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Abstract

We study variants of a recently introduced hybrid system model, called a Hier-
archical Piecewise Constant Derivative (HPCD). These variants (loosely called
Restricted HPCDs) form a class of natural models with similarities to many
other well known hybrid system models in the literature such as Stopwatch
Automata, Rectangular Automata and PCDs. We study the complexity of
reachability and mortality problems for variants of RHPCDs and show a variety
of results, depending upon the allowed powers. These models form a useful tool
for the study of the complexity of such problems for hybrid systems, due to
their connections with existing models.

We show that the reachability problem and the mortality problem are co-
NP-hard for bounded 3-dimensional RHPCDs (3-RHPCDs). Reachability is
shown to be in PSPACE, even for n-dimensional RHPCDs. We show that
for an unbounded 3-RHPCD, the reachability and mortality problems become
undecidable. For a nondeterministic variant of 2-RHPCDs, the reachability
problem is shown to be PSPACE-complete.

Keywords: Hybrid Systems, Reachability and Mortality, Piecewise Affine
Maps, (Hierarchical) Piecewise Constant Derivatives.

1. Introduction

Hybrid automata are an important class of mathematical model allowing
one to capture both discrete and continuous dynamics in the same framework.
There is currently much interest in hybrid systems, since they can be used to
model many practical real world systems in which we have a discrete controller
acting in a continuous environment. Their analysis has a huge range of potential
applications, such as aircraft traffic management systems, aircraft autopilots,
automotive engine control [1], chemical plants [2] and automated traffic systems
for example.

Hybrid systems are described by a state-space model given by the Cartesian
product of a discrete and continuous set. The system evolves over time according

November 2, 2016



1 INTRODUCTION 2

to a set of defined rules until some condition is satisfied, at which point a discrete,
non-continuous event occurs. Such an event can cause an update to certain
variables and change the continuous dynamics of the continuous variables.

A fundamental question concerning hybrid systems is that of reachability :
does there exist a trajectory starting from some initial state (or set of states)
which evolves to reach a given final state (or set of states) in finite time (defined
formally in Section 2)? Related questions, such as convergence (does there exist
a state, or periodic set of states, towards which the system converges for any
initial state) or control problems (given an input, can the system be controlled
to avoid some ‘bad’ set of states?), are also important, see [3], for example.
Unfortunately, many reachability problems are undecidable, even for very re-
stricted hybrid systems [4, 5, 6, 7]. The objective of studying the decidability
boundary is twofold; to obtain the most expressive system for which reachability
is decidable and to study the simplest system for which it is undecidable.

An important and intuitive model of hybrid system is that of a Piecewise
Constant Derivative (PCD) system. In this model, we partition the continuous
state space into a finite number of nonempty regions, each of which is assigned
a constant derivative defining the dynamics of a point within that region (see
Section 2 for full details). It was proven in [8] that reachability for PCD systems
in two dimensions (2-PCD) is decidable, but for three dimensions (3-PCD), the
problem becomes undecidable [4]. One of the important properties of a PCD,
which leads to its reachability problem being decidable in dimension two, is
that trajectories can never ‘cross’ each other since each region has a constant
derivative assigned. It can be proven that the trajectories are either periodic, or
else form an expanding or contracting spiral which can be proven using geometric
arguments on the edge-to-edge successor function of a 2-PCD.

In [9], a related model, called a Hierarchical Piecewise Constant Derivative
(HPCD) system was introduced. An HPCD is a 2-dimensional hybrid automa-
ton where the dynamics in each discrete location is given by a 2-PCD (formal
details are given in Section 2). Certain edges in the HPCD are called (transition)
guards and cause the HPCD to change location if ever the trajectory reaches
such an edge. When transitioning between locations, an affine reset rule may
be applied. If all regions of the underlying PCDs are bounded, then the HPCD
is called bounded. This model can thus be seen as an extension of a 2-PCD.

A 1-dimensional Piecewise Affine Map (1-PAM) is a piecewise function which
is applied to the 1-dimensional real line, such that the function within each inter-
val of the real line is affine (see Section 2 for details). The reachability problem
for 1-PAMs is stated as an open problem in [10, 11, 12, 13, 14], but it becomes
undecidable in the 2-dimensional case with fewer than 800 intervals [10]. In [14],
1-PAMs are proven to be equivalent to a 2-dimensional system called a planar
pseudo-billiard system, also known as a “strange billiards” model in bifurcation
and chaos theory [15] (see ‘simulations’ under Section 2 for the definitions of
equivalence and simulation). Some decidable results are known under restricted
cases. In [12], it is proven that reachability is decidable for 1-dimensional Onto
PAMs, which is a model such that every interval in the PAM can be exactly
mapped to another. In [13], it is shown that for 1-PAMs over the integers (where
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all coefficients, the initial point and the final point are integers), the reachabil-
ity problem is PSPACE-complete, which implies that reachability for rational
1-PAMs is at least PSPACE-hard. If PAMs are replaced by polynomials, the
decidability of the reachability problem is open for any dimension [9]. If PAMs
are replaced by piecewise rational maps, the reachability problem is undecidable
even for dimension one [14].

Reachability for bounded 1-PAMs was shown to be equivalent to that of
reachability for bounded HPCDs with either: i) comparative guards, identity
resets and elementary flows in Proposition 3.20 of [12] or else ii) affine resets,
non-comparative guards and elementary flows in Lemma 3.4 of [12] (See Sec-
tion 2 for definitions). The authors of [12] also study reachability problems for
PCDs defined on 2-dimensional manifolds, which we do not consider here.

Related to the reachability problem is the mortality problem. The mortality
problem is the problem of determining if the trajectories starting from all initial
points/configurations eventually halt (defined formally in Section 2). The mor-
tality problem has been studied in many different contexts [16, 13, 11, 17, 18]
and has connections with program verification, especially in a discrete setting.
Similar to the case of reachability, the mortality for 1-PAMs is also stated as
an open problem in [11, 13], and undecidability also starts at dimension two,
in both the integer case [13], and for the rational case [11]. Global convergence
is also known to be undecidable in dimension two [11], although both problems
are decidable in dimension one when the piecewise affine function is continuous.
The author of [13] also shows Π0

2-completeness for the integer case.
However, neither reachability nor mortality is a superclass of the other. For

the mortality problem, we must prove that all initial points will eventually halt,
or else the system can be called immortal (meaning that the system may diverge,
become periodic or quasi-periodic for example). Mortality for 1-PAMs over the
integers is known to be PSPACE-complete [13]. Whether the undecidability
results in dimension two still hold for a fixed number of intervals is unknown,
in both the rational and integer cases.

Similarly to [12], we also aim to study the following question: “What is the
simplest class of hybrid systems for which reachability is intractable or undecid-
able?” To this end, we define the model of Restricted HPCD (RHPCD), which is
a deterministic bounded HPCD with elementary flows (derivatives of all contin-
uous variables come from {0,±1}), identity resets and non-comparative guards
and is thus a simpler form of HPCD. These restrictions on the resets, derivatives
and guards seem natural ones to consider. For example, restricting to identity
resets means the trajectory will not have discontinuities in the continuous com-
ponent, which is similar to a PCD trajectory. Restricting the derivatives to
elementary flows ({0,±1}) has similarities to a stopwatch automaton, for which
all derivatives are from {0, 1}. Restricting the guards to be non-comparative
gives strong similarities to the guards of a rectangular automaton [19], as well
as the diagonal-free clock constraints of an updatable timed automaton [20].

We prove that a bounded 1-PAM can also be simulated by an RHPCD with
arbitrary constant flows or with linear resets. Together with the results in [12],
the reachability problem for bounded HPCDs is thus shown to be equivalent



2 PRELIMINARIES 4

∞ num. Linear Affine Comparative Arbitrary Num. of
of regions resets resets guards const. flows locations

Decidable
× × × × × N <∞ *
× × × X X 1 [8]

1-PAM
× × × × X dlog2 ne+ 3 *

equivalent
× × × X × 4n [12]
× × X × × 1 [12]
× X × × × dlog2 ne+ 3 *

Undecidable X × × × × 1 [12]

Table 1: Summary of decidability status of the reachability problem for 2-RHPCDs when
certain conditions are allowed (X) or disallowed (×). Starred results are contributions of this
paper.

to that of bounded 1-PAMs when the HPCD only has one of the following:
comparative guards, linear resets (or affine resets) or arbitrary constant flows,
see Table 1 for an overview.

We then consider an n-dimensional analogue of RHPCDs, which we denote n-
RHPCDs. We show that reachability is decidable (and in PSPACE) for bounded
n-RHPCDs and mortality is decidable for bounded 2-RHPCDs. We show a lower
bound that reachability and mortality for bounded 3-RHPCDs is co-NP-hard.

