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Abstract 
 

This study aimed to examine the load carrying capacity of model instrumented piles 

embedded in sand soil, and to develop and verify reliable, highly efficient predictive 

models to fully correlate the non-linear relationship of pile load-settlement behaviour 

using a new, self-tuning artificial intelligence (AI) approach. In addition, a new 

methodology has been developed, in which the most effective pile bearing capacity design 

parameters can be precisely determined. To achieve this, a series of comprehensive 

experimental pile load tests were carried out on precast concrete piles, steel closed-ended 

piles and steel open-ended piles, comprised of three slenderness ratios of 12, 17 and 25, 

using an innovative calibrated testing rig, designed and manufactured at Liverpool John 

Moores University. The model piles were tested in a large pile testing chamber at a range 

of different densities of sand; loose (18%), medium (51%) and dense (83%). It is worth 

noting that novel structural fibres were utilised and optimised for different volume 

fractions to enhance the mechanical performance of concrete piles.  

The obtained results revealed that the higher the values of the of the pile effective length, 

Lc (embedded length of pile), sand density, and the soil-pile angle of shearing resistance, 

the higher the axial load magnitudes to reach the yield limit. This can be attributed to the 

increase in the end bearing point and mobilised shaft resistance. In addition, the plastic 

mechanism occurring in the surrounding soil was identified as the leading cause for the 

presence of nonlinearity in the pile-load tests. 

Furthermore, a new enhanced self-tuning supervised Levenberg-Marquardt (LM) training 

algorithm, based on a MATLAB environment, was introduced and applied in this process. 

The proposed algorithm was trained after conducting a comprehensive statistical analysis, 
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the key objectives being to identify and yield reliable information from the most effective 

input parameters, highlight the relative importance “Beta values” and the statistical 

significance “Sig values” of each model input variable (IV) on the model output.  

To assess the accuracy and the efficiency of the employed algorithm, different measuring 

performance indicators (MPI), suggested in the open literature, were utilised. Common 

statistical performance indexes, i.e., root mean square error (RMSE), Pearson’s moment 

correlation coefficient (p), coefficient of determination (R), and mean square error (MSE) 

for each model were determined. Based on the graphical and numerical comparisons 

between the experimental and predicted load-settlement values, the results revealed that 

the optimum models of the LM training algorithm fully characterised load-settlement 

response with remarkable agreement. Additionally, the proposed algorithm successfully 

outperformed the conventional approaches, demonstrating the feasibility of the current 

study. 

New design charts have been developed to calculate the individual contribution of the 

most significant pile bearing capacity design parameters “the earth pressure coefficient 

(K) and the bearing capacity factor (N𝑞)”. The improved approach takes into account the 

change in sand relative density, pile material type, and the pile slenderness ratios. It is 

therefore a significant improvement over most conventional design methods 

recommended in the existing design procedures, which do not consider the influence of 

the most significant parameters that govern the pile bearing capacity design process.  
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General Introduction 

 

1.1 Introduction 

Pile foundations are slender structural elements, underneath superstructures, extensively 

utilised as load transferring systems and settlement controls at construction sites 

encountering undesirable bearing capacity of soil at shallow depth. Load carrying 

capacity is achieved via the contribution of end bearing capacity, shaft frictional 

resistance or a combination of both from inappropriate subsurface soil strata to stiff and 

reliable bearing strata (Letsios et al., 2014; Jebur et al., 2016; Jebur et al., 2018b). 

Examples of superstructures incorporating such deep foundations are skyscrapers, bridges, 

offshore platforms and transmission towers, tall chimneys, wharfs and jetties. 

Urbanisation and limited space availability are of global concern. However, additional 

loads from modern structures (piled structures) are widely expected. Furthermore, it has 

been stressed in the literature that deep foundations are the safest and the most economical 

solution to overcome most foundation problems (Tomlinson and Woodward, 2014). Piles 

may also resist uplift pressure from transmission towers, wind turbines, waves, ship 

impact, dry docks utilisation, and pumping stations, which are constructed below normal 

ground level utilising shaft skin friction resistance and/or suction developed in the 

adjoining soil zone of influence (Nazir and Nasr, 2013; Faizi et al., 2015). 
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In the last few years, there has been considerable debate regarding the current piling 

analysis and design methods (Ismail et al., 2013; Momeni et al., 2014; Nejad and Jaksa, 

2017; Jebur et al., 2018b). This can probably be attributed to the lack of accurate, reliable 

and comprehensive methodologies, the use of different hypotheses, and pre-conditions 

associated with the most conventional pile capacity design procedures. Moreover, the 

mechanism involved in pile-soil interaction in the effective soil zone (elastic-plastic) and 

the subsequent load-settlement conditions are still a matter of discussion and an area of 

active research in the field of geotechnical engineering. The main sources of uncertainties 

are induced from material properties (soil and/or pile stiffness), soil shear strength 

parameters, pile type, site conditions, initial boundary conditions, load transfer method 

(end bearing point, suction and/or skin friction) interpretation, and soil stress history. 

Therefore, searching for a rigorous scientific methodology is crucial to ensure appropriate 

structural integrity and serviceability performance in different situations. 

 

Over more recent years, the scientific community working on artificial intelligence (AI) 

has experienced a strong resurgence of interest via exploring state-of-art artificial neural 

network (ANN) technology. Academic research and development of different neural 

network (NN) algorithms as efficient, cost effective, and reliable data-driven tools have 

repeatedly been used over a wide range of applications in the field of civil engineering 

without the need for precondition or arbitrary assumptions (Majeed et al., 2013; Morfidis 

and Kostinakis, 2017). Nowadays, the applicability of artificial neural networks (ANNs), 

“a bio-inspired computational tool whose configuration has been acknowledged based 

on biological human brain and its central nervous system (Ahmadi et al., 2016)” is fully 

recognised and they have been applied successfully to solve many engineering problems, 

such as materials modelling (Mohammadi and Ashour, 2016) hydrologic and hydraulic 
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modelling problems  (Kabiri-Samani et al., 2011; Jaeel et al., 2016) offshore structures 

implementation (Kabiri-Samani et al., 2011), structures modelling (Morfidis and 

Kostinakis, 2017), pavement design application (Mirabdolazimi and Shafabakhsh, 2017), 

and geotechnical modelling (Alkroosh and Nikraz, 2014). Furthermore, the AI is 

succinctly able to correlate the relationships between a set of independent variables and 

the desired model output(s) of each objective system via their unique characteristic 

mathematical structures.  

 

1.2 Research Aim and Objectives  

The contribution to knowledge can be summarised in three main points. Firstly, the 

innovative use of physical laboratory models to investigate and assess the bearing 

capacity of different slenderness ratios (Lc/d) using instrumented piles (precast reinforced 

concrete, steel open-ended, and steel closed-ended), which penetrated in three sand 

densities and were subjected to uplift and compression loading system. It should be noted 

that two types of new structural fibres have been optimised using different fibre 

percentages (0.5, 0.75, 1, 1.25, 1.5, 1.75) by concreate volume and used in the concrete 

pile, the key objective is to minimise the need for steel mesh reinforcement, increase pile 

mechanical performance subjected to a wide range of load by increasing the ductility, and 

to enhance the concrete efficiency in harsh environments. Secondly, the feasibility of a 

new supervised, self-tuning computational intelligence approach, enhanced by a 

comprehensive statistical analysis, was examined to develop and train predictive models 

to fully capture non-linear pile performance subjected to a wide range of loads. The 

derived method offers a reliable, high efficiency and simple-to-use method to overcome 

the main limitations associated with the classical artificial neural methods (i.e., slow rate 

of convergence, performance analysis during the learning process, the necessity of tuning 
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training parameters after each application, and becoming trapped in the local minima). 

Finally, load-settlement curves were analysed to develop new design charts to 

individually highlight the contribution of pile bearing capacity design parameters 

“bearing capacity factor (N𝑞) and earth pressure coefficient (K)” on total pile capacity. 

Moreover, for verification purposes, comparisons have been made between the developed 

design charts and the published work cited by the author. 

Specific objectives were to: 

1. Undertake an experimental investigation using physical scale models to conduct 

a series of comprehensive tests to examine bearing capacity and associated 

settlement of precast concrete piles, steel closed-ended piles, and steel open-ended 

piles, subjected to uplift and compression loads, having three slenderness ratios 

of 12, 17, and 25. This permitted the exploration of the behaviour of rigid and 

flexible piles in three relative densities of sand, 𝐷𝑟; of loose, medium and dense. 

2. Explore the addition of a new type of structural fibre, promising economic and 

environmental advantages, which can be used to enhance the mechanical 

performance of the concrete pile. 

3. Perform a comprehensive statistical analysis using Multiple Regression 

Technique (MRT) to identify the most influential model input parameters by 

determining “Beta values”, to highlight the contribution of each parameter by 

calculating the statistical significance “Sig values”, of identified independent 

variables (IVs), and to check and assess the reliability of the studied dataset by 

checking the presence of outliers, and data size. It is noteworthy that this objective 

was achieved using SPSS-24 package. 
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4. Examine the feasibility of an optimised supervised, self-tuning Levenberg-

Marquardt (LM) training algorithm, based on a MATLAB environment to fully 

map the non-linear pile-load settlement response for different types of model piles 

when subjected to a wide range of compression and uplift loads. 

5. Compare the results obtained in this study with the commonly used pile bearing 

capacity design procedures.  

The Iraqi Regional Government has largely invested in people, including the work on this 

project, to build a well-educated workforce, which will contribute to the delivery of the 

vast existing and planned infrastructure projects supported by deep foundations. 

Urbanisation and limited space is one of the present challenges worldwide, particularly 

in developing countries, including Iraq. As a result, safe and cost effective design and 

analysis procedures are to be produced for deep piled structures. 

 

1.3 Thesis Outline 

The thesis is comprised of seven chapters and eight appendices that cover different 

important aspects of the research. The introductory chapter (chapter one), details the 

background on the use and development of pile foundations. It also defines the scope and 

the thesis aim and objectives. 

Chapter 2: details background of two main stages of the literature review. Stage I shows 

a review of literature on deep foundations and stage II presents a review of literature on 

the artificial neural network (ANN) concept and the proposed use of the LM training 

algorithm. 
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Chapter 3: discusses the research methodology, and experimental technique followed in 

the experimental study. 

Chapter 4: presents and discusses the bearing capacity of the various types of piles driven 

in three sand densities, subjected to compression loads. The reliability and efficiency of 

the employed LM trained algorithm with reference to the experimental pile-load tests has 

also been examined. In addition, graphical comparisons have been made between the LM 

approach and most conventional design procedures.  

Chapter 5: covers the results and discussion for the described pile types embedded in 

sandy soil under an uplift loading system. In addition, the superiority of the LM algorithm 

has been also been demonstrated in this chapter by comparing its predictions results using 

unseen dataset with targeted values and with the results reported by the most design 

methods. 

Chapter 6: shows performance analysis of the various types of model piles. Moreover, 

numerical comparisons between the results of the current study and the results suggested 

by the conventional pile bearing capacity design methods have been presented and 

discussed. 

The final chapter 7: includes the concluding summary for the current study. Study 

limitations and recommendations for further research are also made in this chapter. 
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Background Study I: A Review of Pile Foundations 

 

2.1 Introduction 

As a starting point, it is important to review the methods of pile classification, factors 

affecting pile design, pile-testing procedures, and the influence of pile installation on the 

shear strength parameters. A review of the existing pile bearing design approaches is 

outlined. Furthermore, previous numerical and experimental studies concerning pile-

bearing capacity are also discussed. The assessment of the behaviour of different types of 

piles (steel open-ended, steel closed-ended and concrete) with a wide range of slenderness 

ratios is complex, and is core to research in the field of geotechnical engineering. The 

study of pile design continues to hold the attention of engineers with a series of studies 

and seminars held across the world each year. 

 

2.2 Pile Foundations Design Approaches 

One of the key functions of piles is to transfer the applied load from the heavy structure 

to the subsurface through end bearing capacity and developed shaft friction. To ensure 

structural integrity and serviceability and a pile settlement does not deform beyond an 

acceptable level, piles must be designed in an appropriate way and have the ability to 

carry and transfer the applied load to the deep and stiff bearing strata without causing 

geotechnical failure between soil-pile interactions; pile settlement must be within the 
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design limit. In order to enable the precise evaluation of pile bearing capacity and 

allowable settlement, the current design methods must be suitably rigorous. Ultimate pile 

bearing capacity can be developed in three ways (Shaia, 2013). Firstly, ultimate pile 

capacity can be delivered from the skin frictional resistance developed between the soil-

pile interactions (Figure 2.1a).  Secondly, pile-bearing capacity can be largely provided 

by the end bearing (Figure 2.1b). Thirdly, pile mobilised capacity can be gained from the 

contribution of both (skin friction and end bearing) as illustrated in Figure 2.1c in various 

percentages (Tschuchnigg and Schweiger, 2015). Bearing capacity of a pile under 

compression load consists of two main components and can be determined using the 

following general expressions (Equation 2.1 and 2.2) (Ebrahimian and Movahed, 2016). 

After literature survey, it is worth noting that for a pile subjected to compression load, the 

influence of pile weight (𝑤𝑝𝑖𝑙𝑒)on pile capacity is ignored since it has a relatively 

insignificant influence on pile ultimate capacity. While, for a pile tested under uplift load, 

the pile weight (𝑤𝑝𝑖𝑙𝑒) can be taken into consideration when calculating the ultimate 

uplift capacity of a single vertical pile as expressed in Equation 2.2 (Meyerhof, 1976).  

𝑄𝑇 = 𝑞𝑏𝐴𝑏 + ∑𝑞𝑠𝐴𝑆 
 (2.1) 

𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) = ∑𝑞𝑠𝐴𝑆 + 𝑤𝑝𝑖𝑙𝑒   
 (2.2) 

 

where: 𝑄𝑇  is total pile capacity, 𝑞𝑏 and 𝑞𝑠  are, respectively, the portions of the vertical 

stress of the pile (end bearing resistance) and the shear stress of the pile (shaft unit 

friction). 𝐴𝑏  is the pile cross-sectional area at the tip and 𝐴𝑆  is the pile shaft area 

interfacing with the soil layer. 𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) is the ultimate uplift capacity, 𝑤𝑝𝑖𝑙𝑒 is the pile 

weight. 
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2.2.1 Total Stress Design Approach 

According to the site investigation, if the in-situ soil geotechnical properties are classified 

as a fine grained soil such as clay and silty clay, the pile foundations are likely to be 

designed using a total stress approach (Tomlinson and Woodward, 2014; Das, 2015; 

American Petroleum Institute, 2007). It has been stressed that a pile penetrated in fine 

soils tends to attribute its maximum bearing capacity from pile shaft friction resistance 

with the contacted soil in the adjoining zone of influence (the extent to which the soil 

mass will be influenced due to pile installation and its varies with pile installation method 

and  the relative density of the soil) (Poulos and Davis, 1980; Gaaver, 2013). It is inferred 

from the relevant studies that the zone of influence is principally  within a range of 3 to 8 

Figure 2-1: Schematic diagram showing pile bearing capacity contributions, (a) friction pile, 

(b) end bearing pile,  (c) combination of both skin friction and end bearing. 



Chapter Two                                                                                           Literature Review 

10 

 

times the pile diameter (Kishida, 1963; Robinsky and Morrison, 1964). These piles can 

be classified as skin friction piles (Igoe et al., 2011; Peiris et al., 2014) . The general 

governing equations to predict the unit shaft resistance of a pile can be determined in the 

skin friction term as given in in the following equations: 

𝑞𝑠 = 𝐶𝑝 ∑𝜏𝑠𝑖  Lc

𝑛

𝑖=1

 
 (2.3) 

 

 

𝜏𝑠𝑖 = K 𝜎′𝑣 tan 𝛿  (2.4) 

 

 

in which the parameter 𝐶𝑝stands for pile perimeter, 𝜏𝑠𝑖 is the skin friction along the length 

of the pile, Lc is the pile effective length (embedded length of pile), K is the earth pressure 

coefficient, 𝜎′𝑣  is the average vertical effective stress, and 𝛿  is the soil-pile interface 

friction angle. 

 

The angle of friction, which is typically mobilised at the soil-pile interface can be 

determined utilising different techniques, i.e. direct shear box testing (Paik and Salgado, 

2003; Jebur et al., 2016). Alternatively, it has been cited by Fleming et al. (2009) that the 

interface friction angle, 𝛿 is equal to the in-situ soil critical state of friction angle.  

 

The earth pressure coefficient (K), however, is influenced by different parameters (i.e. 

soil density, method of pile installation, coefficient of earth pressure at rest, Ko and soil 

stress history). The K coefficient can also be determined, according to the pile slenderness 

ratio and sand relative density based on the conventional design charts suggested by 

Broms (1964); Poulos and Davis (1980) and American Petroleum Institute (1993).  
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2.2.2 Effective Design Approach 

It has been stated by Tomlinson and Woodward (2014) that an effective design method 

is normally used when the soil type is classified as coarse grained soil. This type of pile 

could be classified as a point bearing pile in comparison to the skin friction pile. 

Understanding the principles and the theory of the effective stress in soil mechanics is 

essential. This idea was first studied by Terzaghi (1951): “… All measurable effects of a 

change of stress, such as compression, distortion and a change of shearing resistance are 

due exclusively to changes of effective stress. The effective stress (𝜎′) is related to total 

stress and pore water pressure as explained by 𝜎 = 𝜎′ + 𝑢”. 

 

Any sample of soil can be considered as a compressible skeleton of solid small particles 

consisting of two phases when soil voids are filled with water. The soil shear strength is 

determined by the arising frictional forces during slip at the soil particles (Burland, 1973). 

These frictional forces are normally a function of the transmitted normal stress by the soil 

skeleton rather than the soil total stress.  

 

In the effective stress design approach, the pile attributes its maximum capacity to the end 

bearing point. The following general formula is use to predict the pile end bearing 

capacity in coarse soil. 

𝑞𝑏 =  𝜎′𝑡 N𝑞 

 

 (2.5) 

in which the term 𝜎′𝑡 stands for the vertical effective stress at the tip of the pile, N𝑞 is the 

bearing capacity parameter. It should be noted that the pile bearing capacity parameter 

can be predicted using a series of design charts proposed by American Petroleum Institute 
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(1993), Poulos and Davis (1980), Coyle and Castello (1981), and Tomlinson and 

Woodward (2014).  

 

2.3 Pile Bearing Capacity Testing Methods 

There are several procedures to determine pile-bearing capacity. These methods are 

identified by the testing time, the resulted strain percentage, and the type of system 

loading. Tests with long duration and high loads are normally adopted for the evaluation 

of pile load capacity. In addition, the method of low capacity and small-induced strain is 

used to evaluate the pile capacity subjected to cyclic loads and dynamic high strain loads.  

 

2.3.1 Constant Incremental Rate of Penetration (CIRP) 

Early studies on this method of pile testing were first conducted by Whitaker (1963). In 

this method, the required load to advance a pile in the desired soil depth must be 

monitored until either pile physical failure or the maximum required pile capacity is 

reached (American Society for Testing and Materials, 2013). The test objective is to 

obtain the maximum pile bearing capacity, especially for piles being designed for use in 

cohesive soils and their capacity is mainly developed from the shaft resistance within the 

contacted soil in the adjoining zone of influence (the extent to which the soil mass will 

be influenced due to pile installation and its varies with pile installation method and  the 

relative density of the soil) (Poulos and Davis, 1980; Gaaver, 2013). It is inferred from 

the relevant studies that the zone of influence is principally  within a range of 3 to 8 times 

the pile diameter (Kishida, 1963; Robinsky and Morrison, 1964). Furthermore, the 

constant incremental rate of penetration (CIRP) test takes about a maximum of 3 hours. 

However, the ground reaction may overestimate the maximum pile bearing capacity due 
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to high-applied load in such a small period of time. The CIRP technique has been used 

by many researchers to investigate the pile bearing capacity. Nazir and Nasr (2013) 

conducted an experimental study to examine the ultimate pull-out capacity for model piles 

embedded in sandy soil. Sixty two pile-load tests of model steel piles penetrated in sandy 

soil at three densities loose, medium and dense were conducted in a calibrated chamber. 

The steel model piles had different slenderness ratios ranging from 7.5 to 30. The results 

revealed that the pile pull-out capacity increased with increases of batter angle. The 

results also indicated that the circular steel model piles had more resistance than the 

rectangular and square model piles.  

 

2.3.2 Maintained Load Test (MLT) 

In this method, the load is subjected to the pile in discrete units. The load is maintained 

until the settlement rate is not more than 0.25 mm/h. The next load increment will be 

applied once the indicated period of time has elapsed and the pile settlement is less than 

the specified limits (0.25 mm/h). The full test normally takes about 48 hours (American 

Society for Testing and Materials, 2013). The MLT is preferable to determine the load-

displacement curve for a pile subjected to 200% of the anticipated working load. 

Rajasvaran (2007) studied the pile bearing capacity using MLT together with pile driving 

analyses methods. It has also been reported that the maintained load test is more accurate 

in determining and interpreting the pile load-settlement behaviour.  

 

2.3.3 Dynamic Load Test (DLT) 

Determining the pile bearing capacity using the dynamic load test (DLT) dates back to 

the 19th century. Testing of piles by dynamic load testing is widely adopted because of 
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its efficiency and cost effectiveness. A specific combustion chamber must be provided to 

apply a rapid load at pile head, which produces a shock pulse with a short period. This 

type of test is likely to be conducted on high strength precast concrete driven piles. The 

pile head has to be protected from damage during the applied loading. To avoid 

concentrations of the stress at a pile head, grout cement needs to be applied to the pile 

surface at the point of the applied load. It is worth mentioning that the pile-time set-up 

effect can be ignored when using  the dynamic load test procedure (Handley et al., 2006).  

 

2.4 General Factors Influencing Pile Design 

Generally, there are various factors that play a substantial role in pile design and analysis, 

for instance, soil bearing capacity, load types (dynamic, static), method of pile installation 

and pile material. Below are the main factors that influence the pile design process: 

 

2.4.1 Bearing Capacity Factor 

One of the most significant factors that affects and needs to be considered in the pile 

foundations design process is the bearing capacity factor (N𝑞). N𝑞 could be estimated 

using a series of conventional design charts proposed in the geotechnical literature. 

Meyerhof (1976) takes into consideration the angle of friction to evaluate the  

N𝑞  parameter as shown in Table 2.1. Values of the estimated N𝑞 along with the soil 

friction angle (Ø) can also be determined based on a study proposed by Tomlinson and 

Woodward (2014), as depicted in Figure 2.2. It can be noted that the bearing capacity 

factor increased with the increasing of the angle of friction (Ø), with a range of pile 

slenderness ratio of 5, 20 and 70, and reach its maximum value at Ø of about 41°. 
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Table 2-1: Interpolated values of N𝑞 values, according to Meyerhof (1976). 

Soil friction angle (Ø) 𝐍𝒒 Soil friction angle (Ø) 𝐍𝒒 

20 12.4 33 96.0 

21 13.8 34 115.0 

22 15.5 35 143.0 

23 17.9 36 168.0 

24 21.4 37 194.0 

25 26.0 38 231.0 

26 29.5 39 276.0 

27 34.0 40 346.0 

28 39.7 41 420.0 

29 46.5 42 525.0 

30 56.7 43 650.0 

31 68.2 44 780.0 

32 81.0 45 930.0 
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Figure 2-2: Schematic diagram of the bearing capacity factor (Tomlinson and Woodward, 

2014), permission to reuse this figure has been granted by Taylor and Francis. 
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Table 2.2 also reported the predicted values of the N𝑞factor for piles penetrated in sand 

soil with three relative densities, suggested by the American Petroleum Institute (1987). 

 

Table 2-2: Bearing capacity factor based on the American Petroleum Institute (1984). 

Sand Relative Density, 𝑫𝒓 Bearing Capacity Factor, 𝐍𝒒 

Dense 40 

Medium 12-40 

Loose 9-12 

 

Another design chart  (Coyle and Castello, 1981), was suggested to find the N𝑞factor as 

a function of soil friction angle and pile slenderness ratio as shown Figure 2.3. The plot 

compares the trend of the N𝑞 values with the variation of Lc/d for different values of angle 

of friction (Ø). It can be observed that the parameter N𝑞, for different values of Ø, is 

slightly increases with increasing values of Lc/d and reaches a maximum value at Lc/d 

equals to 20. For all values of Ø, the increase in Lc/d, after a value of 20, leads to a 

reduction in N𝑞 towards a minimum value at Lc/d of about 65. The results also revealed 

that a similar trend also occurs for higher values of Ø. Therefore, this leads to the 

conclusion that the ratio of Lc/d has less significant influence on the parameter N𝑞 in 

comparison with the sand relative density.             
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2.4.2 Earth Pressure Coefficient  

The coefficient of the earth pressure (K) is highly effected by the soil stress state before 

and after pile installation (Jeffrey, 2012). It has been demonstrated that the soil around 

the pile is normally compacted, especially when the method of pile installation is by the 

displacement method. The column of the soil displacement is equal to the pile volume in 

the case of closed-ended piles (large displacement pile) and equal the net thickness of pile 

diameter in the case of the open-ended piles (small displacement pile) (Tomlinson and 
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Figure 2-3: Schematic diagram of variation of pile bearing capacity, N𝑞 and angle of friction, ∅ 

with pile slenderness ratio (Coyle and Castello, 1981), permission to reuse this figure has been 

granted by ASCE library. 
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Woodward, 2014). The increase in the soil stress state leads to an increase in the angle of 

friction as a consequence of increasing the earth pressure factor. Table 2.3  proposed by 

Das (2015) can be used to predict the K coefficient for different pile installation methods.  

 

Table 2-3: Lateral earth pressure coefficient according to Das (2015). 

Method of pile installation Lateral earth pressure coefficient, K 

High displacement driven pile 1 − sin∅ 𝑡𝑜 1.8 ∗ 1 − sin∅ 

Low displacement driven pile  1 − sin∅ 𝑡𝑜1.4 ∗ 1 − sin∅ 

Bored pile  1 − sin∅ 

 

 

Kulhawy (1984) also studied the effect of pile installation on the lateral earth pressure 

coefficient. The results of the study are given in the following equations:  

 

K˳ = 1 − sin∅′ 

 

 (2.6) 

K˳ = 1 − sin∅′ ∗ 𝑂𝐶𝑅sin∅′
 

 

 (2.7) 

where: K˳  is the coefficient of earth pressure at rest, OCR stands for 

overconsolidation ratio, ∅′ is the effective angle of friction. 

 

 

Moreover, the lateral earth pressure factor can also be assessed based on the method of 

pile installation and often stated as a function of K˳ as detailed in the following table.  

 

Table 2-4: Lateral earth pressure coefficient according to Kulhawy (1984). 

Pile Classification K/K˳ 

Non displacement pile 0.75-1.0 

Large displacement pile 1-2 

Small displacement pile 0.75-1.25 
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2.4.3 Soil-Pile Angle of Interface Friction 

The angle of the interface friction (𝛿) between the soil and the model pile is also an 

important factor in the design and analysis of pile foundations (Gaaver, 2013) . The pile-

soil interface depends purely on the pile materials and the initial sand relative density 

(Ramasamy et al., 2004; Jebur et al., 2016). The magnitude of the interface friction angle 

can be determined from the direct shear test. Kulhawy (1984) carried out an experimental 

study on a model pile penetrated in sand. It has been demonstrated that the effect of the 

soil-pile interface is a function of the pile material, as shown in the table 2.5, where 𝜇𝑠 is 

equal to 𝑡𝑎𝑛 𝛿. 

 

Table 2-5: Soil-Pile coefficient of friction according to Kulhawy (1984). 

Pile materials Surface roughness Soil-pile coefficient of friction (𝝁𝒔) 

Steel  Rough  0.8-1.0 

Steel Smooth  0.7-0.9 

Concrete  Rough  1.0 

Concrete Smooth  0.8-1.0 

Timber  All  0.5-0.8 

 

Another experimental study (Jeffrey, 2012) was carried out to find the relationship 

between the soil-pile interface friction angle and sand relative density. The results are 

presented in Table 2.6. 
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Table 2-6: Soil-Pile angle of interface friction based on Jeffrey (2012). 

Materials 

roughness 

Loose sand Medium sand Dense sand 

δº peak  δº critical  δº peak  δº critical  δº peak  δº critical  

Rough 

concrete  

29.7 25.7 40.5 28.6 48.4 34.5 

Smooth 

concrete  

27.1 23.7 30.8 24.1 37.2 24.5 

 

2.5 Outline of Pile Settlement Prediction Methods 

2.5.1 Introduction 

In this section, a review has been made covering most conventional pile settlement design 

procedures proposed by: Poulos and Davis (1980), Vesic (1977), and Das (1995). It is 

worth mentioning that although the suggested approaches have been subjected to strong 

criticism because of their empirical nature and poor predictive efficiency when tested 

with experimental studies, the proposed methods below have remained popular due to 

their simplicity and ease of application (Igoe et al., 2011). Elastic methods are based on 

the hypothesis that the pile is acted upon by a system of constant shear stress around its 

shaft, due a point load on a linearly elastic, semi-infinite soil profile but this the shear 

stress is vary (increases) with increasing pile effective length, which could mainly be 

attributed due to an increase in the overburden pressure. Whereas the pile end bearing is 

acted upon by uniform pressures. These approaches are applicable to circumstances 

where the linear deformation of soil behaviour is considered acceptable.  
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2.5.2 Poulos and Davis (1980) Method 

Poulos and Davis (1980) proposed a framework and reported that the following empirical 

equations can be utilised to predict pile total settlement (𝑆)  for single model piles 

subjected to axial load (Equations 2.8 and 2.9): 

𝑆 =
𝑃𝐼

𝐸𝑠d
 

  (2.8) 

 

𝐼 = 𝐼0𝑅𝑘𝑅ℎ𝑅𝑣  (2.9) 

 

 

where: 𝑃, d, and 𝐸𝑠 are, respectively, pile applied load, pile diameter, and Young’s 

modulus of the soil, I is the influence factor for a rigid pile in a deep layer of soil that 

involves the layer influence of soil depth, pile compressibility and Poisson’s’ ratio, 𝑅𝑘 is 

the pile compressibility correction factor. 𝑅ℎ is the influence parameter for finite-depth 

and 𝑅𝑣 is the Poisson’s ratio correction factor. These factors could be determined from 

design charts suggested by Poulos and Davis (1980). In this method, for a rigid pile driven 

in a semi-infinite soil with 0.5 Poisson’s’ ratio, 𝐼0 is the only influence parameter needing 

consideration (Poulos and Davis, 1980). The 𝐸𝑠 for each sand relative density used in this 

study are summarised in Table 2-7, and  within the range of the typical 𝐸𝑠  values 

recommended by Kézdi and Rétháti (1974). 

