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Novel efficient genome-wide SNP panels
for the conservation of the highly
endangered Iberian lynx
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Beatriz Villanueva3, Jesús Fernández3 and José A. Godoy1*
Abstract

Background: The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the
world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in
two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been
based on 36 STRs, but their limited variability and the more complex situation of current populations demand more
efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million
SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample.

Methods: We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage
disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets
optimized for four different typical tasks in conservation applications: individual identification, parentage assignment,
relatedness estimation, and admixture classification, and compared their power to currently used STR panels.

Results: We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one
additional marker that showed significant differentiation between sexes. For all applications considered, panels
of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase
in the number of markers.

Conclusions: These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and
flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example
highlights an important outcome of whole-genome studies in genetically threatened species.

Keywords: SNPs, STRs, Genetic management, Monitoring, Non-invasive, Genome-wide
Background
Genetic markers provide powerful tools for the study
and conservation of biodiversity. They provide valuable
insights into population sizes, mating systems, related-
ness, population structure, and dispersal rates [1, 2],
which can be effectively integrated into management
and monitoring programmes of wildlife populations.
Such programmes typically involve one or several of the
following tasks: (i) individual identification, which allows
for the estimation of census sizes, the identification of
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individual ranges and movements, and some forensic
applications [3]; (ii) parentage assignment, which is im-
portant in the study of mating systems and reproduc-
tive success and contributes to pedigree reconstruction
[4]; (iii) relatedness estimation, which in addition to
informing on important aspects of species biology, is of
highest relevance for the genetic management of popu-
lations, as it forms the basis of the commonly used kin-
ship minimization strategy [5]; and (iv) detection of
hybridization or admixture, as classification of individ-
uals into specific ancestry categories might prove useful
for comparing the fitness consequences of admixture
(e.g. [6]). In addition, the genetic information gained
can be used for the estimation of effective population
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3946-5&domain=pdf
mailto:godoy@ebd.csic.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Kleinman-Ruiz et al. BMC Genomics  (2017) 18:556 Page 2 of 12
size, genetic diversity, gene flow, and to infer demographic
changes. Most importantly, all these tasks can be per-
formed on genotypes obtained from non-invasively col-
lected samples, avoiding capture and minimizing risks to
animals and people [7].
Microsatellites or short-tandem repeats (STR) have

been the markers of choice for the genetic monitoring
and management of populations for the last two decades
[8, 9], but Single-Nucleotide Polymorphisms (SNPs) have
been advocated as superior markers [10, 11]. SNPs are
single base nucleotide variants which make up a stable
polymorphism in a species [12], and represent the most
abundant and widespread source of sequence variation
within genomes [13]. Their appeal with respect to STRs
also builds on: (i) their lower mutation rates [14], which
in turn imply less homoplasy [3], (ii) their lower ex-
pected error rates both in genotyping and allele calling
(e.g. [15]), and (iii) their automation potential (reviewed
in [16]). Finally, and contrary to what happens with
STRs, SNP based assays are highly repeatable and easy
to standardize across collaborators [17]. At the same
time, their biallelic nature often implies lower resolution
and statistical power per marker compared to the mul-
tiallelic STRs, but this can be easily counterbalanced by
increasing the number of SNPs [18].
All in all, SNPs allow for a notorious increase in the

power and accuracy of most genetic analyses when avail-
able in sufficient numbers. SNP discovery in non-model
species, although still a major hurdle, has been greatly
facilitated by recent advancements in Next Generation
Sequencing (NGS) [19]. Nanoscale genetic analyses on
microfluidic platforms [20] have streamlined, reduced
costs, and added flexibility to the genotyping assays,
minimizing at the same time the DNA quality and quan-
tity requirements of chip-based technologies [17, 21].
Furthermore, the genotyping costs and the effort neces-
sary to achieve the required power can be drastically re-
duced by selecting the most informative SNP for each
particular application. Indeed, high-throughput SNP
genotyping has been successfully applied to the non-
invasive genetic monitoring of some wild mammal po-
pulations based on scat samples [17, 22], and to genetic
studies based on museum samples [23].
The Iberian lynx (Lynx pardinus) has been highlighted

as the most endangered felid species in the world [24].
Seven out of the nine populations extant in the 1980s
became extinct by the end of the twentieth century [25],
and the remaining two, Doñana (DON) and Andújar
(AND), separated by ca. 240 km [26], have been effecti-
vely isolated at least since the 1950s (ca. 14 generations)
until the start of translocations in 2007 [27]. Several
studies have revealed extremely low mitochondrial and
STR diversity, record low genome-wide diversity, and ex-
cess of potentially deleterious variants, especially in the
smallest population (DON), as well as high differentiation
between the two populations [28–31]. Most importantly,
evidence of inbreeding depression is accumulating
[32–35] and the occurrence of an extinction vortex
has been suggested for the DON population [30].
Early in the twenty-first century the Iberian lynx dra-

