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Abstract. This paper proposes a new factorized 𝑓-step radial basis function network (FS-RBF) 

model for model predictive control (MPC). The strategy is to develop a 𝑓-step predictor for 

nonlinear dynamic systems and implement it with a RBF network. In contrast to the popular 

NARX-RBF model, the developed FS-RBF model is capable of making a designated 

sequence of future output prediction without requiring the unknown future process 

measurements. Furthermore, the developed FS-RBF model is factorized into two parts, with 

one part including past plant input/output and the other part including the future input/output. 

When this model is used as the internal model in the MPC, the factorization enables an 

explicit objective function for the on-line optimization in the MPC. Thus, the computing load 

in solving the optimization problem is greatly reduced. The developed model is used in MPC 

and applied to a continuous-stirred tank reactor (CSTR). The simulation results are compared 

with that of MPCs with other two models. The comparison confirms that the developed model 

make more accurate prediction so that the MPC performance is better, it also uses much less 

computing time than the other two models based MPC.  

Keywords: RBF network, f-step prediction model, model factorization, model predictive 

control, CSTR.   
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1. Introduction 

Model predictive control (MPC) is a popular advanced control method which has many 

successful industry applications and its challenges is reported in [1]. Due to its popularity and 

promising long term success, the development and achievements of existing MPC methods 

have been consistently reviewed [1-4] since its introduction in 1978 [5]. One of the biggest 

benefits of MPC approach is it can be applied to multi-input, multi-output (MIMO) processes 

by taking the constraints into considerations. A MPC is a model-based controller which has an 

internal model that uses process measurements to predict the future behaviour of a process. A 

good prediction accuracy of the internal model is a fundamental requirement to achieve a 

good control performance. The use of linear and nonlinear internal models to characterise the 

MPC are called as linear MPC (LMPC) and nonlinear MPC (NMPC), respectively. The 

advantage of LMPC approaches is they are convex problem which simplify the optimization 

problem but many real application processes are nonlinear where a large mismatch between 

the linear model and real process is often encountered, eventually resulting in a poor control 

performance. Conversely, a nonlinear internal model provides a better match to the real 

processes but the challenge in NMPC is the optimization problems are non-convex and it has 

to be solved using nonlinear programming [6].  

In modelling nonlinear dynamic processes, radial basis function (RBF) network models 

have been studied intensively due to its learning abilities and simple architecture [7]. The 

application of RBF networks to approximate nonlinear function was studied by Broom and 

Lowe [8]. The RBF networks have been investigated and developed in various form to model  

industrial systems [9, 10] and to predict outputs for nonlinear dynamic processes [11, 12]. A 

RBF network that based on a nonlinear autoregressive with exogenous input model (NARX) 

is renowned for its promising abilities in modelling nonlinear dynamic system [13]. Therefore, 

a NARX-RBF model is often used as an internal model in MPC (RBF-MPC) and the 

applications can be found in [14-17]. However, there are several drawbacks in RBF-MPC. 

The first drawback lies in the lack of efficiency in long range predictions due to its 

accumulated errors in each prediction step [18, 19]. Another disadvantage is that its future 

output predictions are made depending on future unknown process measurements. This means 

that the network cannot be factorized according to the past and future information, and the 

objective function is needed to be computed numerically. To overcome these issues, Bhartiya 
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and Whiteley [19] developed a factorable p-Step control model-based RBF network which 

produces efficient long predictions and applied it in MPC. Their results showed that the model 

performed better than the cascaded 1-step ahead prediction [19]. However, one of the major 

drawbacks in [19] is its unrealistic huge network structure which increases the model 

complexity and the computation time when solving an optimization problem in MPC.  

To address these problems, this paper proposes a new factorized 𝑓-step model-based RBF 

network (FS-RBF). The objective of this work is twofold. The first objective is to introduce a 

𝑓-step predictor and implement it with a RBF network. Secondly, the novelty in this work is 

the factorization of the FS-RBF network. As a result, an explicit objective function of the 

MPC is derived to reduce the computing load in solving the online optimization problem. The 

proposed model is evaluated in term of the modelling performance, model compactness, and 

computational requirement using a continuous-stirred tank reactor (CSTR) plant.  

Both the prediction performance and the computing time for long range prediction of the 

developed model are evaluated by comparing the results with that of two existing models. By 

applying to the MPC of the CSTR process, the simulation results show that not only does the 

developed model suggested network outperform the other two models; more importantly, the 

developed model uses a more compact structure. Secondly, the control performance and 

computational requirement in solving the optimization problem of the proposed network is 

verified by comparing it with existing control approaches. The purposed network is proved to 

more computationally efficient while achieving a good control performance.  

The paper is presented in the following structure. Section 2 describes the development of 

FS prediction model. Section 3 explains the training algorithm of FS-RBF model; it also 

presents the prediction performance of proposed FS-RBF model and the comparison with 

other two models. Section 4 describes the factorization of FS-RBF model. The evaluation of 

control performance and computational requirement of the proposed model-based MPC and 

comparison studies are presented in Section 5.   

 

2. 𝒇-Step prediction model 

A 𝑝-Step control (PSC) model was developed in [19] and implemented with RBF network. 

It was reported that the PSC model was capable of predicting future process outputs over a 
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prediction horizon without requiring future unknown process outputs. However, the flaw of 

the PSC model lies in an unrealistic massive network structure that is required to achieve a 

satisfactory prediction performance. This has incurred a big computational load and prevent 

the network model to be applied to the systems with fast dynamics. Moreover, there is a 

limitation in the PSC model in selecting the model parameter, i.e. the condition, 𝑁𝑢 ≥ 2 is 

required. To address these problems, an improved model, 𝑓-step (FS) prediction model, is 

developed in this paper and is implemented with RBF network.  In this section, the derivation 

of the FS model is described. 

In the applications of RBF networks [14, 20], a continuous-time nonlinear system is 

represented by a NARX model in (1). 

 𝑦𝑘 = 𝑓[𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦, 𝑢𝑘−1, … , 𝑢𝑘−𝑁𝑢] + 𝑒𝑘 (1) 

where 𝑢 ∈ ℜ𝑚 and 𝑦 ∈ ℜ𝑛 are the input and output vectors with  𝑁𝑢 and 𝑁𝑦 being the output 

and input orders respectively and 𝑒 is the error. 𝑓[∗] is a vector-valued nonlinear function. 