 

Table 2-7: Material properties and empirical factors that are used in the traditional methods. 

Sand relative density 

(𝑫𝒓 %) 

Sand Young’s 

modulus (𝑬𝒔)  

Pile slenderness 

ratio (Lc/d) 

𝑰𝟎 𝑰𝒑𝒔 

Loose  10-30 MPa Lc/d =12 0.17 3.21 

Medium 30-50 MPa Lc/d =17 0.13 3.44 

Dense 50-80 MPa Lc/d =25 0.10 3.75 
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2.5.3 Vesic (1977) Approach 

Vesic (1977) recommended that pile total settlement can be determined from the 

summation of three components 𝑆1, 𝑆2, and 𝑆3  by means of the following simplified 

formula (Equations 2.10, 2.11, and 2.12): 

 

𝑆1 =
(𝑃𝑤𝑝 + 𝜉𝑃𝑤𝑠)L

𝐴𝑡𝑖𝑝𝐸
 

 (2.10) 

𝑆2 = 𝑅𝑝

𝑃𝑤𝑝

d𝑞𝑝
 

 (2.11) 

𝑆3 = 𝐶𝑠

𝑃𝑤𝑠

L𝑞𝑝
 

 (2.12) 

 

where: 𝑃𝑤𝑝  is the load applied at the pile head, 𝑃𝑤𝑠  is the load supported by the skin 

resistance, L is the pile length, 𝛏 is the skin friction distribution influence factor, 𝑞𝑝 is the 

portion of the vertical stress of the pile (end bearing resistance) (Meyerhof, 1976) , and  

𝑅𝑝  is an empirical factor. The coefficient  𝐶𝑠  can be determined using the following 

expressions (Equation 2.13): 

 

𝐶𝑠 = (0.93 + 0.16√
L

d
)𝑅𝑝 

  

(2.13) 

The factor 𝛏 can be assumed to equal 0.5, and the parameter 𝑅𝑝  is equal to 0.09, as 

recommended for cohesionless soil (Poulos and Davis, 1980).  
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2.5.4 Das (1995) Method 

The methodology proposed by Das (1995) is similar to that offered by Vesic (1977) with 

some modifications in calculating 𝑆2  and 𝑆3 . These modifications can be precisely 

summarised through the following formulas: 

 

𝑆2 =
𝑃𝑤𝑝d

𝐴𝑡𝑖𝑝𝐸𝑠

(1 − 𝜐2)𝐼𝑝 
 (2.14) 

𝑆3 = (
𝑃𝑤𝑠

𝐶𝑝Lc
) (

d

𝐸𝑠
) (1 − 𝜐2)𝐼𝑝𝑠 

 (2.15) 

 

𝐼𝑝𝑠 = 2 + 0.35√ 
Lc

d
 

 (2.16) 

where the empirical coefficient (𝐼𝑝) is equal to 0.88, and 𝐶𝑝 is the pile perimeter, and the 

coefficient 𝐼𝑝𝑠  can be determined using Equation (2.16) given by Poulos and Davis 

(1980). 

 

2.6 Uplift Capacity of a Single Pile: Outline of the Existing Predictive Models 

2.6.1 Introduction 

Piled structures are normally designed to resist large uplift and/or lateral loads due to the 

effect of wave or wind impact (Tomlinson and Woodward, 2014). Consequently, a 

tension force will be induced in some of the piles.  A few traditional theories, developed 

by means of a limit equilibrium approach,  have been suggested by Das (1983), Truncated 

cone method, and Meyerhof (1973). It is worth noting that the aforementioned theories 

are not recommended to be applied in practice due to the differences associated with their 

assumptions regarding the context and the shape of the failure surface as outlined by 
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Shanker et al. (2007). In the following sections, for completeness, some of the frequently 

applied predictive models are briefly documented. 

 

2.6.2 Meyerhof (1973) 

An empirical expression to reliably predict the net uplift pile capacity has been suggested 

by Meyerhof (1973) by assuming that the failed soil mass has an approximately similar 

shape as suggested for a shallow anchor. Therefore,  

𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) = 
𝜋

2
L2 K𝑢𝛾d tan 𝛿 

 (2.17) 

 

K𝑢 denotes the coefficient of uplift pile capacity and may change within a wide range and 

depends mainly on soil properties, method of pile installation and pile type, L is the pile 

length, d is the pile diameter, 𝛾 is the soil unit weight, and 𝛿 is the soil-pile interface 

friction angle.    

 

2.6.3 Truncated cone model 

Geotechnical engineers often predict the net pile uplift capacity by assuming a surface of 

slip as a truncated inverted cone with the sides of enveloping rising at an angle of  
Ø

2
 from 

the vertical. Dead weight within the frustum is considered as the pile ultimate capacity, 

as revealed in the following equation: 

𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) = 
𝜋

3
L3𝛾 𝑡𝑎𝑛2

Ø

2
 

 (2.18) 

 

L is the pile length, and Ø is the soil angle of shearing resistance. 
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2.6.4 Das (1983) 

Das (1983) suggested an empirical method to predict the pile net uplift ultimate capacity 

developed within the pile-soil interface. It has been reported that the mobilised skin 

friction resistance increases linearly with increasing overburden pressure up to the 

effective pile penetration length. The pile slenderness ratio is a function of the sand 

relative density, as clearly indicated in the following equations: 

Lc

d
= 00156𝐷𝑟 + 3.58                 (𝑓𝑜𝑟 𝐷𝑟 ≤ 70%) 

(2.19) 

 

Lc

d
= 14.5                                        (𝑓𝑜𝑟 𝐷𝑟 ≥ 70%) 

(2.20) 

 

The pile uplift capacity in sand can be summarised as: 

𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) = 0.5 𝑃𝛾L2K𝑢𝑡𝑎𝑛𝛿               (if Lc/d ≤ Lc/d) (2.21) 

 

𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) = 0.5 𝑃𝛾 Lc2 K𝑢𝑡𝑎𝑛𝛿 +  𝑃𝛾 Lc K𝑢𝑡𝑎𝑛𝛿 (L − Lc) (2.22) 

 

The term 𝑄𝑢𝑙𝑡(𝑢𝑝𝑙𝑖𝑓𝑡) stands for the ultimate uplift capacity of pile. 
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 Background Study II: A Review of Artificial Neural Networks (ANNs) 

 

2.7 Introduction  

Artificial neural networks (ANNs) are computational models, which attempt to mimic the 

biological structures of the human brain and its nervous system. They have the ability to 

efficiently implement difficult tasks, such as function approximation, classification, and 

pattern recognition (Tarawneh, 2017). ANN models comprise of interconnected 

processing elements (PEs). The PEs receives input signals (values) of ith independent 

variables (𝑋𝑖−1, 𝑋𝑖−2,….. 𝑋𝑖−𝑛) (see Figure 2.4) from either external sources or adjacent PEs 

then transfers them to signals in the next layer by means of an activation function. The 

input layer can be represented by a vector of IVs. In an attepmt to solve problems, the 

proposed model should be trained. The methods of training can be generally categorised 

in two types: supervised and non-supervised. Supervised training is based on comparison 

between the selected inputs and model output. This method of learning is normally 

formulated as the error function, such as the mean square error between the measured and 

the predicted values summed over all available data. While, the non-supervised is solely 

based on the correlations among input data. During the learning process, the outputs of 

the (i-1)th layer are multiplied by an optimised vector so-called connection weight (𝑤𝑖𝑗), 

then the latest will be added together with a threshold bias and then summarised before 

being used as inputs into the next PE in the next ith layer. The PEs in the output and hidden 

layers can be defined by means of an activation function, which is introduced to the input 

and produces the value of the ith processing element in the output layer. It should be 

reported that a bias value does not include an activation function and only has a specific 
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value determined during the process of training along with the value of the synaptic 

connection weights (Morfidis and Kostinakis, 2017).  

 

On the training process, the values of connection weights and biases are updated in such 

a fashion that the total error between the targeted and the predicted values is minimised 

(Erdem, 2015). One fact of significant importance is that, the optimum configuration of 

these layers is identified utilizing a number of steps. More specifically, these phases can 

be summarized as:  (i) the number of model input parameters, (ii) the optimum number 

of hidden layers, (iii) the number of model outputs, (iv) the number of processing 

elements  (PEs), (v) the measuring performance indicators, (vi) type of activation function 

(linear and/or nonlinear). One of the most important features, which plays a key role in 

the performance of the ANNs, is the type of training algorithm (Xu et al., 2017). Indeed, 

after the configuration of the model, there are other important aspects which must be 

clearly defined such as a function of normalisation and the method for dataset division in 

an attempt to avoid overfitting and to ensure good generalisation ability of the trained 

network (Hagan et al., 1996) . It is noteworthy that an ANN concept was initially 

introduced by Rumelhart et al. (1986). 

 

2.8 Functionality of ANN Model 

The structure of the ANN has been described by many researchers (Jaeel et al., 2016; 

Jebur et al., 2018b). ANNs comprise of a number of artificial neurons variously identified 

as “processing elements” (PEs), “units” or “nodes”. In the multi-layer perceptron (MLP) 

approach, which are the most frequently utilised ANNs in the field of geotechnical 

engineering, processing elements are typically assembled in layers, consisting of an input 
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layer, an output layer and one or more intermediate layers known as hidden layers (Sitton 

et al., 2017), as exposed in Figure 2.4. 

 

 

 

The scalar weights determine the connections strength between interconnected nodes 

(Loria et al., 2015). From other elements, an individual processing unit receives its 

connections weighted inputs, which are summed and a bias value or threshold unit is 

either added or subtracted. The bias value is normally assigned to scale the input to a 

useful range to improve the convergence properties, by minimising the percentage of error 

Figure 2-4: Typical structure of ANN model inputs and output variables (Jebur et 

al., 2018), permission to reuse this figure has been granted by Springer Nature. 
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between the targeted and the predicted values, of the neural network. The combined 

values of the independents variables (IVs) processed from the first layer are then passed 

through a transfer function to produce the output of the processing element. The TF maps 

a set of independent variables (IVs) to a finite output range. The described process is 

summarised in Equations 2.23 and 2.24, respectively. 

 

𝐼𝑗 = ∑ 𝑤𝑖𝑗
(1)

𝐼𝑉𝑖 ± 𝑏(1)

𝑛

𝑖

 
 

 

 

(2.23) 

 

𝑦 = ∑𝑤𝑗
(2)

𝑛

𝑖=1

  𝐼𝑗  ±  𝑏(2) 
 

 

 

(2.24) 

 

where: 𝑛 represents the number of independent variables, 𝐼𝑗 denotes the node activation 

level, the factors 𝑤𝑖𝑗
(1)

 and 𝑏(1) are the weights and biases values from the inputs and 

output (hidden) layer, 𝑤𝑗
(2)

 and 𝑏(2)are the weights and the biases values for layer two. 

 

2.8.1 Transfer Functions 

Transfer functions can take a range of forms. The logarithmic sigmoid (logsig), bipolar 

sigmoid, hyperbolic tangent sigmoid (tansig), linear transfer function (purelin), and radial 

basis (radbas) transfer functions are the most commonly utilised transfer functions in 

artificial neural networks. The key objective is to transfer the weighted sum of all signals 

hitting on the processing element so as to determine its firing intensity (Majdi and Beiki, 

2010). The log-sigmoid transfer function is usually utilised when the desired output 

values are within the limit of 0 and +1, whereas the tan-sigmoid is often utilised when the 

desired range of output values is between –1 and 1 (Shahin, 2014). The logistic sigmoid 
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and hyperbolic tangent transfer functions are shown in Figure 2.5, and represented by the 

following Equations: 

 

𝑓(𝐼𝑗) =
1

1 + 𝑒−(𝐼𝑗)
 

 (2.25) 

 

𝑓(𝐼𝑗) =
𝑒(𝐼𝑗) − 𝑒−(𝐼𝑗)

𝑒(𝐼𝑗) + 𝑒−(𝐼𝑗)
 

 (2.26) 

 

𝑦 = ∑𝑤𝑖
(𝑗)

𝑛

𝑖=1

  𝑓(𝐼𝑗)  ± 𝑏(𝑗) 
 (2.27) 

 

where: 𝑓(𝐼𝑗) is the applied transfer function, factors 𝑤𝑖
(𝑗)

 and 𝑏(𝑗)  are the synaptic 

connection weights and biases values from the inputs and output (hidden) layer 

 

 

 

 

a. Log-Sigmoid                        b. Tan-Sigmoid                         c. Linear  

Figure 2-5: Forms of commonly used ANN transfer functions. 
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2.9  ANN Architecture 

Artificial neural networks are introduced as parallel computing devices comprising of 

interconnected units or neurons, where a unit presents a connection point at which data is 

processed (Feng et al., 2013; Ahmadi et al., 2016). ANN is an interconnected parallel 

structure comprised of (i) an input layer (ii) hidden layer number(s) (iii) an output layer. 

The number of neurons in the input and output layers successfully characterise the number 

of dependent variables to be predicted (Shahin, 2016). Full description of the ANN model 

architecture is more precisely described in the following sub-sections.     

 

2.9.1  Single Layer Feed-forward Networks 

In this type of the ANN structure, a neural network encompasses of one layer of 

computational processing elements (PEs) (Kriesel, 2011). In attempt to provide this PEs 

with their input signals, a set of nodes establishes an input layer that acts as middleman 

between the single layer of neurons and the input layer sources in the surrounding 

environment. It is crucial to emphasise that no computations are implemented in input 

nodes (Master, 1993). Two sorts of neurons only are available in this network, as 

illustrated in Figure 2.6: input neurons that transmit the input signals to the output layer 

and output neurons that compute their outputs using the same transfer function (Hu et al., 

2016). The application of this type of ANN structure can only be strictly of the feed-

forward type because both the input and the transfer function flow in one direction, 

starting from input nodes toward the network output (Han et al., 2017).  
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2.9.2 Multilayer Feed-forward Network 

Multilayer feed-forward networks are used in an attempt to overcome the limitations and 

the computational boundaries experienced in single layer networks (Kriesel, 2011). Such 

networks have an architecture that is simply an updated extension of the previous ANN 

structure, where one or more layers are introduced between input and output layers. These 

layers are hidden, thus, named hidden layers. A hidden layer consists of a varied number 

of disconnected hidden nodes or neurons as shown in Figure 2.7, where each node of a 

specific layer feeds neurons in the immediate following layer with their input signals 

(Jaeel et al., 2016). 

 

Figure 2-6: Structure of single-layer feed-forward network. 
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The activation function in the applied hidden layer units is normally non-linear. The 

nonlinearity involved between the independents and dependent variables allows for high 

level interactions between signals of input parameters (Feng et al., 2013). Moreover, the 

absence of nonlinearity in the ANN network reduces the input-output relationship to that 

of a single layer. However, two types of different combinations of transfer function can 

be found in literature: (i) the same type of nonlinear function is utilised in the hidden 

layers, (ii) a linear transfer function is implemented in the output layers (Deo and Şahin, 

2015). 

   

Furthermore, the feedforward ANN is normally fully connected (Juncai et al., 2015), i.e. 

each neuron in a layer is fully connected to each node in the subsequent layer in the 

implemented network hierarchy as can be observed in Figure 2.7. while, if either one or 

two of these connections is missed, the network is partially connected (Al-Janabi, 2006).  

 

In attempt to draw the connectivity patterns for a multilayer feedforward network, a 

combination of connections matrices is used (Shahin and Jaksa, 2005; Kriesel, 2011; 

Abdellatif, 2013). In this case, each level of connections between two immediately 

adjacent layers can be described by a matrix of weights. For a fully connected multilayer 

feedforward ANN, the set of matrices can be described as follows:  

 

𝑤1 = [

𝑤𝑖1ℎ1
𝑤𝑖1ℎ2

𝑤𝑖1ℎ3

𝑤𝑖2ℎ1
𝑤𝑖2ℎ2

𝑤𝑖2ℎ3

𝑤𝑖3ℎ1
𝑤𝑖3ℎ2

𝑤𝑖3ℎ3

     

𝑤𝑖1ℎ4

𝑤𝑖2ℎ4

𝑤𝑖3ℎ4

]                           𝑤2 =

[
 
 
 
𝑤ℎ1𝑜1

𝑤ℎ1𝑜2

𝑤ℎ2𝑜1
𝑤ℎ2𝑜2

𝑤ℎ3𝑜1
𝑤ℎ3𝑜2

𝑤ℎ4𝑜1
𝑤ℎ4𝑜2]
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2.9.3 Recurrent Network 

A recurrent network is normally introduced in the case of a single-layer feed-forward 

ANN, if the output signals feedback as input that substitute part or all of the input signals 

(Shahin, 2014). This could also be generalised to cover multilayer feed-forward networks. 

In other words, a recurrent ANN consists of neurons feeding back their output to serve as 

new inputs to randomly selected neurons or themselves (Ravuri and Stolcke, 2016). A 

self-feedback can occur if the output layer of a certain node is fed-back to the same node. 

Feedback loops are enhanced with delay elements, this is due to the nonlinear 

Figure 2-7: Structure of multi-layer feed-forward network (Jebur et al., 2018), permission to 

reuse this figure has been granted by Taylor and Francis. 
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environment of the nodes, resulting in a non-linear dynamic behaviour. Model inputs and 

output signals in a recurrent ANN are presented as x(n) and y(n) respectively in order to 

reflect the fact of being functions of discrete time variables n (Kriesel, 2011). 

 

2.10  The Error Back-propagation 

A variety of ANNs topologies has been developed to solve problems in many applications. 

One of the most popular and robust ANN configurations is the error back propagation 

algorithm (Alizadeh et al., 2012; Tarawneh, 2013; Yadav et al., 2014; Mohammed et al., 

2017). The error feed-forward back propagation technique has been proven to be a highly 

efficient tool in modelling non-linear relationships (Feng et al., 2013; Jaeel et al., 2016). 

The algorithm updates the ANN weights in such a way that the error of the network output 

is decreased as set in the original goal. An ANN is constructed in such way that each 

processing element in a specific layer is fully connected to the next layer. Alternatively 

stated, every single node in the input layer will send its output to every neuron in the 

middle layer, consequently, every neuron in the input layer will then send its output to 

every neuron in the model output layer (Nguyen-Truong and Le, 2015).   

 

The multilayer back-propagation ANN learning process comprises of two processing 

elements passing through the different network layers: a forward pass and backward pass, 

by computing the gradient for each connection weight and bias utilising the chain rule, as 

seen in Figure 2.8. During the forward step, the synaptic network weights are all assumed 

to be fixed, whereas, at the backward pass, the synaptic network weights are adjusted 

according to an updated error. This iteration procedure is repeated during the training 

process, which propagates the term of error needed for weight adjustment until the trained 
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network can provide a set of connection weights, which has the input/output mapping that 

contains the minimum error value. Among the enhancements to the error back-

propagation algorithm that have been produced, one method involves the use of the 

learning rate. The learning rate parameter (𝜂) can be categorised as the factor that initiates 

the step size that the ANN takes in negative through the weight spaces in attempts to 

minimize the training error magnitude. The momentum term (α) is another factor that 

needs to be considered in any ANN training process (Kriesel, 2011). The objective of the 

α value is to increase the step size when the weight space direction is the same as the 

previous step direction and vice versa. 

2.10.1 The Algorithm of Error in Back-propagation 

1. Initialise the network connections weight between the measured and the predicted 

values; 

2. Repeat the following steps until some criteria; 

3. Sum up weighted inputs and apply the transfer function to compute the output of 

hidden layer; 

ℎ𝑖 = 𝑓 ∑(𝑥𝑖 𝑤𝑖𝑗) + 𝜃𝑗

𝑛

𝑖=1

 
 2.28 

ℎ𝑖= hidden neuron output 

𝑥𝑖= input signal 

𝑤𝑖𝑗= connection weight between input neuron 𝑖 and hidden neuron 𝑗  

𝑓 = the activation function 

𝜃𝑗= bias on hidden neuron 
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4. Sum weighted output of hidden layer and apply the activation function to compute 

the output layer 

𝑦𝑘 = 𝑓 ∑(ℎ𝑗  𝑤𝑗𝑘) + 𝜃𝑘

𝑛

𝑖=1

 
 (2.29) 

𝑦𝑘= independent output 

𝑤𝑖𝑘= connection weight between hidden nodes j and k 

5. Back propagation combinations  

𝛿𝑘 = (𝑑𝑘 − 𝑦𝑘)𝑓(̅∑𝑗 ℎ𝑗𝑤𝑗𝑘 + 𝜃𝑘) 
 (2.30) 

𝑓=̅ the derivation of the activation function 

𝑑𝑘= the desired output of the neuron 

6. Calculate of the weight correction term 

𝛥𝑤𝑗𝑘(𝑛) = 𝜂𝛿𝑘ℎ𝑗 + 𝛼𝛥𝑤𝑗𝑘(𝑛 − 1)  (2.31) 

𝛥𝑤𝑗𝑘(𝑛)= adjustment on connection weight between nodes j and k 

𝜂= learning rate  

𝛼= momentum term 

ℎ𝑗=actual output of hidden neuron 

𝛿𝑘 = back propagation error 

𝛥𝑤𝑗𝑘(𝑛 − 1)= previous weight correction 

7. Sum delta input for each hidden unit and calculate error term 
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𝛿𝑗 = ∑𝑘𝛿𝑘𝑤𝑗𝑘  𝑓(̅∑𝑖𝑥𝑖 𝑤𝑖𝑗) 
 (2.32) 

8. Calculate weight correction term 

𝛥𝑤𝑖𝑗(𝑛) = 𝜂𝛿𝑗𝑥𝑖 +  𝛼𝛥𝑤𝑖𝑗(𝑛 − 1)  (2.33) 

 

9. Update weights 

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + 𝛥𝑤𝑗𝑘  (2.34) 

 

𝑤𝑖𝑗(𝑛𝑒𝑤) = 𝑤𝑖𝑗(𝑜𝑙𝑑) + 𝛥𝑤𝑖𝑗   

10. Compute the sum square error 

𝑆𝑆𝐸 =
1

2
∑(𝑑𝑘 − 𝑦𝑘)

2

𝐾

 
 (2.35) 

k= number of output neurons  

11. End  
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Figure 2-8: Steps to illustrate the back-propagation algorithm error. 
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2.11  The Levenberg-Marquardt (LM) Training Algorithm 

 

2.11.1 Introduction 

The LM training algorithm is one form of the artificial intelligence (AI) concept. The 

optimisation and training process simply means identification of the optimum ANN 

model parameters, which are the connection weights, bias, maximum number of hidden 

neurons and number of hidden layers. It is worth stating that the main target behind the 

implemented LM algorithms is to minimise the error value between the target and 

predicted value via adjusting the connection weights that are identified to contribute most 

to the error (Jebur et al., 2018a). For multi-layer feed-forward, the error function is 

normally a non-linear function. Consequently, it is not possible to implement an analytical 

solution for minimising the error percentage to its lowest value. Instead, it is vital to find 

an algorithm that involves a search through the weight spaces comprising of a succession 

of steps of the form: 

  

𝑤𝑘+1 = 𝑤𝑘 + 𝛻𝑤𝑘  (2.36) 

 

 

where: 𝑤𝑘+1 denotes weight value at a certain iteration +1, 𝑤𝑘 is the value of the same 

weight at previous step k, 𝛻𝑤 is the increment of the weight vector. 

 

Different types of algorithms found by many scholars in the relevant literature involve 

different techniques to identify the weight vector increment (Kriesel, 2011). The LM 

technique has been introduced to overcome the main drawbacks and limitations 

associated with the conventional approaches and widely cited as an efficient and robust 
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training algorithm across all engineering aspects (Morfidis and Kostinakis, 2017). The 

LM approach is well documented as achieving a much higher performance by making 

training 10 to 100 times faster, more reliable, stable, and converging more often 

(Wilamowski and Yu, 2010; Abdellatif, 2013). 

 

The LM scheme is efficient algorithm but more computationally intensive version of 

back-propagation. This system was created as an improvement of the Gauss-Newton 

method, with the target of eliminating the numerical instability associated with the matrix 

inversion in the latter.  In this method, another approximation to the Hessian matrix will 

be introduced, H denoted as: 

𝐻 = 𝐽𝑇𝐽 + 𝜇𝐼𝑖  (2.37) 

 

where: 𝜇 is the combination function, 𝐼𝑖 is the identity matrix. 

 

 

𝐽 is the Jacobian matrix and could be calculated through a back propagation technique 

that is less complex than computing the Hessian matrix. The aforementioned matrix 

contains the first derivatives of the ANN error value with respect to weights and can be 

defined as: 
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𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑒1,1

𝜕𝑤1

𝜕𝑒1,1

𝜕𝑤2
…

𝜕𝑒1,1

𝜕𝑤𝑁

𝜕𝑒1,2

𝜕𝑤1

𝜕𝑒1,2

𝜕𝑤2
…

𝜕𝑒1,2

𝜕𝑤𝑁… … … …
𝜕𝑒1,𝑀

𝜕𝑤1

𝜕𝑒1,𝑀

𝜕𝑤2
…

𝜕𝑤1,𝑀

𝜕𝑤𝑁… … … …
𝜕𝑒𝑃,1

𝜕𝑤1

𝜕𝑒𝑃,1

𝜕𝑤2
…

𝜕𝑒𝑃,1

𝜕𝑤𝑁

𝜕𝑒𝑃,2

𝜕𝑤1

𝜕𝑒𝑝,2

𝜕𝑤2
…

𝜕𝑒𝑃,2

𝜕𝑤𝑁… … … …
𝜕𝑒𝑃,𝑀

𝜕𝑤1

𝜕𝑒𝑃,𝑀

𝜕𝑤2
…

𝜕𝑒𝑃,𝑀

𝜕𝑤𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

 

(2.38) 

𝑒𝑝,𝑚   is error of training process at output 𝑚 when applying pattern 𝑝 and is found as  

 

𝑒𝑝,𝑚 = 𝑑𝑝,𝑚 − 𝑜𝑝,𝑚  (2.39) 

 

where: 𝑑𝑝,𝑚 and 𝑜𝑝,𝑚 are, respectively, the predicted and observed output vectors, 𝑝 is 

the pattern index from 1 to 𝑁 , 𝑚 is the pattern index, from 1 to 𝑀, and 𝑁 is the weight 

number. 

In addition, the relationship between the Jacobian, 𝐽 and the gradient vector, 𝑔 of error, 𝑒 

is defined as: 

𝑔 = 𝐽𝑇𝑒  (2.40) 

𝑒 =

[
 
 
 
 
 
 
 
 
𝑒1,1

𝑒1,2

…
𝑒1,𝑀

…
𝑒𝑃,1

𝑒𝑃,2

…
𝑒𝑃,𝑀]

 
 
 
 
 
 
 
 

 

  

 

(2.41) 
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In the current study, the LM algorithm was trained with five input parameters and one 

output, however, the update rule of the LM algorithm can be illustrated as follows: 

 𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑇𝐽 + 𝜇𝐼𝑖)
−1 𝐽𝐾

𝑇𝑒𝑘  (2.42) 

 

As a combination of the Gauss-Newton algorithm and the steepest descent algorithm, the 

LM training algorithm switches between the two algorithms during the training phase 

(Abdellatif, 2013). Yu and Wilamowski (2011) stated that when the combination 

coefficient of the training μ is too small, Equation 2.42 is just a Quasi-Newton algorithm. 

When the μ is large the latest described Equation approximates the steepest descent 

method. The training or learning process of the LM algorithm is illustrated in Figure 2.9. 

In this study, the developed model was trained with the help of a MATLAB toolbox 

version (R2017a) (see Appendix I). The mathematical illustration process between 

independent input variables and output is clearly defined in Equation 2.43. 

 

𝑂′ = 𝑊0 + ∑𝑊𝑗𝑔

𝑚

𝑗=1

(𝑊0𝑗 + ∑𝑊𝑖𝑗𝑋𝑖

𝑛

𝑖=1

) ± 𝑏𝑖 
 (2.43) 

 

where: 𝑂′ is the prediction value of dependent variable, 𝑋𝑖 to 𝑋𝑛 is the input values of ith 

independent variables, 𝑤𝑖𝑗  and ±𝑏𝑖  are network connection weights and biases values  

(see Appendices II to VIII). 

