear layer in fig.
5 of Arnett et al. 2015). Mixing also occurs through plume im-
pingement or penetration with the boundary. Some mixing may
also occur through the presence of gravity waves which propagate
through the stable region. It is not expected that the upper bound-
ary gradient will steepen, as this would support more violent sur-
face waves whose non-linear dissipation would tend to broaden the
gradient, resulting in a negative feedback loop between these two
processes.
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3D simulations of carbon burning 293

Figure 13. Time evolution of the mean radial position of the convective boundaries, averaged over the horizontal plane for all four resolutions. Shaded
envelopes are twice the standard deviation from the boundary mean location. The convective turnover time in these simulations is of the order of 1000 s. Top
panel: upper convective boundary region. For increasing resolution, the average standard deviation, σ r, in the estimated boundary position are the following
percentages of the local pressure scaleheight: 3.3 per cent; 3.8 per cent; 4.3 per cent; and 4.5 per cent. Bottom panel: lower convective boundary region.
For increasing resolution, the average standard deviation in the estimated boundary position are the following percentages of the local pressure scaleheight:
0.8 per cent; 0.7 per cent; 0.4 per cent; and 0.6 per cent. These shaded areas represent the variation in the boundary height due to the fact that the boundary is
not a flat surface. This can be compared to the surface of the ocean not being flat due to the presence of waves.

It is important to remember that the boundary widths given in
Table 2 are only estimates. The key finding are (1) that the lower
boundary has a narrower width compared to the upper, and (2) the
widths are relatively well converged between the hrez and vhrez
models.

4.5.4 Convective boundary evolution and entrainment velocities

The variation in time of the average surface position, r , of both
boundaries is shown for all models in Fig. 13. Positions are shown
as solid lines and twice the standard deviation as the surrounding
shaded envelopes. Following the initial transient (>1000 s), a quasi-
steady expansion of the convective shell proceeds. We obtained the
entrainment velocities, ve, given in Table 2 using a linear fit to the
time evolution of the boundary positions during the quasi-steady
phase. These velocities are very high. If one multiplies them by
the lifetime of carbon shell burning (of the order of 10 yr), the
convective boundaries would move by more than 1010 cm, which
would lead to dramatic consequences for the evolution of the star.
Note, though, that the driving luminosity of the shell was boosted
by a factor of 1000. We will come back to this point in Section 4.6.

4.5.5 The equilibrium entrainment regime

In the equilibrium entrainment regime (Fedorovich et al. 2004;
Garcia & Mellado 2014), the time-scale for the boundary migration,
τ b, is comparable to or larger than the turbulent transit time-scale, τ c

(Section 3.3). Therefore, in this regime, the entrainment process is
sampling the entire spectrum of turbulent motions over the inertial

range rather than being sensitive to individual turbulent elements,
such as in strong, individual outlier’s events. This simplifies the
development of mixing models within this regime. The boundary
entrainment velocity ve = d r/dt is defined in terms of the mean
boundary position r(t). We define the boundary mixing time-scale as
τ b = δr/|ve|, where δr is the boundary thickness (Table 2), which we
define in Section 4.5.3. We find τ b/τ c ratios for the upper convective
boundary of 13.4, 13.1, 9.8, and 11.7 for the lrez, mrez, hrez,
and vhrez models, respectively, placing all of these boundaries
firmly in the equilibrium regime.

4.5.6 The entrainment law

The time rate of change of the boundary position due to turbu-
lent entrainment (the entrainment velocity), ve, has been found to
scale as a power of the bulk Richardson number for a wide range
of conditions (e.g. Garcia & Mellado 2014). This relationship is
often referred to as an entrainment law in the meteorological and
atmospheric and is typically written as:

ve

vrms
= A Ri−n

B . (16)

Many LES (e.g. Deardorff 1980) and laboratory (e.g. Chemel,
Staquet & Chollet 2010) studies have found similar values for the
coefficient, A, typically between 0.2 and 0.25, although experimen-
tal measures have been more uncertain.