There are two types of predictor structure as depicted in Fig.1, where A RBF network can be 

trained as a one-step-ahead (OSA) predictor or a multistep-ahead (MSA) predictor. 

 

Fig.1 Block diagrams of OSA and MSA predictors. 

From Fig.1, it is observed that an OSA predictor is trained using the plant inputs 

𝑢𝑘, … , 𝑢𝑘+1−𝑁𝑢
 and outputs 𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦

 at sample time 𝑘 to estimate the one-step-ahead 
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prediction �̂�𝑘+1 . For the OSA predictor, the future predictions �̂�𝑘+1, … . , �̂�𝑘+𝑓  over a 

prediction horizon 𝐻𝑝 are described as 

 �̂�𝑘+1 = 𝑓 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘 , … , 𝑢𝑘+1−𝑁𝑢

] 
 

 �̂�𝑘+2 = 𝑓 [𝑦𝑘+1, … , 𝑦𝑘+2−𝑁𝑦 , 𝑢𝑘+1, … , 𝑢𝑘+2−𝑁𝑢
]  

 ⋮  

 �̂�𝑘+𝑓 = 𝑓 [𝑦𝑘+𝐻𝑝−1, … , 𝑦𝑘+𝐻𝑝−𝑁𝑦
, 𝑢𝑘+𝐻𝑝−1, … , 𝑢𝑘+𝐻𝑝−𝑁𝑢

] (2) 

In contrast, in the MSA predictor the predicted outputs �̂�𝑘+1, … , �̂�𝑘+𝐻𝑝−1, instead of the plant 

outputs, are iteratively used in the future sample predictions �̂�𝑘+2, … , �̂�𝑘+𝑓 across a prediction 

horizon 𝐻𝑝 as described as 

 �̂�𝑘+1 = 𝑓 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘 , … , 𝑢𝑘+1−𝑁𝑢

] 
 

 �̂�𝑘+2 = 𝑓 [�̂�𝑘+1, 𝑦𝑘, … , 𝑦𝑘+2−𝑁𝑦
, 𝑢𝑘+1, … , 𝑢𝑘+2−𝑁𝑢

]  

 ⋮  

 �̂�𝑘+𝑓 = 𝑓 [�̂�𝑘+𝐻𝑝−1, … , �̂�𝑘+𝐻𝑝−𝑁𝑦
, 𝑢𝑘+𝐻𝑝−1, … , 𝑢𝑘+𝐻𝑝−𝑁𝑢

]. (3) 

From (2), it is understood that the MSA predictor is less accurate compared with the OSA 

because the MSA uses the predicted outputs iteratively as its inputs, which introduces 

accumulated modelling error to the future predictions. However, though the MSA predictor is 

not as accurate as the OSA predictor, its ability to predict the multistep-ahead behaviour is 

essential for being used in the model predictive control [14, 21]. 

In order to improve the inaccurate prediction and at the same time to reserve the 

multistep-ahead prediction ability of the MSA predictor, a new FS prediction model is 

proposed here. The FS model is designed to make predictions over a prediction horizon 𝐻𝑝 

without using the future process outputs. It therefore makes use of the advantages of both the 

OSA and MSA predictors. The derivation of FS model commences with a NARX model in  

(1). To illustrate the concept of proposed FS model, consider an example with output orders 

𝑁𝑢 = 2 and input orders 𝑁𝑦 = 2 to make predictions across a prediction horizon 𝐻𝑝 = 3. 

Using this example, the NARX model in (1) can be expressed as 
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 �̂�𝑘 = 𝐹[𝑦𝑘−1, 𝑦𝑘−2, 𝑢𝑘−1, 𝑢𝑘−2] (4) 

The outputs 𝑦𝑘−1, … , 𝑦𝑘−2 can be described in prediction forms of 

 �̂�𝑘−1 = 𝐹[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3] 
 

 �̂�𝑘−2 = 𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4] (5) 

Now, using (5) to approximate 𝑦𝑘−1, 𝑦𝑘−2 in (4), it becomes 

 �̂�𝑘 = 𝐹[𝐹[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3], 𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 𝑢𝑘−1, 𝑢𝑘−2] 
 

 
       = 𝐹[𝐹[𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3], 

  𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 𝑢𝑘−1, 𝑢𝑘−2] (6) 

Using a function 𝐺 to represent the composite function 𝐹 in (6),  

 �̂�𝑘|𝑘−3 = 𝐺[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−1, 𝑢𝑘−2, 𝑢𝑘−3, 𝑢𝑘−4] (7) 

Using (7) for predictions over  𝐻𝑝 = 3 , they are as follows, 

 �̂�𝑘+1|𝑘−2 = 𝐺[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2, 𝑢𝑘−3] 
 

 �̂�𝑘+2|𝑘−1 = 𝐺[𝑦𝑘−1, 𝑦𝑘−2, 𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2] 
 

 �̂�𝑘+3|𝑘 = 𝐺[𝑦𝑘, 𝑦𝑘−1, 𝑢𝑘+2, 𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘−1] (8) 

Equation (7) can be extended to a general form, 

 �̂�𝑘|𝑘−𝑓 = 𝐺 [𝑦𝑘−𝑓 , … , 𝑦𝑘−𝑓+1−𝑁𝑦
, 𝑢𝑘−1, . . , 𝑢𝑘−𝑓+1−𝑁𝑢

] (9) 

or alternatively, 

 �̂�𝑘+𝑓|𝑘 = 𝐺 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘−1+𝑓, . . , 𝑢𝑘+1−𝑁𝑢

]. (10) 

From (10), it can be observed that the 𝑓-step prediction �̂�𝑘+𝑓|𝑘 requires process outputs up to 

𝑘 th sample time, which are all available at current sample period 𝑘. In other words, only 

process output measurements up to 𝑘th sample time are required for the prediction of outputs 

up to (𝑘 + 𝑓)th sample time. This means that the dependency on the future predicted outputs 

𝑦𝑘+1, … , 𝑦𝑘+𝑓−1  over a prediction horizon 𝐻𝑝  is eliminated. Therefore, it improves the 

prediction accuracy. Also, the future inputs from current sample instant k to the prediction 



7 
 

sample instants k+f are required, and this can just be used as the variables to be optimized in 

the MPC.  