 

An ANN is defined as a generalised network when it generates a resendable output from 

a set on inputs (testing dataset) that have not been utilised for training dataset (Mareš et 

al., 2016; Alrashydah and Abo-Qudais, 2018). In the case of a poor or non-generalised 
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model, an ANN could suffer from either over fitting or under fitting (Shahin and Jaksa, 

2005; Kriesel, 2011). Indeed, over fitting produces excessive variance, while, under 

fitting yields excessive bias in the model outputs (Hornik et al., 1989). The early stopping 

criteria approach was recognised, amongst various procedures, to be the most acceptable 

method to optimise the generalisation performance of the LM (Yadav et al., 2014). In the 

data division process, the dataset is divided into two main clusters, training and validation, 

performance of the training set is verified using the testing dataset. Thus, the method of 

early stopping requires one more subset between the training and cross-validation sets 

(not an introduced or unseen data subset during the training process) termed as the testing 

subset. The typical ANN approach observes the training error only during the training 

process, but the early stopping criteria observes the validation and the training errors 

(Kriesel, 2011). Within the early stopping criteria, the process of training is terminated 

once the mean square error (MSE) between the measured and the predicted values has 

reached its minimum value.  
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where: 𝑤𝑘 denotes the existing weight, 𝑤𝑘+1 is the subsequent weight,  𝐸𝑘+1𝑎𝑛𝑑 𝐸𝑘 are 

the current and last total error respectively. 

 

 

 

Figure 2-9: Block diagram of the LM training algorithm: wk is the current weight, wk+1 is the 

next weight, Ek+1 is the current total error, Ek is the last total error (Jebur et al., 2018), 

permission to reuse this figure has been granted by Taylor and Francis. 
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2.11.2 Determination of the LM Architecture 

Determination of the ANN optimum architecture is one of the difficult tasks in network 

development. Indeed, it requires the selection of the optimum number of layers, selection 

of the most effective model input parameters, number of hidden layer(s), and the number 

of nodes in each specific layer. To date, there is no unified theory to determine an optimal 

ANN optimum topology (Premalatha and Valan, 2016). Basically, in any proposed 

network, there are two layers representing the input and output variables. One hidden 

layer is sufficient and can map any continuous function between the model variables 

(Alrashydah and Abo-Qudais, 2018; Jebur et al., 2018a). 

 

It should be cited that introducing more than one hidden layer leads to substantially slow 

the process of training and enhances the chance of getting trapped in local minima (Al-

Janabi, 2006). Trial-and-error is the promoted method (Stojanovic et al., 2016), which is 

commonly utilised to optimise the number and connectivity of the hidden layers. It has 

been suggested by Caudill (1988), that the maximum number of nodes in a single hidden 

layer could be taken as 2N+1, where N is the number of independent variables. Another 

approach, suggested by Premalatha and Valan (2016), reveals that the optimum number 

of the nodes used in the hidden layer is a function of mean square error (MSE) and 

correlation coefficient (R). Finalisation of the number of neurons can be arrived at when 

the MSE is minimum value and R numerical value at its upper possible limit. 

 

2.11.3 Model Performance Evaluation 

The ANN performance should be assessed once the training process has been successfully 

accomplished. The objective of the performance evaluation phase is to ensure that the 
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model has the capability to re-generalise within the performance analysis limits set by the 

training data in a sufficient fashion as would be expected. The acceptable approach that 

is generally adopted in the relevant literature, is to test the measuring performance of the 

trained network on a testing data subset (Mareš et al., 2016). If such performance criteria 

are sufficient, the generalised model can be deemed to be robust. There are many 

measuring performance indicators documented by many scholars, to such obstacles, the 

correlation coefficients (R and p), root mean square error (RMSE) and the mean absolute 

error (MAE) are generally the main statistical performance indicators that are often 

utilised to evaluate the ANN model efficiency.  

 

The determination coefficient value is a measure that is utilised to find the correlation and 

the goodness-of-fit between the measured and the predicted value (Hashim et al., 2017a). 

The following index is suggested by Faber et al. (2011) for R measuring performance 

between 0.0 and 1.0: 

|𝑅| ≥ 0.8 strong correlation exists between two sets of variables   (2.44) 

 

0.2 < |𝑅| < 0.8 correlation exists between two sets of variables   (2.45) 

 

|𝑅| ≤ 0.2 𝑤𝑒𝑎𝑘 correlation exists between two sets of variables   (2.46) 

 

 The correlation coefficient (R) to determine the relative correlation between two 

sets of variables, can be found using Equation 2.47: 
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𝑅 =
∑ (𝑇𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑇𝑖 − �̅�𝑖)2 ∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 
  

(2.47) 

 

 RMSE is the most adaptable criterion to measure the error between the predicted 

and measured values and has the advantage that a large error value receives greater 

attention than small errors. While, MSE eliminates the emphasis given to large 

errors. It should note that both MSE and RMSE are desirable when the assessed 

output data are continuous or smooth, RMSE and MSE can be calculated as shown 

in Equations 2.48 and 2.49: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ |𝑇𝑖 − 𝑃𝑖|

𝑛

𝑖=1
 

 (2.48) 

 

 

𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑇𝑖 − �̅�𝑖)2

𝑛

𝑖=1
 

 (2.49) 

 

where 𝑁symbolises the dataset number, 𝑇𝑖  and 𝑃𝑖  are the targeted and computational 

value, �̅� and �̅� are the means of the predicted and targeted values. 

 

2.12  Related Studies 

There has recently been an increase trend in the number of numerical and experimental 

studies concerning pile load-settlement behaviour. Among all, (Jeffrey, 2012) developed 

a comprehensive experimental study to examine the load-settlement responses of 



Chapter Two                                                                                           Literature Review 

49 

 

different types of model instrumented piles embedded in sand soil and subjected to a wide 

range of uplift and compression loads. Two types of pile construction methods were used 

in the experimental programme (replacement and displacement piles). The results 

revealed that the ultimate pile capacity of the continuous helical displacement piles were 

similar to that found in the displacement piles. Moreover, the initial sand density has been 

observed to be highly influenced by the pile type and pile installation method. Comparing 

the results of different types of piles materials, the continuous helical displacement pile 

was determined to cause a substantial modification in the sand relative density around the 

shaft of the pile. Whereas, the sand relative density below the pile base was fond to be 

highly influenced by displacement piles (concrete and steel). The results also 

demonstrated that the developed skin friction resistance for displacement and replacement 

piles were similar. Both displacement and replacement piles develop about 90 % of the 

ultimate capacity from end bearing resistance.  

 

Gaaver (2013) performed experimental load-displacement tests on steel vertical piles 

tested in sand soil and subjected to uplift loads. The model piles were tested in three sand 

relative densities, measuring of dense, medium, and loose with pile-embedded length to 

diameter ratios of 26, 20, and 14. The results shown that the pile uplift capacity was highly 

influenced by on the sand properties and pile effective length (embedded length of pile).  

  

Fattah and Al-Soudani (2014) performed experimental study to explore the influence of 

soil plugs on the pile bearing capacity of steel piles tested in loose sand. Different 

parameters have been involved in the testing programme, comprising of pile installation 

technique, pile Lc/d ratio, and soil plug removal with respect to plug length. The results 
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revealed that pile-bearing capacity was influenced by the percentage of plug soil and pile 

geometry. Two years later, Fattah et al. (2016) carried out another experimental study to 

examine the bearing capacity of steel piles embedded into three different densities of sand 

soil; dense, medium, and loose. Different types of model piles with a wide range of 

slenderness ratios were tested to achieve the intended aim. The results revealed that the 

ultimate pile capacity increases in parallel with an increase in soil density and plug length 

ratio (PLR). In light of these test results, an empirical formula created by the authors, 

which could be used to predict the pile capacity of open-ended steel piles.  

 

Recently, ANNs have been confirmed to be a good modelling technique in various 

domains including the different speciality areas in geotechnical engineering. An ANN has 

the capability to deal with complexity and to capture the non-linear functions, adopting 

the substantial computer capacity to implement extremely iterated work (Cho, 2009). 

With this respect, Alkroosh and Nikraz (2011) investigated the feasibility of artificial 

neural network to simulate pile capacity of different types of model pile foundations 

subjected to axial loads. Three types of ANNs have been developed and trained, one for 

modelling replacement piles and two models for displacement piles. The models were 

constructed based on the results of cone penetration tests (CPT). The results demonstrated 

that the ANN models perform well and have the reliability to predict pile load carrying 

capacity with some degree of success. 

 

In another study, Momeni et al. (2014) examined the utilisation of hybrid genetic 

algorithms coupled with ANNs to model pile bearing capacity. A database consisting of 

50 pile-loading tests was utilised to develop and learn the proposed ANN model. Four 
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factors were identified as the most influence model input parameters affecting pile 

capacity, i.e., pile set, drop height, pile geometrical properties, and hammer weight. The 

results indicated that good agreement was achieved between the measured and the 

predicted pile bearing capacity values. Recently, Nejad and Jaksa (2017) carried out a 

study aimed at predicting pile load-settlement of model piles based on a cone penetration 

test (CPT). Twelve input parameters were used in the input space to develop and train the 

proposed model. Pile settlement was assigned to be the model dependent variable. The 

results revealed that the adopted method could be used to predict pile settlement with high 

accuracy, thus recommending the application of an ANN model as a good tool in 

predicting pile-settlement behaviour. 

 

Although many researchers have highlighted the use of artificial neural networks (ANNs) 

in the field of geotechnical engineering, to date, there are still specific gaps in the subject 

knowledge. The slow rate of convergence, the necessity of adjusting a training constant, 

and getting trapped in the local minima have been cited as major drawbacks associated 

with conventional artificial neural networks (Momeni et al., 2014). In addition, the input 

parameters were selected based on trial and error. In the current study, a new methodology 

has been presented using a comprehensive experimental pile load test. Additionally, a 

robust, self-tuning artificial intelligence (AI) approach to fully correlate pile load-

carrying capacity and associated settlement of rigid and flexible piles. The choice of input 

parameters has been discussed using a comprehensive statistical analysis to identify the 

most efficient input parameters, underline the contribution of each model input parameter, 

and precisely evaluate the reliability of the dataset being examined. 
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2.13   Summary 

In this chapter, the details of two literature review phases are presented in an effort to 

provide the reader with a brief review of pile foundations and the feasibility of the 

computational intelligence schemes in modelling pile-load carrying capacity. Firstly, 

methods of pile installation were summarised. It has been reported that pile foundations 

could be categorised in different types, depending on pile installation method, pile 

geometry and pile materials. Secondly, pile design procedures were presented and it was 

stated that many variables are involved in the design framework. These were a function 

of soil type, type of pile installation and factors related to pile functionality such as end 

bearing capacity and the earth pressure coefficients. Furthermore, in-situ pile bearing 

capacity testing procedures have also been discussed. A brief review of the conventional 

methods used to predict pile settlement were also presented. The feasibility of 

computational intelligence applications has been highlighted and discussed, it has been 

found that the computational intelligence approaches could be successfully applied to 

provide a predictive model when the relationships between model inputs and output(s) 

are non-linear. The topology and the factors affecting the construction and training 

process of the ANN model have been summarised, it has been revealed that the number 

of dependent, and independent variables, number of neurons, training method, and size 

of the dataset are the main parameters affecting the model convergence. Moreover, based 

on literature, root mean square error (RMSE), mean absolute error (MAE) and the 

coefficients of determination (Pearson’s R and p) have been selected as the main 

statistical indicators to test the performance and the generalisation ability of the trained 

network. The employed self-tuning supervised LM has also been presented and discussed. 

Finally, a review of some related studies concerning pile foundations have been 

documented. 
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Experimental Methodology 

 

3.1 Introduction 

This chapter discusses, in detail, the experimental methodology used in this thesis. In the 

current study, a series of experimental pile-load tests were performed on different types 

of model piles, with pile slenderness ratios (Lc/d) of 12, 17 and 25, penetrated in three 

sand relative densities measuring loose (18%), medium (51%) and dense (83%) and 

subjected to compression and uplift loading systems. The pile load tests were performed 

using an innovative pile-testing chamber which was designed and manufactured at 

Liverpool John Moores University. Full-scale in-situ tests are highly preferable. However, 

such tests are expensive, have a negative environmental impact, and there are 

uncertainties assigned with the soil stress history. They are time consuming, tedious and 

as such, pile-load tests have been cited as barriers in determining field pile load carrying 

capacity (Ornek et al., 2012; Momeni et al., 2014; Baziar et al., 2015). Indeed, a 

laboratory scale pile-testing programme offers a good solution to overcome the 

limitations associated with the in-situ testing. However, considering the behaviour at 

bench scale compared to prototype behaviour is important when conducting any 

laboratory model testing. Laboratory scale test effects could arise due to both: (i) scale 

effects because of the localised deformation at the soil-pile interaction and (ii) boundary 

effects due to soil sample finite size. Therefore, it is worth noting that, in the context of 
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this study, effects of both factors on the performance of the model piles have been 

addressed prior to the design and manufacture of the pile-testing chamber.  

 

 

3.2 Development of the Pile Testing Chamber 

This section presents, in depth, the manner in which the model pile-testing chamber has 

been designed and manufactured. In addition, the properties of the test bed and the sand 

densities preparation methods have also been presented. The physical model was 

designed and fabricated with overall dimensions of 900mm (in y-direction) x 900mm (in 

x-direction) with a third dimension (depth) at 3000mm as presented in Figures 3.1 and 

3.2, respectively. The experimental set-up was comprised of a pile testing chamber, 

designed and manufactured by the author and the technical staff at LJMU. The chamber 

was then used to perform plie load tests for different types of model piles subjected to 

compression and tension loads. The loading system incorporated a double acting 

calibrated load cell type (DBBSM S-Beam) having a maximum capacity (compression 

and uplift) of 10kN. Vertical displacement instrumentation utilised 2 full bridge 

displacement transducers (strain gauge type), with the loading provided by a hydraulic 

pump model (Armstrong Lyon Hydraulic, ENERPAC L40N, LTD) connected to double 

acting hydraulic ram model (ZE3408E-T). A 16-bit resolution data acquisition system 

was used to monitor pile head load and displacement. The pile testing chamber with its 

sand bed incorporated a polytetrafluoroethylene (PTFE) sheet with a coefficient friction 

of less than 0.04 at the sand chamber interface. The pile driving process utilised an 

adjustable pin with a series of holes along a shaft of maximum length of 1.5m, which 

permitted incremental driving of the pile under hydraulic loading within the reach (stroke 

capacity) of the ram (max 400mm). A ball joint arrangement (acting as a universal joint) 
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was used in the loading chain to avoid the transmission of moments under possible minor 

eccentric loading due to non-exact axial positioning. The data sets during the installation 

process were not recorded since the pile should be embedded until the desired embedded 

length has been reached. The pile load-settlement response was then performed to 

examine pile capacity (the applied load that leads to pile settlement at 10% of the pile 

diameter (BSI, BS EN 8004:1986). 

 

Ideally, the pile-testing chamber must be large enough so that the chamber edges do not 

interfere in any major way with the stresses resulting from the pile testing. In experimental 

pile load testing, limitations on the testing chamber are normally dictated by available 

space and equipment availabilities. Moreover, the materials of the pile testing rig are 

found as playing a key role on the concept of the boundary effects and the soil stress 

distributions in the effective zone. Indeed, high stiffness materials would permit a 

reduction in the required chamber size to overcome boundary effects limitations in 

comparison with flexible materials. Nasr (2013), however, reported that if the ratio 

between the pile testing chamber and the pile diameter is more than 10, the effects of the 

boundary size could be ignored. 

 

In this research study, the sand chamber is properly scaled down to overcome the issues 

induced from the chamber boundary influence on the sand stress distribution during the 

loading process with a ratio of 22.5 between the diameter of the sand box to model pile 

diameter for all model piles. Robinsky and Morrison (1964) reported that the boundary 

effect is more predominant within a range of 3-8 times the pile diameter. Whereas, Rao 

et al. (1998) stressed that,  the ratio between the pile diameter and the chamber edge is 



Chapter Three                                                                          Experimental Methodology 

56 

 

about 10 to overcome the scale effect limitation. However, the pile diameter used in this 

study is equal to 40mm (for square and circular sections) and the test tank inside 

dimensions were (0.9m x 0.9m x 1.25m). Therefore, the minimum required dimension to 

minimize the scale effect issues must be 840mm (10d + 10d + d). In this study, the inside 

dimension is 900mm, exceeding the scaling law standards quoted. It is worth noting that 

Polytetrafluoroethylene (PTFE) has been used, as shown in Figure 3.1, in an effort to 

reduce the friction between the chamber and the sand test bed, as it has less frictional 

resistance (0.04) compared to the steel sheet (0.605) (Young and Freedman, 2000). In 

addition, 20mm sufficiently rigid Perspex sheet was utilised as the front side of the testing 

chamber and sub-divided into equal segments, as indicated in Figure 3.2.  This was to 

provide a clear viewing area of the sand and to control volume.  
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Figure 3-1: Pile testing chamber with internal cover of PTFE sheet. 
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Figure 3-2: Schematic view of the test configuration for the pile testing chamber. 
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3.3 Sand Properties 

This section discusses in detail the properties and the adopted procedure utilised to 

achieve the required relative sand densities. The sand used in the experimental testing 

programme is obtained from local supply. It has a relatively small impurity level with a 

quartz content at about 98%. Based on the Unified Soil Classification System (USCS), 

the sand being used could be classified as poorly graded (SP). The physical properties of 

the sand were determined from experimental tests, such as sieve analysis, specific gravity, 

sand unit weight and direct shear tests, as summarised in Table 3.1. In addition, the sand 

was composed of sub-rounded particles, as confirmed by scanning electron microscopy 

(SEM) images shown in Figure 3.3. The physical properties of the sand samples were 

determined through laboratory tests as per the standard  approaches as stated by the BSI 

(BS EN 1377-7:1990). 

 

The sand packing used in the experimental tests was prepared in three relative densities, 

𝐷𝑟 of 18%, 51% and 83%. In order to overcome the scale factor issues and to capture the 

in-situ pile-load test, the influence of the grain size distribution on the combined pile-soil 

interaction should be maintained. The ratio between the pile diameter and the sand 

medium diameter (d50) should be 45 (Nunez et al., 1988). It has been stated by Remaud 

(1999) that the ratio is 60.  Taylor (1995) however, reported that the minimum ratio should 

be 100. In this research, this condition has been met using a sand with the ratio between 

pile diameter and the sand mean grain size diameter (d/d50) of about 134 as revealed in 

Figure 3.4, therefore the geotechnical scaling standard condition has been satisfied. 
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The sand placement technique or the air sand-raining process was observed to play a 

substantial role in the process of achieving reproducible sand density (Nasr, 2013; 

Kampitsis et al., 2015).  To prepare the loose sand bed, the sand particles were poured 

into the test chamber utilising a tube delivery system, as proposed by Schawmb (2009). 

The end of the tube was repeatedly held at a maximum set distance of about 40mm 

between the sand delivery tube and the surface of the test bed. The medium sand was 

prepared using an air pluviation technique discussed by Ueno (2001). The sand was 

controlled by the falling rate at about 800mm above the sand surface with an accuracy of 

± 25mm. The medium density of the sand bed was prepared using 2.00mm sieve size 

according to BSI (BS EN 410-2:2000) along with the use of a mechanical screw-jack as 

presented in Figure 3.5, and was carried out over 7-8 hours. The sufficiently rigid 

transparent Perspex sheet (Figure 3.2) with thickness of 18mm was placed in the front of 

the pile-testing chamber having been marked in equal square grids of 300mm to control 

the required sand volume during the sand preparation process. The sand top surface was 

levelled-off using a smooth straight aluminium plate. In addition, the dense sand 

condition was attained by dividing the testing chamber into four layers, each sand layer 

was placed with 300mm thickness for each layer and divided into equal segments (300 x 

300)mm2 (see Figure 3.2). subsequently, each sand layer was compacted to obtain the 

required density, utilising a hand-held vibrator technique, following the procedure 

detailed by Akdag and Özden (2013).  

 

The sand densities were verified through the use of a small wooden box, (Figure 3.6) 

made with dimensions of (300 x 300 x 300) mm. With the known weight and volume of 

the empty wooden box, the specific sand density was defined. The following equation 

was used in order to establish the different sand test beds. 
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𝐷𝑟 (%) =  
𝛾𝑚𝑎𝑥(𝛾 − 𝛾𝑚𝑖𝑛)

𝛾(𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)
 

 (3.1) 

 

in which the 𝛾𝑚𝑎𝑥 , 𝛾𝑚𝑖𝑛, and 𝛾  are, respectively, the maximum, minimum and sand unit 

weight (kN/m3), 𝐷𝑟  is the sand relative density. 

 

Table 3-1: Physical properties of the sand. 

Index Property         Value 

Coefficient of uniformity, 𝐶𝑢         1.78 

Specific gravity, 𝐺𝑠         2.62 

Coefficient of curvature, 𝐶𝑐         1.14 

Effective grain size, d10 (mm)         0.22 

Mean grain size diameter, d50 (mm)         0.34 

Moisture content, Mc (%)         <0.2 

Specific surface area, (mm2/ml)         94000 

Maximum dry unit weight, 𝛾𝑚𝑎𝑥  (kN/m3)         17.45 

Minimum dry unit weight, 𝛾𝑚𝑖𝑛  (kN/m3)         15.34 

Void ratio of the sand in the loosest state, 𝑒𝑚𝑎𝑥 (%)         0.709 

Void ratio of the sand in the densest State, 𝑒𝑚𝑖𝑛 (%)         0.49 

Peak angle of friction for loose, medium and dense sand, ∅𝑝𝑒𝑎𝑘 (°)         39, 44 and 46 

Critical state angle of friction, ∅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (°)             42 and 42.5 

Peak sand-concrete interface friction angle, 𝛿𝑝𝑒𝑎𝑘 (°)         28.8, 32.5 and 36 

Critical state sand-concrete interface friction angle, 𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (°)              31.8 and 33 

Peak sand-steel interface friction angle, 𝛿𝑝𝑒𝑎𝑘 (°)         17, 17.7 and 19 

Critical state sand-steel interface friction angle, 𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (°)                      18.5 
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Figure 3-3: Scanning electronic microscopy (SEM) test result for the sand specimen. 
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Figure 3-4: Particle size distribution of the sand specimen. 
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Figure 3-5: Preparation of sand bed by means of pluviation. 

Figure 3-6: Sand density verification. 
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3.4 Direct Shear Tests of the Sand 

Direct shear testing was performed following the technical method described by BSI (BS 

EN 1377-7:1990) in order to examine the sand shear strength characteristics. The sand 

bed used throughout the testing programme was uniform sand prepared in different 

densities with properties as detailed in section (3.3). The laboratory testing programme 

for the direct shear evaluation was conducted at Liverpool John Moores University, soil 

mechanics laboratory using a new direct shear box apparatus (Figures 3.7 and 3.8). 

 

In addition to the sand shear strength characteristics, the sand-concrete and sand-steel 

interface friction angles for different sand relative densities were also determined from 

the direct shear tests. Applied normal and shear stresses on the adopted sand are evaluated 

and can be utilised in the determination of the angle of friction using the Mohr-Coulomb 

definition, as listed in the following equation: 

 

𝜏𝑓 = 𝜎′ tanØ′ + 𝑐′  (3.2) 

  

𝜏𝑓 denotes soil shear stress on the failure plane; 𝜎′is the normal effective stress on the 

failure plane; Ø′  and 𝑐′  are, respectively, effective angle of friction and effective 

cohesion of the soil. 

 

3.4.1 Results of Sand Direct Shear Box Test 

To reliably clarify the shear behaviour of the sand test bed used in the pile-testing chamber, 

the results of the direct shear test are presented and discussed in this section. These results 

were determined from the data (direct shear tests) of the computerised direct shear tests 

apparatus as shown in Figures 3.7 and 3.8. Figures 3.9 to 3.11 show the profile of shear 
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stresses versus horizontal shear displacement for the three sand relative densities used in 

the experimental testing programme. The results revealed that the peak and critical state 

shear values, for the same density of sand, at higher normal stresses are higher than those 

subjected to low stresses. It can also be observed that the increase in the sand density 

results in an increase of the peak shearing resistance that could mainly be attributed to an 

increase in the dilatancy influence for the shearing resistance of the sand being 

investigated.    

 

With respect to the direct shear test for loose sand, it should be noted that the graphical 

results in Figure 3.9 show a gradual increase in shear stresses profile as the shear 

displacement increases and then reaches a plateau without a pronounced peak. It also can 

be seen that the peak values of the shear stress for the medium sand are about 40kPa, 

30kPa, and 23kPa, respectively. Increasing the sand density contributed to an increase of 

peak shearing resistance. This can be clearly seen form the direct shear test for dense sand 

with peak shear resistance values of about 44kPa, 33kPa, and 25kPa as revealed in Figure 

3.11. The direct shear results also revealed that the critical distribution of the shear stress 

displays patterns of partially linear relationships for the initial loading stages (elastic 

zone). Furthermore, the concrete-sand and steel-sand shearing resistances were also 

induced along the pile effective length. To determine the corresponding angle of interface 

friction (δ) for each material, direct shear box tests were also performed on sand-concrete 

and sand-steel for different sand relative densities. Moreover, the results of the peak and 

critical state shear stresses were graphically presented versus the normal effective stresses, 

as shown in Figures 3.12, 3.19 and 3.20. A linear relationship can be seen between the 

normal effective stress and the sand-sand peak and critical state shear stresses. From 

Figure 3.12, it can also be observed that the sand peak shear stresses for dense sand are 
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higher than those found in loose and medium sand. As stated, this can be attributed to an 

increase in the influence of the dilatancy for the shear resistance of the dense sand. The 

angles of internal friction and material interface friction were determined using linear 

regression, assuming a line of best fit with no cohesion (zero intercept). 

 

 

 

 

 

 

 

 

 

Figure 3-7: Preparation of the sand specimen for shearing tests. 
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Figure 3-8: Apparatus for the direct shear test.  
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Figure 3-9: Shear stresses versus shear displacements for loose sand. 
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Figure 3-10: Shear stresses versus shear displacements for medium sand. 
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Figure 3-11: Shear stresses versus shear displacements for dense sand. 
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Likewise, the interface friction angles between the sand/concrete and sand/steel for 

different sand densities, have also been experimentally measured using the direct shear 

test, these summarised in Table 3.1. The sand-concrete and sand-steel shear box tests have 

been performed by placing a piece of precast concrete block and steel block in the bottom 

of the shear box and then the tests were carried out in accordance with BSI (BS EN 1377-

7:1990). Figures 3.13, 3.14, and 3.15 (sand-concrete interfaces) and Figures 3.16, 3.17, 

and 3.18 (sand-steel interfaces), depict the results of shear stress against shear 

displacement for a wide range of relative densities of sand (loose, medium, and dense).  
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Figure 3-12: Shear stresses versus normal effective stresses for sand-sand interfaces 

at different relative densities. 
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The results revealed that the shear stress profiles in Figures 3.13 and 3.16  are typical for 

loose sand packing, showing a gradual increase in shear stress with shear displacement, 

then becoming steady with shearing resistance measuring of 22kPa, 17kPa, and 13kPa 

for sand-concrete and of 12.7kPa, 9kPa, and 7kPa for sand-steel, respectively, without a 

pronounced peak. Regarding medium sand, the peak values of the shear resistance are 

slightly higher than those recorded for the loose sand, giving shear values of 26kPa, 

20kPa, and 14.5kPa for sand-concrete and of 13.8kPa, 9.4kPa, and 7.5kPa for sand-steel. 

Moreover, for dense sand packing, the peak shear resistance is higher than that identified 

from the loose and medium sand, with notable peak values of 29.5kPa, 23kPa, and 

16.5kPa for sand-concrete and of 15kPa, 10.5kPa, and 8kPa for sand-steel, respectively. 

This could because of an increase in the contribution of dilatancy to the shear resistance 

of the dense sand. It is worth noting that the values of δ for sand/steel interfaces given in 

Table 3.1, are slightly lower than commonly stated values owing to the fact that the piles 

used in the experimental tests were made of steel with a smooth surface.  

 

In addition, the results for sand-concrete and sand-steel for peak and critical state shear 

stress versus normal effective stress, are shown in Figures 3.19 and 3.20. As expected for 

dry sand, a linear relationship can be seen between normal effective stress and shear stress 

values. It can also be observed that the sand peak and critical state values of shear stresses 

increase with increasing applied effective stress, behaving in the manner anticipated.  
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Figure 3-13: Shear stresses versus shear displacements for concrete-loose sand. 
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Figure 3-14: Shear stresses versus shear displacements for concrete-medium sand. 
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Figure 3-15: Shear stresses versus shear displacements for concrete-dense sand. 
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Figure 3-16: Shear stresses versus shear displacements for steel-loose sand. 
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Figure 3-18: Shear stresses versus shear displacements for steel-dense sand. 
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Figure 3-17: Shear stresses versus shear displacements for steel-medium sand. 
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Figure 3-19: Shear stresses versus normal effective stresses for sand-concrete 

interfaces at different sand relative densities. 
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3.5 Model Piles Specifications and Loading Procedure 

The experimental testing programme was designed and performed to examine the uplift 

and the compression bearing capacity of model piles embedded in cohesionless soil. 

Precast concrete piles, steel closed-ended, and steel open-ended piles were used with a 

40mm square profile for concrete piles and circular profile for steel piles. In addition, the 

pile embedment length-to-diameter ratios, measuring 12, 17 and 25 were used to 

investigate the behaviour of rigid and flexible piles (Reddy and Ayothiraman, 2015). The 

concrete piles were characterised by a Poisson’s ratio (ν) of 0.2 and Young’s modulus (E) 

= 30GPa. In addition, the steel piles were characterised by a Poisson’s ratio of 0.3 and E 
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Figure 3-20: Shear stresses versus normal effective stresses for sand-steel 

interfaces at different sand relative densities. 
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= 200GPa, which is highly comparable to the suggested material values for steel and 

concrete as reported by Gere and Timoshenko (1997). 

