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 

Abstract — Low power circuits are important for many 

applications, such as IoT. Device variations and fluctuations are 

challenging their design. Random telegraph noise (RTN) is an 

important source of fluctuation. To verify a design by 

simulation, one needs assessing the impact of fluctuation in 

both driving current, ΔId, and threshold voltage, ΔVth. Many 

early works, however, only measured RTN-induced ΔId. ΔVth 

was not directly measured because of two difficulties: its average 

value is low and it is highly dynamic. Early works often estimated 

ΔVth from ΔId/gm(Vg=Vdd), where gm is trans-conductance, 

without giving its accuracy.  The objective of this work is to 

develop a new Trigger-When-Charged (TWC) technique for 

directly measuring the RTN-induced ΔVth. By triggering the 

measurement only when a trap is charged, measurement 

accuracy is substantially improved. It is found that there is a 

poor correlation between ΔId/gm(Vg=Vdd) and the directly 

measured ΔVth(Vg=Vth). The former is twice of the latter on 

average. The origin for this difference is analyzed. For the first 

time, the TWC is applied to evaluate device-to-device 

variations of the directly measured RTN-induced ΔVth 

without selecting devices. 

  

    Index terms: Random telegraph noise (RTN), Fluctuations, Yield, 

Within-a-device-fluctuation, Jitters, Positive charges, NBTI. 

  

I. INTRODUCTION 

 

s CMOS nodes scale down, the fluctuations induced by 

random charge-discharge of traps scale up. Smaller 

devices have larger statistical spread because of fewer traps per 

device and the larger impact of a single charge on them [1,2]. 

The increased number of devices per chip also leads to larger 

statistical spread [1,2] and high data transmission rate requires 

tight control of fluctuations [3]. Fluctuations have become a 

major concern for circuit design and have attracted many 

attentions recently [4-20]. It has been reported that current 

fluctuation in some fresh devices can be over the typical device 

lifetime criterion of 10% [5]. 

 Fluctuations are commonly observed as the random 

telegraph noise (RTN) in the drain current, ΔId, under a given 
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gate bias, Vg, and early works [5-13] have focused on them. 

ΔId allows probing individual traps and an analysis of their 

mean capture and emission time dependence on Vg gives the 

trap energy and spatial locations [5, 6, 8, 10]. This has improved 

our understanding substantially. There are, however, little 

direct measurements of the RTN-induced fluctuation in 

threshold voltage, ΔVth. This is because its measurement is 

difficult: the charge-discharge of traps for RTN is highly 

dynamic and the average ΔVth is typically low. As a result, the 

RTN-induced ΔVth often was either not given [5,11] or 

estimated from dividing ΔId by trans-conductance, i.e. 

ΔVth≈ΔId/gm(Vdd) [6-10]. The accuracy of the ΔVth 

evaluated in this way was not given in these works [6-10]. 

 To model the impact of RTN on the margin of SRAM [15] 

and the timing error [14], one needs both ΔId and ΔVth. For 

example, RTN in the pass transistor 1 in Fig. 1a can reduce the 

driving current by ΔId and slow down the Vg rise of transistor 

2 in reaching its threshold voltage, Vtho, by Δt(ΔId). RTN in 

the transistor 2 can increase its Vth by ΔVth and results in a 

further delay, Δt(ΔVth). There is a need to obtain both accurate 

ΔId and ΔVth, therefore. 

 

 
Fig. 1. A schematic illustration of the impact of ΔId and ΔVth on timing: (a) 

circuits and (b) waveform. Vout switches when Vg≈Vth, which is delayed by a 

lower charging current, Id-ΔId, supplied through the transistor 1 and a higher 

Vth=Vth0+ΔVth of the transistor 2. 

 

The objective of this work is to develop a new Trigger-

When-Charged (TWC) technique for directly measuring the 

RTN-induced ΔVth. By ensuring that the measurement is taken 

when traps are charged, the accuracy is substantially improved. 

