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Abstract

Objective: Both volumes of brain structures and adolescent alcohol dependence show
substantial heritability. However, exactly which genes are responsible for brain volume
variation in adolescents with substance abuse disorders are currently unknown. The aim of this
investigation was to determine whether genetic variants previously implicated in psychiatric
disorders are associated with variation in brain volume in adolescents with alcohol use disorder

(AUD).

Methods: The cohort consisted of 58 adolescents with DSM-IV AUD and 58 matched controls
of mixed ancestry ethnicity. An Illumina Infinium iSelect custom 6000 bead chip was used to
genotype 5348 SNPs in 378 candidate genes. Magnetic resonance images were acquired and
volumes of global and regional structures were estimated using voxel-based morphometry
(VBM). To determine whether any of the genetic variants were associated with brain volume,

association analysis was conducted using linear regression in Plink.

Results: Post-hoc t-tests showed that the being homozygous for the A allele for the intronic
SNP (rs219927) in GRIN2B was associated with smaller left orbitofrontal cortex volume
(uncorrected p-value= 0.001). Additionally, in AUD, as compared to HC, being homozygous
for the A allele for the functional 3’UTR SNP (rs890) in GRIN2B was also associated with

smaller left orbitofrontal cortex volume (uncorrected p-value< 0.001).

Conclusion: The GRIN2B gene is involved in glutamatergic signalling and may be associated
with developmental differences in brain regions involved in various processes including reward
processing. Such differences may play a role in risk for AUD, and deserve more detailed

investigation.
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Significant outcomes:



1 Variation within the gene GRIN2B may increase risk for AUD

2 Variation within the gene GRIN2B may be associated with differential brain volume

Limitations:

1 | Small sample size

2 | Two different methods were used in the acquisition of brain images




Introduction

Structural variations in several brain regions have been shown for alcohol use disorder (AUD),
in particular, smaller volumes have been found in the prefrontal cortex (Medina et al. 2008),
right hippocampus (Agartz et al. 1999, De Bellis et al. 2000), amygdala (Makris et al. 2008)
and grey and white matter (Fein et al. 2013, Gazdzinski et al. 2005). In adults with AUD,
differential brain volume in the bilateral insular cortex and amygdala was associated with a
lack of top-down control over impulsive behaviour (Senatorov et al. 2015). Brain structure has
considerable heritability (Baaré et al. 2001, Posthuma et al. 2000, Thompson et al. 2001).
Genetic variation within serotonin transporter (5-HTT), gamma-aminobutyric acid A receptor,
alpha 2 (GABRAZ2), brain-derived neurotrophic factor (BDNF), catechol-O-methyltransferase
(COMT), dopamine receptor D2 (DRDZ2), and corticotropin-releasing hormone receptor 1
(CRHR1) have been implicated with alteration in brain structure and function in adolescents
with AUD and alcohol-related phenotypes (Glaser et al. 2014, Hill et al. 2009, Hill et al. 2011,
Hill et al. 2013). In adults with AUD and alcohol-use related phenotypes, alterations in brain
volume were associated with variation in the genes GABRA2, BDNF, glutamate receptor,
ionotropic, N-methyl D-aspartate 2B (GRIN2B) and neuregulin 1 (NRG1) (Vergaraet al. 2014,
Villafuerte et al. 2012). Thus, the genes most implicated in AUD to date (in both adults and

adolescents) involve neurotransmission.

While previous studies have examined the association between brain volume and genes in
adolescents with AUD, these studies either investigated a select number of candidate genes or
adopted a volumetric brain region of interest (ROI) approach, which narrowed the scope of the
possible exploration. The aim of this investigation was to determine whether genetic variants
previously implicated in psychiatric disorders are associated with variation in brain volume in

adolescents with AUD.



