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Abstract: This paper presents an investigation on the sensitivity of flexible foundation models of 10 

offshore wind turbines subjected to earthquake loadings. A novel seismic analysis framework (SAF) 11 

is developed and implemented in an open source aero-hydro-elastic analysis tool, “FAST”, for 12 

accurately modelling the effects of seismic loadings on offshore wind turbines. SAF has been 13 

validated through comparisons against experimentally validated numerical tools, GH Bladed and 14 

NREL Seismic. The behaviours of three flexible foundation models, namely, the apparent fixity (AF), 15 

coupled springs (CS) and distributed springs (DS) methods, subjected to earthquake loadings have 16 

been examined in relation to a fixed foundation. A total of 224 fully coupled nonlinear simulations of 17 

the foundation models are performed using a dataset of 28 earthquake records which are scaled using 18 

the target spectrum matching technique to represent the actual seismic effects of the selected sites. 19 

The results reveal that the AF model appropriately reflects realistic situations in comparison to the 20 

CS model. In addition, the amplitudes of vibration induced by the earthquake loadings are larger for 21 
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flexible foundations compared to the rigid foundation. The main contribution to the out-of-plane 22 

bending moment of the support structure at the mudline comes from the wind loading for all the 23 

foundation models. This study has also found that the 2nd flap mode of blade is activated by the 24 

earthquake loadings for the AF and DS models but not for the rigid and CS models. As a result, the 25 

peak blade-root bending moment is found to be more sensitive to pseudo spectral acceleration (PSA) 26 

for the AF and DS models. Furthermore, the peak tower-top displacement and mudline bending 27 

moment increase linearly with PSA for all the examined models. This study contributes to the 28 

evaluation of the wind turbine responses subjected to earthquakes or combined multi-hazard loadings 29 

in the operational state. 30 

Keywords: Offshore wind turbine; dynamic behaviour analysis; flexible foundation; earthquake 31 

loading. 32 

 33 

1 Introduction 34 

Wind energy is currently playing a leading role in the global production of cleaner energy as an 35 

alternative to fossil and non-cleaner fuels. The 2018 Global Wind Energy Council (GWEC) annual 36 

wind report states that 52 GW of newly installed wind capacity was added globally in 2017, and with 37 

50 % of the figure shared by China and the USA [1]. The southeast coastal areas of China and the 38 

west coast of the USA, located close to the Pacific seismic belts, are prone to earthquake. Wind 39 

turbines installed in these areas are susceptible to damage from the resulting earthquake loading 40 

coupled with the local wind loading. Similar circumstances exist for the wind farms located along the 41 

southern areas of Europe and New Zealand where there are rich offshore wind resources. Therefore, 42 

it is imperative to investigate the impacts of earthquake loading on wind turbines due to potential 43 

consequences on operation and supply of wind energy in these locations. 44 
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Environmental loads acting on wind turbines along with earthquake loadings have a significant 45 

influence on the accuracy of the seismic analysis of wind turbines. Dynamic behaviours of wind 46 

turbines under earthquake excitations have been studied over the past decades but with simplifications 47 

on the model geometries [2-9]. In these studies, the rotor and nacelle were either completely ignored 48 

or simplified as a lumped mass. The unsteady wind loads are often treated as a rotor thrust, leading 49 

to inaccuracies in the prediction of aerodynamic loads acting on the blades. Generally, the 50 

aerodynamic loads increase exponentially with the rotor diameter for large-scale wind turbines. The 51 

resulting aerodynamic effects have been determined to be unneglectable from a comparative study 52 

on operational and parked states [10]. Therefore, over-simplification of aerodynamic loads is never 53 

precise, thereby undermining the accuracy of results in the seismic analysis of large-scale wind 54 

turbines. Therefore, in the seismic analysis of large-scale wind turbines, it is necessary to correctly 55 

take into account the coupled effect of wind and earthquake loadings. 56 

One of the efficient approaches of improving the accuracy of coupled earthquake and wind 57 

loadings for wind turbines is by integrating an additional seismic module into an aeroelastic analysis 58 

tool. An early study on the coupled behaviour of earthquake and wind loadings was conducted by 59 

Witcher for a 2 MW wind turbine [11]. With the use of GH Bladed, Santangelo et al. [12] investigated 60 

the difference between the results from fully coupled and uncoupled time-domain simulations for a 5 61 

MW wind turbine under the combined excitations of wind and earthquakes. Using FAST as a design 62 

basis, Asareh and Prowell [13-14] developed a seismic module in order to examine the coupled effect 63 

of wind and earthquake. In the seismic module, the calculation of the earthquake loading is based on 64 

a specific ground motion, and the stiffness and damping properties of a damped actuator are located 65 

at the tower-base. Asareh et al. [15] used the improved FAST (also called NREL Seismic) to 66 

investigate the relationships between earthquake intensity and structural responses. Jin et al. [16] also 67 
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used the NREL Seismic tool to predict the dynamic responses of a wind turbine under multiple 68 

hazards associated with earthquake and turbulent wind. Similarly, Yang et al. [8] proposed a 69 

numerical analysis framework coupled with FAST in order to obtain seismic responses of wind 70 

turbines. It is noted that the method of earthquake analysis proposed by Asareh and Prowell [13-14] 71 

is different from the one applied to seismic analysis of buildings. The accuracy of predictions is 72 

significantly influenced by the stiffness and damping properties. The selection of the values of 73 

stiffness and damping depends on the experience of the involved analytical engineers. 74 