We also extend the n-RHPCD model with nondeterminism and unbound-
edness. If the 2-RHPCD model is endowed with a nondeterministic transition
function between locations, then the reachability problem becomes PSPACE-
hard. Furthermore, we show that the reachability and mortality problems for
unbounded 3-RHPCDs is actually undecidable by an encoding of a Minsky ma-
chine. Note that the reachability problem for a 3-HPCD is undecidable, even
with only one location, since HPCDs are a superclass of 3-PCDs for which
reachability is undecidable [4].

Preliminary versions of this paper appeared in [21, 22].

2. Preliminaries

We write I × {c} to denote {(x, c)|x ∈ I} ⊆ Q2, where I ⊆ Q is an (open,
half-open or closed) bounded rational interval and c ∈ Q is a constant; similarly
for {c} × I. By abuse of notation, for an interval I = (s, t) where s, t ∈ Q and
s ≤ t, a function f(x) : Q→ Q and a constant m ∈ Q, we define {f(I) +m} =
(f(s)+m, f(t)+m) if f(s) < f(t); otherwise {f(I)+m} = (f(t)+m, f(s)+m).
Similar definitions exist for half-open and closed intervals. Let S ∈ Rn be a set
in the n-dimensional Euclidean space. We denote the closure of S by S and the
interior of S by int(S). We use similar definitions as [12] for the following.

Definition 1. (HA) An n-dimensional Hybrid Automaton (HA) [23] is a tuple
H = (X , Q, f , I0, Inv, δ) consisting of the following components:

(1) A continuous state space X ⊆ Rn. Each x ∈ X can be written x =
(x1, . . . , xn), and we use variables x1, . . . , xn to denote components of the
state vector.
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(2) A finite set of discrete locations Q.

(3) A function f : Q → (X → Rn), which assigns a continuous vector field
on X to each location. In location l ∈ Q, the evolution of the continuous
variables is governed by the differential equation ẋ = fl(x). The differential
equation is called the dynamics of location l.

(4) An initial condition I0 : Q→ 2X assigning initial values to variables in each
location.

(5) An invariant Inv: Q→ 2X . For each l ∈ Q, the continuous variables must
satisfy the condition Inv(l) in order to remain in location l, otherwise it
must make a discrete transition or halt.

(6) A set of discrete transitions δ. Every tr ∈ δ is of the form tr = (l, g, γ, l′),
where l, l′ ∈ Q, g ⊂ X is called the guard, defining when the discrete tran-
sition can occur, γ ⊂ X × X is called the reset relation applied after the
transition from l to l′. By abuse of notation, we also use γ : X → X as a
function if there will be no confusion.

An HA is deterministic if it has at most one solution for its differential
equation in each location and the guards of all the outgoing discrete transitions
for each location are mutually exclusive (i.e. the intersection of any two such
guards is empty). We consider deterministic HAs, unless otherwise stated. The
size of an HA is its description size, i.e. the amount of space required to store a
description of the HA under a reasonable encoding scheme (for example storing
elements of Rn using a binary encoding). A configuration of an HA is a pair
from Q × X . A trajectory of a hybrid automaton H over a time interval [0, T ]
and starting from configuration (l0,x0) where l0 ∈ Q,x0 ∈ X is a pair of
functions πl0,x0 = (λl0,x0(t), ξl0,x0(t)) such that there exists a sequence of times
t0 = 0 < t1 < t2 < . . . < tk = T and

(1) λl0,x0(t) : [0, T ) → Q is a piecewise function constant on every interval
[ti, ti+1).

(2) ξl0,x0(t) : [0, T )→ Rn is a piecewise differentiable function and in each piece
ξl0,x0 is càdlàg (right continuous with left limits everywhere).

(3) ξl0,x0(t) ∈ Inv(λl0,x0(ti)) for all t < T , where t ∈ [ti, ti+1).

(4) On any interval [ti, ti+1) where λl0,x0 is constant and ξl0,x0 is continuous,

ξl0,x0(t) = ξl0,x0(ti) +

∫ t

ti

fλl0,x0
(ti)(ξl0,x0(τ))dτ

for all t ∈ [ti, ti+1).

(5) For any ti, there exists a transition (l, g, γ, l′) ∈ δ such that

(i) λl0,x0(ti) = l and λl0,x0(ti+1) = l′;
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(ii) ξ−l0,x0
(ti+1) ∈ g where ξ−l0,x0

(t) means the left limit of ξl0,x0 at t;

(iii) (ξ−l0,x0
(ti+1), ξl0,x0(ti+1)) ∈ γ.

If (λl0,x0(t), ξl0,x0(t)) is defined over [0,∞), then the trajectory is called infinite.
Given a trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) with sequence of times t0 = 0 <
t1 < t2 < . . . < tk = T , we denote by λl0,x0(t0), λl0,x0(t1), . . . , λl0,x0(tk) the
symbolic dynamics of the trajectory, which will be unique for a deterministic
HA (and can be infinite). This gives the sequence of locations that the HA visits
during the trajectory from time 0 to T .

We can now state two important problems that we will study for various
models.

Definition 2. (Reachability and Mortality) Given an HA H, an initial
configuration c = (l0,x0) and a final configuration c′ = (lf ,xf ), the reachability
problem is to determine if there exists a time 0 < t <∞ such that λl0,x0(t) = lf
and ξl0,x0(t) = xf .

There is more than one possible way to define the mortality problem for HA.
We define the mortality problem in the following way. H is called immortal
if there exists at least one configuration c = (l0,x0) of H for which there is an
infinite trajectory starting at c, and such that for any 0 < t < ∞, there exist
t < t1 < ∞ such that ξl0,x0(t) 6= ξl0,x0(t1). Otherwise, H is called mortal,
in which case we say all the trajectories halt. The mortality problem is to
determine if a given HA is mortal.

Definition 3. (n-PCD) An n-dimensional Piecewise Constant Derivative (n-
PCD) system [4] is a pair H = (P,F) such that:

(1) P = {Ps}1≤s≤k is a finite family of nonoverlapping polytopes in Rn with
nonempty interiors, where each Ps ⊆ Rn is defined as the intersection of
finitely many open or closed halfspaces. We also call Ps a region.

(2) F = {cs}1≤s≤k is a family of vectors in Rn.

(3) The dynamics are given by ẋ = cs for x ∈ Ps.

An n-PCD H = (P,F) can equivalently be defined as a restricted type of HA
which has n continuous variables, for which there is a location for each Ps ∈ P,
which has corresponding invariant Ps and all derivatives are constant in each
location. The guards correspond to the boundary edges between polytopes and
no reset is allowed during a transition. We thus see that a PCD is a partitioning
of P into finitely many regions, each of which has an assigned constant derivative
or slope. The trajectories are therefore broken lines, with breakpoints at the
boundaries of regions. Points along the trajectory follow the derivative of the
region they lie inside.

An n-PCD is called bounded if for its regions P = {Ps}1≤s≤k, there exists
r ∈ Q+, such that for all Ps, we have that Ps ⊆ B0(r), where B0(r) is an
origin-centered open ball of radius r of appropriate dimension. We define the
support set of a PCD H as SuppPCD(H) =

⋃
1≤s≤k Ps.
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In the following we slightly modify the definition of HPCD [12] to allow
different dimensions to be studied.

Definition 4. (n-HPCD) An n-dimensional Hierarchical Piecewise Constant
Derivative (n-HPCD) system is a hybrid automaton H = (X , Q, f , I0, Inv, δ)
such that Q and I0 are defined as in Definition 1, with the dynamics at each l ∈ Q
given by an n-PCD and for each transition tr = (l, g, γ, l′): (1) its (transition)
guard g ⊆ Rn, defined below, is a convex region of dimension (n − 1); and (2)
the reset relation γ is an affine function of the form: x′ = γ(x) = Ax+b, where
A ∈ Rn×n and b ∈ Rn. We denote the internal guards of an HPCD location to
be the boundary edges of the underlying PCD regions which can cause a change
of dynamics when they are reached. The transition guards are the guards used in
transitions between locations. The Invariant (Inv) for a location l is defined to
be SuppPCD(l), minus the transition guard for that location, where SuppPCD(l)
is the support set of the underlying PCD on l. If all the PCDs are bounded,
then the n-HPCD is said to be bounded.

It can thus be seen that HPCDs are in fact two-dimensional linear Hybrid
Automata [12, 24]. The definition of HPCD, as described by [12], is given to
emphasise the fact that the trajectory of an HPCD “mostly behaves likely a
PCD, with a few reset induced discontinuities”. Therefore, the definitions of
trajectories, symbolic dynamics and the reachability/mortality problems, can
also be defined on HPCD and can be understood in terms of the representation
as a two-dimensional linear Hybrid Automaton.
In this paper, we are interested in a restricted form of n-HPCD.