It is found that the ΔId/gm(Vdd) correlates poorly with the 

directly measured ΔVth and the former doubles the latter on 
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average. The discrepancy originates partly from the device-to-

device variation (DDV) of relative local current density beneath 

a trap at Vg=Vth [16-19] and partly from the charge-induced 

mobility degradation [20].  

Some deeply scaled devices have analyzable RTN signals in 

terms of extracting mean capture/emission time [11], while 

others can have a complex within-a-device-fluctuation [12]. 

The latter was deselected in some early works [10,13,16,17], 

making the real DDV of fluctuation unobtainable. The TWC 

developed in this work is applicable to devices with or without 

analyzable RTN signals and it will be used to evaluate the  

DDV.        

  

II. DEVICES AND MEASUREMENT TECHNIQUE 

A.  Devices  

The MOSFETs used in this work were fabricated by a 28 nm 

commercial CMOS process with a use Vdd of 0.9 V. They have 

a metal gate and a high-k dielectric stack with an equivalent 

oxide thickness of 1.2 nm.  The channel width and length are 

135 nm and 27 nm, respectively. For comparison purpose, large 

devices of 3×1 µm were also used, which has insignificant 

DDV. All tests were performed at 125 ºC. 

B. TWC technique  

Difficulties with standard measure-stress-measure methods: 

For ageing-induced ΔVth under stresses such as negative bias 

temperature instability (NBTI) [21,22] and hot carriers [23,24], 

the degradation is commonly measured at preset time. This is 

acceptable, as the Vg-acceleration used in the stress generally 

leads to a large-enough ΔVth that is measurable and 

deterministic at a preset time. There are, however, two 

difficulties in applying this method to deeply scaled devices 

under use-Vdd, where ΔVth mainly exhibits as Random 

Telegraph Noise (RTN). First, there are only a few active traps 

and the average ΔVth is typically low. Second, charge-

discharge of these traps are highly dynamic: they are often 

neutral at the preset time for measurement, as shown by the red 

circle symbols in Fig. 2, and would be missed by the 

measurement.  

One way to avoid these difficulties is selecting devices that 

only have one trap, which induces a high enough  ΔVth (e.g. 20 

mV) and its emission time is long enough (e.g. >1 sec) for 

completing the measurement [16,17]. This has improved our 

understanding of the interaction between a trap and the current. 

Such devices, however, are rare (e.g. ~10% [16]) and the 

required device selection precludes obtaining real DDV. The 

present work develops a new technique that removes the device 

selection and is applicable to all devices, so that the real DDV 

can be extracted.  

Test procedure of TWC technique:  Fig. 2a gives the Vg 

waveform. After recording the reference Id-Vg on a fresh 

device, the test starts by a ‘stabilization’ period of 40 sec under 

Vg=Vdd=-0.9 V. If there are any traps at deep energy level in a 

device, they will be filled during this period [25]. ΔId under 

Vg=-0.9 V is then monitored for a period, e.g. 100 sec, as 

marked by ‘Id monitor’ in Fig. 2a. A sampling rate of 1 M/sec 

was used [26]. The trapping-induced up-envelope (UE) of ΔId 

is obtained.  

To measure the trapping-induced ΔVth, one must ensure that 

the measurement was taken when the traps are charged. This is 

achieved by setting the trigger level of the oscilloscope and the 

pulse generator for Vg just below the UE, as shown in Figs. 

2a&b. Once triggered, the pulse Id-Vg (p-IV) is recorded in 3 

µs to minimize discharge [25,26].  

