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 ABSTRACT 
 

Sickle cell disease (SCD) is a common serious genetic disease, which has a severe impact due 

to red blood cell (RBCs) abnormality. According to the World Health Organisation, 7 million 

newborn babies each year suffer either from the congenital anomaly or from an inherited 

disease, primarily from thalassemia and sickle cell disease. In the case of SCD, recent research 

has shown the beneficial effects of a drug called hydroxyurea/hydroxycarbamide in modifying 

the disease phenotype. The clinical management of this disease-modifying therapy is difficult 

and time consuming for clinical staff.  

This includes finding an optimal classifier that can help to solve the issues with missing values, 

multi-class datasets, and features selection. For the classification and discriminant analysis of 

SCD datasets, 7 classifiers based on machine learning models are selected representing linear 

and non-linear methods. After running these classifiers with a single model, the results revealed 

that a single classifier has provided us with effective outcomes in terms of the classification 

performance evaluation metric. In order to produce such an optimal outcome, this research 

proposed and designed combined classifiers (ensemble classifiers) among the neural network’s 

models, the random forest classifier, and the K-nearest neighbour classifier. In this aspect, 

combining the levenberg-marquardt algorithm, the voted perceptron classifier, the radial basis 

neural classifier, and random forest classifier obtain the highest rate of performance and 

accuracy. This ensemble classifier receives better results during the training set and testing set 

process. 

Recent technology advances based on smart devices have improved the medical facilities and 

become increasingly popular in association with real-time health monitoring and 

remote/personal health-care. The web-based system developed under the supervision of the 

haematology specialist at the Alder Hey Children’s Hospital in order to produce such an 

effective and useful system for both patients and clinicians.  To sum up, the simulation 

experiment concludes that using machine learning and the web-based system platforms 

represents an alternative procedure that could assist healthcare professionals, particularly for 

the specialist nurse and junior doctor to improve the quality of care with sickle cell disorder.  
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Chapter 1 Introduction 

1.1 Background  

Sickle cell disease (SCD) is considered a severe chronic genetic disease and long-life illness [1, 

2]. The severity of the disease differs typically from patient to patient according to their 

condition. SCD is an autosomal recessive trait, meaning the mutation must be present in both 

copies of a homologous gene to lead to the abnormal haemoglobin phenotype [3]. Therefore, 

children who develop SCD in these families receive the SCD gene mutation from both parents 

[4]. This disease is caused by a mutation in the haemoglobin (HB)-Beta gene located on the short 

arm of chromosome eleven [5]. Individuals who inherit one sickle gene and one normal are 

considered carriers or sickle cell trait known as (HbAS). The origin of the disease within affected 

populations lies with a group of ancestral disorders that have resulted in a protein mutation inside 

the RBC called haemoglobin.  

 According to the World Health Organisation (WHO), 7 million new-born babies each year 

suffer either from the congenital anomaly or from an inherited disease [6]. Furthermore, 5% of 

the population around the world carries trait genes for the haemoglobin disorders, primarily, 

thalassemia and sickle cell disease [7]. SCD affects more than 1 million individuals in USA 

and there are over 75,000 hospitalisations costing approximately £300 million per year for 

treatment of SCD complications [8, 9]. With respects to sickle cell disease, the most well-

known symptoms that could show on patients are fatigue, shortness of breath, dizziness, and 

headaches [10]. There are three major types of sickle cell disease. The first common one is 

called Hb SS when patients inherit sickle cell genes from both parents. The Second is called 

Hb SC, the patient usually inherits the sickle cell gene (S) and the second gene(C), produced 

from an abnormal kind of haemoglobin [11]. Finally, in S-beta thalassemia, the patient inherits 

one gene of sickle cell and beta thalassemia inherited from anaemia.  

The development of medical information systems has played an important role in medical 

societies. The aim of these developments is to improve the utilisation of technology in medical 

applications [12]. Expert systems and various artificial intelligence methods and techniques 
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have been used and developed to improve decision support tools for medical purposes. Machine 

learning models are considered to be a powerful technique in the field of scientific research that 

enables computers to learn from data [13]. There are a number of machine learning techniques 

for classification including Artificial Neural Network (ANN), Random Forest classifier (RFC), 

Support Vector Machine (SVM), and K-Nearest Neighbours Classifier (KNN). The current 

research used supervised learning due to the availability of a class label, which represents the 

amount of medication. The output label provided after collecting the real SCD datasets. Then, 

after analysing the dataset using different types of artificial intelligence, the selected algorithms 

were able to predict the amount of hydroxyurea/hydroxycarbamide drugs/liquid based on the 

performance evaluation techniques metrics. The performance characteristics including; 

Sensitivity, Specificity, Precision, F1 score, Youden's J statistic (J Score), Accuracy, Area under 

ROC Curve (AUC). In this research, the application of machine learning approaches for the 

problem of SCD medication dose management is considered 

Machine learning algorithms have emerged in the computer field in order to propose new 

methods with theoretical algorithms, and in applying such techniques in real life situations, for 

instance in healthcare organisations [14]. Arthur Samuel defined machine learning algorithms 

in 1959 as a "Field of study that gives computers the ability to learn without being explicitly 

programmed"[14]. Typically, this field is a computation technique utilising experience to 

enhance performance, for obtaining correct predictions and classification.  The motivation for 

using machine-learning techniques to handle a potentially unbounded amount of data and 

process them is in terms of achieving the good accuracy and performance. This method consists 

of utilising classification techniques (classifier) to group a set of symbols into a number of 

classes depending on their attributes (features). A feature considered one aspect of a symbol 

that can help in aggregating it according to each class. One of the significant factors have a 

strong influence on the success of a learning method is the type of the data that is used to 

represent the task to be learned.  

The medical datasets in this study is a supervised learning method that is able to learn from the 

training sets portion which involved input features and the target values (Classes) [15]. 

Insufficient training instances makes it relatively hard for the machine learning techniques to 

predict the target values of the medical datasets accurately. This problem leads to another issue 

in the machine learning with complexity, which known as overfitting. In this case, high-

dimensional medical datasets tend to be more complex than low dimensional, which means it 

https://en.wikipedia.org/wiki/Arthur_Samuel
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is difficult to make inferences. In order to achieve high accuracy and performance, it is essential 

to decrease the number of random features using a dimensionality reduction procedure. There 

are two significant methods to deal with the dimensionality reduction process and feature 

selection. The feature selection is a procedure that selects best subsets of variables in regards 

to obtaining specific functions [16]. In this technique, the aim is to reduce dimensionality for 

producing better accuracy and performance by removing noise with the SCD datasets and 

irrelevant input features. The second approach is feature extraction that maps the high-

dimensional onto low-dimensional space [17]. Both techniques reduce the number of variables 

that are required [18].  

The enhancement of communication technologies and their implementation in the medical 

sector have successfully changed the way of life by improving healthcare facilities and 

outcomes. Healthcare organisations are continually attempting to enhance patient care by 

providing cost-effective, better infrastructure, and quality of services[19]. It is so important for 

patients who suffer from SCD to be diagnosed at an early stage in such a way that treatment 

can be applied quickly. The increasing number of SCD patients has changed the treatment 

methods from hospital care toward out-of-hospital care, which depends completely on 

information technology (IT) [20]. The contribution of our research is to develop and design a 

self-care platform based on a web-based system for patients and clinicians in association with 

building direct communication between two parties. Self-care management systems attempt to 

divert the medical delivery method from physician-centric into patient-centric. There are 

significant aspects required to build smart home systems in terms of allowing people to manage 

their health out-of-hospital care. The backbone of the proposed research is to develop a system 

based on a web application from a healthcare perspective to provide patients much more 

flexibility for managing their conditions with respect to the genetic blood disorders. 

1.2 Research Problem and Challenges  

Globally, the number of sickle cell patients is still increasing according to WHO, which 

presents crucial health and economic issues. Currently, the majority of SCD methods for 

predicting the amount of medication is based on medical experts’ experience [21]. In this case, 

it is important to create such a system that can assist doctors and specialist nurses to decide the 

correct amount of the dosage based on the blood test results. The main challenge in this research 

study is to explore alternative ways of supporting patients who have sickle cell disorder. The 

researcher met Dr. Russell Keenan from Alder Hey Children’s Hospital to discuss the main 
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obstacles that the hospital’s department of haematology was facing concerning sickle cell 

disorder. Dr. Keenan confirmed that, across the NHS system, there is no intelligent system that 

has been used to analyse blood samples and to support patient with their medication. It is 

required to design such an effective platform for providing proper treatment and accurate 

amount of medication according to the patient’s blood test sample. 

The medical datasets is considered useless without classifying and analysing them in a 

meaningful process.   However, the raw SCD datasets that have been collected from the local 

hospital need an effective pre-processing method and feature selection. Moreover, the 

implementation of various classification models is needed so that can develop a system based 

on the patient blood test results. Therefore, this research proposed an artificial intelligence 

system to mitigate these difficulties. Firstly, using several machine learning models to improve 

the clinical domain by building predictive models using the SCD dataset. Secondly, the 

research involves testing a new remote patient monitoring system that involves a web-based 

solution for people with sickle cell disease. The system requires direct interaction from the 

patient when they experience symptoms or when they take their prescribed medication. It 

enables patients to live more safely at home and maintain their health condition for as long as 

possible.  

Machine learning algorithms may be considered a narrow form of artificial intelligence (AI), 

bestowing on computers the ability to solve data problems in various fields without being 

explicitly programmed [22, 23]. Such algorithms may be applied to problems posed within 

prediction, pattern recognition, and classification settings, using computational procedures to 

trained models using empirical datasets [24]. This technique is able to learn from the significant 

features within the SCD datasets. In order to make a correct prediction for dosage, machine 

learning can work as a decision support system to help the specialist nurse or junior doctor. 

This in turn could assist medical specialists concentrate on patients with life threating 

conditions instead of providing amount of medications.  

On the other hand, the web-based system represents an effective platform that provides good 

facilities for clinicians to monitor a large number of patients with chronic SCD. This system 

can overcome and replace the old-fashioned paper based and designed effective web-based 

system to provide strong communication between patients and doctors. A remote follow-up 

process based on the SCD web-based platform management system can promote high quality 

http://searchcio.techtarget.com/definition/AI
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of care for the patient and engage them to tackle their condition in an electronic way. However, 

the proposed method is designed to fit in with clinicians’ and patients’ requirements.  

1.3 Research Questions  

The following research questions below are addressed in our thesis. 

1- What machine learning algorithms work best for classifying multi-class SCD datasets? 

2- What forms of classification performance evaluation metrics are effective for handling 

missing values, unbalanced datasets, data cleansing, and reduction dimensionality 

techniques. 

3- Testing the usability and effectiveness of a web-based system for monitoring patients 

with sickle cell disease to keep a direct connection between patients and clinicians. 

4- Can a web-based system provide an accurate amount of medication based on blood test 

sample? 

In order to address these questions, the following section research objectives and aims 

provide more details. 

1.4 Research Aims and Objectives 

The aims of this research are to build a supportive system for SCD clinicians (Haematologists) 

based on machine learning algorithms to support patients with their medication. More 

specifically, dealing with multi-class medical datasets and classification approaches to design 

a new technique that can help healthcare providers. This research proposes a new framework 

for ubiquitous healthcare diagnosis and management system for monitoring patients who suffer 

from SCD based on a web-based application. In order to achieve our aims for our thesis, a 

number of objectives tasks are considered below.  

1. Evaluate and investigate different studies based on an artificial intelligence system that 

aims to enhance the classification of SCD. 

2. Apply various machine-learning models using PRTools (pattern recognition tool) 

focused mainly on linear and nonlinear classifiers. 

3. Handle missing values entries and removing artificial outliers of the SCD datasets and 

proposing oversampling techniques to handle imbalanced datasets.  

4. Apply performance evaluation techniques metrics from two perspectives, statistical 

techniques (Sensitivity, Specificity, Recall, J1-score, F1 measures) and visualization 

http://www.scdfc.org/scd-specialists-hematologists.html
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techniques ( Receiver operating characteristic (ROC), and the Area under the ROC 

curve (AUC)). 

5. Collect SCD datasets with different gender and age using 14 features and 1 target value. 

Gain deep understanding and conduct effective medical exploratory analysis using 

visualisation methods including Principal Component Analysis (PCA) and t-distributed 

Stochastic Neighbourhood Embedding (tSNE).  

6. Develop and design SCD web-based management system for the patients, with a central 

database to help patients with chronic disease. The system can build direct 

communication with healthcare providers as well as assist patients to check their 

symptoms, medication, and obtain a recommendation from clinicians.  

7. Developing a clinician’s web-based system with a central sharing database between 

patient and healthcare providers. The monitoring system allows information to flow 

from patients to the doctor dashboard system. This assists medical experts to place their 

recommendation and accurate amount of medication based on the patient’s condition.  

1.5 Research Contributions  

This study proposes a novel methodology to SCD medical datasets for discriminating between 

9 classes for SCD treatment procedures. Our technique offers a robust data pipeline for pre-

processing medical data; features selection; and data modelling using machine learning 

algorithms. On this basis, several contributions are discussed as follows:  

• The proposed research provides a system that shifts from manual methods to an 

automated intelligent approach. The system able to examine patient’s data and provide 

a suitable amount of Hydroxycarbamide drugs/liquid. 

• Using advanced machine-learning models to analyse SCD datasets for the classification 

purposes. In this research, 7 machine-learning models have been evaluated and have 

provided a detailed assessment of their prediction abilities to classify multi-classes for 

SCD medical datasets.  

• Ensemble different number of classifiers to produce better performance and accuracy. 

• Design a self-care management system for regular monitoring and follow-up of patients 

with SCD. This platform developed using the idea of E-health strategies and from the 

SCD Specialists’ (Haematologists’) perspective.  

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://www.scdfc.org/scd-specialists-hematologists.html
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1.6 Thesis Structure 

The thesis is divided into 8 chapters, each part covering a specific area of the research work. 

The remainder of this thesis is organised as follows: 

• Background and Literature Review (Chapter 2): This chapter discusses what sickle 

cell disease is, the common type of SCD, and the actual treatment that currently used 

to mitigates the severe of the disease. This is followed by a discussion on the impact 

and risk factors related to SCD. It provides about Prevention, Diagnosis & Management 

as well as the electronic health. Chapter 2 discusses more details about the literature 

review based on machine learning and current algorithms that used to analyse SCD 

datasets.  

• Machine Learning and Statistical Tools (Chapter 3): This chapter discusses an 

explanation about the machine learning models, learning algorithms, and classification 

techniques. It is also presents a full detail about the SCD datasets. Furthermore, it 

provides an idea of the statistical techniques using the exploratory data analysis that 

utilised to complete this empirical study. Finally, there is an overview of the chapter. 

• Models Descriptions (Chapter 4): Presents an overall comparison of the different 

machine learning approaches. It gives a description of each model in terms of the 

statistical and mathematical perspective. Validation techniques that are considered 

essential in machine learning are discussed within this chapter. Finally, the chapter 

closes with the summary section. 

• Proposed Methodology (Chapter 5): This chapter presents the proposed methodology 

framework and experimental setup for SCD; with machine learning classifiers and 

prototype implementations to demonstrate applicability in real world applications. It 

discusses the data preparation process. In this scenario, this chapter focused on 

addressing the missing values, oversampling, identifying outliers, and data 

normalisation technique. Evaluation Techniques for performance techniques metrics 

are also illustrated in this chapter. Experimental setup for model discusses in chapter 5. 

Lastly, the chapter provides a summary about the methodology framework.  

• Results and Discussion (Chapter 6): This chapter discusses the simulation results and 

analysis for the various machine-learning models that have been selected in this 

experiment. This chapter elaborate more in further discussion about each classifier 

based on the performance evaluation metric techniques (Sensitivity, Specificity, 
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precision, J1-score, F1-Measure, accuracy, AUC, and ROC) for our experimental 

works.  

• SCD Web-based System (Chapter 7):  chapter 7 introduces an SCD self-care 

management system for patients and clinicians to handle chronic SCD. This chapter 

focuses on the technical aspects of the SCD web-based system with the ability to apply 

it within the NHS domain. Privacy and confidentiality about the patient’s data as well 

as the central database are also discussed.  

• Conclusion and Future works (Chapter 8): The conclusion section presents the entire 

research and discusses its outcomes. This chapter demonstrates the constraints on the 

methodology framework and experimental set-up and outlines future work, which 

recommended for other researchers that can be final suitable solutions to improve the 

research domain. 
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Chapter 2 Background and Literature Review 

2.1 Introduction 

Chapter two provides and presents a general overview of Sickle cell disease, prevention, 

diagnosis & management, challenging the limitation in healthcare organisation, electronic 

healthcare, and machine learning algorithms. The main objective of this research is to provide 

statistical and computational solutions for sickle cell disorder issues. A description of relevant 

medical facilities and the current situation with electronic health (E-health) are considered. 

2.2 Overview of Sickle Cell Disease  

Sickle Cell Disease (SCD) is considered a long-term disorder in which the red blood cells 

(RBC) change from normal shape of a circle to a crescent (hence ‘sickle’).  This in turn, results 

in cells having difficulty moving smoothly in the blood’s vessel. In this case, the amount of 

oxygen flow is reduced to tissues, especially the lungs. This condition causes chronic pain for 

the SCD patient, and difficulty in breathing [25].   

In addition to SCD, further examples of inherited diseases can potentially benefit from this 

research direction. For example, Tay-Sachs is another disease that belongs to the class of 

autosomal recessive genetic disorders, which in this case is known to cause progressive 

deterioration of the nervous system [26]. It is usually caused by the absence of an important 

enzyme, which is called hexosaminidase-A (Hex-A) [27]. In this case, the child will have a 

25% chance of possessing the condition when both parents are carriers [28]. This disease is 

considered very rare in the general population around the world. Early symptoms often begin 

to appear when a baby is six months old. The most noticeable symptoms are red dots appearing 

close to the baby’s eyes. The vast majority of children with the Tay-Sachs disease condition 

die in the first decade of their life. This type of disease occurs due to the accumulation of a 

harmful a fatty substance called GM2 ganglioside within the brain’s nerve cells, progressively 

impairing their function and eventually causing them to die completely. 

In the case of SCD, recent research has shown the beneficial effects of a drug called 

hydroxyurea/hydroxycarbamide in modifying the disease phenotype [29]. One of the major 

challenging tasks facing the medical field is the identification of supporting patient with their 

https://en.wikipedia.org/wiki/Autosomal_recessive
https://en.wikipedia.org/wiki/Genetic_disorder
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medication according to their condition. SCD occurs before birth when the parents carry the 

disease. The number of sickle cell disease patients is increasing progressively; it affects clinical 

domain with more requirements for providing accurate amount of medications. There are two 

important treatments to mitigate this disease. The first one is called hydroxyurea, on which 

focuses in this thesis. Secondly, the current treatments in the NHS comprises lengthy manual 

blood transfusions, which can take around 24 hours every month.  

There are various kinds of sickle cell disorder, which come from the abnormality of 

haemoglobin. Haemoglobin is a protein in RBCs that typically carries oxygen and passes it to 

all the parts of the human body. It commonly has two sets from beta and alpha chains. The four 

main types of sickle cell are caused by different mutations in these genes. Following the most 

standard categories of SCD: Sickle Cell Anaemia (SS), Sickle Haemoglobin-C Disease (SC), 

Sickle Beta-Plus Thalassemia, and Sickle Beta-Zero Thalassemia. Standard categories of SCD 

are discussed in the following sections. Table 2.1 provides a short summary of the types of SCD.  

Table 2-1: The summary of 5 SCD types 

Parameters  Haemoglobin SS Haemoglobin SC 
Haemoglobin Beta 

SB+ and beta S0  
Haemoglobin SD 

Haemoglobin 

SO 

Prevalence More common more common Less common Less common Less common 

Symptoms  

Experience 

symptoms, like 

fast heart rate and 

difficulty in 

breathing 

Experience 

symptoms, like 

dizziness and 

fever. 

Experience 

symptoms, like pale 

lips and Sudden 

weakness. 

experience 

symptoms, like a 

headache and 

fever. 

Unusual to 

experience 

symptoms. 

Age of patient Before Birth  Before Birth After Birth After Birth After Birth 

Inherits [30]  

One Sickle gene 

from both 

parents. 

One sickle gene 

from one parent 

and normal globin 

from another 

parent.  

Comprise 

substitutions in both 

beta haemoglobin 

genes. 

One sickle gene 

from one parent 

and normal 

globin from 

another parent. 

One sickle 

gene from one 

parent and 

normal globin 

from another 

parent.   

Populations  
African and 

Indian descent. 

West African, 

Mediterranean and 

Middle Eastern 

descent. 

Mediterranean and 

Caribbean descent. 

Asian and Latin 

American 

descent. 

Arabian, North 

African and 

Eastern 

Mediterranean 

descent. 

blood 

transfusions 
Required  Not required  

Required, especially 

with the severe 

conditions  

Not required  Not required  

Pathological 

causes 

Problem with 

liver and kidney 

function  

Problem with liver 

and kidney 

function 

Problem with blood 

structure only  

Problem with 

blood structure 

only 

Problem with 

blood structure 

only 

Level of 

severity  

The most severe 

form of SCD 
less severe less severe 

moderately 

severe anaemia  

don’t have 

severe 

symptoms 

Diagnosis  
Screening and 

blood test   

Screening and 

blood test   
blood test   blood test    blood test   

Family history 
Negative family 

history  

Negative family 

history  

Negative family 

history  

Negative family 

history  

Negative 

family history  
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2.3 Hydroxyurea Drugs   

Hydroxyurea is considered a useful and effective medication that decreases the frequency of 

painful episodes for SCD patients [31, 32]. In this context, it increases the level of haemoglobin 

and Hb F, which are most important in patient’s blood. The medical research indicates that 

Hydroxyurea has the ability to decrease the rate of disease by 50%, while reducing the blood 

transfusion rate as well as the Acute Chest Syndrome (ACS) by 50% [33]. Blood transfusions 

are necessary during severe conditions in order to reduce the abnormal haemoglobin levels. 

Based on the former knowledge, Hydroxyurea has become a significant therapeutic choice for 

adolescents and children; recent reports indicate a sustained long-term benefit including 

prevention of organ damage [33, 34]. The main purpose of this type of dosage is to allow RBCs 

to move more flexible through the arteries and veins. While Hydroxyurea does not provide a 

full cure to the patients, it mitigates the side effects of the disease. Therefore, careful 

compliance with the doctor’s treatment regimen can lead to better outcomes.  

Phillips et al [35] demonstrated the potential significant improvements in haematological 

parameters that can be achieved with hydroxyurea medication dosage in the United Kingdom 

paediatric patients with Sickle Cell Anaemia. The most important findings about their study, 

was that they found hydroxyurea resulted in Haemoglobin (Hb), Fetal Haemoglobin (Hb F), 

Mean Corpuscular Volume (MCV), Reticulocyte Count, Neutrophils in significant 

improvements, which were apparent within a period of six months from when therapy began. 

The study recruited 37 paediatric patients with SCA who were treated with hydroxyurea dose 

at the Alder Hey Children’s Hospital. In order to have beneficial effects on the patient’s 

condition, it is required to take ≥26 mg/kg/day achieved a median HbF level of 33.80%. 

Increasing the amount of hydroxyurea dosage has a crucial positive effect on HB F (Hb; 29.2% 

vs. 20.4%, P = 0.0151) MCV (94.4 vs. 86.5, P = 0.0183), and reticulocyte count (99.66 × 109/l 

vs. 164.3 × 109/l, P = 0.0059). It is also noticed that normal growth was found in all selected 

children. Supporting patient with their medication can give a high result for a patient’s 

condition. Phillips et al [35] proposed a new study on hydroxyurea medication and recruited a 

number of patients. Thirty-Seven paediatric patients at a single UK healthcare centre with SCD 

were treated with hydroxyurea. Comparative analysis has been conducted based on the main 

features of SCD receiving ≥26 mg versus <26 mg determines increasing hydroxyurea 

medication has a crucial positive effect on Hb F with (29.2% vs. 20.4%), RETIC (99.66 × 109/l 

vs. 164.3 × 109/l), and MCV (94.4 vs. 86.5). The study found normal growth rates were noticed 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjO1rLp7_LTAhXhBcAKHZp9CSQQFggjMAA&url=http%3A%2F%2Fsickle.bwh.harvard.edu%2Facutechest.html&usg=AFQjCNFBAZqBWJx40boRtkwfdMh5f6IluA&sig2=tHGECD_mRHRx7aVglYaP7Q
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within the patients who were involved in the study. Better adherence to therapy was an important 

aim in reducing hospitalisations.  

Nine different medications to treat illness in regard to SCD. This treatment can be increased 

and decreased according to the patient’s conditions. The 9 treatment categories (250 mg, 300 

mg, 500 mg, 600 mg, 700 mg, 750 mg, 1000 mg, 1200 mg, 1500 mg) is given according to the 

blood sample results. Figure 2.1 demonstrates the full flowchart that healthcare professionals 

use it to analyse patients’ blood test to provide accurate amount of medication. 

 

 Figure 2-1: General Clinical Care Pathway Flowchart 

The medication assists patients through preventing the formation of abnormal RBCs. Hence, it 

is changed the RBCs from crescent (abnormal) to circular (healthy). Tables 2.2 and 2.3 show 

the outcomes and effects for adult and child patients with SCD after receiving Hydroxyurea. 

There are significant effects, particularly in the blood cells for increasing the percentage of 

haemoglobin.  

 

Starting dosage 
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Table 2-2: Study outcomes and effects for adults after receiving hydroxyurea [36, 37] 

Features Effect 

Blood Markers Haemoglobin level  Increase (High chance – Score Evidence) 

Percentage of Fetal haemoglobin Increase (High chance – Score Evidence) 

Leukocyte Count Increase (High chance – Score Evidence) 

Mean Corpuscular volume   Increase (High chance – Score Evidence) 

Clinical outcomes Hospitalizations reduce (High chance – Score Evidence) 

Pain crises reduce (High chance – Score Evidence) 

The acute chest syndrome reduce (High chance – Score Evidence) 

Blood Transfusion therapy reduce (High chance – Score Evidence) 

Stroke Not evaluated yet 

Priapism Not evaluated yet 

Leg ulcer Not evaluated yet 

Sepsis  Not evaluated yet 

Prevention of end-organ 

damage 

Kidney Not evaluated yet 

Spleen Not evaluated yet 

Brain (Cerebral blood flow) Being evaluated in some clinical centres  

Mortality Mortality reduce (High chance – Score Evidence) 

Table 2-3: Study outcomes and effects for children after receiving hydroxyurea [36, 37] 

Outcomes Effect 

Blood Markers  

Haemoglobin level  Not significantly different 

Percentage of Fetal haemoglobin Increase (High chance – Score Evidence) 

Leukocyte Count reduce (High chance – Score Evidence) 

Mean Corpuscular volume   Increase (High chance – Score Evidence) 

Clinical outcomes  

Hospitalizations reduce (High chance – Score Evidence) 

 Pain crises reduce (High chance – Score Evidence) 

The acute chest syndrome Insufficient data provided 

Blood Transfusion therapy   Insufficient data provided 

priapism Not evaluated yet  

Stroke  reduce (High chance – score Evidence) 

Sepsis Not evaluated yet  

Leg ulcer Not evaluated yet  

Prevention of end-organ 

damage  

Kidney Being evaluated in some centres 

Spleen   Being evaluated in some centres 

Brain (Cerebral blood flow) Being evaluated in some centres 

Mortality Mortality Insufficient data provided 

This drug was initially used as a treatment for cancer. It is considered a powerful and effective 

medicine. Therefore, the US Food and Drug Administration (FDA) has approved Hydroxyurea 

as a treatment for patients with sickle cell anaemia [34]. It is one of several treatments for sickle 

cell anaemia available today. In order to deal with patients with severe cases of the condition, 

marrow transplantation is another effective process, with the potential for complete cure. This 

procedure is considered so dangerous from the medical perspective, that it is only available in 

a few clinical centres. This is complex and difficult process due to the side effects which can 

lead to many diseases and even death. 
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2.4 Causes and Risk Factors of Sickle Cell Disorder  

Sickle cell disorder causes chronic anaemia through reduced capability to fight infections, 

produce RBCs, and most importantly, leads to damage to a number of organs such as the lungs 

and the kidneys. Therefore, complications and symptoms could be mild or severe according to 

the patient’s condition. In this context, complications occur due to extreme conditions, for 

instance, being dehydrated, being at high altitude, or having an insufficient amount of oxygen. 

Table 2.4 provides more details about an overview of sickle cell complications and causes [38]. 

Table 2-4: Complications and Causes of sickle cell disorder 

Complication (Problem) Description (Symptoms) Main Cause 

Anaemia 

Fast heart rate, Tiredness, 

dizziness & light-headedness 

irritability, difficulty in breathing.   

Patients die early as there is not 

sufficient number of RBCs to take 

oxygen round the body 

Hand-foot Syndrome 
Get fever with Swelling in feet 

and hands  

Blood not flowing smoothly inside 

the veins, especially those that go 

to the hands and feet   

 

Acute Chest Syndrome 
 Coughing, chest pain, fever, 

breathing difficulty.  

Infection and blockage of blood 

vessels.  

Pain Crisis 
Patient with this disease get mild 

or severe Sudden pain.  
Restricting blood flow 

Infections 
Harmful infection; pneumonia is 

dangerous for children.  

Decrease capability to stop 

infections 

Vision Loss 
Possible blindness due to the 

Retina damage.  

Restricting blood flow through 

vine that responsible to transfer 

blood to the eye(s) 

Stroke 

Difficulty with speech/vision, 

severe headache with potential 

loss of consciousness, seizures 

Brain not receiving a sufficient 

amount of blood.  

Splenic Sequestration 

Fast heartbeat, pale lips, Sudden 

weakness, fast breathing, 

abdominal pain on the left side of 

body.  

Several sickle cells become 

trapped in the spleen.  

Leg Ulcers 
Ulcers occur on lower part of 

human leg.  
The condition is Unclear.  

2.5 Prevention, Diagnosis & Management 

Up to the present, SCD cannot be cured completely, but with a proper management regimen, 

enhanced by advanced analytical techniques such as artificial intelligence, the severity of the 

condition can be mitigated, leading to improvements in the quality of care. The vast majority 

of patients with more severe SCD symptoms benefit from taking a medicine called hydroxyurea 

[39]. This method of  pharmacotherapy has been shown to be effective at reducing the number 

of painful crises and raising the number of haemoglobin and Fetal haemoglobin (HB F) within 

patient’s blood[40]. According to the medical community, Hydroxyurea is mainly prescribed 

to prevent painful crises [36]. Interventions in the last two decades have gradually reduced 
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mortality, particularly in children, and the recommendations remain in progress [41]. Early 

identification is clearly required and can provide a good opportunity for clinicians to mitigate 

the disease. In this respect, parents are required to observer their children carefully at home and 

seek advice if they observe respiratory symptoms or fever, in addition to ensuring effective 

hydration.  

Early diagnosis can prevent a number of complications that sickle cell patients could face in 

the future. The best way to diagnose sickle cell traits or sickle cell disease is through a simple 

blood test. In order to diagnose all mothers in the first few weeks of pregnancy, doctors and 

nurses use a tissue taken from the placenta or sample of amniotic fluid. The placenta is a 

temporary organ that is located in the mother's womb. Internationally and across the UK indeed, 

most of the Women’s hospitals and clinical sectors use advanced screening programs to check 

new-born babies against SCD. In this context, if the blood test sample shows that an infant 

carries sickle haemoglobin (Hb S), or sickle haemoglobin traits (HbAS), a second blood test 

required in order to confirm the diagnosis.  

One of the most significant solutions to achieve this challenge is to develop web-based 

applications to allow healthcare professionals to monitor the vast majority of patients instead of 

using old-fashioned paper-based methods. This modern technology provides a proper treatment, 

preventing test duplication and communicating with patients during critical conditions. 

Technological solutions should be designed based on the local realities in order to achieve the 

main aims of healthcare development. The web-based system consists of different kind of 

support interface for patients and physicians. A graph representation is integrated within the 

web system to provide patients with a view of the overall activities. On the other hand, all 

patients’ data transfer to the web-based network interface used by medical experts, which can 

deal with patients’ responses through a user-friendly layout. Such applications could enhance 

healthcare services, have the potential impact on reducing professional isolation particularly in 

remote locations, and offer ongoing support for the clinicians as well as the community. 

2.5.1 Limitations and Challenges in Medical Sector 

Communication plays an important and major role in healthcare organisations. One of the most 

significant challenges facing healthcare sectors is that there is still insufficient communication 

between the patients and medical doctors [42]. Furthermore, there are still a number of barriers 

to obtaining excellent communication and relationships between patients and medical experts 

[43]. Miscommunication has potential implications, as it can set false expectations of treatment, 
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and hinder patients' understanding and involvement in treatment planning [44]. In addition, 

these situations may lead to a decreased level of confidence and reduce patient satisfaction with 

health care. The current situation in healthcare environment is divided into 4 steps:  

• Up to this date, there is no intelligent system that has been used yet in terms of managing 

SCD. However, this research provides a system that facilitates a shift from manual input 

methods to an expert approach that can analyse patient’s blood sample with a reduced 

error rate 

• The most challenging aspect that is facing healthcare these days is that, there is still 

insufficient communication between the SCD patients and associated healthcare 

providers. 

• Currently there is no standardisation of disease modifying therapy management. 

• There is still a need for developing an intelligent SCD diagnosis system that is eligible 

to provide a specific treatment plan inspired by an expert system. 

The specific purpose of communication between SCD patients and doctors can be identified in 

association with exchanging vital information and providing related treatment. Healthcare 

professionals tend to communicate with their patients in order to offer optimal therapy and 

provide accurate decisions based on quick assessment [45]. Improved patient-doctor 

communications approaches intend to raise adherence and involvement in recommended 

treatment, build trust, and enhance health outcomes and the quality of health.  

2.5.2  Challenges of Datasets in the Clinical Domain  

Information technology and clinical datasets offer good services and assistance for the medical 

domain in many applications. However, there are some limitations for using healthcare 

datasets. Firstly, the medical datasets are not filtered and not ready to be analysed using 

machine learning algorithms. The main reason behind that is because the vast majority of 

medical data are heterogeneous. A number of SCD patients’ blood test results are in numeric 

form, images and text form. The processing of such datasets is a challenge to developers. To 

solve this problem, some studies suggested that a data warehouse needed to be built before the 

dataset procedure. therefore, this issue may not reliable and can be time consuming for previous 

data [46]. Secondly, the nature of data is not processed (unrecognized data), comprises 

corrupted files, missing features values, and inconsistent with family history or patient history 

[24]. Thirdly, medical data needs expert people that can integrate knowledge in the medical 
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science domain to understand the structure of datasets along with features and class labels and 

need knowledge in the computer science field to be able to use different types of techniques to 

analyse the SCD dataset.  

Typically, this field is computation techniques utilising experience to enhance performance, 

for instance to make correct predictions and classification. The motivation for using machine-

learning techniques is to handle a potentially unbounded amount of data and process them to 

achieve the same accuracy and performance. Machine learning consists of utilising 

classification techniques (classifier) to group a set of symbols into a number of classes 

depending on their attributes (features). A feature is considered one aspect of a symbol that can 

help in aggregating it according to each class. One of the significant factors that has a strong 

influence on the success of a learning method is the type of data that is used to represent the 

task to be learned. 

2.5.3 Motivation  

The motivation for building a system for patients and clinicians came after meeting with a 

number of clinicians and specialist nurses across NHS domain to understand the level of 

support available to patients with SCD; and the resources existing to medical doctors. 

Currently, all hospitals and healthcare sectors are using manual approaches that depend 

completely on medical consultant’s experience, which can be slow to analyse, time consuming 

and stressful. This project has been proposed to the Alder Hey Children’s Hospital and the 

Royal Liverpool Hospital. It soon emerged that some aspects of the current schemes needed 

improvement but could increase cost.  

Moreover, this multifaceted research study is intended to improve our experiences and 

knowledge. Although the proposed system employed in solving the issues in medical domain, 

it is believed that this study could pose some important challenges for those who are suffering 

from sickle cell disease. There are many way to classifying SCD datasets such as machine 

learning models and statistical metechinques. However, the main reason of slection machine 

learning in the proposed study due to producing better accuracy and performance.  

2.6  Machine Learning Classification  

Machine learning models are considered a robust and effective process to analyse medical 

datasets, which is able to give computers the ability to learn without being explicitly 

programmed [47]. It has been applied to a number of prediction problem in varying fields such 
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as medical diagnosis, molecular chemistry, information extraction, social networks and many 

more. Machine learning is the area of research devoted to and concerned with classification 

and the concept of learning. In order to deal with each single classifier to learn for a specific 

application domain, a dataset should be provided to work with. In this case, the dataset divides 

into three major phases, which are: the training set, the validation set, and the testing set.  