matic decline prompted the implementation of active
conservation strategies with the main funding of three
successive European LIFE projects [27]. Conservation
actions include (i) the close-up monitoring of indivi-
duals, (ii) an ex situ breeding programme that manages
a captive population (CAP) resulting from the admix-
ture of the two remnant differentiated genetic pools
(DON and AND), (iii) genetic rescue through transloca-
tions between these two populations, and (iv) a reintro-
duction programme aimed at recovering the species’
historical distribution in Spain and Portugal. Population
monitoring so far has mostly relied on radio-tracking
and camera trapping [36–38], while marker-assisted
genetic evaluation and management have been based
on 36 STR markers [28, 39]. The remarkable success of
these actions has been endorsed by the recent down-
listing of the species from “Critically Endangered” to
“Endangered” in the 2015 International Union for
Conservation of Nature (IUCN) Red List [40], and also
by the latest census (2015), which estimates a total of
406 free-living individuals in the Iberian Peninsula
across all remnant and reintroduced populations
(http://www.iberlince.eu/images/docs/3_InformesLIFE/
Informe_Censo_2015.pdf ). In spite of this, the species
is still in high risk of extinction, and its survival heavily
dependent on continued conservation measures.
Given that in recent years many reintroduced popu-

lations have been founded by individuals from the
admixed CAP population and several translocation
events have been carried out between DON and AND,
currently all Iberian lynx populations harbour varying
degrees of genetic admixture. Such an increasingly com-
plex and interwoven conservation landscape poses new
challenges and demands tools as informative and effi-
cient as possible for an integrative management and
monitoring of the species.
In this study, we analysed data for ca. 1500 SNPs pre-

viously selected from whole genome sequences and pre-
viously genotyped in 380 Iberian lynx samples from five
populations [31]. The resulting genotypes are analysed
here for heterozygosity, Hardy-Weinberg equilibrium
(HWE), and linkage disequilibrium (LD). We also iden-
tify sex chromosome markers and estimate genotyping
error rates. Finally, we rank reliable autosomal SNPs by
their informativeness for individual identification, pa-
rentage assignment, relatedness, and admixture estima-
tion, and we identify optimal subsets of SNPs for each of
these tasks.

http://www.iberlince.eu/images/docs/3_InformesLIFE/Informe_Censo_2015.pdf
http://www.iberlince.eu/images/docs/3_InformesLIFE/Informe_Censo_2015.pdf
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Methods
SNP selection, samples, and genotyping
Out of >1.6 million SNPs identified through whole ge-
nome sequencing of 11 Iberian lynx males [31], a total
of 1536 SNPs were selected based on their global Minor
Allele Frequency (MAF ≥ 0.4), inter-SNP distance
(d > 0.6 Mb), and genotyping quality score predicted by
the Illumina’s Assay Design Tool algorithm (ADT > 0.9).
A total of 380 Iberian lynx blood and muscle samples,
including 28 replicates as internal controls, were ge-
notyped for these SNPs using Illumina GoldenGate tech-
nology. Genotypes were successfully obtained for 349
samples corresponding to 329 individuals (and 20
replicates).
Markers and samples with more than 20% of missing

genotypes were identified with PLINK v1.90b3.36 [41]
and discarded from further analyses. To estimate an
error rate for the final dataset we first verified replicate
genotypes (Additional file 1: Table S1) with PLINK’s
Identity By State (IBS) test, and then we tallied discor-
dant genotypes within individual and divided them by
the total number of actual pairwise comparisons using a
custom R script. Replicate genotypes were discarded
from further analyses.

Pedigree refinement and Mendelian inconsistencies
With the purpose of refining the pedigree and, ultimately,
identifying markers departing from autosomal Mendelian
inheritance (including X-linked markers), we assessed
Mendelian inconsistencies based on known parent-
offspring (PO) relationships using the –mendel function
in PLINK. Some of these discrepancies allowed us to iden-
tify a few misassignments and amend the current pedi-
gree. Additionally, some previously unknown relationships
were uncovered by maximum likelihood analyses using
ML-RELATE [42] and COLONY [43]. Markers in the re-
fined version of the pedigree that systematically yielded
Mendelian incompatibilities between sires and their male
offspring were flagged as X-linked markers and treated
separately from the main autosomal database unless
otherwise specified. Next, we performed the Fisher’s exact
test in R [44] to assess differences in allele and genotype
frequencies between sexes, which could be indicative of
sex-linked inheritance or just genotyping artefacts. Finally,
Mendelian inconsistencies in PO dyads and triads in
the filtered autosomal database were quantified as a
proxy for error rate.

Basic population genetics statistics
To characterize the genetic pools of DON and AND, we
used all pure DON (PDON; N = 91) and all pure AND
(PAND; N = 165) individuals, considering as such all indi-
viduals born in the respective population before their ad-
mixture, as well as any wild- or captive-born descendant
from two individuals of the same pure ancestry. For each
pool, basic summary statistics per marker such as their
MAF, observed and expected heterozygosity (HO and
HE, respectively), and the FST between the two pools
were generated for both the autosomal and the X-linked
sets using the snpStats R package [45]. A Wilcoxon
signed-rank test was performed to compare average HE

values between the two pools. The autosomal FIS for
each of the two pools was estimated using the R package
hierfstat [46].