1. Under the HPCD model, when transitioning between locations, we may
apply an affine reset to non-continuously modify the current point. An
n-HPCD has identity (or no) resets if for every transition tr = (l, g, γ, l′),
γ(x) = x for all points x ∈ Rn. This means that starting from any initial
configuration (l0,x0), for the trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) we
have that ξl0,x0(t) is a continuous function of t. Note that the trajec-
tory for a PCD is also continuous, and thus this seems to be a natural
restriction.

2. An n-HPCD system has elementary flows if the derivatives of all variables
in every region of each location are from {0,±1}, otherwise it has arbitrary
constant flows.

3. Guards are used to change the derivative being applied within a location
(internal guards), or to change which location we are in (transition guards)
and can be described by Boolean combinations of atomic formulae (linear
inequalities). If each atomic formula contains only one variable, then
the guard is called non-comparative (meaning the guard is aligned with
ones of the axes). An n-HPCD has non-comparative guards if all guards
(both internal and transition) are non-comparative, e.g., for a 3-RHPCD,
3
2 ≤ x ≤ 7 ∧ y = −1 ∧ 2 ≤ z ≤ 7 is a non-comparative guard, but
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0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1
2 ∧ z = 5 ∧ x = 2y is a comparative guard (due to

the term x = 2y). Note that non-comparative guards are also known as
rectangular constraints in the literature.

Definition 5. (n-RHPCD) An n-dimensional Restricted Hierarchical Piece-
wise Constant Derivative System (n-RHPCD) is a bounded n-HPCD with iden-
tity resets, non-comparative guards and elementary flows. See Figure 6a and
Figure 6b for an example of a 3-RHPCD.

The following model is the class of 1-dimensional Piecewise Affine Maps (1-
PAM). Our approach follows a similar style to [12] where we show various classes
of HPCDs where reachability is equivalent to that of a 1-PAM.

Definition 6. (1-PAM) A 1-dimensional Piecewise Affine Map (1-PAM) is a
function f : R→ R (See Figure 3a for an example) such that:

(1) Domain of f : dom(f)=
⋃
Ii, where Ii are disjoint rational intervals.

(2) ∃ai, bi ∈ Q such that ∀x ∈ Ii, f(x) = aix+ bi.

(3) f is closed, i.e., range(f) ⊆ dom(f).

A 1-PAM is called bounded if none of its intervals is infinite. In the sequel we
will write 1-PAM refer to bounded 1-PAM unless otherwise stated.

Open Problem 1. (1-PAM Reachability) Given a 1-dimensional Piecewise
Affine Map f , an initial point x ∈ Q and a final point y ∈ Q, does there exist
t ∈ N, such that f t(x) = y? 1

In order to prove our undecidability result for an unbounded 3-RHPCD later
in the paper, we will require the following well-known computational model.

Definition 7. (Minsky machine) Informally speaking, a Minsky machine is
a two-counter automaton that can increment and decrement counters by one and
test them for zero. It is known that a two-counter Minsky machine represents
a universal model of computation [25]. Due to their simple structure, Minsky
machines are often convenient for proving undecidability results.

We can represent a counter machine as a simple imperative program M
consisting of a sequence of instructions labelled by natural numbers from 1 to
some L ∈ N. Any instruction is one of the following forms:

l: Add 1 to ck; goto l′;

l: If ck 6= 0 then subtract 1 from ck; goto l′;
else goto l′′;

1f t(x) denotes f(f(. . . f(x) . . .))︸ ︷︷ ︸
t
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l: Halt;

where k ∈ {1, 2} and l, l′, l′′ ∈ {1, . . . , L}.
The machineM starts executing with some initial nonnegative integer values

in counters c1 and c2 and the control at instruction labelled 1. We assume the
semantics of all above instructions is clear. Without loss of generality, one can
suppose that every machine contains exactly one instruction of the form l : Halt
which is the last one (l = L). It should be clear that the execution process (run)
is deterministic and has no failure. Any such process is either finished by the
execution of L : Halt instruction or lasts forever.

As a consequence of the universality of Minsky machines, their halting prob-
lem is undecidable:

Theorem 1 ([25]). It is undecidable whether a two-counter Minsky machine
halts when both counters initially contain 0.

In Section 3 we extend the results of [12] regarding simulations of 1-PAMs by
2-HPCDs. We follow the similar approach for the definition of simulation used
in [4, 12]. We define a simulation with respect to reachability. This means that if
a model A can be simulated by a model B, then it implies that if the reachability
problem for B is decidable (or undecidable), then it must also be decidable (or
undecidable) for A. Since we will show simulations of both 1-PAMs and Minsky
machines (defined below), we give the definition in terms of a simulation of an
arbitrary deterministic transition system, which is a pair A = (S, δ′), where S
is a set of states and δ′ is a transition function δ′ : S → S.

Definition 8. (Simulation) We say that a deterministic transition system A,
with initial configuration c0 and final configuration cf , can be simulated by a
2-HPCD H with respect to the reachability problem if (1) configuration c0 (resp.
cf ) of A is encoded by a configuration (l0,x0) (resp. (lf ,xf )) of H; (2) every
configuration of A is encoded by a unique configuration of H; (3) a one-step
computation of A given by δ′(qk) = qk′ is represented by a trajectory segment
from (λl0,x0(t), ξl0,x0(t)) to (λl0,x0(t′), ξl0,x0(t′)) for some 0 ≤ t < t′ < ∞ on
H, where (λl0,x0(t), ξl0,x0(t)) is the encoding of qk, (λl0,x0(t′), ξl0,x0(t′)) is the
configuration encoding qk′ and (λl0,x0(t′′), ξl0,x0(t′′)) is not the encoding of any
configuration of A for t < t′′ < t′.

Finally, we will also require the following simultaneous incongruences prob-
lem, which is known to be NP-complete [26, 27].

Problem 1. (Simultaneous incongruences) Given a set {(a1, b1), . . . , (an, bn)}
of ordered pairs of positive integers with ai ≤ bi for 1 ≤ i ≤ n. Does there exist
an integer k such that k 6≡ ai (mod bi) for every 1 ≤ i ≤ n?

3. Restrictions of 2-HPCDs

In this section, we add some restrictions to the model of 2-HPCDs and
explore the decidability of the reachability problem for them. Our starting point
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is the model of 2-dimensional Restricted HPCD (2-RHPCD, see Section 2 for
definitions). We first prove that a 2-RHPCD endowed with arbitrary constant
flows can simulate a 1-PAM.
Mappings - A well-known technique for the analysis of PCDs is to study the
edge-to-edge successor function [4], also called the Poincaré map [28] of the
system. We will use a related concept in this section for HPCDs. Given
an HPCD H and two line segments L = [p1,p2] and L′ = [p′1,p

′
2], where

p1,p2,p
′
1,p
′
2 ∈ R2. We say that H maps L to L′ in location l if for any

0 ≤ α ≤ 1, there exists a t ≥ 0 such that for the trajectory defined over
[0, t], ξl,(p1+(p2−p1)α)(t) = (p′1 + (p′2 − p′1)α) and if the symbolic dynamics
of the trajectory is the same for any such choice of 0 ≤ α ≤ 1. Note that
L′ = [p′1,p

′
2] = [p′2,p

′
1] and so the definition of mapping holds if we can map

L to one of these two representations. A similar definition holds for when L is
an open or half-open interval, mutatis mutandis. We call L and L′ intervals by
abuse of notation (if there is no confusion with rational intervals).

Lemma 1. Given a 1-dimensional interval I = (s, t), an affine function f(x) =
ax+ b and a value m, where a, b,m, s, t ∈ Q are constants. Then there exists a
2-RHPCD system with arbitrary constant flows which maps I × {0} to {f(I) +
m} × {0}.

Proof. We prove this lemma by 3 steps.
Step 1 - Interval I × {0} can be mapped to interval I × {c}, where c ∈ Q+, by
a bounded 2-PCD with non-comparative guards using flow (0, 1).

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(a) a > 0

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(b) a < 0

Figure 1: Lemma 1 Step 2: map (s, t)× {c} to (t′, s′)× {0}.

Step 2 - Suppose we have an affine function f(x) = ax+b, and the 1-dimensional
rational interval I = (s, t). For any constant t′ where t′ ≥ t > s, define g =
f(t) − f(s) and s′ = t′ + |g|. Assume that c > |g| + |b| > 0. Then we show
the interval I × {c} can be mapped to I ′ × {0} = (t′, s′) × {0} by a bounded
2-PCD system with non-comparative guards, see Figure 1. We need to consider
2 cases, a > 0 and a < 0. Note the ‘orientation’ of the interval will be reversed
after the mapping.