Firstly, the training set is the data with which machine learning algorithms learn to perform 

correlational tasks (Clustering, prediction, classification etc.). Then, the purpose of the 

validation set is specifically to provide an estimate of generalisation performance during 

training, acting as a neutral set, which was not directly used for model parameter tuning. The 

main purpose of using the validation set, for instance in ANN is to find the optimal number of 

hidden layers or to determine the exact stopping point for the back-propagation technique. 

Eventually, the testing set is used to assess the performance of a classifier with unknown class 

labels.  

Bontempi and Haibe-Kains [48] applied classification methods to provide specific clinical 

therapy for breast cancer patients. Use of different kinds of models was dependent on tumours 

and the histopathological appearance. In this regard, the research examined several medical 

sources. The outcomes discovered that, biologists regularly failed to classify datasets belonging 

to breast cancer because of tumour metastasis, therefore highlighting the capability of machine 

learning approaches to help healthcare professionals in making the right diagnosis for each 

patient. Gene expression data is considered another popular biomedical model of machine 

learning concerned with classifying the breast cancer disease. There are a number of  datasets 

involving gene expression that  can be used to classify associates with various number of 

diseases from control groups[49]. For instance, Vant Veer [50] used classification approaches 

to distinguish gene expression information. This is referred to as feature selection in the 

classification procedure, where a small number of variables are identified as most informative 

[49]. 

This study presents the utilisation of machine learning models for classifying the SCD datasets. 

The development of medical information systems has played an important role in medical 

societies. The aim of these developments is to improve the use of technology in medical 

applications [12]. Extensive research has indicated that machine learning generates significant 

improvements when used for the pre-processing of medical time-series data signals and has 

assisted in obtaining high accuracy in the classification of medical data [51]. Various Artificial 
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Intelligence techniques have been used and developed to improve decision support tools for 

medical purposes [52]. Machine learning models are considered to be a powerful technique in 

the field of scientific research that enables computers to learn from data [13]. There are a 

number of machine learning techniques for classification including the Random Forest, 

Artificial Neural Network, the K-nearest neighbours algorithm, the Support Vector Machine 

… etc used in the medical data analysis area. The main types of machine learning models are 

discussed in the chapter 4 including a combination of models and their ability to provide the 

underlying relationships in a dataset. In this thesis, the application of machine learning 

approaches for the problem of SCD medication dose management is considered.  

2.6.1 Current Algorithms Used in Sickle Cell Disease 

In recent years, healthcare organisations worldwide have faced many problems in meeting the 

demands of advanced medical sectors [53]. The main motivation for researchers is to produce 

a new system that is able to support health organisations and consequently to deliver benefits 

for patients. There are a number of research projects developed for healthcare environments 

based on machine learning approaches  [54]. Several solutions have been proposed to provide 

support to physicians and medical professionals. Allayous et al. [55] demonstrated a new 

technique based on machine learning algorithms for quantifying the high risk of an acute 

splenic sequestration crisis, which is considered a serious symptom of SCD. In their research, 

the main aim is to learn how to predict the level of severity depending on the training dataset. 

The dataset was gathered from “Centre Caribéen de ladrépanocytose” during 10 years for 42 

children defined by 15 features. There are a number of machine learning methods used in their 

research that have the ability to evaluate the risk of acute splenic sequestration crisis in terms 

of classifying patients between severe and mild symptoms. The Area under Curve (AUC) and 

the Characteristics Receiver Operating Curve (ROC) were used to measure the accuracy of 

datasets. The highest numbers of accuracy were achieved with Adaboost algorithm with 92%, 

while the Ranktree algorithm achieved 90%, thus offering better models of diagnostic method. 

Solanki [56], proposed machine learning approaches based on WEKA platforms. The research 

used two models comprising decision trees (J48) and Random tree in order to make a 

comparison for classifying specific blood groups. The outcome of the study indicated that the 

Random tree algorithm achieved better accuracy in comparison with other classifiers.  

Rohan Varma [57] applied machine learning and automated detection via blood image analysis 

in order to diagnose medical conditions such as SCD earlier in their progression. The researcher 

http://rohanvarma.me/
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focused on machine learning models to build heuristic techniques for evaluating high-

dimensional datasets. Since the initial datasets did not contain any target value to be predicted, 

unsupervised machine Learning via the K-means algorithm was used in order to assign a label 

to each data point to form structurally distinct clusters. Subsequently, the author used decision 

tree bagging to build a reliable classifier to predict the new cells. The procedure involves a 

bootstrapping step, where a set of decision trees are constructed, each trained on a random 

subset of the training data drawn with replacement, followed by an aggregation step, in which 

a single decision is formed from the contributions of individual learners. The method works as 

a statistical technique to estimate the mean of the datasets. The author recommended further 

research to validate the results, as the final outcomes were not as expected, yielding insufficient 

accuracy. It was noted that high classification accuracy, namely sensitivity and specificity, are 

essential within the medical domain. 

The ANN is applied in a number of medical applications [58-60]. The ANNs have been 

proposed as an connectionist approach to the classification and determination of medical results 

including blood inflammations [14, 61]. The model has been employed widely to automate the 

assessment of blood disorders such as SCD using morphological attributes of erythrocytes in 

the cell. Dalvi and Vernekar [62] developed anaemia detection using statistical models and 

ensemble learning methods to yield high accuracy in RBC classification. Their outcomes 

showed that stacking ensemble techniques achieved the highest accuracy. In their experiments, 

ANN provided the best outcomes in comparison to the K- Nearest Neighbour, which obtained 

poor results. The author combined KNN classifier and Decision Tree classifier using stacked 

ensembles to obtain satisfactory results. The combination of various models is indicated as 

providing superior performance than that of individual models. The evaluation measures used 

in the study included Accuracy, Specificity, Sensitivity, and Precision, with 10-fold cross 

validation used in their experiment. The training set comprised 441 instances, while the testing 

set comprised the remaining 49 cases. Sharma and Khullar [63] represent comparative analysis 

between fuzzy expert system and ANN for better efficiency in diagnosing sickle cell patients. 

The authors have summarised that the best model for diagnosing sickle cell Anaemia is ANN. 

Reinforcement learning (RL) has been applied to solve a number of complex tasks in the 

machine learning domain [64]. Escandell-Montero et al. [65] proposed an approach based on 

RL for sickle cell anaemia patients who suffer from this disease. Through the use of a Markov 

Decision Processes (MDP) framework, RL was shown successfully learn to automatically 
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discover optimal solutions using clinical datasets. The author indicated that RL does not require 

a complete knowledge of the system dynamics, a feature that can be important in clinical issues 

[65]. The RL technique applied in the proposed methodology is fitted Q iteration (FQI), which 

stands out for its capability to implement an effective and efficient use of data. In order to 

achieve high accuracy and performance in the medical data, FQI was combined with a function 

approximator constructed using regression trees to handle a continuous state space and to 

produce the learned policy, applied to the cases not covered by the dataset. Thus, although 

prospective validation is needed, empirical studies have demonstrated the potential benefits of 

RL in SCD. 

Advocating the resampling method, Xiong at al., claimed that training a model with an 

imbalanced dataset in machine learning outcomes provides poor classification accuracy and 

performance. They used (SMOTE) to generate patterns for horizontal gene transfer (HGT) for 

detecting genome diversification. The researchers obtain less mean error rate utilising support 

vector machine in comparison to the previous results. Idowu [66] using EHG signals for 

detecting term and preterm births using the classification techniques. The collected dataset 

contains 262 samples for mothers who delivered at term and 38 that delivered prematurely. It 

is indicated that the preterm class has fewer records. In order to address that, the research used 

SMOTE technique to generate an extra 224 preterm records so that there can be equal records 

between term and preterm. The results for preterm and term datasets have significantly 

improved for all the models that have been used. In addition, the AUC outcomes indicated a 

better improvement in accuracy for all the models, such as The Radial Basis Function Neural 

Network Classifier (RBNC) model has improved with an accuracy of 90%. 

Imran [67] presented a novel study based on  early detection of neurodegenerative diseases 

from Bio-Signals using machine learning classifiers. In order to obtain significantly better 

results, the oversampling method has been implemented using the SMOTE technique. In her 

research work, the outcomes have demonstrated that the SMOTE technique works 

comparatively better. Results have illustrated that in both cases the Uncorrelated Normal 

Density based Classifier offers better outcomes, however, the classification accuracy is 53% 

while in the case of oversampling with using SMOTE, the accuracy rate increased to 65%.  

Similarly, Xuan et al [68] proposed a safe-SMOTE approach of imbalanced datasets  for cancer 

datasets, i.e., cancer, i.e., colon-cancer and leukemia to calculate the performance evaluation 

techniques. The results indicated that, the sensitivity method increased significantly from 81% 
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to 90% with the oversampling technique. In addition, the G-mean value of the control rose from 

85% to 86%. 

Milton et al. [69] proposed an ensemble approach, considering 14 models for the prediction of 

genetic risk score (GRS) and Single Nucleotide Polymorphisms (SNPs). The goal of the study 

was the prediction of Haemoglobin F in patients suffering from SCD. A sample of 814 patients 

were involved in their experiments, for which a variety of blood features were measured, such 

as platelets and haemoglobin. The ensemble outcomes of classifiers labelled 23.4% of the 

variability in the discovery cohort, while the association between predicted and observed HbF 

in the three independent cohorts ranged between 0.28 and 0.44 [69]. In contrast, routine 

healthcare procedures in the United Kingdom are driven by manual analysis of sickle cell 

disorder data, relying extensively on expert experience. This can lead to slow analysis with 

high inter- and intra-observers variability, hence this research proposed the use of computerised 

intelligent systems driven by machine learning models. Table 2.6 illustrates the most recent 

studies related to SCD in machine learning fields. 
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Table 2-5: The most recent studies related to SCD  

Authors Type of models  Description  Results  

Allayous et al, 

[55] 

Adaboost algorithm and 

Ranktree algorithm 

Demonstrated a new technique based 

on machine learning algorithms for 

quantifying the high risk of an acute 

splenic sequestration crisis, which is 

considered a serious symptom of 

(SCD) 

Adaboost algorithm produced 

with 92%, while the Ranktree 

algorithm achieved 90%. 

Solanki [56] Decision trees (J48) and Random 

tree.  

Proposed machine learning 

approaches based on WEKA 

platforms in order to make a 

comparison for classifying specific 

blood groups related to SCD.  

Random tree algorithm achieved 

better accuracy in comparison 

with other classifiers.  

 

Rohan Varma 

[57] 

Machine learning models based 

on heuristic techniques 

unsupervised machine Learning 

via the K-means algorithm  

 

Applied machine learning and 

automated detection via blood image 

analysis in order to diagnose medical 

conditions such as SCD earlier in their 

progression. 

The author recommended further 

research to validate the results, as 

the outcomes were not as 

expected, yielding insufficient 

accuracy. It was noted that high 

classification accuracy, namely 

sensitivity and specificity, are 

essential within the medical 

domain. 

Sharma and 

Khullar [63] 

Fuzzy logic and NN Their research proposed comparative 

analysis between fuzzy expert system 

and ANN for better efficiency in 

diagnosing sickle cell patients. 

 

The authors have summarised 

that the best model for 

diagnosing sickle cell Anaemia 

is ANN 

Escandell-

Montero et al. 

[65] 

Markov Decision Processes 

(MDP)  

 

Proposed an approach based on RL for 

sickle cell anaemia patients who suffer 

from this disease. 

Thus, although prospective 

validation is needed, empirical 

studies have demonstrated the 

potential benefits of RL in SCD. 

 

2.6.2 Combined Classifiers  

Machine learning approach is considered as a field of science aiming specifically to extract 

knowledge from datasets [70]. This study introduces the multi-class classification problem in 

order to obtain training and testing methods for each model along with other performance 

evaluation. The proposed research combined classifiers together by calculating the average of 

each classifier to obtain a classification accuracy in comparison to a single model. There is 

strong evidence which illustrates that a better classification can be gained through using two 

classifiers or more [71]. Extensive studies have been conducted by many researchers into 

combining classifiers, with the result that, combinations of classifiers can potentially produce 

better outcomes as shown in Table 2.7. The total information of both models is therefore 

combined to generate the final decision. 

http://rohanvarma.me/
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Table 2-6: Literature survey for ensemble classifiers 

Authors Years Type of models  Description  Results  

A. Kumar et al, [72] 2017 
Ensemble of different convolutional 

neural network (CNN) architectures. 

They developed a new feature extractor by using ensemble 

convolutional neural network (CNN) architectures based on 

large number of medical images.  

The proposed ensemble classifiers show a higher 

accuracy in comparison with the single 

classifier.   

S. F. Weng[73] 2017 

random forest, logistic regression, 

gradient boosting machines, neural 

networks 

The researcher was compared to an established algorithm 

(American College of Cardiology guidelines) to predict first 

cardiovascular event over 10-years. Predictive accuracy 

was assessed by area under the ‘receiver operating curve’ 

(AUC); and sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV) to predict 7.5% 

cardiovascular risk (threshold for initiating statins). 

Machine learning significantly improves 

accuracy of cardiovascular risk prediction, 

increasing the number of patients identified who 

could benefit from preventive treatment, while 

avoiding unnecessary treatment of others. 

S. Bashir et al [74] 2016 
Utilizing an ensemble of seven 

heterogeneous classifiers 

The researchers discussed and proposed an ensemble 

framework using hierarchical majority voting and multi-

layer classification with 7 models for disease classification 

and prediction using data mining methods.  

The analysis of outcomes shows that proposed 

ensemble classifiers has obtained highest 

accuracy of disease classification with robust 

performance and prediction for all clinical 

datasets 

Dalvi and Vernekar 

[62] 
2016 

K- Nearest Neighbour and artificial 

neural networks. 

They developed anaemia detection using statistical models 

and ensemble learning methods to yield high accuracy in 

Red Blood cells (RBC) classification. Their outcomes 

showed stacking ensemble technique among ensemble 

approaches achieved the highest accuracy. 

This indicates a combination of models achieves 

higher accuracy than individual classifiers. In 

this context, ensemble of classifiers achieves 

maximum accuracy in medical science. 

Gandhi and 

Pandey[75] 
2015  

Naive Bayes Tree and Decision Tree 

classifiers. 

They proposed an ensemble model combining Decision 

Tree and Naive Bayes Tree classifiers using voting 

technique. They used 10-fold cross validation. 

They proved that combining various classifiers 

yield better accuracy is compared with the 

individual model. 

 

 

 

 

Zhang et al [76] 

 

 

 

 

2015 

 

 

 

Two models used in their experiments. 

They combined Maximum likelihood 

classifier (MLC) and SVM. 

 

 

MLC and SVM are combined to facilitate soft decision 

making and achieve probabilistic outcomes for SVM in 

association with classification and learning techniques.  

 

 

Achieved 80% SVM combined with the MLC in 

comparison with 65% using SVM only.  

Salih and Abraham 

[77]  
2014  

Combining multi classifiers based on 

Meta classifier voting. Three kinds of 

machine learning used Random Tree, 

Random Forest, and J48 algorithm. 

The results obtained demonstrated that the ensemble 

method yid better outcomes compared with the single 

classifiers.  

 - Voting + 3 classifiers obtained 0.95436 

- Voting + 2 classifiers achieved 0.94899 

 



25 | P a g e  

 

Ozcift and 

Gulten[78] 
2011  

Rotation forest (RF) ensemble 

classifiers of 30 machine learning 

algorithms.  

All the experiments conducted with leave-one-out 

validation method. The classification performances 

evaluated based on kappa error and the area under the ROC 

curve (AUC). 

The RF method produced optimal average 

accuracies of 74.47%, 80.49% and 87.13% for 

diabetes, heart and Parkinson’s datasets, 

respectively. In comparison with 72.15%, 

77.52% and 84.43% average accuracies for 

diabetes, heart and Parkinson’s datasets, 

respectively. 

Mougiakakou et al. 

[79] 
2007  

Multilayer perceptron neural network, 

k-nearest neighbour classifiers, and 

probabilistic neural network.  

A number of distinct sets of texture attributes were 

extracted utilising initial order statistics, grey level 

difference technique, spatial grey level dependence matrix, 

fractal dimension measurements, and Laws’ texture energy 

measures. 

 The accuracy achieved with (84.96%) using the 

weighted voting method and fused feature set.  

Moon et al. [80] 2007  

They proposed Classification-Tree 

CERP (C-T CERP), based on the 

Regression and Classification Trees as 

an ensemble model.  

They developed a robust classification model for high-

dimensional data depend on integration of models. It 

constructed from the ideal number of random partitions of 

the feature space. 

 

 

The performance of the proposed algorithm 

consistently ranked highly compared to the other 

classification algorithms. It is achieved accuracy 

with 0.995 in terms of lung cancer datasets, 

while, 0.968 for lymphoma datasets. 

Aslandogan and 

Mahajani [81] 
2004  

The researchers attempted to combine 

three classifiers: Naïve Bayesian, k-

Nearest Neighbour (KNN), and 

Decision Tree. 

10 k-fold cross validation used in their experiments 

demonstrated that the nature of the clinical datasets has a 

bigger influence on a number of classifiers. Most 

importantly, the classification based on combined 

classifiers yields better accuracy than any individual model. 

The overall accuracy yield 97.9% for the 

combined classifiers with a low rate in KNNC 

obtained 42.5%.  
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2.7 Electronic Healthcare  

Electronic health (E-Health) is the procedure of utilising communication technologies and 

emerging information in the clinical domain for the benefit of patients and clinicians. E-Health 

contains a wide range of components such as electronic mobile treatments, electronic health 

records, and electronic prescriptions, and regular reminders for patients [24]. In the United 

Kingdom and many developing countries, most healthcare organisation is provided by the 

government and because of the shortage of clinical supportive technologies, the vast majority 

of patients are required to wait for some time with limited health resources. However, the 

National Health Service concentrates on the eHealth system to deal with the increased demands 

on health services and assist in solving problems associated with the traditional systems [24]. 

E-Health is generally defined by the World Health Organisation as “the use of information and 

communication technology for health” [82]. Web-based application systems have played a 

major role in improving the healthcare organisation in terms of continuous tele-monitoring 

therapy and maintaining telemedicine management systems for sickle cell disease. The biggest 

challenge facing the majority of patients is the fact that there is still a lack of communication 

with healthcare professionals. Existing work illustrates a range of challenges that offer limited 

facilities for SCD patients. A few researchers who have concentrated on solving this problem 

within healthcare fields. Out-of-hospital care is a relatively new area of research that has 

applications across healthcare organisations but for this research is concentrated on its 

application to the SCD management system. Hence, it is essential to create a system that can 

support patients and medical doctors.  

According to the American heart association, mobile devices are competent to assist people 

who struggle from cardiac arrest and are unable to call an ambulance; the smart phone will 

determine the patient’s location through GPS, GSM and Wi-Fi and send an instant message to 

a cardiologist and other medical staff to take action immediately [83]. There are two significant 

factors behind using a mobile device in the medical care environment. The first is to focus on 

a patient pathway that consist of diagnosis, which treatment, prevention and deliver direct 

communication with patients. The second is to concentrate on healthcare environments in order 

to deliver healthcare surveillance and emergency response but is mainly aimed at improving 

the high efficiency of health organisations for offering better care quality.  

Lazakidou et al,[84]developed a personal Electronic Health Record (pEHR) to evaluate the 

deployment of an advanced web-based application platform that assessed healthcare 
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professionals and patients to provide a more efficient and effective solution compared to the 

daily clinical routine. In their research, the purpose of web-based solutions is to enable patients 

to update and access their medical information. The system was examined with three patient 

groups consisting of 150 patients suffering from diabetes, Parkinson’s disease, and congenital 

heart disease that were recruited within three European hospitals. The outcomes indicated that 

the pEHR could provide better services in terms of user-friendliness, management of data, 

comprehensiveness, and have valuable content. Chen et al[85] presented a pervasive healthcare 

monitoring system (PHMS) combined with a cloud computing environment, mobile 

application, and planar super wideband (SWB). The PHMSs deliver facilities for those who 

need long term and continuous collection of data, in particular disabled and elderly people, for 

living an independent life. The Vital Signs Monitor (VSM) can deliver immediate information 

to the healthcare centre server with regard to analysis and storage of such data. The medical 

experts can seamlessly access the database and check the final status. Kim et al[86]developed 

a new framework based on ubiquitous healthcare systems, which can work anywhere and at 

any time. In this case, their system provides a real-time service based upon various biosensor 

measurements such as Electrocardiogram (ECG), blood pressure, and temperature. They have 

also created a Hadoop platform (Big Data Centre) in order to store medical data. 

Researchers from MIT’s School of Engineering have developed a microfluidic device that is 

able to examine the behaviour of blood from SCD patients. This device also has the ability to 

measure how long blood cells take to become stiff and stuck in blood vessels. Dao claims that, 

the future innovation of this device can easily prevent and predict vaso-occlusive crises. It could 

assist many researchers to test the efficacy of the device, which happens in about three hundred 

thousand new-borns per year, mainly in Africa. Twenty five SCD patients were involved in 

their study; the researchers, by using this device to evaluate blood samples, were able to decide 

how deoxygenation affects red blood cells’ sickling rates; capillaries stuck rate; how quickly 

the RBCs re-shape, especially, when oxygen levels are restored. [87]. 

Knowlton et al.[88], present a sensitive, label-free, and specific testing platform to diagnose 

SCD using blood samples based on the density of sickle RBCs under deoxygenated 

circumstances. The Sickle Mobile Tester device designed in an online application for 

computer-aided design (Tinker CAD). The platform is implemented with a compact 3D-printer 

and lightweight add-on installed on a commercial mobile phone. This attachment comprises an 

optical lens to illuminate the sample of RBCs. The sample that collected from patients is 
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suspended in a paramagnetic medium loaded in a micro capillary tube with sodium 

metabisulfite, which is inserted around the magnets. Eventually, using this model, they were 

able to differentiate between the levitation patterns of sickle versus control REBs in association 

with their degree of confinement. 

Shah et al, [89] determine the receptiveness of SCD patients to use mobile applications (app) 

that can mitigate the disease. There were two phases in their experiment. Phase one involved 

100 patients who finished the task inquiring about the interest in communicating with 

healthcare providers and self-care management system using the mobile app. Phase 2 surveyed 

another 17 patients who been asked to test a newly developed SCD app, to report its utility and 

usability. In the outcomes of this survey, participants stated that the mobile app tested was 

effective and useful with 94%, 88% to track pain, and useful for self-care management. In 

addition, all patients who were involved in this experiment reported that the app was an 

effective tool to communicate with healthcare providers. Overall, this study recommended that 

patients with SCD, regardless of education or age, are agreeable to the use of technology to 

cope with their related pain and disease symptoms. Eventually, mobile apps could provide a 

suitable environment for SCD medical management. 

The literature review shows the current contributions are still limited for providing immediate 

information about SCD normality or abnormality. Up to this moment, there are no studies that 

have been applied yet for classifying SCD datasets for the provision of accurate medication 

dosage predictions. Currently, all hospitals and healthcare sectors are using manual approaches 

that depend completely on medical consultants, which can be slow to analyse, time consuming 

and stressful. However, building the machine learning algorithms can shift the analysis from 

manual approaches to an intelligent system. The system is able to examine the SCD patient 

datasets and prescribe a suitable amount of Hydroxycarbamide drugs/liquid for each patient. 

Moreover, this research also focuses on building a robust system based on a web-application 

platform that can check the patient’s condition and send instant information to the healthcare 

professionals in order to deliver accurate decisions, especially in critical condition cases. 

2.8 Ethical Approval  

There are several ethical challenges and consideration when it comes to implementing any type 

of devices and software in real world medical practice. It is considered important for ethical 

approval to be obtained from the NHS to deploy our system at Alder Hey Children’s NHS 

Foundation Trust. It was planned in the early stage and was completed after working with the 
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research ethics committee (REC) step by step before recruiting any participants. In addition to 

that, this procedure was mandatory for any research-required participation from patients and 

clinicians in the medical domain. All the required ethical approval forms that were collected 

from the NHS were submitted to the REC along with the research proposal, questionnaire 

questions, and other related documents. The REC and Health Research Authority (HRA) 

officially approved the researcher’s request as shown in Appendix 2 “Ethical Approval”.  

It is necessary to receive ethical approval from the NHS Research Ethics Committee before 

starting to involve patients in using the web-based system that has been developed to assist 

patients and clinicians. It is important to create a system with clinical computing tools 

represented as decision assistants instead of decision makers. The real datasets were collected 

from the local hospital and were reviewed and approved by the healthcare consultant who 

usually looks after sickle cell disorder patients.  

There are, of course, privacy concerns surrounding the use of a web-based system. It is 

important to ensure that any data collected over the duration of the project is anonymised 

according to UK Data Protection Act. The data is logged directly to our central server room at 

the university. The room is protected by a security card access system to which only a limited 

number of staffs have access. Moreover, the web-based system has Secure Socket Layer (SSL) 

that supports high-quality security for the system. Patients cannot be identified from the 

collected data. All personal data continues to be logged to LJMU. This is to ensure patient 

privacy and confidentiality.  

2.9   Summary 

This chapter discussed an overview of sickle cell disease, the hydroxyurea drugs, and causes 

and risk factors of sickle cell disorder. It also presented information about machine learning 

algorithms biomedical data analysis, and SCD datasets in the field of healthcare. Some related 

work on different machine learning techniques and electronic healthcare used in this study 

described. Therefore, despite the fact that there are several studies, the most suitable models 

have not yet been identified. The following chapter will elaborate more about machine learning 

models and the details of the datasets. 
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Chapter 3 Machine Learning and Statistical Tools 

3.1 Introduction  

This chapter presents the machine learning algorithms and statistical and visualisation tools. 

Section 2 considers the domain of this chapter and provide a wide information about machine 

learning algorithms and, the process of extracting useful information from clinical data. This 

chapter elaborate in detail about the learning algorithms types, such as supervised and 

unsupervised learning techniques, which are considered the most important domain in machine 

learning. While, the following section concentrates more on classification, which has been 

selected in this thesis, based on the characteristics of SCD datasets; including the process of 

classifying the data. Section 4 discusses the data selection criteria, focused on SCD datasets. 

Statistical tools technique presents in section 5. The chapter culminates with a summary in the 

last section.  

3.2 Machine Learning Algorithms Descriptions 

Machine learning algorithms considered a narrow form of artificial intelligence (AI), giving 

computers to solve data problems in various fields without being explicitly programmed [22, 23, 

90]. Such algorithms may be applied to problems posed within prediction, pattern recognition, 

and classification settings, using computational procedures to trained models using empirical 

datasets [24]. Figure 3.1 illustrates a general overview of the machine learning classification 

process. Firstly, a training set phase containing instances whose target values are known from 

the datasets. The purpose of the training set is to build a classification model. In order to evaluate 

the model that been trained, a testing set phase is implemented, which involves instances with 

unknown target values. Finally, the performance evaluation of a classification approach is based 

on the counts of test instances that have been able correctly and incorrectly predicted by the 

model [91].  

http://searchcio.techtarget.com/definition/AI
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Figure 3-1: General framework for building machine learning classification 

The machine learning model is a systematic approach for constructing a classification 

algorithm from input datasets [92]. This research used random forest classifier (RFC), artificial 

neural network (ANN), and support vector machine (SVM). Each model applies a learning 

algorithm to examine the relationship between features and class label of the input datasets. 

However, the main objective behind the learning algorithm is to build a model that is able to 

predict the target value that was previously unknown.  In our case, the target value is the amount 

of medication. Learning algorithms are mainly divided into three important approaches, which 

are supervised, unsupervised learning, and Reinforcement Learning models. The next sections 

discuss the three types of learning algorithms.  

3.2.1 Supervised learning algorithm  

Supervised learning techniques is a data mining procedure of inferring a function from 

a labelled training datasets [93]. The inferred function is to predict the correct target value 

(output) for any valid categorical label (input object). In this method, each instance is a pair 

comprising of an input object and the desired output value [93]. The main point for the training 

set is to learn from labelled instances in the training set in order to identify unlabelled instances 

during the testing task with high potential accuracy as demonstrated in Figure 3.2.  

http://dataaspirant.com/2014/09/16/data-mining/
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The training procedure continues until the algorithm is able to achieve high accuracy on the 

training data. The correct output should be known, taking the indication there is relationship 

between the input value and the output value [92]. For example, a training set might consist of 

patients with different amounts of medication (500 mg, 750 mg, 100 g), where the learner is 

giving patient records with the amount of dosage. The test set contain patients with unknown 

class label in order to identify the class label. In this phase, the class label is provided for the 

classifier at the training stage. This type of learning accepts data comprising a set of known 

inputs paired with known outputs. 

3.2.2 Unsupervised Learning  

Unsupervised learning is also one type of machine learning model applied to drive inferences 

from training datasets involving input data without output (labelled responses) [94]. Unlike 

with supervised learning, in unsupervised learning models the target value is unknown. Cluster 

analysis is the most common method in the unsupervised learning that is utilised for 

exploratory analysis to find groupings or hidden patterns in datasets [94]. The main goal of 

applying this technique is to find the smallest group feature subset (clustering) from the datasets 

according to the chosen criteria [95]. Figure 3.3 shows the clustering method, while figure 3.4 

shows the unsupervised learning workflow.  The best-known supervised learning algorithm for 

the regression technique is Linear Regression, Generalized Linear Models, Decision Trees, and 

Neural Networks. This is such a strong tool for classification and prediction tasks in many 

fields 

Figure 3-2: Supervised learning workflow 

https://uk.mathworks.com/solutions/machine-learning.html
https://uk.mathworks.com/discovery/cluster-analysis.html
https://uk.mathworks.com/discovery/cluster-analysis.html
https://uk.mathworks.com/discovery/linear-regression.html
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Figure 3-3: Cluster datasets example 

The clusters are demonstrated via a measure of similarity, which is indicated upon metrics, for 

example probabilistic distance or Euclidean. It is distinguished from the supervised learning 

method by the fact that the outputs are not supplied to or required by the learning algorithm 

during training [96].   

 

 

 

 

 

 

 

 

 

 

 
Figure 3-4: Unsupervised learning workflow 
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3.2.3 Reinforcement Learning (RL)  

In the machine learning domain, Reinforcement learning (RL) has been applied to solve a 

number of complex tasks [97]. For instance, RL has been performed in medical diagnosis, 

speech recognition, bioinformatics, computational vision, spell recognition, and robots 

Locomotion [98]. RL is considered one of the most robust types of machine learning 

algorithms, which can be used as interaction between patients and clinicians. RL is usually 

identified as a technique whereby an algorithm learns from the regular consequences of its 

actions instead of being explicitly taught based on previous experiences (exploitation). Based 

upon the patient’s information, RL supports clinicians in applying the diagnosis task. This 

method can learn through interacting with its environment for the purpose of obtaining high 

accuracy [99]. 

3.3 Classification 

This research focus on the use of supervised classification, as the datasets that collected from 

the hospital is identified with appropriate labels. In contrast, regression models aim to map 

instance (input) values to continuous outcome values, for instance for application to clinical 

domain. Classification procedures, however, map instances (input) into discrete classes, 

forming a finite decision problem. For instance, some studies aim to classify patients as 

carrying the sickle cell disease or otherwise [24]. In a particular within the classification setting, 

the objective is to learn a decision surface that correctly maps an instance (input) space to an 

output space of target values. Within the clinical domain, machine learning researchers have 

investigated methods to improve the accuracy and performance of care according to the 

condition of patients [100]. Results reported for algorithms such as RFC, SVM, VPC, and 

ANN, the classification of clinical data has demonstrated significant improvement in healthcare 

outcomes. Thus, health database classification can be characterised as a class of complex 

optimization with an objective to maximise the performance of healthcare solutions.  

As mentioned previously, the classification process describes as learning a function that maps 

between a set of inputs (features) and a response target (output). Each input is in the form of an 

object (𝒙), comprising a set of features, while 𝒚 may refer to the class label assigned to 𝒙. The 

classification model is a procedure that is employed to describe data also known as descriptive 

classifier or a technique to predict the class label for new sample, which is Predictive classifier 

[24, 101]. 
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The importance of classification techniques in the medical community, especially for diagnosis 

purposes, has gradually increased [102, 103]. The key reason for improving medical diagnosis 

is to enhance the human ability to find better treatments, and to help with the prognoses of 

diseases to make the diagnoses more efficient [104], even with rare conditions [105]. The aim 

of the classifier is to learn how to extract useful information from the labelled data in order to 

classify unlabelled data. Various methods have been employed for the classification task [106]. 

They are categorised into two groups: linear and nonlinear classifiers. Linear classifiers are 

represented as a linear function (g) of input features x as illustrated in Equation (3.1) [107].  

𝑔(𝑥) = 𝑤T𝑥 + 𝑏 (3.1) 

Where w is a set of weighted values, b is a bias, and T refer to matrices transpose. The metrics 

transpose convert the column of the matric to row in new metrics vice versa.  For two classes, 

problem c1 and c2, the input vector x is assigned to class c1 if g(x)>=0 and to class c2, otherwise. 

The decision boundary between class c1 and c2 is simply linear. several traditional linear 

classifiers were designed and applied to perform classification in different areas such as Linear 

Discriminant Analysis [108].  

Nonlinear classifiers involve finding the class of a feature vector x using a nonlinear mapping 

function (f), where 𝑓 learnt from a training set T, from which the model builds the mapping in 

order to predict the correct class of the new data. A popular nonlinear classifier is the Artificial 

Neural Network (ANN) model. As a classifier, ANN has a number of output units, one for each 

class [109]. Nonlinear neural networks are able to create nonlinear decision boundaries between 

dissimilar classes using a non-parametric approach [20]. Zhang [110] asserted that neural 

networks have the power to determine the posterior probabilities, which can be used as the 

basis for establishing the classification rule. This study considers the use of several classes of 

model for data classification, Random Forest, Support Vector Machines, and comprising ANN.  

The knowledge representation encoded within ANN models is manifested in the form of 

directed connection weights, which collectively form the network’s “program”. In order to 

perform useful tasks, an appropriate configuration of weights found using a learning algorithm. 

Typically, during this learning procedure, the space of network weights is searched using an 

optimisation algorithm in search of a solution that minimises an error defined according to an 

objective function of interest. Such an objective function is carefully chosen to facilitate 

generalisation. The dimensions of variation that contribute to the success of a neural network 

include the network connectivity pattern (architecture), the activation functions, determination 



36 | P a g e  

 

of appropriate weights, and the training data presented to the network during learning. The 

computation at a single node of an ANN comprises a weighted sum of its inputs, in turn 

processed according to an activation function. Such a computation is demonstrated in Equation 

3.2, where yj is the output from the jth unit in layer y, wji represents the weight of the ith input, 

xi represents the value of the ith input, and 𝜎 represents the activation function. 

𝑦𝑗 =  𝜎 (∑ 𝑤𝑗𝑖𝑥𝑖
𝑚
𝑖=0 )   (3.2) 

The purpose of using neural networks in our study is to extract the vital values from clinical 

datasets automatically, through statistical and computational methods. Several machine-learning 

algorithms try to decrease the requirement for human intuition in association with evaluation of 

clinical data and build a collaborative approach between human agents and machine. 10-fold-

cross validation method can be used to classify the datasets for SCD patients as shown in figure 

3.5. 

 

Figure 3-5: 10-fold cross validation 

3.4 SCD Datasets  

This research proposes a robust SCD classification model using different types of machine 

learning; by examining the amount of medication for each patient. The machine learning 

models can be used to produce a higher accuracy and performance. Our aim is to classify the 

SCD datasets based on 14 features that collected within 6 years period.  
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Figure 3-6: Data selection criteria 

Experimental datasets were collected from the Haematologist and Haemophilia Centre at the 

Alder Hey Children's NHS Foundation Trust. Figure 3.6 demonstrates the process of SCD 

datasets. Each sample comprises of 14 attributes, as described in Table 3-1, deemed important 

for predicting the SCD [41]. Effective prediction of sickle cell disease could help prevent 

severe episodes on the patient. In order to collect SCD dataset, blood test machines in hospitals 

are used to collect blood test data. These fourteen attributes are the same attributes measured 

by the equipment used by clinicians to test patients’ blood sample. 

Table 3-1: Characteristics of SCD dataset 

No Types of Attributes 

1 Weight 

2 Haemoglobin (Hb) 

3 Mean Corpuscular Volume (MCV) 

4 Platelets (PLTS) 

5 Neutrophils (white blood cell NEUT) 

6 Reticulocyte Count (RETIC A) 

7 Reticulocyte Count (RETIC %) 

8 Alanine aminotransferase (ALT) 

9 Body Bio-Blood (BIO) 

10 Hb F 

11 Bilirubin (BILI) 

12 Lactate dehydrogenase (LDH) 

13 Aspartate Aminotransferase (AST) 

14 starting dosage 
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3.4.1 Multi-Class classification 

Multi-Class classification is a fundamental tool that concentrates on machine learning 

approaches and informatics with a number of possible applications [111]. This kind of 

classification is the process of classifying features into more than two groups according to the 

classification rule. In this context, the community conducted extensive empirical researches to 

examine the performance of learning models [112]. Such a robust classifier is mostly 

considered to learn correctly in order to identify the label(s) with a high probability. Therefore, 

synthetic datasets can be deployed as an alternative to real world datasets to develop rigorous 

outcomes for the total average case accuracy and performance of learning approaches. In order 

to check patient status using the classification method, the proposed study concentrate on the 

relative proportion of different types of errors (like sensitivity and specificity). Table 3.2 shows 

the multi-label datasets demonstration. 