Although a sampling rate of 1 M/sec can be used to monitor 

ΔId under a fixed Vg=-0.9 V, it only gives 3 points in 3 µs and 

is too slow for the p-IV. To have sufficient number of points for 

p-IV, a higher rate of 100 M/sec is used. The p-IV was 

repeatedly measured for 50 times and their average is used to 

reduce the system noise to ~1 mV.  
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Fig. 2. The TWC technique. (a) Test procedure: After a stabilization period, the 

RTN-induced ΔId is monitored under Vg=Vdd and the upper envelope (UE) is 

determined. The trigger-level for subsequent p-IV (3 µs) is then set just below 

UE to measure ΔVth. 50 p-IVs were measured in (b) and their average is given 

in (c). The TWC p-IV captures the RTN-induced ΔVth, while the traditional p-

IV at pre-set time often misses the charge and is inapplicable. Both the TWC 

and traditional p-IVs were taken after the “stabilize” period.   

 

ΔVth is evaluated from the difference between the TWC p-

IV and the reference p-IV. The reference p-IV was obtained 

also from the average of 50 p-IV with the same sweep rate, 

performed on fresh devices before filling the energetically deep 

traps by applying the waveform in Fig. 2a. When measuring 

these 50 p-IV, it is possible that a trap can be filled during the 

measurement. These outlier p-IVs were excluded from the 

reference p-IV. This ensures capturing the ΔVth induced by 

both RTN and energetically deep traps, if they are present. In 
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case that one is interested in capturing RTN-induced ΔVth only, 

the reference p-IV should be taken after filling the energetically 

deep traps. Fig. 2c demonstrates that a single trap induced ΔVth 

of ~2 mV is successfully captured by the TWC technique, 

which often would be missed by the traditional p-IV recorded 

at a preset time, as illustrated by the red circles in Fig. 2b. The 

measured ΔVth/ΔId ratio is used to convert ΔId to ΔVth.  

Measurement setup: As the main objective of this work is to 

develop a technique for measuring the RTN-induced ΔVth 

under use Vdd, the detailed measurement setup is given in Fig. 

3. Id under Vd=0.1 V was converted to a voltage, Vout, by a 

home-made operational amplifier circuit. During the ‘Id 

monitor’ phase in Fig. 2a, Vout was monitored by both channels 

2 and 3 of an oscilloscope and one example is given in Fig. 3b.  

In the following ‘p-IV’ phase of Fig. 2a, when Vout is above 

the ‘trigger level’ in Fig. 3c, the oscilloscope triggers and 

simultaneously sends out a signal to trigger the pulse generator 

for Vg. Both the pulse applied to the gate and the corresponding 

Vout are captured, as shown in Fig. 3c. Two channels are 

needed here: channel 3 is at a fine scale to ensure capturing the 

small Vout fluctuation with good accuracy and channel 2 is 

switched to a coarse scale to capture the whole p-IV. As a 

comparison, Fig. 3d shows an example triggered at a preset time 

that missed the trapped charge.  

The UE in Fig. 2a can be caused by either a single trap or 

multiple traps. In the latter case, the UE results from the 

combined charges of multiple traps. This removes the need for 

selecting devices of a single trap and makes the method 

applicable to all devices.  

The differences of this work from the typical BTI tests are 

that the p-IVs are only triggered when traps being charged and 

Vg-acceleration is not used here.  

III. RESULTS AND DISCUSSIONS 

A.  A comparison between ΔId/gm(Vdd) and ΔVth(Vth) 

As mentioned in the introduction, early works [6-10] often 

estimated ΔVth by ΔId/gm(Vdd), where both ΔId and gm were 

obtained under Vg=Vdd. This is effectively measuring the shift 

of IV at Vg=Vdd, as marked by the point ‘B’ in Fig. 4a and the 

corresponding inset. The real ΔVth, however, should be 

evaluated from Vg=Vth at the point ‘A’ in Fig. 4a. In this work, 

Vth is extracted by extrapolating from the maximum gm point 

and Vth=-0.45 V in Fig. 4a. The shift in Vth, ΔVth, at a given 

sensing Vg is evaluated from ΔId/gm(Vgsense). We now 

compare the ΔVth evaluated at Vgsense=Vth (‘A’ in Fig. 4a) 

with that at Vgsense=Vdd (‘B’ in Fig. 4a). 