However, it is noted that most of the aforementioned literatures focused heavily on earthquake 75 

effects for land-based wind turbines, which are significantly different from the offshore types. Since 76 

a large number of newly installed offshore wind turbines are located in earthquake-prone areas, it is 77 

necessary to investigate the seismic behaviour of offshore wind turbines in order to mitigate potential 78 

consequences of damage caused by earthquakes. 79 

Offshore wind turbines have slender support structures resulting in large vibration amplitudes at 80 

the tower-top. In addition, the nature of the soils in the offshore environment often leads to more 81 

severe structural responses. The offshore soil is composed of detrital materials and sediments, 82 

implying that the wind turbine foundation is installed in a layer of less dense and less stiff soil [18]. 83 

The soft soil condition is often associated with liquefaction in earthquake-prone offshore 84 

environments. This may affect the integrity or the serviceability of the foundation during its 85 

operational lifespan. As discussed by Wang et al. [19], the liquefaction is more easily caused by 86 

earthquakes leading to severe damage to the wind turbine under soft soil conditions. Some common 87 

foundation problems resulting from soil liquefaction include operational difficulty and loss of 88 

stability of the wind turbine. In addition, the cost of the foundation is approximately 30% of the total 89 

cost of a bottom-fixed offshore wind turbine and could reach up to 35% for the wind turbines installed 90 
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in water depth of 30 m ~ 40 m [20]. Hence, the deign of offshore wind turbine foundation subjected 91 

to earthquakes needs to be carefully handled due to its impact on the overall cost of wind turbines 92 

and the levelised cost of electricity (LCOE). 93 

The soil structure interaction (SSI) model plays a key role in the design of a foundation as can 94 

be seen in Fig. 1. The accuracy of the results from foundation design analyses, including eigen-95 

analysis and ultimate state analysis, is significantly influenced by the selection of the SSI model. This 96 

means that the selection of a SSI model determines the reliability of the foundation which costs over 97 

30% of the whole wind turbine. Hence, the sensitivity analysis of SSI models is beneficial to the wind 98 

turbine industry for practical cost-reduction reasons when selecting the appropriate foundation 99 

concept during the design stage. 100 

 SSI model selection

Eigen-analysis

Ultimate state analysis

Fatigue state analysis

Design load-case 

analysis

Foundation (including 

tower and sub-structure) 

design

Appropriate Accurate Reliable 

Cost 

29%~35%

 101 

Fig. 1: The importance of SSI model to the foundation design for bottom-fixed offshore wind 102 

turbines 103 

 104 

SSI can be modelled using three methods: apparent fixity (AF), coupled springs (CS) and 105 

distributed springs (DS) [21]. The CS model is the most widely used method in the dynamic analysis 106 

of offshore wind turbines and it is applicable to any type of offshore foundations due to its ease in 107 

obtaining results using typical theories [22-27]. For the CS model, the foundation is modelled using 108 
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a set of translational and rotational springs placed at the bottom of the structure to represent the SSI 109 

effect. Bhattacharya et al. [28-29] investigated the SSI of a monopile wind turbine under different 110 

soil conditions by using scaled experiments and numerical analysis. It was found that the numerical 111 

models had first natural frequencies similar to those of the test models in most soil conditions 112 

including clay. In some foundation cases with saturated sands, however, over 20% discrepancies were 113 

observed between the numerical and experimental results. In another study conducted by 114 

Bhattacharya et al. [30], it was found that the stiffness of lateral springs could be reduced under cyclic 115 

loadings, which is a major contributor to fatigue. The study found that 30% change in the first natural 116 

frequency of the wind turbine system occurred after 10,000 cycles. This suggests that there is a 117 

limitation on the use of the CS model for SSI modelling of the dense soil condition. 118 

The DS model is another widely used foundation modelling method for SSI [31-36]. In this 119 

method, the SSI is represented by a set of lateral and vertical springs distributed along the embedded 120 

pile (usually, only the lateral springs are considered). The stiffness of the springs is obtained in 121 

accordance with p-y curves at different depths. Compared to the CS model, the DS model has an 122 

advantage that the responses of the embedded portion of the foundation can be investigated more 123 

specifically. The DS model is well suited for modelling pile in a multi-layered soil condition while 124 

the CS model could only model an overall effect of SSI at the seabed level. 125 

The AF method is another modelling option which is an alternative to the CS and DS models. In 126 

this method, a fictive length is assumed to connect the bottom of the support structure and the 127 

foundation soils. The support structure is fixed and has the same mudline lateral deformation and 128 

rotation as the CS and DS models under external excitations. This approach is much easier to 129 

implement in any multi-body analysis tool for accounting the SSI effect. Damgaard et al. [37] 130 

investigated the dynamic responses of a monopile offshore wind turbine by considering the effect of 131 
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SSI modelled using AF and CS models. The AF model results in similar fatigue damage compared to 132 

the CS model for two distinct types of soil. From the preceding literatures, it has been noted that the 133 