HWE- and LD-based filtering
As a first step towards selecting a subset of autosomal
SNPs for application to conservation, a two-tailed z-test
for HWE was performed on each of the two pools of pure
individuals with the R package snpStats, after discarding
monomorphic markers within each pool. For the X-linked
set, specific HWE two-sided exact tests were applied using
the R package HardyWeinberg [47]. Resulting p-values
were ranked and corrected for multiple testing using the
Benjamini-Hochberg (BH) procedure [48].
Next, given that LD between markers in a panel can

artificially inflate its power, we defined sample subsets of
supposedly unrelated individuals (for PDON, N = 35; for
PAND, N = 45), we discarded monomorphic markers
within each pool, and we used the R package snpStats to
calculate –for both the autosomal and the X-linked
panels– the pairwise r2 (the squared correlation coeffi-
cient between SNP pairs) between all markers. We ap-
plied PLINK’s command –indep-pairwise to both the
PDON and the PAND autosomal panels, with the r2

threshold parameter set to a value of 0.5 to prune in one
SNP from each pair with r2 above the threshold. By
intersecting the two pruned lists with the R package
VennDiagram [49], we obtained a set of 343 autosomal
SNPs minimally linked in both populations.

Evaluation of panels for different applications
To optimize marker-assisted monitoring and manage-
ment, we pursued the identification of the most infor-
mative SNPs for individual identification, parentage
assignment, relatedness estimation, and ancestry estima-
tion. Based on the allelic frequencies of the 136 indivi-
duals from CAP (the main source of individuals for
ongoing reintroductions), we estimated statistics relevant
to each application (see below). Then, for each statistic,
we ranked SNPs and obtained global values for the 343
SNP set as well as for the top 192, 96, 48, 24, and 12
markers. Note that optimal panels should be redesigned
for populations with significantly different allelic fre-
quencies. For comparison purposes, the same statistics
were also estimated for the panel of 36 STR markers
currently used, as well as for a reduced set with the 12
STRs of highest HE, using the genotypes of 314 CAP
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individuals. These STR markers had been selected
among those originally developed for other felid species
and showed a low overall diversity in the Iberian lynx,
with an average number of 3.75 alleles observed per
marker (range: 2 – 11) and an average HO of 0.387
(range: 0.003 – 0.774) [28].

i) Individual identification. We used the advanced
frequency-based analysis module in GENALEX 6.5
[50] to estimate the probability of identity (PID), i.e.
the probability that two randomly chosen individuals
within a given population have identical genotypes,
and the probability of identity among full siblings
(PIDs), recommended when related individuals are
included in the sample [51]. Global values for each
panel were calculated multiplying PID (or PIDs)
across loci.

ii) Parentage assignment. We also used GENALEX to
obtain three probability estimates for parentage
exclusion per marker: the probability of exclusion
for one putative parent when the genotype of the
other parent is known (PE1), the probability of
exclusion for one putative parent when the other
parent’s genotype is missing (PE2) and the
probability of exclusion for the putative parent
pair (PE3), as described by Jamieson & Taylor
[52]. The corresponding three probabilities of non-
exclusion (PnE = 1 - PE) were then calculated for
different SNP sets by multiplying PnE across loci.

iii)Relatedness estimation. We sorted the SNPs by
their informativeness for relatedness index (Ir),
which was obtained using KININFOR [53]. Given
that this parameter is not additive over loci, to
report global values for each panel we estimated a
second measurement of marker informativeness
based on the distribution of the likelihood ratios
for two candidate relationships, i.e. the power for
relationship inference (PWR) [53, 54]. Three
common scenarios of candidate relationships
analyses were considered: full-sibs (FS) vs. unrelated
(UR), FS vs. half-sibs (HS), and HS vs. UR. A suggested
prior distribution {1,1,1} and precision level of 0.01
were used in all runs, with the significance level set
to 0.05 and an error rate of 10−5 for SNPs and 0.015
for STRs.

iv)Ancestry and admixture estimation. We evaluated
the power of panels through the rate of correct
classification of simulated individuals with varying
degrees of admixture. First, HYBRIDLAB [55] was
used to simulate a population of 100 individuals for
each of the following eight ancestry levels: (i) PDON,
(ii) PAND, (iii) offspring of PDON x PAND cross (F1),
(iv) offspring of F1 x F1 (F2), (v) first backcross DON
(BcDON), (vi) first backcross AND (BcAND), (vii)
second backcross DON (2BcDON), and (viii) second
backcross AND (2BcAND), based on the genotypes
for all 343 SNPs and 36 STRs. This programme
creates random genotypes for a specified hybrid
population based on the allelic frequencies from
each of the two hybridizing groups. Next, we used
a Bayesian-Markov Chain Monte Carlo (MCMC)
method implemented in NEWHYBRIDS [56], to
estimate the posterior probability that simulated
individuals from each of the eight ancestry levels
fall into any of the possible categories. In order to
compare the power of ancestry inference of different
marker types, set sizes, and ranking criteria, we
analysed: (i) the whole 343 SNP set, (ii) subsets of
192, 96, 48, 24, and 12 SNPs with the highest Ir; (iii)
same-sized SNP panels but ranked according to their
FST between PDON and PAND; (iv) all 36 STRs; (v) 12
top-ranking STRs according to HE; and (vi) 12 STRs
of highest FST. Following exploratory runs, a final
run of 11,000 iterations (of which the first 1000
were discarded as burn-in), was conducted for every
panel using Jeffrey’s priors. Individuals were then
assigned to the ancestry category for which the
highest posterior probability was obtained, as long
as it exceeded 60%. Otherwise they were deemed
as “ambiguous” and remained unassigned. Finally,
summary matrices with correct, ambiguous, and
cross-classification rates were constructed by
comparing the true (simulated) ancestry to that
inferred using NEWHYBRIDS. Analogously,
empirical genotypes in the final dataset were
also classified into ancestry categories using the
whole and FST-ranked SNP and STR panels.