 

3. Modelling A CSTR 

To demonstrate the effectiveness of the developed FS-RBF model for multistep ahead 

prediction, the FS-RBF model is developed for a CSTR and compared with other two 

frequently used RBF models. 

 

3.1 FS-RBF Training Algorithm 

The structure of the developed FS-RBF model is the same as that of normal RBF network 

with only difference being different input vectors. Therefore, except for forming input vector 

by different input/output sample values, the training of the network including find centre 

vector and width for the Gaussian functions in each hidden layer node and training of the 

connected weights between the hidden layer and the output layer, are all the same. As in [17] 

and [23], the K-means clustering algorithm and p-nearest centres algorithm are used in this 

work to determine the centres and width based on the training data set. The recursive Least 

Squares algorithm (RLS) is used to optimize the connection weights. The network input 

vector 𝑥𝑘 for the FS-RBF model in (9) is 

 𝑥𝑘 = [𝑦𝑘−𝑓  …  𝑦𝑘−𝑓+1−𝑁𝑦
   𝑢𝑘−1   …  𝑢𝑘−𝑓+1−𝑁𝑢

] (11) 

where 𝑢 and 𝑦 are system input and output, respectively. A Gaussian function is used as the 

activation function and the hidden layer output 𝜙𝑖(𝑘) is given as 

 𝜙𝑖(𝑘) = exp(−
‖𝑥𝑘 − 𝑐𝑖‖

2

𝜎𝑖
2 ) , 𝑖 = 1,… , 𝑛ℎ (12) 

where 𝑛ℎ is the number of hidden neurons and 𝑐𝑖 ∈ ℜ𝑛 is the 𝑖th center. 𝜎𝑖 represents the 𝑖th 

width of the Gaussian function. The network output is 

 �̂�(𝑘) = 𝑊𝑇(𝑘)𝜙(𝑘) (13) 
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where 𝑊𝑘 ∈ ℜ𝑛ℎ×𝑝  is the weighting matrix connecting hidden layer nodes and network 

outputs, and p is the number of outputs. The RLS training algorithm [22] is used to train the 

developed FS-RBF model. 

 𝐿(𝑡) =
𝑃(𝑡 − 1)𝜑(𝑡)

𝜆(𝑡) + 𝜑𝑇(𝑡)𝑃(𝑡 − 1)𝜑(𝑡)
, (14) 

 �̂�(𝑡) = �̂�(𝑡 − 1) + 𝐿(𝑡)[𝑦(𝑡) − 𝜑𝑇(𝑡)�̂�(𝑡 − 1)], (15) 

 𝑃(𝑡) =
1

𝜆(𝑡)
[𝑃(𝑡 − 1) −

𝑃(𝑡 − 1)𝜑(𝑡)𝜑𝑇(𝑡)𝑃(𝑡 − 1)

𝜆(𝑡) + 𝜑𝑇(𝑡)𝑃(𝑡 − 1)𝜑(𝑡)
] (16) 

where �̂�(𝑡) and 𝜑(𝑡) represent the network weights and activation function outputs at time, 𝑡. 

𝑃(𝑡) and 𝐿(𝑡) are middle terms. 𝜆(𝑡) is a forgetting factor which is in the range of (0,1).  

 

3.3  CSTR Dynamics and Data Acquisition 

A CSTR in [23, 24] is selected as the example process for evaluation of modelling and 

control of the developed FS-RBF model because this process has nonlinear dynamics not only 

in static gain and also in dynamic parameters. It is therefore is often employed as a benchmark 

for nonlinear control evaluation. The plant is described by the following nonlinear differential 

equations, 

 𝐶�̇�(𝑡) =
𝑞

𝑣
(𝐶𝑎0 − 𝐶𝑎(𝑡)) − 𝑘0𝐶𝑎(𝑡)𝑒

−
𝐸

𝑅𝑇(𝑡) (19) 

 �̇�(𝑡) =
𝑞

𝑣
(𝑇0 − 𝑇(𝑡)) + 𝑘1𝐶𝑎(𝑡)𝑒

−
𝐸

𝑅𝑇(𝑡)  

 + 𝑘2𝑞𝑐(𝑡) (1 − 𝑒
−

𝑘3
𝑞𝑐(𝑡)) (𝑇𝑐0 − 𝑇(𝑡)) (20) 

The reactor is used to mix two chemicals to produce a product compound A. A type of 

exothermic reaction takes place in the reactor, which slows down the reaction resulting with 

nonlinear dynamics. The objective of the control system is to control the concentration of 

product compound A, 𝐶𝑎(𝑡) with temperature 𝑇(𝑡) by manipulating the flow rate of coolant, 

𝑞𝑐(𝑡). Therefore, the input is the flow rate of coolant 𝑞𝑐 and the output is the concentration of 

compound A, 𝐶𝑎(𝑡). For the reactor the nominal values of the physical parameters are listed 
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in Appendix A. The nonlinearity of the plant is illustrated in Fig. 2, where the step response at 

different operating points is displayed. It can be observed that the dynamics are more 

underdamped when the concentration is higher. 

 
Fig. 2 Step response of the CSTR plant. 

 

The sampling period is chosen to be 0.1min. A set of persistently exciting input signal is 

designed as shown in Fig.3 to generate a set of 1400 output data samples. The excitation input 

signal consists of a random amplitude sequence (RAS) of large amplitude superimposed on it 

with a RAS of small amplitude, to capture the dynamic behaviours of the plant at all 

frequencies and at all different levels of operating space. The collected input-output data 

points are halved into two sets - first 700 data samples are used as training data and the 

remainders are used as validation data. The orders of all variables in the network input vector 

are selected according to the orders of them in the reactor dynamic equations and are carefully 

tuned to give the best generalization result. In the meantime, the numbers of centres are 

decided considering a trade-off between the network size and the prediction error.  
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Fig.3 The collected data samples 

 

3.2 𝑓-Step RBF Modelling and Comparison 

In this section, the prediction performance and model compactness of the FS-RBF model 

are evaluated with the training and validation date sets, and compared with the NARX-RBF 

model and the PSC-RBF model. The NARX-RBF model is of the structure shown in right 

figure in Fig.1 and is able to predict for multistep-ahead with the predicted output as model 

input. The PSC-RBF model can predict for multi-step ahead outputs [19]. To effectively 

evaluate the ability of accurate long range prediction, the proposed FS-RBF model and PSC- 

RBF model are tested with three different prediction horizons 𝐻𝑝 = 5, 10, 20, respectively.  