Table 3-2: Multi-label datasets 

No.  Instances Label  

K1 x1 x2 x3 
 

x1M Y1 

K2 x11 x 12 x13 
 

x1M Y2 

K3 x21 x22 x23 
 

x2M Y3 

 
   

 

KN xN1 x N2 xN3 
 

xNM YN 

3.5 Statistical Tool Selection  

Pattern recognition technique is growing rapidly in the healthcare organization, as it has been 

demonstrated to be more effective than standard clinical statistical methods [113]. This tool has 

been utilised since 1970s for many purposes in the medical field applications [114]. It is 

normally characterised according to the kind of learning process used to produce the output 

value. Lin [115] proposed a robust diagnosis approach for liver disease treatment using 

regression and classification trees, and Lee et al. [116] designed a computer-aided diagnosis 

system for assessing pulmonary nodules using a linear discriminant classifier (LDC) and 

feature selection. Similarly, Dan et al. [117] effectively classified Parkinson’s illness by SVM 

model using structural images and functional magnetic resonance imaging (fMRI), as inputs 

(features). They gained remarkable outcomes with sensitivity of 78.95%, and specificity of 

92.59%, and high rate of accuracy with 86.96%. A strategic protocol for the Early Detection of 

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Classification_rule
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Neurodegenerative Diseases (NDDs) within supervised learning data patterns can be classified 

utilising statistical techniques, template matching, and neural networks [118]. 

 Iram [67] proposed a new method for using the discrimination analysis of gait signals of 

various neurodegenerative diseases such as Amyotrophic Lateral Sclerosis Parkinson’s, and 

Huntington’s. This includes applicable feature extraction, solving the problems of missing 

entries and imbalanced datasets and most importantly, lastly classification of multiclass 

datasets. There were eleven models nominated for the discrimination and classification of gait 

signals demonstrating, Bayes normal classification, linear, and non-linear and methods. Results 

showed that three classifiers have provided with higher accuracy rate, which are Linear 

Discriminant Classifier (LDC), Uncorrelated Normal Density based Classifier (UDC) and 

Parzen Classifier with 62.5%, 65%, and 60% accuracy, respectively. Further to that, in 

statistical task analysis, demonstration of each data pattern is held in a multi-dimensional space, 

splitting the regions for each individual class.  

3.5.1 Feature Selection and Feature Extraction  

In the field of pattern recognition and machine learning domain, dimensionality reduction is a 

significant area, where a number of approaches have been proposed [119]. The pattern 

recognition technique involves two important phases; feature selection and feature extraction. 

In order to provide optimal representation of a particular field, features are identical input 

variables or the attributes of a dataset [120]. Features can be characterised into redundant or 

relevant, and irrelevant. In this research, the main purpose of using these types of features is to 

improve the predictive accuracy of classifiers and to obtain high performance of learning 

algorithms. The major objective of this technique is to avoid overfitting that could require 

further analysis. Figure 3.8 shows the procedure of Feature extraction and feature selection.  
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Figure 3-7: Feature extraction and feature selection procedure 

Feature selection techniques offer a good way to improve prediction performance, reduce 

computation time, and provide better understanding of the SCD medical dataset in machine 

learning algorithms or pattern recognition applications [121]. Polat et al [122] proposed a 

robust feature selection technique known kernel F-score feature selection (KFFS) applied for 

pre-processing step in clinical data. KFFS consists of features of medical datasets that 

transformed to kernel space by Radial Basis Function (RBF). It is indicated that, The proposed 

feature selection techniques called KFFS is yeild promising outcomes compared to the selected 

methods. Santos et al [123] developed a new approach using feature selection to deal with large 

datasets based on ensemble classifiers. The authors have indicated the usefulness of the 

proposed approach, towards the development of better classification algorithms through use a 

number of classification algorithms that covers the current performance evaluation techniques 

matrices, specifically with the area under the ROC curve, sensitivity and false positive rate.  

Harb and Desuky [124] proposed two well-known approaches the filter and wrapper based on 

Particle Swarm Optimization (PSO) as a feature selection technique for clinical data. They 

selected number of algorithms to check the accuracy and performance with another feature 

selection based on Genetic algorithm. Three medical data sets were used in their experiment. 

The outcomes shown the proposed PSO enhanced the classification accuracy rate over the other 

classification models. Rajeswari and Pede [125] analysed a specific kind of approaches for 

classification based on feature selection by using association and correlation mechanism. The 

aim target of their research study is to select the correlated features of clinical data, which can 

be beneficial and helpful for clinical decision support system. They confirmed that after 

removal of some features from the medical dataset, the performance and accuracy of classifier 

is improved.  
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In the case of feature selection, it is important to seek into optimize the model either to improve 

or maintain classification accuracy and simplify classifier complexity. A study conducted by 

Dash and Liu [126] indicated that, the feature selection algorithm can be separated into 6 steps 

as shown in algorithm 3.1 [127]. 

Algorithm 3.1: Feature selection procedures   

1. select a criterion procedure function, 𝑓(𝑥) 

2.  Choose a subset 𝑥′ of the complete features sets X. 

3. Construct a model with the candidate subset 𝑑. 

4. Calculate 𝑓(𝑥) 

5.  Repeat with various subsets 𝑥′ ⊂ X. 

6.  choose 𝑥 which minimises 𝑓(𝑥) 

Two important procedures taken into consideration when selecting the correct feature subsets. 

Initially, it is required to search for the possible feature subsets based on the robustness of 

objective function, which is part of the search space as shown in Figure 3.8. Then, select the 

feature subsets in association with the objective function. Once the module is completed, the 

final feature subsets are ready to be used by the machine-learning algorithm.  

 

Figure 3-8: Feature selection procedure 

Feature selection is the procedure of removal of irrelevant, identification, and redundant 

features from the proposed clinical datasets [128]. Our datasets have hundreds of features that 

are related to SCD datasets. Various numbers of features that may be irrelevant, redundant 

information, or considered not important features for healthcare professionals, when diagnosing 

SCD patients. In this context, this situation increased the processing time of classification as 

well as possibly leading to more complications. These techniques can generate better outcomes 
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than approaches, which do not deal with feature redundancy; however, the computational cost 

of the subset search makes them inefficient for high-dimensional data. Feature selection 

methods are divided into three stages [129-131]:  

(i) The filters that extract important features from the total datasets without any learning 

algorithms involved.  

(ii) (ii) The wrappers that utilise learning methods to examine which features are 

effective and useful.  

(iii) (iii) The embedded approaches, which integrate the model building and the feature 

selection, step. 

Therefore, Feature extraction comprises decreasing the amount of resources needed to represent 

a large set of clinical data. This type of features is the basic index of regression, detection, and 

classification in the domain of biomedical signal processing [67]. Data analysis with many 

variables normally needs a large memory as well as computation power. Moreover, it is a high 

potential cause for the classification model to overfit during training samples and create new 

poor samples.  

3.6 Chapter Summary  

This chapter has elaborated about the machine learning algorithms. Different kinds of learning 

architectures with a further explanation of supervised and unsupervised machine learning 

explained in this chapter. It has provided a brief introduction of classifications. Then this 

chapter reviewed about SCD datasets criteria. This section has highlighted a number of 

statistical tools that can be applied to provide such optimal visualizations. It explains what is 

required to discover more efficient and effective models that are appropriate for our datasets, 

in terms of high efficiency and accuracy for the early predictions of SCD. The next chapter will 

discuss about each model in terms of statistical and mathematical aspects.  
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Chapter 4 Model Descriptions 

4.1 Introduction 

This chapter discusses the machine learning models that used in our experiments. It provides a 

general overview of all the models that conducted in the main research domain, which involves 

a discussion on SCD. Algorithms are trained to classify these SCD datasets with the amount of 

medication for each patient where the class is known. A number of algorithms are found to 

perform modelling well in this way, according to the strengths and weaknesses for each 

classifier. The models considered encompass a space of machine learning architectures 

grounded in decision trees, neural networks, support vector machines, and k-nearest 

neighbours. Classifiers are realised through either direct application of such basic techniques 

or higher-order assembly to form composite architectures that offer improvements in capability. 

This study focus on the use of such combined classification techniques, including basic 

architectures for comparison. 

4.2 Construction Trees  

These algorithms use construction trees as to build more powerful and effective prediction 

models. This section describes each model.  

4.2.1 Decision Tree Algorithm 

Decision tree algorithm constructs classification approaches in the procedure of a tree 

formation. This technique typically divides a dataset into smaller subsets. The outcome is a tree 

containing nodes (decision and leaf). In the process of machine learning, this technique can be 

depicted as the integration of computational techniques and mathematical equations to assist 

the generalisation, description, and categorisation of a chosen datasets. Typically, classification 

trees involve various non-leaf nodes connected directly to the main leaf nodes with arcs [132]. 

In this scenario, every non-leaf node is described as an input attribute, while the arcs are 

categorised as attribute values. Each (leaf) node belongs to a probability distribution or target 

class value. Let us say 𝒀 = 𝒚𝟏,𝒚𝟐,𝒚𝟑, of the classified instances and each instance 𝒚𝟏  is p-

dimensional vector comprising 𝒙𝟏𝒊,𝒙𝟐𝒊, … . , 𝒙𝒑𝒊. The 𝒙𝒋 represents features including the class 

in which 𝒑𝐢  belongs. In this method, it chooses the features of the data that most efficiently 



44 | P a g e  

 

splits into a set of samples developed by Quinlan [132, 133]. The splitting standard is the 

transformation in entropy and information gain [134]. In the process of producing the correct 

decision tree, the feature with the maximum information gain is chosen. The decision tree that 

was developed by Quinlan then returns on the reduced subsets. This happened when all the 

subsets of the recursion terminate have the exact value of the class sets. In order to reduce 

potential overfitting and  complexity, Reduced error pruning (REP) was implemented to this 

method [135]. Algorithm 4.1 shows the procedure of splitting data in decision tree [136]. 

 

A decision node (patient conditions) has three branches (normal, mild, and severe). Leaf node 

represents a decision or classification target value. The best decision node that can provide 

optimal predictor is called root node, which belongs to the corresponds in the tree.  

Table 4-1 Decision tree example 

Condition HB HB F Dosage 

Normal  92 20.1 250 

Mild  75 14.4 750 

Severe 67 5.8 1500 

This technique can handle both numerical and categorical datasets.  Figure 4.1 exhibits how 

to convert the selected datasets from Table 4.1 into a decision tree. 

Algorithm 4.1: Decision Tree 

 1. In order to build large trees using the training dataset, it is required to use recursive binary 

splitting, stopping when terminal node has fewer than some minimum number of observations.  

2. Employ cost-complexity pruning to the large tree to achieve a sequence of optimal subtree, as 

a function of α. 

3. Apply K-fold cross-validation to choose α, divided the training set into K folds. For each k = 

1…, K: 

(a) Repeat Steps One and Two on kth fold of the training sets. 

(b) Evaluate the error rate using the mean squared prediction on the testing sets (left out 

of kth fold), as a function of α. 

(c) Calculate the outcomes by averaging each value of α. 

4. Return the subtree from Step 2 for choosing value of α as corresponds to that.  
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Figure 4-1: Decision tree example 

The major concept for constructing decision trees called ID3 that developed by Quinlan[133] 

to deal with the top-down procedure. In order to build a decision tree, it is important to use 

Entropy and Information Gain. The entropy method is to compute the homogeneity of a 

datasets instances which offers a number between 0 and 1[137]. It is constructed top-down 

from a root node and comprises subsets that involve features with same target values 

(homogenous) [138].  In other words, Entropy is a degree of elements that able to measure 

impurity.  Based on the mathematical calculation, it can be measured with the assist of 

probability as follows in Equation (4.1 and 4.2) [139]: 

𝐸(𝑆) = ∑ −𝑝𝑖 𝑙𝑜𝑔2 

𝑐

𝑖=1

𝑝𝑖 (4.1) 

𝐸(𝑇, 𝑋) = ∑ 𝑝(𝑐)𝐸

𝑐

𝑐∈𝑋

(𝑐) (4.2) 

Building a decision tree is to discover a feature that able to return the uppermost information 

gain. It is important to concentrate on features that select for the division, which provides with 

less impurity. The information gain can be defined at any node in equation 4.3 as follows [139]:  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥) − ([ 𝑡ℎ𝑒 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡] ∗

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒)) (4.3) 

𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋) 
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There are three steps to obtain the information gain. Firstly, calculate the entropy of the 

response (target values). Secondly, the selected data is divided into different features. In order 

to calculate all the attributes, the entropy technique is considered for this purpose. Before 

splitting the datasets into several branches, the entropy outcomes are subtracted. The outcome 

is a decrease in entropy or the Information Gain. Eventually, dividing the samples based on the 

maximum information gain, which is the important procedure in decision tree classifiers.  

4.2.2 Bootstrap Aggregation 

Bagging stands for (Bootstrap Aggregation) that was proposed by Breiman in 1996 [140]. This 

method is able to reduce the variance of variable prediction by producing extra data for the 

original datasets through combining the total number of bags with repetitions to generate strong 

classifiers with less error. In order to reduce overfitting of a class of models, bagging is a good 

technique to use for this purpose. It is indicated that, bagging is considered robust than boosting 

in noisy settings [141]. There are three benefits of using bagging in machine learning 

techniques. Firstly, it produces an aggregated classifier with less variance. This method is 

fundamentally trading off on bias variance balance that can obtain underfitting and overfitting. 

Secondly, it increases the classifiers accuracy. Thirdly, it assists unstable weak learners, which 

deflect with a small change in input and output (for example, neural networks, and decision 

trees). Bagging and boosting work in the same idea. They are both ensemble methods, where a 

number of weak learners (classifications/regressions that are better than guessing) combine 

through max vote or averaging to generate a robust learner that can make correct predictions. 

Extensive research has illustrated that an ensemble of classifiers is more accurate than any 

individual classifiers in the ensemble [142]. These two techniques rely on “resampling” to gain 

different training sets for each of the models. Bagging takes bootstrap instances with 

replacement of datasets and each sample of training sets is considered as a weak learner.  

The easiest way to decrease variance and increase the classification accuracy and performance 

of a statistical learning technique is to select several training datasets and average the resulting 

predictions. However, calculate 𝑓1 , 𝑓2 , 𝑓3 , … 𝑓𝑛  using N separate training datasets, and 

average them to obtain a single low-variance as shown in equation 4.4 [136].  

𝑓𝑎𝑣𝑔(𝑥) =  
1

𝑁
  ∑ 𝑓𝑛

𝑁

𝑛=1

 (𝑥) (4.4) 

http://en.wikipedia.org/wiki/Combinations
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This study apply bootstrap, though obtaining repeated samples from the training set. Then, 

train the proposed approach on both the bootstrapped training datasets to obtain 𝑓∗𝑛 , and 

eventually, average all the predictions as shown in equation 4.5 [136].  

𝑓𝑏𝑎𝑔(𝑥) =  
1

𝑁
  ∑ 𝑓∗𝑛

𝑁

𝑛=1

 (𝑥) (4.5) 

The main idea behind bagging is to apply data splitting or resampling technique. Bagging relies 

on a classical statistical method called bootstrap, which generates a random new subset of data 

by sampling from given datasets. However, the idea is produce a similar dataset from the 

original datasets by sampling from it with replacement. This is done through using replacement 

with re-sampling over selecting a specific number of data from the training set. In this scenario, 

the classification outcomes are gained by (majority or weighted) voting among its composing 

models. 

4.2.3 Random Forest Classifier 

The Random Forest Classifier (RFC) is one of the high-order approaches to machine learning, 

employing an ensemble of decision tree learners, in conjunction with feature bagging, to 

constitute a strong overall classifier. Such a composition strategy can be identified as a meta-

learning approach to problem-solving [143]. The RFC methodology was first proposed by Tin 

Kam Ho [144, 145] and then developed into the current form by Brieman [146]. Importantly, 

the individual decision tree base learners produced as a result of RFC procedure are trained 

independently and therefore remain uncorrelated [147]. One advantage of the RFC is become 

popular in machine learning field due to the same algorithm can be used for regression and 

classification.   

RFC has become a prominent ensemble learning algorithm in the last several decades, 

facilitating the learning of complex functions in numerous task domains [148]. The classifier 

produced is an intuitive model that provides a robust probabilistic structure for solving a 

number of learning tasks. Following a divide and conquer strategy, it is clear that RFC 

efficiently generates partitions of high-dimensional attributes, over which a probability 

distribution is located. Therefore, the algorithm allows density estimation for arbitrary 

functions, with possible usage to task modalities of clustering, regression or classification. The 

methodology of RFC is described in Equations 4.6 and 4.7. 
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𝑓(𝑥) =
1

𝑚
∑ 𝑓(𝑥, 𝑥𝑖𝑝 )

𝑚

𝑖=1
                                          (4.6) 

Where 𝑥 refers to the variable that partial dependence is required, while 𝑥𝑖𝑝 is considered the 

other variable for data.  

𝑓(𝑥) = log𝑡𝑗 −
1

𝐽
∑ (log𝑡𝑘(y)

𝐽

𝑘=1
)                              (4.7) 

Where J belongs the number of classes, whereas j refers to a class. In addition, 𝑡𝑘 is belong t 

tohe proportion of total votes for class j.  

Given an M feature set, the decision trees are built utilising m features from the feature set that 

is randomly selected at each node [149]. The optimal way is calculating m features that 

continues till the decision tree is grown without being in need of pruning. In order to use 

different bootstrap instances of the medical data, the task is repeated continuously for all 

decision trees in the whole forest [149]. One purpose of classifying new instances can be 

accomplished by a majority vote. Combines decision tree classifiers with bagging can be 

obtained using RFC (refer to Algorithm 4.2) [149]. In the bagging method, construct a number 

of decision trees based on bootstrapped training datasets. However, when building these trees, 

a split in a tree is required at each time, a random instance of  𝑚 predictors is selected as split 

candidates from the complete set of 𝑝 predictors. In this case, the spilt is permitted to utilise 

one m predictors [136]. 

Algorithm 4.2: Random Forest 

1 Given a training set{(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)}, where 𝑥𝑖 ∈ 𝑅𝑑 and 𝑦𝑖 ∈ 𝐶, where 𝐶 represents 

target classes; define the B of trees and the m of random features to select. 

2 For b = 1, ..., B, 

 (a) Using the training set of datasets and sampling, produce a bootstrap instance of 

size n; some patterns in the training set will be replicated again, while other 

patterns will be omitted based on the tree itself. 

 (b) Implement a decision tree model, 𝜂𝑏(𝑥) utilising the bootstrap example as 

training dataset, each node in the tree m variables with randomly selecting to 

consider for splitting. 

 (c) Classify the out-of-bag data (the non-bootstrap patterns) using the 𝜂𝑏(𝑥) 

model.  

3 Assign 𝑥𝑖 to the target class most characterised by the 𝜂𝑏′(𝑥) models, where 𝑏′ belongs to 

the bootstrap instances that do not involve 𝑥𝑖 .  

This approach generates a number of trees to create a big forest. Typically, the higher number 

of trees in a forest can make the algorithm more robust, producing high accuracy. Significant 
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improvements demonstrated empirically and theoretically from the formation of decision tree 

ensembles that may be aggregated to form a final decision through voting procedures. In order 

to grow such ensembles, RFC performs the additional step of feature bagging [146]. Hence, 

through the ensemble design, the RFC algorithm produces a strong learner from individually 

weaker decision trees. Moreover, the model is efficient to train and test over empirical datasets 

and has integrated mechanisms for predicting confidence and estimating test error. 

The combination of learning algorithms increases the classification accuracy and performance 

evaluation. RFC uses bagging over both training example subsets and feature subsets, 

producing a large collection of decorrelated models manifested through a series of decision 

trees [150]. Suppose M is a matrix of training samples that used to train a classifier. In this 

context, 𝑥𝐴1 belongs to the feature A of the 1st instance, xB1, the feature B of the 1st instance, 

xC1 the feature C of the 1st instance, and so on. This research continue in all samples up to N. 

y1 and yN refer to the training classes. Therefore, in the matrix M, a number of features and 

training classes to classify the SCD datasets. 

M = [

𝑥𝐴1 𝑥𝐵1 𝑥𝐶1       𝑦1

⋮ ⋮ ⋮          ⋮
𝑥𝐴𝑁 𝑥𝐵𝑁 𝑥𝐶𝑁       𝑦𝑁

] 

A number of subsets randomly selected as shown in M1 and Figure 4.2. For example, 

features 𝑥𝐴14,𝑥𝐴17, 𝑥𝐴20and 𝑥𝐴38 as well as some other random elements in B and C. Then, 

make another random subset with different values as shown in matrix M2. Eventually, create 

any number of decision trees as illustrated in SM. The main idea of using different variations is 

to generate a ranking of classifiers. This process is repeated continuously at each decision tree 

until the correct class label is found. The vast majority voting among decision trees is selected 

as the correct target value.     
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Figure 4-2: Decision trees example                                                          

The RF classifier is trained by the development of an ensemble method of B trees, giving the 

training sets  X =  𝑥1. . . 𝑥𝑛 , and the target class label (responses) is Y =  𝑦1. . . 𝑦𝑛. 𝑓𝑜𝑟 𝑏 =

1, … , 𝐵: Instance with replacement B belong the training sample from 𝑋, 𝑌 which refer 

to 𝑋𝑏, 𝑌𝑏. Y is belonged the predicted class that usually selected through the majority voting. 

In theoretical side, select a number of datasets for training phase 𝑀 = 

{(X1, (Xn) … , (Y1, Yn), where   Xi, i = 1. . , n is descriptors vector and Yi is either the activity of 

interest or the corresponding label [151].  

Ma et al [152] proposed nonlinear regression random forest model and multiple linear 

regression to examine the Single nucleotide polymorphisms, frequently called (SNPs) and the 

alteration in HbF level afterward 2 years of medication with the response of hydroxyurea. The 

study recruited 137 SCD patients who take hydroxyurea dosage daily. Random forest involved 

a number of trees; all the decision trees refer to regression function. This model shows 

significant outcomes in terms of HbF concentration for the vast majority with sickle cell 

anaemia patients.  

4.2.4 Adaptive Boosting 

Boosting is a fairly simple variation on bagging that attempts to improve the learners by 

focusing on areas where the classifiers are not performing well [153]. In order to build a model 

with high discriminating performance and accuracy, this technique is ensemble-training 

classifiers that has the ability to combine weak learners with low discriminating performance. 
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Furthermore, boosting usually achieves good discrimination through classifier’s training to 

produce correct classification form. Unlike Random Forests, boosting produces trees whose 

structure is based on the trees that have grown previously. Therefore, boosting is likely to 

overfit during the training sets process. On the other hand, RF employ randomness in the 

creation of the trees, in the purpose of avoiding overfitting to the training sets. In the view of 

this, an enormous number of decision trees have to be constructed to attain high generality 

[154].    

Boosting performs by combining models together using a specific cost function called majority 

vote. On the other hand, it is different from bagging, in that standard boosting is based on the 

performance of the old models. This means each new subset involves the elements that 

misclassified by previous models 

4.2.5 K-Nearest Neighbour Algorithm (KNN) 

K-Nearest Neighbour Algorithm (KNN) is considered one type of machine learning that have 

been  used in many domains, such as machine learning, statistical pattern recognition, data 

mining, and many  others [155]. It follows a way of classifying features based on closest 

training samples in the attributes space. To demonstrate a KNN analysis, the procedure of 

classifying a new value (query point) among known samples is shown in Figure 4.3, which 

shows the instances with the green and yellow signs and the query point with a black circle 

[156]. Our aim is to classify the output of the query point dependent on a nominated number of 

its nearest neighbours. Specifically, it needs to check whether the query point is classified as a 

green or a yellow sign. The main advantages of applying this technique in this research is the 

ability to classify a new object based on the training samples. Moreover, KNN can be 

implemented when there is no prior knowledge about the distribution of the data [157]. 

 KNN is a model that is easy to understand, but works exceptionally well in the training model 

and testing model [158]. This model applies for regressing and classification, which is used in 

pattern recognition and statistical estimation as a non-parametric technique. The purpose of 

using this classifier is to predict new instances from the split datasets. The fundamental idea of 

this algorithm has two significant processes: Firstly, find the nearest k instances to the unseen 

data. Secondly, it classifies the datasets by taking the majority vote of its neighbours, If K = 1, 

then the case is simply assigned to the class of its nearest neighbour [159].   

http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf
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Figure 4-3: K-nearest neighbour algorithm (KNN) example 

The test sample in Figure 4.3 is black circle, which classified into the green circle or the yellow 

triangle. If K = 5, it is assigned to the yellow classes due to containing 3 triangles and 2 green 

circles inside the green line circle. If K= 7, it is assigned to the green circles. Algorithm 4.3 

illustrates the learning approach of K-Nearest neighbour’s algorithm. [160]. 

 The KNN works as follows. Firstly, check the parameter K, the total number of nearest 

Neighbours (NN). Then, the distance needs to measure between the query-feature and the 

training instances. In order to find the measurement distances for the training instances, the NN 

method of KNN minimum distance is confirmed. Typically, a large K value is considered more 

precise as it decreases the overall noise based on the datasets. The best K value in this case 

should be between 3 and 10, which provides outstanding outcomes than 1 K.  
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Algorithm 4.3: K-Nearest neighbour’s algorithm (learning approach)  

1 Input: 

2 𝑆 =  {(𝑥𝑖, 𝑡𝑖)}| 𝑥𝑖 ∈  𝑅𝑚, 𝑡𝑖 ∈  𝑁 , 𝑖 ∈  {1,2,3,4. . . , 𝑛} – the set of n training instances and class labels; 

3 

4 

5 

6 

𝑍 =  {𝑧𝑖 | 𝑧𝑖 ∈  𝑅𝑚, 𝑖 ∈  {1,2, . . . , 𝑙}} – the set of l belongs to the test instances; 

𝐾 – the total number of nearest neighbours; 

∆ − A distance measures model; 

𝒞 − A classification approach; 

7 Initialization: 

8 𝑌 ⟵ 𝜃; 

9 

10 

 

Computation: 

For 𝑧𝑖 ∈ 𝑍 𝑑𝑜 

(a) 𝑁 ← the nearest refers to 𝑘 neighbors to 𝑧𝑖   from S according to ∆; 

(b) 𝑓 ← the discriminant procedure of  𝒞 trained on element 𝑁; 

(c) 𝑌 ←  the class label predicted by employing f on 𝑧𝑖  ; 

(d) Y   ← 𝑌 ∪ {𝑦}; 

Output: 

11 Y = { 𝑦𝑖 ∈ 𝑁, 𝑖 ∈ {1,2, … , 𝑙}} − the test samples in 𝑍 with the set of predicted class lables.  

There are two types of metrics commonly used in the KNN, the Euclidean and the Minkowski's 

distances. These metrics improve the accuracy of KNN using specialised models, for instance, 

neighbourhood components analysis or large Margin Nearest Neighbour [161].  One of the 

main disadvantages of KNN is the complexity in searching the nearest neighbours for each 

sample.  

𝑑(𝑥, 𝑦) =  √ (𝑥1 − 𝑦1)2 … + (𝑥𝑛 − 𝑦𝑛)2   

(4.8) 

√∑(𝑥2 − 𝑦2)2

𝑛

𝑖=1

 

Therefore, d refers to the Euclidean distance, 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑗 represents the element of x and y as 

shown in Equation (4.8). In the case of categorical variables, typically use the hamming 

distance. It brings up the issue of standardisation of the numerical variables between (0,1) when 

there is a mixture of categorical and numerical variables in the datasets [162]. Then, the 

distance is zero when 𝑥 and 𝑦 are same. Alternatively, if 𝑥 and 𝑦 are not same, so, the distance 

is equal to one. Suppose, (𝑥, 𝑦) , ( male, male) so the distance is zero.  (𝑥, 𝑦) , ( male, female), 

so, the distance is one. Equation (4.9) illustrates the hammer distance measurement [163]. 
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𝐷𝐻 =  ∑|𝑥𝑖 − 𝑦𝑖|

𝐾

𝑖=1

 

(4.9) 
𝑥 = 𝑦 → 𝐷 = 0 

𝑥 ≠ 𝑦 → 𝐷 = 1 

KNN has applied for diagnosing Sickle Cell Retinopathy (SCR). Minhaj et al[164] proposed 

an automatic method to explore classification of SCR through illustrating attributes in optical 

coherence tomography angiography (OCTA) images. They used 35 images from sickle cell 

patients (23 females and 12 males) and 14 control subjects (3 female and 11 males). The 

average age was 40 years between 20s and 60s for the patients and 20s to 70s for the control 

subjects. The OCTA images were analysed based on eyes images, so the datasets involved 35 

SCD and 14 control eyes. Vascular tortuosity, blood vessel density, foveal avascular zone (FAZ) 

area, vessel perimeter index, diameter, contour irregularity of FAZ, and parafoveal avascular 

density as feature vectors were calculated. There were three algorithms - support vector 

machine, discriminant analysis, and KNN - used as a classification technique to classify the 

datasets. For the control subjects, the training sets received (50%) from the total images and 

(50%) for the testing phase. On the other hand, (mild vs. severe) among SCR patients, 95% 

were used to train the classifier and 5% data used for testing the classifier. The performance 

evaluation for the classification method used performance evaluation measurement features to 

examine the algorithms. The outcomes among all three classifiers show that KNN provides 

acceptable results in terms of performance and accuracy.   

Sharma et al [165] proposed a new technique involving several features, radial signature, aspect 

ratio, metric value, and its variance, then training the datasets using the KNN model to test the 

selected images. The classifier comprises four classes. The first class trained images for Sickle 

cells; the second class is concentrated on Dacrocytes (teardrop cells); the third class worked 

with Ovalocytes and the four class is Normal Erythrocytes. KNN is trained with hundred 

patient’s images to predict three different kinds of sickle cell disorder, dacrocytes, and 

elliptocytes related to thalassemia. The acceptable outcome was provided with an accuracy of 

80% and sensitivity of 87%. 

KNN does not require using the training sets to apply any generalisation. Lack of generalisation 

leads this technique to keep all the training datasets.  This means, there is no explicit training 

set needed. Moreover, the vast majority of the training samples are required during the testing 

sets. This approach is considered as a lazy algorithm, which creates a decision depending on 
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the entire training dataset. Finally, KNN performs poorly in classification due to the parameters 

not contributing equally by using the Euclidean distance method.  

4.3 Support Vector Machines (SVM) 

Support vector machines (SVM) is considered supervised learning that ability to analyse 

datasets, utilised for regression and classification task [166]. SVM is class of models that 

minimise misclassification through a training phase, known as maximum margin point [167]. 

This model was established by Cortes and Vapnik [168]. Given a training datasets containing 

an input and output, input belongs to the sample features (𝑥1, 𝑥2, 𝑥3,…, 𝑥𝑛)  and the output result 

(classes) {(𝑦1,𝑦2,𝑦3, … , 𝑦𝑁), (𝑥𝑁, 𝑦𝑁)}  where 𝑥𝑖 ∈ 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 and 𝑦𝑖 ∈ {𝑐𝑙𝑎𝑠𝑠 −

1, 𝑐𝑙𝑎𝑠𝑠 + 1}. This model can solves the following optimization issue in equation (4.10) [169]. 

There are a set of weight 𝑤𝑖 or (𝑤), in order to predicts the correct value of (𝑦).  The proposed 

research utilise the optimisation of maximizing the margin to decrease the total number of 

weight and to determine the hyperplane.  

Figure 4.4 illustrates an example of a group of instances, with using optimal separating 

hyperplane in the purpose of maximum margin. The hyperplane usually needs to draw in the 

midway between the two margins. The SVM models require learning where the optimal 

hyperplane can be fitted. The margin is the distance between the hyperplane and the closest 

vectors that near hyperplane [170]. The main aims of maximising the margin are to minimise 

the probability between points of different classes that unclassified or unseen points may drop 

on the wrong side [171]. The first hyperplane (H1) work is the best one among others, which 

is able to separate them with the maximum margin. This mean, the margin is higher in case of 

the blue line𝐻1 > 𝐻2 & 𝐻3. The second hyperplane (H2) is capable to separate point, but with 

a small margin. The last hyperplanes (H3) does not able to separate the data samples. 

𝑓(𝑥) = 𝑤𝑇 𝑥𝑖 + 𝑏 

(4.10) 

𝑓(𝑥) = ∑ 𝜆𝑖𝑦𝑖(

𝑖

𝑥𝑖
   𝑇 𝑥 + 𝑏 

𝑓(𝑥)  ≥ 1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 1 

𝑓(𝑥)  ≤ −1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 2 

𝐻 =  
|𝑔(𝑥)|

∥𝑤∥
 = 

1

∥𝑤∥
 

𝑤𝑇 𝑟efers to the vector weight, while 𝑓(𝑥) represents the features sets of both classes, 𝜆𝑖 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Statistical_classification
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belongs to the dual function returned after training, 𝑥  is the training datasets, 𝑦  is the classes 

(output), 𝑏 bias belongs to omega 0. As shown in the equation 4.10, any vector with values 

greater than 1, separate to the blue circle. In addition, it needs to scale the hyperplane so that it 

provides values smaller than -1 for all values, which belongs to class number 2 (green circle) 

 

Figure 4-4: SVM linearly separable set of two classes 

Classifying medical datasets is considered a typical procedure in machine learning algorithms 

such as SVM. In this model, a dataset is shown as a p-dimensional vector in order to create a 

model that is able to separate such points with a (p − 1) dimensional hyperplane [172]. A 

number of hyperplanes can apply to separate the datasets into group sets. The main function of 

applying the hyperplane is to deal with the largest margin, or separation, between the two sets 

or more multi-class label. In this regard, select the hyperplane to maximize the distance from 

the nearest data point on each side.  

The main target is to maximize the margin as much as possible so that can obtain the correct 

classifications as shown in Equation 4.11 [170]. Among all potential hyperplanes matching the 

constraints, select the hyperplane with the smallest w due to having the biggest margin. 

Minimize in (𝑤, 𝑏) 

(4.11) 

∥w∥ 

 
  𝑤∈𝑅𝑑,𝜉𝑖 ∈ 𝑅+

𝑚𝑖𝑛  ||𝑤||2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖

 

                  Subject To                                                                                                                           

𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0, 𝑖 = 1 … , 𝑛. 

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Hyperplane
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In order to deal with margin solution, every constraint can be fulfilled, when 𝜉𝑖 is large. 𝐶 

Belongs to a regularisation parameter. Small 𝐶 permits constraints to be ignored (large margin), 

while large 𝐶 makes constraints difficult to be ignored (narrow margin).  

The SVM creates a linear separating hyperplane to separate binary classes. In this context, this 

model achieves by maximizing the margin between observations with high dimensional space, 

𝜉𝑖 represents the error and C > 0 is the regularization parameter. Finding the support vectors is 

made possible using the large multipliers allowing Equation 4.12 [173] to be rewritten into its 

dual form, to account for the possible high dimensionality of w.  

𝑤 = ∑ 𝜆𝑖𝑦𝑖𝑥′𝑖

𝑁

𝑖=0

 

(4.12) 

After obtaining the Lagrange multipliers, Equation 4.13 illustrates the classification of new 

samples is given by: 

𝑤 = ∑ 𝜆𝑖𝑦𝑖 = 0

𝑁

𝑖=0

 (4.13) 

The standard mechanism of this classifier is the utilisation of a hyperplane that performs a 

discriminative boundary of data points in association with classes. In addition, kernel allows 

such a separation to enhance during a feature space of higher dimension permitting the non-

linear boundaries method. Using the kernel function (K) in equation, it can solve the 

optimisation problem for dual Lagrangian [174]. Figure 4.5 shows the optimization process in 

the SVM model [18].  

𝐿𝐷(𝛼) =  ∑ 𝛼𝑖 −  ∑ ∑ 𝛼𝑖  𝛼𝑗

𝑙

𝑗=1

𝑙

𝑖=1

𝑦𝑖 𝑦𝑗  𝐾(𝑥𝑖, 𝑥𝑗

𝑙

𝑖=1

) (4.14) 

𝐿𝐷 required to be maximised subject to solving the issue with constraints in equation 4.14, αi ≥ 

0; i = 1. . . l, 𝑙 belongs to Lagrange multipliers.  

𝑠𝑔𝑛(𝑤𝑇∅(𝑥) + 𝑏) =  𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖−1

 (4.15) 

In order to use a suitable kernel trick, the model can learn without explicitly computing∅(𝑥). 