Results
SNP selection, samples and genotyping
In order to identify highly informative SNP panels for gen-
etic monitoring and management, we analysed SNPs
which were previously selected from a whole genome vari-
ation scan and were genotyped using Illumina GoldenDate
technology [31]. Out of 1536 assayed SNPs, we discarded
42 that failed to yield genotypes for any sample, and two
additional SNPs that, upon further inspection, proved
monomorphic. For the 1492 markers that remained in the
dataset (validation rate: 97.1%), the rate of missing geno-
types (i.e. missingness) was always lower than 20%. No
SNP showed high missingness only in females, as expected
for a typical Y-linked marker. Out of the remaining SNPs,
13 were annotated as coding (eight synonymous and five
nonsynonymous), and 889 were in regions of shared
synteny with domestic cat (Felis catus; Additional file 2:
Figure S1).
None of the 349 successfully genotyped samples were re-

moved on account of high missingness. When comparing
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replicate samples to estimate an error rate, we could not
find a single discrepancy among 29,857 valid pairwise
genotype comparisons (after discarding missing data)
among 14 duplicates and three triplicates, which translates
into an error rate lower than 3.35*10−5.

Pedigree refinement and Mendelian inconsistencies
To identify markers departing from autosomal Mende-
lian inheritance, we tested Mendelian segregation based
on high-confidence PO relationships. We identified 21
SNPs consistently yielding PO mismatches (ranging
from 25 to 72 per SNP across the pedigree). Nearly all
these mismatches occurred between sires and their male
offspring, indicating that these markers could be X-
linked. None of these markers were in confirmed regions
of synteny to domestic cat, but they all were within scaf-
folds that contain other regions with shared synteny to
cat chromosome X. Additionally, three out of the
remaining 1471 SNPs were syntenic to cat’s X chromo-
some. The two more distal markers (1,123,473 and
2,370,918) behaved as autosomal, suggesting they are lo-
cated within the pseudo-autosomal region (3.7 and
4.7 Mb from the tip, respectively); however, the third
one (2270811), which is found slightly farther from the
chromosome end (6.2 Mb), showed significant allelic
and genotypic differences between males and females in
both PDON and PAND (Fisher’s exact test with false disco-
very rate correction for multiple testing; all p-values <1*10
−8; Additional file 1: Tables S2 and S3, respectively).
Tested PO relationships that were identified as incor-

rect (i.e. were not supported by likelihood analyses) had
a minimum of eight Mendelian inconsistencies at these
1471 SNPs, and this was a case in which the discarded
parent was a close relative of the true parent. After ex-
cluding wrong assignments, a total of eight Mendelian
errors remained across 108 dyads and 77 triads of high
confidence. These discrepancies involved one dyad and
four triads, with two individuals probably accruing all
eight errors (Additional file 2: Figure S2). In any case,
Mendelian compatibility analyses suggest a low rate of
errors, backing up our estimate based on replicate
samples.

Basic population genetics statistics
To characterize the remnant genetic pools of Doñana
and Andújar, we obtained basic diversity and differen-
tiation statistics for the 1471 autosomal SNPs and the
two pure ancestry samples (PDON and PAND; Additional
file 1: Table S4). Average values confirm previous ob-
servations of lower diversity in PDON (HE = 0.235,
σ2 = 0.041 vs. HE = 0.398, σ2 = 0.012 in PAND; p = 2.2*10
−16) and high differentiation between the two pools
(weighted FST = 0.280, σ2 = 0.054). For the 21 X-linked
markers, we observed slightly lower diversity, but again
different diversity between pools (HE = 0.216, σ2 = 0.036
in PDON; HE = 0.368, σ2 = 0.020 in PAND; p = 0.001) and
higher differentiation than for autosomal markers
(weighted FST = 0.309, σ2 = 0.113) (Table 1; Additional
file 1: Table S5).
HWE- and LD-based filtering
Next, we performed a z-test for HWE in order to detect
and exclude markers departing from random mating ex-
pectations. Six autosomal loci were significantly deviating
from HWE in each of the two pools after multiple-testing
correction; however, no locus was in HW disequilibrium
simultaneously in both pools (Additional file 1: Tables S6
and S7). Similarly, no X-linked locus was in significant
HW disequilibrium in PAND and PDON (Additional file 1:
Tables S8 and S9).
The power of a panel of markers is maximized when

all its members segregate independently from each other,
i.e. when they are in linkage equilibrium. We thus first
estimated LD by calculating the pairwise r2 values
among all markers. Consistent with the high d threshold
that guided the initial SNP selection, the average r2 for
the full set of autosomal markers was low: 0.029
(σ2 = 0.003) for PDON and 0.020 (σ2 = 0.001) for PAND