Material and methods

Participants

Ethical approval for this study was obtained from the Research Ethics Committees of
Stellenbosch University (N06/07/128) and the University of Cape Town (HREC REF
023/2012). The cohort consisted of 58 adolescents with AUD and 58 demographically matched
(age, gender, language, education level, and socioeconomic status) control (HC) subjects of
mixed ancestry ethnicity, with a lifetime dosage not exceeding 76 units of alcohol. Eligibility
was assessed after a detailed medical history was taken by a fully qualified and licensed
psychiatrist. Physical and psychiatric examinations were also undertaken by the psychiatrist
and each of the participants underwent urine analysis and breathalyser testing to ensure they
were not intoxicated during the testing period. The Schedule for Affective Disorders and
Schizophrenia for School Aged Children (6-18 years) Lifetime Version (K-SADS-PL)
(Kaufman et al. 1997), was administered by a fully qualified and licensed psychiatrist to
determine whether any of the participants had current or past psychiatric symptoms (Fein et al.
2013). Additionally, the Timeline Followback (TLFB) procedure was used to determine
lifetime history of alcohol use and drinking patterns (Sobell and Sobell 1992). Childhood
adversity was measured by the 28-item Childhood Trauma Questionnaire- Short Form (CTQ-

SF) (Bernstein et al. 2003).

Exclusion criteria for study participation included diagnoses of mental retardation, lifetime
DSM-IV Axis | other than AUD; lifetime dosages exceeding 30 cannabis joints or 4
methamphetamine doses; current use of sedative or psychotropic medication; signs or history
of fetal alcohol syndrome or malnutrition; sensory impairment; history of traumatic brain injury
with loss of consciousness exceeding 10 minutes; presence of diseases that may affect the CNS;

less than 6 years of formal education; and lack of proficiency in English or Afrikaans. Blood



samples were collected for all of the recruited individuals with the appropriate informed

consent.

Genotyping

DNA was extracted from the participants’ blood samples using the Maxwell® 16 Blood DNA
purification kit (AS1010) (Promega) and the the Maxwell 16 instrument (Promega) at the
Centre for Proteomic and Genomic Research (CPGR) (Cape Town, South Africa). An lllumina
Infinium iSelect custom 6000 bead chip was used to genotype 5348 SNPs in 378 candidate
genes (genes involved in neurotransmitter and neuroendocrine systems) for post-traumatic
stress disorder, and SNPs and copy number variation (CNVs) which were “significant hits”
from previous psychiatric GWAS studies. The bead chip was run on the Illumina
BeadStation 500G System at the University of Michigan DNA Sequencing Core (Michigan,
USA). Case and control samples were analysed together. Genotype calls were made using

standard clustering algorithms in the GenomeStudio software (Illumina).

MRI Acquisition

MRIs were collected with a 3T Siemens Magnetom Allegra MR Headscanner using Syngo MR
software (Siemens Medical Solutions). The scanner is located in the Cape Universities Brain
Imaging Center at the Stellenbosch University Health Sciences Campus, South Africa. Images
for the first 50 subjects (25 HC and 25 AUD) were acquired using a trans-axial T1-weighted
acquisition (TR = 2080 ms, TE =4.88 mm, acquisition matrix = 256 x 192) at 1.0 mm thickness.
The initial review of these images revealed undesirable presence of blood-vessels in the
imaging, resulting from the scanner being a head-only model that did allow adequate saturation
of the blood to suppress signal before the blood flow enters the head. The use of a sagittal T1

protocol was subsequently implemented in place of the original trans-axial acquisition (TR =



2200 ms, TE = 5.16 ms, acquisition matrix 256 x 256) at 1.0 mm thickness. The remaining 66
subjects (33 HC and 33 AUD) had an MRI using the sagittal protocol. Of the 50 individuals
with a transaxial T1-weighted acquisition, 25 individuals (9 HC and 16 AUD) had an additional
MRI with the sagittal protocol. In a previous analysis, we demonstrated that the two acquisition

protocols produced comparable images that could be combined for analysis (Fein et al. 2013).

MRI Analysis

After manually reorienting and realigning the cross-hair on the AC-PC plane in all our nifti-
converted DICOM T1 images, and initial quality control for signal artifacts, morphological
changes were calculated in gray matter by segmenting from white matter and cerebrospinal
fluid using the voxel-based morphometry (VBM) unified segmentation approach (Ashburner
and Friston 2005) in SPM8 (www.fil.ucl.acuk/spm8). Following this segmentation procedure,
probability maps of gray matter were "modulated” to account for the effect of spatial
normalisation, by multiplying the probability value of each voxel by its relative volume in
native space before and after warping. Gray matter images, based on probability maps at each
voxel, were spatially normalised using a pediatric template from the Cincinnati Children’s
Hospital old children template (www.irc.cchmc.org/software/pedbrain.php) and then co-
registered using the same segmented template. Modulated images were smoothed with an 8
mm 'Full Width Half Maximum [FWHM]' Gaussian kernel, in line with other recent VBM
studies. This smoothing kernel was applied prior to statistical analysis, to reduce signal noise

and to correct for image variability.