This technique attempts to apply linear classifiers work into a nonlinear setting. As mentioned 

previously, the separation hyperplane is carried by solving an optimization problem that selects 

the support vector and paralyzed points on the wrong side of the resulting hyperplane. The 
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penalty parameter C is the critical tuning parameter for constructing a robust model that 

generalizes well. The selected kernel and associated parameters have significant effect on how 

well the resulting model properly classifies the data. 

 

Figure 4-5: SVM parameters with optimization 

This method is demonstrated to be useful and effective for several medical datasets 

classification [175-177]. The drawback of SVM is the learning process is a bit slow and not 

easy to implement, particularly with polynomial kernels.  
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4.4  Artificial Neural Network  

Artificial Neural networks (ANN) are considered a form of biologically inspired algorithm 

(BIA), based on the constellations of connected elements observed in the biological brain, 

namely networks of specialised cells called neurons [178]. ANN are purely inspired software 

programs that were designed in order to simulate the way that the human brain processes any 

type of information. ANN attempts to model actual systems depending on the information 

provided to it. This kind of machine learning involves hundreds of single unit artificial neurons 

and is considered a powerful computational and mathematical data model that is cable of 

representing complex input and output connections. The main motivation behind developing 

an artificial neural network is the capacity to perform intelligent tasks, which are performed in 

a manner similar to the operation of the human brain. Furthermore, the power of ANN comes 

from connecting the neurons in one particular network that have ability to represent non-linear 

and linear relationships. 

Artificial neural networks for computational modelling need a number of neurons so that they 

can be connected together to form a network. In this context, neurons are organised in layers 

and have processing units, which takes one or more inputs to generate an output. In this case, 

at each neuron all inputs have to be connected with a weight that modifies the strength of each 

input. As a result, neurons is simply collected all the inputs together to calculate an output as 

illustrated in Figure 4.6. The weights in each ANN are trained using different types of learning 

algorithm, for example supervised and unsupervised learning. Therefore, this can be achieved 

through a procedure called a training algorithm. The training set is utilised during learning to 

stimulate the learning algorithm, such that the desired outputs are produced, given the input 

values. The network promotes the most important features within the training process and 

learning algorithms are utilised to update the weights of the ANN using mathematical 

equations. As shown in Figure 4.6, have an input [ 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚], and the output layer is [ 

𝑦1, 𝑦2, 𝑦3, … , 𝑥𝑚] and most importantly the weight scale are represented as 𝑤𝑖𝑗, while b 

represents the bias.  
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Figure 4-6: Typical ANN model 

As illustrated in Figure 4.6, the activation function through summation computes the input 

multiplied by the weight.  In the threshold box, it shows the relationship between input and 

outputs. If that happens, it proceeds to the output (𝑍).  In these biological models, it builds 

neural networks out of the summation of inputs, weights, and thresholds. Therefore, it needs to 

adjust the weights and thresholds so that can obtain the desired outputs. The main backbone of 

using weights is to check the output if it is too high, then the weights should be lowered by a 

certain amount to be fit the output for the entire input instance. On other hand, if the predicated 

output is too low, then the weights need to be incremented by the set amount. The hidden layer 

learns to provide a representation for the inputs. The process of constructing such an 

architecture is referred to as learning in ANN [179]. 

4.4.1 Feed-forward Neural Network (FFNN) 

Feed-forward Neural Network (FFNN) is used widely to solve the prediction and classifications 

problems [180, 181]. In FFNN, all the information from the input is moved down through the 

hidden layer, while considering the weight and thresholds for each input, until it reaches the 

output layer. It is one of the most popular types of NN utilized currently when designing ANN 

architectures. 

In the FFNN structure, the neurons are typically gathered into a number of layers [182], the 

first layer represents the inputs, while the last layer represents the output. The remaining layers 

represents the hidden section. The hidden layer offers NN extra learning abilities to learn from 

patterns that can be found in the training set. There are two important kinds of FFNN. The first 

is called single layer neural network[183, 184]. In this architecture of neural network, all the 
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inputs in the first layer are connected directly to the outputs without using the hidden layer, 

frequently called a perceptron. But the perceptron does have benefits over decision trees, 

therefore, the single-layered perceptron can handle the XOR function [185]. With this regard, 

it is important to raise the number of layers in the network and use non-linear activation 

functions. It can handle classes that are able to be separated on a 𝑥/𝑦 graph with a binary output 

and linearly separable. 

Another type of FFNN comprises the integration of a number of perceptron’s to produce a 

nonlinear decision boundary. The model contains one or more hidden layers. The target values 

(output) are associated with the correct answer to compute the predefined error-function of 

some values. This error is required to transfer back through the complete network [185]. In 

order to reduce the error, the model adjusts the weight with each iteration and the neural 

architecture can be closer to producing the desired output. The approach itself utilises the error 

back-propagation technique and is widely used by several researchers, which is considered a 

simple and effective method [171]. Error correction procedure is implemented by backward 

pass or forward pass. Figure 4.7 shows the architecture of this network. 

 

Figure 4-7: Feed-forward Neural Network 

The figure illustrates a sample architecture for approximating a classification function that is 

able to deal with an input vector to multi class.  The network comprises of Ns number of layers. 

Firstly, the inputs are passed to the input units in the input layer. Then, the output units that 

come from inputs units are passed to the hidden layer until they arrive at the last layer units. 

The back-propagation algorithm is one of the most used approaches as mentioned previously. 

In this scenario, the error estimation is equal to the difference between expected and actual 
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outcomes based on the lower layers. Moreover, this technique is affected by a number of 

learning algorithm issues, for instance over-fitting [186]. Therefore, the selection of accurate 

numbers of hidden neurons and hidden layers for the required task is challenging. The selection 

is highly significant for these parameters to enhance the performance of ANN. 

4.4.2 The Voted Perceptron Classifier 

The voted perceptron classifier is dependent on the perceptron model that was proposed by 

Rosenblatt and Frank. These classifiers are trained with a supervised learning algorithm and 

are moderately similar to Perceptron Linear. It provides better performance based on theoretical 

analysis for the medical data classification and predictions [187].  The main benefit of applying 

this technique is to extract the information from the data that is linearly separable based on 

large margins. The algorithm is much simpler and efficient with regard to computation time 

compared with SVM, using different types of kernel function in terms of obtaining high 

dimensional spaces. The training process implements many full sweeps by the training data. In 

this model, the classifications are performed for a new objective by permitting the ensemble of 

perceptrons to make vote in the NN on the label of each test point [92]. Sassano et.al [188] 

found  VPC  to be a strong alternative and quite similar to SVM in the classification task. 

Algorithm 4.4 illustrates the procedure of voted perceptron Algorithm [189]. 

 

Algorithm 4.4: voted perceptron classifier  

 

Input: 

Select a number of training set from the datasets {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} . number of epochs: T 

Output: 

A number of weighted perceptron {(𝑣1, 𝑐1), … , (𝑣𝑘, 𝑐𝑘)}   
Initialization:   

      K: = 0 

Repeat T times: 

-  For i =1,.m:  

Compute prediction: ŷ: = sign (𝑣𝑘, 𝑥𝑖)  
If ŷ= y then 𝑐𝑘: =  𝑐𝑘 + 1. 
else 𝑣𝑘+1 := 𝑣𝑘 + 𝑦𝑖𝑥𝑖; 

           𝑐𝑘+1: = 1; 

            𝑘 ≔ 𝑘 + 1 

Predictions:    w =  ∑ 𝑐𝑖𝒌
𝒊=𝟏   sign (𝑣𝑖  . 𝑥);  ŷ ∶= 𝑠𝑖𝑔𝑛(𝑤). 

 

In VPC, a number of observations O can be presented, where each observation involves (x, y), 

and x ∈ Rᵑ is a vector in a given ᶇ-dimensional vector space and y is associated with the class. 

Suppose, the observation classes have two values, 1 or -1. In this case, the classifier attempts 

to utilise the perceptron approach by starting initially, v = 0 as prediction vector, where the first 

http://curtis.ml.cmu.edu/w/courses/index.php/Paper:Rosenblatt,_Frank_(1957)
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observation instance is expected to be formulated  𝑥1  with 𝑄 = 𝑠𝑖𝑔𝑛(𝑣𝑥1). In case this, the 

prediction is completely different from class label 𝑦1, this leads to updates of the prediction 

vector values using 𝑣 = 𝑣 +   𝑦𝑖 𝑥i. On the other hand, if the prediction shown is correct, this 

task does not require changing the value v. it constructs on the iterative perceptron approach 

instead of solving quadratic programming issues [153]. 

4.4.3 Back-propagation Trained Feed-forward Neural Network Classifier  

The back-propagation trained feed-forward neural network classifier (BPXNC) is an effective 

and simple algorithm, which called also the feed forward back propagation neural network. 

Furthermore, this method involves three important layers; input layer, hidden layer, and output 

layers [190]. In this scenario, the target and actual values are calculated and compared. The 

main idea is to update the weight values of each node [191]. That is why it is called backward 

learning or pass this process carries on working until the error is acceptable. Figure 4.10 depicts 

the complete learning process of a neural network [192].  

 

Figure 4-8:  Learning process of BNNP 

This approach applied for training, validating and testing the datasets that does not require any 

type of modification regarding weight matrices. The input layer obtains the test data then 
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proceeds to the feed forward neural network to produces the outcomes based on the trained 

network [193].  

4.5 Ensemble Classifier  

The machine learning approach is considered as a field of science aiming specifically to extract 

knowledge from datasets. This study concentrate on enhancing sophisticated machine learning 

approaches, for the purpose of solving supervised learning problems. It is important to present 

a new technique by combining more than two classifiers to improve robustness and produce 

better classification performance as well as accuracy from any of the constituent algorithms. 

The success of the combined classifier was based on the diversity in the single classifiers in 

terms of misclassified instances [194]. In order to achieve a better accuracy and performance 

in the ensemble classifier, there are 4 significant steps needing  to be considered [18, 195]. The 

first step is to utilise different training instances to train the single classifiers. Secondly, it is 

important to use different training parameters while tuning the classifiers. Thirdly, using 

different features to train the selected classifier, then the final process is to combine the selected 

classifiers. Dietterich reported that, the training data do not always offer enough information 

for choosing a single classifier, the learning processes of a single classifier might be imperfect, 

and lastly the hypothesis space being examined may not involve the correct target function 

while a combined classifier can deliver a better approximation [18, 196]. There are three 

significant steps to produce an ensemble learning technique, regardless of the kind of the 

procedure. 

• Ensemble Generation: this phase is used to create a number of samples, each of which 

constructs a classifier utilising a single learning model.  

• Ensemble Pruning: eliminates some of the classifiers that have been created in the 

beginning (first step). The aim is to decrease the total size of the tree without affecting 

the accuracy or performance.  

• Ensemble Integration: in order to predict any new cases, this method uses a voting or 

averaging strategy to combine the models.  

As mentioned previously, Ensemble learning method is a procedure that utilises a set of 

models, each of them gained by employing a learning process to a given problem [197]. This 

ensemble is combined in some way to acquire the final classification or prediction outcomes. 

Homogenous and heterogeneous are two the main categories in ensemble learning approaches. 

The Homogenous frequently selects the same base-learning algorithm on different 
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distributions, whereas heterogeneous uses various multiple learning models. Learning 

algorithms in both categories aim to improve the performance of a model by reducing the 

variance and the bias of the dataset. Hence, an ensemble can be used to solve both classification 

and regression tasks [11]. In order to overcome the problems related with classifiers that 

provide a weak prediction, the ensemble method established to increase the classification or 

prediction outcomes. It is also to construct a robust model. Gaber et al. [15] proposed an 

ensemble classifier using Genetic Algorithm based RFC (GARF). They used the genetic 

algorithms to improve the accuracy and the performance of RF. In order to test the model with 

single classifiers, they used decision tree, SVM, and AdaBoost. The results indicated that 

GARF has always outperformed the original random forests and single classifiers within all 

the datasets that used for that experiment. This study used different ensemble classifier 

approaches to test the SCD datasets against single classifiers.  

4.6 Evaluation Metrics Techniques  

In machine learning algorithms, the performance evaluation metrics are important to use to 

estimate the performance and accuracy for the single classifiers and ensemble classifier. With 

this regard, a number of techniques that used in our simulation experiment as discussed in the 

following sections.  There are a number of researchers suggested the utilising accuracy and 

false positive rate for estimating the error rate classification, but other studies proposed by 

Davis et al [198]   and   Kotsiantis [199]  recommended that false positive and accuracy are not 

sufficient and the outcomes can be inaccurate. They suggested using ROC, AUC, precision, 

recall, accuracy as a better classification performance evaluation metrics [200].   

4.6.1 Confusion Matrix  

 The evaluation technique conducted using a confusion matrix (also known as a contingency 

table). Figure 4.11 illustrates the confusion matrix. There are four donates that are located in 

the contingency table. True Negative (TN) and True Positive (TP) donates are considered one 

of the most accurate classifications of the negative instance and the accurate classification of 

positive instance respectively. In addition, False Negatives (FN) illustrate the positive instance, 

which is incorrectly classified in terms of negative type, whereas False Positives (FP) show 

negative symbols, which is incorrectly classified in association with positive type. Table 4.2 

explains in equations how the performance evaluation measurements calculated.  
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Table 4-2: Performance metric calculations 

Metric Name Calculation 

Sensitivity 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

Specificity 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

Precision 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

F1 Score 2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

Youden's J statistic (J Score) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 −  1 

Accuracy (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃) 

Area Under ROC Curve (AUC) 0 <=  𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒 <=  1 

ROC sensitivity vs (1 − specificity) 

Based on the confusion matrix, there are a number of measurements that can be acquired to 

examine the model performance in terms of accuracy (also known as producer's accuracy) this 

can be determined using the formula (4.21) below. 

AC= 
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃)+(𝐹𝑁+𝑇𝑁)
 (4.21) 

The main purpose of applying equation (4.22) is to evaluate the proportion of positive instances 

that were correct. 

TP = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (4.22) 

The FP was classified incorrectly can be obtained from the following equation that illustrated 

in (4.23). 

FP = 
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
 (4.23) 

 In order to classify the TN that were classified correctly, equation (4.24) were conducted. 

TN = 
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
         (4.24) 

The FN belongs positives instances were incorrectly classified. The following formula (4.25) 

illustrates how datasets calculated. 

FN = 
𝐹𝑁

(𝐹𝑁+𝑇𝑃)
 (4.25) 
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To evaluate the accuracy, it is typical practice to utilise a confusion matrix. In this case, the 

confusion matrix mainly depends on the selection of datasets. Our motivation behind applying 

a contingency table is to improve the accuracy and performance of benchmark datasets.  

4.7 Chapter Summary 

This chapter provides extensive details about machine learning algorithms that used in our study. 

This chapter divided into two groups – others related to machine learning that was not inspired 

through the biological procedure of the human brain. The machine learning approaches 

discussed and involved a demonstration on SVMs, Random Forests and VPC with their 

algorithm’s steps. On the other hand, several ANN architectures discussed in depth in this 

section and the merits of each of the approaches outlined. The computational and mathematical 

techniques elaborated in detail for each model to provide a clear idea about the procedure of the 

algorithm itself. This chapter also presented a combination of models so that could provide 

better outcomes, which indicated in the literature review chapter. In the next chapter, the 

proposed methodology and experimental setup for the modelling environment and datasets pre-

processing is presented. 
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Chapter 5 Proposed Methodology 

5.1 Introduction 

This chapter discusses the proposed framework and the design of the experimental set-up to 

solve some of the issues identified in the literature review chapter relating to the SCD. There 

are a number of studies into applying artificial intelligence systems, for instance machine 

learning models and information technology (IT) which are listed in chapter two. In the 

literature, a few researchers have addressed the problem of classification of related to the SCD.  

However, the main purpose of this chapter is to build on those contributions to enhance the 

outcomes by generating a novel framework that not applied yet. In particular, the proposed 

framework and experimental set-up used to point out applying various algorithms. This also 

contains further details on the process of pre-processed used data, feature selection, 

classification techniques, combined classifiers and evaluation approaches to check the overall 

performance and accuracy of our simulation experiment. It discusses the real SCD dataset that 

were collected from the hospital, which involves the raw blood test features necessary for our 

study.  

This chapter also describe how datasets from old diagnosis attempts used to develop current 

approaches or design new ones by combining classifiers that generate as few errors as possible. 

In spite of the dataset utilised in this empirical study is collected from Alder Hey Children 

Hospital in the city of Liverpool, UK, and as such is not representative of the whole population 

around the globe, it can be used by healthcare professionals to provide accurate treatment for 

each patient at an early stage. The datasets comprise blood test examination sheet information, 

which the NHS Health uses to keep patient information.  Principally, each community resident, 

who is affected with SCD, aged 6 months and above needs to have a blood test within one or 

two months. Using a number of well-known machine learning approaches RFC, KNN, SVM, 

NN models as strong learners, and using LNN and ROM as baseline weak classifiers, first 

trained these models on the same dataset and used the testing sets to rank them according to 

their accuracy and performance. In the clinical domain, it is important to obtain outcomes with 

a low error rate. In order to enhance the accuracy, this research applied the stacked 

generalization, which comprises learning ensemble classifiers of a specified dataset to combine 
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more than one algorithm. This study compared these models to evaluate whether ensemble 

classifiers obtained better outcomes than the single classifier; and then to examine the 

combination that produced the better accuracy. The following sections will discuss description 

of the proposed methodological framework and implementation techniques to SCD modifying 

therapy.  

5.2 The Proposed Methodology  

Machine learning algorithms appeared to be the optimal approach of choice, as they have been 

featured in many studies, but the model has the disadvantage that it is complex and possesses 

a nondeterministic polynomial time to solve [201, 202]. The selection of a suitable classifier 

still involves trial-and-error processes, however statistical validation can be used to guide that 

process [202, 203]. The classification models can also be highly unstable, depending on the 

selection of initial weights, the timing of training termination, and the order in which the data 

is presented to the model. In general, the proposed model is divided into two categories: single 

base learning algorithms and ensemble learning algorithms.  

The design part involves building the proposed model to achieve the requirements for the 

prototype. The motivation behind doing this method is to evaluate the efficiency and 

effectiveness of using advanced machine learning algorithms techniques on SCD datasets, to 

predict the amount of medication for patients based on their condition. In order to carry out our 

experiments using the SCD dataset, Figure 5.1 illustrates the proposed framework architecture 

of our research. These phases involved raw data, pre-processing, structured data, which 

contains dimensionality (feature extraction), split datasets through building models from 

training, validation and testing sets, select the suitable model, validation, and presents the 

outcomes.  



70 | P a g e  

 

 

Figure 5-1: The proposed methodology framework 

The key feature of learning-based classifiers is their capability to adjust the internal structure 

depending on input and respective target value (desired output). This scenario  approximates the 

relations implicit in the delivered training data, therefore sophisticatedly simulating a reasoning 

task [204]. Currently there is no standardisation of disease modifying therapy management. 

Using the proposed computerised comprehensive management system, the aim is to produce an 

optimised and reproducible standard of care in different clinical settings across the UK and 

indeed internationally. Table 5.1 indicates the main parameters and models that are used in our 

simulation experiment study.  
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Table 5-1:  List of parameters used in the proposed framework data analysis 

No Type Number  Description 

1 Data instances 1896 Data were collected from the local hospital as real-life datasets 

2 Class Variables 9 Multi class datasets. Class 1: [target 1 (250 mg)], Class 2: [target 2 

(300 mg)], Class 3: [target 3 (500 mg)] Class 4: [target 4 (600 mg)], 

Class 5: [target 5 (700 mg)], Class 6: [target 6 (700 mg)] Class 7: 

[target 7 (1000 mg)], Class 8: [target 8 (1200 mg)], Class 9: [target 9 

(1500 mg)] 

3 Features 

(Attributes) 

14  Haemoglobin (Hb), Platelets (PLTS), Mean corpuscular 

volume (MCV), neutrophils (white blood cell NEUT), Reticulocyte 

Count (RETIC), Reticulocyte Count (RETIC F), Hb F, 

Bilirubin (BILI), Alanine aminotransferase (ALT), an aspartate 

aminotransferase (AST), Lactate dehydrogenase (LDH), Weight, 

Bio, and Mg/Kg.  

4 Evaluation Metrics 

of classification 

models  

6 Sensitivity, Specificity, Precision, F1 Score, Accuracy, and 

Youden's J statistic (J Score) values.  

5 Visualization 

Techniques  

5 Receiver operating characteristics (ROC) curve, the Area Under the 

Curve (AUC), Principal Component Analysis (PCA) and t-

distributed Stochastic Neighbourhood Embedding (tSNE). 

6 Machine Learning 

Algorithms  

7 The Levenberg-Marquardt algorithm (LEVNN), The voted 

perceptron classifier(VPC), Random Forest classifier, The Radial 

basis neural Network Classifiers (RBNC), back-propagation trained 

feed-forward neural network classifier (BPXNC), k-nearest 

neighbours algorithm(KNN), and Support vector Machine(SVM) 

7 Baseline 

Classifiers 

2 Linear Neural Network (LNN) and Random Oracle Model (ROM). 

7 Ensemble 

Classifier 

7 (LEVNN Combination, NN Combination, NN models with RFC, 

and using KNN with different number of K (KNNs Combination, 

KNNH1, KNNH2, KNNH3).  

The main backbone of this project is to use recent advances in machine learning models, a type 

of machine learning algorithm, in order to assist the healthcare professionals in offering support 

for each individual patient according to their condition. This can potentially lower costs, 

avoiding unnecessary admission to hospital or special institutions improve patient welfare and 

mitigate patient illness before it gets difficult over time, particularly with elderly people. The 
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remainder of the chapter will discuss each of these processes in more depth within the proposed 

framework procedure. 

5.3 Raw Data Preparation Process 

In order to achieve such optimal results, the datasets need to be in more disciplined and 

consistent. The two significant steps require to be followed so that the datasets can be fully ready 

for machine learning models:  

5.3.1 The Descriptions of Raw Data  

The datasets used for this study were collected by the hospital during the period of 6 years. Table 

5.2 shows the datasets destination and the total number of records that managed to gather for 

our experiments from the hospital side. In order to work with a large amount of data, the local 

hospital has supported this research with a number of patients’ records. The dataset comprises 

1896 sample points, with a single target variable describing the hydroxyurea/hydroxycarbamide 

medication dosage in milligrams. The large number of datasets were collected in order to use it 

with the machine-learning algorithm. To facilitate our classification study, the target dosage 

discretised by dividing the output range (in Milligrams) into 9 classes. Such a division conducted 

in order to provide adequate class representation over the data sample, while preserving some 

level of precision for the dosage outcome. The decision represents a trade-off, since our data 

sample was limited to 1896, thereby excluding the possibility of a reasonable division for nine 

classes. Table 5.2 elaborates a brief description of the SCD dataset.  

Table 5-2: Total number of classes used in our experiment 

No Classes Class Number Total Amount of Classes 

1 Class 1 250 127 

2 Class 2 300 153 

3 Class 3 500 313 

4 Class 4 600 93 

5 Class 5 700 154 

6 Class 6 750 266 

7 Class 7 1000 446 

8 Class 8 1200 196 

9 Class 9 1500 148 

In this scenario, Figure 5.2 demonstrates a histogram of the multi classes that indicates the total 

distribution is considerably skewed in favour of the SCD medication dosage with 9 classes. Our 

empirical study carried out with the research scope based on single datasets medical centre. 

Therefore, this dataset involves many data errors, which need cleaning due to some missing 



73 | P a g e  

 

values. This research concentrated on the multi-class problem due to the datasets containing 

more than two classes. 

 

Figure 5-2:  Number of classes 

5.3.2 Data Attributes 

It is vital to obtain high quality data, which is related to the blood test features. The dataset 

utilised in our experiments for SCD patients were commissioned for the purposes of this study 

and were collected within a 6 years period from the Alder Hey Children’s Hospital in the city 

of Liverpool, UK. Each sample comprises 14 attributes deemed vital factors for predicting the 

SCD trait as illustrated in Table 5.3.  
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Table 5-3: Attributes of SCD datasets 

No Types of attributes Description  Percentage  

1 Weight Weight of the patient.  Depends on age 

2 Haemoglobin(Hb) 

The Haemoglobin level in patient body. 

It is measured by in grams (gm) per 

deciliter (dL).  

Sickle cell (S-C): 10.8 + 1.8 (g/dl 

S-thalassemia: 9.6 ± 0.8 (g/dl) 

Normal children: 11.5-16.5 (g/dl) 

3 
Mean Corpuscular 

Volume (MCV) 

An MCV measures the average size of 

RBC, also called as erythrocytes. 

sickle-thalassemia :70.4 ± 7.6 Cu/ 

urine 

S-C disease: 75.4 ± 6.0 Cu/ urine 

Normal children: 11.5-16.5 Cu/ 

urine 

4 Platelets(PLTS) 

Platelets are tiny blood cells that assist 

our body to form clots to stop bleeding, 

when wounded. 

 Platelet count, 109/ L: 346 ± 530 

 

5 Neutrophils (NEUT) 

A type of immune cell help fight 

infection by killing the microorganisms. 

It belongs to the white blood cell.  

 

Neutrophils, 109/ L: 5.4 ± 11 

 

6 
Reticulocyte Count 

(RETIC A) 
measures how fast RBCs 

Sickle cell (S-C): 5.1% ± 2.2%  

S-thalassemia: 9.7% ± 3.7% 

Normal children:  0% - 2 % 

7 
Reticulocyte Count 

(RETIC %) 
measures how fast RBCs 

Sickle cell (S-C): 5.1% ± 2.2% 

S-thalassemia: 9.7% ± 3.7% 

Normal children:  0% - 2 % 

8 Hb F 
Main oxygen transport protein in the 

human fetus.  
7.9 % ± 13.7 % 

20 

Alanine 

aminotransferase 

(ALT) 

Checks for liver damage ALT: 24 ± 2.0 U/L 

10 Body Bio Blood (BIO) 
Dietary features that are produced from 

blood result 
Depends on body weight.  

11 Bilirubin (BILI) 

Measures the amount of bilirubin in 

blood. It helps doctor discover the cause 

of health conditions like , liver disease, 

and anaemia . 

BILI: 61.56 ± 10.26 μM 

12 
Lactate dehydrogenase 

(LDH) 

Estimates the amount of LDH in the 

blood. The aim is to identify the severity 

and location of tissue damage in the 

body, such as tissues, liver, and kidney.  

LDH: 487 ± 58 U/L 

13 

Aspartate 

Aminotransferase 

(AST) 

Checks for liver damage AST: 49 ± 23.0 U/L 

14 Starting dosage Amount of dosage  Mg/Kg: ± 15 

5.4 Exploratory Analysis of Datasets 

Exploratory analysis is an important step in the machine learning approach, allowing the human 

advisor to gain an intuition of the data and the potential learn ability of such data. The results 

from data exploration can be used to guide the modelling phase, since a major component of 

learn ability is known to be a function of the correspondence between the learning algorithm 

and the type of representation it is supplied with. To undertake an exploration of the utilised 

data in these experiments, it computed with summary statistics, followed by visualisation 

https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022040
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022046
https://www.webmd.com/a-to-z-guides/red-blood-cells
https://www.webmd.com/a-to-z-guides/red-blood-cells
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Transport_protein
https://en.wikipedia.org/wiki/Fetus
https://www.webmd.com/digestive-disorders/picture-of-the-liver
https://www.webmd.com/heart/anatomy-picture-of-blood
https://www.webmd.com/digestive-disorders/picture-of-the-liver
https://www.webmd.com/a-to-z-guides/understanding-anemia-basics
https://www.webmd.com/digestive-disorders/picture-of-the-liver
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methods including t-distributed Stochastic Neighbourhood Embedding (tSNE) and Principal 

Component Analysis (PCA). Results from the visualisation procedures reveal that some 

discernible structure is present within the data. The main exploratory analysis tools are 

discussed in the following sections.  

5.4.1 Scatter Method  

In order to undertake an exploration of the data used in our experiments, visualisation methods 

were utilised in our experiments comprising, Principal Component Analysis (PCA) as shown in 

Figures 5.3. Results from the exploratory procedures expose that some noticeable structure is 

present within the data. The PCA plot of SCD data shows that there are potential clusters of 

features present within the data, a discovery that is illustrated through the PCA figure, which 

shows that the data can be geometrically separated. Moreover, the exploratory analysis 

demonstrates no clear defects that could call into question the results of subsequent analysis.  

 

Figure 5-3: Principal component analysis  

Principal component analysis (PCA) is a well-known method  used with various  application 

domains, for instance feature extraction, data visualization, and dimensionality reduction [205, 

206]. It is essentially in association with linear projective attributes transformation method, 

which converts the higher dimensional onto a lower dimensional through by projecting to 

maximum variance. PCA can reduce the dimensionality of the data easily by discovering the 

orthogonal linear integrations from the original feature with the largest variance[207].  
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Given a sample of P observations on vector N variables to {𝑥1, … , 𝑥𝑝}  ∈  𝑅𝑁. For each 

observation, 𝑛  dimensional vector representing the 𝑛 features. The main purpose is to find the 

mapping form 𝑥 to, where 𝑧  is 𝑚 dimension. In order to identify the initial principal component 

of the sample by the linear transformation in Equation 5.1 [208, 209].  

𝑧′ =  𝑊𝑇𝑥𝑗 = ∑ 𝑤𝑖1𝑥𝑖𝑗

𝑁

𝑖=1

    𝑗 = 1,2,3, … , 𝑝.  

  

(5.1) 

Where the vector                 

𝑤1 = ( 𝑤11, 𝑤21 , 𝑤31, … , 𝑤𝑁1) 

𝑥𝑗 = ( 𝑥1𝑗 , 𝑥2𝑗  , 𝑥3𝑗 , … , 𝑤𝑁𝑗) 

Var [𝑧1] selected as maximum. 

So, it is required to choose the feature where the variance of 𝑧1 is maximum. The value of 𝑊𝑇 

for which projection that obtain correspondence to the largest variance of 𝑧1.  The principal 

component analysis is an effective process in terms of selecting a suitable number of features 

with accurate mapping dimensional space. In order to recover the original instances from the 

reduced presentation, the principal components are constructed error rate with minimum 

value[209].  

5.4.2 T-distributed Stochastic Neighbourhood Embedding (T-SNE) 

Prior to proceeding to data modelling, the data representation is explored to investigate if any 

regularities could be uncovered within its structure. Additionally, the exploratory phase is used 

as a means of exposing any outliers and other questionable artefacts in the data if such defects 

were present, such that the results of later analysis would not be invalidated due to unsound 

input. Exploratory analysis is an important step in the machine learning approach, allowing the 

human advisor to gain an intuition of the data and the potential learn ability of such data. The 

results from data exploration can be used to guide the modelling phase, since a major 

component of learn ability is known to be a function of the correspondence between the 

learning algorithm and the type of representation it is supplied with. 

 Figure 5.4 shows the SCD datasets with 9 class labels. This plot illustrates the class dispersion 

problem with different types of colour, where points from the 9 classes of SCD dataset are 

clustered. Ideally, the 9 classes are decomposed using a clustering technique; each cluster is 

able to determine a new class label for the testing set. This shows a real example using T-
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distributed Stochastic Neighbourhood Embedding (tSNE) of the class distribution problem: 

clusters with the same class points are spread across the variable values. In this case, the 

machine learning models specifically with RFC is trained on the original SCD dataset with the 

class labels. The main point behind using this t-SNE is to represent dimensionality reduction 

that is suitable to visualise our datasets with high dimensional. T-SNE scales depending on the 

total number of objects N, it is appropriate to a limited  number of datasets with a few thousand 

instances.  

 

Figure 5-4: T-distributed stochastic neighbourhood embedding  

5.4.3 Empirical Cumulative Distribution and Quantiles of Data Distribution 

The feature of SCD dataset that used in our experiment simulation study for exploratory data 

analysis visualizations. The name of attributes that shown in the graph is abbreviated according 

to the SCD dataset instances as discussed in the dataset data collection section. Figure 5.5 

illustrates quantiles of the SCD datasets using P-P plot between the observed and expected 

values. Hb, MCV, and Plats were the best features among other for meeting the standard 

distribution.  



78 | P a g e  

 

 

The QQ plots in Figure 5.6 show outliers in WtKg, MgKg, Hb, Plat, MCV, NEUT, RETIC%, 

RETIC_A, Hb_F, BILI, ALT, AST, LDH, as there are important departures deviating from the 

black straight line for several features. The extreme outliers identified and removed from the 

features sets as shown in Figures 5.5 and 5.6. These outliers’ issue exposed as an outcome 

Figure 5-5: Normal P-P plot for SCD 

attributes 
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where the blood test is incorrectly calculated. The results in Figure 5.6 correlated due to the 

data distributions for Hb, Plat. MCV, HB_F, which are considered the most powerful features 

to check the patients’ condition. As can be seen from the graphs, it can be demonstrated there 

are possible outliers in the SCD dataset. The expected values can be obtained depending the 

total values in the dataset. The other features could not fit expected normal distribution. Since 

the 9 attributes did not meet normality assumptions, it is essential to use suitable techniques to 

achieve normal distribution. 

 

 Figure 5-6: Normal Q-Q plots for SCD datasets with 13 

features 
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As mentioned earlier, data pre-processing is an important task in machine learning approaches 

to satisfy data quality fundamentals [24]. However, the current study is to use the data pre-

processing process to ensure the dataset is prepared completely before applying any classifiers 

and remove outliers, in order to yield accurate outcomes. Hence, Outlier detection is discussed 

in the following section.  

5.5 Pre-Processing Technique  

Data pre-processing technique involves taking part in knowledge discovery where the data is 

converted into an understandable format. In order to obtained accurate and efficient outcomes 

through machine learning models, it is important that the dataset is prepared properly (cleaned 

and transformed) to a suitable format. The data collection from a single centre leads to the loss 

of data in association with the big duty for clinical staff. Reducing noise and solving missing 

values are essential to gain a better quality of accuracy and performance.   

Data processing is considered a significant part in artificial intelligence before applying any 

model to classify or predict any type of features in the dataset. This technique is employed to 

convert the raw dataset into clean data that is ready to be applied for machine learning. That 

means in other words, whenever the data is collected from various related sources, it is gathered 

in raw data format that is not possible to analyse. Inaccurate, contaminated, inconsistent, and 

incomplete, data analysis can lead to below quality results. Incorrect dataset means having 

inaccurate values; this may due to data entry errors, and users submitting incorrect values 

during surveying [210]. However, the primary procedure and vital part is to identify the 

insufficiencies and limitations of the dataset. This technique represents any kind of processing 

approach performed on raw data to be fully preparing to apply machine-learning models.  

5.5.1 Synthetic Minority Over-Sampling Technique (SMOTE) 

Synthetic Minority Over-Sampling Technique (SMOTE) is considered a effective tool for the 

problem with imbalanced datasets, where there is a wide missing sample belonging to each 

class. SMOTE has been proposed by Chawla, et al. [211]. This problem has been studied by a 

number of researchers to deal with imbalanced datasets, such as Kubat and Matwin [212], 

Japkowicz [213]. It had been demonstrated with evidence that over-sampling of the majority 

class enables better classifiers outcomes [66]. In this particular technique, the minority class in 

our SCD datasets are over sampled using a special method called “synthetic” so that they can 

have a balanced class, which belongs to the amount of medication. This procedure is able to 

generate synthetic examples in the feature space instead of data space [214].  

http://searchdatamanagement.techtarget.com/definition/raw-data
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The main purpose of using SMOTE method is to create “synthetic” samples instead of over-

sampling with replacement. This approach has been used in handwritten character recognition 

with  successful outcomes [215]. The technique can produce extra training data through 

performing specific operations on the original SCD datasets. The minority class is over-

sampled through taking minority class instance and creating synthetic samples based on the k 

minority class nearest neighbours. Depending upon the total number of over-sampling needed, 

the KNN are randomly selected [211]. Our implementation for our SCD used 5 nearest 

neighbours basis. For example, if required oversampling 200%, two neighbours from the 5 

KNN are selected and one sample is created in the complete direction for each side. Using the 

SMOTE approaches can generate Synthetic samples in the following way [216]: take the most 

difference between sample and its nearest neighbour. Then, it is required to multiply this 

difference using 0 and 1 with random number and add it to the feature vector. This causes the 

choice of a random sample as well as the line segment between two features vector[211]. To 

provide better classification accuracy and performance, machine-learning modes should 

identify the total number of classes and sufficient number of classes, which assists to build 

accurate models.  In our datasets, the vast majority of SCD classes belonging to the amount of 

medication have sufficient number of classes to build the models as demonstrated in Figure 

5.7. 