(Additional file 1: Tables S10 and S11, respectively).
The average r2 was slightly higher for X-linked markers
for both PDON (r2 = 0.108, σ2 = 0.05; Additional file 1:
Table S12) and PAND (r2 = 0.069, σ2 = 0.015; Additional
file 1: Table S13). Focusing on the autosomal set, the
number of pairwise r2 above 0.5 was negligible: 1169
out of 499,370 valid comparisons in PDON, and 831 out
of 1,073,840 valid comparisons in PAND. Secondly, we
pruned out one SNP from each of these pairs with r2

above 0.5 in any of the two genetic pools. The resulting
set of 343 autosomal markers with minimal linkage in
both genetic pools was used to evaluate the power of
different marker combinations for different applications.
Evaluation of panels for different applications
Individual identification, parentage assignment, and
relatedness estimation
To obtain informative panels for these applications, we
ranked the 343 minimally linked SNPs according to six
statistics (i.e. PID, PIDs, PE1, PE2, PE3, and Ir), esti-
mated based on the allelic frequencies of CAP. We
found a high Kendall rank correlation [57] among all six
criteria and between each of them and HE (all τ > 0.994;
Additional file 1: Table S14). All rankings and selected
panels based on the first five criteria (i.e. those related to
individual identification and parentage exclusion) were
exactly the same, which is consistent with their particu-
larly high rank correlation (τ > 0.999). Correlations of
these with Wang’s Ir were slightly lower (τ > 0.998), but



Table 1 Number of autosomal and X-linked SNPs per ancestry, and average variability and differentiation statistics

Set Numberof SNPs Ancestry Number of monomorphic SNPs HE HO FST (DON-AND) FIS

Auto-somal 1471 PDON 471 0.235 0.240 0.28 −0.013

PAND 5 0.398 0.408 −0.022

X-linked 21 PDON 7 0.216 0.236 0.309 -

PAND 0 0.368 0.352 -
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the selected panels differed in no more than two SNPs
between applications – and often in none at all.
Next, we estimated the global values of the aforemen-

tioned statistics for the 343 SNP set (Additional file 1:
Table S15), for panels with the top ranking 192, 96, 48,
24, and 12 SNPs, for the 36 STR set (Additional file 1:
Table S16), and for the 12 STRs of highest HE. The 24
SNP panel already surpassed in individual discrimination
power (PID = 6.0*10−11; PIDs = 3.7*10−6) the 12 STR
panel currently used for individual identification
(PID = 5.1*10−10; PIDs = 9.7*10−5), and as few as 12
SNPs could still be informative enough to reliably dis-
tinguish non extremely inbred or related individuals
(Fig. 1a). With regard to parentage exclusion (Fig. 1b),
48 SNPs were enough to approach the already high
power of the whole 36 STR set (PnE1 = 4.7*10−5;
PnE2 = 1.7*10−3; PnE3 = 1.3*10−7). Finally, the 48 SNP
panel’s power to discriminate among alternative relation-
ships was slightly lower than that of 36 STRs, but the 96
SNP set well outperforms it, achieving a power higher
than 80% even for the most demanding of the three
comparisons (1 - PWRHS-UR = 1.8*10−1; Fig. 1c).

Admixture and ancestry estimation
Genetic markers can be used to classify individuals in each
of the possible ancestry or admixture categories generated
following the mixing of the two lynx genetic pools (Add-
itional file 2: Figure S3). For this application, we ranked
markers according to their Ir and their FST between PDON

and PAND. Then, using NEWHYBRIDS, we estimated the
power of differently-ranked and -sized panels to classify
individuals in ancestry categories as the rate of correct
classifications of simulated genotypes generated with
HYBRIDLAB (Additional file 1: Table S17).
Generally speaking, the 343 SNP set was the best per-

forming set. It showed the same power as the set of 36
STRs for the categories of easier discrimination (PDON:
98 vs. 100%; PAND: 94 vs. 94%; F1: 100 vs. 99%) and
starkly outperformed it for the remaining categories (F2:
98 vs. 86%; BcDON: 94 vs. 69%; BcAND: 88 vs. 77%;
2BcDON: 87 vs. 78%; 2BcAND: 84 vs. 50%). Notwithstan-
ding, the performance of reduced SNP panels of highest
Ir was not satisfactory (Additional file 1: Table S17). In
contrast, panels based on the rank of FST between PDON

and PAND performed comparatively much better. Results
for the 96 SNP set show a perfect classification of F1
individuals and a highly accurate (>95%) classification of
pure and F2 individuals, whereas correct assignments
were slightly lower for first backcross (BcDON: 86%;
BcAND: 84%) and second backcross categories (2BcDON:
85%; 2BcAND: 78%). Only 33 out of the 800 simulated
individuals couldn’t be unambiguously assigned to any
ancestry level. For smaller panels the classification ac-
curacy fell as expected with size, and particularly so for
the less distinguishable backcross and second backcross
categories. Overall, the performance of the panel of 48
SNPs was similar to that of the 36 STRs (Fig. 2).
The results of the analyses of empirical data only par-