Statistical Analysis
As an exploratory analysis, association analysis was conducted using linear regression in Plink

(version 1.07) (http://pngu.mgh.harvard.edu/~purcell/plink/). This was to determine whether

any of the SNPs (independent variable) had an association with several regions of interest

(ROISs) (dependent variable) taken from previous publications examining gray matter volume
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in AUD (Brooks et al. 2014, Fein et al. 2013, Vergara et al. 2014). The ROIs, which were
tested separately, were: amygdala, caudate, dorsolateral prefrontal cortex (DLPFC), globus
pallidus, hippocampus, insula, occipital lobe, posterior cingulate, precuneus, putamen, superior
temporal gyrus, and thalamus. The following were included in the regression model as
covariates: age, gender, years of education, total matter volume, handedness, and protocol.
Additionally total CTQ score was added as a covariate as a previous study on this cohort found
an association between CTQ score and brain volume (Brooks et al. 2014) . All samples had a
call rate of greater than 99%. Before genotyping and frequency pruning there were 4656 SNPs.
A total of 9 SNPs failed the missingness test (i.e. only SNPs with a genotyping rate of 90%
were included) and 600 SNPs were excluded because of a minor allele frequency (MAF) of
less than 0.05. A total of 4 SNPs were excluded as these were out of Hardy-Weinberg
Equilibrium (HWE) (p-value less than 0.00001). All tests were corrected for multiple

comparisons (for multiple SNPs) using the Bonferroni correction method.

As a follow-up to the initial association findings, the main effects of group (AUD and HC) and
of the identified significant SNP genotypes on brain volume data, 2 x 2 ANCOVA using VBM
in the SPM8 package (http:www.fil.ucl.ac.uk/spm8) was implemented. AUD and HC subjects
were matched in terms of age, gender, and protocol. Because years of education, handedness
and protocol were not significantly associated with any brain volume, only age, gender, and
total matter volume were retained as covariates of no interest to control for global differences
in head size. All statistical analyses were corrected for multiple comparisons at the peak voxel
level using the family-wise error (FWE), although uncorrected but otherwise significant
findings are also reported in the table as an indicator for further more statistically powerful

studies to examine.



Results

Participants

See table 1 for participant details. The median ages of the HC and AUD groups for the total
cohort were 14.77 and 14.98, respectively and were not significantly different. The study
participants were predominantly Afrikaans, followed by English speaking and the median
number of years of education was 8.0 years for both groups (HC and AUD). The median
number of alcohol life dose units for the AUD group in the total cohort was 962.0, and 1.0 for
the HC group, where a unit refers to one beer or wine cooler, one glass of wine, or one 43¢
shot of liquor (on its own, or in a mixed drink). The median total CTQ score was 36.0 and 42.0

for the HC and AUD group, respectively.

Statistical Analysis

Plink 1.07

From the association analysis, only one SNP, rs219927 located in an intron of the gene GRIN2B
was associated with ROI brain volume in the left posterior cingulate cortex (corrected p-value<
0.05), whereby having a G-allele was associated with a bigger volume. From this, four
“functional” variants (two exonic [rs1806201 and rs7301328] and two located in the 3’UTR
[rs890 and rs1805502]) within the GRIN2B gene were investigated to determine whether these
variants were associated with variation in brain volume that was not detected in the earlier
association tests due to the multiple testing burden. It was found that the 3°UTR SNP, rs890,
was associated with brain volume in the left and right DLPFC (corrected p-value < 0.05),

whereby an A-allele was associated with a bigger volume.

Voxel-Based Morphometry
In order to validate the findings from the initial association analyses, ANCOVA and post-hoc

t-tests for brain volume and genotype (rs219927 and rs890 in GRIN2B in two separate
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ANCOVA analyses) were conducted using VBM. The ANCOVAs showed a significant main
effect for rs219927 in the left orbitofrontal cortex (OFC) (x=-21, y=37, z=-16, uncorrected p-
value< 0.05) (Table 2). Post-hoc tests indicated that volume in the left OFC was smaller in
individuals with the AA genotype compared to those homozygous for the G-allele, although
this association was only nominally significant (uncorrected p-value< 0.001) (Table 2). For
rs890, a main effect of genotype was observed in the left parahippocampal gyrus (x=-24, y=-
30, z=-21, uncorrected p-value< 0.001) and the left OFC (x=-24, y=24, z=-19, uncorrected p-
value< 0.001) (Table 3). In addition, a genotype by group interaction was detected for the left
OFC (x=-24, y=24, z=-19, uncorrected p-value< 0.001). From the post-hoc analysis it was seen
that individuals with AUD and the AA genotype had smaller volumes in the left OFC (x=-34,

y=32, z=5, uncorrected p-value< 0.001) (Figure 1) (Table 3).