 

Figure 5-7:  Majority classes of SCD datasets 

Three classes is identified with an insufficient number of classes (250 mg, 300 mg, 700 mg) as 

shown in Figure 5.8. The classes are not equal, so this causes crucial problems in machine 

learning procedures and it is important to oversample before the data is uploaded.  In machine 

learning algorithm, if there are inadequacies of classes, the models does not provide better 
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classification outcomes and could have high error rates because the algorithms have not been 

constructed. To avoid that, Synthetic Minority Oversampling Technique (SMOTE) used to 

increase the number of classes. Resampling the SCD dataset by using the Synthetic Minority 

Oversampling Technique (SMOTE) is considered a very effective tool in machine learning 

algorithms [211]. The real SCD dataset should be acceptable in memory entirely. The amount 

of SMOTE and number of nearest neighbours should be specified. 

 

Figure 5-8: Minority classes of SCD dataset 

In our dataset, there are 1896 samples for patients who suffer from SCD under the hydroxyurea 

medication. The datasets are divided into 9 class labels. Each class refers to the amount of 

medication that been suggested by the healthcare professionals when blood test results came 

up. This illustrates that the class with target values, 250, 300, 700 have significantly fewer 

records than others. This issue can be considered a big problem in the machine learning 

algorithms process, which could affect the results with bias interpretation [217]. Therefore, 

using the 51 with 250 records, 92 with 300 records and 77 records, SMOTE is used to generate 

additional records as shown in Figure 5.9. 
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Figure 5-9: Total number of classes after oversampling 

5.5.2 Data Cleaning  

 The purpose of data cleaning is to fill missing features, identify or remove outliers, and resolve 

inconsistencies [218]. In order to fill the missing values, it is important to use majority nominal 

value (or attribute mean). There are three steps to deal with missing fields. Firstly, ignoring the 

missing record is considered one of the most useful and efficient techniques for handling the 

missing dataset. Therefore, this technique should be executed when the number of missing 

values is huge or when the pattern of the dataset is unrecognised original root of the dataset. 

Secondly, filling the missing values manually, which is considered robust method when the 

total number of the dataset is small. On the other hand, working with a large datasets, this 

technique can not be efficient and useful to use due to lead to time-consuming. Thirdly, filling 

using computed values median, mean, or mode of the observed values. This research filled the 

missing values using the mean method according to the clinician’s recommendations. The main 

advantage of applying this task can provide an accurate calculation of the observed values.  

5.5.3 Outlier Detection 

Data mining, also known as anomaly detection  is the identification of observations that are not 

similar to other items or do not conform to an expected pattern in a dataset [219]. It is identified 

by an experimental errors or variability in a measurement. Outliers in the dataset is divided into 

two categories, multivariate and univariate. Multivariate method is discovered in n-features (n-

dimensional) based on Mahalanobis distance. In order to deal with large numbers of clinical 
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datasets with huge distribution in n-features, it is important to use such an optimal procedure 

to distinguish the outlier’s detector instead of relying on human brainpower in such a difficult 

task. Univariate technique is discovered in a single feature space depending on value 

distribution. Outliers on clinical datasets can occur when mixing data from various sources, 

experimental errors, errors during measurement, and errors during data entry [220]. In this case, 

it is important to use sophisticated tools to predict the outliers’ factor.  

The current research concentrates on visual inspection manner and utilises boxplot to detect 

outliers. A box plot uses standard tools for offering five-number summaries, which involve the 

upper and lower quartiles the maximum and minimum range values, and the median [221]. In 

another way, this method is an effective and significantly faster way to summarize the 

distribution of datasets. Each section of the box plot has a certain number according to the 

datasets. Therefore, each section contains an identical amount of information, more 

specifically; each piece involves approximately 25% percent of our dataset’s values. Moreover, 

the illustration of this tool provides a straightforward way to represent the completely original 

dataset.  In order to represent our datasets by graphically depicting groups of numerical data, 

this technique is described as a descriptive statistical analysis tool through its quartiles. 

Figure 5.10 illustrates the box plot of the SCD data features in accordance with the amount of 

medication to help identify the outliers for patients’ samples. This is mainly because the SCD 

dataset has 13 different features with one that been excluded from our study. However, plotting 

various kind of features would likely lead to incorrect detecting of the outliers. Figure 5.11 

demonstrates the outliers within continuous attributes, i.e. quantitative features, where stars 

represents extreme outliers, while circles refer to outliers.  
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This study used Mahalanobis distance to detect the outliers in the SCD dataset. The multivariate 

space is demonstrated due to the multiple number of variables that our SCD dataset involved. 

This approach is based on multi-dimensional generalization by calculating a new objective of 

how many standard deviations away 𝑃 is from the mean of 𝐷 [222]. In order to use statistics 

approaches, the standard deviation is a measuring technique that is utilised to quantify the 

variation of a set of data variables.  

Figure 5-10: Detecting outliers in SCD 

datasets 

https://en.wikipedia.org/wiki/Standard_deviations
https://en.wikipedia.org/wiki/Mean
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Figure 5.11 illustrates the SCD features in accordance with the kind of sickle disorder to 

determine the outliers that occur in the datasets. In order to obtain accurate outcomes, it is 

important to determine variables according to the amount of medication for each patient groups 

separately. In this case, the boxplot illustrates the outliers with continuous variables, such as 

quantitative features, where circles show outliers while stars belong to the extreme outliers.  

 

Figure 5-11:  Removing outlier 

5.5.4 Missing Values 

In clinical datasets, missing features or missing target values are one of the most common real-

world problems and have become a challenging issue [223]. Missing values are known as null. 
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This is considered a big problem as with missing values for a particular feature, the feature 

becomes less useful. Missing important values can happen due to difficulty in obtaining some 

measurements, missed visits to the hospital, and withdraw consent.  In terms of the 

questionnaire, participants might refuse to answer some crucial equations which lead to gaps in 

the datasets’ records. It also occurs when the research team are not able to follow up with the 

recruited people during the time of the study [224]. Missing data can lead to biased estimation 

[220]. 

In order to deal with the classification or regression models, missing values can be the main 

concern due to the non-applicability of many algorithms. Although there are several models 

that can handle missing values through ignoring them, the vast majority cannot, because of the 

model structure that needs the data to be clean and complete prior to any classification process. 

In this case, the most significant step for obtaining a valid classification task is to address the 

problem with missing values. It is vital to select the suitable missing data mechanism initially, 

which is considered the fundamental process to acquire valid results from incomplete datasets. 

Table 5.4 and Figure 5.12 illustrate the missing values with statistics calculation of raw SCD 

biomedical dataset after collecting them from the local hospital. 

Table 5-4: Missing values and features calculations 

SCD 

Features   

Case Processing Summary 

Valid Missing 
Mean Std. D Variance Min Max 

N Percent N Percent 

Wt(Kg) 763 47.7% 838 52.3% 34.3869 

 

11.60332 

 

134.63 9.8 67.5 

Mg/Kg 718 44.8% 883 55.2% 26.312 6.224 38.738 10 41 

HB 1584 98.9% 17 1.1% 88.502 13.61 185.459 8 134 

PLTS 1585 99.0% 16 1.0% 271.04 146.15 21361.1 4.86 
1256.

14 

MCV 1582 98.8% 19 1.2% 92.88 13.809 190.70 8.7 437 

NEUT 1584 98.9% 17 1.1% 3.355 3.273 3.273 0.20 89.10 

RETIC                                            1511 94.4% 90 5.6% 5.3969 3.424 11.725 0.20 41 

RETIC-

A                                               
1512 94.4% 89 5.6% 146.04 78.808 6210.7 3.3 644 

HB-F                                           1126 70.3% 475 29.7% 22.37 11.05 122.23 1.3 192.8 

BILI 1346 84.1% 255 15.9% 34.81 28.816 830.39 5 202 

ALT 1359 84.9% 242 15.1% 18.37 12.34 152.29 4 188 

AST 1356 84.7% 245 15.3% 36.74 12.342 125.31 3 136 

LDH 951 59.4% 650 40.6% 838.04 322.39 103940.6 32 3673 

Value 1590 99.3% 11 0.7% 868.96 320.194 102524.09 250 1500 
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Figure 5-12:  Missing Values of the raw SCD dataset 

As shown in Figure 5.13, all the SCD features come with missing values and several cases 

have some elements missing. The missing values is illustrated with different rates, starting 

from less than 1% and reaching more than 50% for some variables. Table 5.5 shows the 

missing values rate for all the SCD features. As illustrated in the table, HB, MCV, PLAT, 

NEUT, and value features come with lower missing value rates between 0.7% and 1.2%, these 

features seem to have a high impact on the amount of medication. In this case, it is likely the 

professional nurses forgot to enter these features.  On the other hand, it is indicated that high 

missing values rates with 52.3% and 52.3%, and 40.6% respectively related to weight, 

milligram (MgKg), and dehydrogenase (LDH) as these not have a high impact on the blood 

test. Generally, the medical professional did not consider these 3 features when reviewing the 

blood test results to provide the accurate medication dosage.  

5.5.5 Missing Data Mechanism 

There is an important requirement that needs to be considered when facing missing data. 

Determining how much missing data is involved in the clinical datasets, is achieved by 

applying exploratory analysis. If it is a small percentage around 2% or less, can just ignore that 

data when are dealing with a large number of datasets. Although there is a significant need to 

analyse all the dataset,  the small amount of missing data  
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have little effect on the analysis. Generally, there are three classifications of missing dataset as 

discussed below[225]. 

5.5.6 Multiple Imputations 

Multiple imputation method replaces each missing value with a number of possible values that 

present the uncertainty about the exact value to impute [226]. This method is analysed by using 

a standard number of processes for complete data with correct value [225]. In other words, the 

multiple imputations is a process used to fill the blanks of a dataset so that can be ready for 

analysing.  

This research used multiple imputations to handle missing data. The main reason behind this 

is the machine learning models are the most sophisticated technique dealing with uncertainty 

in association with imputation procedure and are accessible in several statistical packages. 

Some studies have confirmed that machine learning is a proper technique to address missing 

values because it permits researchers to customise the imputation process to meet the target 

goal [227]. Moreover, it is highly recommended that using a multiple imputations process is 

useful and effective when dealing with data that is missing at random [228]. This study used 

SPSS statistical software platform for the multiple imputations process where 𝑚 belongs to 

times, and 𝑚 = 5. This indicates making 5 imputed datasets, which is considered sufficient to 

process our SCD dataset. The following step is to outline the imputation technique, where 

conditional specification (MCMC) approach is chosen by statistical method as the data 

illustrated an arbitrary pattern instead of a monotone pattern of missingness [220]. In order to 

repeat the process with more iteration, MCMC, with each iteration, uses the total number of 

observations in the model as predictors to impute missing values [228]. SPSS used uses Linear 

Regression (LINR) for multiple imputations variables. The missing values and imputed values 

are shown in Table 5.5.  

 

 

 

 



90 | P a g e  

 

Table 5-5: Imputation approach for missing values 

Variables 
Models Missing 

Values 

Imputed 

Values Type Effects 

Value LINR All Features without value 11 55 

PLTS LINR All Features without PLTS 16 80 

HB LINR All Features without HB 17 85 

NEUT LINR All Features without NEUT 17 85 

MCV LINR All Features without MCV 19 95 

RETIC_ A                                              LINR All Features without RETIC_ A                                              89 445 

RETIC%                             LINR All Features without RETIC%                             90 450 

ALT LINR All Features without ALT 242 1210 

AST LINR All Features without AST 245 1225 

BILI LINR All Features without BILI 255 1275 

HB_F                                            LINR All Features without HB_F                                            475 2375 

LDH LINR All Features without LDH 650 3250 

Wt(Kg) LINR All Features without Weight 838 4190 

Mg/Kg LINR All Features without Mg/Kg 883 4415 

It is required to review the complete dataset with specialist clinicians to make sure there are no 

missing values and features, or errors.  Moreover, unclean data can lead to confusion for the 

mining process, obtaining unreliable results. Even though the majority of mining procedures 

must handle noisy or incomplete datasets, they are not often effective and robust. However, 

such a useful and effective pre-processing phase is to run a dataset by using data cleaning 

routines.  

5.5.7  Data Integration and Normalisation 

Data integration method works to combine data from several resources into one database. 

Throughout the data integration process, it is essential to distinguish and resolve data errors 

problems. Errors could be due to different values that come from different sources or different 

attributes (features) formats. In this scenario, the final datasets has to deal with these types of 

redundant data to produce better-quality data. After performing cleaning, this method deals 

with the datasets and converts them into single datasets that can be ready for machine learning 

models. Some models in machine learning require information in a particular format, for 

instance, RFC does not support or work null values at all, so to perform RFC with null values 

has to be handled from the raw data. The data need to be formatted correctly without any 

missing values so that machine-learning classifiers can deal with data analytics. This type aims 

to apply normalization for the datasets. Normalisation is the optimal option used for 

transformation of the data structure.  

There are a different number of methods, which are applied to data normalisation. They include 

statistical rules (i.e. sigmoid normalisation function) and arithmetic rules (i.e. minimum and 
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maximum). Ultimately, the vast majority of normalisation methods convert values of the 

quantitative features to belong to the two values, such as (0, 1) or (-1, 1). This study applied 

this method to normalise the quantitative features using Shapiro-Wilk test, and the 

Kolmogorov-Smirnov test. These two tests are used to identify whether underlying distribution 

of the SCD dataset is normal or otherwise. Both tests methods are influenced by the total 

number of data samples and are sensitive to outliers. For smaller data samples, non-normality 

using Kolmogorov-Smirnova is less likely to be detected. On the other hand, Shapiro-Wilk test 

method was able to detect the normality as shown in Table 5.6. It is indicated that the Shapiro-

Wilk test shows better performance than Kolmogorov-Smirnov. The highest number of testing 

shows the weight attributes received 0.965 using Shapiro-Wilk, while only received 0.099 

using Kolmogorov-Smirnov due to the large number of data sample.  

Table 5-6:  Test of normality for the SCD dataset 

Tests of Normality 

Variables Kolmogorov-Smirnova Shapiro-Wilk 

Statistic elements Statistic elements 

Wt(Kg) .099 763 .965 763 

Mg/Kg .098 718 .961 718 

HB .044 1584 .925 1584 

PLTS .082 1585 .921 1585 

MCV .073 1582 .681 1582 

NEUT .201 1584 .490 1584 

RETIC%                                           .125 1511 .801 1511 

RETIC-A                                               .088 1512 .933 1512 

HB-F                                            .051 1126 .852 1126 

BILI .197 1346 .700 1346 

ALT .185 1359 .579 1359 

AST .093 1356 .906 1356 

LDH .131 951 .754 951 

Value .156 1590 .931 1590 

5.5.8 Feature Selection  

Feature selection or data selection is used in the area of pattern recognition, data mining, and 

statistical techniques, particularly in machine learning algorithms[229].  The main purpose of 

applying this method is to select a subset from the clinical dataset by ignoring or removing 

irrelevant and redundant features with less significant information. This technique is able to 

remove unrelated features to provide an accurate decision that could make accidental 

associations in learning models, diminishing their generalisation capabilities. For example, in 

the SCD dataset, clinicians usually ignore some features that come with blood test results, 

which do not have high impact on the decision. In our study, a data selection technique is 
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employed to reduce the unnecessary number of features before proceeding to evaluate the 

models. In order to obtain a high classification performance, the feature selection technique 

significantly improved the results of the datasets. One of the main benefits of using data 

selection is to reduce and avoid the risk of over-fitting in the models. In order to make the 

learning model process faster and less memory consuming, feature selection decreases the 

search space determined throughout the features [230]. In contrast to that, these irrelevant and 

redundant features can confuse the learner, especially when dealing with a limited number of 

training examples and limited computational resources is going to lead to overfitting and high 

dimensionality.  

However, by using feature selection methods, the high dimensionality of the extracted feature 

ought to be reduced. It is accomplished though finding new space with lower dimensions than 

the dimensions of the real data. Khemphila and Boonjing [231] applied feature selection and 

found out this approach has the ability to improve the ANN in classification technique. ANN 

classification performance and accuracy is enhanced by decreasing the number of unrelated 

and unnecessary features. Two kind of Feature selection are divided as follows: 

✓ Feature transformations, dealing with lower dimensional space, for instance 

independent component analysis (ICA) and principal component analysis (PCA).  

✓ Choosing the number of features that represents a given pattern and depending on 

statistical features such as the mean or standard deviation of the feature values. 

As mentioned previously, the main point of implementing feature selection is because the 

original datasets involved irrelevant features. The feature selection model selects a subset 

𝑥′ from the original 𝑥  features, where 𝑥′ < 𝑥. The technique attempts to find the most relevant 

or significant 𝑑  features for each problem [232]. Let us assume the function relationship 𝑓(𝑥) 

and the features, which are know as input 𝑋 = {𝑥1, 𝑥2, 𝑥3,…,𝑥𝑚}, with a target value (output) 𝑌, 

depends on a memory of data point for inputs and outputs {𝑋𝑖, 𝑌𝑖}, where 𝑖 = 1,2,3 … . 𝑁. In our 

datasets, the 𝑋𝑖′𝑠  belong to the vectors of real number, and the 𝑌𝑖′𝑠 are the same. In some cases, 

the assumption is that target values 𝑌𝑖  cannot be identified sometimes through the whole set of 

the features {𝑥1, 𝑥2, 𝑥3,…,𝑥𝑁} while, it is based on a subset = {𝑥′
1, 𝑥′

2, 𝑥′
3,…,

𝑥′
𝑀} where 𝑛 < 𝑁 

[233]. With sufficient time and data, it is likely to utilise all the features, involving those 

irrelevant input attributes, to approximate the 𝑓(𝑥) between input features (𝑋) and the target 

values(𝑌). But in practice, this technique could evoke issues that could affect the performance 

of the classifier, for example overfitting in order to increase computational cost and time[209].  
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Generally, selecting many features, the computational cost increases for polynomial 

classifications and for prediction purposes; particularly when dealing with large numbers of 

observations, the computational cost can be increased as well. Since the main aim is to 

approximate between input (𝑋) and output (𝑌) with regards to the underlying function 𝑓(𝑥), it 

is essential to avoid these features with little effect on the output Y, ultimately can lead to 

construct an accurate classifier by removing a small number of redundant features, but it makes 

the estimator model faster. In algorithms such as K nearest Neighbour (KNN), these irrelevant 

features introduce noise and they slow the process of learning to find which possibly produce 

wrong result. n order to evaluate the performance of data selection, it is considered more 

difficult than working with only the datasets. The main reason behind that is that each classifier 

is required to discover the optimal feature set. Furthermore, to provide a reasonable estimate of 

how the feature selection model can be performed [233, 234].  

There are two famous types of evaluation procedures in the feature selection models, filter 

method and wrapper method. In the filter method, usually do not evaluate the subsets over the 

training instances but look at input in general and select the subset that has the most 

information. This method belongs to the unsupervised learning algorithms, in which the target 

value (output) does not exist. Whereas the wrapper technique is evaluating the feature subsets 

through using the learning estimator model. The wrapper approach is able to train the selected 

feature subsets and estimate error on validation datasets. In order to deal with the SCD dataset, 

the wrapper method would be highly suitable for our data as the response is available in the 

clinical dataset that is collected from the local hospital. This research used two methods Root 

Mean Square Error (RMSE) and R Square for estimating the significance of our SCD datasets 

in order. RMSE is considered effective statistical tool for measure the average error performed 

in prediction the total outcomes for an observation [235]. R-Squared is the proportion of 

variable variation by measuring the dataset how close to the fitted line. Table 5.7 shows the 

input ranking by importance for feature selection, by applied the Neural Networks with Feature 

Extraction and Recursive Feature Elimination (RFE) model. The predictors in order: (Wt. Kg, 

MCV, Mg. Kg, AST, LDH, NEUT, RETIC.A, HB, PLTS, HB_F, RETIC%, ALT, BIO). It is 

noticed from Figures 5.13 and 5.14 that, Bio feature received the lowest important.  
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Table 5-7: Importance for feature selection 

Variables RMSE R squared 

1 269.8 0.4086 

2 241.6 0.5257 

3 217.4 0.6160 

4 206.5 0.6591 

5 198.1 0.6921 

6 182.5 0.7314 

7 176.0 0.7541 

8 171.8 0.7697 

9 168.7 0.7740 

10 170.7 0.7710 

11 172.0 0.7707 

12 168.6 0.7768 

13 169.0 0.7788 

14 170.6 0.7760 

The feature selection approach is applied on 13 important feature subsets of the SCD that are 

considered to have high impact on the final decision to provide the accurate medication dosage. 

These feature subsets assist healthcare professionals to make the diagnosis procedure robust 

through removing irrelevant features, making the process less time consuming. Using the SCD 

dataset that is illustrated in Table 5.1, feature subsets have been created.  

 

Figure 5-13: Importance of Feature selection for SCD   

These features include Haemoglobin (Hb), Platelets (PLTS), Mean corpuscular 

volume (MCV), neutrophils (white blood cell NEUT), Reticulocyte Count (RETIC), 

Reticulocyte Count (RETIC F), Hb F, and Mg/Kg, which have a high potential impact to 

discriminate hydroxyurea medication. The inclusion of the rest of the features is just to check 

the effect of the hydroxyurea medication (i.e., body Bio Blood (BIO)). This feature was 
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removed as considered irrelevant to what are going to achieve. This is achieved using statistical 

significance approaches, such as linear discriminant analysis.  

 

Figure 5-14: 14 variables of SCD  

5.6 Experimental Setup  

The experimental setup covers the design of the test environment used in our experiments, the 

models tested, and the configuration of each model. The performance evaluation metrics 

utilised to measure the results of the machine learning algorithms are presented for the SCD 

datasets. The resulting dataset comprised 1896 sample points, with a single target variable 

describing the hydroxyurea/hydroxycarbamide medication dosage in milligrams.  

Our empirical study is divided into two significant groups. The first group were constructed to 

involve 7 machine learning algorithms with single algorithm, including the Levenberg-

Marquardt algorithm (LEVNN), The Voted Perceptron Classifier (VPC), Random Forest 

classifier, The Radial Basis Neural Network Classifiers (RBNC), Back-propagation Trained 

Feed-forward Neural Network Classifier (BPXNC), k-nearest Neighbors Algorithm (KNN), 

and Support Vector Machine(SVM). These models are considered strong non-linear classifiers 

and are appropriate to act as comparators of high accuracy and performance. The linear model 

used includes a linear transformation function with a single layer neural network at each class 

output unit. To obtain performance estimates for the respective models, each model ran many 

times and calculated the mean of the responses. The full set of models used in the experiments.  

The second group of models under this study is composed of integrated Machine learning 

algorithms. Furthermore, this study also concentrated on investigating of ensemble learning 
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approaches in association with voting and stacking for the classification of the amount of 

medication dosage. Voting method and stacking method have been considered as ensemble 

learning algorithms as both utilise multiple single models.  

This research combined a number of machine learning models to obtain better results. Firstly, 

combined LEVNN with using number of features (LEVNN combination), VPC and LEVNN 

(NN combination), combine 4 classifiers LEVNN, VPC, RBNC, RFC (NN and RFC), KNN 

Combination, KNNH (model 1), KNNH (model 2), and KNNH(model 3),  with a number of K 

based on different types of classifiers. Of the combined classifiers under study, the (NN and 

RFC) outperformed the other models as shown in chapter 7, demonstrating capability both in 

fitting during the testing phase. The objective is to determine if the effect of integrating strong 

classifier and weak classifier with worst performance accuracy, to measure the accuracy 

through the mean of both classifiers.  

This research applied a number of competing models to the same classification task, In order 

to provide a comprehensive test environment under consideration. In addition, to posing a 

random oracle model (ROM) [236] to provide a baseline indicator to illustrate the performance 

produced by random guessing. Furthermore, this study introduced a linear model to examine 

the differential in performance present between the non-linear classifiers and this weak 

classifier, such as linear neural network (LNN). The combination of random control baselines, 

strong and weak, gives an experimental frame of reference through which to gauge the relative 

performance. It is noted also that such a set of reference controls is used to justify the integrity 

either of the results obtained since it can be shown that such performance cannot be reached 

through the linear model or by random guessing. The classification accuracy outcomes of each 

classifier were calculated using the performance evaluation metrics as mentioned in chapter 7.  

5.6.1  Single Classifier Framework 

In our study, there are two different classifier architectures taken into consideration, which are 

the single classifier and combined classifiers. Table 5.8 describes the configuration for each 

model. This study selects particular base-level classifiers to evaluate the performance 

evaluation metric. This involves Sensitivity, Specificity, Receiver operating characteristics 

(ROC) curve, the Area under the Curve (AUC), Precision, F1 score, Accuracy, and Youden's 

J statistic (J score) values. Each classifier is evaluated individually in comparison with the 

baseline classifiers in the next chapter and the results compared with an integrated classifier 

approach that is discussed in the following section. The diversity of models is based on neural 
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network algorithm, decision trees, clustering and kernel technique. this research used 4 

classifiers (LEVNN, RBNC, VPC, BPXNC) based on neural networks, one classifier (RFC) 

using decision tree, one classifier (KNN) using clustering, and one classifier (SVM) using kernel 

technique.     
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Table 5-8: Classification models’ description 

Model  Description Architecture Training Algorithm Parameters Role 

LEVNN 

Multilayer Perceptron, 

Trained using the 

Levenberg-Marquardt 

algorithm 

Units: 13-30-9, tansig 

activations 

Levenberg-Marquardt, 

Gradient descent with 

momentum and adaptive 

learning rate.  

Initialisation: 

Nguyen Widrow Adaptive learning rate settings: 

initial value: 0.001 

the coefficient for increasing LR: 10 

the coefficient for decreasing LR: 0.1 

maximum learning rate: 1e10 

Momentum Constant: 0.9 

Non-linear 

Comparison 

Model 

BPXNC 
The feed-forward neural 

network algorithm 

Context Units: One context 

unit for each output unit. 

 This classifier is trained 

properly to map a set of input 

data in order to make an 

iterative modification for the 

whole weights. 

Momentum coefficients between 0.01 and 1.0. 

Sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥 ). 

Learning rate between 0.25 and 0.9.  

Performance : 0.0932 

Non-linear 

Comparison 

Model 

RBNC 

Feed-forward neural net 

including N sigmoid 

neurons. 

13 inputs, 9 outputs 
The classifier has radial basis 

units with only 1 hidden layer  

Gradient descent technique uses learning rate (η = 0:02) 

with fixed values.  

Epochs Maximum number for training purpose:1000 

The default value of the Learning rate:0.01 

Ratio to increase the learning rate: 1.05 

Ratio to decrease learning rate: 0.07 

Momentum constant: 0.9 

Non-linear 

Comparison 

Model 

VPC 

The voted 

perceptron classifier 

 

Units: 13-30-9, tansig 

activations. 

Gradient descent with 

momentum and adaptive 

learning rate backpropagation 

Gradient = 2.022e-10,  Number of epoch : 5 

The maximum amount of validation failures: 6 

The maximum amount of performance increase: 1.04 

linearly separable 

with large margins 

RFC 
Random Forest, Decision 

Tree Ensemble Classifier 

13 inputs, 2000 Trees, 9 

outputs 
Random feature bagging 

Number of decision trees to be generated 

50,100,500,1000,2000; 

Size of feature subsets: 13 

Non-linear 

Comparison 

Model 

KNN 
k-nearest neighbours 

algorithm 

Units: 13-4-30, linear 

activations 

Parameter selection to predict 

the closest training sample.  

Compute the Mahalanobis or Euclidean distance and 

Estimate a reverse distance weighted average k nearest 

classes.  

Test model 

SVM Support Vector Machine 13 inputs, 9 outputs Quadratic Optimisation 

Kernel: Distance matrix 

Optimisation: regularised 

Non-linear 

Comparison 

Model 

https://en.wikipedia.org/wiki/Mahalanobis_distance


99 | P a g e  

 

5.6.2 Combined Classifier 

In machine learning, the model utilises a training set in association with building a classifier 

that provides a reliable classification. This research discusses different aspects of machine 

learning approaches for the classification of biomedical data. This study used the multi-class 

classification problem where many classes are available in the datasets. This research combines 

more than one classifier to improve the classification accuracy and performance in comparison 

to the single model. There is a strong evidence illustrating that, a better classification can be 

gained through using two classifiers or more [71].  The total information of both models is 

therefore combined to generate the final decision. Figure 5.15 demonstrates the block diagram 

for combining two or more models. Using the bootstrapped techniques, the training set supplied 

to each model. Each model produces an outcome using the performance metrics techniques. In 

order to find the outperform classifiers; the combined classifiers used voting method to select 

the best classifiers that obtain high accuracy and performance.   

 This study concentrates on combining the final classification results gained using N different 

kind of features sets(𝑓 (𝑥𝑖
1 ), … , 𝑓 (𝑥𝑖

𝑁 )). In order to construct the both classifiers, it is required 

training the model through using the feature sets for each classifier. Where 𝑥 refer to specific 

input, each model 𝑚𝑛  produces it is own output 𝑦𝑛 =  (𝑦𝑛(1), … 𝑦𝑛(𝑍))T, where 𝑧 is 

considered the class label, while  𝑦𝑛 (𝑚) corresponds to the probability of   𝑐𝑛. It is obvious 

that, each classifier 𝑖 generates  𝐿 approximations to the probabilities 𝑓 (𝑥𝑗
𝑁 ), 𝑗 = 1, … , 𝐿. As 

shown in the block diagram, z corresponds to the final target class label. As mentioned 

previously regarding the performance evaluation of a single classifier, this research also 

attempt to find the classification techniques outcomes in terms of Sensitivity, Specificity, 

Receiver operating characteristics (ROC) curve, the Area Under the Curve (AUC), Precision, 

F1 Score, Accuracy, and Youden's J statistic (J Score) values. 

The proposed research is mainly focusing on the multi-class label classification problem where 

many classes are available in the datasets. This research proposes a multi-class label 

classification method based on sickle cell disorder datasets and discusses the method's 

performance evaluation compared with different machine learning approaches for the 

classification of biomedical data. It is indicated that machine learning algorithms practically 

combining with multi-class models produce a good improvement with clinical datasets and 

have helped in acquiring high accuracy [51].  
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Figure 5-15: Combined Classifiers- Training Phase 

The main idea of combining two algorithms is to obtain a better result than using one algorithm. 

This research attempt for modelling outcomes from weak learner’s classifiers into a high-

quality classifier. In order to combine two classifiers, this research used the stacked technique 

and voting technique to run our experiments. Stacked technique involves a set of models that 

leads the same space to be combined. Each classifier would be trained properly by the exact 

training sets. Training sets received 70%, while the validation received 10% and testing 

received 20% of the datasets. Figure 5.16 shows the testing process of ensemble classifier. 
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Figure 5-16: Combined Classifiers- Testing Phase 

According to [237], the base model must be accurate and able to diverse errors in the majority 

class. The idea of ensemble approaches is similar to a group meeting, in which each member 

delivers an opinion on find a solution to the issue they discuss. The main advantage of involving 

bootstrap aggregation in the ensemble classifier is its use in non-linear generalization and 

modelling techniques that ranges beyond statistical inference to concentrate on the target values 

prediction [66]. Table 5.9 provides more details about the classification ensemble model. After 

having collected the optimal features sets for each classifier, this study applied a combined 

classifier based on 4 models in order to obtain the best possible accuracy performance. The 

first stage involved of training a number of “base” classifiers using the discriminative stacked 

generalization model that perform a k-fold cross-validation method. In this scenario, the entire 

SDC medical training set is divided into number of 𝑘 blocks, and each base model  𝐶𝑛
𝑚 is first 

trained properly on 𝑘 − 1 blocks of the training subset [238]. The testing subsets is extracted 

from the training set to assess the models. Then, the selected classifiers are evaluated on the 

𝑘 − 𝑡ℎ block that not seen during training. Eventually, the outputs of each individual classifier 

are then ensemble utilising probabilities [238]. 
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Table 5-9: Classification ensemble model description 

Model  Description Architecture Training Algorithm Parameters Role 

LEVNN Com 

A combination of 25 number 

of Levenberg-Marquardt 

Neural Network with 

different parameters. 

Hybrid LEVNN  

Levenberg-Marquardt, Gradient descent 

with momentum and adaptive learning 

rate.  

Gradient = 2.022e-10,  

initial value: 0.001 

coefficient for decreasing 

LR: 0.1 

 

Non-linear 

Comparison Model 

NN Com 
LEVNN with 10 parameter, 

VPC 

Hybrid model with 2 

classifiers  

 

 

Gradient descent with momentum and 

adaptive learning rate backpropagation 

Initial Learning Rate: 0.01 

Momentum Constant: 0.9 
Test model 

NN and RFC 
LEVNN with 30 parameter, 

RBNC, VPC, RFC, BPXNC   

Hybrid model using 5 

classifiers.  

 

 

Gradient descent with momentum and 

adaptive learning rate backpropagation 

maximum learning rate: 

1e10 

Momentum Constant: 0.9  

 

Test model and Non-

linear Comparison 

Model  

KNNS Com 

A combination of 15 KNNs 

with different parameter 

values. 

 

Hybrid KNNC 
Parameter selection to predict the closest 

training sample.  

Compute the Mahalanobis 

or Euclidean distance and 

Estimate a reverse distance 

weighted average k nearest 

classes. 

Test model 

KNNH(models 1) 

A combination of 20 KNNs 

with different parameters 

 

Hybrid Model using 

2 classifiers  

Parameter selection to predict And 

Levenberg-Marquardt, Gradient 

Descent.  

initial value: 0.001 

the coefficient for 

decreasing LR: 0.1. 

 

Estimate a reverse distance 

weighted average k nearest 

classes. 

Test model 

KNNH(models 2) 

A combination of 30 KNNs 

with different parameter 

values 

 

Hybrid Model using 

2 classifiers 

Random feature bagging and Parameter 

selection to predict the closest training 

sample. 

Maximum learning rate and 

the coefficient for 

increasing and Number of 

decision trees.  

 

Non-linear 

Comparison Model 

KNNH( models 3) 

A combination of 75 KNNs 

with different parameter 

values. 

Hybrid Model 
Parameter selection to predict the closest 

training sample.  

Compute the Mahalanobis 

or Euclidean distance and 

Estimate a reverse distance 

weighted average k nearest 

classes.  

Test model  

https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance
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5.6.3 Baseline Classifier 

A baseline classifier is a technique that uses simple statistics, heuristics, or machine learning 

approaches to create a classification technique. The main target of using this method is to assess 

the baseline's performance in comparison with the selected classifiers. The Baseline method 

can provide a good understanding of how machine-learning models can deal with the datasets. 

This research used two baseline classifiers, which are the Random Oracles Model (ROM) and 

the Linear Neural Network (LNN) as illustrated in Table 5.10. Firstly, The ROM involves a 

random guessing task that generates an uninformed mapping from features to responses [239]. 

The ROM outputs serve as a baseline to compare the error rates and performance of machine 

learning algorithms with the uninformed mapping, as well as to create the presence of any 

clinical data dependent bias.  

Secondly,  Linear Neural Network (LNN) is similar to the feedforward neural network (FFNN) 

architecture utilising linear transfer function [240].  The activation function is linear. In this 

case, the approach is considered imperfect in expressive power to the class of linear mappings, 

irrespective of the total number of layers (Inputs, hidden, outputs) within the network. 

Therefore, the model is employed as a linear baseline for our empirical study. LNN offers a 

reference control to validate the use of complex non-linear algorithms, since it can be revealed 

that, the performance of the non-linear class of model cannot be reached through linear 

mapping. 

Table 5-10: Baseline model description 

Model  Description Architecture Training 

Algorithm 

Parameters Role 

LNN Linear Combiner 

Network 

Units: 13-30-9, 

linear activations 

Widrow-Hoff Learning rate: 

0.01 

Linear Comparison 

Model 

ROM Random Oracle 

Model 

Pseudorandom 

number generator 

N/A N/A Random Guessing 

Baseline 

5.7 Evaluation Techniques 

A number of techniques that is used for comparing and evaluating each model. It is such an 

important method to process any clinical datasets. The main idea of this method is to estimate 

performance (e.g., corrected classification, incorrect classification, error rate …etc.). 

Moreover, it provides a good benefit for assessing and testing the proposed model. When the 

classifier does not achieve the main requirement, then the model process is reconstructed 

repeatedly by altering its parameters till the expected outcomes are obtained.  
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This research study is applied performance evaluation metrics process through comparing the 

selected classifier outcomes with the class attributes. In this scenario, the error rate, 

performance techniques and accuracy are calculated accordingly. In order to estimate the error 

rate for each model, it is important to calculate the average number of misclassified instances 

divided by the number of features. While, the classification accuracy and performance can be 

estimated as (1-Accuracy), which refer to the total number of error rates. If the classification 

accuracy is not achieving a certain threshold percentage 85% for example, then feature 

selection and pre-processing method are required to perform some changes until they obtain 

better result. Table 5.11 illustrates the most common approaches and their characteristics in 

machine learning algorithms.  

Table 5-11: Evaluation techniques in machine learning 

Evaluation 

method 
Methodology  Description  Characteristics  

K-fold Cross-

validation 

technique 

[241] 

 

Each classifier using n 

– 1 group and holding 

one out of the fold for 

testing. 