tially confirmed the patterns observed for simulated
data. Larger (SNP) panels showed higher rates of mis-
classification of pure individuals as second backcrosses
than expected from simulations, whereas a better corre-
lation was observed for smaller panels. The sets of 48
SNPs and 36 STRs behaved similarly to each other and
to expectations from simulations, with a slightly lower
classification of pure DON individuals with SNPs
(Additional file 1: Table S18). All F1 individuals were
perfectly classified across all panels. Unfortunately,
admixed categories beyond F1 are poorly represented
or completely absent from the empirical data, preven-
ting a more thorough comparison of simulated and
empirical results.
Discussion
Our extensive curation and evaluation of a dataset of ge-
notypes for 1536 SNPs allowed us to select maximally
informative autosomal SNP panels for individual identi-
fication, parentage assignment, relatedness estimation,
and admixture estimation. Proposed panels showed
higher power than the currently used 36 STR set with
only a very modest increase in the number of markers,
while adding at the same time the many benefits inhe-
rent to SNPs (e.g., their applicability to low quality
samples). In combination with flexible genotyping tech-
nologies they do provide novel, efficient and cost-effective
tools for the demographic and genetic monitoring and
management of this highly endangered and actively man-
aged species. Furthermore, we identified 21 X-linked
markers that may prove useful for complementing paren-
tage analyses, determining sex, or genetic studies focused
on this chromosome.



a

b

c

Fig. 1 Power of different-sized panels of SNPs and STRs for individual
identification (a), parentage exclusion (b), and relationship discrimination
(c). White circles indicate the smallest panel informative enough for the
respective application, and their power is indicated. 1 – PWR value for
the FS vs. UR comparison with 343 SNPs is not shown due to KININFOR’s
lack of sensitivity beyond PWR = 0.9999991 (DON: Doñana population;
AND: Andújar population; PDON: pure DON; PAND: pure AND)
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Genetic monitoring and most forensic applications in-
volve a first step in which genotypes are obtained from
new samples and, by checking them against the refe-
rence database, are either assigned to already recorded
individuals, or identified as previously unsampled indi-
viduals. The proposed panel of 24 SNPs has sufficient
power to discriminate even between closely related indi-
viduals. In a subsequent step in genetic monitoring,
novel individuals may be assigned to parents so that a
population genealogy is progressively built (e.g. [4]). We
found that a panel of only 48 SNPs provides sufficient
power to assign parentage with high confidence, even in
the most demanding situation where none of the parents
are known. It must be noted, though, that more markers
(e.g. 96 SNPs) could be needed in specific scenarios with
multiple, closely related putative sires [58], as observed
in a previous study on reproduction patterns in the
DON population (Lucena-Perez et al. submitted).
One important feature of genetic monitoring is that it

can be based on non-invasively collected samples, such
as faeces, hairs or feathers [59], and here SNPs offer im-
portant advantages over STRs [3, 60]. Degraded DNA in
low quality samples is prone to low rates of amplification
and high rates of genotyping errors, including false al-
leles and allelic dropout [61]. Reported error rates for
STR markers vary greatly among studies, ranging from
0% to above 30% when considering just allelic dropout
(reviewed in [62]), thus imposing the need for multiple
genotyping replicates of the same extract [63]. How-
ever, degraded DNA can be typed more efficiently and
accurately for SNPs due to their considerably shorter
target DNA sequence (~50-70 bp) compared to STRs’
(80–300 bp) [3]. Indeed, the few existing studies on
SNP genotyping of non-invasively collected wildlife
samples report low rates of genotyping failure and er-
rors, e.g. <10% and ~1%, respectively, in wolves [17],
and 0.36 and 0.038% in bears [22], eliminating the need
for costly and laborious systematic replicates.
The other very important use of genetic markers in

conservation is genetic management, which is typically
based on a kinship minimization strategy [5]. This stra-
tegy is presently being applied to the management of the
captive Iberian lynx population using STR-based estima-
tions of relatedness among founders in combination
with the completely known genealogy [39]. However, the
currently used 36 STR set in fact provides limited infor-
mation on relatedness, since it correctly discriminates
<80% –a threshold used by Wang [53]– of FS from HS
dyads at a significance level of p < 0.05. On the contrary,
96 SNPs provide enough power to correctly discriminate
>80% of HS from UR dyads, which is the most deman-
ding of the three tested comparisons. Still, even our
whole 343 SNP panel does not provide enough density
to completely replace genealogy in kinship minimization