 

A spirit level with an accuracy of ± 0.5° was used to confirm the pile verticality before 

each pile-load test. The effective pile lengths (Lc) of 480mm, 680mm and 1000mm were 

considered plus a freestanding length of 50mm to avoid contact of the soil with the pile 

cap. This would also confirm that the pile bearing capacity measured from the test was 

due only to the soil-pile interaction, thus avoiding any contact between the applied load 

and the soil surface. For the loads mechanically applied to the piles, the compressive and 

uplift loads were applied at a displacement rate of 1mm/min as specified by  Bowles 

(1992) and within the acceptable ranges specified by BSI (BS EN 8004:1986), using a 

hydraulic loading system connected to a double acting (compression/tension) 

manufacturer calibrated  load cell, type (DBBSM) having a maximum capacity (uplift 

and compression) of 10kN. To confirm the accuracy of the adopted load cell, the load cell 

was also experimentally calibrated by applying known loads (uplift and compression 

loads) using a Tinius Olsen computerised testing machine (see Figure 3.21), under 

repeated, static, and sustained loading. The load cell was secured between the loading 

head and the electric-hydraulic driving system. A double acting electric-hydraulic ram 

control system, model (ZE3408E-T), assembled at the top of the testing frame, was 

utilised for pile installation at a controlled driving rate. Moreover, loads were applied 

directly to an aluminium pile cap of 20mm thickness and 150mm diameter, this was used 

to confirm that the applied loads were consistently distributed over the pile head. It is 

worth noting that specific attention was given to minimise load eccentricity, and a 

spherical ball bearing system, acts as a universal joint, was included in the loading 

mechanism and utilised on the top of the loading head to overcome eccentricity issues.  
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A data acquisition system with a resolution of 16-bit has been used to record the applied 

load and the pile head settlement during the experimental tests. The data logger contains 

an analogue to digital converter to monitor and receive the experimental signals of pile 

applied load and corresponding settlement, and an SD memory card to store the results of 

pile load tests. Then the information stored on the memory card was then transferred to a 

PC for analysis. Furthermore, two full-bridge strain gauge type displacement transducers 

of very high-resolution ±0.15 at 150mm stroke capacity were utilised to measure the pile 

settlement, as depicted in Figure 3.22. A general arrangement of the vertical loading 

apparatus is illustrated in Figure 3.2.  

 

Furthermore, a mechanical lock has been incorporated in the pile loading system (Figure 

3.23). This was designed to ensure the fixity and to ensure pile verticality without tilting 

during the installation process. Horizontal levels of the pile cap were monitored until 

reaching final effective length of penetration. For the pile settlement, two magnetic stands 

were used and secured at the sidewalls of the pile-testing chamber. This was adopted to 

hold the transducers on the top of the pile cap in pairs so that the influence of bending can 

be precisely accounted for. The piles were axially loaded with the next load applied when 

the pile settlement had stabilised.  Details of the experimental testing programme are 

summarised in Tables 3.2, 3.3 and 3.4, respectively. 
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Table 3-2: Model concrete pile specifications used in the experimental testing programme. 

Test ID Pile Slenderness 

Ratios (Lc/d) 

Diameter (mm) Sand Density Test type 

C RC1-1 12 40 loose Compression 

C RC1-2 17 40 loose Compression 

C RC1-3 25 40 loose Compression 

C RC1-4 12 40 medium Compression 

C RC1-5 17 40 medium Compression 

C RC1-6 25 40 medium Compression 

C RC1-7 12 40 dense Compression 

C RC1-8 17 40 dense Compression 

C RC1-9 25 40 dense Compression 

T RC1-1 12 40 loose Uplift 

T RC1-2 17 40 loose Uplift 

T RC1-3 25 40 loose Uplift 

T RC1-4 12 40 medium Uplift 

T RC1-5 17 40 medium Uplift 

T RC1-6 25 40 medium Uplift 

T RC1-7 12 40 dense Uplift 

T RC1-8 17 40 dense Uplift 

T RC1-9 25 40 dense Uplift 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three                                                                          Experimental Methodology 

79 

 

Table 3-3: Model steel closed-ended pile specifications used in the experimental testing 

programme. 

Test ID Pile Slenderness 

Ratios (Lc/d) 

Diameter (mm) Sand Density Test type 

C SC 1-1 12 40 loose Compression 

C SC 1-2 17 40 loose Compression 

C SC 1-3 25 40 loose Compression 

C SC 1-4 12 40 medium Compression 

C SC 1-5 17 40 medium Compression 

C SC 1-6 25 40 medium Compression 

C SC 1-7 12 40 dense Compression 

C SC 1-8 17 40 dense Compression 

C SC 1-9 25 40 dense Compression 

T SC 1-1 12 40 loose Uplift 

T SC 1-2 17 40 loose Uplift 

T SC 1-3 25 40 loose Uplift 

T SC 1-4 12 40 medium Uplift 

T SC 1-5 17 40 medium Uplift 

T SC 1-6 25 40 medium Uplift 

T SC 1-7 12 40 dense Uplift 

T SC 1-8 17 40 dense Uplift 

T SC 1-9 25 40 dense Uplift 
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Table 3-4: Model steel open-ended pile specifications used in the experimental testing 

programme. 

Test ID Pile Slenderness 

Ratios (Lc/d) 

Diameter (mm) Sand Density  Test type 

C SO 1-1 12 40 loose Compression 

C SO 1-2 17 40 loose Compression 

C SO 1-3 25 40 loose Compression 

C SO 1-4 12 40 medium Compression 

C SO 1-5 17 40 medium Compression 

C SO 1-6 25 40 medium Compression 

C SO 1-7 12 40 dense Compression 

C SO 1-8 17 40 dense Compression 

C SO 1-9 25 40 dense Compression 

T SO 1-1 12 40 loose Uplift 

T SO 1-2 17 40 loose Uplift 

T SO 1-3 25 40 loose Uplift 

T SO 1-4 12 40 medium Uplift 

T SO 1-5 17 40 medium Uplift 

T SO 1-6 25 40 medium Uplift 

T SO 1-7 12 40 dense Uplift 

T SO 1-8 17 40 dense Uplift 

T SO 1-9 25 40 dense Uplift 
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Figure 3-21: Illustrates the load-cell clibration process. 
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Figure 3-22: Details of pile settlement instrumentation and recording system.  
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3.6 Characterisation of Concrete Mix  

The concrete mix design for the model concrete piles has been formulated to determine 

the optimum water-cement ratio (w/c) for the concrete model piles using the compressive 

strength of concrete cubes(𝑓𝑐
′). The aggregate mixture gradation of the coarse and fine 

fractions were within the zone of 1-7mm and 0-3mm, respectively. The concrete utilised 

to formulate the piles has been prepared from Portland cement type II (CEM-II), coarse 

Figure 3-23: Details of the aluminium pile cap used in the loading system. 
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aggregate, fine aggregate, super-plasticiser, and water using the concrete mixture 

proportions summarised in Table 3-5. It should be noted that the maximum size of the 

coarse aggregate specimen is recommended to be one fifth of the smallest concrete 

structural element (Kosmatka and Panarese, 1994). In this context, the maximum size of 

the aggregate utilised in the concrete mixture was 7mm, which is less than the critical 

value (8mm) for a pile with 40mm diameter. This mix design was chosen to establish 

good workability and compaction of the concrete. Concrete cube specimens with 

dimensions of (150 x 150 x 150)mm have been prepared to determine the concrete 

strength development (BSI, BS EN 12390-2:2009). The concrete specimens were 

demoulded after 24 hours and then cured in water and tested at different curing times of 

7, 21, and 28 days (see Table 3-5).  

 

The concrete compressive strength was determined by applying a 0.2 MPa/s loading rate 

using the controls of compressive strength testing machine as shown in Figure 3.24. The 

concrete mixture was prepared using a Hobart concrete mixer according to the 

requirement identified by BSI (BS EN 196-1:2005) for concrete cube preparation. The 

concrete model piles were prepared using a new adjustable mould with inside dimensions 

of 40 x 40mm as revealed in Figure 3.25. The adjustable lengths of 530mm, 730mm and 

1050mm, respectively were devised according to the concrete pile effective length.  
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Table 3-5: Mix proportions and strength development of the concrete used in the experimental 

programme. 

Material Mix proportions (kg/m3) Compressive strength (MPa) 

Portland cement (CEM-II)  450 𝑓𝑐−7
′  21 

Coarse aggregate 1050 𝑓𝑐−21
′  37 

Fine aggregate  850 𝑓𝑐−28
′  41 

Super-plasticiser 3.4   

Water 165   

 

 

 

 

Figure 3-24: Concrete compressive strength apparatus. 
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3.7 Structural Fibres 

This section describes the characterisation of the fibres used within the concrete mix 

design of the model piles. The concrete pile cross sectional dimensions were 40mm x 

40mm with different pile embedment lengths, measuring 480mm, 680mm and 1000mm. 

However, two types of new fibres were used, as illustrated in Figure 3.26, and were 

investigated using different volume fractions to select the optimum percentage, increase 

the concrete performance, and to reduce the need for shear reinforcement. Additionally, 

these offer three-dimensional reinforcement, increase pile ductility, and overcome the 

limitations of casting such as concrete segregations associated with the casting of small 

concrete model piles. Details of the used fibres are summarised in the following sections. 

 

Figure 3-25: Concrete pile casting.  
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3.7.1 Macro Synthetic Structural Fibres (SF) Type 1 

It is well documented, by many scholars, that adding structural fibres at a specific volume 

fraction as reinforcement in a concrete mix, significantly enhance the mechanical 

properties of the concrete materials (Akdag and Özden, 2013; Mahmud et al., 2013). 

Randomly distributed fibres can offer a solution to low impact energy resistance and 

concrete cracking problems. Indeed, fibres increase the concrete energy absorption, and 

improve the flexural strength of the reinforced concrete pile since the applied fibres play 

a key role in delaying crack development (Baran et al., 2012).  

 

In this study, two types of new SFs were utilised in different volume fractions and adopted 

to reduce the need for shear reinforcement. These fibres also offer three-dimensional 

concrete pile reinforcement and enhance the pile resistance to different types of loading 

systems by increasing the concrete ductility and its overall durability. They deliver high 

performance, cost savings, as well as health and safety advantages. The fibres have 

varying lengths ranging from 48mm up to 55mm with 0.7mm diameter, thus creating an 

improved reinforced concrete pile over the use of conventional fibres. Table 3.6 presents 

the chemical and physical properties of the fibres being used.  
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Table 3-6: Properties of the SF structural fibres used in the pile reinforcement. 

Fibre property Value Tolerance Remarks 

Fibre length, (mm) 48-55 +/-2 mm EN 14889-2 

Equivalent diameter, (mm) 0.7 +/-0.03 mm EN 14889-2 

Slenderness ratio 69 +/-7 mm EN 14889-2 

Shape  Embossed 

elongated design 

  

Absorption rate, % 0   

Specific gravity, 𝐺𝑠 0.905   

Electrical conductivity, (S/mm) 0   

Colour White   

Tensile strength, (MPa) 417 -31 MPa EN 14889-2 

Elastic modulus, (MPa) 5740 -574 MPa EN 14889-2 

Chloride content 0   

 

3.7.2 Micro Synthetic Structural Fibres (XT) Type 2 

Micro synthetic (XT) fibre is the second type of the structural fibres that have been used 

in this research study. Using XT fibre leads to enhanced concrete durability and surface 

properties. This fibre is used as alternative to an air entraining agent (AEA), with a 

percentage of 1% of concrete volume, to increase the concrete’s resistance to the effect 

of freeze/thaw as well as to enhance the abrasion resistance of concrete in areas where 

high levels of chlorides will be encountered. Micro Synthetic (XT) fibre properties are 

illustrated in Table 3.7. 
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Table 3-7: Properties of the XT structural fibres that can be used as AEA. 

Fibre property Value 

Material 100% Virgin Polypropylene 

Fibre Length Blended 

Density, kg/m3  910 

Absorption rate, % 0 

Ignition Point, c˚ 365 

Electrical Conductivity, (S/mm) Low 

Design Monofilament 

Melt Point, c˚ 160 

Acid Resistance High 

 

 

 

 

 

Figure 3-26: Optimisation process of macro Synthetic structural fibres (SF) type 1 and Micro 

synthetic structural fibre (XT) type 2. 
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Furthermore, a series of flexural strength tests were conducted on beams with dimensions 

of 40 x 40 x 160mm. In total, forty-two rectangular simply supported concrete beams 

were tested using a three point loading configuration to provide a view of load-

deformation distribution in the mid-section of the sample beams. The optimisation 

process involved different volume fractions, using Equation 3.3, ranging from 0.5, 0.75, 

1, 1.25, 1.5 and 1.75% with 0 percent as a reference control as shown in Figure 3.27. The 

structural fibre was added continuously using dry-batch weights. Moreover, first crack 

strength, stress-strain behaviour and post cracking response were examined throughout 

the testing programme.  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∗ 𝑤𝑎𝑡𝑒𝑟 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 
 

(3.3) 

 

The experimental tests were run according to BSI (BS EN 12390-5:2009). It should be 

noted that the experimental testing programme was performed using a Tinius Olsen (TO) 

machine testing implementing the controlled displacement method as shown in Figure 

3.28. Three beams and cubes were tested at a curing ages of 7 and 28 days. For the sake 

of brevity, the results of the crack propagation and the load-deflection behaviour of 

structural fibre reinforced concrete beams in comparison to plain concrete are shown in 

Figure 3.29. Figure 3.29 denotes a comparison between the average load-deflection 

results of structural fibre reinforced concrete (FRC) beams and plain concrete.  

 

The results revealed that increasing the fibre percentage leads to an increase in the 

cracking energy capacity from 3200N to up to 5000N. In addition, the initial failure point 

“first crack” was about similar for all of the investigated mix proportions. However, the 
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presence of fibres distributes the crack propagation after the first crack has appeared 

influencing the recovery and the ability to resist a higher applied load compared to the 

initial failure point. The use of the SFs had a remarkable influence in transforming the 

concrete mechanical properties from brittle to ductile behaviour. This was illustrated by 

the first failure crack being produced at lower loads (around 4010N) than subsequent 

cracks, reaching just over 5000N at deflection of 3.4mm in the optimised case of 1.25% 

as this fibre percentage represents the optimum fibre percentage that leads to ultimate 

applied load with remarkable energy absorption.  

 

 

 

Figure 3-27: Casting process of RC beams using structural fibres (SF & XT). 
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Figure 3-28: Beam testing setup using a Tinius Olsen testing machine. 
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3.8 Summary 

This section of the chapter described, in detail, the techniques that were used in the testing 

programme. It is intended to provide the reader with a concise illustration of the 

experimental methodology used in this study.  

The overall pile testing system comprised of the following items as listed below: 

 Pile testing calibration chamber. 

 The testing frame. 

Figure 3-29: Shows the load-deflection results for the concrete beams reinforced with 

structural fibres at different volume fractions. 
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 Pile driving system (double acting hydraulic ram). 

 Loading mechanism system. 

 Data acquisition system (recording data logger system with a 16-bit resolution). 

 Characterisation of the sand used throughout the testing programme. 

 Model piles (pile geometry, pile materials, and pile penetration length). 

The dimensions of the pile-testing chamber were decided according to the soil effective 

stress zone from the foundation edge and it within the standard criteria (see section 3.2). 

The testing system also involved measurements located at the pile cap (i.e. displacement 

transducers) and a load cell type (DBBSM S-Beam). A 16-bit resolution data acquisition 

unit was utilised to record the applied load and associated pile head settlement. Moreover, 

details of the model piles testing were given in Table 3.2. Information regarding the sand 

properties and preparation methods of sand densities were summarised and discussed in 

section 3.3. Through the direct shear box testing, it has been proven that the sand-sand 

angle of friction, the peak friction angle, and the sand-pile interface friction angle depends 

primarily on the sand density. Regarding the use of two types of structural fibres, details 

in section 3.7. The utilisation of structural fibres has been proven to be advantageous in 

the concrete model piles as it significantly improves the shear strength behaviour and 

indeed promotes economy, since fibre reinforced concrete could be designed with 

minimum shear enforcement. The results of the load-deflection flexural tests confirmed 

that fibre inclusion in concrete at 1.25% by concrete volume could be recommended as 

the optimum fibre percentage that substantially increased the flexural strength of the 

concrete beam when compared to non-reinforced beams. 
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Results and Discussion: Load-Settlement Curves for Precast Concrete, 

Steel Closed-ended and Steel Open-ended Piles Subjected to 

Compression Loads   

 

4.1 Introduction 

This chapter presents and discusses the experimental results of the pile-load tests along 

with the predicted results using the LM training algorithm. In addition, comparisons have 

been made between the employed training algorithm with the results of experimental pile 

load-test, and with those specified by a number of conventional methods. A 

comprehensive statistical analysis study for the dataset gathered from the experimental 

testing programme is also presented and discussed. The results of load distribution curves 

are clearly summarised in three phases; series (i) presented and discussed the results of 

the precast concrete piles along with the modelling and statistical approach, series (ii), 

and series (iii) show the graphical results of the of the steel closed-ended piles and steel 

open-ended piles compared with the computational methods. Additionally, details of the 

Levenberg-Marquardt (LM) model development, along with the assessment of the 

relative importance “Beta values”, the statistical significance “Sig values” study are also 

presented and discussed. To evaluate and verify the efficiency of the introduced approach, 

comparisons have been made between the results of the employed training algorithm with 
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experimental pile load-test values, and with those specified by a number of conventional 

methods as detail in the following headings. 

 

4.2 Development of the Trained LM Model for Model Piles Subjected to 

Compression Loads 

One of the primary aims of this study is to develop and train a reliable predictive model 

using the LM algorithm to fully capture the pile load-settlement response with high 

efficiency. As mentioned previously, the proposed training algorithm  is a data driven 

computing tool, which, could be used when the relationship between model input and 

output parameters is complex (Nguyen-Truong and Le, 2015). In addition, the LM 

algorithm has the ability to capture the nonlinear functions, and apply the substantial 

computer capacity to implement extremely iterated work (Yadav et al., 2014). Interest in 

the use of the computational intelligence has been steadily increasing in the last few years 

(Zhou et al., 2017). It should be stressed that one of the obvious advantages of the LM 

method is that no training internal parameters are required to be modified during and after 

the training process. This avoids many difficulties and barriers noted in the use of the 

classical algorithms such as the slow rate of convergence, adjusting learning epochs, 

learning rate and local minima (Deo and Şahin, 2015). In addition, the LM algorithm has 

been certified to be a faster training algorithm in comparison to other conventional 

machine learning algorithms. Therefore, it has been considered as a superior data-driven 

algorithm to provide accurate solutions for complex non-linear problems such as the one 

considered in the current study.  
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In the current study, supervised LM algorithm trained via Multilayer Feed-forward Back 

propagation has been developed and applied. This sort of ANNs comprises of fully 

interconnected parallel neurons or processing elements (PEs), which are connected in 

three layers, following the order: the input layer, the hidden layer(s) and finally the output 

layer(s), as described in Figure 4.1. One fact of significant importance is that, the 

optimum configuration of these layers is identified utilising a number of steps. More 

specifically, these phases can be summarized as:  (i) the number of model input 

parameters, (ii) the optimum number of hidden layers, (iii) the number of model outputs, 

(iv) the number of processing elements  (PEs), (v) the measuring performance indicators, 

(vi) type of the activation function (linear and/or nonlinear). One of the most important 

features, which plays a key role in the performance of the proposed training algorithm is 

the type of training algorithm (Xu et al., 2017). Indeed, after the configuration of the 

model, there are other important aspects that must be clearly defined such as a function 

of normalisation, and the method for dataset division in an attempt to avoid over fitting 

and to ensure good generalization ability of the trained network (Hagan et al., 1996). 

 

The aforementioned parameters are presented and discussed as follows: 

(i) The number of model input parameters:  Identification of the most effective input 

parameters has been stated by many scholars to play a substantial role in the 

efficiency of the developed network (Mohammadi et al., 2016). In the present 

research, a comprehensive statistical analysis has been carried out in order to 

categorise the most significant input parameters that influence the model output 

as well as the contribution level of each IV, based on certain conditions 

recommended by Pallant (2011). It is worth noting that the statistical analysis was 
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performed using SPSS-24 software. More details about the model input 

parameters and the statistical significance of each model parameter are given in 

sections 4.2.1 and 4.2.2. 

(ii) The optimum number of hidden layers: The selection of the optimal number of 

the nodes or neurons is vital to a successful training process as the trained LM 

algorithm is sensitive to this number. If the number of neurons in the hidden layer 

is less than the required limit, the network is too parsimonious in the utilisation of 

its parameters, consequently the algorithm performance could deteriorate below 

that of the applicable number. Whereas, if the number of the neurons is excessive, 

there is danger of over fitting with no substantial improvement during the training 

process (Abdellatif, 2013). Following the data pre-processing, the optimal 

structure of the LM model has been selected at a topology of 5:10:1 (input 

parameters: number of hidden neurons in one hidden layer: output layer). 

Therefore, in this study, the developed network was trained with a single hidden 

layer, as illustrated in Figure 4.2. The choice was according to the fact that the 

reliability of such an ANN model has been well documented in several relevant 

studies (Mareš et al., 2016; Jebur et al., 2018b).  

(iii)The number of outputs: In this study, one output was selected in the trained 

network. 

(iv) The number of processing elements (PEs): A neuron receives input signals 

(𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, … . . 𝑥𝑖

𝑛) from adjacent or an external source a neuron and transforms 

them to an output signal via a transfer function. 10 neurons were used to correlate 

the nonlinear functions between the input and output layer. This optimum number 

of neurons was selected by minimizing the error percentage on a testing dataset 

using a trial-and-error method  (Stojanovic et al., 2016).  
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(v) Measuring performance indicators:  The accuracy indicators of the trained LM 

algorithm were firstly assessed during the learning or training process. The 

optimum model performance was statistically evaluated utilising the following 

metric skill indicators with a minimum error between the target and predicted 

values. The Mean square error (MSE), correlation coefficients (R and p), and root 

mean square error (RMSE) functions are determined via Equations 4.1, 4.2, and 

4.3. The aforementioned statistical indicators were used in this study, as they are 

the main standards that are frequently utilised to measure the network 

performance (Nejad and Jaksa, 2017; Erdal, 2013). The RMSE is the most 

common measure of error. It has the particular merit that small errors receive less 

attention than large errors (Jebur et al., 2018a). The optimum value of the 

correlation coefficient (R) is unity, which indicates that a perfect consistency is 

achieved between the measured and the predicted values (Alkroosh et al., 2015).  

 

𝑀𝑆𝐸 = √
1

𝑁
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1

𝑁
 ∑ |𝑇𝑖 − 𝑃𝑖|

𝑛

𝑖=1
 

 (4.3) 

 

in which N denotes the number of the dataset; 𝑇𝑖  and 𝑃𝑖  are the targeted and 

computational values; �̅� and �̅� are the mean of the predicted and targeted values; R is the 

correlation coefficient. 
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(vi) Type of activation function: Activation or transfer functions to simulate nonlinear 

relationships are necessary for transferring weighted sums from each processing 

element to processing elements in the next layer. In this study, tangent-sigmoid 

the “tansig” transfer function is applied in the hidden layer and a linear “purelin” 

function is employed in the output layer, this is in agreement with an earlier study 

(Deo et al., 2017). 

(vii) The training algorithm: The supervised, self-tuning LM training algorithm was 

applied to train the developed network. This training algorithm is one of the fastest 

back-propagation algorithms and is highly recommended as the first choice of 

supervised algorithm. One of the distinctive features of this approach is the high 

rate of convergence of the constructed model (Sollazzo et al., 2017; Jebur et al., 

2018b). In addition, this method is normally applied to get a quick learning time 

and high generalisation ability has been recommended (Stojanovic et al., 2016). 

To this end, the LM training algorithm was used in the present study. Moreover, 

the employed algorithm is that it is self-tuning (does not comprise user dependent 

parameters at each application) as well as being certified to be 10 to 100 times 

faster and a more stable training algorithm in comparison to other conventional 

machine learning algorithms (Wilamowski and Yu, 2010). 

(viii) The function of normalisation: data normalisation, through which the IVs and the 

target attain values within the range (0,1), is advisable in system modelling to 

smooth the data, and to get a suitable rate of convergence (Gong and Ordieres-Meré, 

2016).   As part of this process, for each parameter with minimum and maximum 

values of 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛, the definition of the “normalised value” (𝑥𝑖
𝑛𝑜𝑟𝑚) can be 

evaluated using Equation 4.4. 
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𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑥𝑖(𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 (4.4) 

 

(ix)  Data division: the total number of training datasets has a substantial influence on 

the robustness of the trained network (Stojanovic et al., 2016). The size of the 

training cluster is recommended as ranging between 60% and 80% of the total 

dataset by many scholars (Jaeel et al., 2016; Moayedi and Rezaei, 2017; Kumar 

and Basudhar, 2018). In the context of this research, the total dataset values were 

randomly divided into three main clusters; comprising of training 70%, testing at 

15% and validation at 15%. The training subset goal is to determine the network 

strength by updating the connections weights and biases values during the learning 

process. The testing subset was located to check the reproducibility and the 

generalisation ability of the proposed algorithm. It should be noted that the testing 

dataset was not involved during the training and it is usually used to evaluate the 

reliability of the algorithm being trained (Millie et al., 2012; Sun et al., 2014). 

Finally, the cross-validation subset was piloted to assess the model performance, 

and to terminate the process of learning to avoid over fitting at a minimum value 

of the mean square error (MSE) (Tarawneh, 2017).   
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4.2.1 Model Input and Output 

Identifying the most influential factors affecting pile bearing capacity and settlement is 

important in order to accurately develop a reliable model (Yadav et al., 2014). Introducing 

a large number of input parameters to any ANN model contributes in increasing the 

required data size to efficiently estimate the appropriate connection weights and decreases 

the connection speed (Maier and Dandy, 2000). Most of the traditional approaches 

comprise (i) pile material; (ii) pile geometry; (iii) applied load and (iv) properties of the 

soil. In this research, an innovative statistical significance analysis using multiple 

regression technique (MRT) was developed to select the most effective parameters and 

to underline the contribution of each IV to the dependent output. This technique has been 

utilised because it has many merits (Hashim et al., 2017a). For instance, it has the ability 

to explore the relationship between one IV to a set of independent variables (IVs) (Hashim 

et al., 2017c). However, based on the aforementioned method, five factors, for all model 

piles were considered to play a substantial role in pile settlement, with a statistical 

significance (Sig.) value of < 0.05, matching the statistical criteria (Field, 2008; Pallant, 

2011). These parameters are (i) applied load (P), (ii) pile slenderness ratios (Lc/d), (iii) 

pile axial rigidity (EA), (iv) pile embedded length (Lc) and (v) the sand-pile interface 

friction angle (δ). EA was included in the model input parameters since it affects the 

Figure 4-1: Topology of the trained LM model. 
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results of the model output as demonstrated in the statistical analysis. In addition, the 

parameter EA has been identified to play a key role on pile settlement (see section 2.6).   

 

 

 

 

4.2.2 Statistical Significance of Independent Variables (IVs) 

The level of contribution or strength of each of the independent variables (IVs) to the 

model output has been ascertained by calculating the relative importance parameter, or 

Beta value. Statistically, the closer to 1.0 the absolute Beta value is, the more significant 

the impact of that IV on the model being developed (Pallant, 2011; Hashim et al., 2017b).  

Tables 4.1, 4.2 and 4.3 display that the applied load and the sand-pile interface friction 

angle have been identified as making high contributions to the model output. While, the 

Figure 4-2: Sketch of the optimised ANN topology. 
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results demonstrated that pile slenderness ratios, pile length, and axial rigidity made a 

lesser contribution to the model output. 

 

4.2.3 Outliers  

An outlier can be defined as a case with such an extreme value for one variable (a 

univariate outlier) or strange combinations of scores on two or more variables 

(multivariate outlier) that it statistically distorts the model (Tabachnick and Fidell, 2013; 

Hashim et al., 2017b). The model generalisation ability can be highly influenced by the 

presence of such extreme points (Hashim et al., 2017c). Therefore, all IVs and dependent 

variables (DVs) must be statistically screened before the process of training. Based on the 

statistical criteria suggested by Tabachnick and Fidell (2013), the presence of outliers can 

be identified using the Mahalanobis distance (MD) value. In this study, the maximum 

MDs must be less than the critical value 20.52 as given in Table 4.4 (the maximum limit 

for five IVs (Pallant, 2011). For the experimental dataset, the highest MDs for the 

concrete piles dataset was found to be 22.83, which is higher than the values as given in 

Table 4.1. To check whether this exerts any influence on the results of the LM training 

algorithm as a whole, Tabachnick and Fidell (2013) recommended to calculate the 

Cook’s Distance (COO_1). In any case, with COO_1 greater than 1.0 there is a 

potential problem. The statistical analysis results demonstrated that the Cook’s 

Distance (COO_1) for the described point was found at 0.00344, which confirmed 

that the output results would not be influenced. For the steel closed-ended dataset, 

the max MD was determined at 21.48, while the Cook’s Distance (COO_1) value for 

this point was found at 0.00911, which is less than the critical value. However, the 

presence of this point in the experimental data set will not influence the efficiency 
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of the proposed model. Furthermore, for steel open-ended piles, the maximum MD 

was 17.63, which confirmed the absence of outliers in the observations being studied.   

 

Table 4-1: Results of the statistical analysis for concrete piles. 

IVs Beta. value MDs COO_1  

Applied load (𝑃) 0.787 22.83 0.00344 

Sand-pile angle of interface friction (δ) 0.613   

Axial rigidity (EA) 0.02   

Slenderness ratio (Lc/d) 0.139   

Pile length (L) 0.101   

 

Table 4-2: Results of the statistical analysis for steel closed-ended piles. 