1. a > 0. See Figure 1(a). We use flows (1, a), (1, 0), (1,−1) and (0,−1) to map
interval (s, t)× {c} to (t′, t′ + |g|)× {0}.
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Figure 2: Idea of Theorem 2: map every two adjacent intervals into one interval

2. a < 0. See Figure 1(b). We use flows (1, a), (1, 0), (1,−1) and (0,−1) to map
(s, t)× {c} to (t′, t′ + |g|)× {0}. As we assume c > |g|+ |b| > 0, so c− |g| >
|b| > 0, which means the rectangle {(x, y)|t < x < t′, c− |g| < y < |g|} does
not intersect with the x-axis.

Step 3 - Using a similar idea we can show the interval I ′ × {0} = (t′, s′)× {0}
can be mapped to {f(I) + m} × {0}, where {f(I)} = (f(s), f(t)) if a > 0 and
{f(I)} = (f(t), f(s)) if a < 0, by a bounded PCD system with non-comparative
guards. We can use only the upper or lower half plane of the 2-PCD. Here we
only prove the case when a > 0 and f(t) +m < t′ by using the lower half plane,
other cases can be proven similarly.

(i) Use flow (−1,−1) to map (t′, s′) × {0} to { 12 (t′ + f(t) + m)} × (− 1
2 |t
′ −

f(t)−m| − |g|,− 1
2 |t
′ − f(t)−m|);

(ii) Use flow (−1, 1) to map { 12 (t′+f(t)+m)}×(− 1
2 |t
′−f(t)−m|−|g|,− 1

2 |t
′−

f(t)−m|) to (f(s) +m, f(t) +m)× {0}.

Combining Steps 1, 2 and 3 we get the result of the lemma using a 2-
location 2-RHPCD with arbitrary constant flows and non-comparative guards.
In location 1 we realize Step 1 and jump to location 2, i.e., the guards are
si ≤ x < ti ∧ y = c. In location 2 we realize Step 2 and Step 3 together because
Step 2 only uses the upper plane of a 2-PCD and Step 3 only requires the lower
plane of a 2-PCD. A similar proof holds for when I is an open or half-open
interval, mutatis mutandis.

Theorem 2. A 1-PAM with n intervals can be simulated by a 2-RHPCD with
dlog2 ne+3 locations such that one of the variables has arbitrary constant flows.

Proof. Suppose 1-PAM A is defined by f(x) = aix+ bi if x ∈ Ii, with 1 ≤ i ≤ n
and Ii are rational intervals. In the sequel, we assume all the intervals Ii in
A are left closed and right open. Other cases can be proved similarly. Let the
left and right endpoints of Ii be si and ti respectively. First, we show that this
1-PAM can be simulated straightforwardly by an (n + 1)-location 2-RHPCD
with arbitrary constant flows. We need a single location p as the global state
and n locations qi for each interval Ii, 1 ≤ i ≤ n.

1. In location p, we define the corresponding points of the 1-PAM A on
interval [s1, tn)×{0}. We then map each Ii×{0} to the interval Ii×{c},
where c = |max{|ai|}(tn − s1)|+ max{|bi|}. (See Lemma 1, Step 1). The
transition guards of p are: si ≤ x < ti ∧ y = c, in which we jump to qi.
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2. In location qi, map Ii×{c} to {f(Ii)}×{0} (see Lemma 1, Step 2&3). The
transition guard of qi is: s1 ≤ x < tn ∧ y = 0, with a jump to location p.

The above method requires n+1 locations for a 1-PAM with n intervals. We
now give an improved method using a 2-RHPCD with only dlog2 ne+3 locations.
The main idea is to map every two adjacent intervals into one interval in a single
location, which is illustrated in Figure 2. The next location performs a similar
‘folding’ of dn/2e intervals iteratively and thus we require O(log n) locations.

Suppose the 1-PAM A contains n intervals. For every n 6= 2d, d ∈ N, there
exists a minimum integer k ∈ N such that log2(n+k) = dlog2 ne. The 1-PAM A
can be expanded to A′ such that f(x) = aix+ bi if x ∈ Ii, where i ∈ {1, . . . , n}.
For every i ∈ {n+ 1, . . . , n+ k}, the length of each new added interval is given
by |Ii| = ε, and the corresponding affine function is f(x) = x. This expansion
does not change the dynamics of the 1-PAM A, thus we assume n = 2d, d ∈ Z.

Again, let the left endpoint and the right endpoint of Ii be si and ti re-
spectively. Define c to be c = |max{|ai|}(tn − s1)| + max{|bi|} and l to be
l = |tn − s1|.

Step 1 Each point x ∈ [s1, tn] of the 1-PAM is encoded by the corresponding
point of the interval [s1, tn]×{0} in the initial location of the 2-RHPCD.
For every i ∈ {1, 2, ..., n}, map Ii × {0} to interval Ii × {2(n− i+ 1)c}.
(See Lemma 1, Step 1). In this step each interval is mapped to a different
height y = 2(n − i + 1)c. There is a 2c-length ‘gap’ between every two
intervals Ii and Ii+1 and Ii is ‘higher’ than Ii+1. In Lemma 1 Step 2
this clearly prevents intersections in the following step.

Step 2 Map each interval Ii × {2(n− i+ 1)c} to {f(Ii) + 2(n− i+ 1)l} × {0}.
(See Lemma 1, Step 2). Then between every two intervals there is a
‘gap’ whose length is at least l.

Step 3 For i from 1 to n
2 , let j = 2i − 1, we can find an interval between

{f(Ij)+2(n−j+1)l}×{0} and {f(Ij+1)+2(n−j+2)l}×{0} of length
l with no function defined on it yet. Using a similar idea as that in the
proof of Lemma 1 (Step 3), we can map {f(Ij) + 2(n − j + 1)l} × {0}
using the upper plane and {f(Ij+1)+2(n−j+2)l}×{0} using the lower
plane to this interval. When we hit the interval, it causes a transition
to the next location.

Step 4 Repeat Step 3 for log2(n) times until only 1 interval, If , remains. Each
location maps or ‘folds’ adjacent intervals of length l into a interval of
length l between them, see Figure 2 for an example.

Step 5 If the orientation of If is ‘reversed’ with respect to the initial interval
of the 1-PAM A, then map If to this initial interval; otherwise, we
reverse it before mapping it to the initial interval [s1, tn] × {0} in the
first location.
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 x ε ^[6,8]     y=0

(b) 2-RHPCD with arbitrary constant
flows

Figure 3: The 1-PAM with its equivalent 2-HPCD

Step 1, 2 and 5 each requires 1 location. Step 3 and Step 4 require log2 n
locations, thus (log2 n) + 3 locations are required.

In this method every point w in the 1-PAM A is encoded by a point (w, 0) in
the interval [s1, tn)× {0} in the location defined in Step 1, including the initial
and final points, and a one-step computation of A from point w to f(w) = w′

is represented by a trajectory segment of the 2-RHPCD from point (w, 0) to
(w′, 0) in the location defined in Step 1. This trajectory segment is calculated
from the locations defined in Step 1 to Step 5 above. Thus it is a simulation
and the statement of the theorem holds.

The difficulty of simulating a 1-PAM by a 2-PCD is that regions cannot
overlap in a 2-PCD, i.e., one region has only one deterministic constant flow.
Thus it is impossible to map several different intervals into a single interval
under a 2-PCD, leading us to believe that Ω(log2 n) is a lower bound of the
number of locations required to simulate an n-interval 1-PAM by a 2-RHPCD
with arbitrary constant flows.

Example 1. We give an example of a 1-PAM below and show how to simulate
it by a 2-RHPCD with arbitrary constant flows in Figures 3, 4.

f(x) =

{
2x, if x ∈ [0, 1)
−x+ 2, if x ∈ [1, 2]

Let the initial point be x0. The initial location of the 2-HPCD is A-1, with
variables (x, y) = (x0, 0). 2-PCD A-1 corresponds to Theorem 2, Step 1. 2-
PCD A-2 separates each interval onto the x axis (Theorem 2, Step 2). 2-PCD
A-3 combines together these two intervals (Theorem 2, Step 3). Finally, in A-4,
as the final interval [6, 8] has the same orientation as the initial interval [0, 2],
we reverse it before mapping it back to the initial interval (Theorem 2, Step 5).

We now show that a 2-RHPCD with linear resets can simulate a 1-PAM.
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Figure 4: The 2-PCDs of the 2-HPCD in Figure 3b (transition guards in bold).