The exponent, n, is often found to be close to unity for convec-
tively driven turbulence (e.g. Fernando 1991; Stevens & Lenschow
2001), a result that follows from basic energetic considerations. On
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Figure 14. Sequential vertical cross-sections in the x–y plane of the velocity magnitude,
√

v2
x + v2

y + v2
z , across the left section of the upper convective

boundary for the vhrez simulation. Snapshots are taken at 1565 s (upper left), 1570 s (upper right), 1575 s (lower left), and 1580 s (lower right). The
colour bar presents the values of the velocity magnitude in units of cm s−1. Each panel reveals shear mixing occurring across the boundary interface. The
Kelvin–Helmholtz instability is a promising candidate for generating this type of mixing.

the other hand, in a recent DNS study, Jonker et al. (2013) showed
that A ≈ 0.35 and n = 1/2 for shear-driven entrainment.

We compare the bulk Richardson number (equation A5) of our
3D simulations to the initial conditions from the 1D stellar model
(Cristini et al. 2016) and 3D oxygen-burning simulations from
Meakin & Arnett (2007b). From the 1D, 15 M� stellar model of
Cristini et al. (2016) used as initial conditions in these simula-
tions, the bulk Richardson numbers of the carbon-burning shell are
Ri u

B ∼ 1440 and Ri l
B ∼ 2.0 × 104 at the upper and lower convec-

tive boundaries, respectively. While, for our 3D vhrez model (see
Table 2), we found Ri u

B ∼ 23 and Ri l
B ∼ 299. The lower values we

obtain in 3D are mainly due to the fact that we boosted the lumi-
nosity by a factor of 1000. This is further discussed in Section 4.6.

The entrainment speed (normalized by the rms velocity) is plotted
as a function of the bulk Richardson number in Fig. 15. Red points
represent the data obtained in the study by Meakin & Arnett (2007b),
the solid red line is a best-fitting power law to the data following
a linear regression, and the red dashed lines show the error in the
computed slope. Blue opaque points represent the values obtained
in the hrez and vhrez models and blue transparent points are the
values obtained in the lrez and mrez models. We obtain a best-
fitting power law to the hrez and vhrez data and the extremes of
their error bars, shown by the solid blue line and dashed blue lines,
respectively. The corresponding intercept and slope of this best
fitting denote the entrainment coefficient, A = 0.03 (±0.01), and
entrainment exponent, n = 0.62 (+0.09/ −0.15), respectively. The
value we obtain for the entrainment exponent, n, falls between the
two scaling relations (1/2 ≤ n ≤ 1). Our value for the coefficient,
A, however, differs from all of the values found in the literature.

Figure 15. Logarithm of the entrainment speed for high Péclet number sim-
ulations, normalized by the rms turbulent velocity versus the bulk Richard-
son number. Red points represent data obtained in the study by Meakin &
Arnett (2007b) and blue points represent data obtained in this study, trans-
parent points represent the values for the lrez and mrez models, which
are not included in best-fitting power law shown by the blue solid line. The
blue dashed lines show the best fitting to the extremes of the error bars of
the hrez and vhrez models. The red solid line is the best-fitting power
law from a linear regression of the oxygen shell data and the red dashed
lines show the error in the computed slope.
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A larger data set is desired with which to explore in more detail
the parameter space. Interestingly, the bulk Richardson numbers
are similar between the carbon and oxygen shell models, and in
particular, the lower convective boundaries both have higher values
than the corresponding upper boundaries. The difference in the best-
fitting values of A indicates that the oxygen shell is more efficient
in converting kinetic energy into mixing. The difference in the best-
fitting values of n indicates that there may be a second parameter
besides RiB that is varying between the top and bottom of the
convective shells, and in different ways, between the carbon and
oxygen shell models. Finally, it must be reiterated that the ambiguity
associated with calculating RiB is likely to account for some of the
discrepancy.