SSI effect for offshore wind turbines has been examined under multiple loadings with the exception 134 

of earthquakes.  135 

Santangelo et al. [38] compared the structural responses of coupled and uncoupled time-domain 136 

simulations for an offshore wind turbine under earthquake loadings. Kim et al. [39] investigated the 137 

seismic fragility of a monopile offshore wind turbine by considering the SSI effect. They modelled 138 

the flexible foundation using a set of lateral springs distributed along the length of the support 139 

structure underneath the seabed. The stiffness of each spring at a corresponding depth was represented 140 

by a p-y curve. Mo et al. [40] also performed a seismic fragility analysis of an offshore wind turbine 141 

under different operating states by considering the effect of SSI. Wind loads were calculated using 142 

FAST and then applied to the FEM model for coupling with earthquake loadings in OpenSees. The 143 

probability of reaching damage states was discussed for different wind conditions and earthquake 144 

loadings. Alati et al. [41] studied the seismic responses of two bottom-fixed offshore wind turbines 145 

using GH Bladed in which the SSI model was represented by two transitional springs. 146 

However, there are still some notable limitations in the above-mentioned literatures. First, the 147 

dynamic characteristic in the frequency domain of offshore wind turbines under multi-loadings, 148 

which is important in the control and mitigation of vibration induced by an earthquake [42-43], has 149 

not been addressed. Secondly, although it has been widely accepted that the DS model offers the best 150 

approach for representing realistic foundation conditions, the difference between the three SSI 151 

modelling approaches (i.e. the AF, CS and DS) for seismic analysis of offshore wind turbines has not 152 

been thoroughly investigated. For offshore wind turbines located in earthquake-prone areas, the 153 

support structure suffers from high frequency and strong underlying excitations. This means that an 154 



8 

investigation of the sensitivity of flexible foundation models becomes imperative in order to perform 155 

accurate seismic analysis for a reliable foundation design. 156 

The purpose of this study, therefore, is to investigate the sensitivity of foundation models of 157 

offshore wind turbines under multi-hazards by including earthquake, wind and wave loadings. The 158 

structural responses of the wind turbine with distinct foundation models will be examined in both 159 

time domain and frequency domain. For this purpose, a seismic analysis framework (SAF) is 160 

developed to take into account the influences of earthquake loading and foundation flexibility by 161 

extending the capability of the FAST source code. One of the benefits of using SAF is that it is generic 162 

and can be applied to different types of wind turbine models compared with the NREL Seismic tool 163 

presented in [14-15]. In addition, SAF offers capabilities for different SSI models to be examined as 164 

opposed to other tools that exclusively focus on the rigid foundation concept. 165 

2 Seismic analysis framework modelling 166 

In order to adequately examine the combined effects of earthquake, wind and wave in the design 167 

of offshore wind turbines, SAF for offshore wind turbines is developed and implemented in an open 168 

source numerical tool, FAST. The improved capability of the FAST-SAF means that comprehensive 169 

coupled analysis of wind turbine dynamics can be accurately performed by incorporating an 170 

appropriate foundation model. In this study, two subroutines (UserTwrLd and UserPtfmLd) in FAST 171 

have been extended to take into account the soil effect on flexible foundation models. This is 172 

additional to the FAST.f90 source file being modified to implement the capability of seismic analysis. 173 

The seismic load calculated in SAF is coupled with the structural responses and other environmental 174 

loads in time domain. Detailed descriptions of FAST and SAF are presented in the subsequent sections. 175 

2.1 FAST description 176 
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The FAST tool is used for accurate and efficient time domain simulations of wind turbines. The 177 

baseline FAST which consists of four major modules (AeroDyn, HydroDyn, ServoDyn and ElastDyn) 178 

is incapable of performing seismic analysis of fixed foundations in its current form [44]. In the 179 

AeroDyn module, the dynamic wake model and blade element momentum theory corrected with the 180 

Prandtl tip-loss model are used to predict aerodynamic loads acting on the blades. Meanwhile, the 181 

Beddoes-Leishman dynamic stall model is applied for the correction of unsteady aerodynamic 182 

performance. In HydroDyn, the wave velocity and acceleration histories are generated using Airy 183 

wave theory based on a prescribed wave spectrum. Morison’s equations are used to obtain the viscous 184 

drag of the support structure. In addition, the hydrostatic restoring contributions of buoyancy and the 185 

effect of added mass are taken into account. In the ServoDyn module, the pitch angle of each blade 186 

and generator speed are controlled for a stable operation through a dynamic link library or an interface 187 

with MATLAB/Simulink. In ElastDyn, the dynamic responses influenced by environment loads are 188 

calculated. The wind turbine system is treated as a multi-body system consisting of rigid and flexible 189 

bodies. A linear modal approach is applied in structural modelling of flexible bodies (blades and 190 

tower). The modal mass participation factor of the consecutive eigenmodes considered for structural 191 

modelling should be over 85% [45]. For the wind turbine adopted in this study, the 1st and 2nd flapwise 192 

modes and the 1st edgewise mode contribute 87% modal mass of the blade [46]. The neglect of higher 193 

modes has a weak influence on the structural responses as confirmed by comprehensive comparisons 194 

between FAST and HAWC2 which employs the geometrically exact beam theory for the structural 195 

modelling [21, 47-48]. Similarly, the comparison between FAST and ADAMS confirms that the 1st 196 

and 2nd fore-aft and side-side modes of tower are efficient enough to represent tower modelling [49-197 