Lemma 2. The interval I × {0} can be mapped to {f(I) + m} × {0} by a 2-
RHPCD system with linear resets, where f(x) = ax + b is an affine function,
I = (s, t) is a 1-dimensional interval and a, b,m, s, t ∈ Q are constants.

Proof. The proof is similar to the proof of Lemma 1.

Step 1 First map the interval I×{0} to the interval I×{c} by flow (0, 1). Define
the transition guard to be I×{c}, which jumps to location 2 with linear
reset: x′ = |a|x, y′ = y.

Step 2 Using the similar idea in Lemma 1 Step 2, we can map the interval
|a|I × {c} to the interval (t′, t′ + |g|)× {0} by the flows (1, 1) if (a > 0)
or (1,−1) if a < 0, (1, 0), (1,−1) and (0,−1), where t′ and g are defined
the same as in Lemma 1.

Step 3 Exactly the same as Lemma 1 Step 3.

Theorem 3. A 1-PAM with n intervals can be simulated by a 2-RHPCD con-
taining dlog2 ne+ 3 locations with linear resets.

Proof. Apply Lemma 2 instead of Lemma 1 in the proof of Theorem 2.

Definition 9. (1-POM) Let f be a 1-PAM. We call f a 1-dimensional piece-
wise offset map (1-POM) if f(x) = x+ bi for all x ∈ Ii.

Corollary 1. A 1-POM can be simulated by a 2-RHPCD, and a 2-RHPCD can
be simulated by a 1-POM.

Proof. The first part follows immediately from Theorem 2. As any coefficient of
the linear part of a 1-POM is 1, only elementary flows are required for simulating
a 1-POM by a 2-RHPCD. The second part is from [12].
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4. Higher dimensional RHPCDs

In this section, we start by showing that reachability and mortality problems
are co-NP-hard for 3-RHPCDs by an encoding of the simultaneous incongru-
ences problem (see Problem 1). Although this bound may seem quite limited,
recall that the system is deterministic, which substantially limits its power. We
later show that reachability is in PSPACE for bounded n-RHPCDs, for any
n ≥ 1 and mortality is in PSPACE for n = 2. We start with a technical lemma.

Lemma 3. There exist solutions for the simultaneous incongruences problem
with a collection {(a1, b1), . . . , (an, bn)} if and only if there exists a solution k
such that 0 < k ≤ ρ, where ρ = lcm(b1, . . . , bn) and lcm(b1, . . . , bn) is the least
common multiple of b1, . . . , bn.

Proof. The sufficient part is trivial. We show the necessary part. Given an
instance {(a1, b1), . . . , (an, bn)}, let ρ = lcm(b1, . . . , bn). Then for every 1 ≤ i ≤
n, ρ ≡ 0 (mod bi).

For every integer k > ρ, we can rewrite k as k = k0 + mρ, where 0 <
k0 ≤ ρ and m ∈ N. Suppose there exists a solution ks > ρ. According to the
simultaneous incongruences problem, we know that ks 6≡ ai (mod bi) for all i,
where 1 ≤ i ≤ n. So we can find a k0, where 0 < k0 ≤ ρ, and a positive integer
m such that

ks ≡ k0 +mρ 6≡ ai (mod bi),

for every i, where 1 ≤ i ≤ n. But ρ ≡ 0 (mod bi) for all 1 ≤ i ≤ n, thus

k0 6≡ ai (mod bi)

for all 1 ≤ i ≤ n, thus k0 is the solution we want.

Theorem 4. The reachability problem for bounded 3-RHPCDs is co-NP-hard.

Proof. Consider an instance of the simultaneous incongruences problem with n
pairs S = {(a1, b1), . . . , (an, bn)} ⊆ N>0×N>0. We will encode the instance into
a reachability problem for a 3-RHPCD denoted H. Starting from k = 1, we test
whether k mod bi 6≡ ai holds for each pair (ai, bi). If it does hold for every i, then
the current value of k is the solution and the reachability problem for the given
3-RHPCD will not have a solution. If for some i we find that k mod bi ≡ ai,
then the current value of k is not a potential solution to S. We then increase
the value of k by 1 and start the testing all over again. By Lemma 3 there are at
most ρ integers to test. If we ‘test’ all values of 1 ≤ k ≤ ρ and k is not a solution
to instance S, then the 3-RHPCD will reach the accepting configuration of H.

We construct H in the following way. We define 5 locations P,Q, I1, I2 and
I3. Locations P and Q are used to ‘perform’ the modulo operation test for a
certain value of k for every pair (ai, bi), where 1 ≤ i ≤ n. Locations I1, I2 and
I3 will increase the value of k by 1 when we find the current k is not a potential
solution. See Figure 5.
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Simulation of modulo operations

P QI

k := k+1

k is not
a solution Performance of modulo operations

Figure 5: Reachability for 3-RHPCD (location I actually represents 3 locations I1, I2 and I3)
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Figure 6: 3-RHPCD encoding simultaneous incongruences problem (only location P and
location Q are shown)

We now go to the specifics. Without loss of generality, we assume n is even.
Define regions Ai and Bi in locations P and Q :

Ai = (si−1, si)× (0, ρ)× (0, ρ);
Bi = (si−1, si)× (0, ρ)× (−ρ, 0),

where i ∈ {1, 2, . . . , n}, s0 = 0, si =
∑i
j=1 bj for 1 ≤ i ≤ n, and ρ =

lcm(b1, . . . , bn). We call a region Ai, Bi odd or even depending if i is odd
or even. Let A = ∪ni=1Ai and B = ∪ni=1Bi. We then define surface O =
[0, sn]× [0, ρ]× {0}, which lies between the regions A and B.

We define four types of surfaces Fi+, Fi−, Xi+ and Xi−, which will act as
transition guards between locations P and Q:

Fi+ = (si−1, si)× {0} × (0, ρ), 1 ≤ i ≤ n;
Fi− = (si−1, si)× {0} × (−ρ, 0), 1 ≤ i ≤ n;
Xi+ = {si} × (0, ρ)× (0, ρ), 0 ≤ i ≤ n;
Xi− = {si} × (0, ρ)× (−ρ, 0), 0 ≤ i ≤ n
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Finally we define a set of ε-width strips Gi for 1 ≤ i ≤ n:

Gi = (si−1 + ai − ε
2 , si−1 + ai + ε

2 )× [0, ρ]× {0}

To carry out the modulo operation for a certain pair (ai, bi), we use different
regions and derivatives in locations P and Q depending on whether i is odd or
even. The support set of both P and Q is given by A ∪B.

If i is odd, then define the derivative to be (1, 1,−1) in region Ai and
(0,−1,−1) in region Bi ∪ Fi− of location P . Define the derivative (−1, 0, 0)
in Ai and (1, 0, 0) in Bi ∪ Fi− in location Q. We define transition guards from
P to Q to be Xi+ ∪ Fi−, and transition guards from Q to P as Xi− ∪X(i−1)+.
Finally we define a transition guard from P to I1 for Gi. See Figure 6.

If i is even, then the roles of P and Q will essentially be reversed. The
dynamics of a trajectory will be the same as for when i was odd, but reflected
in the y plane. Specifically then, we define the derivative to be (0,−1, 1) in
Ai ∪ Fi+ and (1, 1, 1) in Bi of location P . Define the derivative (1, 0, 0) in Ai ∪
Fi+ and derivative (−1, 0, 0) for region Bi of location Q. We define transition
guards from P to Q by Xi− ∪ Fi+, and transition guards from Q to P as
Xi+ ∪ X(i−1)−. Finally, define a transition guard from P to I1 for Gi. These
details are summarised in Table 2.