Both training and validation data sets are scaled to [0 1] to minimize the error caused by the 

difference between ranges of different variables. 

  𝑢𝑠 =
𝑢 − min (𝑢)

max(𝑢) − min (𝑢)
                 𝑦𝑠 =

𝑦 − min (𝑦)

max(𝑦) − min (𝑦)
 (18) 
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where 𝑢 and 𝑦 are input and output in raw data and 𝑢𝑠 and 𝑦𝑠 are the scaled data; min(. ) and 

min (. )  are the minimum values of input and output, respectively. The scaled output 

predictions are then scaled back after the model is used. 

All the three network models are trained with the RLS algorithm in Section 3.2. For a fair 

comparison, the parameters in all networks are carefully tuned. The K-means clustering 

algorithm is used to find the position of centres and the radius of the Gaussian functions is 

calculated using P-nearest neighbour algorithm. The mean absolute error (MAE) is used to 

measure the prediction errors,  

 𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑗=1

 (17) 

where 𝑁 is the number of data samples. After training, the validation data set is applied to the 

three types of model and model prediction results are recorded in Table 1. 

 

Table 1 Performance comparison of different RBF-based models 

Models 
NARX-

RBF 
PSC-RBF FS-RBF 

𝐻𝑝 5 5 10 20 5 10 20 

𝑁𝑢 3 3 2 2 3 2 2 

𝑁𝑦 3 3 2 2 3 2 2 

𝑛ℎ 43 150 216 362 44 36 44 

Training data MAE 0.0154 0.0086 0.0157 0.0156 0.0080 0.0104 0.0116 

Validation data MAE 0.0121 0.0070 0.0125 0.0176 0.0056 0.0075 0.0081 

 

From the prediction results in Table 1 it is evidence that the following four points. First, 

Both FS-RBF and PSC-RBF models have more accurate predictions than the NARX-RBF for 

5-step-ahead prediction. This is because the former two models used measured input/output 

data rather than the latter model used predicted output as model input to bring in accumulated 
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error. Secondly, For long-range, Hp=10 and Hp=20, the FS-RBF predictions are more 

accurate than that by the PSC-RBF model, especially for the validation data. Thirdly, in 

addition to the more accurate prediction, the FS-RBF model has a much smaller size than the 

corresponding PSC-RBF model for all the three different prediction horizons. This point is 

important as the bigger size of the model will lead to a much increased computing load in 

MPC optimization. Fourthly, the FS-RBF model prediction has only a slight degradation with 

the increase of the prediction horizon compared with the PSC-RBF model. This point is very 

important when the model is used as the inter model in the nonlinear MPC.  

As can be seen, the PSC-RBF model has the largest network structures as listed in Table 1. 

With the prediction horizon increasing, the PSC-RBF model needs to use unrealistically large 

network structures to achieve satisfactory predictions. This prevents the PSC-RBF model to 

be used in MPC for systems with slow dynamics only, for example a temperature control 

system. Unlike the PSC model, the proposed FS model is able to maintain its structure size 

while producing satisfactory predictions for long range. 

  

4. Factorization of FS RBF Network for MPC 

The purpose to factorize FS-RBF network is to derive an explicit objection function for 

MPC to reduce the computation burden in solving the online optimization problem. For a 

NARX model, it is impossible to factorize because its future predictions are dependent on 

unknown future process measurement. Although PSC model manages to offer the 

factorization form, an unrealistic large network structure is required to obtain a satisfied 

modelling performance as shown in Section 3.3. As the FS-RBF model is different from the 

PS model, the derivation of factorization is completely different. Due to the factorability of 

exponential function, the prediction output of a RBF network can be rewritten as 

 �̂�𝑘+𝑖 = ∑ 𝑤𝑗exp (𝑃𝑎𝑠𝑡 + 𝐹𝑢𝑡𝑢𝑟𝑒)

𝑛ℎ

𝑗=1

 

 

 = [

𝑤1 exp(𝑃𝑎𝑠𝑡)
⋮

𝑤𝑛ℎ
exp(𝑃𝑎𝑠𝑡)

]

𝑇

[
exp (𝐹𝑢𝑡𝑢𝑟𝑒)

⋮
exp (𝐹𝑢𝑡𝑢𝑟𝑒)

] 
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= �̂�𝑝
𝑇�̂�𝑓 (21) 

with �̂�𝑝
𝑇 and �̂�𝑓 denote the past and future matrices, respectively.  

Based on FS model in (9), 𝑢𝑘−1+𝑓 , . . , 𝑢𝑘+1−𝑁𝑢−1 and 𝑢𝑘+1−𝑁𝑢
 can be called as past inputs 

and future inputs, respectively. In MPC, the future inputs 𝑢𝑘+1−𝑁𝑢
are the variables to be 

optimized. The objective function of MPC is described by 

 
𝑉𝑘 = ∑ ‖�̂�𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘‖𝑄𝑖

2

𝐻𝑝

𝑖=𝐻𝑤

+ ∑ ‖∆�̂�𝑘+𝑖|𝑘‖𝑅𝑖

2

𝐻𝑢−1

𝑖=0

 (22) 

where 𝑅𝑖 and 𝑄𝑖 are the penalty on the changes of inputs and the errors between output and 

desired set point 𝑟𝑘+𝑖|𝑘,  respectively. ∆�̂�𝑘+𝑖|𝑘  represents the changes in input. 𝐻𝑤  and 𝐻𝑢 

represent the window parameter and control horizon, respectively. From (22), it can be 

noticed that the objective function penalizes the changes in input ∆�̂�𝑘+𝑖|𝑘 . Therefore, it is 

necessary to re-formulate FS model in (9). The changes in input are described by 

 ∆�̂�𝑘 = �̂�𝑘 − 𝑢𝑘−1  

 
�̂�𝑘 = ∆�̂�𝑘 + 𝑢𝑘−1 

  �̂�𝑘+1 = ∆�̂�𝑘+1 + �̂�𝑘  

 = ∆�̂�𝑘+1 + (∆�̂�𝑘 + 𝑢𝑘−1)  