IVs Beta. value MDs COO_1  

Applied load (𝑃) 0.840 21.48 0.00911 

Slenderness ratio (Lc/d) 0.238   

Axial rigidity (EA) 0.015   

Pile length (L) 0.026   

Sand-pile angle of interface friction (δ) 0.718   

 

Table 4-3: Results of the statistical analysis for steel open-ended piles. 

IVs Beta. value MDs 

Applied load (𝑃) 0.804 17.63 

Sand-pile angle of interface friction (δ) 0.711  

Axial rigidity (EA) 0.015  

Slenderness ratio (Lc/d) 0.119  

Pile length (L) 0.088  
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Table 4-4: Illustrates critical values of the MDs. 

Number of model 

input parameters 

Critical value of 

MDs  

Number of model 

input parameters 

Critical value of 

MDs 

2 

3 

4 

13.82 

16.27 

18.47 

5 

6 

7 

20.52 

22.46 

24.32 

 

4.2.4 Data Size 

The dataset size must be calculated in order to develop the best relationship between the 

IVs and the model output, and to obtain an efficient model performance (Pallant, 2011; 

Hashim et al., 2017c). For the five input parameters, according to the following formula 

(4.5), the minimum dataset size required to train the LM algorithm is 90 (Tabachnick and 

Fidell, 2013). In this study, the total number of recorded points form the experimental 

pile-load tests used to run the LM training algorithm are 254, 277 and 274 for concrete, 

steel closed-ended and steel open-ended piles, respectively. A summary of the statistical 

parameters for the training, testing and validation dataset, used to develop and train the 

LM for concrete, steel closed and open-ended piles subjected to compression loads, are 

given in Tables 4.3, 4.4, and 4.5, respectively. 

 

𝑁 > 50 + 8 ∗ 𝐼𝑉𝑠 (4.5) 

 

where N and IVs denote the required size of the sample and number of independent factors 

to perform the LM training algorithm. 
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Table 4-5: Statistical characterisation of testing, training, and validation dataset for concrete piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 6.782 25 1 47.2 36 14.416 

Min. 0.001 12 0.48 47.2 28.8 0.002 

Mean 2.13 17.28 0.72 47.2 26.26 6.14 

S.D.* 1.85 1.34 0.21 0.00 1.11 4.52 

Range 6.781 2.08 0.52 0.00 7.2 14.415 

Testing 

Set 

Max. 6.67 25 1 47.2 36 14.218 

Min. 0.001 12 0.48 47.2 28.8 0.003 

Mean 1.83 16.735 0.70 47.2 25.40 6.25 

S.D.* 1.93 1.365 0.22 0.00 1.128 4.52 

Range 5.67 13 0.52 0.00 7.2 14.215 

Validati

on Set 

Max. 6.73 25 1 47.2 36 14.30 

Min. 0.131 12 0.48 47.2 28.8 0.065 

Mean 2.39 18.06 0.68 47.2 26.32 7.13 

S.D.* 1.94 1.348 0.22 0.00 1.12 4.19 

Range 6.6 13 0.52 0.00 7.2 13.235 

*Standard deviation 
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Table 4-6: Statistical characterisation of testing, training, and validation dataset for steel closed-

ended piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 4.426 25 1 251.18 19 14.461 

Min. 0.001 12 0.48 251.18 17 0.0015 

Mean 1.454 17.01 0.711 251.18 17.91 6.097 

S.D.* 1.363 1.345 0.211 0.00 1.05 4.591 

Range 4.425 2.08 0.52 0.00 2 14.49 

Testing 

Set 

Max. 4.350 25 1 251.18 19 14.215 

Min. 0.193 12 0.48 251.18 17 0.022 

Mean 0.683 18.323 0.767 251.18 17.783 5.860 

S.D.* 1.260 1.369 0.226 0.00 1.044 4.586 

Range 4.349 13 0.52 0.00 2 14.192 

Validati

on Set 

Max. 3.660 25 1 251.18 19 13.861 

Min. 0.084 12 0.48 251.18 17 0.002 

Mean 1.275 17.35 0.724 251.18 17.827 5.727 

S.D.* 1.098 1.347 0.213 0.00 1.049 4.521 

Range 3.576 13 0.52 0.00 1.117 13.814 

*Standard deviation 
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Table 4-7: Statistical characterisation of testing, training, and validation dataset for steel open-

ended piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 4.260 25 1 251.18 19 14.450 

Min. 0.002 12 0.48 251.18 17 0.002 

Mean 1.251 17.17 0.717 251.18 17.91 5.952 

S.D.* 1.202 1.342 0.210 0.00 1.04 4.435 

Range 4.458 13 0.52 0.00 2 14.448 

Testing 

Set 

Max. 4.256 25 1 251.18 19 14.353 

Min. 0.002 12 0.48 251.18 17 0.0165 

Mean 1.233 17.24 0.724 251.18 17.836 6.207 

S.D.* 1.342 0.138 0.226 0.00 1.047 4.665 

Range 4.254 13 0.52 0.00 2 14.336 

Validati

on Set 

Max. 4.261 25 1 251.18 19 14.180 

Min. 0.211 12 0.48 251.18 17 0.449 

Mean 1.240 17.365 0.725 251.18 17.827 7.011 

S.D.* 1.118 1.352 0.216 0.00 1.049 4.609 

Range 4.050 13 0.52 0.00 1.117 13.731 

*Standard deviation 

 

4.3 Performance Analysis of the LM Algorithm for Concrete Model Piles 

Embedded in Loose, Medium and Dense Sandy Soil. 

This part of the study details the results of the experimental versus predicted pile load-

displacement and the criteria used to evaluate the performance of the proposed model. 

The measuring accuracy of the trained LM algorithm was firstly assessed during the 

learning process. To design and evaluate an optimal network topology, different statistical 

performance indicators were applied, for instance mean square error (MSE), coefficients 
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of determination (R and p) and root mean square error (RMSE). They are considered as 

the main standards that are widely utilised to measure the network performance (Ahmadi 

et al., 2016; Zhang et al., 2016; Nejad and Jaksa, 2017; Erdal, 2013). However, the 

performance of the LM algorithm for each predictive model (concrete piles, steel closed-

ended piles and steel open-ended piles) has been evaluated as clearly explained in the 

following sections:   

 

4.3.1 Concrete Piles under Compression Loads 

Understanding the analytical mechanism during the training process is vital for successful 

modelling. For this aim, the stages of testing, learning, and validation in model should be 

clearly described. Figure 4.3 shows the procedure of training LM through the 

aforementioned three stages. The results illustrated that the training process terminated 

when the validation errors number exceeded the allowed numbers, which were 6 

sequential errors. As the learning process completed, there was a point considered by the 

network as the “optimal point”. At this point, although the values of training and testing 

errors are declining, the validation value increases from that point on. Hence, such points 

could be considered best validation performance; there the value of the MSE is 0.0025.  
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Furthermore, the corresponding change of gradient and the Marquardt adjustment factor 

(mu), play a significant role in reduction the mean square error percentage. As revealed 

in Figure 4.4, the gradient error decreases and reaches 0.004. Notably, the mu factor is 

decreased to negligible value (1x10e-05) after a few epochs and the validation check 

increases to 6 at an epoch of 221. Moreover, Figure 4.5, presents the error histogram (EH) 

plot to obtain additional efficiency validation of network performance. The EH can also 

give an indication of outliers “data features that appears to be inconsistent with other 

subsets observations” (Yadav et al., 2014). Additionally, the conclusions drawn from the 

LM algorithm can be greatly affected by the presence of outliers (Tabachnick and Fidell, 

Figure 4-3: Performance plot of the LM algorithm for concrete developed model during the 

training process. 
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2013; Hashim et al., 2017a). Thus, the training process is stopped once the validation 

error starts to increase. Moreover, it can be shown that the majority of data coincides with 

zero error line in the two central bins (-0.003 and 0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Gradient and maximum validation checks for the LM trained network. 



Chapter Four                                                                                   Results and Discussion 

113 

 

 

 

 

 

4.3.2 Measured Versus Predicted Pile Load Tests for Concrete Piles Subjected to 

Compression Load 

The results of the experimental load-settlement tests and the predicted outcome using an 

evolutionary LM algorithm for the concrete model piles subjected to compression loads 

are discussed in this section. A series of experimental pile load tests were performed on 

model concrete piles. The testing programme consisted of three piles with slenderness 

ratios (Lc/d) of 12, 17 and 25 with square sections of 40mm to examine the behaviour of 

rigid and flexible piles. In total, 254 points were recorded from the experimental pile-load 

test data using a P3 strain indicator. Figures 4.6, 4.7, and 4.8 exhibit the extent of the 

match between the experimental and predicted load-carrying capacity of concrete piles 

Figure 4-5: Plot of error histogram (EH) for the LM algorithm. 
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subjected to axial load at different steps of mechanical loading. The pile load-settlement 

results are idealistic for pile foundations subject to axial mechanical loads, i.e., reducing 

from pile head to pile toe due to the increase in the developed shaft resistance and the 

point bearing. It is noteworthy that the plastic mechanisms involved in the effective soil 

surrounding the pile are the leading cause for the non-linearity of the load-settlement 

curves. The results revealed that the increase in the pile capacity could be clearly 

pronounced with an increase in the pile embedment length and sand stiffness. This is 

probably associated with an increase in the point bearing and the overburden pressures 

that lead to an increase in the mobilised skin friction resistance developed between soil-

pile interactions in the adjoining zone of influence. As can be observed, the pile load 

carrying capacity behaviour exhibits a noticeable elastic response in the initial stages of 

loading until approximately 300N, 500N, and about 1000N in loose, medium, and dense 

sand. In addition, soil-yielding effect is clearly marked with increasing applied load, i.e., 

for a pile tested in loose sand, the effect of soil yielding can be underlined within the 

applied load ranges from 300 to 425N, 550 to 700N, and 725 to 950N for model piles in 

loose sand with Lc/d of 12, 17, and 25. The associated pile settlement decreases until 

reaching a maximum capacity at about 10% of the pile diameter following the pile load 

test failure criteria reported in BSI (BS EN 8004:1986).   

 

Moreover, Figures 4.6 and 4.7 report the results of the load carrying capacity of model 

piles embedded in medium and dense sand. Similarly, an obvious elastic response can be 

seen in the initial stages of applied load until the pile settlement level is about 2.5% of the 

pile diameter. Beyond this settlement level, the foundation responses become non-linear, 

due to the occurrence of the plastic mechanism in the surrounding sand effective zone. 

With increasing values of applied load, the rate of pile settlement substantially increases 
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before excessive settlement at approximately constant at loads of 1050, 1400, and over 

2000N for piles embedded in medium sand and about 3200, 4400, and 6250N for piles 

with slenderness ratios of 12, 17, and 25 driven in dense sand. According to the graphical 

comparisons, for loose sand, the predicted results are slightly underestimated for the pile 

load-settlement curves in the case of pre-yield working settlement. It is apparent from the 

results that there is excellent fit between the proposed computational intelligence 

approach and targeted values in post-yield pile load tests responses (often the most 

important component for practicing engineers) This is supported with a correlation 

coefficient of 0.99 for all data, therefore it is plausible to conclude that the training 

algorithm is a reliable method to predict load-settlement curves. 
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Figure 4-6: Comparison between measured versus predicted pile load-displacement tests 

for concrete piles embedded in loose sand. 
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Figure 4-7: Comparison between measured versus predicted pile load-displacement tests for 

concrete piles embedded in medium sand. 
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The regression calibration plot for the training, testing and validation of all datasets to 

compare the measured and predicted pile settlement values, are illustrated in Figure 4.9. 

The points in all subdivisions (training, testing and validation) are located close to the 

best line of equality (Output = A x Target + C), where “A” and “C” are constant 

parameters, with high coefficients of determination of 0.99139, 0.98565, 0.98819 and 

0.9908, for training, validation, testing and all data,   
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Figure 4-8: Comparison between measured versus predicted pile load-displacement tests for 

concrete piles embedded in dense sand. 
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Moreover, the performance of the LM algorithm is further examined graphically using 

the testing dataset as shown in Figure 4.10. It should be pointed out the testing dataset 

was not involved during the training process (Millie et al., 2012). It is normally used to 

evaluate the generalisation ability of the trained network (Sun et al., 2014). Thus, the 

testing dataset has been utilised to plot a regression calibration curve between measured 

versus predicted results, with a 95% confidence interval (CL) level of fit. According to 

Figure 4-9: Regression graphs of the experimental results versus predicted pile settlement for 

concrete pile subjected to compression load.   
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the results, significant agreement can be  observed between the measured versus predicted 

values with low scatter around equality line, with an RMSE and correlation coefficients 

(R and p) of 0.0478, 0.988, and 6.28 *10-31, which confirms that the LM trained network 

has the ability to successfully reproduce the results of the experimental pile settlement 

with high consistency. 

 

 

 

 

 

 

Figure 4-10: Calibration plot of the resulting model for the testing dataset at a 95% confidence 

interval (CI). 
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4.3.3 Comparison between the LM Optimum Model with the Various Traditional 

Methods for Concrete Piles 

The full behaviour of pile load settlement needs to be well predicted, the geotechnical 

engineering can then, based on the applied load, be used to decide the ultimate capacity 

and comply with the structure serviceability and integrity requirements. Indeed, accurate 

simulation of the full pile-settlement curve necessitates thorough understanding of the 

soil-pile interaction (i.e., soil stress history, concentration of stresses and problem 

boundary conditions), which is complex and difficult to quantify (Comodromos et al., 

2009). However, for simplification purposes and by necessity, several hypotheses and 

arbitrary assumptions associated with a significant set of parameters that govern pile 

capacity and associated settlement, have been assumed.  This has resulted in the fact that 

the majority of current approaches fail to achieve the required levels of accuracy with 

respect to  pile bearing capacity and the associated settlement (Momeni et al., 2014).   

 

In this section, the reliability and the validity of the proposed method has been further 

checked after plotting the experimental results of the pile-load carrying capacity with the 

predicted results obtained from most traditional methods proposed by: Poulos and Davis 

(1980); Vesic (1977) and Das (1995) (see section 2.6 for more details). The comparative 

study results in Figures 4.11 and 4.12 clearly indicate that the predicted settlement using 

LM training algorithm is in remarkable agreement with the line of best fit. The predicted 

values proposed by Vesic and Poulos and Davis method are at the bottom of the list of 

performance with the later having the poorest quality of prediction accuracy, therefore, 

they need to be updated, if employed, in future application. Moreover, the comparison 

study also documented that the convergence rate for the applied algorithm is noticeably 



Chapter Four                                                                                   Results and Discussion 

121 

 

higher than the conventional methods, which confirms the feasibility of the LM training 

algorithm. 
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Figure 4-11: Profiles of measured versus predicted pile settlement for the proposed LM training 

algorithm compared with other methods for concrete piles. 
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4.4 Factors Affecting Pile Capacity for Concrete Piles Subjected to Compression 

Load 

The results of the load-carrying capacity discussed in section 4.3.2 provide an insight into 

pile capacity and allows the determination of the ultimate pile bearing capacity. Pile point 

bearing resistance and the developed skin friction resistance have been cited to play a key 

role on the total pile bearing capacity (Tomlinson and Woodward, 2014). In this section, 

the ultimate axial capacities for model concrete piles subjected to compression load were 

identified. The ultimate pile load capacity was determined from the load-displacement 
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Figure 4-12: Applied load versus measured and predicted settlements for concrete piles using 

the optimal trained model of the proposed LM algorithm with other methods. 
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curves as the point when the pile continues to displace with no or very small additional 

applied load (post yield response), or the slope of the load displacement curves reached 

zero or sustained a minimum value (Jeffrey, 2012). In Figure 4.13 it can clearly be seen 

that the ultimate bearing capacity increases with an increase in the sand relative density 

and the pile embedment lengths. It is worth noting that the concrete pile square profile 

used in this study was 40mm (greater than the required pile diameter condition reported 

by Vesic (1977). For a pile slenderness ratio of 12, the ultimate axial capacity for a pile 

tested in dense sand is about 2 times for a pile embedded in medium sand and almost 6 

times that found in loose sand. While for piles with slenderness ratio of 17, the ultimate 

capacity for a pile tested in dense sand is about three times that found in medium sand 

and 6 times in dense sand. Furthermore, for piles with Lc/d = 25, the pile ultimate capacity 

is about 1.75 in medium sand and 6 times in case of dense sand. This can be attributed to 

an increase in the pile stresses distribution around the pile, which, indeed, has a substantial 

effect on the pile shaft resistance in the radial effective zone and the end bearing resistance. 

The aforementioned results are consistent with studies such as Shanker et al. (2007). 
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4.5 Performance Analysis of the LM Algorithm for Steel Closed-ended Model Piles 

Embedded in Loose, Medium and Dense Sandy Soil 

This part of the study is devoted to the performance of the LM training parameters to 

correlate pile load-settlement based on steel closed-ended piles driven in sandy soil under 

compression loads. As previously mentioned, the topology of the model consisted of three 

processing layers (input layer, hidden layer and output layer). Those processing elements 

or layers are a means of learning and describing the optimum network patterns controlling 

the dataset on which the model was constructed. Different performance indicators are 

available in the open literature. To overcome the highlighted barriers, the efficiency of 
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Figure 4-13: Plot shows ultimate pile capacity profile versus pile slenderness ratio for concrete 

piles. 
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the optimal model was statistically assessed using the performance parameters as 

summarised in section 4.3. 

 

4.5.1 Steel Closed-ended Piles Subjected to Compression Loading 

The performance of the trained LM network for steel closed-ended piles under training is 

displayed in Figure 4.14, the results revealing that the plot of validation depicts a 

substantial fall in minimum mean square error (MSE) with increasing iteration. The 

optimum network performance was identified with a relatively negligible MSE of 0.0029 

at an epoch of 215. It can also be indicated that the training automatically stopped after 6 

constitutive error, to avoid over fitting, once the cross-validation error started to increase, 

this can also be defined as early stopping criteria to avoid over fitting phenomena. 

Figure 4-14: Performance plot of the LM algorithm for steel closed-ended developed model 

during the training process. 
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The variation in error gradient, the Marquardt adjustment parameter (mu) and the 

validation checks for the model of steel closed-ended piles are show in Figure 4.15. It can 

be demonstrated that the gradient error reached a minimum value at 0.00039 at an 

iteration of 221, while the mu factor and the validation check numbers are 1x10-05 and 6, 

respectively. Moreover, the error histogram (EH) values  were plotted out against the 

instances in Figure 4.16. The residual plot shows normal distribution of error. It is worth 

pointing out that a normal distribution leads to Gaussian curve, with highest point in the 

middle. The analysis of the EH shows that more than 90% of the errors between the bins 

(-0.0148 and 0.0015).  

 

 

Figure 4-15: Gradient and maximum validation checks for the LM trained network. 
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4.5.2 Measured Versus Predicted Pile Load Tests for Steel Closed-ended Piles 

Subjected to Compression Loads 

In this section, the experimental and the predicted load carrying capacity results are 

compared along with the regression results as presented. A series of experimental pile 

load tests were carried out on steel, closed-ended pile models. The experimental testing 

programme used three piles with slenderness ratios (Lc/d) of 12, 17 and 25 where Lc is 

the effective pile length with a diameter (d) of 40mm, to examine the behaviour of rigid 

and flexible piles. 277 points in total were recorded from the experimental pile load test 

data, which used a P3 strain indicator with 16-bit data resolution as illustrated in the 

experimental setup (section 3.2). The pile head settlement was closely monitored using 

Figure 4-16: Plot of error histogram (EH) for the LM algorithm. 
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two full bridge strain gauge type transducers, with a 50mm stroke capacity.  Figures 4.17, 

4.18 and 4.19 report the extent of the fit between the experimental and predicted 

normalised load-carrying capacity of steel piles, subject to axial loads at different stages 

of mechanical loading. The results show that the elastic response can be seen in the early 

stages of running the pile load test until about 200, 450, and 800N for piles tested in loose, 

medium and, dense sand, respectively.  The results also demonstrated that a soil yielding 

effect for axial applied loads greater than the aforementioned values was identified in the 

upper part of the foundation, where local nonlinearity is marked. It can be observed that 

the mobilised pile bearing capacity (end bearing and mobilised skin friction resistance) 

increases as sand stiffness and pile effective length increase. Plastic mechanisms in the 

soil surrounding the pile are the leading cause for the non-linearity of the load-settlement 

response; as the applied load increases, the pile response shows nonlinearity until 

reaching a maximum capacity at about 10% of pile diameter (BSI, BS EN 8004:1986). 

Based on the graphical comparisons, there was an excellent fit between the proposed LM 

training algorithm and targeted value, with a correlation coefficient of 0.988 for all data, 

which demonstrates that the applied algorithm is a reliable method to use to predict pile 

load-settlement curves for the range being investigated.  

 

 



Chapter Four                                                                                   Results and Discussion 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 100 200 300 400 500 600 700

N
o

rm
al

is
ed

 P
ile

 D
is

p
la

ce
m

en
t

P
ile

 V
er

ti
ca

l S
et

tl
em

en
t,

 (
m

m
)

Pile Applied Load, (N)

LM Model, (lc/d=12) Steel Closed-ended Pile, (lc/d=17)

LM Model, (lc/d=17) Steel Closed-ended Pile, (lc/d=25)

LM Model, (lc/d=25) Steel Closed-ended Pile, (lc/d=12)

Figure 4-17: Comparison between measured versus predicted pile load-displacement tests for 

steel closed-ended piles embedded in loose sand. 
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Figure 4-18: Comparison between measured versus predicted pile load-displacement tests 

for steel closed-ended piles embedded in medium sand. 
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The robustness of the LM algorithm has been further examined graphically by comparing 

the experimental and simulated pile settlement as shown in the following scatter plot. As 

can be seen in Figure 4.20, the introduced training algorithm, at topology of 5:10:1 for 

input layer, number of neurons and output layer, satisfies the robustness test. All the 

measured and predicted points are matched well with the target  values and close to the 

best-fit line with correlation coefficients of 0.99088, 0.98436, 0.9854 and 0.98861 for 

training, validation, testing and all data, thus substantiating the application of the LM 

algorithm as an effective predictive tool. 
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Figure 4-19: Comparison between measured versus predicted pile load-displacement tests for 

steel closed-ended piles embedded in dense sand. 
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Moreover, the reliability of the adopted algorithm has also been explored graphically, as 

highlighted in Figure 4.21. The testing dataset “unseen data set ” has been used to test the 

generalisation ability of the employed algorithm (Mareš et al., 2016). It is worth noting 

that the regression calibration curve depicting actual versus predicted values was plotted 

using a newly developed MATLAB code, (see Appendix III), with a 95% confidence 

interval level. It can be concluded that substantial agreement can be seen between the 

measured versus predicted set, with correlation coefficients R = 0.984 and Pearson’s 

moment correlation coefficient = 8.73x10-32 and an RMSE of 0.059, respectively. 

 

Figure 4-20: Regression graphs of the experimental results versus predicted pile settlement for 

steel closed-ended pile subjected to compression load.   
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4.5.3 Comparison between the LM Optimum Model with the Various Traditional 

Methods for Steel Closed-ended Piles 

Pile bearing capacity and associated settlement can be accurately determined by 

conducting in-situ pile-load tests. Being time consuming and with the cost considerations 

involved in the construction process, pile bearing capacity and settlement can be 

determined using many empirical approaches as detailed in section 2.6. With the aim of 

further exploring the validity of the proposed approach, Figures 4.22 and 4.23 characterise 

graphical comparisons between the predicted and measured values of pile settlement 

using an actual pile load carrying capacity and those estimated by most traditional 

Figure 4-21: Calibration plot of the resulting model for the testing dataset at a 95% confidence 

interval (CI). 
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methods. The comparative results indicated that pile settlement predicted using the LM 

training algorithm are in good agreement as per the fitted line, suggesting that the 

application of the LM optimal model is a high-precision tool with obvious advantages. 

Additionally, the results demonstrated that the predicted values using Vesic model grossly 

overestimated the experimental pile load test. On the other hand, the predicted values 

using Poulos and Davis underestimate the results of the pile load test, while it can be seen 

that the model proposed by Das failed to gain continuous success to capture the full 

response of pile load-settlement, therefore, most accurate.  
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Figure 4-22: Profiles of measured versus predicted pile settlement for the proposed LM training 

algorithm compared with other design methods for steel closed-ended piles. 
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4.6 Factors Affecting Pile Capacity for a Steel Closed-ended Pile Subjected to 

Compression Load 

In this part of the study, the increase in the ultimate pile load capacity with different 

relative densities of sand is clearly illustrated (post yield response). pile capacity can be 

defined as the pile capacity being reached when the slope of the load displacement curves 

reaches zero or sustains a minimum value (Institution of Civil Engineers, 2007). The 

ultimate axial capacities for steel closed-ended piles subjected to compression load were 
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Figure 4-23: Applied load versus measured and predicted settlements for steel closed-ended 

piles using the optimal trained model of the proposed LM algorithm with other methods. 



Chapter Four                                                                                   Results and Discussion 

136 

 

determined from pile load-displacement curves, as presented in Figure 4.24. With 

reference to the graphical comparisons, it can be clearly seen that the ultimate pile 

capacity increases with the increase in the sand relative density and the length of 

embedment. The results revealed that the pile ultimate capacity with a slenderness ratio 

Lc/d=12, in loose sand was 325N. While the maximum pile capacity is almost doubled 

for medium sand. In sharp contrast to that for piles penetrated in dense sand, the pile 

bearing capacity has been found to be several times higher than the results of pile bearing 

capacity for loose and medium sand. 

 

Moreover, for a pile with length-to-diameter ratio of 17, the pile ultimate capacity in 

dense sand is about 6 times higher than the result for loose sand and about 3 times higher 

than the pile capacity in medium sand. The pile ultimate capacity with Lc/d=25 for dense 

sand is just under 4 and 8 times higher than the results of the medium and loose sand, 

respectively. This can probably be assigned to an increase in the sand stress distribution 

due to the increase in the radial effective stress from their initial values around the pile, 

which, indeed, has a substantial effect on the pile shaft resistance (𝑞𝑠) and also the end 

bearing resistance (𝑞𝑏). 
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4.7 Performance Analysis of the LM Algorithm for Steel Open-ended Model Piles 

Embedded in Loose, Medium and Dense Sandy Soil 

This section of the thesis presents and discusses the performance of the trained LM 

algorithm using the standard measuring performance indicators; mean square error (MSE), 

correlations coefficients (R and p) and root mean square error (RMSE). Furthermore, a 

comparison between the measured, the computational values and the results of those 

given by the most traditional methods to simulate pile load-settlement has also been 

conducted. The results of targeted versus predicted behaviour of pile load carrying 

capacity for steel open-ended piles along with the factors affecting pile bearing capacity 

were also presented and discussed.  
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Figure 4-24: Plot shows ultimate pile capacity profile versus pile slenderness ratio for steel 

closed-ended piles. 
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4.7.1 Feasibility of the LM Trained Model for Steel Open-ended Piles under 

Compression Load 

As demonstrated previously, the evolving LM algorithm as a regularisation back 

propagation scheme was considered to train and develop the network due to its superiority 

over the conventional methods.  The network convergence plot during the learning 

process has been shown in Figure 4.25. It should be noted that the network topology that 

provided the lowest MSE in the independent cross-validation sub-set was identified as an 

optimal network (Nguyen-Truong and Le, 2015). The plot of convergence reveals that 

the best performance occurs at 389 epochs and that the training was terminated, at the 

best network performance, with a relatively insignificant MSE of 0.0019.  

 

Moreover, the distribution of the error gradient, the Marquardt adjustment factor (mu) 

and the validation check number are revealed in Figure 4.26. It can be demonstrated that 

the gradient error was 0.0001, while, the mu factor and the validation check were 1x10-6 

and 6 at an epoch of 395, respectively. A more informative picture of the network profile 

can be seen in the error histogram (EH), as in Figure 4.27. It is worth noting that the 

performance of the proposed algorithm can be extremely affected by the presence of 

outliers. Thus, the training process is stopped once the validation error starts to increase. 

In addition, it can be shown that the majority of data coincides with the zero error line, 

which was specifically targeted.  
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Figure 4-25: Performance plot of the LM algorithm for steel open-ended developed model 

during the training process. 
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Figure 4-26: Gradiant and validation checks for the LM trained network. 
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4.7.2 Measured Versus Predicted Pile Load Test for Steel Open-ended Piles 

Steel open-ended piles are extensively used in preference to closed-ended piles in hard 

soils, in an effort to facilitate the installation the penetration process to achieve the desired 

length (Fattah and Al-Soudani, 2016). Although many studies have been conducted 

concerning the pile bearing capacity of pipe piles, design approaches determining the 

shaft resistance developed along the length of the embedment pile rely heavily upon 

empirical correlations (Gavin and Gallagher, 2005).  In addition, the utilisation of 

empirical design approaches to fully simulate the pile-load settlement have been 

documented as inaccurate due to many assumptions introduced in the interpretation of the 

pile bearing capacity.  

Figure 4-27: Error histogram of training, testing and validation. 
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In this part of the study, the series of experimental pile-load carrying capacity tests for 

model steel open-ended piles embedded in sandy soil are clearly presented and discussed 

as can be seen in Figures 4.28, 4.29 and 4.30, respectively. The results of the pile-load 

tests indicate that the pile bearing capacity increased with the increase in the sand relative 

density and the pile-penetrated length. This can be attributed due to an increase in the skin 

friction resistance and the point bearing developed within the contacted soil in the 

effective zone. Figure 4.28 reports the distributions of the measured versus predicted load 

carrying capacity at different stages of compression loading. The monitored axial applied 

load and the corresponding settlement is idealistic for canonical a pile foundation under 

compression loads, for instance, decreasing from the head of the pile to pile toe as a 

consequence of the mobilized shaft resistance, which is developed between pile-soil 

interaction in the effective soil zone. The results revealed that an obvious elastic branch 

is pronounced in the initial stages of the applied until a clear soil plastic response at axial 

applied loads of 200, 275, and 350 N for piles with Lc/d of 12, 17, and 25, respectively. 