4.5.7 Comparison of upper and lower convective boundary
properties

Summarizing the boundary properties determined so far for the
hrez model (see Table 2), the upper boundary region has a typical
width of 9.9 × 107 cm, entrainment speed of 2.2 × 104 cm s−1, and
bulk Richardson number of 20. The lower boundary region typically
has a width of 3.3 × 107 cm, entrainment speed of 3 × 103 cm s−1,
and bulk Richardson number of 251. We thus have a consistent
picture of the lower boundary being narrower, having a slower
entrainment velocity and being stiffer (higher RiB) compared to the
upper boundary by a factor of about 3, 7, and 13, respectively.

4.6 Comparing convective boundary mixing between 1D and
3D models

Upon comparing our results to the 1D GENEC stellar evolution mod-
els, we find that our boundary widths are much larger and the
boundary structures are very different from those calculated using
strict Ledoux or Schwarzschild boundaries. The results of this and
similar 3D hydrodynamic studies (Meakin & Arnett 2007b; Viallet
et al. 2013; Woodward, Herwig & Lin 2015; Arnett et al. 2015;
Couch et al. 2015; Jones et al. 2017) call for improved convective
boundary mixing prescriptions in 1D stellar evolution models.

An approximate relation can be obtained between RiB and the lu-
minosity, allowing the determination of convective boundary stiff-
ness in 1D stellar models. Considering equation 16 (with n = 1),
the relation vrms ∝ L1/3 (assuming εnuc ∼ v3

rms/; Kolmogorov 1941,
and L = ∫

εnuc dm) and that the entrainment rate scales roughly lin-
early with the luminosity of the shell over the quasi-steady state
(Jones et al. 2017), which implies that ve ∝ L, we obtain that RiB

∝ L−2/3. Interestingly, we find the same dependence when start-
ing from the formula for RiB (given in equation A5), considering
that the buoyancy jump remains constant (which is reasonable for
a given initial stratification) and that vrms ∝ L1/3. Using the relation
RiB ∝ L−2/3, the boost of a factor of 1000 in the luminosity of our
3D models thus implies a reduction by a factor of 100 in RiB. This
brings the values of the bulk Richardson number between our 3D
and 1D models of the carbon shell into a reasonable agreement (see
Section 4.5.6). A complication involves calculating the buoyancy
jump needed for the bulk Richardson number since it is not pre-
cisely defined in a complex, stratified situation like a stellar interior
– the length-scale used for this integration is therefore somewhat
arbitrary.

Another important point is that we confirm with the 3D simula-
tions that the lower boundary is stiffer than the upper boundary, by
a factor of about 13 in terms of RiB. The fact that the entrainment
velocity at the lower boundary is a factor of about 7 smaller than

at the upper boundary is partly explained by the fact that the hori-
zontal velocities at the lower boundary are higher than at the upper
boundary (see Fig. 6).

Theoretical relations like the entrainment law will be needed to
determine entrainment velocities for different burning stages and
their various phases. This can be achieved by first estimating the
bulk Richardson number of a given convective boundary from the
luminosity, as described above. Then, one can approximate a turbu-
lent rms velocity using the velocity calculated from MLT or a sim-
ilar method. Finally, equation (16) can be used with suitable values
for the entrainment coefficient and exponent to estimate the entrain-
ment velocity of the mentioned convective boundary (e.g. Deardorff
1980; Fernando 1991; Stevens & Lenschow 2001; Meakin & Arnett
2007b; Chemel et al. 2010).

5 C O M PA R I S O N TO OT H E R S I M U L AT I O N S

As found by Cristini et al. (2016) using the same 1D stellar model
used for these hydrodynamic simulations, the lower convective
boundary is stiffer than the upper boundary as determined by the
bulk Richardson number. Our higher resolution 3D models pro-
duce comparable results for the bulk Richardson number and for
the hrez model, we obtain values of 20 and 251 for the upper and
lower boundaries, respectively.