 Fig. 4b plots ΔVth(Vth) against ΔVth(Vdd)=ΔId/gm(Vdd) 

measured on 63 devices. Both of them have a large DDV, but 

the correlation between them is poor. For similar ΔId/gm(Vdd), 

ΔVth can spread from its minimum to its maximum 

approximately. As a result, errors are large if ΔId/gm(Vdd) is 

used as ΔVth, so that it is essential to measure ΔVth directly at 

Vg=Vth. Although both of them have maximum close to the 

typical device lifetime definition of 30~50 mV, the average 

ΔId/gm(Vdd) doubles that of ΔVth, as shown by the two dashed 

lines in Fig. 4b. This is because many devices have ΔVth(Vth) 

close to zero, but ΔId/gm(Vdd) are above 10 mV. The origin of 

the differences between these two will be analyzed next. 

B. Effects of sensing Vg on ΔVth  

In Fig. 4a, the sensing Vg for ΔVth is -0.9 V for the point B 

and Vth=-0.45 V for the point A. Since the whole Id~Vg was 

measured, one can also extract the “apparent ΔVth” at other 

sensing Vg by using ΔId/gm(Vgsense). The “apparent ΔVth” 

here is referred to the ΔVth evaluated in this way under 

Vgsense≠Vth. Typical examples obtained from different 

devices are given in Figs. 5a-e. 

 

 

 

 
 

Fig. 3. (a) Test configuration for the TWC measurement technique. A high-

speed operational amplifier based circuit is used to convert Id to Vout that is 

connected to both channels 2 and 3. The “Trigger out” of the oscilloscope is 
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connected to the “External trigger in” of the pulse generator. (b) The Vout 

fluctuation is captured by both channels 2 and 3, as they are physically 

connected. (c) A screen-shot of the TWC p-IV measurement waveform. 

Channel 3 keeps its fine scale for accurate triggering, while channel 2 is 

switched to a coarse scale to capture the whole “TWC” p-IV. (d) A screen-shot 

of the traditional p-IV measurement at a preset time, where the trapped charge 

is missed. 

 

The dependence of the apparent ΔVth on the sensing Vg has 

strong DDV, agreeing with that observed for single traps 

[16,17]. On one hand, Fig. 5a corresponds to Fig. 4a, where 

ΔVth increases monotonically with |Vg| and ΔVth at |Vg|=0.9 

V is 6 times of the real ΔVth(Vth). On the other hand, ΔVth can 

also reduce by almost half over the same voltage range, as 

shown in Fig. 5b. There are also cases where (i) ΔVth is almost 

a constant (Fig. 5c); (ii) ΔVth increases initially and then 

reduces (Fig. 5d); and (iii) ΔVth decreases initially and then 

increases (Fig. 5e). 
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Fig. 4. (a) Early works estimated RTN-induced ΔVth from ΔId/gm at Vdd=0.9 

V (Point ‘B’), rather than directly measuring it at Vg=Vth (Point ‘A’). The two 

insets are enlarged p-IV around the two points. The black p-IV is reference and 

the blue p-IV is the TWC p-IV. (b) The poor correlation between ΔId/gm at 

Vdd and ΔVth at Vg=Vth. Each point was taken from a different device. The 

dotted lines mark the mean values. 

 

It is known that channel current can have a narrow 

percolation path near Vth and the impact of a charged trap on a 

deeply scaled device depends on the relative local current 

density beneath the trap [16-19]. This can explain the device-

specific dependence observed in Fig. 5. As schematically 

illustrated in Fig. 6, for the device in Fig. 5a, the trap is located 

far away from the current percolation path at Vth, so that it has 

little impact and ΔVth(Vth) is low. The many close-to-zero 

ΔVth(Vth) points in Fig. 4b indicates that this is often the case. 