Location Support Set Flows/derivatives Transition Guards

P

Ai (i is odd): (1, 1,−1) Xi+ ∪ Fi− if i is odd,

Bi ∪ Fi− (i is odd): (0,−1,−1) Xi− ∪ Fi+ if i is even,

A ∪B Ai ∪ Fi+ (i is even): (0,−1, 1) jump to Q

Bi (i is even): (1, 1, 1) Gi:
jump to I1

Q A ∪B

Ai (i is odd): (−1, 0, 0)
Bi ∪ Fi− (i is odd): (1, 0, 0)

Xi− ∪X(i−1)+ if i is odd,

Ai ∪ Fi+ (i is even): (1, 0, 0)
Xi+ ∪X(i−1)− if i is even,

Bi (i is even): (−1, 0, 0)
jump to P

I1 A (−1, 0, 0)
x = 0

jump to I2

I2 A (0, 0, 1)
z = 1

jump to I3

I3 A (0,−1, 1)
y = 0

jump to P

Table 2: Reachability problem for 3-RHPCD

For a point (x, y, z), we use the z coordinate to represent the current value
of k and the y coordinate as a memory. Assuming i is odd, we start at point
x0 = (si−1, 0, k) in location P . Since x0 ∈ Ai, we move according to the flow
ẋ = (1, 1,−1). While |z| > 0, every time when x = bi + si−1 = si, we jump to
Q, since we have a transition guard at Xi+ = {si} × [0, ρ]× [0, ρ]. In this case
we thus enter location Q at point (si, bi, k − bi). In Q we keep variables y and
z unchanged and simply reset x to 0. To see this, note that (si, bi, k − bi) ∈ Ai
since we assumed k− bi > 0, and therefore we apply the flow ẋ = (−1, 0, 0). We
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transition back to P when the trajectory reaches the transition guard X(i−1)+.
Each time the trajectory goes from P to Q and jumps back to P , the absolute
value of variable z will therefore be subtracted by bi so we have points (si−1, 0, k),
(si−1, bi, k − bi), (si−1, 2bi, k − 2bi), . . . each time we transition from P to Q to
P in this way.

Eventually, the trajectory will reach the O surface (i.e., z = 0), and the
value of x will be equal to si−1 + (k mod bi) by the above reasoning. It can
thus be seen that when this happens, the trajectory starting at initial point
(si−1, 0, k) of P has changed to (si−1 + (k mod bi), k, 0), since the derivative in
P is ẋ = (1, 1,−1) and the z coordinate went from k to 0.

We now have two cases, according to whether k mod bi is equivalent to ai
or not.

1. If k mod bi 6≡ ai, we reset y to 0 and |z| to k by switching the value
of these two variables, and enter region B(i+1) to test whether k mod
bi+1 6≡ ai+1. To do this, assume that the point (si−1 + (k mod bi), k, 0),
which lies on the O surface, does not intersect with Gi (the transition
guard). In this case, the trajectory enters region Bi and thus the derivative
(0,−1,−1) is applied. Eventually, the point will thus reach transition
guard Fi− = (si−1, si) × {0} × (−ρ, 0) of location P . This occurs at
point (si−1 + (k mod bi), 0,−k) when the y component is 0. Since (si−1 +
(k mod bi), 0,−k) ∈ Fi−, having transitioned to location Q, we apply
derivative (1, 0, 0) and eventually reach point (si, 0,−k) ∈ Xi−. At this
stage we transition to P and we are at point (si, 0,−k). This concludes
verifying that k mod bi 6≡ ai. We now move on to consider the next pair
(ai+1, bi+1) if there are any additional pairs to check. As explained above,
we notice that since we are at point (si, 0,−k), the roles of Ai and Bi
are interchanged, now that i + 1 is an even number, but otherwise the
dynamics works in a similar way as just described, just reflected about
the y plane.

2. If k mod bi ≡ ai, meaning the current value of k is not a potential solution,
then (si−1 +(k mod bi), k, 0) ∈ Gi = (si−1 +ai− ε

2 , si−1 +ai+
ε
2 )× [0, ρ]×

{0}. The transition guard of P thus causes a transition to location I1 and
then I2 and I3, (defined in Table 2). This changes the trajectory to point
(0, 0, k + 1) and ‘restarts’ in location P to test whether the new value
k + 1 is a correct solution2. To see this, note that if we start at point
(si−1 + (k mod bi), k, 0) ∈ A, then we apply derivative (−1, 0, 0) until we
hit transition guard on the plane x = 0 at which point we are at point
(0, k, 0). Similar analysis shows that location I2 moves point (0, k, 0) to
(0, k, 1) before transitioning to I3. Point (0, k, 1) is then moved to point

2Note that here in the guards we do not require exactly x = ai + si−1, but allow some
error ε, so tiny perturbations will not affect our result. The same analysis can be applied to
Theorem 5. This implies that the system has robust reachability and mortality problems, but
we do not expand on the details here. See more details about robustness in [7].
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(0, 0, k + 1) which reaches the transition guard at y = 0 and transitions
back to P .

If there exists a correct solution k to the simultaneous incongruences prob-
lem, then starting from point (0, 0, 1) in location P , which is the initial con-
figuration, we will eventually reach point (0, 0, k) in location P and will then
traverse through each region Ai ∪Bi for each 1 ≤ i ≤ n, before finally reaching
a point (x′, y′, z′) in location P lying on the surface (sn−1, sn) × (0, ρ) × {0}
with x′ 6∈ (sn−1 + an − ε

2 , sn−1 + an + ε
2 ). A trajectory reaching these regions

for location P indicates that there exists a solution to the instance of the simul-
taneous incongruence problem. Therefore, we can simply remove these regions
from the support set of location P , so that upon reaching them the trajectory
halts without reaching the final configuration (we thus define that these regions
have no outgoing transition guard on them). If there does not exist a solution
to the simultaneous incongruences problem, then for each value of 1 ≤ k ≤ n,
there exists some (aj , bj) such that k mod bj ≡ aj . As shown in Step (2) above,
this means that the trajectory will never reach one of these final regions and
we will visit points (0, 0, 1), then (0, 0, 2), then (0, 0, 3) and so on in location P ,
until eventually we reach point (0, 0, ρ) in location P , which we define as the
final configuration. Reaching this configuration means that the instance of the
simultaneous incongruence problem has no solution, therefore the reachability
problem is co-NP-hard.

The number of regions and guards in the constructed 3-RHPCD is clearly
polynomial in the number of pairs of the simultaneous incongruences problem.
Furthermore, the points defining each such region can be represented in bi-
nary and are therefore polynomial in the description size of the simultaneous
incongruences problem.

Theorem 5. The mortality problem for bounded 3-RHPCDs is co-NP-hard.

Proof. We encode an instance of the simultaneous incongruences problem into a
bounded 3-RPHCD. We construct our 3-RHPCD in such a way that the system
is mortal if and only if there is no solution for the corresponding simultaneous
incongruences problem, otherwise the system is immortal. This will therefore
prove that the mortality problem for 3-RHPCDs is co-NP-hard.

For a pair (ai, bi) in the simultaneous incongruences problem, the derivatives
of the associated regions Ai and Bi in locations P and Q are defined the same as
in the proof of Theorem 4. In contrast to Theorem 4, in the mortality problem,
we are not only concerned about some trajectories starting from certain points
(0, 0, k), 0 < k ≤ ρ, but want to know whether all the trajectories halt, starting
from any point within the support set of any location.

In the following part we assume i is odd, similar analysis can be applied to
the case when i is even. According to the flow ẋ = (1, 1,−1) of an odd region Ai
in location P, there are 2 boundaries the trajectories will eventually reach: the O
surface and the y = ρ surface (some trajectories may also reach the Xi+ or Xi−
surface, but they will jump to location Q and jump back, then reach either one
of the above two surfaces at the end). In odd Ai in P, all the trajectories which
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reach the y = ρ surface or reach the strip Gi on the O surface are considered
as mortal trajectories and will jump to location M, in which all the trajectories
will eventually halt. The trajectories which reach the O surfaces but do not
reach the strip Gi are considered as the potential solution trajectories and move
on by following the flows for a further check.

Location Support Set Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai ∪ Fi+ (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi ∪ Fi− (i is odd): (0,−1,−1)

Fi+ (i = 2, 4, ..., n),

A ∪B

Bi (i is even): (1, 1, 1)

Fi− (i = 1, 3, ..., n− 1) :
jump to Q
y = ρ,Gi :
jump to M

Q A ∪B

Ai (i is odd): (−1, 0, 0) Xi+ (i = 0, 2, ..., n− 2),

Ai ∪ Fi+ (i is even): (1, 0, 0) Xi− (i = 1, 3, ..., n− 1) :
Bi ∪ Fi− (i is odd): (1, 0, 0) jump to P

Bi (i is even): (−1, 0, 0) Xn+ : jump to T

T A ∪B (−1, 0, 0)
x = 0 :

jump to P

M A ∪B (−1, 0, 0) None

Table 3: Mortality problem for 3RHPCD

In contrast to the proof of Theorem 4, in region An (or Bn depending on
if i is odd or even) if any trajectory reaches the surface O but does not reach
the strip Gn, we do not conclude that we find a solution k and halt with a
successful answer. Instead, we keep moving in P until we reach the guard, jump
to location T, reset the trajectory to the point (0, 0, k) and go to location P
to start the test again. If k indeed is a correct solution to the corresponding
simultaneous incongruences problem, the system will loop forever; otherwise the
trajectory will go to location M at some region odd Ai or even Bi in location P .
In location M , we have no outgoing transitions and follow derivative (−1, 0, 0).
Since the support set is bounded, any trajectory which reaches M will thus
eventually halt. Full details are shown in Table 3.