50]. 198 

The computation of structural responses is done based on the prediction of environmental loads 199 



10 

of the preceding simulation step. Since environmental loads are known to be influenced by the 200 

motions of the structures for the next time steps, the structural responses and external loads are fully 201 

coupled in the tool. The fourth-order Runge-Kutta method is used for the execution of the time 202 

marching simulation. 203 

 204 

2.2 Structural modelling of the support structure 205 

The NREL 5 MW wind turbine, developed to support studies that focus on analysis of onshore 206 

and offshore wind technology, is used in this study. The rated wind and rotational speeds of the model 207 

are 11.4 m/s and 12.1 rpm, respectively. The 1st and 2nd blade collective flap mode frequencies are 208 

0.70 Hz and 2.02 Hz, respectively. The frequency of the 1st edgewise mode is 1.08 Hz. Further details 209 

of the wind turbine properties are provided in [46]. The monopile support structure proposed in the 210 

phase I of the Offshore Code Comparison Collaboration (OC3) project [21] is applied in this study. 211 

As presented in Fig. 2, the monopile has a section of 10 m above the mean sea level (MSL) and a 212 

length of 36 m underneath the mudline. The soil condition used in this study is adopted from the OC3 213 

project. A layered soil profile with soil density increasing with depth is selected. The upper soil layer 214 

is less dense and stiff while the lower layer is denser and stiffer to ensure a sufficient foundation 215 

bearing capacity of the soil. It is assumed that the soil bearing capacities and other properties remain 216 

unchanged during the external loadings. The thickness, effective soil weight and angle of internal 217 

friction corresponding to each soil layer are presented in Fig .2. 218 
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 219 

Fig. 2: Schematic diagram of the NREL 5 MW wind turbine geometry 220 

The support structure, which consists of the tower and monopile, is treated as an inverted 221 

cantilever beam with a point mass attached to the top. The displacement of the support structure, 222 

 ,u h t  , is represented by the sum of the normal mode shapes of dominant eigenmodes and the 223 

associated generalized coordinates [51]: 224 

     
1

,
N

i i

i

u h t q t h


                (1) 225 

where  ,u h t  represents the displacement at the local height of h and at the time moment of t.  i h  226 

and  iq t  are the normal mode shape and the generalized coordinates of the ith eigenmode, 227 

respectively. N is the number of the dominant modes and is equal to 4 herein. 228 

According to the Rayleigh-Ritz method, each normal mode shape can be represented by a linear 229 

combination of 5 shape functions as follows: 230 

 
6

,

2

( ) ( 1,2,3,4)i i j j

j

h P h i 


               (2) 231 

where ,i jP  is the polynomial coefficient of the jth shape function for the ith normal mode. Before 232 

performing a simulation, the five polynomial coefficients of the shape functions for each normal mode 233 
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should be given. ( )j h  is the jth shape function defined as: 234 

 ( )=
j

j
hh

H
                  (3) 235 

where H is the total height of the support structure. 236 

The equation of motion for the support structure is derived using Lagrange’s equation as follows. 237 

   
4 4

, ,

1 1

+ ,  1,2,3,4i j i i j i r

j j

m u t k u t F i
 

               (4) 238 

where  iu t  and  iu t  are respectively the acceleration and velocity corresponding to the ith mode.239 

,i jm  and ,i jk  are the generalized mass and stiffness respectively and derived as shown below using 240 

the Thomson-Dahleh approach. 241 

   , Top
0

( ) d
H

i j i jm m h h h h                   (5) 242 

           , Top
0 0

( ) dh d dh
H H H

i j i j i j
h

k E h I h h h g m x x h h               
       (6) 243 

where Topm  is the point mass on the top of the support structure. g is the gravitational acceleration. 244 

( )E h  and  I h  are the elastic modulus and the moment of inertia, respectively.  x  is the mass 245 

density of the support structure at the local height x. 246 

Assuming the support structure vibrates at the ith natural mode, the generic solution of the 247 

generalized coordinate,  iq t , can be represented by: 248 

   sini i i iq t A t                  (7) 249 

where iA , i  and i  are the respective amplitude, natural frequency and phase angle associated 250 

with the ith eigenmode. 251 

Substituting Eq. (7) and Eq. (1) into Eq. (4), the eigenvalue equation can be written as follows: 252 

 2 0  M K P                 (8) 253 

where M  and K  are the respective mass and stiffness matrices while P  is the coefficient vector. 254 