It is noteworthy that the soil yielding influence for loads larger than 200 to 230 N, 275 to 

315 N, and 350 to 410 N can be clearly noticed in the foundation upper part, where 

nonlinearity is marked.  

 

The results also demonstrated that as the mechanical applied loads increase, the pile 

foundation behaviour becomes more nonlinear due to the presence of the plastic 

mechanisms within the soil effective zone. Pile ultimate capacities of 240, 325, and 415 

N were found according to the failure criteria at 10% of pile diameter characterised by 

BSI (BS EN 8004:1986). Figures 4.29 and 4.30 illustrate the results of load-settlement 

distribution of model pile driven in medium and dense sand. Similarly, clear elastic 

responses can be seen in the initial stages of applied load until the pile settlement is around 
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3% of pile diameter. Besides, as the load increases, the foundation responses become 

more nonlinear, due to the existence of the plastic mechanism. As mentioned previously, 

ultimate pile capacities of about 600, 750, and 1000 N for piles tested in medium sand 

and 1900, 2800, and 4000 N for piles embedded in dense sand were demonstrated. Based 

on the graphical comparisons between the measured and the predicted values, the results 

established that there was an excellent correlation between the experimental and 

computational pile load-test results, with a correlation coefficient of 0.986 for all datasets, 

which verified that the LM trained algorithm employed, could efficiently predict the pile 

load-settlement behaviour with substantial accuracy. 
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Figure 4-28: Comparison between measured versus predicted pile load-displacement tests 

for steel open-ended piles tested in loose sand. 
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Figure 4-29: Comparison between measured versus predicted pile load-displacement tests 

for steel open-ended piles tested in medium sand. 
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To through more sight into the efficiency of the proposed self-tuning LM model, a more 

informative figure concerning the correlation between the measured and the 

computational values including; validation, training, testing and all data can be observed 

in the regression chart (Figure 4.31). The analysis demonstrated that a linear relationship 

can be seen with correlation coefficients of 0.990, 0.987, 0.980 and 0.986, respectively, 

substantiating that the newly implemented LM algorithm is a promising data-driven tool 

and has the ability to successfully learn up to 99% of the measured values. 
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Figure 4-30: Comparison between measured versus predicted pile load-displacement tests 

for steel open-ended piles tested in dense sand. 
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Additionally, the implemented algorithm efficiency has been further examined, as 

emphasised in Figure 4.32. Based on the result of the scatter curve between targeted 

versus predicted values, significant agreement can be seen, with a coefficient of 

determination (R) and root mean square error (RMSE) of 0.980 and 0.065 with a 

relatively insignificant Pearson’s moment correlation coefficient (p) = 3.95x10-29.  

Figure 4-31: Regression graphs of the experimental versus predicted pile settlement for steel 

open-ended pile subjected to compression load.   
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4.7.3 Comparison between the Trained LM Model with Traditional Design 

Methods for Steel Open-ended Piles 

A structure’s stability and safety relies largely on accurate assessment of the pile bearing 

capacity and associated settlement. Thus, several experimental and numerical methods 

have been performed to explore the behaviour of pile load-settlement. As stated 

previously, steel open-ended piles are normally utilised to facilitate the pile installation 

process and to increase soil bearing capacity in preference to closed-ended piles (Lehane 

and Gavin, 2001). Therefore, precise assessment of the bearing capacity of a single pile 

is an important aspect and plays a key role in the pile foundation design process. However, 

Figure 4-32: Calibration plot of the resulting model for the testing dataset at a 95% confidence 

interval (CI). 
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pile bearing capacity and associated settlement design procedures have traditionally been 

carried out separately. Moreover, it has been claimed by Fellenius (1989) that “…the pile 

allowable load should be governed by a combined approach considering pile settlement 

and soil resistance intemperately acting together and influencing the value of each other.” 

On the basis of illustration for pile settlement determination, Poulos and Davis (1980); 

Vesic (1977) and Das (1995) demonstrated that the elastic settlement could contribute the 

major part of the final pile settlement. Moreover, for piles penetrated in sandy soil, elastic 

settlement accounts for the total final settlement (Murthy, 2002).  

 

The reliability of the suggested approach has been further studied by comparing the 

experimental results of the pile-load settlement with the predicted results and comparing 

with most of the traditional methods proposed by: Poulos and Davis (1980); Vesic (1977) 

and Das (1995). The comparative study results, Figures 4.33 and 4.34 clearly  illustrate 

that the predicted settlement using the LM training algorithm is in significant agreement 

with the best fitted-line (45°), and propose that the proposed model for steel open-ended 

piles can be implemented as an efficient highly reliable method for modelling load-

settlement response with high levels of accuracy. Comparing the outcome of the LM 

model with the conventional design procedures (Figure 4.34), it can be realised that the 

level of convergence for the suggested approach is remarkably better than the proposed 

conventional methods.  
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Figure 4-33: Profiles of measured versus predicted pile settlement for the proposed LM 

training algorithm compared with other design methods for steel open-ended piles. 
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4.8 Ultimate Bearing Capacity of a Steel Open-ended Pile under Compression 

Loads 

The total ultimate capacity for a model pile subjected to compression loading can be 

developed from the combination of the end bearing and the skin friction resistance 

mobilised within the contacted soil. For steel open-ended piles, it has been reported by 

Hight et al. (1996) that the static axial capacity of a plug of sand with slenderness ratio in 

excess of 10 is large. The axial capacity for steel open-ended piles subjected to 

compression load was determined from pile load-displacement curves as presented in 
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Figure 4-34: Applied load versus measured and predicted settlements for steel open-ended 

piles using the optimal trained model of the proposed LM algorithm with other methods. 
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Figure 4.35. With the reference to the normalised pile load-settlement, as would be 

anticipated, it can be observed that the ultimate pile capacity increases with the increase 

in the pile penetration length and the sand relative density. For model piles penetrated in 

dense sand with a slenderness ratio (Lc/d) equal to 12, the ultimate pile capacity is about 

3 and 8 times in comparison to the ones penetrated in medium and loose sand. Moreover, 

for a pile with length-to-diameter ratio of 17, the pile ultimate capacity in dense sand is 

about 4 times the result for medium sand and about 9 times higher than the pile capacity 

in loose sand. 

 

Furthermore, for a model pile with length-to-diameter ratio of 25, the ultimate pile 

capacity in dense sand is about 4 times higher than the result for medium sand and about 

8 times higher than the pile capacity in loose sand. It is worth pointing out that the ultimate 

pile bearing capacity for steel open-ended (low-displacement) piles is less in comparison 

to the steel closed-ended and concrete piles. This can be assigned to the fact the radial 

effective stress distribution for steel closed-ended and precast concrete piles is higher than 

that for steel open-ended piles, suggesting that, as would be expected, the driving process 

of the open-ended piles does not considerably alter the initial sand relative density (Jeffrey, 

2012). 
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4.9 Summary 

The results of the experimental pile load-settlement behaviour and the predicted values 

using the LM training algorithm performed on precast concrete piles, steel closed-ended 

and steel open-ended piles penetrated in three sand relative densities, covering loose, 

medium and dense under compression loads have been clearly presented and discussed 

throughout this chapter. Additionally, the feasibility of an evolutionary, self-tuning LM, 

enhanced by a comprehensive statistical analysis, to capture the full response of pile were 

also discussed. However, a summary of the findings can be found below: 

 The optimum structure of the ANN model was found at a topology of 5:10:1 with 

a tangent sigmoid “tansig” transfer function between the input and hidden layer 

and linear “purelin” transfer function between the hidden and output layers. 
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Figure 4-35: Plot shows ultimate pile capacity profile versus pile slenderness ratio for steel 

open-ended piles. 
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 The statistical analyses suggest that the most influential parameters on the pile 

load-settlement curves, at different statistical significance level, are the pile 

applied load, P and the sand-pile interface friction angle, δ. Conversely, pile 

slenderness ratio, Lc/d, pile axial rigidity, EA and pile effective length, Lc have 

been identified to have least impact on the pile settlement. 

 The adopted LM algorithm has several favourable features (i.e. generalisation 

ability, efficiency and ease of application), fast teaching speed since locally tuned 

neurons, and the learning process takes place without jumping over the best 

solution, which make it the first choice to model the complex nonlinear systems. 

 The ultimate pile bearing capacity for concrete piles was found to be higher than 

the ultimate capacity for both steel open-ended and steel closed-ended piles. This 

can be attributed to the contribution of the higher skin friction resistance for 

concrete piles. 

 To further reveal the applicability of the LM algorithm, a graphical comparison 

was made between the applied algorithm and conventional methods. Based on the 

outcomes, the newly developed approach is superior to the traditional empirical 

relationships as confirmed by the performance skills metric, which reveals the 

suitability of the algorithm and its potential in future applications.   

 The graphical comparison results also revealed that the analytical methods 

suggested by Poulos and Davis (1980) and Das (1995) tend to underestimate the 

pile bearing capacity. In addition, the method offered by  Vesic (1977) is at the 

bottom of the list of performance with the later having the poorest quality of 

prediction among the rest of the design methods. 
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Results and Discussion: Load-Settlement Behaviour for Precast 

Concrete, Steel Closed-ended and Steel Open-ended Piles Subjected to 

Uplift Loads 

 

5.1 Introduction 

On the basis of describing the findings of the experimental and predicted load-

displacement curves, this chapter comprises the results of the experimental pile-load tests 

for different types of model piles tested in sand, covering three relative densities of loose, 

medium, and dense sand. Details about the pile types, pile materials and cross-sectional 

dimensions are described in section 3.5. Each load-settlement response for the various 

types of model piles was modelled using the LM algorithm. It is worth noting that the 

data screening process allowed evaluation of the dataset being studied. These dataset 

screening test results were also utilised to check the dataset size condition and detection 

of outliers. Additionally, statistical analyses were used to identify the relative importance 

and the statistical significance of each model input parameter on the model output.  

 

As shown in the previous chapter, the uplift pile-load carrying capacities are clearly 

summarised in three phases, phase (i) revealed the results of the precast concrete piles 

along with the modelling approach for each pile slenderness ratio and sand relative 
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density. Series (ii) shows the results of the steel closed-ended piles, which were compared 

with the predicted results, and finally series (iii) indicates the results of the steel open-

ended piles, which were also compared with the modelled pile load tests.  

 

5.2 The LM Training Algorithm for Modelling Load-settlement Response of Piles 

Subjected to Uplift Loads 

This part of the chapter describes the performance of the LM algorithm used in the 

modelling of load-displacement tests for model piles subjected to uplift loads. As 

mentioned previously, one of the obvious advantages of the introduced method is that no 

training parameters are required to be adjusted for the trained algorithm, thus avoiding 

many difficulties and limitations associated with the use of the traditional artificial 

intelligence methods such as convergence issues, and local minima (Deo and Şahin, 2015). 

In addition, the LM algorithm has been identified as the most efficient approach and is 

well documented as achieving a much higher performance by making training faster, 

more reliable, stable and converging more often than other artificial intelligence methods 

(Abdellatif, 2013; Jebur et al., 2018b). Details of the LM algorithm model developments, 

dataset pre-processing and statistical analyses are summarised in the following sub-

headings.  

 

5.2.1 Model Input and Output 

Field (2008) claimed that any IV with statistical significance “Sig.” value greater than 

0.05 can be ignored form the input space as it has no potential significant influence on 

the suggested model output. As stated previously (section 4.2.1), based on the statistical 

analysis investigation, five IVs have been identified as the most influential input 

parameters affecting pile settlement. These factors were applied load, P, pile slenderness 
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ratio, Lc/d, pile axial rigidity, EA, pile effective length, Lc and the sand-pile angle of 

friction, δ as revealed in the statistical analyses (Tables 5.1, 5.2, and 5.3).  As with the 

model used in the compression pile-load tests, the optimal structure of the LM trained 

network has been found at structure of 5:10:1. The database values were also normalised, 

as this step is important in order to get high network performance, as detailed in section 

4.2.1.  

 

5.2.2 Statistical Analyses and Dataset Pre-processing 

Introduction of the statistical analyses on the studied data highlights the significance of 

each IV on the model output. Tabachnick and Fidell (2013) demonstrated that the 

experimentally gathered dataset must be evaluated and passed through different steps to 

develop a reliable database for the applied algorithm. Therefore, the total dataset was 

accurately screened to determine the relative importance “Beta.” value, the size of the 

data and to explore and detect the presence of outliers.  

 

Statistically, any IV with a relative importance “Beta.” value close to one means this 

parameter exerts a high contribution level to the model output (Pallant, 2011; Hashim et 

al., 2017b; Hashim et al., 2017a).  Results of the statistical analyses are presented in 

Tables 5.1, 5.2 and 5.3. According to the Beta values, the applied load and the sand-pile 

angle of interface friction for concrete and steel closed-ended pile models have been 

acknowledged to play a significant role in the model output. Whereas, for steel open-

ended piles, the applied load and the pile slenderness ratio were identified to play the 

highest level of contribution over the five IVs. 
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5.2.3 Data Size Condition  

The condition of the dataset size must be satisfied in order to develop a reliable model 

with high performance (Faber et al., 2011; Pallant, 2011). Tabachnick and Fidell (2013) 

documented that, by recalling Equation 4.4, for the five input parameters, the minimum 

dataset required to develop the model must be 90. In the present study, the dataset number 

for each model (concrete pile, steel closed-ended and steel open-ended) the total number 

of the recorded points from the experimental pile-load tests used to train the trained model 

were 290, 265 and 266, respectively. Therefore, the dataset condition has been met. A 

summary of the main statistical parameters for the training, testing and validation dataset, 

used to develop and train the LM for concrete, steel closed and open-ended piles subjected 

to uplift loads, are specified in Tables 5.4, 5.5, and 5.6, respectively. 

 

5.2.4 Outliers  

The model’s generalisation ability can be highly influenced by the presence of such 

extreme points (Hashim et al., 2017c). Therefore, all datasets must be statistically tested 

and evaluated before being processed. According to  the statistical criteria suggested by 

Pallant (2011), the presence of outliers can be detected using the Mahalanobis distances 

(MDs) indicator (see section 4.2.2). In the present model, the maximum MD must be less 

than 20.52, which is the critical value  for five IVs (Pallant, 2011). For model concrete 

and steel closed-ended pile statistical models, the MDs were determined at 25.705 and 

27.01, for one point only, these values are higher than the acceptable limit as defined 

previously. To explore whether this point has an influence on the model, Tabachnick and 

Fidell (2013) suggested to calculate the Cook’s Distance (COO_1), as any case with 

COO_1 greater than 1.0 may influence the results of the model output. Tables 5.1 and 5.2 

illustrate that the Cook’s Distance (COO_1) values for both statistical models are less 
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than 1.0, which confirmed that the model efficiency was not influenced by the presence 

of one extreme value only. In addition, for model steel open-ended pile statistical model, 

Table 5.3 reveals that the maximum detected MD was within the acceptable limit, which 

indicates the data reliability.  

 

Table 5-1: Statistical analyses results for the concrete pile model.  

IVs Beta. value Maximum detected MDs COO_1  

Applied load (𝑃) 0.505 25.705 0.0034 

Sand-pile angle of interface 

friction (δ) 

0.401   

Axial rigidity (EA) 0.013   

Slenderness ratio (Lc/d) 0.068   

Pile effective length (Lc) 0.179   

 

Table 5-2: Statistical analyses results for the steel closed-ended pile model. 

IVs Beta. value Maximum detected MDs COO_1  

Applied load (𝑃) 0.817 27.011 0.018 

Sand-pile angle of interface 

friction (δ) 

0.568   

Axial rigidity (EA) 0.009   

Slenderness ratio (Lc/d) 0.205   

Pile effective length (Lc) 0.118   

 

Table 5-3: Statistical analyses results for the steel open-ended pile model. 

IVs Beta. value Maximum detected MDs 

Applied load (𝑃) 0.545 15.211 

Sand-pile angle of interface friction (δ) 0.471  

Axial rigidity (EA) 0.006  

Slenderness ratio (Lc/d) 0.700  

Pile effective length (Lc) 0.431  
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Table 5-4: Statistical characterisation of testing, training, and validation dataset for concrete piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 1.115 25 1 47.2 36 14.439 

Min. 0.017 12 0.48 47.2 28.8 0.0045 

Mean 0.381 17.084 0.714 47.2 26.216 6.930 

S.D.* 0.297 1.346 0.212 0.00 1.126 4.383 

Range 1.097 13 0.52 0.00 7.2 14.434 

Testing 

Set 

Max. 1.116 25 1 47.2 32.5 14.328 

Min. 0.070 12 0.48 47.2 28.8 0.045 

Mean 0.392 18.245 0.760 47.2 26.563 6.078 

S.D.* 0.290 1.345 0.215 0.00 1.128 4.291 

Range 1.045 13 0.52 0.00 3.7 14.28 

Validati

on Set 

Max. 1.117 25 1 47.2 36 13.898 

Min. 0.076 12 0.48 47.2 28.8 1.05 

Mean 0.427 17.958 0.751 47.2 26.22 7.22 

S.D.* 0.329 1.362 0.222 0.00 1.125 4.21 

Range 1.040 13 0.52 0.00 7.2 12.848 

*Standard deviation 
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Table 5-5: Statistical characterisation of testing, training, and validation dataset for steel closed-

ended piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 0.497 25 1 251.18 19 14.40 

Min. 0.0001 12 0.48 251.18 17 0.001 

Mean 0.186 17.489 0.731 251.18 17.95 6.580 

S.D.* 0.139 1.351 0.216 0.00 1.049 4.468 

Range 0.4969 2.083 0.52 0.00 2 14.399 

Testing 

Set 

Max. 0.4975 25 1 251.18 19 14.152 

Min. 0.0001 12 0.48 251.18 17 0.0005 

Mean 0.1961 17.35 0.724 251.18 18.04 6.277 

S.D.* 0.147 1.341 0.210 0.00 1.048 4.825 

Range 0.497 13 0.52 0.00 2 14.151 

Validati

on Set 

Max. 0.476 25 1 251.18 19 13.604 

Min. 0.001 12 0.48 251.18 17 0.002 

Mean 0.718 17.325 0.718 251.18 17.985 5.862 

S.D.* 0.114 1.309 0.194 0.00 1.051 4.317 

Range 0.475 13 0.52 0.00 1.117 13.602 

*Standard deviation 
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Table 5-6: Statistical characterisation of testing, training, and validation dataset for steel open-

ended piles. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

angle, δ° 

Settlem

ent, 

(mm) 

 

Training 

Set 

Max. 0.635 25 1 251.18 19 14.913 

Min. 0.015 12 0.48 251.18 17 0.021 

Mean 0.198 17.457 0.730 251.18 17.936 6.147 

S.D.* 0.172 1.355 0.217 0.00 1.048 4.466 

Range 0.620 13 0.52 0.00 2 14.448 

Testing 

Set 

Max. 0.6348 25 1 251.18 19 14.2705 

Min. 0.031 12 0.48 251.18 17 0.1085 

Mean 0.207 17.956 0.741 251.18 17.804 8.2963 

S.D.* 0.191 1.289 0.186 0.00 1.049 4.3544 

Range 0.6038 13 0.52 0.00 2 14.162 

Validati

on Set 

Max. 0.6326 25 1 251.18 19 14.35 

Min. 0.0205 12 0.48 251.18 17 0.0055 

Mean 0.1952 16.618 0.699 251.18 18.017 6.835 

S.D.* 0.1650 1.3761 0.226 0.00 1.052 4.671 

Range 0.6121 13 0.52 0.00 1.117 14.344 

*Standard deviation 

 

5.3 Feasibility of the LM Algorithm for Modelling Load-displacement Behaviour of 

Concrete Model Piles Penetrated in Loose, Medium and Dense Sandy Soil 

Subjected to a Wide Range Uplift Loading 

The experimental uplift pile-load tests along with the application of the LM algorithm to 

simulate pile settlement for different types of model piles, penetrated in sandy soil and 

subjected to uplift loading are presented and discussed in this section. The effectiveness 

of the employed algorithm of the optimal model was statistically evaluated using the skill 
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indicators listed in section 4.3, as recommended by Gordan et al. (2016). However, the 

robustness of the LM algorithm for each model subjected to uplift loads has been assessed, 

as reported in the following sections: 

 

5.3.1 Concrete Piles under Uplift Load  

The LM training scheme was applied as it has many advantages over the use of the 

conventional artificial neural network algorithms (Sharma et al., 2017). In the current 

study, the load-settlement behaviour was modelled from five easy to obtain parameters  

and using a high efficiency predictive model by adopting supervised feed-forward multi-

layer perceptron using back-propagation training techniques. The performance analyses 

results during the training process are revealed in Figure 5.1. The results revealing that 

the plot of convergence depicts a substantial fall in mean square error (MSE) when the 

number of iterations increases. It can also be shown that the training process stopped at a 

relatively negligible MSE of 0.0039 at an epoch of 125, to avoid over fitting once the 

cross-validation error started to increase; this can also be defined as early stopping criteria 

to avoid the over fitting phenomenon. Furthermore, the profile of the error histogram (EH) 

for the trained network is illustrated in Figure 5.2. The majority of the training, testing 

and validation data sub-sets coincides with the zero error line, where more than 98% of 

the errors are included in the two central bins (0.01 and -0.01).  
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Figure 5-1: Plot of the LM analyses for concrete developed model during the training process. 
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5.3.2 Measured Versus Predicted Pile Load Tests for Concrete Piles Subjected to 

Uplift Load 

The results of the measured versus predicted load carrying capacity of piles subjected to 

uplift loads are graphically presented and discussed in this section. As stated previously, 

a series of experimental pile load tests were performed on concrete piles subjected to a 

wide range of axial uplift loads. The testing programme comprised of three pile 

slenderness ratios (Lc/d) of 12, 17, and 25) tested in different relative densities of sand – 

loose, medium and dense. It can be observed that all pile load-displacement curves are 

non-linear and failed by punching shear. Moreover, the variations of the axial load along 

the pile length are typical for canonical pile foundations under axial mechanical loading 

Figure 5-2: Plot of the LM algorithm error historam. 
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systems. A visual inspection of pile load tests demonstrated that the plastic conditions 

associated with the pile-soil interface is the main cause for the non-linearity exhibited by 

the pile load-displacement curves.  

 

Figures 5.3, 5.4, and 5.5 illustrate the distribution of the axial load carrying capacity along 

the length of piles at different phases of mechanical uplift loads. It is noteworthy that a 

clear elastic behaviour can be shown in the initial stages of the applied load when the pile 

corresponding displacement reached about 1% of pile diameter. Moreover, it must be 

emphasised that the plastic mechanisms in the soil-pile interaction are the main leading 

source for the non-linearity of the load-displacement curve; as the uplift load increases, 

the soil-yielding effect can be clearly identified, where non-linearity is pronounced for 

uplift applied load ranges from 60 to 90 N, 100 to 140 N and 180 to 230 N for piles with 

slenderness ratios of 12, 17, and 25 tested in loose sand. Beyond these loads, the 

displacement increases rapidly, at approximately constant load, until reaching a 

maximum pile capacity, which equals 10% of the pile diameter, following the pile load 

test criteria designated by the BSI (BS EN 8004:1986). Figures 5.4 and 5.5 document the 

load-settlement results for the piles driven in medium and dense sand. Similarly, in the 

initial stages of the applied load, the load carrying capacity exhibits a noticeable elastic 

branch. As the range of the axial uplift applied loads increases, the non-linearity increases 

due to the existence of soil yielding, which can be seen within the range of 100 to 150 N, 

200 to 300 N and 350 to 425 N for piles driven in medium sand, and 300 to 450 N, 600 

to 750 N and 900 to 1100 N for piles embedded in dense sand. The pile load-settlement 

distributions denote excessive settlement beyond these loads, and continue to settle with 

approximately constant applied loads, indicating failure. It can also be seen that the LM 

training algorithm performs well for all model piles in different sand relative densities. In 
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addition, it is apparent from the predicted response that the LM algorithm is an efficient 

predictive tool that has the ability to fully capture the non-linear response of pile load-

displacement curves. In essence, the results show that the model performs well with a 

correlation coefficient of 0.9864 as noted for the testing datase, which verified that the 

employed LM algorithm could efficiently simulate pile load-settlement behaviour with 

obvious advantages. 
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Figure 5-3: Profiles of measured versus predicted uplift pile load tests for concrete piles 

embedded in loose sand. 
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Figure 5-4: Profiles of measured versus predicted uplift pile load tests for concrete piles 

embedded in medium sand. 
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Furthermore, regression plots between the measured and the computational values of pile 

settlement for training, validation, testing and all data of the developed model denotes 

high consistency between the measured and the predicted values (Figure 5.6) and this was 

supported by the higher correlation coefficient the lower percentage error. This could also 

indicate that the developed prediction model has a good confidence level in modelling 

the model output and gives a close approximation of actual versus predicted pile 

settlement compared to the best-fit line. 

 

0

150

300

450

600

750

900

1050

1200

1350

0 2 4 6 8 10 12 14 16

P
ile

 A
p

p
lie

d
 L

o
ad

, (
N

)

Pile Vertical Displacement, (mm)

Concrete Pile, (lc/d=17) Concrete Pile, (lc/d=12) Concrete Pile, (lc/d=25)

LM Model, (lc/d=12) LM Model, (lc/d=17) LM Model, (lc/d=25)

Figure 5-5: Profiles of measured versus predicted uplift pile load tests for concrete piles 

embedded in dense sand. 
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Moreover, the assigned testing dataset (15% of the dataset) has been applied to further 

evaluate the generalisation ability of this approach with a 95% confidence interval level. 

The advantage of the testing dataset is to check and assess the network efficiency in the 

developed model where an independent dataset cannot be afforded (Armaghani et al., 

2016). Significant consistency can be shown (Figure 5.7) between the actual versus 

Figure 5-6: Regression graphs of the experimental versus predicted pile settlement for 

concrete pile subjected to uplift load. 
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predicted pile settlement, with a correlation coefficient (R) and a root mean square error 

(RMSE) of 0.971 and 0.067. This means that the proposed model for the range of the 

dataset being studied has the capability to model pile load-settlement with a low error 

percentage. 

  

 

5.3.3 Assessment of the LM Model Performance for Concrete Piles under Uplift 

Load with the Existing Predictive Approaches 

The increasing utilisation of straight skin frictional piles to resist pull-out loads requires 

accurate evaluation of ultimate uplift capacity for cost effective and safe pile foundation 

design reasons. In this section, the efficiency of the proposed approach has been further 

Figure 5-7: Calibration plot of the resulting model for the testing dataset at a 95% 

confidence interval (CI). 
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examined by providing a comparison of LM fitting accuracy of the current study with 

unseen experimental dataset and with those obtained using the commonly applied models 

that are documented by  Meyerhof (1973), Das (1983), and Truncated cone model (see 

section 2.7), which is used by most geotechnical engineers (Shanker et al., 2007). It is 

notable that the pile ultimate uplift capacity was selected based on the pile failure criterion 

of 10% of pile diameter/cross-section (BSI, BS EN 8004:1986). The numerical 

comparative study results (Table 5.7) demonstrate the integrity and robustness of the 

proposed method as it is in good agreement with the experimental results and performs 

better than the recognised methods discussed. In addition, as depicted, the Truncated cone 

and Das models provide inaccurate prediction values for all piles slenderness ratios. As 

demonstrated numerically in Table 5.4, this study’s results revealed that the Meyerhof 

(1973) model is by far the best, giving good agreement compared to the results of the 

experimental and predicted models for all pile slenderness ratios in the described soil 

stiffness.  
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Table 5-7: Measured and predicted uplift capacity of the precast concrete piles. 

Lc/d 

ratio 

Truncated 

cone’s model, (N) 

Meyerhof’s 

model, (N) 

Das’s 

model, (N) 

Experimental 

results, (N) 

The proposed 

LM model, (N) 

Dense sand, 𝑫𝒓 (83%) 

12 

17 

25 

268 

752 

2392 

 378 

 613 

 851 

1246 

1941 

2757 

490 

750 

1100 

485 

710 

1055 

Medium sand, 𝑫𝒓 (51%) 

12 

17 

25 

183 

506 

1609 

 124 

 228 

 344 

397 

733 

1080 

160 

300 

420 

159 

295 

400 

Loose sand, 𝑫𝒓 (18%) 

12 

17 

25 

136 

369 

1174 

 143 

 117 

 184 

231 

367 

581 

90 

150 

225 

87 

140 

210 

 

5.4 Factors Affecting Pile Capacity for a Concrete Pile Subjected to Uplift Loads 

The ultimate applied load for  a concrete model pile subjected to uplift load has been 

determined with reference to the pile slenderness ratio and sand relative density  

(Institution of Civil Engineers, 2007). When a model pile is penetrated in a dry sand and 

subjected to uplift load, the major source for increasing the uplift pile capacity is the 

mobilised skin friction developed between sand and pile in the radial effective zone (Jebur 

et al., 2016). Therefore, based on a given formula (Eq. 2.3), the pile embedment length, 

sand-pile interface friction angle and the sand relative density can be considered as the 

main factors that govern the pile capacity subjected to uplift loads. 