 ⋮  

 �̂�𝑘+𝑓−1 = ∆�̂�𝑘+𝑓−1 + ∆�̂�𝑘+𝑓−2 + ⋯+ ∆�̂�𝑘+1 + ∆�̂�𝑘 + 𝑢𝑘−1 (23) 

with �̂� denotes the future prediction. Then, substitute (23) into (10), the FS model becomes 

 
�̂�𝑘+1 = 𝐺 (𝑦𝑘+1−𝑓, … , 𝑦𝑘+2−𝑓−𝑁𝑦

, 𝑢𝑘−2−𝑓−𝑁𝑢
, … , 𝑢𝑘−1, (𝑢𝑘−1 + ∆𝑢𝑘)) 

 

 ⋮  

 

�̂�𝑘+𝑓 = 𝐺 (𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘−1, 𝑢𝑘−1

+ ∆𝑢𝑘, … , (∆�̂�𝑘+𝑓−1 + ∆�̂�𝑘+𝑓−2 + ⋯+ ∆�̂�𝑘+1 + ∆�̂�𝑘

+ 𝑢𝑘−1)) 

(24) 
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Note that the order of inputs is rearranged for factorization purpose. To illustrate the 

factorized FS-RBF model, an example with 𝐻𝑝 = 3 , 𝑁𝑦 = 2 , 𝑁𝑢 = 2 , and 𝑛ℎ = 3  is 

considered. The 𝑓-step predictions within prediction horizon in (10) are 

 �̂�5|1 = 𝐺(𝑦2, 𝑦1, 𝑢1, 𝑢2, 𝑢3, 𝑢4)  

 �̂�6|2 = 𝐺(𝑦3, 𝑦2, 𝑢2, 𝑢3, 𝑢4, 𝑢5)  

 

�̂�7|3 = 𝐺(𝑦4, 𝑦3, 𝑢3, 𝑢4, 𝑢5, 𝑢6) (25) 

and the changes in inputs are rewritten according to (23) 

 
�̂�4 = ∆�̂�4 + 𝑢3 

  �̂�5 = ∆�̂�5 + �̂�4 = ∆�̂�5 + (∆�̂�4 + 𝑢3)  

 �̂�6 = ∆�̂�6 + �̂�5 = ∆�̂�6 + ∆�̂�5 + (∆�̂�4 + 𝑢3) (26) 

By substituting (26) into (25), the predictions become 

 
�̂�5|1 = 𝐺(𝑦2, 𝑦1, 𝑢1, 𝑢2, 𝑢3, (∆�̂�4 + 𝑢3)) 

  �̂�6|2 = 𝐺(𝑦3, 𝑦2, 𝑢2, 𝑢3, (∆�̂�4 + 𝑢3), (∆�̂�5 + ∆�̂�4 + 𝑢3))  

 
�̂�7/3 = 𝐺(𝑦4, 𝑦3, 𝑢3, (∆�̂�4 + 𝑢3), (∆�̂�5 + ∆�̂�4 + 𝑢3), (∆�̂�6 + ∆�̂�5 + ∆�̂�4

+ 𝑢3)) 
(27) 

Using (21), the output predictions can be factorized as 
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�̂�5/1 =

[
 
 
 
 
 
 
 
 𝑤1 exp (

(𝑐1,1 − 𝑦2)
2
+ (𝑐1,2 − 𝑦1)

2
+(𝑐1,3 − 𝑢1)

2
+ (𝑐1,4 − 𝑢2)

2
+ (𝑐1,5 − 𝑢3)

2

𝜎2
)

𝑤2 exp(
(𝑐2,1 − 𝑦2)

2
+ (𝑐2,2 − 𝑦1)

2
+(𝑐2,3 − 𝑢1)

2
+ (𝑐2,4 − 𝑢2)

2
+ (𝑐2,5 − 𝑢3)

2

𝜎2
)

𝑤3 exp(
(𝑐3,1 − 𝑦2)

2
+ (𝑐3,2 − 𝑦1)

2
+(𝑐3,3 − 𝑢1)

2
+ (𝑐3,4 − 𝑢2)

2
+ (𝑐3,5 − 𝑢3)

2

𝜎2
)
]
 
 
 
 
 
 
 
 
𝑇

×

[
 
 
 
 
 
 
 
 exp (

(𝑐1,6 − 𝑢3 − ∆�̂�4)
2

𝜎2
)

exp(
(𝑐2,6 − 𝑢3 − ∆�̂�4)

2

𝜎2
)

exp(
(𝑐3,6 − 𝑢3 − ∆�̂�4)

2

𝜎2
)
]
 
 
 
 
 
 
 
 

 

(28) 

�̂�6/2 =

[
 
 
 
 
 
 
 
 𝑤1 exp(

(𝑐1,1 − 𝑦3)
2
+ (𝑐1,2 − 𝑦2)

2
+(𝑐1,3 − 𝑢2)

2
+ (𝑐1,4 − 𝑢3)

2

𝜎2
)

𝑤2 exp (
(𝑐2,1 − 𝑦3)

2
+ (𝑐2,2 − 𝑦2)

2
+(𝑐2,3 − 𝑢2)

2
+ (𝑐2,4 − 𝑢3)

2

𝜎2
)

𝑤3 exp (
(𝑐3,1 − 𝑦3)

2
+ (𝑐3,2 − 𝑦2)

2
+(𝑐3,3 − 𝑢2)

2
+ (𝑐3,4 − 𝑢3)

2

𝜎2
)
]
 
 
 
 
 
 
 
 
𝑇

×

[
 
 
 
 
 
 
 
 exp(

(𝑐1,5 − 𝑢3 − ∆�̂�4)
2
+ (𝑐1,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2

𝜎2
)

exp(
(𝑐2,5 − 𝑢3 − ∆�̂�4)

2
+ (𝑐2,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2

𝜎2
)

exp(
(𝑐3,5 − 𝑢3 − ∆�̂�4)

2
+ (𝑐3,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2

𝜎2
)
]
 
 
 
 
 
 
 
 

 

(29) 
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�̂�7/3

=

[
 
 
 
 
 
 
 
 𝑤1 exp (

(𝑐1,1 − 𝑦4)
2
+ (𝑐1,2 − 𝑦3)