The natural frequency and coefficients associated with each mode of the support structure can be 255 
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obtained by solving the constitutive equation presented in Eq. (8). Subsequently, the forced vibration 256 

equation is defined in terms of the generalized coordinates, q , associated with the dominant modes 257 

of the support structure:  258 

* * * *

r     M q C q K q F               (9) 259 

where *
M , *

C  and *
K  are the respective modal mass, damping and stiffness matrices while *

rF
 260 

is the vector of modal forces associated with the dominant modes.  261 

The modal mass and stiffness are defined as: 262 

4
* T

1

= i i

i

m 


 M                  (10) 263 

4
* T

1

= i i

i

k 


 K                 (11) 264 

where 
T

i is the transposed vector of the ith normalized mode shape i  of the support structure. m 265 

and k are mass and stiffness distributions along the support structure.  266 

The modal damping can be obtained as follows: 267 

* * *=2 C K M                  (12) 268 

where   is the structural damping and a value of 1% is adopted herein [46]. 269 

For each mode, the modal force is calculated using: 270 

0
( ) ( ) d

H

i iF f h h h                  (13) 271 

where iF   is the modal force associated with the ith mode. ( )f h   is the active forces including 272 

aerodynamic, hydrodynamic, gravitational and other external forces. Seismic force is also included if 273 

the wind turbine is subjected to an earthquake. The Runge-Kutta method is applied for time marching 274 

solution of Eq. (9) in order to obtain the displacement, velocity and acceleration of the support 275 

structure. 276 

2.3 Flexible foundation models 277 
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In order to examine the SSI effect in seismic analysis of a wind turbine, the portion of the support 278 

structure underneath the mudline is modelled as a flexible foundation using three distinct methods. A 279 

model of the NREL 5 MW wind turbine is presented in Fig. 2 while a schematic diagram of the 280 

loading distributions on a wind turbine with different foundations including the rigid type is presented 281 

in Fig. 3. 282 

 283 

Fig. 3: The loading distributions on a wind turbine modelled with: (a) rigid foundation and different 284 

flexible foundations using: (b) AF, (c) CS and (d) DS methods 285 

The basic idea of the AF approach is that a fictive cantilever beam replaces the sub-soil layers 286 

of the monopile. Under the combined excitation of a shear force F and a moment M, the fictive 287 

equivalent cantilever beam shall produce the same lateral deflection w   and rotation    at the 288 

mudline compared to a non-linear SSI model. The w  and   produced by the equivalent cantilever 289 

beam with an apparent fixity length of l can be derived as:  290 

3 2

=
3 2

l l
w F M

EI EI
                 (14) 291 

2

=
2

l l
F M

EI EI
                  (15) 292 
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where EI  is the bending stiffness of the fictive structure. l is the fictive length. 293 

According to [52], the w   and    at the mudline under the excitation of 81.24 10   N and 294 

63.91 10   N·m are -22.264 10   m and -32.413 10   rad, respectively. The value of the apparent 295 

fixity length is obtained as 17.51 m and the diameter and wall thickness of the fictive beam are 296 

selected as 6.21 m and 59.9 mm [52]. The material properties are the same as those of the support 297 

structure above the mudline. 298 

For the CS approach, the translational and rotational degrees of freedom (DOFs) of the support 299 

structure at the mudline are represented by a set of coupled springs. The stiffness of the springs and 300 

other directional properties of the remaining DOFs are derived based on pile analysis using LPILE 301 

4.0 [52]. The stiffness matrix soil,CSK  at the mudline is given by: 302 

soil,CS

0 0 0 0

0 0 0 0

0 0 0 0 0 0
=

0 0 0 0

0 0 0 0

0 0 0 0 0 0

xx x

yy y

y a

x

k k

k k

k k

k k





 

 

 
 
 
 
 
 
 
 
 

K             (16) 303 

where x and y are the translational directions in the horizontal plane,    and    represent the 304 

rotational directions about the corresponding axis, respectively. The values of the stiffness are 305 

presented in Table 1.  306 

The load vector, soilF  , acting at the bottom of the support structure produced by the soil 307 

flexibility can be derived as: 308 

soil soil,CS soil,CS+  F K U C U               (17) 309 

where soil,CSK   is the stiffness matrix as denoted in Eq. (16). soil,CSC   is the damping matrix. The 310 

transitional damping effects are ignored since the rotational damping effects are dominant [53]. The 311 

rotational damping values are 89.34 10  Nms/rad. U  and U  are the respective displacement and 312 

velocity vectors of the support structure at the mudline. 313 
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 314 

Table 1: Stiffness properties of the CS model 315 

Item Value Item Value 

xxk  92.57481 10 N/m  yyk  92.57481 10 N/m  

xk   10-2.25325 10 N/rad  xk  10-2.25325 10 Nm/m  

yk   102.25325 10 N/rad  yk  102.25325 10 Nm/m  

ak  
112.62912 10 Nm/rad  k  112.62912 10 Nm/rad  

In the DS model, the SSI effect is represented by a set of linear lateral springs distributed along 316 

the pile length beneath the mudline. The stiffness of each spring is derived by using a p-y curve. The 317 

modelling of the soil condition is the same as in the AF model and the stiffness distribution along the 318 

pile is presented in Fig. 4. The values of the stiffness distribution have been validated through 319 

comprehensive comparisons between different numerical results [21, 48]. 320 

 321 

Fig. 4: Stiffness distribution of the springs along the pile and underneath the mudline [52] 322 