  

The ultimate uplift pile capacity is the applied load after which the load-displacement 

response slope reaches zero or a constant value. The results illustrated that the pile bearing 
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capacity increases as the sand relative density and pile penetration length increase, as 

reported in Figure 5.8.  For a pile slenderness ratio of 12 penetrated in loose sand, the rate 

of increase in the ultimate axial capacity is about 2 times in medium sand and about 5 

times in dense sand. While, for pile slenderness ratio of 17, the pile ultimate capacity is 

about twice in medium sand and just over 7 times in dense sand. For the pile slenderness 

ratio of 25, the pile ultimate capacity is also about 2 times in medium sand and just under 

5 times higher in the case of dense sand. The reasons for this increment could be 

associated with an increase in the sand density together with the increasing overburden 

pressures in the effective radial zone, which have a significant effect on the mobilised 

pile shaft resistance.  
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Figure 5-8: Distribution of the ultimate pile capacity with pile slenderness ratio for 

concrete piles under uplift load. 
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5.5 Feasibility of the LM Algorithm to Simulate Load-displacement Response of 

Steel Closed-ended Piles Penetrated in Loose, Medium and Dense Sandy Soil 

subjected to a Wide Range of Uplift Loading  

This part of the study presents the experimental pile load-displacement curves for model 

steel closed-ended piles subjected to uplift loading system. In addition, the applicability 

of the proposed approach to model the experimental pile load-settlement is also discussed. 

The competence of the LM model was evaluated using the metric skill indicators as 

clearly reported in the previous section. For validation aspects, a comparison between the 

proposed model and the most conventional design procedures are also discussed. 

 

5.5.1 Performance Evaluation of the Proposed LM Algorithm 

Figure 5.9 reports the LM network performance analyses for steel closed-ended model 

piles under uplift loads during the training process. It should be mentioned that the 

learning process is stopped either when the number of iterations reaches its selected 

maximum value or if the prediction error between the targeted and the computational 

values reached its minimum value.  To this end, it can be realised that there is a gradual 

fall in the MSE with an increase in the iteration process and the training terminated, at a 

best performance (epoch 34), with a relatively insignificant MSE of 0.004. The error 

histogram is documented in Figure 5.10, this provides further confirmation of network 

performance and reliability of the established dataset. It can be observed that the optimal 

network performance was achieved when most of the dataset (training, testing and 

validation) fell within a relatively negligible error value between -0.011 to 0.012.  
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Figure 5-9: Plot of the LM analyses for steel closed-ended developed model during the 

training process. 
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5.5.2 Evaluation of the Experimental and the Predicted Load-settlement Response 

for Steel Closed-ended Piles Subjected to uplift Load 

Figures 5.11, 5.12 and 5.13 report the measured versus predicted pile-load tests for steel 

closed-ended model piles subjected to independent uplift loads. The results revealed that 

the mobilised uplift pile bearing capacity increases with increases in the sand stiffness 

and the overburden pressure. The graphical results demonstrated that a noticeable soil 

elastic response could be seen in the initial stages when the applied uplift axial load is 

about 20, 50, and 80 N, for piles embedded in loose, medium, and dense sand, respectively. 

Moreover, the influence of soil yielding for the applied uplift load higher than the 

aforementioned values can be clearly observed in the upper part of the foundation, where 

Figure 5-10: Histogram of error during the training, testing and validation. 
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non-linearity is marked. When the applied uplift load increases, the non-linearity 

associated with the foundations is substantially increased until reaching a maximum pile 

capacity. This can probably be attributed to the effect of plastic mechanisms occurring 

within the effective soil-pile interaction . To give a suitable reference point, on the load 

carrying capacity curve, the ultimate pile bearing capacity can be calculated based on pile 

uplift deformation equal to 10% of pile diameter, which is considered as the applied load 

equivalent to the ultimate state (BSI, BS EN 8004:1986). According to the graphical 

comparisons, good agreement can be seen between the experimental results and the 

computational values with correlation coefficients of (R = 0.99 and p = 6.282 x 10-31) for 

all datasets with a relatively small percentage of error. This is a demonstration of the high 

efficiency of the proposed approach to provide accurate predictions.  
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Figure 5-11: Comparisons of load-displacement response between the targeted and simulation 

results for steel closed-ended pile penetrated in loose sand under uplift loads. 
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Figure 5-12: Comparisons of load-displacement response between the targeted and simulation 

results for steel closed-ended pile penetrated in medium sand under uplift loads. 
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The predicted versus targeted values of pile uplift deformation for training, testing, 

validation, and all dataset are illustrated in Figure 5.14. The determination coefficient of 

the experimental vs. predicted values (according to the best-fit line equation as Output = 

A x Target + C) and residuals analysis were considered for all datasets, training, testing, 

and validation. The points in all subdivisions (training, testing, validation, and all datasets) 

are located close to the best line of equality with high coefficient of determinations of 

0.959, 0.963, 0.973 and 0.961, confirming that the LM algorithm has efficaciously learnt 

the non-linearity involved in the pile load-settlement with a continuous degree of success.   
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Figure 5-13: Comparisons of load-displacement response between the targeted and simulation 

results for steel closed-ended pile penetrated in dense sand under uplift loads. 
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The performance of the LM algorithm is further tested graphically using a testing dataset. 

The high performance of the training dataset reveals that the process of learning is 

successful if those of the testing dataset show that the generalisation ability of the 

proposed model is satisfactory (Gordan et al., 2016). Given that, the testing dataset has 

been utilised to plot a regression calibration curve between measured versus predicted 

results of pile uplift deformation, with a 95% CI. The low scatter level along the 45° line 

Figure 5-14: Regression graphs of the experimental results versus predicted pile settlement for 

steel closed-ended pile subjected to uplift load. 
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seen in Figure 5.15 is indicative of the constructive response of the trained model to the 

process of learning. This in parallel with a root mean square error (RMSE) of 0.088 and 

Pearson correlation coefficients, R = 0.963 and p = 2.03x10-23, respectively, confirms that 

the performed model, can successfully reproduce the results of the experimental pile 

settlement and behaves in a fashion as would be expected. 

 

 

 

 

Figure 5-15: Calibration plot of the resulting model for the testing dataset at a 95% confidence 

interval (CI). 
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5.5.3 Comparison between the LM Model for Steel Closed-ended Piles with the 

Various Traditional Methods 

Several approaches have been introduced, as detailed in section 2.7, for estimating pile 

capacity subjected to uplift loads. Nevertheless, the reliability and efficiency level of the 

predicted bearing capacity is of prime importance in the pile foundation design process 

(Unsever et al., 2015). Table, 5.8 illustrates the numerical results of the measured and the 

predicted pile capacity for steel piles subjected to axial uplift load. It can be seen that the 

level of agreement between the experimental and the applied LM algorithm is satisfactory. 

Therefore, the comparisons suggest that the proposed approach has the ability to provide 

fair assessments of pile bearing capacity and outperformed the traditional methods. While, 

as previously discussed, the comparison study confirmed that the results provided by Das 

and the Truncated Cone model tended to overestimate the pile capacity for the described 

soil. Whereas, the model performed by Meyerhof (1973) is the best prediction model, 

giving good agreement compared to the results of the experimental and predicted models 

for all pile slenderness ratios in the described soil. 
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Table 5-8: Measured and predicted uplift capacity of the steel closed-ended piles. 

Lc/d 

ratios 

Truncated cone’s 

model, (N) 

Meyerhof’s 

model, (N) 

Das’s 

model, (N) 

Experimental 

results, (N) 

The proposed 

LM model, (N) 

Dense sand, 𝑫𝒓 (83%) 

12 

17 

25 

264 

2033 

2392 

214 

333 

487 

622 

978 

1399 

225 

350 

495 

210 

320 

485 

Medium sand, 𝑫𝒓 (51%) 

12 

17 

25 

178 

506 

1609 

88 

146 

214 

124 

426 

619 

93 

150 

220 

93 

150 

218 

Loose sand, 𝑫𝒓 (18%) 

12 

17 

25 

129 

369 

1174 

46 

92 

197 

136 

266 

373 

50 

95 

135 

50 

95 

135 

 

 

5.6 Factors Affecting Pile Capacity for Steel Closed-ended Piles Subjected to Uplift 

Loads 

The pile embedment-length-to-diameter-ratio and the sand relative density have been 

cited to play a significant role in the uplift pile capacity (Das, 2015; Faizi et al., 2015). 

To examine the influence of the aforementioned factors on the uplift pile bearing capacity, 

three different pile slenderness ratios of 12, 17 and 25 penetrated in sandy soil of various 

densities were investigated. As mentioned previously, the pile diameter used in this 

research is 40mm (higher than the minimum size criterion for a model pile reported by 

Vesic (1977). Figure 5.16 reports the results of the ultimate uplift capacity with reference 

to pile slenderness ratio and sand relative density. The graphical results revealed that with 

the increase in the sand relative density and pile effective length, the ultimate uplift 

capacity increases by almost double for piles with a slenderness ratio less than 25. While, 

for a flexible pile the ultimate uplift capacity in dense sand is about 2.3 and 3.8 higher 
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than the ultimate capacity for model piles penetrated in medium and loose sand. This 

could be assigned to several reasons as follows: (i) the overburden pressure increasing 

with depth, thus the mobilised skin friction for a pile increases with pile penetration length. 

(ii) the sand stiffness increases with the increase in the density, this leads to higher earth 

pressure coefficients (K), this can also contribute to the increase in the uplift resistance 

for a model pile within the contacted soil in the radial effective region.  
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Figure 5-16: Variations of ultimate pile capacity with pile slenderness ratio for steel 

closed-ended piles subjected to uplift. 
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5.7 Performance Analyses of LM Model for Modelling of Uplift Load-deformation 

of Steel Open-ended Model Piles Penetrated in Loose, Medium and Dense 

Sandy Soil 

The applicability of the LM algorithm to simulate pile load-deformation for steel open-

ended piles subjected to independent uplift loads has been reported in this section. The 

accuracy of the aforementioned approach was assessed in different stages with reference 

to the experimental pile load-displacement results.  In order to develop the LM algorithm, 

the total 266 recorded dataset values were randomly divided into three sets; covering 

training at 70% (186 data points), testing at 15% (40 data points) and validation at 15% 

(40 data points). In addition, the LM optimal structure was identified as one hidden layer 

with transfer functions of tangent sigmoid “tansig” and linear “pruelin” for the hidden 

and output layers, respectively. Comprehensive details about the MATLAB codes and 

the neural network functions for all model piles for compression and uplift loads, 

including the optimum synaptic connection weights are provided in the supplementary 

information (see Appendices I to VIII). 

 

5.7.1 Performance Evaluation of the Proposed LM Algorithm 

The network performance graph, based on the mean square error (MSE) of the LM trained 

algorithm is exhibited in Figure 5.17. It can be observed that a gradual decrease in the 

MSE level in the first stages from the learning process and the training was stopped when 

the network reached the optimum performance at the desired level with relatively 

negligible mean squared error (0.0068) at epoch of 47. A more informative figure about 

the residual error between the measured and the predicted can be seen in the error 

histogram (Figure 5.18). The results revealed that the majority of the data subsets (training, 

testing and validation) coincides with zero error line between the central bines of -0.0008 
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and 0.030, which further demonstrates the reliability of the trained network together with 

the absence of outliers from the gathered dataset.  

 

 

 

 

 

Figure 5-17: Convergence graph illustrates the effectiveness of the proposed LM algorithm 

for steel open-ended developed model during the learning process.  
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5.7.2 Measured Versus Predicted Pile Load Tests for Steel Open-ended Piles 

Subjected to Uplift Loads 

In this section, comparisons between the results of the pile load tests for steel open-ended 

piles subjected to uplift loads are reported. In addition, the feasibility of the proposed self-

tuning LM model to map the response of pile load-deformation are also presented and 

discussed. Figures 5.19, 5.20 and 5.21 show the uplift load-settlement curves of circular 

open-ended piles with three slenderness ratios tested in three sand relative densities 

obtained by experimental pile load testing and were plotted. Generally, as observed in the 

experimental results, the piles take about 80% of the fully mobilised load at early stages 

of the loading procedures. A clear elastic branch can be seen in the earlier stages from 

running the test at applied load of approximately 25, 40, and 70N for piles driven in loose, 

Figure 5-18: Error histogram plot of training, testing and validation for the LM algorithm. 
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medium and dense. The soil yielding effect is obvious with increasing in the applied load. 

With the range of 25 to 60N, 40 to 80N, and 75 to 120N for piles with Lc/d =12, 17, and 

25 tested in loose sand and between 40 to 75N, 120, and 710N for piles driven in medium 

sand. In addition, for piles driven in dense sand an obvious elastic branch can be observed 

within the range of applied loads of about 70N to 200, 400, and 600N, respectively. Uplift 

pile capacity was identified according to the failure criteria at 10% of pile diameter (BSI, 

BS EN 8004:1986). In the context of comparing the experimental results with the LM 

training algorithm, the graphical results revealed that good agreement can be observed 

between the measured and the computational values, with a correlation coefficient of 0.96 

for all datasets, which reveal the feasibility of the introduced method to learn up to 90% 

of the experimental dataset. 
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Figure 5-19: Comparisons of load-displacement response between the targeted and 

simulation results for steel open-ended pile penetrated in loose sand under uplift loads. 
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Figure 5-20: Comparisons of load-displacement response between the targeted and 

simulation results for steel open-ended pile penetrated in medium sand under uplift loads. 
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For further analysis, the generalisation ability and the performance of the LM algorithm 

was evaluated. Figure 5.22 exhibits the extent of the consistency between the predicted 

and the experimental pile settlement for training, testing and validation datasets in terms 

of scatter plots. As clearly presented, the LM prediction is in agreement with relevant 

measured values. The simulations that match the corresponding settlement experimental 

values should fall on the line y = x at 45°. As reported, all of the data (training, testing 

and validation) for the measured and simulated values lie around the best-fit line, which 

attests to the superiority of the proposed approach to capture the targeted values.  
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Figure 5-21: Comparisons of load-displacement response between the targeted and 

simulation results for steel open-ended pile penetrated in dense sand under uplift loads. 
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5.7.3 Ultimate Uplift Capacity for Steel Open-ended Piles Subjected to Uplift 

Loads  

In this section, for verification purposes, the predictive abilities of the LM training 

algorithm has been re-evaluated with the corresponding experimental pile load tests for 

model piles subjected to uplift loads and associated  theories available to predict the 

ultimate uplift capacity in the absence of pile load tests suggested by Das (1983), 

Meyerhof (1973) and the Truncated Cone model. The comparison results are presented 

Figure 5-22: Regression graph of the experimental results versus predicted pile 

settlement for steel open-ended pile subjected to uplift load. 
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numerically, as depicted in Table 5.9. It can be seen that the Meyerhof (1973) model is 

the best model to predict the ultimate uplift capacity when assessed with the experimental 

result and with those given by the trained LM model. While, the numerical results 

proposed by Das (1983) and the Truncated Cone models tend to overestimate the ultimate 

uplift pile capacity for the described soil densities. Therefore, it can be concluded that the 

conventional design procedures are not reliable to predict the ultimate uplift capacity and 

this can be attributed to the many uncertainties and hypotheses associated with the soil 

pile interaction.   

 

Table 5-9: Measured and predicted uplift capacity of the steel open-ended piles. 

Lc/d 

ratio 

Truncated cone’s 

model, (N) 

Meyerhof’s 

model , (N) 

Das’s 

model, (N) 

Experimental 

results, (N) 

The proposed 

LM model, (N) 

Dense sand, 𝑫𝒓 (83%) 

12 

17 

25 

269 

752 

2392 

209 

390 

613 

587 

1121 

2309 

205 

400 

635 

202 

400 

600 

Medium sand, 𝑫𝒓 (51%) 

12 

17 

25 

183 

506 

1609 

74 

118 

192 

180 

341 

530 

80 

120 

180 

80 

120 

179 

Loose sand, 𝑫𝒓 (18%) 

12 

17 

25 

136 

369 

1174 

47 

84 

122 

160 

231 

347 

65 

88 

125 

64 

86 

124 
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5.8 Influence of Pile Effective Length and Sand Relative Density on the Ultimate 

Uplift Capacity 

Skin frictional resistance that develops between the soil-pile interface in the radial 

effective zone is identified as a major capacity source and a design factor for a pile 

subjected to uplift loads  (Nasr, 2013; Jebur et al., 2016). Sand relative density, pile 

effective length and the pile surface roughness also play a substantial role in the value of 

the mobilised shaft resistance. Therefore, in the current study, different types of pile 

surface roughness, pile effective length and sand relative densities have been used to 

explore the effect of the aforementioned parameters on the ultimate pile capacity. Figure 

5.23 summarises the profiles of the ultimate uplift capacity for steel open-ended piles for 

the described slenderness ratios, penetrated in loose, medium and dense sand. Generally, 

it can be seen that the increase in sand density leads to a significant increase in the ultimate 

capacity. For a pile with Lc/d equal to 12, the uplift capacity in dense sand is just over 

double that in medium and loose sand. In addition, the ultimate uplift capacity in dense 

sand is three times higher than that in medium sand and about five times higher than the 

uplift capacity for a model pile with Lc/d = 17 penetrated in loose sand. Whereas, in dense 

sand, the percentage of the increase in the ultimate uplift capacity is about 3.4 and almost 

5 times for model piles with Lc/d = 25 penetrated in medium and loose sand, respectively. 

In essence, the rate of increase of the uplift capacity is high for dense sand compared to 

smaller factors in medium and loose sand.  
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5.9 Summary 

The load-displacement characteristics, ultimate pile uplift capacity, and failure 

mechanism of precast concrete piles, steel closed-ended and steel open-ended piles 

embedded in pre-prepared sand relative densities of loose, medium and dense, subjected 

to uplift loads were explored. The choice of the input parameter in the space of the model 

input parameters for the developed model, statistical reliability of the dataset being 

studied, and the contribution level of each input parameter were also discussed. Moreover, 

for verification purposes, comparisons have been made between the introduced 

approaches with most commonly available methods used to predict pile-bearing capacity. 

The following conclusions, on the basis of the achieved outputs, can be drawn: 
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Figure 5-23: Distribution of the ultimate pile capacity with pile slenderness ratio for 

steel open-ended piles under uplift load. 
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 Increasing the sand relative density and the pile slenderness ratio remarkably 

decreases pile uplift deformation and increases the ultimate uplift capacity. This 

can be attributed to the increase in the developed skin friction resistance due to an 

increase in the overburden pressure. 

 The employed computational intelligence approach has attracted growing 

attention due to its comprehensive adaptability and notably powerful capacity for 

solving problems of this type. 

 Comparing the experimental results to the predicted values demonstrates that the 

LM concept can be applied successfully, with enhanced prediction performance, 

to simulate pile-load settlement with high efficiency. 

 The load-displacement curves show a clear elastic branch, in the initial stages of 

loading, when the normalised pile settlement is about 1% of pile diameter. 

 The plastic mechanism associated with the soil-pile interaction is the leading 

cause for the presence of the non-linearity in the load-settlement response. 

  Pile effective length, Lc, pile material roughness, δ and sand relative density, 𝐷𝑟 

have been considered, according to the sensitivity analysis, as being the most 

effective on the ultimate uplift capacity, following the order 𝐷𝑟 > Lc > δ. 

 According to the comparative study, the results introduced by the Truncated Cone 

and Das (1983) models do not exhibit acceptable precision and desired integrity 

in predicting pile capacity subjected to axial uplift loads in the described test 

environment. However, there is satisfactory agreement between the results of the 

proposed approach and the outputs attained from application of the  Meyerhof 

(1973) model when compared with test results of the steel closed-ended piles 

under uplift load, thus most precise compared to the aforementioned methods. 
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Analysis of the Load-transfer for Precast Concrete, Steel Closed-ended 

and Steel Open-ended Piles Embedded in Sandy Soil 

 

6.1 Introduction 

In this chapter, an attempt has been made with the aim of developing new and reliable 

design charts that can be used to determine the main significant parameters that influence 

pile-bearing capacity for different types of model piles, having three slenderness ratios, 

subjected to uplift and compression loading. Recalling Equations 2.3 and 2.5, the earth 

pressure coefficient (K) and the bearing capacity parameters (N𝑞) are marked to be the 

most influential design factors that govern the individual contributions of pile skin friction 

and end-bearing capacity. However, the aforementioned parameters are found to be 

substantially influenced by sand stiffness, pile materials, overburden pressure and the 

embedment length-to-diameter ratio (Lc/d) (Manandhar and Yasufuku, 2013; Tomlinson 

and Woodward, 2014; Das, 2015; Kampitsis et al., 2015; Loria et al., 2015). Thus, the 

effect of these factors on pile bearing capacity is presented in the following section. In 

addition, for verification purposes, the obtained results are further compared with those 

suggested traditional design methods proposed by Tomlinson and Woodward (2014); 

Poulos and Davis (1980); American Petroleum Institute (1993); Coyle and Castello 

(1981); and Meyerhof (1976). 
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6.2 Bearing Capacity Factor (𝐍𝒒) for Concrete Piles 

Figures 6.1, 6.2 and 6.3 illustrate the N𝑞distribution with the sand relative density. The 

results show that the bearing capacity factor (N𝑞) increases with the increase in the sand 

relative density. The proposed design charts can be easily used during the pile foundation 

design process, to precisely determine the N𝑞 factor for a concrete pile subjected to 

compression load. For instance, for piles with a slenderness ratio of 12, the N𝑞factor (y-

axis) can be determined based on the in-situ sand relative density (x-axis). In all cases, 

the design charts proposed by Meyerhof (1976) tend to grossly overestimate the bearing 

capacity factor for all piles slenderness ratios.  While, the methodology reported by the 

American Petroleum Institute (1993) and Coyle and Castello (1981) are found to 

significantly underestimate the N𝑞values. This can be properly assigned due to several 

hypothesis and arbitrary assumption associated with the soil-pile interaction, i.e., method 

of pile installation, critical effective length concept, initial boundary conditions, and etc. 

The results also exposed that good agreement can be seen between the current study and 

the results suggested by Poulos and Davis (1980) in dense sand and Tomlinson and 

Woodward (2014) in loose and medium sands. 
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Figure 6-1: Bearing capacity factor for a concrete pile with slenderness ratio of 12. 
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For a pile with slenderness ratio of 17, the approach proposed by Tomlinson and 

Woodward (2014)  approach indicates higher prediction accuracy than the rest of the 

conventional design procedures in evaluating the bearing capacity factor, as can be seen 

in Figure 6.2. 
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Figure 6-2: Bearing capacity factor for a concrete pile with slenderness ratio of 17. 
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For a long pile with a slenderness ratio of 25, it can be demonstrated, for all sand relative 

densities, that the end bearing capacity design procedures with significant agreement are 

achieved  between the N𝑞 values of the current study and those proposed by Tomlinson 

and Woodward (2014) . Additionally, the method suggested by Coyle and Castello (1981) 

shows a significant consistency with the current study to determine the pile bearing 

capacity in loose and medium sands respectively.  
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Figure 6-3: Bearing capacity factor for a concrete pile with slenderness ratio of 25. 
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6.3 Earth Pressure Coefficient (K) for Concrete Piles 

The profiles of the earth pressure coefficient, K for concrete model piles, covering three 

pile slenderness ratios are clearly presented in Figures 6.4, 6.5 and 6.6 along with a 

comparison between newly developed design charts and traditional design criteria 

proposed by Poulos and Davis (1980); American Petroleum Institute (1993) and Broms 

(1964).  The results reveal that the coefficient of earth pressure increases with the increase 

in the soil density. It can be seen that the K values proposed by Poulos and Davis (1980) 

remarkably overestimated for all cases of a model pile penetrated in medium and dense 

sands. The K values reported by the American Petroleum Institute (1993) and Broms 

(1964) are observed to be conservative for model piles penetrated in medium and dense 

sands. A visual inspection confirmed that all design methods are well fitted to the current 

study in the case of loose sand.  
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Figure 6-4: Variation of earth pressure coefficient (K) with angle of friction (Ø) for concrete 

piles with a slenderness ratio of 12. 
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The variation of Ø versus the earth pressure coefficient, K for model piles with a 

slenderness ratio of 17 is denoted in Figure 6.5. The K values reported by the American 

Petroleum Institute (1993) and Broms (1964) are revealed to underestimate the K value 

for piles driven in dense sand only. Furthermore, consistent agreement can be observed 

for the K values proposed by the current study with the aforementioned methods for a 

pile embedded in loose and medium sands respectively.   

 

 

 

 

 

 

Moreover, for a pile with slenderness ratio of 25, it can be observed that the design chart 

recommended by Poulos and Davis (1980) seems to overestimate the K values for piles 

in medium and dense sands. Good agreement can be achieved for the values developed 

by the current study with those models offered by the American Petroleum Institute 

(1993), and Broms (1964), demonstrating that the design charts suggested by the 
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Figure 6-5: Variation of earth pressure coefficient (K) with angle of friction (Ø) for concrete 

piles with a slenderness ratio of 17. 
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aforementioned methods can be successfully utilised to determine the earth pressure 

coefficient for concrete piles with Lc/d equal to 25.   

 

 

6.4 Bearing Capacity Factor (𝐍𝒒) for Steel Closed-ended Piles 

For point bearing piles, the N𝑞 parameter is a major design factor for piles subjected to 

axial compression loads (Igoe et al., 2014). The N𝑞 values along with those obtained from 

the conventional design procedures for steel closed-ended piles are summarised in 

Figures 6.7, 6.8 and 6.9 for slenderness ratios of 12, 17 and 25 respectively. As clearly 

presented, for particular soil densities, the suggested design procedures provided by 

Meyerhof (1976) are unreliable and overestimate the N𝑞 values for piles, whereas, the N𝑞 

values reported by the American Petroleum Institute (1993) are found to substantially 

underestimate the N𝑞values. It is worth pointing out that the suggested design curves 

offered by Coyle and Castello (1981) are in good agreement and seem to be efficient to 
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Figure 6-6: Variation of earth pressure coefficient (K) with angle of friction (Ø) for concrete 

piles with a slenderness ratio of 25. 



Chapter Six                                                                                    Load Transfer Analysis 

204 

 

predict the N𝑞 values for piles penetrated in loose sand only. Additionally, the Poulos and 

Davis (1980) recommended values are found to be slightly overestimated. A substantial 

similarity can be seen between the N𝑞values developed from the current experimental 

tests (LJMU) and those proposed by Tomlinson and Woodward (2014) for all sand 

stiffness and pile slenderness ratios. This indicates the reliability of the aforementioned 

model to evaluate the steel bearing capacity factor in the described soil.    
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Figure 6-7: Bearing capacity factor for steel closed-ended pile with a slenderness ratio of 12. 
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Figure 6-8: Bearing capacity factor for steel closed-ended pile with a slenderness ratio of 17. 
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Figure 6-9: Bearing capacity factor for steel closed-ended piles with a slenderness ratio of 25. 
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6.5 Earth Pressure Coefficient (K) for Steel Closed-ended Piles 

For steel piles penetrated in sandy soil, shaft resistance developed between the soil-pile 

interfaces in the radial effective zone are considered, based on the effective stress design 

approach, as a major design parameter for piles subjected to axial uplift load. Recalling 

Equation 2.3, sand relative density and the earth pressure coefficient have been identified 

as playing a significant role in pile mobilised shaft capacity. Therefore, in the current 

study, the variations of the K parameter with the sand angle of friction, Ø for steel piles 

are reported. Based on the graphical comparison presented in Figures 6.10, 6.11, and 6.12, 

the design chart proposed by Poulos and Davis (1980) tends to overestimate the K 

parameters for piles driven in medium and loose sands. Whereas, the methods suggested 

by American Petroleum Institute (1993), and Broms (1964) tend to be more conservative 

with the K values for piles with slenderness ratios of 12, and 17, especially in case of 

medium and dense sands. The results also demonstrated that the American Petroleum 

Institute (1993) and Broms (1964) models are by far the best when applied to piles with 

a length-to-diameter-ratio of 25 penetrated in sandy soil, and therefore most accurate.  