2
+(𝑐1,3 − 𝑢3)

2

𝜎2
)

𝑤2 exp(
(𝑐2,1 − 𝑦4)

2
+ (𝑐2,2 − 𝑦3)

2
+(𝑐2,3 − 𝑢3)

2

𝜎2
)

𝑤3 exp(
(𝑐3,1 − 𝑦4)

2
+ (𝑐3,2 − 𝑦3)

2
+(𝑐3,3 − 𝑢3)

2

𝜎2
)
]
 
 
 
 
 
 
 
 
𝑇

×

[
 
 
 
 
 
 
 
 exp(

(𝑐1,4 − 𝑢3 − ∆�̂�4)
2
+ (𝑐1,5 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2
+ (𝑐1,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5 − ∆�̂�6)

2

𝜎2
)

exp(
(𝑐2,4 − 𝑢3 − ∆�̂�4)

2
+ (𝑐2,5 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2
+ (𝑐2,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5 − ∆�̂�6)

2

𝜎2
)

exp(
(𝑐3,4 − 𝑢3 − ∆�̂�4)

2
+ (𝑐3,5 − 𝑢3 − ∆�̂�4 − ∆�̂�5)

2
+ (𝑐3,6 − 𝑢3 − ∆�̂�4 − ∆�̂�5 − ∆�̂�6)

2

𝜎2
)
]
 
 
 
 
 
 
 
 

 

(30) 

with 𝑐𝑖,𝑗 representing the 𝑗 th element of the centre vector 𝑐𝑖 . This example shows that the 

output predictions of FS-RBF model is factorized into the past and the future matrices form as 

in (21). On the right hand side in (28-30), the first factor represents �̂�𝑝
𝑇 which consists of all 

known process measurement, whilst the second factor represents �̂�𝑓  which consists of the 

changes in inputs to be optimized in MPC. The general form of the factorized FS-RBF model 

is described by 

 
[

�̂�𝑘+1

⋮
�̂�𝑘+𝑓

] = [

�̂�𝑝𝑎𝑠𝑡,𝑘+1
𝑇  �̂�𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+1

⋮
�̂�𝑝𝑎𝑠𝑡,𝑘+𝑓 

𝑇 �̂�𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+𝑓

] 
(31) 

 
 

�̂�𝑝𝑎𝑠𝑡,𝑘+1 =

[
 
 
 
 
 
 
 
 

𝑤1𝑒𝑥𝑝{−
1

𝜎2 [
(𝑐1,1 − 𝑦𝑘+1−𝑓)

2
+ ⋯+ (𝑐1,𝑁𝑦

− 𝑦𝑘+2−𝑓−𝑁𝑦
)
2
+

(𝑐1,𝑁𝑦+1 − 𝑢𝑘+2−𝑓−𝑁𝑢
)
2
+ ⋯+ (𝑐1,𝑁𝑦+𝑁𝑢+𝑓−2 − 𝑢𝑘−1)

2]}

⋮

𝑤𝑛ℎ
𝑒𝑥𝑝{−

1

𝜎2 [
(𝑐𝑛ℎ,1 − 𝑦𝑘+1−𝑓)

2
+ ⋯+ (𝑐𝑛ℎ,𝑁𝑦

− 𝑦𝑘+2−𝑓−𝑁𝑦
)
2

+(𝑐𝑛ℎ,𝑁𝑦+1 − 𝑢𝑘+2−𝑓−𝑁𝑢
)
2
+ …+ (𝑐𝑛ℎ,𝑁𝑦+𝑁𝑢+𝑓 −2 − 𝑢𝑘−1)

2]}

]
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⋮  

�̂�𝑝𝑎𝑠𝑡,𝑘+𝑓

=

[
 
 
 
 𝑤1𝑒𝑥𝑝 {−

1

𝜎2 [(𝑐𝑛ℎ,1 − 𝑦𝑘+1−𝑝)
2
+ ⋯+ (𝑐𝑛ℎ,𝑁𝑦

− 𝑦𝑘+2−𝑝−𝑁𝑦
)
2
+ (𝑐𝑛ℎ,𝑁𝑦+1 − 𝑢𝑘−1)

2
]}

⋮

𝑤𝑛ℎ
𝑒𝑥𝑝 {−

1

𝜎2 [(𝑐𝑛ℎ,1 − 𝑦𝑘+1−𝑝)
2
+ ⋯+ (𝑐𝑛ℎ,𝑁𝑦

− 𝑦𝑘+2−𝑝−𝑁𝑦
)
2
+ (𝑐𝑛ℎ,𝑁𝑦+1 − 𝑢𝑘−1)

2
]}]

 
 
 
 

 
(32) 

�̂�𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+1 =

[
 
 
 
 𝑒𝑥𝑝 {−

1

𝜎2 [(𝑐1,𝑁𝑦+𝑁𝑢+𝑓−1− 𝑢𝑘−1 − ∆�̂�𝑘)
2
]}

⋮

𝑒𝑥𝑝 {−
1

𝜎2 [(𝑐𝑛ℎ,𝑁𝑦+𝑁𝑢+𝑓−1− 𝑢𝑘−1 − ∆�̂�𝑘)
2
]}]

 
 
 
 

 

 ⋮  

�̂�𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+𝐻𝑢
=

[
 
 
 
 
 
 
 
 
𝑒𝑥𝑝 {−

1

𝜎2 [
(𝑐1,𝑁𝑦+2− 𝑢𝑘−1 − ∆�̂�𝑘)

2
+ ⋯+

(𝑐1,𝑘+𝑁𝑦
− ∆�̂�𝑘+𝐻𝑢−1 − ∆�̂�𝑘+𝐻𝑢−2 − ⋯− ∆�̂�𝑘+1 − ∆�̂�𝑘 − 𝑢𝑘−1))

2]}

⋮

𝑒𝑥𝑝{−
1

𝜎2 [
(𝑐𝑛ℎ,𝑁𝑦+2− 𝑢𝑘−1 − ∆�̂�𝑘)

2
+ ⋯+

(𝑐𝑛ℎ,𝑘+𝑁𝑦
− ∆�̂�𝑘+𝐻𝑢−1 − ∆�̂�𝑘+𝐻𝑢−2 − ⋯− ∆�̂�𝑘+1 − ∆�̂�𝑘 − 𝑢𝑘−1))