As Vg increases, the current becomes more evenly spread and 

its relative density under this trap rises, leading to the increase 

of ΔVth with Vg. As there is current flowing beneath each trap 

at Vdd, there is no close-to-zero apparent ΔVth in Fig. 4b, when 

evaluated by ΔId/gm(Vdd). 

For the device in Fig. 5b, however, the trapped charge is on 

top of the current percolation path at Vth, resulting in a large 

ΔVth at Vth. As Vg increases, the current path is widened, so 

that the impact of the same charge on the device reduces and 

the ΔVth decreases with |Vg| in Fig. 5b. Similarly, the relative 

current density under the trap in Fig. 5c changes little with Vg 

and ΔVth is insensitive to Vg. The dependence of relative 

current density under a trap on Vg may not be monotonic, which 

can explain the behavior in Figs. 5d&e. For instance, in Fig. 5d, 

it may increase initially and then decrease. Alternatively, when 

there are multiple traps, some can behave like Fig. 5a and some 

like Fig. 5b. A combination of them can give the complex 

dependence in Figs. 5d&e. 
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Fig. 5. Examples of the device specific dependence of the apparent ΔVth on the 

sensing Vg, Vgsense. (a)-(e) were obtained from five different devices.  The 

apparent ΔVth at a Vgsense was obtained from the shift of TWC p-IV from the 

reference at Vgsense. The ΔVth is normalized against its value at Vgsense=Vth. 

As the lowest |Vgsense| is close to Vth, the data starts from ~1 in all devices. 

 

 

 
 

Fig. 6. A schematic illustration of different impacts of traps at different 

locations on a device at threshold condition. The current can follow a 

percolation path under Vg=Vth. The trap in green corresponds to the device in 

Fig. 5a: it is away from the critical current path, so that it only has a small effect 

on the device at Vth. The trap in red corresponds to the device in Fig. 5b: it is 

on top of the current critical path and has a large effect on the device at Vth. 

 

Although the deeply scaled device-specific dependence of 

ΔVth on sensing Vg can be explained by the interaction 

between the trap and the relative local current density beneath 

it, there is also a device independent ΔVth dependence on the 

sensing Vg. For a large 3×1 µm device where DDV is 

insignificant, Fig. 7a shows that ΔVth also increases with 
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|Vgsense|. On one hand, a more evenly distributed Id at higher 

|Vgsense| allows more traps making an effective impact. On the 

other hand, the charge induced Columbic scattering causes 

mobility degradation [27,28], which lead to ΔId(mobility). 

When the apparent ΔVth is evaluated from ΔId(measured)/gm, 

the ΔId(mobility) is treated as if it was caused by ΔVth. In other 

words, the apparent ΔVth= ΔId(measured)/gm includes the 

contribution from mobility degradation to ΔId. As the effect of 

mobility degradation increases with |Vgsense|, it contributes to 

the increase in the apparent ΔVth for higher |Vgsense|.    

C.  Statistics 

As there is hardly any information on the statistical properties of 

the directly measured RTN-induced ΔVth, especially in terms of 

its dependence on Vgsense, we report the DDV of this dependence 

here. Each line in Fig. 7b represents one device and the first 

impression is that the apparent ΔVth broadly increases for higher 

|Vgsense|. Although the ΔVth for some devices can reduce for 

higher |Vgsense| as shown in Fig. 5b, it is rare for a trap to be above 

a localized percolation path. As a result, the average (symbols in 

Fig. 7b) increases monotonically for higher |Vgsense|, which is 

partly driven by the mobility degradation. 
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Fig. 7. (a) The impact of sensing Vg on the apparent ΔVth of a large device of 

3×1 µm. The deep level traps were filled under Vg=-0.9 V for 100 sec before 

the measurement. ΔVth is normalized against its value at Vg=Vth. (b) The 

stochastic variation of 135x27 nm devices. Each line is from one device. The 

symbols are the average. (c) Dependence of σ and σ /μ on the sensing Vg. 

 

The standard deviation, σ, is plotted against Vgsense in Fig. 7c. 