Meakin & Arnett (2007b) simulated the oxygen shell of a 23 M�
star in spherical coordinates, also using the PROMPI code. The driving
of the carbon shell we simulate is similar to their oxygen shell, owing
to the fact that we boosted the luminosity. We find that the profiles of
the velocity components are comparable between the two models.
As shown by our Fig. 15 and their fig. 26, we find similar estimates
of the bulk Richardson numbers, while the values of the constants
A and n (from equation 16) differ, this is somewhat expected as the
oxygen shell engulfs the neon-burning shell and complex multiple
shell burning proceeds.

We obtain a TKE budget that is in agreement with that of spherical
simulations of the oxygen shell in a 23 M� star by Viallet et al.
(2013). In such an energy budget, we see a statistically steady state
of turbulence over four convective turnovers. Predominantly, this
is driven from the bottom of the shell by a positive rate of work
due to buoyancy and dissipated at the grid scale by a numerical
viscosity.

In recent full 4π simulations of the oxygen-burning shell in a
25 M� star, Jones et al. (2017) find a 2σ fluctuation in their calcu-
lation of the convective boundary of 17 per cent of the local pressure
scaleheight. This is larger than the horizontal fluctuation in our es-
timation of the upper boundary of the carbon shell; a 2σ fluctuation
of 4.3 per cent of the local pressure scaleheight (Fig. 13). This dif-
ference could be due to the maximum tangential velocity gradient
method that Jones et al. (2017) use to estimate the boundary posi-
tions, which differs from the method described in Section 4.5.1. We
find comparable magnitudes of the velocity components (see our
Fig. 6, and their fig. 11), and also similar Mach numbers for the flow
(see our Table 1, and their table 1). This could be in part due to the
fact that our boosted energy generation rate (∼3 × 1012 erg g−1 s−1)
is comparable to the rate used in their PPMSTAR (Woodward et al.
2015) simulations. The relative magnitude of the radial velocity
component in Fig. 6 is higher than that of Jones et al. (2017), and
our horizontal velocity does not possess the same symmetry as
their tangential velocity. The latter could be due to the difference in
geometries between the two simulations. Jones et al. (2017) also ob-
serve entrainment at the upper convective boundary of their oxygen
shell. Their velocity of the upper boundary due to entrainment is
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lower than the entrainment velocity we estimate by over an order of
magnitude. One reason for this difference could be that the oxygen
shell boundary is much stiffer than the carbon shell boundary, due
to a smaller jump in buoyancy over the boundary (rms turbulent
velocities are similar). We determined this difference in boundary
stability through the difference in the peak squared Brunt–Väisälä
frequencies. The value for the upper boundary of the carbon shell
(∼0.05 rad s−2) is an order of magnitude smaller than that of the
oxygen shell. This could explain the order of magnitude difference
in entrainment velocity assuming that the oxygen shell simulations
also follow an entrainment law of the form of equation (16).

6 C O N C L U S I O N S

3D hydrodynamic simulations that represent the second carbon shell
of a 15 M� star have been performed, using the PROMPI code. The
initial conditions used were finely mapped profiles of the carbon
shell structure from a 15 M�, solar metallicity, non-rotating stellar
model calculated by Cristini et al. (2016) using the GENEC code.
The luminosity of the 3D model was provided by a parametrized
nuclear energy generation rate, energy losses were also accounted
for through escaping neutrinos, using a specific neutrino produc-
tion rate, although their effect was negligible. The luminosity of
the model was boosted by a factor of 1000 in order to ease the
time needed to establish the turbulent velocity field, as discussed in
Section 3.2. The computational domain utilized a plane-parallel
geometry within a Cartesian coordinate system and used a
parametrized gravitational acceleration.