Fig. 2 Rate of correct classification of simulated populations with eight distinct degrees of admixture (ancestry levels) for different-sized SNP and
STR panels of highest FST markers (PDON: pure DON; PAND: pure AND; F1: filial generation of PDON x PAND cross; F2: offspring of F1 x F1 cross; BcDON:
first backcross DON; BcAND: first backcross AND; 2BcAND: second backcross AND)
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strategies, which has been estimated in 3Ne SNPs/Mor-
gan [64]. On the other hand, even when quite complete
genealogies are available, genetic markers can be used to
estimate the unknown relatedness among the founders.
Furthermore, genetic markers do estimate the realized –
rather than the expected– kinship or inbreeding (which
can be more useful measures for most applications) for
the whole genome or for specific regions [64, 65].
The increasingly complex situation of Iberian lynx

conservation demands the extension of the genetic ma-
nagement to the remnant and reintroduced populations,
ideally within a single integrative genetic management
programme for the species. Relatedness estimation based
on the novel SNP panels presented here will become
most critical for this objective, since with the exception
of DON (Lucena-Pérez et al. submitted), other popula-
tions lack reliable and reasonably complete genealogies.
The fact that PID, PIDs, PnE, and Ir share a nearly

identical ranking of markers means that panels designed
for a less demanding purpose (e.g. individual identifica-
tion) are nested within those for more demanding appli-
cations (e.g. parentage assignment). This enables a
module workflow that grants great flexibility to genetic
monitoring and management of Iberian lynx popula-
tions. For example, non-invasively collected samples
would be assigned to specific individuals based on the
12–24 SNP panels. The novel unique genotypes could
then be assigned to parents and incorporated to the
pedigree after genotyping one of its replicate samples for
the next most informative 24–72 SNPs. Finally, indivi-
dual lynx that are candidates for being translocated or
incorporated into captivity could be additionally typed
for the remaining SNPs for relatedness estimation.
We also considered admixture estimation as a poten-

tial application of the novel SNP markers, since the two
highly differentiated genetic pools have recently been
admixed in captivity and in the wild through transloca-
tions. Differentiating individuals by ancestry might be
most relevant for the assessment of the fitness conse-
quences of admixture, i.e. for the evaluation of genetic
rescue or outbreeding depression (e.g. [6]). Since most
of the markers of highest HE are poorly differentiated
between the two pure ancestries, admixture tests would
require their own particular sets of ancestry informative
markers, with little overlap with those selected for other
applications. For this purpose, using loci with different
alleles fixed in each population would be optimal, but
these were excluded by the MAF requirement in the ini-
tial selection. Fortunately, a sufficient number of highly
differentiated SNPs were available to provide enough
power for ancestry classification. Simulated individuals
of PDON, PAND, F1, and F2 categories are reasonably well
classified with the 48 highest FST SNP set and the 36
STR set, whereas less differentiated categories require at
least 96 SNPs.
The observed accuracy of ancestry classification of em-

pirical genotypes with SNP panels became lower than
that inferred from simulated genotypes as panel size in-
creased. This is probably due to the additional LD de-
rived from the relatively high relatedness structure and,
especially, the recent admixture in current Iberian lynx
populations (admixture linkage disequilibrium) [66].
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This effect gains relevance as the density of markers
increases, and is expected to dilute out with successive
generations of random mating following admixture [67].
This should also result in the overestimation of power of
individual discrimination, parentage assignments, and
relationship inference, which assume markers combined
in the same panel are completely unlinked. However,
individual identification and parentage assignment
shouldn’t be much affected by this, since i) the pro-
posed panels are small, and ii) the threshold of esti-
mated power that we chose for these applications is
well above the minimum required, an advice that could
be extended to similar studies in other species to ac-
count for any possible deviation of theoretical or simu-
lation assumptions. Finally, even if not completely
realistic, simulations and theoretical power estimations
are still useful for the comparison among marker types
and panel sizes.
Our observed SNPs to STRs ratio (e.g. around 1.3 for

individual identification) is at the lower end of or even
below the range of 1.7 to 5.56 SNPs per STR reported in
humans (see [18] and the references therein). The high
performance of SNPs when compared to STRs found
here can be explained by the restrictive selection of the
most informative among the more than 1.6 million SNPs
found in the analyses of 11 Iberian lynx genomes [31].
In contrast, the 36 STRs were selected among far fewer
markers, which were also originally developed for other
felid species: 25 out of ~250 from domestic cat, seven
out of eight from bobcat (Lynx rufus), and four out of
six from Canadian lynx (Lynx canadensis) [28]. This
more limited search and the ascertainment bias asso-
ciated to the heterologous nature of these markers have
limited the variability of the selected STRs, to the point
where some of the worst performing STRs have lower
HE than any of the selected SNPs.
These results highlight the importance of the variant

discovery and screening phases. Once considered a major
limitation of SNP adoption, NGS approaches have greatly
facilitated these tasks in non-model organisms, especially
when applied to reduced genome subsets or transcrip-
tomes [68]. Still, such screening effort will be especially
challenging for genetically eroded species, requiring a
more extensive sampling of the genome (as exemplified
here) or yielding larger panels for any given power than in
genetically diverse species.
The decision on how many markers to use for the