2]}

]
 
 
 
 
 
 
 
 

  

⋮  

�̂�𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+𝑓 =

[
 
 
 
 
 
 
 
 
𝑒𝑥𝑝 {−

1

𝜎2 [
(𝑐1,𝑁𝑦+2− 𝑢𝑘−1 − ∆�̂�𝑘)

2
+ ⋯+

(𝑐1,𝑘+𝑁𝑦
− ∆�̂�𝑘+𝐻𝑢−1 − ∆�̂�𝑘+𝐻𝑢−2 − ⋯− ∆�̂�𝑘+1 − ∆�̂�𝑘 − 𝑢𝑘−1))

2]}

⋮

𝑒𝑥𝑝{−
1

𝜎2 [
(𝑐𝑛ℎ,𝑁𝑦+2− 𝑢𝑘−1 − ∆�̂�𝑘)

2
+ ⋯+

(𝑐𝑛ℎ,𝑘+𝑁𝑦
− ∆�̂�𝑘+𝐻𝑢−1 − ∆�̂�𝑘+𝐻𝑢−2 − ⋯− ∆�̂�𝑘+1 − ∆�̂�𝑘 − 𝑢𝑘−1))

2]}

]
 
 
 
 
 
 
 
 

 (33) 

Notice all control inputs remain constant from 𝐻𝑢+1 to 𝑓 in MPC. With the factorization of 

FS-RBF model, the objective function in MPC in (22) becomes explicit in the changes of 

inputs,  

 
𝑉𝑘 = ∑ ‖�̂�𝑝𝑎𝑠𝑡,   𝑘+𝑖

𝑇  �̂�
𝑓𝑢𝑡𝑢𝑟𝑒,𝑘+𝑖

(∆�̂�𝑘+𝑖) − 𝑟𝑘+𝑖|𝑘‖
𝑄𝑖

2
𝐻𝑝

𝑖=𝐻𝑤

+ ∑ ‖∆�̂�𝑘+𝑖|𝑘‖𝑅𝑖

2

𝐻𝑢−1

𝑖=0

 (34) 
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From (34), it is understood that unlike the NARX-RBF model, the factorized FS-RBF model 

provides an analytical form of objective function for MPC. �̂�𝑝𝑎𝑠𝑡,𝑘+1
𝑇 , … , �̂�𝑝𝑎𝑠𝑡,𝑘+𝑓

𝑇  in (32) are 

only computed once at each sample time, which reduces the computational requirement when 

solving the optimization problem.  

5. MPC of The CSTR 

To evaluate the effectiveness of the proposed FS-RBF model-based MPC (MPC-FS), the 

CSTR plant in Section 3.3 is considered. The CSTR plant possesses different nonlinear 

characteristics in different level of product concentration. Thus, the control performance is 

assessed in three levels of product concentration: high (0.11mol/l), middle (0.09mol/l), and 

low (0.065mol/l). Step changes of the set-point in two different levels are used to further test 

the dynamic response of the control approach. The upper and lower bound constraints for the 

control variable, coolant flow rate 𝑞𝑐  , are set to 110 and 90, respectively. There is no 

constraint imposed on the outputs. The MPC approaches based on both the NARX-RBF 

model and the PSC-RBF model for the CSTR are developed. The control system 

performances and the computing loads with the two different models are then compared with 

the MPC based on the FS-RBF model in the optimization algorithm.  

 

5.1 Control Performance 

To provide a fair comparison, the prediction horizon 𝐻𝑝 and control horizon 𝐻𝑢 for all 

control approaches are set to 10 and 5, respectively. It is realized that in MPC, the control 

performance is strongly based on the prediction accuracy of the internal model that represents 

the real process. Thus, based on the modeling performance, the model orders and number of 

centers are selected from Table 1 in Section 3.3. In practice, the parameters of three control 

approaches are well tuned and recorded in Table 2.  

 

Table 2 Control Parameters 

Control Strategy Parameters 

MPC-NARX 𝑅𝑖 = 1.1, 𝑄𝑖 = 0.9 

MPC-FS 𝑅𝑖 = 1.2, 𝑄𝑖 = 0.75 
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MPC-PSC 𝑅𝑖 = 1.15, 𝑄𝑖 = 0.8 

 

In the first control experiment a small step change in the middle level of concentration 

𝐶𝑎 = 0.09𝑚𝑜𝑙/𝑙 as shown in Fig.4 is used as the set-point. The set point is a rectangular 

waveform where the product concentration level decreases from 0.1mol/l to 0.09mol/l, and 

then increases from 0.09mol/l to 0.1mol/l again. The control performances of all compared 

control strategies are shown in Fig. 4 and the MAE are recorded in Table 3. The MPC-NARX 

has the largest overshoot among three control strategies, for both drop and rise of the set-point. 

Meanwhile, the MPC-PSC has the largest steady-state error in both drop and rise scenarios. 

Conversely, the MPC-FS clearly has the least steady-state error. From the MAE presented in 

Table 3, the overall control performance of MPC-FS is the best among the group of three 

models.  
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Fig. 4 Control performance in middle level of product concentration 

The second experiment is executed with a large step change in the set-point, which 

involves the low and high levels of product concentration, 𝐶𝑎 = 0.11  and 𝐶𝑎 = 0.065 , 

respectively. The product concentration increases from 0.09mol/l to the highest level 

0.11mol/l, and then decreases to the lowest level 0.065mol/l. The process responses with the 

manipulated variables are displayed in Fig. 5. Besides, the MAE is given in Table 3.  

 
Fig. 5 Control performance in low and high level of product concentration 
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NARX and MPC-FS has similar overshoot when the set-point jumps, but the MPC-NARX 

has severer oscillation. When the set-point drops, the MPC-PSC has the slowest response. 

Meanwhile, in the same scenario, there is a small acceptable overshoot for MPC-FS. In both 
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rise and drop scenarios, the proposed MPC-FS has the smallest steady-state error, as 

illustrated in Fig. 5. Furthermore, from Table 3, the MAE clearly suggests that the proposed 

MPC-FS has the best overall control performance.  