We tested the dependence of our set-up on the domain mesh size
by computing models of four different resolutions: 1283, 2563, 5123,
and 10243. At these resolutions, approximate numerical Reynolds
number of 650, 1600, 4000, and 104, respectively are achieved in
the convective zone (using equation 11). This means that with the
exception of the lrez model, all of the models reach the turbu-
lent regime (Reeff � 1000). While a resolution of 5123 appears to
produce a converged result at the upper boundary; the stiffer, lower
boundary continues to change up to our highest resolution model.
An even higher resolution run is thus planned.

We observed entrainment of material at both convective bound-
aries for all of the models considered. This entrainment over the
quasi-steady turbulent state is associated with an almost constant
velocity, and the corresponding time-scale is greater than the time-
scale for the largest fluid elements to transit the convective region,
asserting that convective boundary mixing in these models occurs
within the equilibrium entrainment regime. The average entrain-
ment velocities over the respective boundaries are 2.2 × 104 and
−0.3 × 104 cm s−1 for the upper and lower boundaries, respectively.
We also found that the entrainment velocity scales with the stiff-
ness (bulk Richardson number) of the convective boundaries. This
scaling follows the entrainment law with entrainment coefficient
and exponent, A = 0.03 (±0.01) and n = 0.62 (+0.09/ −0.15), re-
spectively. These constants were obtained from only two convective
boundaries. Additional simulations using different initial conditions
should help explore the parameter space of the entrainment law and
whether or not the parameters we derived vary significantly from
one burning stage to the other. Furthermore, the dependence on the
Péclet number needs to be further explored before our results ob-
tained in the neutrino-cooled advanced phases can be applied to the
early phases (hydrogen and helium burning) during which thermal
effects are important, at least at the small scales (see discussion
in Viallet et al. 2015). We also estimated the boundary widths and
found these to be roughly 30 per cent and 10 per cent of the local

pressure scaleheight for the upper and lower convective boundaries,
respectively. While these widths are only estimates, they confirm
that the lower boundary is narrower than the upper boundary.

Although more 3D simulations of all burning stages are needed
to fully characterize convective boundary mixing, we can already
compare our results to those of previous studies as well as the 1D
input stellar model and relate them via measures of the turbulent
driving and boundary stiffness. For this purpose, we investigated
how entrainment and turbulent velocities, the driving luminosity
and boundary stiffness (measured using the bulk Richardson num-
ber) relate to each other in Section 4.6. Considering these relations
enabled us to reconcile the convective boundary properties of the
carbon shell estimated from the initial 1D stellar evolution model
to the properties of boundaries in the 3D simulations presented here
(despite the artificial increase in luminosity for the 3D simulations).
Referring to the similarities between carbon and oxygen shell sim-
ulations presented in Section 5, a coherent picture seems to emerge
from all existing simulations related to the advanced burning stages
in massive stars when considering the relations between the above
quantities.

This is promising for the long-term goal of developing a con-
vective boundary mixing prescription for 1D models which is ap-
plicable to all (or many) stages of the evolution of stars (and not
only to the specific conditions studied in 3D simulations). The lu-
minosity (driving convection) and the bulk Richardson number (a
measure of the boundary stiffness) will be key quantities for such
new prescriptions (also see Arnett et al. 2015).

The goal of 1D stellar evolution models is to capture the long-
term (secular) evolution of the convective zone and of its boundaries,
while 3D hydrodynamic simulations probe the short-term (dynam-
ical) evolution. Keeping this in mind, the key points to take from
this and previous 3D hydrodynamic studies for the development of
new prescriptions in 1D stellar evolution codes are the following:

(i) Entrainment of the boundary and mixing across it occurs both
at the top and bottom boundaries. Thus, 1D stellar evolution models
should include convective boundary mixing at both boundaries.
Furthermore, the boundary shape is not a discontinuity in the 3D
hydrodynamic simulations but a smooth function of radius, sigmoid-
like, a feature that should also be incorporated in 1D models.