This gives remarkable agreement with reference to the reported experimental K values 

established in the current study, demonstrating the applicability and the reliability of the 

method in future applications. 
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Figure 6-10: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel closed-ended piles with a slenderness ratio of 12. 
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Figure 6-11: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel closed-ended piles with a slenderness ratio of 17. 
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6.6 Bearing Capacity Factor (𝐍𝒒) for Steel Open-ended Piles 

On the basis of comparing the bearing capacity factors with the most popular procedures 

used to estimate the pile bearing capacity, the variation of the bearing capacity factor (N𝑞) 

with sand relative density (𝐷𝑟) concerning three piles slenderness ratios of 12, 17 and 25 

for open-ended piles are presented and discussed in this section. As demonstrated in 

Figures 6.13, 6.14 and 6.15, the N𝑞factor is highly influenced by the sand stiffness. The 

bearing capacity factor for dense sand is markedly higher than that for loose sand and 

becomes more pronounced for medium sand. Based on the graphical comparison, it can 

be seen that the results proposed by Poulos and Davis (1980), and  Meyerhof (1976) tend 

to overestimate the bearing capacity factor for all cases. The results also revealed that the 

predicted bearing capacity factor using the American Petroleum Institute (1993)’s design 

procedures is observed to underestimate the N𝑞  design parameter, especially for piles 
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Figure 6-12: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel closed-ended piles with a slenderness ratio of 25. 
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constructed in medium and dense sands. It should be mentioned that this is compatible 

with the findings stressed by Fattah and Al-Soudani (2016). In addition, good agreement 

can be observed between the N𝑞 values obtained using the Tomlinson and Woodward 

(2014)  model with reference to the experimental results. Moreover, the results proposed 

by Coyle and Castello (1981) are also reliable to estimate the bearing capacity for model 

piles penetrated in loose and medium sands, respectively.      
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Figure 6-13: Variation of pile bearing capacity factor for steel open-ended piles with a 

slenderness ratio of 12. 
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Figure 6-14: Variation of pile bearing capacity factor for steel open-ended piles with a 

slenderness ratio of 17. 
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Figure 6-15: Variation of pile bearing capacity factor for steel open-ended piles with a 

slenderness ratio of 25. 
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6.7 Earth Pressure Coefficient (K) for Steel Open-ended Piles 

As mentioned previously, the sand relative density, 𝐷𝑟, pile effective length, Lc, and pile 

surface roughness have been underlined to play a fundamental role in the value of the 

earth pressure coefficient, K. Mobilised skin friction resistance, however, is also highly 

influenced by the aforementioned factors. Figures 6.16, 6.17, and 6.18 indicate 

comparisons between the actual measured earth pressure coefficients and the predicted 

values utilising different approaches, with various angles of friction at three pile 

slenderness ratios. According to the graphical comparisons, design charts proposed by 

Poulos and Davis (1980) provide unreliable predicted values for the skin friction 

resistance of steel piles embedded in medium and dense sands. While,  the American 

Petroleum Institute (1993) and Broms (1964) models reveal themselves to be inefficient 

and tend to overestimate the earth pressure coefficient, especially for piles with a 

slenderness ratio of 25 driven in dense sand.  On the other hand, the latest suggested 

design charts have a better estimation performance with good accuracy to predict the skin 

friction resistance for piles driven in loose and medium sands with slenderness ratios of 

12 and 17, respectively. There is a reasonable error rate to predict the K values for piles 

with a slenderness ratio of 25 driven in dense sand.  
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Figure 6-16: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel open-ended piles with a slenderness ratio of 12. 
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Figure 6-17: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel open-ended piles with a slenderness ratio of 17. 
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6.8 Summary 

Accurate determination of pile bearing capacity is a prerequisite for structural stability 

and effective insurance against failure. A methodology allowing an economical and 

efficient form of new pile foundation design charts in comparison with the most used 

conventional design charts is introduced in this chapter. Pile bearing capacity factors 

(N𝑞values) and earth pressure coefficients (K values) for the described piles and sand 

densities were determined by back calculation from the experimental pile load tests. For 

the described soil profile, it was clearly observed that the suggested design charts 

proposed by the conventional methods have revealed shortcomings to accurately define 

the pile bearing capacity design factors. Accordingly, errors on the unsafe side can be 

obtained with the application of such methods. In essence, from what has been presented 

and discussed, the following conclusions can be drawn: 
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Figure 6-18: Effect of angle of friction (Ø) on earth pressure coefficient (K) for 

steel open-ended piles with a slenderness ratio of 25. 
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 Pile penetrated length-to-diameter ratio, pile surface roughness, effective 

overburden pressure, and the sand relative density have been identified to play 

significant roles in the governing pile bearing capacity design procedure.  

 For concrete piles, using the bearing capacity design charts, the N𝑞values obtained 

by the current study seem to be in good agreement with those proposed by 

Tomlinson and Woodward (2014)  and Poulos and Davis (1980). 

 For piles with a slenderness ratio of 12, the described conventional design charts 

are revealed to be unreliable to predict the k factor for piles embedded in medium 

and dense sands. While, for piles with Lc/d equal to 17, consistent agreement can 

be observed between the predicted and actual K values proposed by the current 

study and those offered by the American Petroleum Institute (1993), and Broms 

(1964) for piles driven in loose and medium sands, respectively. Whereas, the 

aforementioned suggested analysis charts seem to be in good agreement for piles 

with Lc/d equal to 25.    

 For steel piles, the N𝑞 design charts proposed by Tomlinson and Woodward (2014) 

demonstrated remarkable agreement with reference to the developed design charts. 

Additionally, the American Petroleum Institute (1993) and Broms (1964) methods 

are by far the best for predicting the K coefficient for piles with a length-to-

diameter-ratio of 25, giving substantial consistency with reference to the reported 

K values evaluated by the current study. Whereas, the rest of the described 

suggested design procedures tend to be unreliable in assessing the pile bearing 

capacity design factors. 
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Conclusions and Recommendations for Future Works 

 

 

7.1 Conclusions 

In the introductory chapter, the utilisation of the pile foundations was clearly presented. 

The uncertainty associated with the existing pile bearing capacity approaches and 

simulation of the combined soil-pile interaction, led to the study of the objectives in an 

effort to overcome the limitations of the pile design and analysis under compression and 

uplift loading systems. The investigation was aimed at better understanding the behaviour 

and performance of model piles embedded in sandy soil. Moving the existing knowledge 

forward, a body of research was developed at Liverpool John Moores University. The 

work was optimised in different stages conducting a series of comprehensive 

experimental load-carrying capacity tests on different types of model piles tested in three 

sand relative densities, namely loose, medium and dense, and subjected to uplift and 

compression loads. The feasibility of applying a new, self-tuning computational 

intelligence system, enhanced by a comprehensive statistical analysis study, has been 

explored and discussed in relation to the stated aim and objectives.  

 

A summary of the main conclusions from the current research is presented below:  

Objective One 
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1. The higher the values of the pile effective length, sand density, and the soil-pile 

angle of shearing resistance, the higher the axial load magnitudes to reach the 

yield limit. 

2. The load-displacement curves show a clear elastic response when the normalised 

pile settlement is between 1 to 2% of pile diameter.  

3. For all cases, as the applied load increases, the response of the pile load-settlement 

curves increases in its nonlinearity until the maximum pile capacity is reached. 

This can be attributed to the plastic mechanism behaviour associated with the soil-

pile interaction, where local nonlinearity is obvious. 

4. Through the direct shear test, the peak angle of friction and the sand-pile angle of 

interface friction were found to be influenced by the initial sand stiffness and pile 

material roughness.  

5. The ultimate bearing capacity for concrete piles is revealed greater than the 

capacity for steel piles. This can be assigned to the contribution of end bearing 

and higher mobilised skin friction resistance developed within the contacted soil 

in the adjoining zone of influence. 

Objective Two 

6. The fibre optimisation process shows that the addition of 1.25% (out of seven 

percentages) structural fibres by concrete volume has been identified as the 

optimum percentage to enhance concrete efficiency beyond the elastic limit. 

Additionally, the flexural test results revealed that the mechanical performance of 

the fibre reinforced concrete provides a better energy absorption capacity by 

delaying and controlling crack formation compared with the plain concrete. 

Objective Three 
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7. Five independent variables (IVs) namely, applied load, P, pile slenderness ratio, 

Lc/d, pile axial rigidity, EA, pile effective length, Lc and sand-pile interface 

friction angle, δ were identified, according to the dataset screening process, to 

play a significant role, at different contribution levels, on pile-load settlement 

response, following the order P> δ > Lc/d > L > EA. 

8. The optimal structure for the trained network was found at a topology of 5:10:1 

with a “tangent sigmoid” transfer function between the first and second layers and 

a “linear” transfer function in the third (output) layers. 

9. Based on the graphical comparisons between the targeted pile load-settlement 

versus the computational values, substantial consistency has been identified for 

all training, testing and validation elements, demonstrating that the proposed 

approach can be utilised with a continuous degree of success. 

Objective Four 

10. The applied supervised, evolutionary Levenberg-Marquardt (LM) training 

algorithm has several favourable features, for instance (generalisation ability, 

efficiency, ease of application, and faster), which make it a good choice to map 

complex nonlinear systems. 

11. According to the defined performance skill indicators, the developed algorithm is 

superior to the reviewed empirical approaches, indicating that the conventional 

design methods are inaccurate and need to be updated, if used, in future 

applications. 

 

Objective Five 
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12. The Truncated Cone and Das (1983) models do not exhibit acceptable precision 

in predicting ultimate uplift pile capacity in the described test environment. While, 

the Meyerhof (1973) model indicates an acceptable level of error with better 

proficiency when compared with results of the steel closed-ended piles. 

13. Comparing the results of the developed pile bearing capacity design charts 

proposed by the current study with most conventional design procedures used in 

the absence of pile load tests yielded interesting findings. For precast concrete 

piles, Tomlinson and Woodward (2014)  and Poulos and Davis (1980) models are 

by far the best at predicting the bearing capacity factor, N𝑞, while the rest are 

inefficient to accurately predict the N𝑞design factor. Regarding the earth pressure 

coefficient, K, the results proposed by Poulos and Davis (1980) model 

substantially overestimate the K values for concrete piles driven in medium and 

dense sands and are not recommend to be applied in practice. While, the results 

proposed by the American Petroleum Institute (1993) and Broms (1964) models 

are in good consistency with the new design charts to predict the K values for 

concrete piles with slenderness ratio of 25 in the described soil stiffness.  

14. The Tomlinson and Woodward (2014) model is demonstrated to be efficient to 

predict the pile bearing capacity (N𝑞) for steel piles. Moreover, the design chart 

documented by the American Petroleum Institute (1993) and Broms (1964) 

display consistent prediction accuracy, to evaluate the k factor for piles with a 

slenderness ratio of 25. 

In essence, the study aim was to explore pile-bearing capacity driven at different relative 

densities of sand subjected to compression and uplift loads, examine the feasibility of an 

enhanced self-tuning computational intelligence approach, and to develop an improved 
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design guidance, which permits us to determine the individual contribution of the most 

influential pile bearing capacity design factors.  The main limitation of this study lies in 

the fact that the piles were tested in cohesionless soil only. Considering this limitation, a 

new set of recommendations for further studies are summarised as detailed in the 

following section:  

 

7.2 Recommendations for Future Work 

In light of the results reported in this study and based on the experience gained during the 

course of this research, a number of possible future studies are recommended as follows: 

1. Explore the effect of ground water content on pile bearing capacity under 

independent uplift loads by varying the degree of saturation, and with different 

types of piles embedded in cohesive soils. 

2. Examine the performance of different types of model piles (precast concrete, steel 

closed-ended and steel open-ended) subjected to combined loading (compression, 

uplift, and lateral) loads driven in cohesive soils. 

3. Apply a novel Particle Image Velocity (PIV) technique to investigate the stress 

distribution of the test media by changing the following parameters: pile material 

types, soil stiffness, loading mechanism and pile slenderness ratio.  

4. Investigate the feasibility of the finite element applications to simulate load-

displacement curves and compare it with conventional pile bearing capacity 

design procedures. 

5. Study the effect of oil contaminated soil on pile bearing capacity subjected to 

combined loading systems. 
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Appendices 
 

Appendix I: %MATLAB code, including the optimum number of hidden layers, the data 

dividing process for each sub-set, used to run the LM algorithm for all ANN developed 

models% 

 

% This script assumes these variables are defined: 

% 

%   input - input data. 

%   Output - target data. 

  

x = input; 

t = Output; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = {'removeconstantrows','mapminmax'}; 

net.output.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean Squared Error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

    'plotregression', 'plotfit'}; 

  

% Train the Network 
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[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 

  

% View the Network 

view(net) 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

    % Generate MATLAB function for neural network for application 

    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

    % tools, or simply to examine the calculations your trained neural 

    % network performs. 

    genFunction(net,'myNeuralNetworkFunction'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a matrix-only MATLAB function for neural network code 

    % generation with MATLAB Coder tools. 

    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a Simulink diagram for simulation or deployment with. 

    % Simulink Coder tools. 

    gensim(net); 

end 
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Appendix II: %MATLAB Neural Network Function, including the optimum connection 

weights, and details about the transfer function for the concrete pile model tested in three 

relative densities and subjected to compression loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 01-Mar-2017 

12:21:52. 

%  

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

%  

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

%  

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

%  

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0;1.079181246;0.48;1.357934847]; 

x1_step2.gain = [2;6.27433731131652;3.84615384615385;16.5793970038493]; 

x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [-6.2915381947175995;0.74943262710818803;0.34284371478414316;-

2.8937598504046855;16.098742731474367;1.3940501196830313;-

1.3923256184385597;6.0429795565785289;-

5.2741693006469985;4.0069124043344511]; 

IW1_1 = [20.113152074358318 -0.47069286949554839 -0.92437334137699478 -

3.56242547690373;17.442656143939537 -3.4911070530498631 -2.505061290440227 

-6.5876187709626466;-7.5348811658274384 1.2668001418278467 

2.746984442898841 4.3432386270004226;-13.874428501864097 

5.7995274048966321 -1.3371386007645083 

7.0915511412590888;39.604878666201166 3.1264948628322009 -

10.248595377771435 -50.638290465233865;-12.46610761176599 -

1.6991415333081872 -3.5453113635067064 9.6443839605932613;-

22.442799372021401 2.8078392341031506 5.241219243500006 

9.133484670062149;42.535138189244897 -2.9719964203023568 -

0.4923080488223785 -25.089993333660637;-18.488182732882091 

0.8874559965642751 4.4149577946751251 
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20.149423481543579;0.21793583149216855 0.58611821809289444 -

0.66906326444519493 4.1484483346177905]; 

  

% Layer 2 

b2 = 3.4930621377025908; 

LW2_1 = [-18.623889048647495 14.372778978349071 -8.8696910889824849 

7.8567667573836522 19.160602503794447 -1.079719340708148 6.843960875710386 

18.096164011204937 12.063890565352011 11.778880188600718]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2.0061741232409; 

y1_step1.xoffset = 0; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

  Q = size(X{1},2); % samples/series 

else 

  Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

  

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 
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Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

  y = bsxfun(@minus,x,settings.xoffset); 

  y = bsxfun(@times,y,settings.gain); 

  y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

  y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

  x = bsxfun(@minus,y,settings.ymin); 

  x = bsxfun(@rdivide,x,settings.gain); 

  x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

 

 

 

 

 

 



Appendices 

238 

 

Appendix III: %Regression Calibration Curve Code, which has been developed and used 

to individually determine and draw the testing dataset for each case of pile loading tests 

with 95% confidence interval (CI) level of fit% 

 

function [binMeans,confIntervals,binMids,binStdErrs] = 

regressioncalibrationcurve(targets,fits,varargin) 

%INPUTS 

%targets                A vector of target values 

%fits                   A vector of fitted values 

%bins (optional)        Number of intervals 

%xLab (optional)        label on the x axis 

%yLab (optional)        label on the y axis 

%customTitle (optional) custom title for graphs 

% 

%OUTPUTS 

%binMeans               The mean target value for each interval 

%confIntervals          Upper and lower limits of 95% CIs for each interval 

%binMids                Mid point of each interval 

%binStdErrs             Standard error for each interval 

  

defaultBins = 10; 

defaultXLabel = 'Fitted value'; 

defaultYLabel = 'Target value'; 

defaultTitle = 'Calibration plot'; 

p = inputParser; 

addRequired(p, 'targets', @isnumeric); 

addRequired(p, 'fits', @isnumeric); 

addOptional(p, 'bins', defaultBins, @isscalar); 

addOptional(p, 'xLab', defaultXLabel); 

addOptional(p, 'yLab', defaultYLabel); 

addOptional(p, 'customTitle', defaultTitle); 

parse(p,targets,fits,varargin); 

bins = p.Results.bins; 

xLab = p.Results.xLab; 

yLab = p.Results.yLab; 

customTitle = p.Results.customTitle; 

  

if isrow(targets) 

    targets = targets'; 

end 

  

if isrow(fits) 

    fits = fits'; 

end 

  

binMids = zeros(1,bins); 

binMeans = zeros(1,bins); 

binCounts = zeros(1,bins); 
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binStdErrs = zeros(1,bins); 

binCiSize = zeros(1,bins); 

  

figure; 

hold on; 

plot([min(targets),max(targets)],[min(targets),max(targets)],'--black'); 

legend([xLab ' = ' yLab]); 

for i = 1:bins 

    binStart = min(fits) + ((i - 1) * range(fits)/bins); 

    binEnd = min(fits) + (i * range(fits)/bins); 

    binMids(i) = (binStart + binEnd)/2; 

    binIndices = and(fits>=binStart,fits<=binEnd); 

    binMeans(i) = mean(targets(binIndices)); 

    binCounts(i) = sum(binIndices); 

    binStdErrs(i) = sqrt(var(targets(binIndices))./sum(binIndices)); 

    tVal = tinv(0.975,sum(binIndices)-1); 

    binCiSize(i) = tVal * binStdErrs(i); 

    quiver(binMids(i),binMeans(i),0,binCiSize(i),'blue'); 

    quiver(binMids(i),binMeans(i),0,-binCiSize(i),'blue'); 

end 

plot(binMids,binMeans,'ored'); 

xlabel(xLab); 

ylabel(yLab); 

title(customTitle); 

hold off; 

  

confIntervals = [binMeans + binCiSize;binMeans - binCiSize]; 

  

rmse = rms(fits - targets); 

[pearsonR, pearsonP] = corr(fits,targets); 

  

if ~strcmp(customTitle,defaultTitle) 

    fullTitle = [customTitle ', RMSE = ' num2str(rmse) ', R = ' num2str(pearsonR) ', p = ' 

num2str(pearsonP)]; 

else 

    fullTitle = ['RMSE = ' num2str(rmse) ', R = ' num2str(pearsonR) ', p = ' 

num2str(pearsonP)]; 

end 

  

ciWidth = 1.96 * rmse; 

  

figure; 

hold on; 

plot(fits,targets,'.'); 

plot([min(targets),max(targets)],[min(targets),max(targets)],'-black'); 

plot([min(targets),max(targets)],[min(targets) + ciWidth,max(targets) + ciWidth],'--

black'); 

plot([min(targets),max(targets)],[min(targets) - ciWidth,max(targets) - ciWidth],'--

black'); 
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legend('Observed data',[xLab ' = ' yLab],'95% CI of fit'); 

title(fullTitle); 

xlabel(xLab); 

ylabel(yLab); 

hold off; 

end 

 

 

Appendix IV: %MATLAB Neural Network Function, including the optimum connection 

weights, and details about the transfer function for the steel closed-ended pile model  

tested in three relative densities and subjected to compression loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

%  

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

%  

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

%  

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

%  

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0;1.079181246;0.48;1.230448921]; 

x1_step2.gain = 

[3.06485875552452;6.27433731131652;3.84615384615385;41.4038556926575]; 

x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [-4.7335000699190015;-

7.0639533463320809;4.1329970301250638;5.2470851647772401;-

0.49227829607045082;17.491927161783888;2.962410419851687;-

0.075691370168353297;-4.4230433789804389;0.379362475981039]; 

IW1_1 = [40.275585304284341 0.32535030055269659 -0.33857322930673334 

0.12689449793776311;65.276140627305267 -15.166378815812726 -

11.417494963815884 -34.358163491476176;-27.96056354871078 
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3.2556014384437058 10.208090305622321 13.138295023393006;-

23.946281707200036 14.547864899382382 10.221682125718425 

21.782345522834859;-46.365170762142789 9.0537663061064126 

12.456034894971674 26.970253774100573;60.929154019673533 

14.239906103222786 -15.203964715750491 -27.306292032687029;-

3.5020529913278198 -1.7241109178922789 3.2265337530702305 -

0.0724555981006762;22.77102786325954 -4.1392970754615579 -

5.3495204850693883 -16.019238024374047;-0.16198698703837058 -

0.28686383636971086 -2.6130816016474028 -1.0346597572084379;-

0.038784284388606011 0.32236284218144723 -0.27807372320806967 

0.032449889665935643]; 

  

% Layer 2 

b2 = 5.1265822059816966; 

LW2_1 = [-20.964564880177161 24.45965083434989 9.5452237750905251 -

1.6450079524465526 -17.167329296331793 20.951698184852045 -

1.6102248477073193 -12.900386503726693 -18.059560828709721 -

3.9289506134717684]; 

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2; 

y1_step1.xoffset = 0; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

  Q = size(X{1},2); % samples/series 

else 

  Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

  

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 
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    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

  y = bsxfun(@minus,x,settings.xoffset); 

  y = bsxfun(@times,y,settings.gain); 

  y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

  y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

  x = bsxfun(@minus,y,settings.ymin); 

  x = bsxfun(@rdivide,x,settings.gain); 

  x = bsxfun(@plus,x,settings.xoffset); 

end 
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Appendix V: %MATLAB Neural Network Function, including the optimum connection 

weights, and details about the transfer function for the steel open-ended piles tested in 

three relative densities and model subjected to compression loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 02-Mar-2017 

14:53:08. 

%  

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

%  

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

%  

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

%  

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0.000147471;1.079181246;0.48;1.230448921]; 

x1_step2.gain = 

[3.18431556959602;6.27433731131652;3.84615384615385;41.4038556926575]; 

x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [-3.3196959635135275;7.8103855814089282;-

19.439771600205646;17.03036467633704;7.5023489273931441;7.2689008363564076

;4.5284400639994367;5.4488829135101806;-61.620993405554515;-

7.4649934731947347]; 

IW1_1 = [3.8391721257269782 -0.50733490725615371 -1.4445797680330934 

0.47694646653617823;0.16006364777888576 0.7020359325761647 -

3.5076233949453761 -3.3367985407169987;-37.740367145714742 

25.97043613833155 35.840537198763649 -

5.8907900370573039;46.148795171066276 -26.555162457875621 

4.7272165209105577 -39.67977950365303;16.683534151088789 5.797717350761352 

17.1907616831678 -17.059654879785324;26.692788293287244 -

10.477345449896802 -3.1258314817778245 -

24.95019792946329;50.044539880331897 -12.37924470448983 -

6.1554649024941552 -34.188770827544829;75.195974898844952 -

8.496920805236881 -23.204437422548317 -50.821780786261186;-
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78.91713065335496 30.30675618042681 -11.41710388503142 -

12.075402335723002;-0.73275907266874662 2.8114180499481907 

6.5991083777129163 -14.411560475242718]; 

  

% Layer 2 

b2 = 4.0803391408865233; 

LW2_1 = [3.4333621818930378 7.8772256424019567 9.7317463188872999 

27.439402981276821 -9.4485556438291631 -27.409680337858806 -

18.150887716279193 27.560566484940949 -9.729740808703367 

9.4785784313141477]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2.00159191669162; 

y1_step1.xoffset = 3.45793e-05; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

  Q = size(X{1},2); % samples/series 

else 

  Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

  

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 
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% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

  y = bsxfun(@minus,x,settings.xoffset); 

  y = bsxfun(@times,y,settings.gain); 

  y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

  y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

  x = bsxfun(@minus,y,settings.ymin); 

  x = bsxfun(@rdivide,x,settings.gain); 

  x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

 

Appendix VI: %MATLAB Neural Network Function, including the optimum connection 

weights, and details about the transfer function for the concrete pile model tested in three 

relative densities and subjected to uplift loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 02-Mar-2017 

14:53:08. 

%  
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% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

%  

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

%  

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

%  

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0.000147471;1.079181246;0.48;1.230448921]; 

x1_step2.gain = 

[3.18431556959602;6.27433731131652;3.84615384615385;41.4038556926575]; 

x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [-3.3196959635135275;7.8103855814089282;-

19.439771600205646;17.03036467633704;7.5023489273931441;7.2689008363564076

;4.5284400639994367;5.4488829135101806;-61.620993405554515;-

7.4649934731947347]; 

IW1_1 = [3.8391721257269782 -0.50733490725615371 -1.4445797680330934 

0.47694646653617823;0.16006364777888576 0.7020359325761647 -

3.5076233949453761 -3.3367985407169987;-37.740367145714742 

25.97043613833155 35.840537198763649 -

5.8907900370573039;46.148795171066276 -26.555162457875621 

4.7272165209105577 -39.67977950365303;16.683534151088789 5.797717350761352 

17.1907616831678 -17.059654879785324;26.692788293287244 -

10.477345449896802 -3.1258314817778245 -

24.95019792946329;50.044539880331897 -12.37924470448983 -

6.1554649024941552 -34.188770827544829;75.195974898844952 -

8.496920805236881 -23.204437422548317 -50.821780786261186;-

78.91713065335496 30.30675618042681 -11.41710388503142 -

12.075402335723002;-0.73275907266874662 2.8114180499481907 

6.5991083777129163 -14.411560475242718]; 

  

% Layer 2 

b2 = 4.0803391408865233; 

LW2_1 = [3.4333621818930378 7.8772256424019567 9.7317463188872999 

27.439402981276821 -9.4485556438291631 -27.409680337858806 -

18.150887716279193 27.560566484940949 -9.729740808703367 

9.4785784313141477]; 
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% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2.00159191669162; 

y1_step1.xoffset = 3.45793e-05; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

  Q = size(X{1},2); % samples/series 

else 

  Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

  

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 
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% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

  y = bsxfun(@minus,x,settings.xoffset); 

  y = bsxfun(@times,y,settings.gain); 

  y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

  y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

  x = bsxfun(@minus,y,settings.ymin); 

  x = bsxfun(@rdivide,x,settings.gain); 

  x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

 

Appendix VII: %MATLAB Neural Network Function, including the optimum connection 

weights, and details about the transfer function for the steel closed-ended pile model 

tested in three relative densities and subjected to uplift loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 15-Jun-2017 09:35:08. 

%  

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

%  

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

%  

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

%  

% where Q is number of samples (or series) and TS is the number of timesteps. 
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%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0;1.079181246;0.48;1.230448921]; 

x1_step2.gain = 

[4.35616621339015;6.27433731131652;3.84615384615385;41.4038556926575]; 

x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [3.3292689538915234;-3.3051814273023781;-

2.1986897865241875;1.6570286686173747;-

0.40742137641892107;0.91295618297191039;-3.0444751310350804;-

5.3739077915921856;-3.8709278466889581;-2.5217673676433474]; 

IW1_1 = [-1.4575742200789055 1.7439121748091484 -0.31479477903963538 -

1.1025739140935069;2.6565474940491072 -2.1618805072730303 -

0.69995552861964916 1.0078851176706947;8.3723873665284252 

2.8303627163494607 -6.0892578028661797 -

3.3189226046778098;1.4848616543672182 -1.0419054423197376 -

2.0572549870000061 1.2180012961951772;4.1230276102419987 

2.5861159535251557 1.6016832612478069 -0.060701104194385805;-

2.5978843101248272 0.37693791629206908 1.1748570633104309 

0.07261236938495455;13.151748526408575 -5.9055751348726293 

3.4487510635689436 -10.186853292561402;-9.7923745226242964 

2.3834998015546809 0.29605417125415662 -9.3976381204689829;-

2.0338309138189192 -0.67779687069680083 1.7577051445306719 

4.9304893249435366;0.021107901158951288 -1.6052957029236841 -

0.23171872625584192 1.7539645432929456]; 

  

% Layer 2 

b2 = 2.9848018891996637; 

LW2_1 = [3.6619638716336822 2.4225131414977725 3.3347160418874497 -

0.017413325405720069 0.029562184331260587 4.2472756000355183 

6.0727174153121837 -4.9395312192006502 -4.9814427494112792 

0.01382847501142101]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2.07125247494864; 

y1_step1.xoffset = 0; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

  X = {X}; 



Appendices 

250 

 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

  Q = size(X{1},2); % samples/series 

else 

  Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

  

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

  Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

  y = bsxfun(@minus,x,settings.xoffset); 

  y = bsxfun(@times,y,settings.gain); 

  y = bsxfun(@plus,y,settings.ymin); 

end 
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% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

  y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

  x = bsxfun(@minus,y,settings.ymin); 

  x = bsxfun(@rdivide,x,settings.gain); 

  x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

Appendix VIII: %MATLAB Neural Network Function, including the optimum 

connection weights, and details about the transfer function for the steel open-ended pile 

tested in three relative densities and model subjected to uplift loads% 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 15-Jun-2017 10:34:02. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 5xQ matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.keep = [1 2 3 5]; 

x1_step2.xoffset = [0.013340496;1.079181246;0.48;1.230448921]; 

x1_step2.gain = 

[3.4659425901304;6.27433731131652;3.84615384615385;41.4038556926575]; 
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x1_step2.ymin = -1; 

  

% Layer 1 

b1 = [2.0267101954959159;-

1.5087309258155894;2.095838297514407;0.96572887444104416;-

1.0492957909871108;1.2353570696881908;-0.29911286927592629;-

0.41254869953850659;-2.3720572374595101;6.1186838201698617]; 

IW1_1 = [-1.8620913466872988 0.1175940535346955 -1.7548765633698249 

1.8676170032509016;5.3894115118074275 0.4329579505109078 -

0.47449698753625918 -4.3807362331663198;-0.8506172051249894 

3.1432450369550495 0.24693434795409963 -0.34291564820481241;-

7.0844502259990723 -1.0480638328464862 -2.486532276644287 

1.3630147947263065;1.1287101798939168 -0.1774198526460993 

1.7463735524760855 1.5721615559775857;4.687323352222422 -

2.2873478615966154 -4.1483365785656643 -

0.31340377458438157;5.2640207963372516 1.0984627935348097 -

2.0162153734024297 2.2181636289100042;2.0832323708462694 

0.46906910758403281 2.1214682394301314 1.5109717485019716;-

1.2255888098926138 0.45252445407353598 2.4204189894337187 

1.2892560843799932;3.9502753260275498 2.3196850141681553 

1.7641030544807115 -0.47876460736652315]; 

  

% Layer 2 

b2 = 1.3831167496710244; 

LW2_1 = [1.2494510481267598 3.12791187208239 -2.2245859375877917 -

2.9089703824837061 0.89637800312147842 3.8889192456677821 -

3.1742046221871369 -1.3379762746318939 1.0775090445342772 

5.5858503994567466]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2.00067080291284; 

y1_step1.xoffset = 0.000335289; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},2); % samples/series 

else 

    Q = 0; 

end 
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% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    temp = removeconstantrows_apply(X{1,ts},x1_step1); 

    Xp1 = mapminmax_apply(temp,x1_step2); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Remove Constants Input Processing Function 

function y = removeconstantrows_apply(x,settings) 

y = x(settings.keep,:); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 
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% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 
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