Therefore, if there exists a solution, k, to the simultaneous incongruences
problem, then there does exist an infinite trajectory, starting from (0, 0, k) which
loops forever and the 3-RHPCD is thus immortal. On the other hand, if there
does not exist a solution, then regardless of where we start from in the system,
the trajectory will eventually halt and the 3-RHPCD is thus mortal. Therefore
the mortality problem is co-NP-hard.

Proposition 1. The reachability problem for bounded n-RHPCDs and the mor-
tality problem for bounded 2-RHPCDs is in PSPACE.

Proof. Given an n-RHPCD H, an initial configuration (q0,x0) and a final con-
figuration (qf ,xf ), we first show that starting from (q0,x0), the trajectory will
hit the internal and transition guards finitely many times before either reach-
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ing (qf ,xf ), or detecting a cycle, or hitting some endpoints (at which time the
calculation halts), thus ‘convergence’ to a point is not possible.

By the definition of n-RHPCD (see Definition 4, 5), the guards of H are of
the form  ∧

1≤i≤n∧ i 6=j

(ai ≺ xi ≺′ bi)

 ∧ (xj = cj)

where j ∈ {1, . . . , n}, xi, xj , ai, bi, cj ∈ Q, and ≺,≺′∈ {<,≤}.
By definition, the components of x0 = (x01 , . . . , x0n) and xf = (xf1 , . . . , xfn)

are rational numbers, i.e., x0,xf ∈ Qn. Define γ to be the least common
multiple of all the denominators of the constants appearing in the description
the n-RHPCD H (i.e. the guards, invariants, initial and final points) and the
continuous components of the initial and final configurations x0,xf . Multiply
all such constants by γ ∈ N, i.e., let

Ai = γai, Bi = γbi, Cj = γcj ,X0 = γx0,Xf = γxf .

Thus, Ai, Bi, Cj ∈ Z and X0,Xf ∈ Zn. Define a new n-RHPCD H′ with initial
configuration (q0,X0) and final configuration (qf ,Xf ) by replacing ai, bi, cj ,
x0,xf by Ai, Bi, Cj ,X0,Xf . Clearly, H reaches xf iff H′ reaches Xf , and H′ is
described by integer values only.

For H′, the trajectory starts at integer configuration X0, and the guards
of H′ are defined by integers. Since all the flows of H′ are chosen from the set
{0, 1,−1}, when one variable xi of a point of the trajectory, Xt, changes its value
from one integer to another, any other variable xj of Xt remains an integer. So
every time the trajectory hits a guard, i.e., the condition (

∧
1≤i≤n∧ i 6=j(Ai ≺

xi ≺′ Bi))∧(xj = Cj) is satisfied by the components of Xt, Xt will have integer
components.

We now prove that the problem can be solved in PSPACE. Note that the
representation size of γ is clearly polynomial in the representation size ofH, thus
so is the size of H′. We now show that the representation size of the number
of possible transition configurations (the configuration when the trajectory hits
the guard and takes transition) of H′ is also polynomial in the size of H.

Let k > 0 be the number of locations of H′. Since H is bounded, we can
calculate τ ∈ N to be the maximal absolute value of the endpoint of any in-
variant of H over all locations. Thus the range of variables of H′ is contained
within [−γτ, γτ ]. Since we have n variables, the maximal number of transition
configurations of H′, starting at initial configuration (q0,X0) is thus k(2γτ)n,
which can be represented in size polynomial in the size of H, since it requires
at least k log((γτ)n) = nk log(γτ) space to store H and

log(k(2γτ)n)

nk log(γτ)
=

log(k) + n log(2γτ)

nk log(γτ)
< c

for some computable constant c > 0. We can use a counter to keep track of the
number of transitions the trajectory of H′ makes, starting from (q0,X0). As
each transition is taken, we can determine if the final configuration was reached
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Figure 7: Edge-to-edge and edge-to-point mappings

since the last transition. Otherwise, we increment the counter and proceed. If
the counter reaches k(2γτ)n, then the configurations must be periodic and we
can halt. Hence the reachability problem is in PSPACE.

Using a similar approach, we can show that the mortality problem for 2-
RHPCDs is also in PSPACE. According to the constants in the description
of H, we can use a similar method as in the reachability proof to find a γ′

which allows us to define a new 2-RHPCD H′′ such that H′′ is mortal iff H
is mortal, where H′′ is described by integer coefficients. From the reachability
result above we know it is possible to enumerate every integer configuration of
H′′, as H′′ is bounded, and check whether every trajectory halts starting from
integer configuration of H′′ in PSPACE.

Intuitively, if we connect every adjacent integer point in a 2-PCD (a location)
of H′′, then each 2-PCD is tessellated by squares of length 1 and the corner
points of all squares are integer points since they are the integer configurations of
H′′. Also each square has exactly one dynamic vector where ẋ1, ẋ2 ∈ {0, 1,−1}.
We name this technique a rectilinear tessellation. An edge of a square will either
be mapped onto another edge, or “collapse” to a single point. See Figure 7 for
example. In the first case, the local coordinates of the points on an edge are
preserved after the mapping. In other words, if point C is on edge AB and C ′

on edge A′B′ is the image of C after the mapping, then |AC|
|CB| = |A′C′|

|C′B′| . Thus

all points on the same edge have the same symbolic dynamics. Hence for the
mortality problem, we only need to consider the corner points of all squares (all
the integer points), as well as the middle points of all the edges (in the case
the edge is defined by an open set and the end points does not belong to the
edge), and all other points will have the same symbolic dynamics as them. To
check the middle points of edges simply double the size of γ′ and all the points
become integers. As long as all the trajectories halt starting from the integer
points and the middle points of all the edges, we can conclude that the whole
system is mortal. According to the result above, clearly this can be done in
PSPACE.

Note that the PSPACE result of mortality only holds for 2-RHPCD, as the
local coordinates of points are not preserved in higher dimensions.
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5. Extensions of RHPCDs

Theorem 6. The reachability and mortality problems are undecidable for un-
bounded 3-RHPCDs.

Proof. Consider a two counter (Minsky) machine M, with set of instructions
{pi} and two counters c1 and c2. For configuration (pi, c1, c2), we define two
locations Pi and Ti in an unbounded 3-RHPCD to encode instruction pi. There
are 3 ‘types’ of instruction, where ck represents a counter (k ∈ {1, 2}):

Type I - pi: Add 1 to ck; goto pj ;

Type II - pi: If ck 6= 0 then subtract 1 from ck; goto pj1 ;
else goto pj2 ;

Type III - pi : Halt.

Given a vector x = (x, y, z) in an unbounded 3-RHPCD, we use variable x
to represent the counter c1, y to represent the counter c2 and z as a timer which
ensures x or y increases or decreases by exactly 1 at each step.

To encode a Type I instruction pi on c1, (resp. c2), we start from point
(c1, c2, 0) in location Pi, define the flow in Pi to be ẋ = (1, 0, 1) (resp. ẋ =
(0, 1, 1)) and the guard to be z = 1, jump to Ti. Then in Pi the value of counter
c1 (resp. c2) is increased by 1. In Ti we define the flow ẋ = (0, 0,−1) and guard
z = 0 to reset the timer z to 0 and jump to Pj .

For a Type II instruction when k = 1, the flow in Pi is defined as ẋ =
(−1, 0, 1) with guards: (1) x = 0∧ z < 1, jump to Pj2 ; (2) z = 1, jump to Ti. In
this case, we immediately test whether x = 0 when entering Pi and jump to Pj2
if it is true. Otherwise, for one time unit we apply derivative (−1, 0, 1), which
decreases counter c1 by 1 (the x-coordinate) and increase the timer by one (the
z-coordinate), at which point guard (2) is true. We then go to Ti, define the
flow ẋ = (0, 0,−1) and guard z = 0 to reset the timer z to 0 and jump to Pj1 .
A similar encoding can be defined when k = 2 mutatis mutandis.

We may assume without loss of generality that the machine only halts when
both counters have value zero and the (single) halting instruction is denoted pH .
The reachability problem starts at point (x, y, 0) in initial location P0 and the
problem is to determine if the 3-RHPCD ever reaches point (0, 0, 0) in location
PH . Note that the defined region for the 3-RHPCD is unbounded in the x and
y coordinates in all locations, since these coordinates store the counters c1 and
c2 respectively. The number of regions is bounded. Full details are shown in
Table 4.