most demanding applications (e.g. relatedness estima-
tion) will mostly rely on cost-budget considerations, and
these heavily depend on the genotyping technology used.
The excessive cost of chip-based technologies –but also
their limited flexibility and high input sample require-
ment– have deterred the application of non-invasive
SNP-based approaches in wildlife. On the other hand,
technologies based on fluorescent detection provide the
advantage of a single PCR reaction, thus avoiding multiple
manipulation steps [69], and when implemented with
nanofluidic systems, the sample, reagent, and labour re-
quirements are substantially reduced. For example, the
Fluidigm system enables flexible and high-throughput
SNP genotyping through the use of dynamic arrays with
Integrated Fluidic Circuits (IFCs) of different sizes, such
as 48.48 (48 samples against 48 markers per run) or
192.24 (192 samples against 24 markers). The philosophy
behind this technology fits well the needs of a conserva-
tion programme, where samples may not accrue at a uni-
form pace, and questions requiring different SNP sets
might need to be addressed as soon as they arise. More-
over, hands-on laboratory costs with the Fluidigm system
are substantially cheaper than for STR genotyping, and
initial investments in synthesis of assay probes are now
similar – but SNP probes can be applied to a much lar-
ger number of assays [17]. Thus, in the long term, the
Fluidigm system stands as an efficient and cost-
effective option for continued monitoring of wildlife.

Conclusions
The Iberian lynx example highlights one valuable prac-
tical outcome of whole-genome studies in heavily eroded
species, i.e. the identification of scarce highly informative
markers that will most likely be missed in smaller scale
screenings. Indeed, highly efficient and cost-effective
marker panels for genetic monitoring and management
are likely the most immediate and feasible contribution
of genomics to endangered species conservation.
The Iberian lynx is a quite extreme example of gene-

tically eroded and intensively managed species, with on-
going conservation actions including captive breeding,
translocations and reintroductions. The long-term success
of such actions, and ultimately the viability of the species,
will largely depend on the implementation of sound, effi-
cient, and science-driven monitoring and management
programmes. As the novel SNP markers presented here
provide higher power, efficiency, and flexibility than cur-
rently used STRs, they can make a substantial contri-
bution toward this goal by guiding the comprehensive
genetic management of captive, remnant and reintroduced
populations and, in combination with non-invasive sam-
pling, by complementing –and eventually substituting–
monitoring programmes currently based almost exclusively
on radiotracking and camera-trapping.

Additional files

Additional file 1: Table S1. Genotypes of replicate samples. Table S2.
Results of the Fisher’s exact test on differences in allele and genotype
frequencies between sexes for the PDON pool. Table S3. Results of the
Fisher’s exact test on differences in allele and genotype frequencies
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between sexes for the PAND pool. Table S4. Basic population genetics
statistics per autosomal marker for both genetic pools. Table S5. Basic
population genetics statistics per X-linked marker for both genetic pools.
Table S6. Results for HWE analysis per autosomal marker for the PDON
pool. Table S7. Results for HWE analysis per autosomal marker for the
PAND pool. Table S8. Results for HWE analysis per X-linked marker for the
PDON pool. Table S9. Results for HWE analysis per X-linked marker for the
PAND pool. Table S10. Hemimatrix of pairwise r2 values between auto-
somal markers for the PDON pool. Table S11. Hemimatrix of pairwise r2

values between autosomal markers for the PAND pool. Table S12. Hemi-
matrix of pairwise r2 values between X-linked markers for the PDON pool.
Table S13. Hemimatrix of pairwise r2 values between X-linked markers
for the PAND pool. Table S14. Hemimatrix of Kendall rank correlation τ
values between HE and statistics selected to rank markers. Table S15.
Informativeness and rankings for individual identification, parentage
assignment, and relatedness estimation of SNPs in the 343 SNP panel.
Table S16. Informativeness and rankings for individual identification,
parentage assignment, and relatedness estimation of STRs in the 36 STR
panel. Table S17. Summary matrices with NEWHYBRIDS’ correct, ambiguous,
and cross-classification rates of simulated individuals in eight ancestry levels,
for differently-sized and -ranked SNP and STR panels. Table S18. Summary
matrices with NEWHYBRIDS’ correct, ambiguous, and cross-classification
values (and percentages) of empirical individuals in eight ancestry
levels, for different-sized SNP and STR panels. (XLSX 33994 kb)

Additional file 2: Figure S1. Location of syntenic SNPs in the domestic
cat’s chromosomes. Figure S2. Family trees accruing all eight Mendelian
errors concerning SNP 1317372 (A); SNP 334649 (B); SNP 619378 (C); SNP
2119932 (D); and SNP 2057563 (E). Dark background: allele A; light
background: allele B; white background: unknown allele. Figure S3.
Ancestry of Iberian lynx individuals in each of the two differentiated
genetic pools, as inferred from the analysis of 1,471 autosomal SNPs in
STRUCTURE under the assumption of two genetic clusters (K = 2). Each
individual is represented by a vertical line with the height of each colour
representing the estimated fraction of their genome belonging to each
cluster. The black vertical lines delimit groups of individuals of different
admixture categories, know a priori from their provenance or recent
genealogy (PDON: pure DON; PAND: pure AND; F1: filial generation of PDON
x PAND cross; F2: offspring of F1 x F1 cross; BcDON: first backcross DON;
BcAND: first backcross AND; 2BcAND: second backcross AND). Ten runs of
100,000 MCMC iterations (of which the first 10,000 were discarded as
burn-in) were performed in STRUCTURE v2.3.4 with highly concordant
results. A representative run is depicted here. (PDF 380 kb)
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