The horizontal force acting on the pile underneath the seabed and produced by the soil flexibility 323 

by ignoring the damping effects is denoted as:  324 
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where X, Y and Z represent the longitudinal, lateral and vertical directions as defined in Fig. 2 and 326 

Fig. 3. ZK  is the stiffness at the depth of Z referred to Fig. 4. X,ZU  and Y,ZU  are the horizontal 327 

displacements of the pile at the depth of Z. 328 

In Table 2, the natural frequencies of the first two eigenmodes of the support structure in fore-329 

aft and side-side directions are presented for comparisons with the results from reference [52]. The 330 

flexible foundation models have a smaller natural frequency for each eigenmode compared to the 331 

fixed-base model. The results agree well with the reference regarding the first modes in the fore-aft 332 

and side-side directions, especially in the AF and DS models. The AF and DS models have a deviation 333 

of 11% for the 2nd fore-aft eigenmode compared to the results of the reference due to the act that the 334 

tower top mass moment of inertia is not considered in the reference, while their frequencies of the 2nd 335 

side-side mode are similar. These comparisons validate the flexible foundations modelled in this study 336 

by confirming that it could well represent the actual foundation model of a wind turbine. The 337 

normalized modal shapes of the four models above the mudline (Fig. 5) did not show any significant 338 

discrepancy between the modal shapes of the AF and DS models. This suggests that the difference 339 

between the dynamic responses of the two models above seabed might be insignificant.  340 

Table 2: Natural frequencies of the support structure (unit: Hz) 341 

 Fixed-base AF model CS model DS model Ref. [52] 

1st fore-aft 0.276 0.246 0.247 0.247 0.248 

1st side-side 0.274 0.245 0.246 0.245 0.246 

2nd fore-aft 1.867 1.51 1.732 1.512 1.546 

2nd side-side 1.589 1.359 1.497 1.358 1.533 

 342 
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 343 

Fig. 5: Normalized modal shapes corresponded to the models 344 

2.4 Development of the seismic module (SAF) 345 

In order to perform the analysis of offshore wind turbines influenced by multiple loadings 346 

including wind, wave and earthquake, a seismic module written in FORTRAN has been integrated 347 

into the baseline FAST to develop SAF as presented in Fig. 6.  348 
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Fig. 6: Schematic diagram of SAF for offshore wind turbines 350 
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In the seismic module, a specified earthquake motion is required for the computation of seismic 352 

force. Baseline correction is applied to the input motion in order to eliminate a large drift of ground 353 
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displacement caused by potential numerical errors and measurement noises [14]. The earthquake 354 

force acting on the support structure is added to the modal forces within FAST. For each mode 355 

considered in this study, the corresponding earthquake force, eq,iF , is calculated by: 356 

eq, eq
0

[ ( ) ( )]d 1,2,3,4
H

i iF a m h h h i              (19) 357 

where eq,iF  represents the earthquake force associated with the ith eigenmode. ( )m h  is the mass 358 

distribution density along the support structure. eqa  is the specified earthquake acceleration. 359 

The earthquake force obtained in the seismic module is included in the modal forces as expressed 360 

in Eq. (9) and it is coupled with other environment loads to obtain the structural responses. The 361 

method of earthquake force calculation used in this study is consistent with that employed for seismic 362 

analysis of buildings. One of the benefits of using SAF is that it is generic and can be applied to 363 

different types of wind turbine models compared with the NREL Seismic tool.  364 

 365 

3 Loading conditions 366 

3.1 Full-field turbulent wind 367 

TurbSim [54] developed by NREL is used to generate the full-field turbulent wind for 368 

simulations. The wind field centred on hub is discretized in finite grids in both the horizontal and 369 

vertical directions. The size of the wind field adopted to cover the operating domain of the wind 370 

turbine in this study is 175 m × 200 m (Fig. 7). The velocity component in x direction is perpendicular 371 

to the rotor plane while the directions of the other two components are also depicted in Fig. 7. 372 

 373 
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 374 

Fig. 7: Grid discretization of wind filed domain 375 

 376 

Time-varying wind speed of each grid can be represented by the sum of a constant component 377 

V  and a turbulent component ( )V t . The constant component at a height of h is calculated using 378 

the power law profile with an exponent of 0.2 as follows: 379 

0.2

hub
hub

( ) ( )hV h V
H

                (20) 380 

where hubV  is the mean velocity at the hub height of hubH . The value of hubV  is selected as 11.4 m/s 381 

equal to the rated wind speed. 382 

The turbulent component ( )V t  is calculated by applying an Inverse Fast Fourier Transformation 383 

(IFFT) to the IEC Kaimal turbulent spectrum described by: 384 

2 1

1 5/3

4
( ) = , ,

(1 6 )

L V
S f x y z

fL V

 














           (21) 385 

where f is the frequency, V is the mean wind speed at the hub height,   is the standard deviation of 386 

the wind speed and L  is the integral scale parameter of each velocity component.  387 

The turbulence intensity is selected as level A (19.86% at hub). In accordance with IEC-64000-388 