As any configuration (pi, c1, c2) of M including the initial point is encoded
by the point (c1, c2, 0) in location Pi in the 3-RHPCD, the halting configuration
(pH , 0, 0) ofM is encoded by the point (0, 0, 0) in location PH in the 3-RHPCD,
and a one-step computation from (pi, c1, c2) to (pj , c

′
1, c
′
2) in M is encoded by

the trajectory segment from point (c1, c2, 0) in location Pi to the point (c′1, c
′
2, 0)

in location Pj , thus a 3-RHPCD can simulate a two counter machine and the
reachability problem for a 3-RHPCD is undecidable.
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Minsky machine M 3-RHPCD
pi Pi Ti

Add 1 to c1; goto pj

support set: R support set: R
flow: ẋ = (1, 0, 1) flow: ẋ = (0, 0,−1)

guard: z = 1, go to Ti guard: z = 0, go to Pj

If c1 6= 0 then c1 := c1 − 1; goto pj1 ;
support set: R support set: R

flow: ẋ = (−1, 0, 1) flow: ẋ = (0, 0,−1)
else goto pj2 guard: z = 1 go to Ti guard: z = 0, go to Pj1

x = 0 ∧ z < 1, go to Pj2

Table 4: An unbounded 3-RHPCD simulating the Minsky machine M for counter c1, where
R = [0,∞)× [0,∞)× [0, 1]

Next, we deal with proving that the mortality problem is also undecidable
for unbounded 3-RHPCDs. It was proven in [11] that determining if a Minsky
machine, M′, is mortal (i.e. if it halts on all possible configurations) is unde-
cidable. Our approach will be to encode such a Minsky machine M′ using an
unbounded 3-RHPCD in a similar way to above. The problem arises however
that for mortality, we must prove that every initial configuration will eventually
halt. We now define a variant of simulation which is required for this proof.

Previously, we defined simulation in terms of reachability, but now we use a
similar notion in terms of mortality. Given a Minsky machine M′, we say that
an HPCD H simulatesM′ with respect to mortality if properties (2) and (3) of
Definition 8 are true, and for any configuration c of H, the trajectory of c will,
in finite time, either reach a configuration c′ which is the unique encoding of a
configuration mc′ of M′, after which H behaves as a simulation of mc′ , or else
halt before reaching such a configuration. Note under this definition that we do
not have an initial configuration of M′ or H. Thus H is mortal if and only if
M′ is.

If there exists an immortal run of the machineM′, then there also exists an
infinite trajectory of the 3-RHPCD by the above proof. Assume by contradiction
that machine M′ is mortal but there exists an infinite trajectory of the 3-
RHPCD. We will deal with points not reaching the halting location first.

Assume first that such a trajectory starts in a location Pi or Ti where i is
not the halting instruction. Then, by the construction, after a finite number of
transitions, the system will reach some location Pj at point (x, y, 0). Assuming
that x, y > 1, then clearly (x, y, 0) starting in location Pj has a similar dynamics
as (bxc, byc, 0) starting in location Pj until either x < 1 or y < 1. This is because
the length of time between transitions will always be 1 until this point by the
use of timer z and the derivatives of all variables always come from {0,±1}.

We now deal with the case where x < 1 or y < 1 at some point, corresponding
to a counter being (almost) zero. We slightly modify the 3-RHPCD so that for
Type II instructions, if the second guard is true (x = 0 ∧ z < 1), we will first
zero the z-coordinate (using a new location similar to Ti), before transitioning
to Pj2 . This means that after such a transition, z, as well as one or both of x, y
will be zero. This means that again, (x, y, 0) behaves the same as (bxc, byc, 0)
in this location. Therefore, any initial configuration corresponds to some initial
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configuration of M′ and therefore will eventually have zero in both counters
and jump to the halting instruction which we define next.

In a similar way to the proof of Theorem 5, we define a ‘mortal location’ lM .
We define the invariant of lM as the cube [0, 1)× [0, 1)× [0, 1) and the derivative
of this cube to be (−1,−1,−1); thus any trajectory reaching lM halts. Since
a correct encoding of M′ will only reach the halting state if both counters are
zero, we see that (0, 0, 0) in location lM is the unique encoding of the halting
configuration of M′.

We now show a lower bound for nondeterministic bounded 2-RHPCDs. A
nondeterministic RHPCD can potentially have more than one possible discrete
transition available within a location (transition guards can be overlapping).

Corollary 2. The reachability problem for nondeterministic bounded 2-RHPCDs
is PSPACE-hard.

Proof. It was shown in [29] that the reachability (i.e. halting) problem for a
nondeterministic bounded 1-counter machine M is PSPACE-complete when
the value of the counter is bounded by a constant c ∈ N and when the machine
may add or subtract an arbitrary constant p ∈ [0, c] to the counter in each
transition. Transitions are endowed with guards, which are intervals [g1, g2]
with 0 ≤ g1 ≤ g2 ≤ c, defining that a transition may be taken when the counter
lies within the interval. An instruction k, defining a transition between locations
pi and pj is written in the form k = (pi, p, g1, g2, pj). See [29] for full details.

Theorem 6 shows a simulation of an (unbounded) 2-counter machine by an
unbounded 3-RHPCD, where the x and y coordinates store the values of the
two counters c1 and c2 (respectively) and the z coordinate is a timer, bounded
in the interval [0, 1] and used to add/subtract one from a counter. We use a
similar construction in dimension two to simulateM. The x coordinate is used
to store the counter and the y coordinate is used as the timer to add or subtract
an arbitrary amount from [0, c] to the counter in each location.

To simulate an instruction k = (pi, p, g1, g2, pj), we first define a location Pk.
Let I = [0, c]× (0, c] and then define the invariant of Pk to be I ∪ ([g1, g2]×{0}),
thus Pk is only defined when the y coordinate is positive, or equal to 0 with the
x coordinate in [g1, g2]. The derivative of Pk is (1, 1) if p > 0 or else (−1, 1)
and the transition guard to location Tk is defined at [0, c]×{p} (we thus remove
[0, c] × {p} from the invariant of the location since they should not overlap).
Therefore, starting from a point (g, 0) in location Pk, where g ∈ [g1, g2], the
trajectory hits the guard at point (g ± p, p), depending on whether we added
or subtracted p. Tk works as in Theorem 6 to zero the timer (y coordinate),
with derivative (0,−1) and invariant I. Thus configuration (g, 0) in Pk will
reach point (g ± p, 0) in location Tk. The transition guard of Tk is defined at
[0, c]× {0} and nondeterministically transitions to any location Pk′ where k′ is
an instruction of the form (pj , p

′, g′1, g
′
2, p
′
j) for some p′, g′1, g

′
2, p
′
j .

Clearly the description size of the 2-RHPCD is polynomial is the size of
M. The initial configuration of the 2-RHPCD is point (0, 0) in location P1.
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Determining ifM ever reaches the halting state pH with counter 0 is PSPACE-
complete, which proves the PSPACE-hardness of reaching point (0, 0) in location
PH of the 2-RHPCD since the above construction simulates the operations of
machineM when started in the initial configuration and the reduction fromM
is polynomial time.

Corollary 3. The reachability problem for nondeterministic bounded 2-RHPCDs
is PSPACE-complete.

Proof. Proposition 1 can clearly be seen to still hold even when the system is
nondeterministic, since the description size of the number of configurations is
still bounded by a polynomial. Thus, by Proposition 1 and Corollary 2 the
corollary holds.

6. Conclusions

We proved for 2-HPCDs that affine resets (or even linear resets), comparative
guards and arbitrary constant flows have the same computational power. Being
endowed with any one of these powers will make the 2-HPCD model 1-PAM
equivalent. We showed that for bounded 3-dimensional Restricted Hierarchi-
cal Piecewise Constant Derivative systems (3-RHPCDs), the reachability and
mortality problems are co-NP-hard. Reachability is shown to be in PSPACE,
even in the n-dimensional case. For 2-RHPCDs the mortality problem is also
in PSPACE, and reachability is PSPACE-complete if the model is also non-
deterministic. For unbounded 3-RHPCDs, we showed that both problems are
undecidable. There remain several interesting open problems regarding reacha-
bility and mortality:

- Is the mortality problem for n-RHPCD in PSPACE (or even decidable) for
n > 2?

- Is there an n for which mortality for n-RHPCD is PSPACE-hard?

- What is the complexity of mortality in dimension two?

It would also be interesting to study other dynamical systems type problems
for various types of HPCDs, such as global convergence to a fixed point, global
asymptotic stability for example.

The model of RHPCDs restricts various components of the hybrid automa-
ton in ways which have parallels to other models, such as stopwatch automata,
rectangular automata and PCDs. RHPCDs have decidable reachability prob-
lems for them but endowing them with small additional powers renders them
much more powerful. Therefore they seem a useful tool in studying the frontier
of undecidability and tractability, in a similar way to the model of HPCDs which
inspired them.
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