 

This method works through selecting 

a number of folds (or divisions) to 

partition the data into each fold is 

held out in turn for testing. The 

process trains a model for each fold 

using all the data outside the fold. It 

tests each model performance using 

the data inside the fold, and then 

calculates the average test error over 

all folds. 

The outcome can be unbiased 

due to the n classifiers, the K-

fold group is tested, and the n 

test outcomes are calculated. 

Re-

substitution  

The total number of 

records in the datasets 

use for training and 

testing equally.  

In order to build an optimal classifier, 

all the available data was utilised for 

modelling.  

 

The results generate biased 

estimation as the same data 

using for training and testing 

process.  

 

Holdout 

technique 

(Data 

Partition). 

This method is 

selected for 

our 

experiments.  

 

Datasets divided 

between training sets 

and testing sets 

The datasets divided into training and 

testing sets. Usually, the training sets 

received twice or more than the test 

size. In our thesis, the training sets 

receive used %70, the validation sets 

receive %10, while the testing phase 

obtain %20. 

The model outcome estimation 

is unbiased in association with 

the error rates. 

Jack-knife 

(Leave-out-

one)  

This approach 

typically has similar 

function to k-fold 

cross-validation but n 

= N. 

Classifier is very close to optimal in 

the sense that all samples get used for 

both training and testing. 

The classifier result is unbiased 

but is considered slow 

concerning the   computation 

intensive task. 

Holdout method is considered a good tool to use with a sufficient amount of data. This method 

works by selecting a percentage of the data. Using the training set to train the model, it then 

assesses the performance of the classifier based on the test set. This study used the holdout 

method for allocating training, validation set and testing cases. The training set received 70% 
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for generating the classification algorithm; the validation set received 10%, while the testing 

set received 20% to estimate the generalisation performance and accuracy of the classifiers, 

particularly on independents objects. In order to learn from the dataset, it is required to operate 

two stages to build the learning schemes. The training method build the basic structure for each 

model to calculate the error rates. Then, evaluate the SCD datasets through the testing set in 

order to predict the accuracy and error rate for each model. The main purpose is to compare 

our models with the baseline control models LNN (test) and ROM (test), demonstrating that 

our classifiers provide significantly better results than such baselines. It is found that the 

combined classifier produced the best results among other classifiers. Eventually, it is 

important to use validation techniques, so the estimated error rate is likely to be unrealistic and 

lead to biased estimation as well. 

5.7.1 Performance Evaluation Metrics 

The performance evaluation of a model is calculated through a parameter known as decision 

threshold (0 ≤ 𝑡 ≤ 1) in order to choose the ultimate class membership of a certain objective 

[242]. In this study, our classifier evaluation consists of both out-of-sample (testing) diagnostics 

and in sample (training). To compare the evaluation outcomes, it is significant to use 

classification accuracy such as sensitivity, specificity, precision, F1 score, Youden’s J statistic, 

and overall classification accuracy calculated. Additionally, it is important to represent the 

outcomes of true and false values of a model by using the Area under the Curve (AUC) and 

Receiver Operating Characteristic (ROC) plots and, where the classification ability across all 

operating points was ascertained. Sensitivity and specificity are proper evaluation approach 

measurements for model binary outputs. In order to illustrate the sensitivity, a test with 100% 

sensitivity, which means all patients with 500 mg dosages were correctly classified. In contrast, 

a test with 80% sensitivity outcomes, which means 80% of patients with 500 mg dosage were 

correctly predicted, and 20% of patients were incorrectly classified (True Negative). In regards 

to the specificity method, a test with 100% specificity means that all patients not under 500 mg 

dosage. However, a test with 80% specificity means that the algorithm able to classify 80% of 

patients with 500 mg dosage correctly, where 20% of patients incorrectly classified. In order 

to compare the evaluation outcomes by mathematical equations such as confusion matrix, 

precision, also known as the Positive Predictive Value (PPV) is another way for statistical 

analysis [243]. This technique counts the number of TP divided by the total number of TP and 
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FP. In other words, it is the function of TP and the instances that are considered misclassified 

as positive, such as FP.  

F-score, also called F-measure is a common evaluation performance that usually combines two 

methods, which are precision and recall within a single value [243]. This method can assist our 

datasets to find the test's accuracy. As mentioned previously, Precision is the function of TP 

and objectives were misclassified as positive (FP). While, Recall, is a function of the correctly 

classified objectives (TP) and its misclassified objectives (FN).  

Youden's statistical technique is utilised to measure the ROC curve. It able to estimate the 

effectiveness of diagnostic tests and allows the selection of an optimal threshold value [244].  

In our case, value ranges between -1 to 1, and has 0 value when the test phase provides a similar 

proportion of positive outcomes for the amount of medication dosage when the test is 

considered useless. A value of one indicates the test is perfect as there is no FP or FN.  

ROC curve offers graph representation for each model based on the total error rate rates in 

sensitivity and specificity approach. Each point on the ROC curve illustrates the level of 

threshold for classification and states the total proportion of positive samples that are correctly 

classified, against the proportion of negative samples that are incorrectly classified. However, 

the accuracy is calculated using measures of TP, TN, FP, FN rates. The accuracy belongs to 

the number of predictions that is correctly classified. 

5.8 Summary  

This chapter conducted comprehensive processing stages to discuss the methodology of our 

simulation experiment study. Data pre-processing technique was the major part in this thesis 

and the subcomponents it comprises. These include data collection and pre-processing, data 

cleaning, Detecting with processing outliers, missing values, missing values mechanism, and 

data integration and normalization. Feature selection illustrated for selecting the proper features 

that used for training and testing process. This chapter has discussed the experimental setup of 

machine learning approaches. A set of 7 single classifiers and 7 ensemble classifiers have been 

addressed with full description about each model. The following chapter will discuss the 

experimental setup for machine learning models. 
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Chapter 6 Results and Discussion 

6.1 Introduction 

This chapter discusses the simulation results and analysis of the sickle cell disorder 

classification. There are two important sections presented in this chapter. Firstly, several single 

classifiers are used to evaluate the proposed models in more depth by utilising the standard 

performance measurements metrics demonstrated in the proposed methodology chapter, such 

as Sensitivity (SEN), Specificity (SPEC), Precision, Youden's J 1, F1 score, Confusion Matrix, 

Accuracy (ACC), the Area under the Curve (AUC) and Receiver Operating Characteristic 

(ROC). The single classifiers is selected based on the supervised learning approached due to 

the class label in the SCD. Machine learning classifiers provide various significant properties, 

such as non-linear mapping, universal approximation, and parallel processing. Secondly, 

combined a weak classifier with a strong classifier in order to produce a productive model, 

which is able to provide better results using the same standard performance evaluation 

measurements. These models are demonstrated as a crucial procedure for many applications, 

including the medical field.  Experiments are conducted on SCD datasets to evaluate various 

models presented in the previous chapter.  

6.2 Single Machine Learning Classifiers Results for Classification 

This section presents the classification outcomes for SCD datasets records for medication. This 

is obtained using the features selection based on 13 features out of 14 features on the SCD 

datasets. These 13 features have a significant impact on the blood test results. In order to deal 

with each single classifier to learn for a specific application domain, a dataset is provided to 

work with. In this case, the dataset can be divided into three major key parts, which are the 

training set, the validation set, and the testing set. The training set is the data with which 

machine-learning algorithms learn to perform correlational tasks. While, the validation set is 

specifically to provide an estimate of generalisation performance during training, acting as a 

neutral set, which was not directly used for model parameter tuning. Eventually, the testing set 

is used to assess the performance of classifiers with unknown class labels. The purpose of 

dividing the datasets is to offer a comparison against all performance evaluation metrics that 
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performed, including the combination classifiers using the clinical and oversampled dataset. 

The following section presents the single classifiers that used in our experimental study.  

In this section, the structure of machine learning algorithms is elaborately discussed. This 

section concentrates on various classifiers including the determination of the total number of 

observations that is used in this research as feeding input and output for the machine learning 

models, and pre-processing and evaluating various classifiers. Moreover, it is also illustrating 

the performance technique metrics and accuracy method of the classification process. 

6.2.1 Random Forest Classifier (RFC) 

The initial performance evaluation technique was performed on the real collected SCD dataset, 

which includes 1896 observations. The empirical study is carried out using models in 

association with random forest, decision trees. In order to find the classification performance, 

each classifier calculated using the evaluation metrics. The training set and testing set is 

randomly selected with iteration with each run.  

The results from our experiments are listed in Tables 6.1, showing outcomes for training of the 

classifiers. The proposed study also provides further performance visualisations with ROC 

plots in Figures 6.1, and the use of AUC plots as illustrated in Figure 6.2. The AUC bar graphs 

provide a visual comparison of the area under the ROC curve across the models trained. 

Ultimately, ran the data down all the trees and proximity matrix fills in. then, divided the 

datasets according to the total number of trees that is used in our study. In our experiments, 

used RFC with 50 trees, 100 trees, 200 trees, 400 trees, and 500 trees to evaluate the 

performance evaluation metrics and accuracy. This study built the random forest first, ran the 

SCD datasets through the selected number of trees, and eventually recalculated the proximities 

values. During the training process to build the model, it is found that, RFC with 50 trees 

performed the best accuracy and AUC with 0.98156 and 0.99789, respectively. The proposed 

model discovered after running the simulation, the sensitivity with RFC 100 trees outperformed 

all the other approaches with 0.97856.  
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Table 6-1: Random Forest performance with average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

RFC50/1 0.97844 0.98244 0.86944 0.91844 0.96089 0.98156 0.99789 

RFC100/2 0.97856 0.98144 0.86522 0.91711 0.96022 0.98111 0.99656 

RFC200/3 0.971 0.96956 0.786 0.86544 0.94067 0.96933 0.99533 

RFC400/4 0.97011 0.96433 0.77156 0.85544 0.93444 0.96511 0.99378 

RFC500/5 0.954778 0.942778 0.677444 0.786889 0.897667 0.944667 0.985333 

 

Figure 6-1: ROC curve (Train) For random forest classifier per number of trees 

The random forest combines the simplicity of decision trees with flexibility resulting in a vast 

improvement in accuracy. As mentioned in chapter 4 in association with bootstrapped, create 

a new dataset that is considered the same size as the original. The important process with 

bootstrapped is to allow for selecting the important samples more than once. Once had created 

the bootstrapped datasets, created a random forest based on many decision trees but only using 

a random subset of variables or columns at each step. At each step, considered 13 attributes (13 

columns) with 9 different classes belonging to the amount of medication. Considering the 

subset of variables at each step, created a new bootstrapped dataset and built a number of trees. 

Ideally, this process occurred hundreds of times with iteration at each step. After running the 

data down all of the trees in the random forest, calculated which option received more votes.  

The bagging process uses a number of bootstrap samples from the original datasets that are 

randomly retrieved to create another dataset. Bagging is considered such a useful and effective 
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technique in random forest where small alterations in the training or testing phase can affect 

the accuracy and performance of the model. Since the label with the most votes win, it is 

assigned through the out-of-bag samples. In this case, the out-of-bag samples with 9 classes in 

our SCD dataset are accurately labelled by the RFC. Ultimately, can estimate how accurate the 

RFC is by the proportion of the out-of-Bag samples that were correctly classified by the random 

forest model. In contrast, the proportion of Out-of-Bag samples that were incorrectly classified 

is called the out-of-bag error. 

 

Figure 6-2: AUC Histigram (Train) for random forest classifier per number of trees 

The RFC/50 and RFC/100 are found to perform almost similarly to one another, with both 

ranking better outcomes for the training set. The AUC values for both models is average with 

9 classes 0.99789 and 0.99656, while obtaining 0.98156 and 0.98111 in regard to the accuracy, 

respectively. Consistent with the results obtained from the RFC/400 and RFC/500, it was found 

that the outcomes for Class 9 show the largest differential between the training with 1. On 

further examination of the results from the RFC/200, RFC/400, and RFC/500, it was found that 

despite the appearance of reasonable AUC values during training, the model had converted to 

a particularly narrow output range, suggesting that the training process is able to achieve clear 

correspondence with the classification targets, arriving instead at marginal responses. Further 

confirmation is reflected in the sensitivities and specificities obtained for these models, with 

values seen to fluctuate between opposite extremes.  
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Figure 6-3: ROC curve (Testing) for random forest classifier per number of trees 

This study investigated the performance of random forest models with different numbers of 

trees and compared with each other using the classification techniques using the oversampling 

SCD datasets. As mentioned earlier, the experiments were carried out using the original 

datasets with 14 variables and 9 classes (multi-class problems). The testing sets outcomes for 

the SCD datasets are illustrated in Table 6.2. The RFC100 obtained the best AUC with 0.91689; 

RFC 200 received the best accuracy. While, RFC with 500 trees acquired the lowest outcomes 

across all the AUC performance evaluation method with average of 9 classes 0.90333. 

Compared with other single classifiers, RFC yields high accuracy and AUC outcomes rates 

marked in bold.  In terms of the sensitivity and specificity with average of 9 classes, RFC400 

yields best results 0.86044 and 0.86167, respectively with high favour in classification 

performance that other approaches. Figure 6.3 and 6.4 illustrates the ROC curve and AUC 

(Testing), respectively, for random forest approaches per number of trees. The proposed model 

tested the ROC based on the true positive rates against the false positive rates. In the ROC 

graph, RFC50 performed best during the training and testing process. 
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Table 6-2:  Random forest performance with average of 9 classes (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

RFC50/1 0.830444 0.828889 0.373667 0.504333 0.659222 0.829556 0.888111 

RFC100/2 0.817778 0.837111 0.372667 0.505778 0.655111 0.837889 0.884889 

RFC200/3 0.813889 0.836444 0.372667 0.505 0.650444 0.836222 0.878111 

RFC400/4 0.86044 0.85111 0.42278 0.54978 0.71144 0.84967 0.91644 

RFC500/5 0.847 0.840222 0.404 0.529889 0.687111 0.839222 0.903333 

Further experiments show that the chosen dataset exhibits significant non-linear relationships, 

presenting a challenge for RFC test models. The RFC classifiers outperformed other single 

classifiers, demonstrating capability both for fitting the training data and in generalising to 

unseen examples. Subsequently, a single operating point was selected to illustrate a final 

classification decision; it was found that the performance at the chosen rejection threshold 

varied between the training and testing sets for Classes 1, 5, 9, as reflected earlier in the AUC 

values. Classes 2 and 7 were found to show reasonably consistent performance representation 

between the train and test sets for this model. It is possible that the reasonable performance 

obtained for the RFC architecture with various trees included, in contrast with the poor 

performance of the other machine learning algorithms types, such as ROM and LNN, could 

point to a detrimental effect on the outputs in the classification setting. In order to obtain better 

classification accuracy and performance used tree bagger based on 50 trees, 100 trees, 200 

trees, 400 trees, and 500 trees. The run iteration repeated 30 times. In order to evaluate the 

random forest, it is necessary to check the total number of features, which in our study is 13 

out of 14 features that most doctors concentrate on when classifying the amount of medication.  
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Figure 6-4: AUC Histogram (Train) for random forest classifier per number of trees 

Tree bagger frequently produces in-bag examples through oversamples target values (classes) 

with high classification costs and under-sampling target values with low classification costs. 

Therefore, out-of-bag technique examples have fewer observations from target values with 

high misclassification costs and more target values with low misclassification costs. In order 

to train a classification ensemble not using large datasets and skewed cost matrix, the total 

number of out-of-bag method observations per class is considerably low. Consequently, the 

estimate error occurs through the out-of-bag technique having large variances that are difficult 

to be interpreted. 

6.2.2 K-Nearest Neighbours Algorithm (KNN) 

The principal aims of using several classifiers in comparison with the baseline models is to 

estimate and evaluate each classifier that is able to perform the best. Each class is labelled to 

the specific amount of medication. The decision represents a trade-off, since our data sample 

was limited to about 1896 examples, thus excluding the possibility of a realistic division for 

more than 9 classes. The simulation classification results using k-Nearest Neighbours 

Algorithm (KNN) indicated that the proposed model produced slight improvements using the 

performance evaluation techniques metrics. The model performed well during the training 

stage and provided such robust results after selecting a random subset for testing process as 

seen in Table 6.3. KNN generates better results in comparison to the baseline classifiers as 

illustrated in section 6.4. The AUC figures for both training and testing sets illustrated that the 

proposed KNN achieved high accuracy in the majority of classes compared to ROM and LNN.  
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The results obtained from the experiments show that the KNN/1 classifier using 1 K- nearest 

neighbour outperformed all other classifiers with AUC 0.99956 and 0.99911 in terms of 

accuracy. This model was able to obtain 1 in sensitivity and 0.999 during specificity process. 

As illustrated in Table 6.3 and figure 6.7, this model extensively outperformed the baseline 

models LNN and ROM, by a significant margin. The classifier achieves an ideal fit over the 

training set for all operating points, as can be illustrated in Table 6.3, the ROC and AUC plots 

shown in Figures 6.5 and 6.7, respectively. Moreover, the performance obtained during the 

training of these two classifiers is shown to provide excellent generalisation to the test set, with 

AUCs ranging between 0.99 with 1 k and 0.715333 with 100 k also shown in Figure 6.6. The 

strong generalisation of this classifier indicates that there exists rich information content 

embedded within our selected data source, showing a high upper bound on classification 

performance. This research conducted further experiments using SVM classifier in the 

following section, showing that this class of model is significantly less capable for classifying 

our dataset.  

Table 6-3: KNN per number of K performance with an average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

KNN/1 1 0.999 0.98911 0.99422 0.999 0.99911 0.99956 

KNN/5 0.91911 0.83956 0.37622 0.51867 0.75878 0.84544 0.91944 

KNN/10 0.84389 0.76267 0.27333 0.39656 0.60656 0.77144 0.87156 

KNN/20 0.81544 0.70989 0.22743 0.33667 0.52544 0.71856 0.82267 

KNN/50 0.70078 0.67967 0.18903 0.276 0.38056 0.67856 0.75322 

KNN/100 0.659556 0.656111 0.173856 0.257456 0.316 0.657556 0.715333 
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Figure 6-5: ROC curve (Training) for KNN classifier per number of K 

This classifier is a variant of the artificial neural network where the outcome of new sample 

query is classified depending on the majority of KNN  category [245]. Further experiments 

show that the chosen dataset exhibits significant results during the training set; the objective of 

this model is to classify a new object without class label to check model performance and 

compare results between testing samples and training samples. In order to estimate the 

classification performance, this model uses the majority voting for this purpose. It utilises 

neighbourhood classification to predict a new instance, which k is a positive integer. To achieve 

that, this model used minimum distance from the new sample to the training samples. It is 

pointed by taking the majority vote of its neighbours, If K = 1, then the case is simply assigned 

to the class of its nearest neighbour. The neighbours are selected from the training samples set 

where the class label is known.  
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Figure 6-6: The accuracy and AUC of KNN (train and test) 

 

Figure 6-7: AUC (Train) for KNN classifier per number of K 

This model present a new technique to use different numbers of k to check the performance 

metrics during the testing process. This research used K-nearest neighbours with 1 k-nearest 

neighbour, 5 k-nearest neighbour, 10 k-nearest neighbour, 50 k-nearest neighbour, and 100 k-

nearest neighbour. During the investigation procedure, it found the KNN with 1 K produced 

the best results among other approaches. This result was expected as it used only one K. For 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KNN/1 KNN/5 KNN/10 KNN/20 KNN/50 KNN/100

F
re

q
u
n
cy

Classifer Per K

The Accuracy and AUC of KNN

Accuracy/Traning Accuracy/Testing AUC/Traning AUC/Testing

C
la

ss
if

ie
r
 a

c
c
u

r
a
cy

 



117 | P a g e  

 

validating results, it used more than one k with 1896 instances of our datasets including 9 

classes to evaluate the model performance with 6 techniques as illustrated in Table 6.4 and 

Figure 6.8. This study introduce the multi-class label classification problem in order to obtain 

training and testing methods for each model along with other performance evaluation. In 

machine learning, the model utilises a training set in association with building a classifier that 

provides a reliable classification. This research discusses different aspects of machine learning 

approaches for the classification of biomedical data. The results obtained from a range of 

models during our experiments have shown that the proposed combination of k classifiers 

outperformed other classifiers.  

Table 6-4: KNN classifiers performance with an average of 9 classes (Testing) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

KNN/1 0.716 0.67756 0.19461 0.27989 0.3936 0.678 0.71389 

KNN/5 0.51878 0.79778 0.22972 0.30967 0.31639 0.77444 0.67011 

KNN/10 0.65344 0.71133 0.20359 0.29222 0.36478 0.70833 0.69133 

KNN/20 0.725 0.61911 0.17667 0.25889 0.34411 0.62522 0.69833 

KNN/50 0.63333 0.633 0.16078 0.24092 0.26656 0.64267 0.64456 

KNN/100 0.656333 0.599111 0.157644 0.236422 0.255333 0.609889 0.629778 

The AUCs obtained for the KNN model during training are ranged between 0.71389 and 

0.629778 for average of 9 classes, in comparison to 0.678, 0.913, and 0.609889 over the test 

sample for accuracy measurement. The model results were poor in comparison with the RFC 

due the KNN performing badly with multi- classes and performing well with two classes. In 

Figure 6.9 for the AUC curve, it is pointed out that KNN with 1 k outperformed other 

approaches with 9 classes at the true positive rate. Based on experiments using 9 classes, this 

classifier has fastest learning time with fastest running time, but the performance classification 

evaluation metrics didn’t perform well in the clinical datasets. It is very important to obtain 

high performance and accuracy within healthcare provider domains because of dealing with 

patients’ condition.  
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Figure 6-8:  ROC curve (Test) for KNN classifier per number of K 

 

Figure 6-9:  AUC (Test) for KNN classifier per number of K 

In the SCD datasets, this model increased the F-measure with the range between 0.24092 and 

0.30967 of original attributes. In specific 13 attributes of the SCD dataset, Positive Predictive 

Value (PPV) is another way for statistical analysis, which has significantly increased the 

precision from 0.157644 at KNN/100 to 0.22972 with KNN/5. J1-score is a single statistic that 

is able to calculate the probability of multiclass case at an informed decision. More specifically, 

Youden's statistical technique is utilised to measure the ROC curve. This technique was able to 

obtain between 0.255333 and 0.36478.  Unfortunately, all 6 KNN classifiers were unable to 

improve the performance metric methods (slightly dropped from 0.99 during the training phase 

to 0.71389 within the testing process.  
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6.2.3 Support Vector Machines 

Support vector machines is a type of binary model that takes a set of variables as input and then 

classifies each variable (input) into two categories. The main idea behind that is to map the n-

dimensional sample values space into a higher dimensional attribute space, and then the new 

instance is classified through building a linear approach.  In this model, a data point is showed 

as a p-dimensional vector and SVM can be separated using p-1-dimensional hyperplane 

procedure. In fact, the main idea of this study is to identify geometrical patterns with 9 classes 

of the amount of medication that could be used universally across a number of models, 

including SVM. This study focused with a number of classifiers that are related to SVM to 

calculate the classification performance metrics. This thesis conducted the classification 

outcomes based on Support Vector Classifier (SVC), Trainable classifier: Support Vector 

Machine, nu-algorithm (NUSVC), Parzen Kernel Support Vector Classifier (RBSVC), Radial 

Basis Support Vector Classifier (RBSVC), and General kernel/dissimilarity-based 

classification (KERNELC). These models were used in our experiment and all of them work 

based on the support vector machine methodology.  

Our main target is to illustrate that all these SVM models with different types of optimization 

setting have provided satisfactory outcomes in terms of accuracy and performance and yield 

by building a sophisticated model that used in medical domains. The proposed study used a 

single database with high dimensional data of 13 features using 9 classes. This research 

implemented SVM using various types of kernels, such as kernel matrix, linear and sigmoid 

kernel. NUSVC is dealing with linear kernel, while PKSVC works with sigmoid kernel and 

KERNELC compute the outcomes depending on the kernel matrix. The training results 

illustrated in Table 6.5, and the ROC and AUS histograms show in Figures 6.10 and 6.11, 

respectively. 

Table 6-5: Range of SVM classifiers performance with an average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

SVC 0.74567 0.60389 0.20342 0.31444 0.34974 0.62944 0.68444 

NUSVC 0.74344 0.74189 0.27152 0.389 0.48556 0.74244 0.79878 

PKSVC 0.84844 0.90333 0.51033 0.62511 0.75189 0.89733 0.94267 

RBSVC 0.86 0.89667 0.52033 0.63278 0.75644 0.89278 0.94411 

KERNELC 0.819 0.783444 0.315667 0.449667 0.602556 0.787667 0.864111 
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In our SCD datasets, the data points are considered not linearly separable due to the 9 target 

values (classes) with multi-class problems. To achieve high accuracy with multi-class issues, 

it is important to use a nonlinear mapping (φ) method within dimension space [246]. The 

computational complexity of the model rises, when the data point moves into high dimensional 

space. In order to construct the classification algorithm, the learning procedure iteration by the 

data points with a number of operation needs to be completed. This thesis carried out a number 

of SVM experiments, first implemented SVM utilising default parameters, then investigated in 

depth the main effect of normalisation with other SVM classifiers on the classification 

evaluation and its effect on the model performance. Then, applied SVM parameter evaluation 

optimization based on different SVM models, such as KERNELC and NUSVC with more 

sophisticated methods to estimate the classification parameters techniques.  

 

Figure 6-10: ROC curve (Train) for a range of SVM classifiers  
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Figure 6-11: AUC Histgram plot (Train) for a range of SVM classifiers 

The linear kernel in this model has many parameters. However, the most significant one is C, 

which belongs to the cost function, and the penalty parameter values of the error rates. The cost 

function with each parameter comes with default value of zero. In terms of large value of cost 

function, it is allocated to margin errors with a large penalty. In contrast, a smaller value just 

ignores points that are identified close to the boundary and raises the margin side. The sigmoid 

kernel has an important parameter where the value of 𝛾 affects the classification accuracy and 

performance of this model. The default value is assigned with zero.  

Figures 6.12, 6.13 and 6.14 illustrate the outcomes for each model for measuring the training 

and testing techniques of the classifiers. The ROC Curve graphs provide a visual comparison 

across the models tested. This study used the holdout method for allocating training and testing 

cases. This assisted us to estimate the generalisation performance and accuracy of the 

classifiers, particularly on independents objects. In order to learn the dataset, need to operate 

two stages to build the learning schemes. For the training method, built the basic structure for 

each model to calculate the error rates as shown in Figures 6.10 and 6.11. Then, evaluated the 

datasets through the testing set in order to predict the accuracy and error rate for each model. 

This study compared the performance of 5 machine learning models over 9 output classes 

formed through the discretisation of target values, denoted classes 1 through 9. The main 

purpose is to compare our models with the baseline control models LNN (test) and ROM (test) 

as illustrated in section 6.4, demonstrating that our classifiers provide significantly better 

results than such baselines. It is found that PKSVC (test) produced the best results among other 
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classifiers as shown in Table 6.6 shows PKSVC yields the best performance during the 

sensitivity and specificity in comparison with other classifiers.  

 

Figure 6-12: Sensitivity and Specificity of SVM models 

The plots show in Figures 6.13 and 6.14 show the ROC curve and the area under the ROC 

curve (AUC) for each class over each model within our experiment. The discretisation of target 

values into classes 1 through 9. The AUC value is a scalar summary used to characterise the 

global capability of a given classifier under study. In our plots, the X axis shows the models 

and classes, while the Y axis shows the AUC that corresponds to each of the model entries 

listed over the X axis. An AUC of 1 represents an ideal classifier, while an AUC of 0.5 

represents random performance. Each of the bars plotted is associated with a corresponding 

curve in either of Figures 6.13 and 6.14, which represent the accompanying ROC curves for 

the training and testing sets. The purpose of the plot is to emphasise the AUC values in 

graphical form, such that a visual comparison can be drawn. 

Table 6-6:  Range of SVM classifiers performance with average of 9 classes (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

SVC 0.74433 0.62267 0.20774 0.32111 0.36663 0.65156 0.675 

NUSVC 0.77778 0.69656 0.23956 0.35944 0.47423 0.70833 0.78122 

PKSVC 0.83122 0.81478 0.34811 0.48411 0.646 0.81778 0.86556 

RBSVC 0.81356 0.80867 0.33822 0.47078 0.62222 0.81033 0.859 

KERNELC 0.757667 0.695889 0.239222 0.354333 0.4537 0.703667 0.765556 
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Figure 6-13: ROC curve (Test) for a range of SVM classifiers  

 

Figure 6-14: AUC Histgram plot (Test) for a range of SVM classifiers 

6.2.4 Neural Network Classifiers 

Neural networks with different kinds of approaches can perform classification, clustering, 

dimensionality reduction and, medical datasets. In this model, based on using the MATLAB 

platform, can visualize intermediate layers, the total number of inputs and outputs and 

activations, and the number of hidden layers, modify network construction, and monitor 

training tasks. The aims of this empirical study using NN is to estimate the generalisation 

ability of the network yield through the weigh unit during the construction model (training 

process) and to compare with other classifiers. There are several network combinations used 

and examined based on the classification performance evaluation metric techniques. The neural 

network architecture has one input layer including 13 inputs, 1 hidden layer with 30 units, the 
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activation function comprises linear and log-sigmoid function, and one output layer with 9 

classes belongs to the target values of the amount of medication. Figure 6.15 illustrates the 

neural network training architecture.   

 

Figure 6-15: Neural network training architecture 

The comparison is implemented based on holdout techniques on the entire of SCD datasets of 

1896 samples, which are used to evaluate this model. The training sets received 70% with 1327 

samples, 20% testing with 379, and validation obtained 10% with 190 samples. The total 

average of classification rate on the test phase, over the 20% is set up as an approximation of 

generalization performance estimation. The proposed research used different kinds of NN. This 

study implemented Levenberg Neural Network (LEVNN), Voted Perceptron Classifier (VPC), 

Automatic NN classifier (NEURC), Radial Basis Network Classifier (RBNC), 

Backpropagation Network classifier (BPXNC), and Trainable linear perceptron classifier 

(PERLC).  The performance evaluation rates for the training sets, ROC curve and the AUC are 

presented in Table 7.7. The comparative rate of ROC curves of this model is demonstrated in 

Figure 6.16. Although LEVNN obtained AUC and accuracy slightly lower than BPXNC, these 

outcomes are remarkable as shown in Figure in 6.17. The main reason behind that is due to the 

LEVNN not used all the training samples, in contrast with other NN approach BPXNC that 

used all the training instances. Sensitivity and specificity yield better results using BPXNC, 

which is just slightly higher that LEVNN with 0.78267 and 0.77578, respectively. Other 

classifiers VBC, NEURC, RBNC, and PERLC obtained poor outcomes during the AUC with 

0.73622, 0.77233, 0.79078, and 0.751667, respectively. 
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Table 6-7: Neural Network performance with average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN 0.78267 0.77578 0.30067 0.42444 0.55844 0.77622 0.85122 

VPC 0.69111 0.69222 0.21067 0.31678 0.38333 0.69256 0.73622 

NEURC 0.71922 0.71444 0.24764 0.36178 0.43344 0.71589 0.77233 

RBNC 0.71389 0.74944 0.30178 0.41767 0.46333 0.74933 0.79078 

BPXNC 0.79044 0.79689 0.33289 0.45489 0.587 0.79544 0.86856 

PERLC 0.710667 0.693778 0.231889 0.341889 0.404622 0.696778 0.751667 

 

Figure 6-16:  ROC curve (Train) for a range of NN classifiers 

 

Figure 6-17: AUC Histgram plot (Train) for a range of NN classifiers 
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Such a situation stands in contrast with the BPXNC model, for which a reasonable range of 

output values is achieved during both train and test phases. It is noted that for both the BPXNC 

and LEVNN, the operation of the hidden layer is altered using the backpropagation links, 

whereas the BPXNC hidden layer is altered via feedback from the output layer. Table 6.8 shows 

the classification performance evaluation of neural networks, where the selected method 

BPXNC achieved remarkable outcomes. Figure 6.18 presents the ROC curves with a range of 

classifiers. To evaluate this model, calculated the outcomes based on the true positive rates and 

false positive rates, which has been estimated between 0 and 1. Finally, Figure 6.19 shows the 

AUC with the average of 9 classes to a range of NN models.  

Table 6-8: Neural Network performance with average of 9 classes (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN 0.822 0.76511 0.29367 0.42278 0.58733 0.77122 0.841 

VPC 0.65511 0.70356 0.20866 0.30867 0.35856 0.70044 0.71111 

NEURC 0.69067 0.74133 0.25402 0.36311 0.43222 0.73633 0.74544 

RBNC 0.73189 0.71467 0.251 0.36444 0.44656 0.71778 0.76856 

BPXNC 0.829 0.78633 0.318 0.44378 0.61544 0.78767 0.85889 

PERLC 0.730333 0.684333 0.233778 0.344111 0.414778 0.691111 0.732778 

 

 

Figure 6-18:  ROC curve (Test) for a range of NN classifiers 
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Figure 6-19 AUC Histgram plot (Test) for a range of NN classifiers 

Applying supervise learning algorithms to check how machine-learning model can able to learn 

from the training samples and presents effective outcomes during the testing samples. Firstly, 

the learning classifiers builds a mathematical approach of classifiers based on giving training 

samples. The learning form implemented to large-scale problems effectively. Figure 6.20 

shows the best validation performance with epoch 170. Once the models designed, the 

predictions on the test samples assessed. Figures 6.21 illustrates Performance calculation of 

Gradient and Learning rate of NN models.  

 

 Figure 6-20: validation perfermance for neural network 
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Validation performance is 0.092568 at epoch 170 
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Figure 6-21: Perfermance calcuation of Gradient and Learning rate 

 

6.3 Benchmark classifiers 

Baseline algorithms are extremely important when dealing with machine learning models, 

which provides a point of reference to compare with other classifiers [247]. The main benefits 

of using such a technique is to predict a constant value, which is considered a useful and 

effective process for performance evaluation that can estimate a majority class. It is essential 

to make comparison if our selected approaches are able to outperform the baseline models 

during the training phase and testing phase. It is shown that the model does generalise well 

from training to testing, producing reasonable AUCs for in-sample fitting, while yielding test 

set AUCs better than the LNN baseline. The training sets of the LNN classifier model generated 

accuracy 0.571, and the AUC 0.542889, while the testing sets produced values 0.555667 for 

the accuracy and 0.539333 for the AUC as expected. With this regard, the LNN model was 

incapable of learning specifically the non-linear components as shown in Table 6.9. It yields 

weak classification outcomes against the other models. Random oracles model was unable to 

learn the non-linear components and offered modest results, The ROM is seen to follow the 

diagonal of the ROC plots for all classes (see Figure 6.22 and 6.24).  The AUC histogram 

graphs for all classes (see Figure 6.23, Figure 6.25, and Table 6.10), illustrating by contrast the 

significance of the results from the other trained classifiers. 



129 | P a g e  

 

Table 6-9: Baseline classifiers performance with an average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM 0.46333 0.57444 0.11889 0.18472 0.03802 0.56567 0.50333 

LNN 0.548444 0.569222 0.142011 0.219467 0.117422 0.571 0.542889 

 

 

Figure 6-22 ROC curve (Traning ) for baseline classifiers 

 

Figure 6-23: AUC histogram plot (Train) for baseline classifiers 

The simulation results based on two baseline classifiers indicated that, there are slight 

improvements in the performance and accuracy of these two models compared with the 

standard models. However, LNN and ROM yield the lowest outcomes concerning the 

classification evaluation performance metric and are not able to be used in the healthcare 

provider’s domain, as they need better outcomes. The following section is based on the 

Ensemble classifier combining more than two machine-learning models to check if there any 

significant improvements can be made with this technique.  
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Table 6-10: Baseline classifiers performance with an average of 9 classes (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM 0.56233 0.51367 0.12834 0.1964 0.07584 0.51444 0.51344 

LNN 0.607333 0.545 0.145578 0.227 0.152633 0.555667 0.539333 

 

Figure 6-24:  ROC curve (Test) for baseline classifiers 

The ROC curve demonstrates the TPR (or recall) a classifier achieves versus false positive rate 

when varying the classifier’s discrimination threshold [248]. More specifically, if the probability 

distributions for both prediction and false alarm are identified, then the ROC curve can be 

created by plotting the increasing distribution task of the false-alarm probability on the x-axis 

against increasing distribution task of the prediction probability in the y-axis [249]. The ROC 

curve is a plot that can be used to understand the classification and prediction performance of a 

binary or multi classifiers. As mentioned early, each point on the ROC curve illustrates the level 

of threshold for classification and states the total proportion of positive samples that are correctly 

classified, against the proportion of negative samples that are incorrectly classified. 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Figure 6-25: AUC histogram plot (Test) for baseline classifiers 

This histogram method is a bar graph that represents a frequency distribution. The height 

depicts the corresponding frequency, while the width depicts the interval. The plot shows a 

graphical example of a histogram. In terms of mathematical common sense, a histogram plot 

is a procedure that attempt to counts the observations that usually fall into each of the bins. 