(ii) At the lower boundary, which is stiffer, the entrainment is
slower and the boundary width is narrower. This confirms the de-
pendence of entrainment and mixing on the stiffness of the bound-
ary.

(iii) Since the boundary stiffness varies both in time and with
the convective boundary considered, a single constant parameter
is probably not going to correctly represent the dependence of the
mixing on the instantaneous convective boundary properties. As
discussed above, we suggest the use of the bulk Richardson number
in new prescriptions to include this dependence.
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A P P E N D I X A : 1 D ST E L L A R C O N V E C T I O N
PA R A M E T E R S

To determine averages over the convective region, we used an rms
mass average. The mass average of a quantity A is defined as:

Aavg =
√

1

m2 − m1

∫ m2

m1

A2(m) dm, (A1)

where m1 and m2 are the mass at the lower and upper convective
boundaries, respectively.

The bulk Richardson number is the ratio of the boundary stabiliz-
ing potential to the kinetic energy of turbulent motions (within the
convective region). It characterizes the boundary stiffness, and is a
function of the Brunt–Väisälä frequency or buoyancy frequency, N,
which is defined as:

N2 = −g

(
∂lnρ

∂r

∣∣∣∣
e

− ∂lnρ

∂r

∣∣∣∣
s

)
, (A2)

where g is the gravitational acceleration, ρ is the density, and sub-
scripts e and s represent the fluid element and its surroundings,
respectively.

In order to study the properties of the boundary regions, we first
need a definition of the boundary location, rc. Meakin & Arnett
(2007b) use the maximum gradient method on the composition
to determine the location of convective boundaries in the oxygen
shell of a 23 M� model. In a similar manner, we approximate the
location of the top (bottom) boundary as the vertical coordinate
having an average atomic mass, A, equal to the average between
the convective zone and top (bottom) radiative zone,

Ath = Aconv + Arad

2
, (A3)

where Aconv and Arad are the averages of A in the convective and
relevant stable/radiative regions, respectively.

The buoyancy jump over a convective boundary region can be
estimated by integrating the square of the buoyancy frequency over
a suitable distance (	r) either side of the boundary centre, rc,

	B =
rc+	r∫

rc−	r

N2dr. (A4)

The integration distance 	r is not well-defined theoretically but
it should be large enough to capture the dynamics of the boundary
region and the distance over which fluid elements are decelerated.

As mentioned above, the bulk Richardson number is the ratio of
the boundary stabilization potential (which includes the buoyancy
jump) to the kinetic energy due to turbulent motions (within the
convective region),

RiB = 	B

vrms
2
, (A5)

where  is the integral length-scale which represents the size of the
largest fluid elements. The integral length-scale is often taken to be

the horizontal correlation length. Meakin & Arnett (2007b) show
that the horizontal correlation length-scale and pressure scaleheight
are similar to within a factor ∼3. So for our analysis, we use the
pressure scaleheight close to the boundary. The rms velocity, vrms,
represents the velocity of the largest fluid elements carrying most
of the energy, which for the 1D simulations we approximate as the
convective velocity,

vc =
(

Fc

ρ

) 1
3

, (A6)

where Fc is the convective flux.
In estimating the Mach number, we determine the sound speed,

cs, using the Helmholtz EOS (Timmes & Arnett 1999; Timmes &
Swesty 2000),

Ma = vc

cs
. (A7)

The Péclet number (Pe) is defined as the ratio of the time-scale
for advective transport to the time-scale for transport through diffu-
sion. In the stellar case, thermal diffusion dominates over molecular
diffusion. For the deep interior heat transfer plays a minor role, so
typically Pe >>1. We determine the Péclet number using the fol-
lowing formula,

Pe = 3Dmlt

χ
, (A8)

where Dmlt is the diffusion coefficient calculated using MLT,
Dmlt = vmltmlt/3, vmlt and mlt are the mixing length velocity and
mixing length parameter. χ is the thermal diffusivity, defined as,

χ = 16σ T 3

3κ ρ2 cp
(A9)

where σ is the Stefan–Boltzmann constant, T the temperature, κ

the Rosseland mean opacity, and cp the specific heat capacity at
constant pressure.