As a whole, in the evaluation of control performances, it is verified that the proposed 

MPC-FS has a better performance than that of MPC-NARX and MPC-PSC. In the control in 

the middle level of product concentration, it can be said that all the three control approaches 

have similar performance. For the control in low and high level of product concentration, the 

advantage of proposed MPC-FS over the other two approaches is much more obvious. This is 

because the nonlinearity of CSTR plant is much stronger on the high level of product 

concentration than the other regions of the operating space. In addition, as presented in 

Section 3.3, the MPC-FS has the best modelling performance among the three RBF models, 

which is the main reason for the better control performance.  

 

Table 3 Control Performance 

Control Strategy 
MAE 

(Middle level  / Low & High level) 

MPC-NARX 0.00037880 / 0.0016 

MPC-FS 0.00032564 / 0.0013 

MPC-PSC 0.00051959 / 0.0017 

 

5.2 Computing Load 

As mentioned previously, although a nonlinear model appears to be a better internal 

model in MPC, one of disadvantages of nonlinear MPC (NPMC) is its large computational 

load in on-line optimization of control variables. Therefore, after the evaluation of modelling 

and control performance, it is imperative to evaluate the computational requirement of all the 

control strategies in previous section. In this work, MATLAB R2009a on an Intel Core i3 

laptop with Windows 7 system is used to carry out this simulation. For a fair comparison, the 

optimization problem in all control strategies is solved using sequential quadratic 

programming [25]. The computation time in solving the online optimization problem is 

measured using tic-toc command in Matlab.  
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The online computing times of all control algorithms at each sample time for the control 

in middle level and low/high level of product concentration are shown in Fig. 6 and 7, 

respectively. The total computation times are recorded in Table 4. It is observed that the 

computing times of all the three approaches are high when step changes occur. Then, the 

computing times gradually reduce as the outputs track the constant set-point as illustrated in 

both Fig. 6 and 7. This is because the control value used this sample time is set as the initial 

value of the control for next sample time, so that the computing load is greatly reduced. For 

middle level control, the highest computation time of MPC-NARX, MPC-FS and MPC-PSC 

are 6s, 3.26s and 9.327s, respectively. For low/high control, the highest computation time of 

MPC-NARX, MPC-FS and MPC-PSC are 5s, 3.33s and 33s, respectively. Considering the 

computing time using Matlab is more than 10 times high compared that using the industrial C 

code, the computing time 6 seconds using Matlab is equivalent to 0.6 seconds using the C 

code, which is acceptable for the sampling time of 3 second. While the model MPC-PCS for 

large set-point change uses 33 seconds to solve the optimization problem, so that this 

algorithm would not be recommended for practical application.  

Furthermore, it is obvious the MPC-PSC has the largest total computation time as 

presented in Table 4. Although the MPC-PSC is a factorized approach, its unrealistic huge 

network structure to acquire a satisfying modeling performance has increased the size of 

factorized matrices in (32-33). Therefore, the computation load has inevitably become greater 

during the execution of optimized control variable.  

On the other hand, it is noticeable that the computation time of MPC-FS for low/high 

level is not as efficient as for middle level due to the high nonlinearity characteristic in this 

region. Despite this, the proposed MPC-FS is proved to have advantages over MPC-NARX 

with lower computation times every time step changes occur as shown in Fig. 6 and 7.  

Furthermore, Table 4 suggests that in overall, the MPC-FS is more efficient than the MPC-

NARX. This is because unlike the MPC-NARX, the MPC-FS has the advantages using the 

factorized model in (32) where �̂�𝑝𝑎𝑠𝑡,𝑘+1
𝑇 , … , �̂�𝑝𝑎𝑠𝑡,𝑘+𝑓

𝑇  are only needed to be computed once 

at each sample time instant which reduces the computational requirement. In this simulation, 

it is proved that the MPC-FS is a more efficient control strategy in term of control results and 

computational requirement.  
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Fig. 6 Computing times of all control approaches at the control in middle level. 

 
Fig. 7 Computing times of all control approaches at the control in low and high level. 
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Table 4 Total computation times 

Control Strategy 
Total Computation Times (s)  

Middle level / Low & High level  

MPC-NARX 155.4303 / 221.0456 

MPC-FS 125.3157 / 213.2456 

MPC-PSC 394.3540 / 1565.8 

 

6. Conclusion 

In conclusion, a new FS-RBF model is developed for nonlinear dynamic process and its 

factorized form is developed for the application in MPC. A FS prediction model is firstly 

developed and implemented with RBF network. The effectiveness of the FS-RBF model is 

verified in modelling a CSTR plant. The comparison results demonstrate that the FS-RBF 

model outperforms the PSC-RBF model in term of prediction accuracy and model 

compactness. In addition, the proposed network model matches the NARX-RBF model in 

model compactness and it presents a better modelling performance. With these two 

advantages, the developed network model is more effective to be used in MPC for output 

prediction. After that, the factorization of proposed network is derived and an explicit MPC’s 

objective function is obtained to reduce the computational load. The control performance and 

the computational load of the MPC based on the proposed model are evaluated by controlling 

the CSTR plant. Comparing with the existing control approaches, the results show that the 

proposed control approaches possesses a more efficient and better control performance. These 

advantages proved that the developed factorized FS-RBF model provided a better approach to 

be applied in MPC.  

 

Appendix A 

CSTR Parameters 

product concentration 𝐶𝑎 0.1 mol/l 

reactor temperature 𝑇 438.54 K 

coolant flow rate 𝑞𝑐 103.41 l/min 
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process flow rate 𝑞 100 l/min 

feed concentration 𝐶𝑎0 1 mol/l 

inlet coolant temperature 𝑇𝑐0 350 K 

CSTR volume 𝑣 100 l 

heat transfer coefficient ℎ𝑎 7 x 105 cal/min/K 

reaction rate constant 𝑘𝑜 7.2 x 1010 min-1 

activation energy term 𝐸/𝑅 1 x 104 K 

heat of reaction ∆𝐻 -2 x 105 cal/mol 

liquid densities 𝜌, 𝜌𝑐 1 x 103 g/l 

specific heats 𝐶𝑝, 𝐶𝑝𝑐 1 cal/g/k 

 

𝑘1 = −
∆𝐻𝑘0

𝜌𝐶𝑝
        𝑘2 =

𝜌𝑐

𝜌𝐶𝑝𝑣
        𝑘3 =

ℎ𝑎

𝜌𝑐𝐶𝑝𝑐
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