This technique helps to estimate the probability distribution of the chosen observations against 

of the expected normal distributions predictable from the datasets. 

6.4 Ensemble Classifier 

An ensemble model is a technique that combines two or multiple classifiers for the purpose of 

improving the classification performance and accuracy as well as enhancing robustness from 

any of the fundamental models. In the literature review chapter, several studies demonstrated 

based on machine learning algorithms with sickle cell disorder but none of the researchers used 

ensemble classifier to estimate the classification results. This method is considered effective 

and yields good outcomes, particularly when using the proper classifiers to be combined. In 

our experiment, the ensemble classifier was able to learn specifically the non-linear 

components and produced strong classification outcomes against the other models. The 

previous experiments based on single classifier demonstrated very interesting outcomes that 

required further investigation using more than one classifier. The main aims of using the 

ensemble model are to see the abilities of the optimal performing models and estimate the 

overall classification accuracy and performance that improved with better outcomes. This 

technique is designed based on the pattern recognition system in association with the bootstrap 

aggregating approach to enhance the accuracy and stability of the selected algorithms. At many 
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points, our approach combines a strong classifier that produces consistent AUC values with a 

considerably weak classifier. The ensemble model is based on Neural Network, Random Forest 

and K Nearest Neighbours.  

The proposed study implemented 6 basic algorithms including K Nearest Neighbours 

Classifier, Levenberg Neural Network Classifier, Random Forest Classifier, Backpropagation 

Neural Network, Radial basis neural network classifier and Voted Perceptron Classifier. This 

technique combined a number of machine learning models to obtain better results. Firstly, 

combined LEVNN with a number of features. Secondly, used the same classifier to be 

combined with VPC with the support of LEVNN. Then, in order to achieve a good result, four 

types of classifiers, namely LEVNN, VPC, RBNC, Random forest based on the LEVNN, were 

used. This type of combination received the most accurate and best results in terms of the 

performance evaluation metrics. Eventually, concentrated on using KNN with a number of K 

based on different types of classifiers. The proposed research combined KNN with support of 

random forest, LEVNN and KNN using different number of K, which ranges between 1 K and 

25 K.    

The classification performance evaluation techniques metrics is based on 13 features and 9 

classes using single high dimension SCD dataset. The use of ensemble mode not only decreased 

computation time, but it was able to work with non-linear components and improve the 

performance and accuracy. Table 6.11 and Table 6.12 show the training and testing, 

respectively, outcomes of 7 combined classifiers strategies. Instead of selecting the training 

samples randomly utilising a uniform dispersal, it selects the training samples in such a manner, 

which not correctly learned. The prediction on SCD datasets during the training sets is 

performed after several cycles through taking the majority vote for random forest classifier. 

While, during the neural network classifiers, the prediction is performed on each classifier after 

a number of cycles taking a weighted vote, as well as the weights being proportional to each 

model’s performance and accuracy. 

It is indicated that, the combined classifiers have the benefit to deal with any change in the 

monitored data stream more correctly then the single model [250]. In our experiment, the NN 

and RFC illustrate strong generalisation toward SCD data with optimal results with AUC 

0.99833, accuracy 0.98467, Sensitivity 0.99111, and Specificity 0.98367. RFC tries to mitigate 

the issues of high bias and variance through calculating the average of total number of classes 

to find a balance between the 9 target values. The strong generalisation of these two classifiers 
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indicates that there exists rich information content embedded within our selected data source, 

showing a high upper bound on classification performance. The proposed study conducted 

further experiments using a combination of LEVNN classifier (LEVNN Com), a combination 

between LEVNN and VPC (NN Com), and integration using KNN with different numbers of 

K (KNNs Com, KNNH (model1), KNNH(model2), KNNH(model3)), showing that this class 

of model is significantly less capable of classifying our dataset as shown in Figure 6.26 and 

6.27.  

Table 6-11: Combined classifiers performance for 13 features (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN Com 0.85678 0.87222 0.44444 0.57944 0.72889 0.87211 0.93533 

NN Com 0.865 0.85489 0.42744 0.55944 0.71978 0.85578 0.93233 

NN and RFC 0.99111 0.98367 0.89367 0.93933 0.97478 0.98467 0.99833 

KNNS Com 0.90044 0.87344 0.46078 0.605 0.77367 0.87633 0.94922 

KNNH1 0.899 0.86011 0.435 0.579 0.75911 0.86267 0.941 

KNNH2 0.91044 0.88622 0.487 0.63056 0.79644 0.88822 0.95722 

KNNH3 0.769444 0.753889 0.271333 0.396333 0.523111 0.756778 0.832889 

 

Figure 6-26: ROC curve (Train) for ensemble classifiers 
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Figure 6-27: AUC Histgram plot (Tran) for Ensemble classifiers 

The ROC and AUC provides such a good visual indication if an ensemble model produce better 

results than other combination of classifiers over a set of operation processes. These two kind 

of operation are a portion of the area of the unit square: its value between 0 and 1 [251]. Table 

6.12 shows that the inclusion of SCD datasets has improved the outcomes in our experiments 

by combining classifiers as illustrated in the single classifier section. The neural network 

approaches with random forest (NN and RFC) produced high value for accuracy, AUC, 

Sensitivity, Specificity, and outperformed all other single and ensemble classifiers. Figure 6.28, 

6.29, and Figure 6.30 illustrates the classification performance including the precision with F1 

score, ROC, and AUC, respectively. The algorithms which produce optimal outcomes are 

considered robust to deal with the non-linear approach as well as suitable to act as comparators 

of the classification performance techniques. The poor outcomes of other combined classifiers 

indicate that the models could not learn well from the SCD data.  

 

C
la

ss
if

ie
r
 a

c
c
u

r
a
cy

 



135 | P a g e  

 

 

Figure 6-28: Precision and F1 score technique for ensemble classifier 

During the testing process, the NN and RFC obtained 0.93789 with AUC, and 0.90644 with 

the accuracy estimation, while the sensitivity received 0.87778 and specificity acquired 

0.90856. These outcomes are considered the best outcomes in comparison with all classifiers, 

particularly during the testing set after building the model with the training instances.  

Table 6-12: Combined classifiers performance for 13 features (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN Com 0.85111 0.87233 0.45878 0.581 0.72333 0.87011 0.92244 

NN Com 0.85344 0.86556 0.43722 0.56244 0.719 0.86322 0.91856 

NN and RFC 0.87778 0.90856 0.55922 0.67389 0.78622 0.90644 0.93789 

KNNS Com 0.69611 0.72089 0.24111 0.34878 0.417 0.721 0.72911 

KNNH1 0.71256 0.69422 0.2224 0.32878 0.40656 0.69556 0.71933 

KNNH2 0.71767 0.67411 0.2188 0.32367 0.39178 0.67856 0.72033 

KNNH3 0.624444 0.671444 0.186944 0.276111 0.296052 0.665 0.675556 

Classification Performance 
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 Figure 6-29: ROC curve (Test) for ensemble classifiers 

 

Figure 6-30: AUC histgram plot (Test) for ensemble classifiers 

The main reason of using the 13 features out of 14 features is to improve the accuracy and 

performance. Tables 6.13 and 6.14 illustrates the evaluation metrics techniques using 10 

features out of 14 features. It is indicated that in table 6.14, the performance of the most 

ensemble classifiers has been decreased.  
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Table 6-13: The 10 features selection outcomes compared to 13 features (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN Com -0.009331 -0.007891 -0.031671 -0.026004 -0.01711 -0.006779 -0.004226 

NN Com -0.12611 -0.12878 -0.46623 -0.37989 -0.255 -0.12889 -0.066 

NN and RFC 0.062332 0.03267 0.171337 0.140441 0.095113 0.036892 0.022441 

KNNS Com -0.009449 -0.003893 -0.006109 -0.006667 -0.013441 -0.003337 0.002331 

KNNH1 -0.015778 -0.008557 -0.021222 -0.025444 -0.024334 -0.010552 -0.007111 

KNNH2 0.122996 0.112109 0.191444 0.206227 0.234773 0.110442 0.130664 

KNNH3 0.001444 0.010778 0.0045 0.010889 0.011778 0.012667 0.008111 

Table 6-14: The 10 features selection outcomes compared to 13 features (Test) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN Com 0.01511 0.02422 0.06889 0.06311 0.03933 0.02389 0.02944 

NN Com 0.03166 -0.01411 -0.00911 -0.00234 0.01756 -0.01 0.02956 

NN and RFC 0.06334 0.09212 0.20155 0.19867 0.15544 0.09244 0.074 

KNNS Com 0.01922 0.02767 0.02755 0.03145 0.04689 0.02633 0.01122 

KNNH1 0.04734 0.00966 0.01462 0.01989 0.05683 0.01056 0.02589 

KNNH2 0.203448 -0.032223 0.042633 0.067781 0.171058 -0.012996 0.096552 

KNNH3 -0.07389 -0.011 -0.02283 -0.03345 -0.08473 -0.01589 -0.04389 

6.5 Discussion  

In this study, a data science methodology is used that combines 13 features extracted from 1896 

records for the prediction of SCD outcomes for medication. The main reason that our methods 

NN and RFC are powerful is due to the achievement that made during the training and testing 

phase. The AUC outcomes of the best ensemble classifier (NN and RFC) produced 0.99833 for 

the training sets as shown in Table 6.15, while testing sets produced 0.93789 shown in Table 

6.16, which is considered a good achievement due to the use of nonlinear methods as well as 

inseparable datasets. The main reason that neural network and random forest produced the best 

results due to the highest outcome received by other classifiers. For instance, the training set of 

LEVNN Com received 0.93533, NN Com received 0.93233, and random forest yield 0.99378. 

In terms of testing set, LEVNN Com obtained 0.92244, NN Com obtained 0.91856, and random 

forest yield 0.91644. The best outcomes in this study received during the training and testing 

phase make the (NN and RFC) outperformed other classifiers. Our experiment 

produced statistical methods that affected by outliers as well as offering methods with better 

performance with a few departures that are controlled by parametric distributions. 

https://en.wikipedia.org/wiki/Statistical_method
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Parametric_statistics
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Overall, the body of results that obtained highlight the potential of medical data for the 

classification of SCD dosage ranges. It is clear that the choice of model is crucial in obtaining 

a satisfactory result, as is evident in the variation of the performance between the models used 

in our experiment. The NN and RFC classifiers responded successfully to the SCD data and 

are therefore of potential use in the medical field. 

Furthermore, the performance evaluations are for data drawn from a number of probability 

distributions, particularly for distributions that are not standard.  RFC and NN are powerful 

models for the analysis of SCD datasets, as has been proven for this domain to offer strong 

prediction accuracy and performance in comparison with other classifiers. This type of 

classifiers/algorithm employs the out-of-bag method instead of cross-validation, which 

enhances the stability of results during the training and testing process. A good relationship 

between input features and target values is discovered during the development process. The 

datasets were moderate in size, with 20% of the input features randomly selected for testing 

and the remaining percentages of 70% and 10% used for training and validation, respectively. 

In this context, the test set errors is averaged, and the procedure was repeated several times. 

Generally, RFC preserves the appealing attributes of decision trees, for instance, handling of 

redundant/irrelevant descriptors, numerous mechanisms of action, the capability to deal with 

both regression and classification, and the ability to handle various kinds of descriptors 

simultaneously. This model was much faster with respect to the training procedure, in 

comparison to the ensemble techniques. A key reason that RF with NN produced the highest 

performance is because the model did not have the issue of over-fit, and most importantly did 

not require guidance. Additionally, this approach can effectively estimate the significance of 

features, specifically for classification. Some of the variables are mislabelled for our datasets; 

the algorithm can handle and detect such missing values, in addition to operating effectively 

on unbalanced and categorical data, which is less viable for other classifiers, such as SVMs. 

With the integration of accuracy and efficiency in addition to the useful analytical techniques, 

the RF and NN algorithms constitute a viable and effective technique for the multi-source 

classification of SCD datasets, where no suitable statistical algorithms are available. The results 

gained from the empirical investigation into the use of various types of machine learning 

models show that the chosen datasets exhibit significant non-linear relationships, presenting a 

challenge for the test models. Of the combined classifiers under study, the NN-RFC 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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outperformed the other models as illustrated, demonstrating capability in fitting during the 

testing phase. 

Table 6-15: Overview for all Classifiers performance with average of 9 classes (Train) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

RFC400/4 0.97011 0.96433 0.77156 0.85544 0.93444 0.96511 0.99378 

KNN/5 0.91911 0.83956 0.37622 0.51867 0.75878 0.84544 0.91944 

PKSVC 0.84844 0.90333 0.51033 0.62511 0.75189 0.89733 0.94267 

RBSVC 0.86 0.89667 0.52033 0.63278 0.75644 0.89278 0.94411 

BPXNC 0.79044 0.79689 0.33289 0.45489 0.587 0.79544 0.86856 

LNN 0.548444 0.569222 0.142011 0.219467 0.117422 0.571 0.542889 

LEVNN Com 0.85678 0.87222 0.44444 0.57944 0.72889 0.87211 0.93533 

NN Com 0.865 0.85489 0.42744 0.55944 0.71978 0.85578 0.93233 

NN and RFC 0.99111 0.98367 0.89367 0.93933 0.97478 0.98467 0.99833 

KNNS Com 0.90044 0.87344 0.46078 0.605 0.77367 0.87633 0.94922 

KNNH1 0.899 0.86011 0.435 0.579 0.75911 0.86267 0.941 

KNNH2 0.91044 0.88622 0.487 0.63056 0.79644 0.88822 0.95722 

KNNH3 0.769444 0.753889 0.271333 0.396333 0.523111 0.756778 0.832889 

Table 6-16: Overview for all classifiers performance with average of 9 classes (Testing) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

RFC400/4 0.86044 0.85111 0.42278 0.54978 0.71144 0.84967 0.91644 

KNN/1 0.716 0.67756 0.19461 0.27989 0.3936 0.678 0.71389 

KNN/5 0.51878 0.79778 0.22972 0.30967 0.31639 0.77444 0.67011 

PKSVC 0.83122 0.81478 0.34811 0.48411 0.646 0.81778 0.86556 

RBSVC 0.81356 0.80867 0.33822 0.47078 0.62222 0.81033 0.859 

BPXNC 0.829 0.78633 0.318 0.44378 0.61544 0.78767 0.85889 

LNN 0.607333 0.545 0.145578 0.227 0.152633 0.555667 0.539333 

LEVNN Com 0.85111 0.87233 0.45878 0.581 0.72333 0.87011 0.92244 

NN Com 0.85344 0.86556 0.43722 0.56244 0.719 0.86322 0.91856 

NN Com and 

RFC 
0.87778 0.90856 0.55922 0.67389 0.78622 0.90644 0.93789 

KNNS Com 0.69611 0.72089 0.24111 0.34878 0.417 0.721 0.72911 

KNNH1 0.71256 0.69422 0.2224 0.32878 0.40656 0.69556 0.71933 

KNNH2 0.71767 0.67411 0.2188 0.32367 0.39178 0.67856 0.72033 
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6.6 Chapter Summary  

This study conducted an empirical investigation into the use of various types of machine 

learning models for the classification of SCD effective dosage levels. This research has 

introduced various types of machine learning algorithms for analysing medical data obtained 

from SCD patients in contrast with traditional medical solutions. Our study sought to 

investigate the effectiveness of the machine learning approach including ANNs when posed in 

the direct classification setting for classification of SCD effective dosage levels. It was 

discovered through experimental investigation, comprising the usage of patient sample data 

and approaches such as the LVMNN, RFC, KNN, SVMs, and the baseline models, that the 

analysis of medical data for the SCD objective is viable and yields precise results. The results 

obtained from a range of models during our experiments have shown that the combined 

classifiers NN and RFC produced significantly better outcomes over the other range of 

classifiers.  
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Chapter 7 SCD Web-based System 

7.1 Introduction 

This represents an overview of the current web-based SCD application system for patients and 

clinicians. The web-based system platform in the medical setting would permit clinical domains 

to collaborate in the form of building strong communication between patients and hospital staff 

remotely, without the need to come to hospital. This can save a lot of money and time, especially 

for medical experts who are always under pressure and need to look after patients with life 

threating conditions. In this scenario, it is crucial to develop high quality, low cost methods to 

assist on a collaboration interface, which would enhance the quality of care for patient and 

clinicians.  The main aim of this research is to develop a complete hospital system for the 

Department of Haematology and Oncology at the Alder Hey Children's NHS Foundation Trust. 

This chapter presented the system architecture, central database front-end and back-end 

platform. Moreover, taken into account the data security and privacy. System components based 

on web-based interface with authorisation and authentication are also discussed.  

7.2 System Architecture    

Both the developed and developing countries are still suffering from chronic diseases such as 

Sickle cell disease (SCD), which lead to costs for the healthcare organisations and decreased 

productivity of individuals in society. In this context, the best way to reduce healthcare sector 

costs and empower the individual is through monitoring of SCD patients in order to mitigate 

and manage the disease.  

SCD cannot be cured but with a proper managing and pre-alarming system can mitigate its 

severity, which could have an influence on patients’ lives. One of the most significant solutions 

to achieve this challenge is to develop web-based applications to allow healthcare professionals 

to monitor the vast majority of patients instead of using old-fashioned paper-based methods. It 

is clear that, identifying the challenges and opportunities of the web-based platform have such 

an important role in terms of inventing a reliable system for the medical sector. However, the 

attempt in this case is to develop a unique web-based system to deliver remote monitoring for 

SCD patients with the genetic blood disorder. When the system detects any critical condition 

from the patient, it generates an automatic message to the medical doctors in order to provide 
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support for optimal decisions. An effective care management system for SCD requires regular 

monitoring using the web application platform that could have a potential impact on mitigating 

patient disease before they progress to a critical condition [252]. In order to improve the 

innovations in the area of information technology particularly in healthcare organisations, web-

based systems are considered. The application of monitoring systems and remote health 

diagnosis systems based on web platforms allow healthcare professionals to access the patient’s 

database and obtain sufficient information about each patient. 

Figure 7.1 shows the architecture of the proposed new framework for managing and remote 

monitoring of the patient’s diary, based on a web-based application. The proposed system 

consists of a web application, any smart device or personal computer, and a network 

coordinator. It shows a general idea of interactions, communication, organisation, channels, 

and the data flow within the framework. The model used to deliver daily feedback to healthcare 

consultants to provide patients with recommendations and treatments. The proposed 

framework is divided into two sides. The patient side is used to monitor, to store and collect 

data, as well as to send feedback messages to the medical specialists in association with high-

risk conditions. The high-risk condition could happen when the number of heartbeats is 

significantly increasing or breathing becomes difficult also known as vaso-occlusive 

crisis[253]. The hospital side consists of a database and a decision support system. The 

connection between patients and medical sides is adopted through network communication 

environments to keep the doctors informed about the patient’s condition. The proposed system 

with its web-based interface, is designed to offer a straight connection between patients and 

clinicians, it also permits the test results to be gathered from patients that were diagnosed with 

SCD anywhere, anytime, and on a regular basis. The web-based application sends the complete 

information to the back-end server using HTTP protocol in order to be informed about the 

patient’s progress. The main contribution of this research is to illustrate a personal SCD 

monitoring system, which combines an expert system, web-application, and personal computer 

to facilitate the control of SCD situations.   
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Figure 7-1: The Web-based proposed System 

This modern technology provides proper treatment, preventing test duplication and 

communicating with patients during emergency. Technological solutions ought to be designed 

based on local realities and to match with local requirements in such a way that measurably 

contributes and is of practical use in order to achieve the main aims of healthcare development. 

The web-based system consists of a different kind of interface for patients and physicians. The 

patients have the ability to access previous data in order to see if there has been a significant 

improvement since the previous time. A graph representation integrated within the web system 

to provide patients with a view of the overall activities. On the other hand, all patient’s data is 

transferred to the web-based network interface used by medical experts, which can deal with the 

patient’s responses through a user-friendly layout. Furthermore, the healthcare consultant is able 

to set alarm parameters for notification purposes for each patient in order to remind them to 

provide regular blood tests or the need for a clinic appointment. In these circumstances, designed 

a user-friendly system based on a web platform for remote monitoring for patients who suffer 

from SCD. Such applications could enhance healthcare services, have the potential impact on 

reducing professional isolation particularly in remote locations, and offer ongoing support to the 

clinicians as well as the community. 

Smart 

Device 
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7.2.1 Front-End and Back-End System  

The front-end system provides a number of benefits and offers continuous alert information 

before the situation becomes critical. This research concentrates on deploying a self-care 

management system for SCD to develop the view of electronic healthcare. The self-care 

monitoring system is considered one of the most important tools for patients’ daily life. This 

could provide patients the ability to check and monitor their own health condition through smart 

device technology. The web-based application receives the outcomes from patients and 

determines whether the patient has a critical condition or otherwise. Based on advanced 

communication technology, personal monitoring systems have high potential for supporting 

SCD patients to manage their health condition rather than visiting medical consultants at 

regular times or being admitted into hospital. 

The back-end system is used for the patient management system that enhance the records 

management for hospitals, nursing homes, and clinics. For the control of the complete system 

and supported resources, the communication infrastructure and a server back-end are provided. 

The back-end platform is based on Electronic Medical Records (EMR), which is a longitudinal 

patient record in the healthcare organisation. Medication, past medical history, important signs, 

progress notes, and laboratory data are involved within it. This type of technique is used to 

provide the daily medical workflow and some other activities directly through its platform. It 

offers a centralised management of patient’s records on the web server and supports a 

distributed data centre and information sharing through a network structure. This method can 

deal with data processing and database components, which implements responses in relation to 

what the patient has initiated. The main motivation for using this system is to integrate all 

collaboration functionalities and crucial clinical requirements within one convenient set of tools 

and one consistent access method through a web-based system. Hence, approaches to assist the 

healthcare field and their patient demand are required that should be eligible to use the web 

page as efficiently as possible. Figure 7.2 illustrates the front-end and back-end system. 
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Figure 7-2: Front-end and back-end architecture 

Development and research of a Web-based system application and the enhancement of all types 

of base communication technologies are thought to be significance worldwide. This system is 

generally designed for use through healthcare professionals as a central control for data 

analysis/collection [220]. The proposed system was developed mainly in MySQL database 

server and Hypertext Pre-processor (PHP) web platform. It is well designed and supports a user-

friendly interface via integration with the database system using web technology. This study 

develops a web-based medical management system that amalgamates components including 

patient accounting, graph representation, emergency requests, and appointments into one set 

solution. Meanwhile, this approach can deal with the data presented to the system and analyse 

it to identify the level of crisis and degree of impact on the SCD patient’s life. For use of the 

proposed system, this study applies a web-based platform for a pharmacy facility that offers a 

good service for patients in terms of ordering their medication online before it is finished. 

7.2.2 Central Database 

The central database server offers a data storage for clinicians and patients with easily storage 

location accessible. The database is created based on MySQL Workbench application. The 

server application has been hosted on LJMU server ( https://www.cms.livjm.ac.uk), which 

delivers hosting services. LJMU server provides a service that offers domain name registration 

including email hosting, back-up of servers, spam filtering etc. Hosting the SCD web-based 

system on LJMU server for clinicians and patients is successfully tested on the local server. 

The database schema and its relations are created using MySQL workbench program as shown 

in Figure 7.3.  

https://www.cms.livjm.ac.uk/
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Figure 7-3: Database schema of Web-based tables 

The database is considered significant for the SCD web-based system due to the ability to store 

and retrieve patient information dynamically. As shown in Figure 7.3, this study used the star 

schema structure for the development process at the central database platform. The star schema 

is one of the well-known and simplest schema architectures in the state of the art [220]. In order 

to implement the database schema structure, it is essential to combine the tables into two groups 

(patient tables and clinician tables). The first group (patient group) sends and receives 

information through the SCD web-based patient’s platform, while the second group (clinicians 

group) sends and receives information by the SCD web-based system clinician’s platform.  

7.2.3 Security and Privacy  

The system is restricted to the medical experts and protected with high security through a secure 

login page. The main reason behind that is any information or data related to a patient’s record 

is sensitive and private. With privacy-enhanced and security-enhanced healthcare web-based 

system, this kind of platform supports not only a low cost, time effective but also well-

performed and secure application solution for healthcare providers. The back-end objective 

therefore is to improve health systems and work as a databank to save all the electronic medical 
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records information in a suitable method in which any patient has the ability to retrieve, update 

add, and delete their own records as well as share the whole record with the clinicians to double 

check the current condition. 

However, as dealing with patient accounts that need be highly secure, password is considered 

is a vital part of being protected. Instead of using traditional methods, which can be reversed 

easily, the web-based system is designed to protect clinicians’ and patients’ passwords using a 

salted password based on hashing technique. Hash methods are designed with one-way tasks. 

It works through converting into a fixed-length any quantity of data that is impossible to be 

reversed in case hackers attempt to obtain any significant information. Ideally, using hash 

processes is the optimal method to protect passwords, which can’t convert a hash code back 

into its original string [220]. Therefore, there is high possibility that hackers and malicious 

applications may attempt to utilise brute-force attacks. In order to avoid that situation, a 

"salting" function has been added that is able to provide a random string known as salt to the 

password. Figure 7.4 illustrates the log-on table for the patients’ side. 

 

Figure 7-4: Login table for patients  

As mentioned earlier, the web-based system deals with sensitive medical data for clinicians 

and patients’ information details, the data in the central database accessed by authorised 

individuals who are allowed to use the system and staff knowledgeable about sickle cell 

disorder.  In order to access the system, patients and clinicians must have correct user name 

and password as sent by the main administrator. Figure 7.5 demonstrates the log-on page.  
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Figure 7-5: Log-on main page (patient and clinician) 

In order to use the web-based system, the clinician needs to select only SCD patients with special 

username and password. It is important that the clinician has full access to the system and only 

adds the SCD patients. This research do not want other patients with different disorders to 

register to the SCD web-based system as it is designed for this one disease. After the health 

expert successfully enters all the values and clicks on registration as shown in Figure 7.6, an 

email automatically generated and sent to the administrator and patient with the correct values. 

The new user (new patient or new staff) receives an automatic email with an activation link. 

Once the new patient and staff is successfully activated, they automatically added to the central 

database and can login into the web-based system using their login credentials. 
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Figure 7-6: SCD patient web-based system 

7.2.4 SCD Patient Web-based System  

Patients are required to write the correct details in the log-on page. Once the details are entered 

correctly in the log-on page, the new pages appears as demonstrated in Figure 7.7. The Figure 

7.7 is designed in the proper way with a user-friendly interface in order to keep a direct 

connection between patients and hospitals in terms of critical conditions.  
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Figure 7-7: Patient’s dashboard 

The web-based system provides several facilities for patients and clinicians due to their 

development with the dynamic content generation. Although this application has unique 

challenges with the pressure to change frequently, line representation has been placed to show 

the patients when a significant improvement has been made after taking the medication on a 

regular basis. One of the most difficult tasks for clinicians is how to convince patients to take 

their dosage daily, especially with children under their parents’ care. Figure 7.8 shows the line 

graph representation for haemoglobin and foetal haemoglobin. These 2 blood features are 

considered very important for sickle cell disorder to show them if any significant improvements 

have been made with their blood test results. It indicated that the patient’s health has progressed 

well and improved with high outcome.  
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Figure 7-8: Line graph representation 

Using the web-based system application, the symptom section asks patients a number of 

questions about their symptoms and needs patients to input full details about their symptoms. 

The main purpose of using the symptoms checker is to make sure about the patient’s condition. 

After contacting the Consultant Paediatric Haematologist at Alder Hey Children’s Hospital 

Liverpool, it is confirmed that the hospital does not have sufficient information about patients’ 

condition at home. Hence, it is essential to create a symptoms platform, which can provide 

clinicians full details about patient history when they are at home. Figure 7.9 illustrates the 

patient symptoms platform.  Typically, the symptoms platform is able to serve the patient with 

two important functions: to facilitate sickle cell disorder management with self-diagnosis as well 

as to help with triage. The self-diagnosis options offer and support patients with a list of 

diagnoses that are needed when symptoms appear in their body. It is mainly designed to assist 

by educating patient on the various diagnoses function that could fit their symptoms. The triage 

side is able to provide sufficient information on what they need to do to tackle their symptoms.  

Once the information is filled in the symptoms platform, it automatically sent to the clinician 

in order to review the patient’s symptoms and stored for further investigations. The symptom 

page offers a good service for patients whether their condition needs to be directed to the 

healthcare professionals or otherwise.  There are several advantages of implementing such a 

platform. Firstly, it can encourage sickle cell disorder patients, who are susceptible to a life-

threating problem like heart attack, bleeding and stroke to seek emergency care. Secondly, for 

SCD patients with common symptoms, which are not, considered critical according the medical 
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adviser, this platform is able to provide first aid and suitable recommendation at home. This can 

assist to save patients’ money and time for reducing hospital visits to see the clinicians regularly 

and could reduce demand on primary care. To ensure patient health, this platform can be suitable 

for patients with minor symptoms to seek care. However, patients with life threating problems 

are required to contact the hospital in case misdiagnosis might make their health not good and 

increase morbidity.  

 

Figure 7-9: Patient’s symptoms platform 

The clinician is required to check the blood test results and provide the accurate amount of 

medication according to the patient’s conditions. Each patient is taking a specific amount of 

dosage every day. Currently, the local hospital is dealing with patients  through a paper-based 

system and there is no electronic version so that patients can follow-up their medication. Most 

patients make mistakes frequently with taking their weekly medication. In this case, support the 

patient’s platform with weekly dosage medication. As this study concentrates on Hydroxyurea 

only, assume all patients have sickle cell disorder and they have been diagnosed accurately. This 

can assist patients to avoid making any mistake and follow up exactly the doctor’s 

recommendation.  Figure 7.10 illustrate the patient medication platform.  
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Figure 7-10: Patient information 

This study assume SCD patients have full access to all the necessary platforms e.g. symptoms 

platform, patient’s medication, order a new dosage, blood test result monthly platform, and 

contact hospital with emergency case. It is also assumed SCD patients possess basic skills with 

enough information about IT to upload their daily dosage taking and symptoms onto a web-

based system. The system is designed to be user-friendly without any difficulty involved so that 

all patients can use it.  The rest of the platform is supporting patients to discover more about 

SCD and medication types. There are several important websites, which connected to the SCD 

web-based platform system. 

7.2.5 SCD Clinicians Web-based System  

In the medical domain, SCD web-based system dashboards are used to offer medical experts 

with timely and relevant information about a patient’s care. This study was conducted on a 

specific group (age 6 to 16 years old) of patients to assist clinicians for building a strong 

communication line between patient and hospital. It is also can help healthcare providers to have 

an electronic version rather than the paper based one that is currently available at the local 

hospital. In order to improve this system, there are two important benefits. First, it features a 

low cost in terms of development and maintenance. Secondly, it allows the physician to produce 

a number of unique patient profiles that would be utilised to record all patient details in addition 

to monitoring test results, which collected by their web-based platform.  

The username and password generate from the back-end system after being reviewed by the 

clinicians in order to allow only SCD patients to have their own web page. In order to improve 

the service of the back-end system, attempt to connect the web-based system with one central 

database so that patients can receive important information from healthcare providers in 
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connection with appointments, providing blood tests, facilitating username and password resets, 

and initiating emergency response handling. The main function of the Back-end system is to 

control patient’s activities. The clinicians can view all a patient’s record once it’s filled in at the 

front-end system. It also gives flexibility to clinicians to add new clinicians in case the main 

clinicians are not around. Figure 7.11 shows the clinician’s platform. 

 

Figure 7-11: Back-end system (Clinicians) 

The SCD medical doctor system is an integrated set of platforms that are able to manage 

personal data and health care for SCD patients. The system well designed with several facilities 

that support patient care. As shown in Figure 7.12, the patient’s information platform was 

designed as a simple interface that support clinicians with an additional function related to the 

clinical processes. The ability of being able to obtain access to the web-based system from any 

area with an internet connection availability proved to be good benefit for patients and 

healthcare providers. Compared to the old system, which required clinician and nurses to update 

the patient information using an excel sheet for each patient, this system can update the 

information in real time so that each patient can get their blood test results, appointment, current 

medication and monthly Hydroxyurea dosage.  
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Figure 7-12: Patient’s information platform 

In order to save clinicians and nurses time as well as costing less for the hospital, this system 

can update the blood test results automatically based on the input samples amount, which 

provides the proper amount of medication required for each patient as illustrated in Figure 7.12. 

Once this platform is filled, it sent to the patient’s platform. In order to make the patients aware 

about any urgent update regarding their medication or appointment etc, include instant 

notification through email so that patient can check their platform regularly. 

 

Figure 7-13: Dynamic blood test samples results 

The environment in which healthcare providers operate is characterised by high demand 

pressure with a large number of patients. The clinical domain is busy with a number of 
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competing priorities in association with the disease modifying therapy and management 

perspective. In order to save time for clinicians, nurses, and patients, designed a user-friendly 

interface. In our experiment, the efficiency and effectiveness of the dashboard provides an 

optimal platform for dosage re-order as displayed in Figure 7.14.  This form allows SCD patients 

to place an order for various kind of medications. When the dosage is ordered, it is essential to 

review the new medication order, which might not suitable.  

 

Figure 7-14: Dosage Re-order 

The rest of the platform is to support specialist doctors and nurses to deal with patient 

requirements.  At present, information technology (IT) is growing rapidly, particularly in the 

developed countries. Furthermore, this kind of system began to be utilised in the clinical 

domains as in many sectors, as they have offered a lot of convenience for medical doctors and 

health staff.  Clinicians need this system to cope with the patient information management due 

to the increased amount of clinical information, number of patients, and the workload. Our main 

target is to create a real-life system capable of making on-demand, patient’s management and 

suggestions that could lead to a lot of improvement for both sides. It found after meeting the 

main clinicians at the haematology department in the local hospital that such a system is 

effective and useful to provide therapeutic decisions and can deal with patients’ requirements 

remotely.  

7.3 System Components Based on Web-based Application  

          The rapid developments of healthcare based on intelligent system and communications 

improvements have replaced the traditional paper-based medical documents with electronic 
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healthcare systems in order to provide a greater facility for the patient’s daily life. This research 

presents a number of tools that used for helping the development of a web-based health 

management system for SCD patients.   

7.3.1 Self-care Application   

There are no laboratory facilities available to test the blood for genetic blood disorders in the 

patient’s home. The main reason behind this is the high financial costs of installing a blood test 

machine in the patient’s home. In addition, the blood test machine requires a specialist nurse or 

medical expert to understand the main attributes that obtained after the blood tested. There are 

four types of SCD, which considered of an abnormal level, for instance (Hb SS, Hb SC, 

Haemoglobin S Beta + Thalassemia, Haemoglobin S Beta + 0 Thalassemia). The patient’s 

diagnosis assessed according to the symptoms (e.g. severe pain in the bones, painful 

enlargement of the spleen and heart problems, headache, very pale skin, and chest pain) that 

could appear in various areas of the body. The proposed expert system analyses the input data 

and determine the patient’s condition based on the symptoms that appear in the body. This 

information transferred to the medical centre in order to be analysed by a professional who 

makes any decisions needed in order to tackle the patient’s condition. This would be extremely 

beneficial, within crisis cases. In these circumstances, the healthcare professionals or specialist 

nurses could contact patients for professional advice on their condition. 

The dissemination of sickle cell disease becomes a major concern for healthcare organisations, 

which leads to a new solution in terms of improving home care systems for avoiding unnecessary 

admission to hospitals or special institutions. Home care application systems considered as one 

of the most important tools that aim at delivering high quality care to monitor the patient’s 

condition. To ensure efficiency and effectiveness, this feature implemented at the patient’s 

home, which improves patient flexibility. There are two keys behind deploying this application 

within the healthcare organisation. Firstly, it provides an efficient and extensible model that 

forwards useful information to the medical consultant and reduces communication cost, 

workload, and encourages the patient’s use of self-care systems. Secondly, emergencies taken 

into consideration in such a way that intelligent home care systems can guide the patient to the 

proper treatment instead of waiting for assistance from clinicians. In order to decrease hospital 

costs, home monitoring systems provide worthwhile information about instant treatment and 

diagnosis 
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7.3.2 Decision Support Systems in Health Care 

Decision support systems (DSSs) have been widely used and have drawn much attention; they 

play such an important role in medical environments. There is an enormous amount of research 

utilising Decision support systems (expert systems) since the late 50s [254]. One of the most 

well-known health expert systems is MYCIN, which was developed in the is 70’s [255]. MYCIN 

has the ability to diagnose certain types of bacterial infections as well as recommending a 

suitable amount of drug therapy. This type of expert system is constructed to help medical 

consultants to provide accurate decisions with those who are not highly knowledgeable about 

the field of SCD. For example, when junior doctors begin working in the hospitals or any 

institution related to the healthcare organisation, they are not fully knowledgeable about their 

specialisation. In this sense, the support system makes the correct decision for the patients. In 

order to provide better facilities to the SCD patients, the DSSs should depend on the knowledge 

of more than one medical expert in order to deliver similar decisions in terms of therapy 

recommendations that doctors would do. 