It can be divided into two regions: as |Vgsense| increases, σ 

decreases first and then increases. The minimum point is around 

0.65 V. To explore this further, the relative variation, σ/µ, is also 

plotted in Fig. 7c. When |Vgsense|>0.65 V, σ/µ only rises 

modestly, so that the higher σ is mainly caused by the higher µ, as 

shown by the symbols in Fig. 7b. Below 0.65 V, however, σ 

increases and µ decreases for lower |Vgsense|, resulting in a rising 

σ/µ. When |Vgsense| lowers towards |Vth|, the current path 

becomes increasingly localized, leading to higher statistical 

variations, even though the trapped charges remain the same.     

The cumulative distribution probability of ΔVth is given in Fig. 

8a and σ is plotted against µ in Fig.8b for Vgsense=Vth. The RTN 

of nMOSFETs is smaller than that of pMOSFETs. σ follows µ by 

a power law with an exponent of ~0.5, agreeing with the prediction 

of Defect-Centric model [2, 16, 29]. According to this model, the 

average ΔVth induced by a trap, η, is, 

𝜂 =
𝜎2

2µ
. 

 

Using the fitted line in Fig. 8b, η ~ 3.2 mV is obtained for 

pMOSFETs. This η is ~2×q/Cox approximately, where q is one 

electron charge and Cox the gate oxide capacitance. This agrees well 

with the value reported for the recoverable component of NBTI of 

pFinFETs [16], although the test samples used here are planar 

pMOSFETs from a different supplier.  The average number of traps, 

N, per device is, 

𝑁 =
µ

𝜂
. 

For pMOSFETs, a µ ~ 12 mV in Fig. 4b gives N ~ 4. 
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exponential distribution. (b) Standard deviation versus mean. Lines show that the 

data follow the prediction of Defect-Centric model well with a power exponent of 

0.5. The different pairs of (µ,σ) are obtained by varying the time window of “Id 

monitor” from 10 µs to 100 sec  in Fig. 2a. 

 

For nMOSFETs, the corresponding values are  µ ~ 6.5 mV, η ~ 1.1 

mV, and N ~ 6. When compared with pMOSFETs, the lower RTN in 

nMOSFETs is caused by smaller η. Although there are more traps in 

nMOSFETs, they are in the high-k layer and further away from the 

conduction channel and induce a smaller ΔVth [30]. 

IV. CONCLUSIONS 

The conventional method of ‘Measure-Stress-Measure’ at 

preset time is inapplicable for the RTN-induced ΔVth, since the 

trap can be neutral when pulse IVs are taken. Early works 

estimate the RTN-induced ΔVth by ΔId/gm at Vg=Vdd and its 

accuracy is not known. In this paper, we propose a new TWC 

method for directly measuring the real ΔVth at Vg=Vth. By 

setting the trigger level close to the upper envelope of trapping-

induced ΔId, it ensures that the pulse IV is taken when traps are 

charged.  

Results show that there is no unique relationship between 

ΔId/gm at Vg=Vdd and the directly measured ΔVth and their 

correlation is poor. The device-specific dependence of the 

apparent ΔVth on the sensing Vg originates from the DDV of 

relative local current density under a trap at Vth. Moreover, on 

average, ΔId/gm(Vdd) doubles ΔVth(Vth) and the charge-

induced mobility degradation through Columbic scattering 

plays a role. 

The TWC is applicable to devices with or without analyzable 

RTN signals. For the first time, it is used for assessing the 

statistical properties of the directly measured RTN-induced 

ΔVth. For the same trapped charges, it is found that σ has a 

minimum around |Vgsense|=0.65 V. The increase in σ when 

|Vg| lowers toward |Vth| is explained by an increased 

localization of current path. The DDV follows the Defect-

Centric model. For the 135×27 nm devices used in this work, 

the average ΔVth induced per trap is ~3.2 mV for pMOSFETs 

and ~1.1 mV for nMOSFETs.  
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