The Damköhler number (Da) is defined as the ratio of the ad-
vective time-scale to the nuclear reaction time-scale, generally this
is small in deep convective regions as the time-scale for nuclear
reactions is long, but during the advanced stages of massive star
evolution the two time-scales can become comparable. We deter-
mine the Damköhler number using the following formula,

Da = tcon

tnuc
=

(
2c

vc

) (
qXi

εnuc

)−1

, (A10)

where tcon is the convective turnover time and tnuc is the relevant
nuclear reaction time-scale. c is the height of the convective zone,
q is the specific energy released for the dominating reactions, Xi

is the mass abundance of the interacting particles, and εnuc is the
nuclear energy generation rate.

The majority of these variables are presented in Table A1 for
most of the convective boundaries shown in Fig. 1.
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Table A1. Estimates of the convective velocity (cm s−1), Bulk Richardson number, Mach number, Péclet number, and Damköhler
number of different times during core- and shell-burning phases of a 15 M� stellar model. Bulk Richardson numbers are boundary
values, brackets indicate values at the lower boundary, all other values were mass averaged over the convective region. Péclet numbers
are order of magnitude estimates.

Phase vc (cm s−1) RiB Ma Pe Da

H Core Start 6.9 × 104 1.8 × 102 9.3 × 10−4 ∼103 3.8 × 10−8

H Core End 9.7 × 104 1.1 × 102 1.5 × 10−3 ∼103 7.2 × 10−7

He Core Start 4.7 × 104 1.2 × 103 4.3 × 10−4 ∼104 1.8 × 10−7

He Core Max 5.9 × 104 4.0 × 102 5.0 × 10−4 ∼105 3.5 × 10−6

He Core End 5.9 × 104 3.8 × 102 5.1 × 10−4 ∼105 3.0 × 10−6

C Core Start 6.9 × 104 7.2 × 103 3.0 × 10−4 ∼106 3.4 × 10−6

C Core Max 5.6 × 104 1.2 × 104 2.4 × 10−4 ∼107 1.2 × 10−5

C Core End 5.8 × 104 3.9 × 102 2.4 × 10−4 ∼107 1.8 × 10−5

Ne Core Start 1.5 × 106 82 3.9 × 10−3 ∼1010 3.3 × 10−3

Ne Core Max 6.4 × 105 3.6 × 102 1.9 × 10−3 ∼1010 5.5 × 10−3

Ne Core End 4.1 × 105 62 1.1 × 10−3 ∼1010 2.6 × 10−3

O Core Start 8.8 × 105 2.4 × 102 2.2 × 10−3 ∼1010 6.3 × 10−4

O Core Max 7.9 × 105 8.5 × 104 2.0 × 10−3 ∼1010 2.4 × 10−3

O Core End 7.5 × 105 27 1.8 × 10−3 ∼1010 2.0 × 10−3

He Shell Start 1.4 × 105 46(20) 8.9 × 10−4 ∼106 5.7 × 10−8

He Shell End 1.3 × 105 14(1.8 × 103) 9.1 × 10−4 ∼106 1.0 × 10−7

C Shell Start 3.6 × 105 4.2 × 102(6.0 × 103) 1.3 × 10−3 ∼108 1.3 × 10−4

C Shell ICa 2.9 × 105 6.9 × 102(1.5 × 104) 1.2 × 10−3 ∼108 2.0 × 10−4

C Shell End 1.6 × 105 59(6.5 × 104) 5.7 × 10−4 ∼107 1.3 × 10−4

O Shell Start 1.5 × 105 3.7 × 104(4.0 × 104) 3.4 × 10−4 ∼1010 2.7 × 10−4

O Shell End 5.7 × 105 1.2 × 102(3.4 × 104) 1.3 × 10−3 ∼1010 1.4 × 10−3

a Properties of the 1D model used as initial conditions for the 3D simulations.