In the clinician’s web-based platform, created dynamic page based on the blood test outcomes 

that help specialist nurses to make decisions on the amount of medication that the patient needs. 

The main idea of applying DSS for SCD patients is to seek the optimal match between physician 

and patient to examine a patients’ condition, applying effective decisions and improve quality 

of care for preventing medical errors. Additionally, it is a benefit when the DSSs requires less 

time for making decisions compared with a doctor. This indicated with the web-based system, 

which provides accurate and fast decision. The advantage with this technique is that, it is easy 

to extract the experience and knowledge of a healthcare professional. This kinds of tools that 

are applied in medical sectors allow physicians to collect information quickly and process it in 

order to provide treatment and diagnosis decisions[256].  

Based on the large volume of data that is generated in medical sectors, it has become vital to 

utilise medical expert systems to control the mass of healthcare data in order to improve medical 

facilities. Expert systems provide an effective and reliable way of improving the patients’ 

facilities within healthcare  sectors [257]. The main significant outcome of using expert systems 

in this paper is to deliver unlimited services. For example, managing, analysing and diagnosing 

patient’s data to detect normal and abnormal patterns in order to save the patient’s life. Research 

carried out in this area was aimed at delivering accurate information about each patients situation 

[258]. In this case, the project was able to identify the level of various symptoms that would 
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appear in a patient’s body in order to provide quick support. Furthermore, this technique assists 

in checking patients’ progress, suggesting treatment services, analysing data and monitoring 

patients’ condition. Due to the feedback from the patient’s data, the expert system could produce 

precise advice to the general practitioner regarding treatment decisions. Hence, the medical 

expert system has the potential impact in offering accuracy diagnosis, reliability of decision-

making, cost efficiency etc. 

7.3.3 Reminders Application 

The reminder technique has played a significant role in healthcare organisations. Kannisto, et al 

[10] stated that, this kind of service has a major positive impact on healthcare outcomes in terms 

of patient’s treatment, self-care management, medical references, and patient’s appointment 

attendance. The purpose of deploying this method is to remind patients at the proper time to 

take their prescription or guide them for other activities as shown in Figure 7.15. Moreover, this 

technique delivers a potential opportunity for the medical practitioner to provide appropriate 

treatment and remote diagnosis for patients, particularly for critical conditions. 

 

Figure 7-15: Reminder application 

7.4 Chapter Summary 

This chapter provided a background about the SCD web-based system and software that is tested 

in this research. The web-based system comprises passing information between patients and 

clinicians using the central database as the main server.  Understanding the complexity of 

development process and the disease modifying therapy and management prospective were 

demanding and challenging, however, a lot of research was done for this research project to be 

completed accurately. Our main fundamental target was met, building a strong communication 

link between patient and clinicians was developed. A number of technical features is discussed, 
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including the front-end system, back-end system, central database, server application. Security 

and privacy for clinician’s and patient’s data as well as providing authorisation and 

authentication for the nominated people. This chapter reviewed the advantages of using SCD 

web-based system for patients’ follow-up and illustrated the implementation of this system in 

the local hospital. This study interviewed a number of patients in the local hospital with signing 

the concert form and promised to use the system in the near future.  
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Chapter 8 Conclusion and Future Work 

8.1 Thesis Summary 

This study proposes the utilisation of artificial intelligence systems to enhance the environment 

of the medical domain offered to patients who suffer from chronic SCD. In order to improve the 

quality of care for patient and clinicians, this research focused on two important perspectives. 

Firstly, this study used machine-learning algorithms based on real blood test datasets for those 

who suffer from SCD. The main purpose of doing this is to improve the classification process 

for this chronic disease. Secondly, this study designed a user-friendly platform based on a web-

based management system to build strong communication and follow-up between patients and 

healthcare providers.   

This kind of study is proposed by the Alder Hey Children’s Hospital to improve the quality of 

life, reduce time for the NHS, and obtain accurate results depending on the patient’s blood test. 

In point of fact, implementing machine learning for the classification process could help 

healthcare providers through reducing the need of medical expert’s assessment as they able to 

learn from data that been diagnosed previously.  This type of approach is able to assist specialist 

nurses and junior doctor to improve their decision-making process.  

This research was inspired by the urgent need for a new pathway that could reduce the burden 

on the shoulders of NHS, and at the same time enhance the quality of patients’ lives. In fact, the 

use of machine-learning methods as a diagnostic model could reduce the need for specialist 

assessment as they can learn from previously diagnosed patients to diagnose new cases. These 

machine-learning based on diagnostic models used to train non-specialist doctors to improve 

their decision-making procedure.  

Extensive research indicates that artificial intelligence such as the machine learning models 

produce a good improvement with clinical datasets and have helped in acquiring high accuracy. 

The main aim of this study is to provide a sophisticated model to differentiate applications of 

machine learning approaches for medically related problems. This study attempts to classify the 

amount of medication for each patient with Sickle Cell disorder. This research uses different 

architectures in terms of examining performance for each model within this study. The 

motivation for the classification approach used in this study is to support medical sectors to 
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offer proper therapy advice depending on the former dataset. Expert systems and various 

Artificial Intelligence methods and techniques have been used and developed to improve 

decision support tools for medical purposes. Machine Learning models (ML) is considered to 

be a powerful technique in the field of scientific research that enables computers to learn from 

data [13]. There are a number of machine learning techniques for classification include the 

Artificial Neural Network, the Random Forest model, and the Support Vector Machine. In this 

paper, the application of machine learning approaches for the problem of SCD medication dose 

management is considered. 

As mentioned in chapter 2, patients with SCD have long-term conditions and they can tackle 

their critical conditions using the proposed SCD web-based system. This research proposed a 

management and follow-up platform; with prototype implementations to illustrate in the real-

world domain. Our solution system addressed the issues with chapter 2 as there is no sufficient 

system to deal with SCD at present.  It resolved the issue of direct communication between the 

SCD patients and healthcare providers. This study met several patients and parents at the Alder 

Hey Children’s Hospital and investigated the acceptance of using such a web-based system. 

The system was also handed to the healthcare providers to follow-up with patient’s 

requirements.  Patients and clinicians were happy to work with the web-based system platform 

and to use it with the medical domain.    

8.2 Research Contributions 

The significance and the research contribution can be assessed from two aspects; the machine 

learning and web-based system in association with medical domain and IT prospective. This 

experiment not only deal with causes and symptoms of SCD but has concentrated on an 

important field where artificial intelligent system and IT can play a key role to provide proper 

treatment for SCD patients. Moreover, it has discovered further innovations in the domain of 

machine learning models, pre-processing medical datasets, classification task, and performance 

evaluation techniques metrics.  In addition, to expand the life expectancy and diagnose the life-

threatening symptoms for sickle cell disorder patients, it is exploring some crucial hidden 

features that can be employed as biomarkers.  

The real datasets were collected from a local NHS trust foundation trust hospital over a 6-year 

period. After obtaining full ethical approval to implement our system at the hospital site and 

collecting more datasets, this research managed to receive 1896 samples from the haematology 

department. This study noticed some samples had minority classes, which led us to use a 
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statistical technique to avoid this issue.  In order to find a suitable solution for Skewed Datasets, 

this research have elaborated in more detail in chapter 5 and chapter 6 the importance of solving 

datasets with minority class to avoid inaccurate or biased datasets. One of the possible solutions 

is to use over-sampling that  used in our empirical study about increasing the number of samples. 

In order to find the best classifiers that can yield best accuracy and performance, this study 

selected a number of models as shown in chapter 4. These classifiers divided into linear and 

non-linear. Initially, this research used only single classifiers to estimate the classification 

performance evaluation metrics with 6 significant categories. Then, this study used ensemble 

classifiers to improve the results that obtained from single models. The results show that 

assembling models with high sensitivity, specificity, F-1measures, J1-score, accuracy and AUC 

values can provide optimal classification with high rate as illustrated in the result and simulation 

analysis chapter. In this aspect, combining LEVNN, VPC, RBNC, RFC based on the LEVNN 

obtain the highest rate of performance and accuracy. This ensemble classifier received better 

results during training set process including; sensitivity 0.99111, specificity 0.98367, Precision 

0.89367, F1 0.93933, J1 0.97478, Accuracy 0.98467, AUC 0.99833. Where the neural network 

and Random forest received better results during the testing set process including; sensitivity 

0.87778, specificity 0.90856, Precision 0.55922, F1 0.67389, J1 0.78622, Accuracy 0.90644, 

AUC 0.93789. The outcomes of this experiment encouraged us to use different kinds of 

artificial intelligence techniques to provide more accurate results. This study used visualization 

methods and statistical techniques to present our results. This has assisted us to make 

comparison on the outcomes from different aspects and finally to choose the best classifiers that 

can be proper to our SCD datasets and can be implemented within the clinical domain. 

Medical experts need to investigate through patient’s outcomes, which include numerical data 

and data plots to support patient with their medication. To handle this matter, designed an 

additional Clinicians Web-based management system, ideally to support doctors. In order to 

achieve this issue, designed a robust web-based system for patients and clinicians. Our main 

target was to offer a user-friendly web-based system capable of making on-demand, decision 

support system and recommendations that could lead to good improvements. This research 

discovered that the potential of such web-based system is effective and useful tools for 

healthcare providers to recommend therapy. Because of this procedure, the clinician’s platform 

system sends instant information to the patients based on their blood test samples. Then, 

patients can review their blood test results in electronic version, which can lead to improvement 
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in their health condition. Moreover, this study promoted linear graphs to show patients if there 

is any significant improvement made in the past months in terms of haemoglobin or foetal 

haemoglobin. These two blood characteristics are considered important for healthcare 

professionals to check patients’ condition with SCD. The selected SCD user is expected to 

receive instant email and can view outcomes. Eventually, based on the doctors’ experience, this 

research designed a dynamic page for junior doctors and specialist nurses that can help them to 

provide the accurate amount of medication based on the patient blood test results. In our 

interview with SCD patients, all the patients have signed the concert form and promised to use 

the system in the near future.  

8.3 Summary and Future Research  

With the success of our experiential study, this study consider further work directions, 

including improvements to the proposed machine learning models (single classifiers and 

ensemble classifiers) along with the web-based platform management system and extending its 

proposed techniques. The local hospital has supported this research with 1896 samples for the 

purpose of obtaining better services and accuracy. Further research is recommended to make 

confirmation on our findings, where a large number of data could be utilised also to advance 

the performance of the results. In this part, I highlight the possible extensions to medical 

applications as discussed below.  

• This study consider for future work the use of global optimisation algorithms 

such as genetic optimisation to explore more comprehensively the space of 

possible machine learning architectures. It is noted that the current study has 

addressed only a limited set of architectures, which may not expose the full 

potential of the machine learning algorithms within the classification setting; 

this research suggested therefore that an algorithmic model search may be used 

to expand the scope and scale of this study. It is also noticed the main limitation 

of the proposed models are computational performance.  

• Another direction for the proposed research is to use deep learning technique. Deep 

learning is related machine learning algorithms. With using deep learning, the 

features selection and modelling are selected automatically. 

• Another direction believe can enhance our experiment study is the use of fuzzy 

logic in the structure of the proposed model to enhance the model accuracy and 
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performance. A further issue is to choose the best values for momentum 

parameters and the learning rate that are utilised within ANN in the neural 

networks. As mentioned earlier, the best direction for future improvement is to 

utilise some kind of genetic algorithm to find proper ANN parameters. 

• The proposed methodology framework for healthcare providers can be used 

with the supervised learning algorithms, with the target values (classes) 

provided by the haematology department at the Alder Hey Children’s Trust 

Foundation Hospital. Moreover, in order to extend the benefit of such an 

application, our proposed model could serve different domains within medical 

environments.   

• This research aims to collect a dataset containing non-blood related features as 

an alternative input data to the classifier. These can include temporal 

physiological data such as temperature, heart rate, respiration, etc. This can 

make our system more robust and can be used with any type of datasets. As an 

example, implementing a wrist sensor with a patient could provide more 

datasets and help doctors to be always informed about the patient’s condition. 

• This study aims to validate the clinician’s SCD Web-based system within 

different medical centres by having a number of haematologist doctors use it. 

Moreover, involving more patients to use the platform could assist healthcare 

providers to have a large amount of data for further analysis and validation. 

Although just a small number of SCD patients have accepted to use the system, 

but unfortunately didn’t use it because lack of engagement, I look forward to 

passing our system on to the whole NHS centre so that it can mitigate the 

severity of the disease for patients and help healthcare service authority with 

time consuming and economic issues.  
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Appendix A: Training and Testing for Ensemble 

Classifier 

Model 

Training 
Class Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN 

Com 
Class 1 0.931 0.926 0.468 0.623 0.857 0.926 0.973 

  Class 2 0.903 0.86 0.375 0.53 0.762 0.863 0.957 

  Class 3 0.89 0.83 0.509 0.648 0.72 0.84 0.925 

  Class 4 0.714 0.864 0.207 0.321 0.578 0.856 0.866 

  Class 5 0.845 0.891 0.395 0.539 0.736 0.887 0.949 

  Class 6 0.806 0.812 0.427 0.558 0.618 0.811 0.895 

  Class 7 0.873 0.844 0.62 0.725 0.717 0.85 0.936 

  Class 8 0.861 0.904 0.509 0.64 0.765 0.9 0.951 

  Class 9 0.888 0.919 0.49 0.631 0.807 0.916 0.966 

   Avg 0.85678 0.87222 0.44444 0.57944 0.72889 0.87211 0.93533 

NN Com Class 1 0.92 0.904 0.402 0.559 0.823 0.905 0.965 

  Class 2 0.903 0.852 0.363 0.518 0.755 0.856 0.949 

  Class 3 0.909 0.803 0.477 0.626 0.711 0.82 0.917 

  Class 4 0.81 0.747 0.138 0.236 0.557 0.75 0.861 

  Class 5 0.845 0.919 0.468 0.602 0.764 0.913 0.949 

  Class 6 0.811 0.807 0.422 0.555 0.618 0.807 0.898 

  Class 7 0.846 0.864 0.645 0.732 0.711 0.86 0.938 

  Class 8 0.825 0.909 0.511 0.631 0.734 0.9 0.947 

  Class 9 0.916 0.889 0.421 0.576 0.805 0.891 0.967 

   Avg 0.865 0.85489 0.42744 0.55944 0.71978 0.85578 0.93233 

NN and 

RFC 
Class 1 1 0.998 0.978 0.989 0.998 0.998 1 

  Class 2 1 0.993 0.926 0.962 0.993 0.993 1 

  Class 3 0.986 0.986 0.931 0.958 0.972 0.986 0.997 



188 | P a g e  

 

  Class 4 1 0.993 0.875 0.933 0.993 0.993 1 

  Class 5 1 0.995 0.945 0.972 0.995 0.995 1 

  Class 6 0.985 0.973 0.865 0.921 0.958 0.975 0.998 

  Class 7 0.98 0.96 0.877 0.926 0.94 0.965 0.995 

  Class 8 0.978 0.971 0.798 0.879 0.949 0.972 0.997 

  Class 9 0.991 0.984 0.848 0.914 0.975 0.985 0.998 

   Avg 0.99111 0.98367 0.89367 0.93933 0.97478 0.98467 0.99833 

KNNS 

Com 
Class 1 0.943 0.921 0.456 0.614 0.863 0.922 0.976 

  Class 2 0.92 0.924 0.531 0.673 0.844 0.924 0.978 

  Class 3 0.863 0.828 0.499 0.632 0.691 0.834 0.916 

  Class 4 0.905 0.895 0.302 0.452 0.8 0.896 0.954 

  Class 5 0.932 0.916 0.482 0.636 0.848 0.917 0.978 

  Class 6 0.888 0.793 0.428 0.577 0.681 0.807 0.917 

  Class 7 0.809 0.819 0.565 0.666 0.628 0.816 0.912 

  Class 8 0.891 0.869 0.439 0.588 0.759 0.871 0.947 

  Class 9 0.953 0.896 0.445 0.607 0.849 0.9 0.965 

   Avg 0.90044 0.87344 0.46078 0.605 0.77367 0.87633 0.94922 

KNNH1 Class 1 0.943 0.905 0.41 0.571 0.847 0.907 0.97 

  Class 2 0.92 0.927 0.542 0.682 0.848 0.927 0.976 

  Class 3 0.858 0.786 0.443 0.585 0.645 0.798 0.897 

  Class 4 0.968 0.9 0.326 0.488 0.868 0.903 0.967 

  Class 5 0.942 0.893 0.425 0.586 0.834 0.897 0.973 

  Class 6 0.842 0.784 0.403 0.545 0.626 0.792 0.902 

  Class 7 0.756 0.854 0.601 0.67 0.61 0.832 0.89 

  Class 8 0.927 0.819 0.371 0.53 0.746 0.83 0.94 

  Class 9 0.935 0.873 0.394 0.554 0.808 0.878 0.954 

   Avg 0.899 0.86011 0.435 0.579 0.75911 0.86267 0.941 

KNNH2 Class 1 0.92 0.926 0.465 0.618 0.845 0.925 0.978 

  Class 2 0.956 0.905 0.484 0.643 0.861 0.909 0.978 
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  Class 3 0.895 0.805 0.476 0.621 0.7 0.819 0.918 

  Class 4 0.968 0.918 0.372 0.537 0.887 0.921 0.984 

  Class 5 0.951 0.934 0.547 0.695 0.885 0.935 0.982 

  Class 6 0.827 0.86 0.506 0.628 0.686 0.855 0.929 

  Class 7 0.833 0.844 0.609 0.703 0.677 0.841 0.916 

  Class 8 0.891 0.89 0.482 0.626 0.78 0.89 0.956 

  Class 9 0.953 0.894 0.442 0.604 0.847 0.899 0.974 

   Avg 0.91044 0.88622 0.487 0.63056 0.79644 0.88822 0.95722 

KNNH3 Class 1 0.839 0.799 0.227 0.357 0.638 0.801 0.896 

  Class 2 0.841 0.822 0.305 0.448 0.662 0.823 0.901 

  Class 3 0.726 0.692 0.319 0.443 0.418 0.698 0.77 

  Class 4 0.746 0.778 0.144 0.241 0.524 0.776 0.841 

  Class 5 0.874 0.835 0.308 0.456 0.708 0.838 0.919 

  Class 6 0.724 0.669 0.276 0.399 0.394 0.677 0.763 

  Class 7 0.716 0.649 0.373 0.49 0.364 0.664 0.752 

  Class 8 0.73 0.737 0.243 0.364 0.467 0.736 0.811 

  Class 9 0.729 0.804 0.247 0.369 0.533 0.798 0.843 

  Avg 
0.769444 0.753889 0.271333 0.396333 0.523111 0.756778 0.832889 

         

Model 

Testing 
Class Sensitivity Specificity Precision F1 J Accuracy AUC 

LEVNN 

Com 
Class 1 0.9 0.925 0.509 0.651 0.825 0.923 0.968 

  Class 2 0.889 0.821 0.276 0.421 0.709 0.825 0.917 

  Class 3 0.818 0.869 0.568 0.671 0.687 0.86 0.915 

  Class 4 0.773 0.801 0.193 0.309 0.573 0.799 0.873 

  Class 5 0.879 0.922 0.518 0.652 0.801 0.918 0.951 

  Class 6 0.825 0.772 0.3 0.44 0.597 0.778 0.878 

  Class 7 0.874 0.865 0.709 0.783 0.739 0.868 0.938 

  Class 8 0.75 0.921 0.5 0.6 0.671 0.905 0.877 
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  Class 9 0.952 0.955 0.556 0.702 0.908 0.955 0.985 

   Avg 0.85111 0.87233 0.45878 0.581 0.72333 0.87011 0.92244 

NN 

Com 
Class 1 1 0.871 0.4 0.571 0.871 0.881 0.964 

  Class 2 0.778 0.915 0.412 0.538 0.692 0.905 0.897 

  Class 3 0.848 0.843 0.533 0.655 0.691 0.844 0.902 

  Class 4 0.818 0.75 0.168 0.279 0.568 0.754 0.852 

  Class 5 0.909 0.907 0.484 0.632 0.816 0.907 0.957 

  Class 6 0.8 0.772 0.294 0.43 0.572 0.775 0.868 

  Class 7 0.854 0.898 0.759 0.804 0.753 0.886 0.936 

  Class 8 0.722 0.904 0.441 0.547 0.626 0.886 0.905 

  Class 9 0.952 0.93 0.444 0.606 0.882 0.931 0.986 

   Avg 0.85344 0.86556 0.43722 0.56244 0.719 0.86322 0.91856 

NN and 

RFC 
Class 1 0.967 0.968 0.725 0.829 0.935 0.968 0.988 

  Class 2 0.889 0.923 0.471 0.615 0.812 0.921 0.953 

  Class 3 0.864 0.901 0.648 0.74 0.764 0.894 0.937 

  Class 4 0.773 0.927 0.395 0.523 0.7 0.918 0.829 

  Class 5 0.909 0.948 0.625 0.741 0.857 0.944 0.969 

  Class 6 0.875 0.772 0.313 0.461 0.647 0.783 0.912 

  Class 7 0.893 0.88 0.736 0.807 0.773 0.884 0.944 

  Class 8 0.778 0.88 0.406 0.533 0.658 0.87 0.916 

  Class 9 0.952 0.978 0.714 0.816 0.93 0.976 0.993 

   Avg 0.87778 0.90856 0.55922 0.67389 0.78622 0.90644 0.93789 

KNNS 

Com 
Class 1 0.733 0.779 0.222 0.341 0.512 0.775 0.777 

  Class 2 0.741 0.786 0.211 0.328 0.527 0.783 0.779 

  Class 3 0.727 0.593 0.274 0.398 0.32 0.616 0.698 

  Class 4 0.818 0.596 0.111 0.196 0.414 0.608 0.744 

  Class 5 0.848 0.878 0.4 0.544 0.727 0.876 0.886 

  Class 6 0.575 0.624 0.153 0.242 0.199 0.619 0.598 
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  Class 7 0.66 0.633 0.402 0.5 0.293 0.64 0.657 

  Class 8 0.639 0.719 0.193 0.297 0.358 0.712 0.694 

  Class 9 0.524 0.88 0.204 0.293 0.403 0.86 0.729 

   Avg 0.69611 0.72089 0.24111 0.34878 0.417 0.721 0.72911 

KNNH1 Class 1 0.7 0.802 0.233 0.35 0.502 0.794 0.776 

  Class 2 0.778 0.761 0.2 0.318 0.538 0.762 0.801 

  Class 3 0.697 0.583 0.261 0.38 0.28 0.603 0.677 

  Class 4 0.773 0.711 0.142 0.239 0.483 0.714 0.765 

  Class 5 0.909 0.841 0.353 0.508 0.75 0.847 0.875 

  Class 6 0.575 0.618 0.151 0.24 0.193 0.614 0.567 

  Class 7 0.592 0.644 0.384 0.466 0.236 0.63 0.64 

  Class 8 0.722 0.655 0.181 0.289 0.377 0.661 0.691 

  Class 9 0.667 0.633 0.0966 0.169 0.3 0.635 0.682 

   Avg 0.71256 0.69422 0.2224 0.32878 0.40656 0.69556 0.71933 

KNNH2 Class 1 0.8 0.681 0.178 0.291 0.481 0.69 0.775 

  Class 2 0.704 0.84 0.253 0.373 0.544 0.831 0.757 

  Class 3 0.652 0.66 0.289 0.4 0.312 0.659 0.694 

  Class 4 0.727 0.604 0.102 0.179 0.331 0.611 0.735 

  Class 5 0.909 0.838 0.349 0.504 0.747 0.844 0.897 

  Class 6 0.6 0.592 0.148 0.238 0.192 0.593 0.584 

  Class 7 0.65 0.611 0.385 0.484 0.261 0.622 0.632 

  Class 8 0.75 0.614 0.17 0.277 0.364 0.627 0.697 

  Class 9 0.667 0.627 0.0952 0.167 0.294 0.63 0.712 

   Avg 0.71767 0.67411 0.2188 0.32367 0.39178 0.67856 0.72033 

KNNH3 Class 1 0.667 0.629 0.134 0.223 0.296 0.632 0.711 

  Class 2 0.704 0.735 0.17 0.273 0.439 0.733 0.735 

  Class 3 0.591 0.67 0.275 0.375 0.261 0.656 0.673 

  Class 4 0.636 0.685 0.111 0.189 0.322 0.683 0.638 

  Class 5 0.788 0.768 0.245 0.374 0.556 0.77 0.843 
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  Class 6 0.4 0.609 0.108 0.17 0.00947 0.587 0.504 

  Class 7 0.592 0.633 0.377 0.46 0.225 0.622 0.621 

  Class 8 0.528 0.731 0.171 0.259 0.259 0.712 0.655 

  Class 9 0.714 0.583 0.0915 0.162 0.297 0.59 0.7 

  Avg 
0.624444 0.671444 0.186944 0.276111 0.296052 0.665 0.675556 
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Appendix D: Some MATLAB Code and PHP with 

HTML 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

 

% ------------------------------------------------------------------------ 

% Post Simulation Results Reporting 

 % define data against which results can be evaluated 

datasrc = struct(... 

    'P',INPUT_PATTERNS,'T',INPUT_TARGETS); 

COEFFS = struct; 

resultsHandler({@report_nclass},modelResultsArr,datasrc,CONFIG,COEFFS) 

% PR Models Set  

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','LEVNN Combined (LMNN combiner)',... 

    'shortname','LEVNN Com',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([lmnc([],2),lmnc([],5),lmnc([],10),lmnc([],20)]*lmnc)... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','LEVNN Combined (LMNN combiner)',... 

    'shortname','LEVNN and RFC',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) 

C*([lmnc([],2),lmnc([],5),lmnc([],10),lmnc([],20)]*randomforestc)... 

    )]; 

 prModelResultsArr = [prModelResultsArr,struct(... 

    'name','Combined NN (LMNN combiner)',... 

    'shortname','NN Com',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([lmnc([],20),vpc,lmnc([],10),vpc]*lmnc)... 

    )];  

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','Combined NN (LMNN combiner)',... 

    'shortname','NN Com',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([lmnc([],20),vpc,lmnc([],10),vpc]*randomforestc)... 
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    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','Combined NN',... 

    'shortname','NN and RFC*LEVNN',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) 

C*([lmnc([],20),rbnc,lmnc([],10),vpc,bpxnc,randomforestc]*lmnc)... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','Combined NN',... 

    'shortname','NN and RFC*RFC',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) 

C*([lmnc([],20),rbnc,lmnc([],10),vpc,bpxnc,randomforestc]*randomforestc)... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','KNN Stacked',... 

    'shortname','KNNS Com',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([knnc([],1),knnc([],3),knnc([],5),knnc([],10)]*knnc)... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','K Nearest Neighbours Combined 1',... 

    'shortname','KNNH1',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([knnc([],5),knnc([],10)]*lmnc)... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','K Nearest Neighbours Combined 2',... 

    'shortname','KNNH2',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([knnc([],15),knnc([],10),knnc([],5)]*randomforestc)... 

    )]; 

  

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','K Nearest Neighbours Combined 3',... 

    'shortname','KNNH3',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) 

C*([knnc([],25),knnc([],15),knnc([],10),knnc([],5)]*knnc([],5))... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 
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    'name','K Nearest Neighbours Combined 4',... 

    'shortname','KNNH4',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) 

C*([knnc([],50),knnc([],25),knnc([],15),knnc([],12),knnc([],10),knnc([],5)]

*knnc([],5))... 

    )]; 

prModelResultsArr = [prModelResultsArr,struct(... 

    'name','K Nearest Neighbours Combined 6',... 

    'shortname','KNNH3',... 

    'threshold',CONFIG.classthreshold,... 

    'fcn',@(C) C*([... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],50),knnc([],25),knnc([],15),... 

        knnc([],100),knnc([],25),knnc([],15),... 

        knnc([],101),knnc([],25),knnc([],15),... 

        knnc([],102),knnc([],25),knnc([],15),... 

        knnc([],103),knnc([],25),knnc([],15),... 

        knnc([],104),knnc([],25),knnc([],15),... 

        knnc([],105),knnc([],25),knnc([],15),... 

        knnc([],106),knnc([],25),knnc([],15),... 

        knnc([],107),knnc([],25),knnc([],15),... 

        knnc([],51),knnc([],25),knnc([],15),... 

        knnc([],52),knnc([],25),knnc([],15),... 

        knnc([],53),knnc([],25),knnc([],15),... 

        knnc([],54),knnc([],25),knnc([],15),... 

        knnc([],55),knnc([],25),knnc([],15),... 

        knnc([],56),knnc([],25),knnc([],15),... 

        knnc([],57),knnc([],25),knnc([],15),... 

        knnc([],58),knnc([],25),knnc([],15),... 

        knnc([],59),knnc([],10),knnc([],5)]... 

        *knnc)... 

    )]; 

PHP and HTML Codes 

<?PHP 



198 | P a g e  

 

session_start();  

if(!isset($_SESSION["loggedin"])) 

 header("Location: login.php"); 

?> 

<?PHP 

require_once("./include/membersite_config.php"); 

?> 

<?PHP 

 $username= "stgmkhal"; 

$password = "ni5speci"; 

$servername  = "mysql.cms.livjm.ac.uk"; 

$databaseName = "stgmkhal"; 

$id_user = ""; 

$date = ""; 

$weight = ""; 

$dosage = ""; 

$hb = ""; 

$mcv = ""; 

$neut = ""; 

$hb_f = ""; 

$retic = ""; 

$bio = ""; 

$bili = ""; 

$alt = ""; 

$ast = ""; 

$ldh = ""; 

$mg = ""; 

$retic_A = ""; 

$plats = ""; 

$note = ""; 

 

mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT); 

// connect to mysql database 

try{ 

    $connect = mysqli_connect($servername, $username, 

$password, $databaseName); 

} catch (mysqli_sql_exception $ex) { 
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    echo 'Error'; 

} 

function get_blood_test($connect,$id){ 

 $sql = "select * from blood_test where id_user=$id"; 

$result = $connect->query($sql); 

if ($result->num_rows > 0) { 

    // output data of each row 

 echo ' 

 <style> 

  table#APP td, table#APP th{ 

   border: 1px solid gray; 

    

   padding: 3px; 

   text-align: center; 

  } 

 </style>'; 

 echo '<mark><table ID="APP"></mar>'; 

 

 echo '<thead>'; 

 echo 

"<th>ID</th><th>Date_of_test</th><th>Dosage</th><th>Weight</th

><th>Mg/Kg</th><th>Haemoglobin </th><th>Plats</th><th>Mean 

Corpuscular Volume </th><th>Neutrophils</th><th>Reticulocyte 

Count(%)</th><th>Reticulocyte 

Count(A)</th><th>Haemoglobin_F</th><th>Body Bio Blood 

</th><th>Bilirubin </th><th>Alanine aminotransferase 

</th><th>Aspartate Aminotransferase  </th><th>Lactate 

dehydrogenase </th><th>Note </th>"; 

 echo '</thead>'; 

    $count = 0; 

 while($row = $result->fetch_assoc()) { 

  $row = (object) $row; 

  $count++; 

  if($count<$result->num_rows) 

  { 

  echo '<tr>'; 

  $dateTime = $row->date.' '.$row->time; 

       echo "<td>".$row->id."</td><td>".$row-

>date."</td><td>".$row->weight."</td><td>".$row-
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>dosage."</td><td>".$row->hb."</td><td>".$row-

>mcv."</td><td>".$row->neut."</td><td>".$row-

>hb_f."</td><td>".$row->retic."</td><td>".$row-

>bio."</td><td>".$row->bili."</td><td>".$row-

>alt."</td><td>".$row->ast."</td><td>".$row-

>ldh."</td><td>".$row->mg."</td><td>".$row-

>retic_A."</td><td>".$row->plats."</td><td>".$row-

>note."</td>"; 

    echo '</tr>'; 

  } 

 else 

 { 

   echo "<tr 

style='background:blue;color:white;'>"; 

  $dateTime = $row->dated.' '.$row->timed; 

       echo "<td>".$row->id."</td><td>".$row-

>date."</td><td>".$row->weight."</td><td>".$row-

>dosage."</td><td>".$row->hb."</td><td>".$row-

>mcv."</td><td>".$row->neut."</td><td>".$row-

>hb_f."</td><td>".$row->retic."</td><td>".$row-

>bio."</td><td>".$row->bili."</td><td>".$row-

>alt."</td><td>".$row->ast."</td><td>".$row-

>ldh."</td><td>".$row->mg."</td><td>".$row-

>retic_A."</td><td>".$row->plats."</td><td>".$row-

>note."</td>"; 

     echo '</tr>'; 

 } 

   } 

 echo '</table>'; 

}  

} 

?> 

 

<!DOCTYPE html> 

<html lang="en"> 

  <head> 

    <meta charset="utf-8"> 

    <meta name="viewport" content="width=device-width, 

initial-scale=1.0"> 

    <meta name="description" content=""> 

    <meta name="author" content="Arpit Soni"> 
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    <meta name="keyword" content="Medical Dashboard"> 

    <link rel="shortcut icon" href="img/favicon.png"> 

 

    <title>Bloot Test results</title> 

 

    <!-- Bootstrap core CSS --> 

    <link href="css/bootstrap.min.css" rel="stylesheet"> 

    <link href="css/bootstrap-reset.css" rel="stylesheet"> 

    <!--external css--> 

    <link href="assets/font-awesome/css/font-awesome.css" 

rel="stylesheet" /> 

    <link href="assets/jquery-easy-pie-chart/jquery.easy-pie-

chart.css" rel="stylesheet" type="text/css" media="screen"/> 

    <link href="assets/morris.js-0.4.3/morris.css" 

rel="stylesheet"> 

      <!--right slidebar--> 

    <link href="css/slidebars.css" rel="stylesheet"> 

    <!-- Custom styles for index page --> 

    <link href="css/style.css" rel="stylesheet"> 

    <link href="css/style-responsive.css" rel="stylesheet" /> 

<body background="images/white.jpg"> 

<body> 

<div id="container"> 

  <div id="header"> 

  <center> 

 <h1> <mark>Bloot Test Results </mark></h1></br> 

 <center> 

<img src="images/alderhey.png"/><br> 

 

    <p> go back to the main page: <a 

href='index1.php'><mark><b>Click Here </b></mark></a> 

<p> <mark><b>  in this Table , show to you the blood test 

result    </b></mark></a> 

 </br> 

  </br> 

  </center> 

<?=get_blood_test($connect,$_SESSION['userId']);?> 

   </div> 
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  <br/> 

 <br/> 

 <center> 

    <p> Line Graph representation for Hemoglobin: <a 

href='linegraph_hb.php'><mark><b>Click Here </b></mark></a> 

 <br/> 

  <br/> 

     <p> Line Graph representation for Hemoglobin_F : <a 

href='linegraph_hbf.php'><mark><b>Click Here </b></mark></a> 

    

   <footer class="site-footer"> 

          <div class="text-center"> 

              2017 &copy; all rights reserved to LJMU and 

Alderhey childern's hospital. 

              <a href="#" class="go-top"> 

                  <i class="fa fa-angle-up"></i> 

              </a> 

          </div> 

      </footer> 

      <!--footer end--> 

      <!-- js placed at the end of the document so the pages 

load faster --> 

    <script src="js/jquery.js"></script> 

    <script src="js/bootstrap.min.js"></script> 

    <script class="include" type="text/javascript" 

src="js/jquery.dcjqaccordion.2.7.js"></script> 

    <script src="js/jquery.scrollTo.min.js"></script> 

    <script src="js/jquery.nicescroll.js" 

type="text/javascript"></script> 

    <script src="js/jquery.sparkline.js" 

type="text/javascript"></script> 

    <script src="assets/jquery-easy-pie-chart/jquery.easy-pie-

chart.js"></script> 

    <script src="js/owl.carousel.js" ></script> 

    <script src="js/jquery.customSelect.min.js" ></script> 

    <script src="js/respond.min.js" ></script> 

    <script src="assets/morris.js-0.4.3/morris.min.js" 

type="text/javascript"></script> 
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    <script src="assets/morris.js-0.4.3/raphael-min.js" 

type="text/javascript"></script> 

 

    <!--right slidebar--> 

    <script src="js/slidebars.min.js"></script> 

 

    <!--common script for all pages--> 

    <script src="js/common-scripts.js"></script> 

 

    <!--script for this page--> 

    <script src="js/sparkline-chart.js"></script> 

    <script src="js/easy-pie-chart.js"></script> 

    <script src="js/count.js"></script> 

    <script src="js/morris-script.js"></script> 

 

  <script> 

 

      $(function(){ 

          //$('select.styled').customSelect(); 

          $("#ipAddress").html("IP Address: "+ myip); 

      }); 

 

  </script> 

  <script type="text/javascript" 

src="http://l2.io/ip.js?var=myip"></script> 

</body> 

</html> 

 