Figure 1: Smaller volume in left OFC for AUD individuals with GRIN2B rs890 AA genotype

Discussion
This study is the first to explore which genes, from a large sample of SNPs commonly
associated with psychiatric disorders, are associated with brain volume differences in

adolescents with AUD versus healthy controls. It was found that an intronic SNP rs219927 and
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rs890, a functional 3’UTR SNP, both within the gene GRIN2B, are associated with smaller left

OFC volume in AUD.

The exploratory analyses identified the SNPs rs219927 and SNP rs890 located within GRIN2B
as possibly involved in influencing brain volumes in adolescent AUD. GRIN2B (12p12)
encodes the 2B subunit of the ionotropic N-methyl-D-aspartate (NMDA) glutamate receptor
(Collingridge et al. 2009) and in brain tissue is primarily expressed in the fronto-parieto-
temporal cortex and the hippocampal pyramidal cells (Schito et al. 1997). The NMDA receptor
is an ion gated-channel which plays a role in the process of long term potentiation and is
thought to be involved in learning and memory (Ishii et al. 1993). Genetic polymorphisms
within GRIN2B have previously been associated with variation in brain structure. In particular,
the GRIN2B SNP rs890 was shown to have an association with reduced fractional anisotropy
(FA) in several brain areas, including the bilateral frontal region and left cingulate gyrus, in

individuals with bipolar disorder (Kuswanto et al. 2013).

In the current investigation, the analysis showed that the GRIN2B SNPs rs219927 and SNP
rs890 are associated with smaller volume in the OFC, a brain region involved in the process of
decision making (Bechara et al. 2000) and reward-related behaviour in response to taste, smell
and visual cues (Kringelbach 2005, Rolls 2000). The OFC is implicated in a cortico-striatal-
limbic neural circuit accounting for alcohol craving and relapse following a period of
abstinence, incorporating the medial prefrontal cortex, anterior cingulate cortex, striatum and
amygdala (Sullivan and Pfefferbaum 2014). Damage to, or deficits in this circuitry therefore,
likely contribute to impairments in executive functioning, emotion regulation and decision
making observed in those with AUD. In line with our observations, a previous study reported
that the GRIN2B rs1805476 SNP was associated with smaller OFC volume in individuals with
obsessive compulsive disorder (Arnold et al. 2009), a disorder associated with a lack of control

over anxious symptoms. The intronic GRIN2B rs219927 SNP, which we also found to be
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associated with brain volume differences in our cohort, has not previously been associated with
any brain volume or psychiatric phenotype. This SNP could be in linkage disequilibrium with
other causal variants. The OFC has previously been implicated in alcohol abuse and addictive
behaviour (Miguel-Hidalgo et al. 2006, Volkow and Fowler 2000), suggesting specific neural
pathways, associated with glutamatergic expression and the GRIN2B gene in the development

of AUD.

This study has some strengths and limitations that must be considered when interpreting our
findings. For a gene-imaging study our cohort (AUD=58, HC=58) is relatively small, and
future brain imaging studies would benefit from increasing the sample. While, we conducted
a powerful and rigorous pre-analysis of the SNPs most associated with previously defined brain
volumes of interest implicated in AUD, we cannot rule out false negative findings. Also, the
regions identified from the initial exploratory analysis were not found in the ANCOVA
analysis, possibly due to a lack of power. In addition, our brain imaging method might have
been flawed by the trans-axial to saggital acquisition differences, although our preliminary

analyses of potential artifacts between these two approaches revealed no significant effect.

In conclusion, the GRIN2B gene, involved in glutamatergic signalling, may be associated with
developmental differences in brain regions involved in various processes including reward
processing. Such differences may play a role in risk for AUD. These findings deserve further

detailed investigation in larger cohorts.
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