Table A2. Constants used in the fitting functions (equation B1) for the five sections of the entropy, Ā and Z̄ profiles. Subscripts 1,2, and 3 refer to the lower
stable, convective, and upper stable sections, respectively. Subscripts l and u refer to the lower and upper convective boundary sections, respectively.

α1 β1 θ l φl ηl α2 β2 θu φu ηu α3 β3

s 1.65 × 108 0.24 2.81 × 108 3.43 × 108 − 0.5 3.43 × 108 0 3.43 × 108 3.56 × 108 − 0.5 3.56 × 108 0.08
Ā 18.17 0 18.17 16.19 0.5 16.19 0 16.19 14.38 0.5 14.38 0
Z̄ 9.07 0 9.07 8.08 0.5 8.08 0 8.08 7.18 0.5 7.18 0

APPENDIX B: STELLAR MODEL PROFIL E
FITTING

The entropy (s), average atomic mass (Ā), and average atomic num-
ber (Z̄) were remapped by considering five distinct sections of the
domain. The lower stable region (below the lower convective bound-
ary), the convective region, and the upper stable region (above the
upper boundary) were fitted linearly in the form α + β x, where α

and β are constants, and x is the radius on a grid point. The two
remaining sections are the upper and lower convective boundaries,
these were fitted using sigmoid functions, fsig, of the form,

fsig = θ + φ − θ

1 + e η z
, (B1)

where θ , φ, and η are constants, and z is a normalized grid in-
dex. The fitting constants for the three variables are presented in
Table A2, the subscripts for each constant represent the section of
the domain for which the fit refers to. Subscripts 1, 2, and 3 denote
the lower stable, convective, and upper stable sections, respectively.
Subscripts l and u refer to the lower and upper convective boundary
sections, respectively.

A P P E N D I X C : R A N S T E R M I N O L O G Y A N D
T H E T U R BU L E N T K I N E T I C E N E R G Y
E QUAT I O N

In the RANS framework, variables are split into mean and fluctu-
ating components. The horizontally averaged mean is denoted by
angled brackets and defined as,

〈a〉 = 1

	A

∫
	A

a dA, (C1)

where dA = dy dz and 	A = 	y	z is the area of the computational
domain. The fluctuating component, a′, is obtained by subtracting
the mean of the variable from the variable: a′ = a − 〈a〉.

In order to statistically sample, the quasi-steady state we perform
temporal averaging over several convective turnovers, denoted by
an overbar and defined as,

a = 1

	t

∫ t2

t1

a(t) dt, (C2)

for an averaging window 	t = t2 − t1.
The Eulerian equation of TKE can be written as (equation A12

of Meakin & Arnett 2007b):

∂t (ρEk) + ∇ · (ρEkv) = −v · ∇p + ρ v · g (C3)
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where v is the velocity and Ek = 1
2 (v · v) is the specific kinetic

energy.
Applying horizontal and temporal averaging to equation (C3)

yields the mean TKE equation, which can be written as,

〈ρDtEk〉 = −∇ · 〈
Fp + Fk

〉
+ 〈

Wp
〉 + 〈Wb〉 − εk, (C4)

where Dt = ∂t + ∇ · v is the material derivative,

Fp = p′v′ is the turbulent pressure flux,
Fk = ρEkv

′ is the TKE flux,
Wp = p′∇ · v′ is the pressure dilatation,
Wb = ρ ′ g · v′ is the work due to buoyancy and
εk is the numerical dissipation of kinetic energy.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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