1, the standard deviations of the wind speed are 2.2 m/s, 1.76 m/s and 1.1 m/s for x, y and z directions, 389 

respectively. The values of L  are 486 m, 162 m and 39.6 m for x, y and z directions, respectively. 390 
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In order to include the spatial dependency of wind speed at different grids, the cross spectra 391 

between two grids i and j are expressed as: 392 

, , ,( ) ( , ) ( ) ( )i j i i j jS f C r f S f S f              (22) 393 

where , ( )i jS f  is the cross spectrum, , ( )i iS f  and , ( )j jS f  are the spectra at grids i and j, respectively. 394 

( , )C r f  is the coherence function between grids i and j as given in Eq. (23) in reference to IEC-395 

640001-1. 396 

2 2

hub

0.12
( , ) exp ( ) ( )

c

f r r
C r f a

V L

  
    

  

           (23) 397 

where r  is the distance between the two grids. a  is the coherence decrement with a value of 12 398 

adopted in this study. cL  is the coherence scale parameter with a value of 340.2 m. 399 

The generated wind field is presented in Fig. 8. The time-varying wind speed at hub has a peak 400 

value of over 20 m/s and an average magnitude of 11.4 m/s as expected. The variation of wind speed 401 

at each grid is irregular in time domain and non-uniform in spatial distribution indicating that the 402 

generated wind field has turbulent characteristics. 403 

  

Fig. 8: The full-field turbulent wind: (a) time-varying wind speed at hub height and (b) wind 

speed distribution of rotor plane at different time steps 

3.2 Irregular wave and current 404 

The hydrodynamic loads acting on the support structure are determined using Morison’s 405 

equation [55]. The hydrodynamic force ( )F t  acting on the moving support structure can be written 406 

as: 407 
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     

       
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1
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   



  

   


       (24) 408 

where H is the height of the support structure. MC   and DC   are the normalized hydrodynamic 409 

added mass and viscous drag coefficients. The values adopted herein are 1.6 and 1.0, respectively. 410 

 is the density of sea water; D  is the diameter of the support structure,  ,V z t  and  ,U z t  are 411 

the wave velocity and structure moving velocity, respectively.  ,V z t  and  ,U z t  are the wave 412 

and structure moving accelerations, respectively. 413 

The JONSWAP spectrum [56] as denoted in Eq. (25) is used to generate the wave time histories. 414 

   

 
2

2 2
5 4 exp

2
2 5

=0.3125 exp 1 0.287 ln
4

p

p

s p

p p

S H T

 

 



 
  

 

 
  
 
  

    
             

    (25) 415 

where sH is the significant wave height and pT  is the wave period. The adopted values of sH  416 

and pT   are 6 m and 9.9 s, respectively. = 2p pT   , 0.07   for p    and 0.09    for 417 

p  .   represents the JONSWAP peakedness parameter selected in terms of:  418 

5 3.6

= exp(5.75 1.15 ) 3.6 5

1 5

p s

p s p s

p s

T H

T H T H

T H



 



  




         (26) 419 

According to Airy theory [57], the wave time histories can be written as: 420 

1

( ) sin( )
N

j j j j

j

t A w t k  


                  (27) 421 

= 2 ( )j jA S                   (28) 422 
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where ( )t  is the wave elevation time history.   is the wave frequency in rad/s. j  is a random 425 

phase angle falling within 0 to 2 . wd  is the water depth, i.e. the distance between the mudline and 426 

MSL. z is the local water depth. k is the wave number related with z and   as expressed in Eq. (31). 427 

2tanh( )k kz g                 (31) 428 

where g is the gravitational acceleration. 429 

For a specified water depth z, the wave number can be obtained by solving Eq. (31) to calculate 430 

the wave time histories. 431 

The current velocity at the local water depth z is calculated using a power law [58]. 432 

1 7

0( ) ( )c

z h
V z V

h


                 (32) 433 

where 0V is the current velocity at MSL. The adopted value in this research is 0.55 m/s. 434 

3.3 Earthquake motions 435 

In order to achieve the set out goals of this study, a set of 28 earthquake records are selected 436 

from the PEER NGA database [59] using the criteria suggested in [60]. In detail, the magnitudes of 437 

the earthquake records fall within the range of M6.5 to M8.0. The PGA for each record is larger than 438 

0.2 g or the peak of the ground velocity (PGV) is larger than 15 cm/s. Based on the selection criteria, 439 

28 earthquake records are selected from 14 events that occurred between 1976 and 2002. Each of 440 

these records contains two horizontal components and the average magnitude of the records is M7.0. 441 

Most of the selected earthquake events occurred near coastline, e.g. California in the USA and Kocaeli 442 

in Turkey. A summary of the selected records is presented in Appendix A. 443 

Since the selected ground motions were recorded at different sites, it means that the frequency 444 

contents of the ground motions might be inconsistent with the geological characteristics of the 445 

selected site for the offshore wind turbine. The frequency contents of the time-varying accelerations 446 
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of the ground motions have been modified using the target response spectrum matching technique in 447 

order to be consistent with the location of the measured earthquake. The 28 earthquake records 448 

selected in this study are therefore adjusted to match the corresponding response spectra which are 449 

specified in accordance with the American Society of Civil Engineers (ASCE) 7-10 standard [61]. 450 

As presented in the ASCE 7-10 standard, each of the target response spectra is given by 451 

specifying the design spectral accelerations within the ‘short periods’ and the period of 1.0 second as 452 

presented in Fig. 9 [60]. 453 

 454 

 455 

Fig. 9: A target response spectrum defined in ASCE 7-10 standard 456 

In Fig.9, DSS  and 1DS  are the design spectral response acceleration within ‘short periods’ and 457 

at the period of 1.0 second, respectively, LT  is the long-period transition period which is usually 458 

larger than 10 seconds, 0T  and sT  are the starting and ending values of the ‘short periods’ calculated 459 

as below: 460 

0 10.2 /D DST S S                  (33) 461 

1 /S D DST S S                   (34) 462 

In accordance with the site classification presented in the ASCE 7-10 standard, the soil condition 463 

applied in this study is classified as Class D. For each of the two horizontal components of a selected 464 

earthquake record, the value of DSS  is adopted as 2.5 times of the PGA and the value of 1DS  equals 465 
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the PGA. The “RspMatch” code developed by Atik et al [62] is used to adjust the frequency contents 466 

of the ground motions and the detailed matching procedure can be found in [63]. In order to illustrate 467 

the spectral matching effect, Fig.10 presents the initial and adjusted spectral accelerations 468 

corresponding to the Imperial Valley earthquake record (ID No. 1 in Appendix A). It is anticipated 469 

that the discrepancies between the initial and target response spectra in both directions have been 470 

effectively eliminated. This indicates that the adjusted ground motion can efficiently represent the 471 

frequency characteristics of the earthquake in the specific site. It is apparent that the intensity of the 472 

adjusted ground motion is larger than the initial one since significant increases of the spectral 473 

accelerations in both directions are observed within the ‘short periods’. The time history accelerations 474 

of the initial and adjusted ground motions are presented in Fig.11. The PGAs of the initial ground 475 

motion in the x and y directions were 0.353 g and 0.337 g, respectively. The PGAs corresponding to 476 

the adjusted ground motion are 0.432 g and 0.549 g, respectively. It confirms that the adjusted ground 477 

motion has the requisite intensity defined by the target spectrum. 478 

 479 

Fig. 10: The initial, target and adjusted response spectral accelerations at (a) x direction and (b) y 480 

direction 481 
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 482 

Fig. 11: Time history accelerations of the initial and adjusted ground motions 483 

The root mean square (RMS) adjusted spectra of the earthquake records with a damping of 5% 484 

are presented in Fig. 12. The pseudo spectral acceleration (PSA) is the spectral acceleration of an 485 

earthquake record corresponding to a fundamental period. The PSA is a characteristic parameter that 486 

reflects the influence of the earthquake on the structure. As can be seen, the fundamental period of 487 

the 2nd eigenmode of each model falls within the range of significant PSA. It means that the activation 488 

of the 2nd mode may have a notable contribution to the seismic dynamic response of the wind turbine. 489 

 490 

Fig. 12: Spectral accelerations of earthquake records 491 

Acceleration time histories of the earthquake records are also available in the PEER NGA 492 

database. Seismic loads are calculated using SAF based on the acceleration data obtained from [59]. 493 
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4 Results and discussions 494 

4.1 Validation for the developed SAF 495 

In order to validate the computational accuracy of SAF, dynamic responses of the NREL 5 MW 496 

monopile wind turbine predicted using SAF and GH Bladed are compared. In addition, a comparison 497 

between SAF and the NREL Seismic tool is also presented. The choice of these tools (GH Bladed 498 

and NREL Seismic) was driven by the fact that they were thoroughly validated using experimental 499 

results, hence their wide acceptance in the industry. The ground accelerations of Northridge 500 

earthquake event which occurred in 1994 are selected as the input motion. The earthquake starts at 501 

the 400th s for a 600 s simulation to ensure that the transient response induced by wind is diminished. 502 

The time-varying mudline bending moments of the support structure predicted using all the 503 

different numerical tools used in this study are presented in Fig. 13. The variations of mudline 504 

moments predicted using SAF agree well with the results obtained using GH Bladed and NREL 505 

Seismic during the strong shaking period of the earthquake event (405 s ~ 425 s). The maximum 506 

mudline moments computed using SAF, GH Bladed and NREL Seismic are 129 MN·m, 133 MN·m 507 

and 138 MN·m, respectively. The deviation of the maximum mudline moment between the results 508 

obtained using SAF and GH Bladed is 3%, while the corresponding deviation received using SAF 509 

and NREL Seismic is 6%. The two sets of the results are within the industry tolerance of 10%. The 510 

comparisons confirmed that SAF has a good reliability for the prediction of seismic dynamic 511 

responses. 512 
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 513 

Fig. 13: Comparisons of time domain results calculated using the reference tools and SAF 514 

The frequency domain responses are obtained by applying the Fast Fourier Transformation (FFT) 515 

to the time domain results, as presented in Fig. 14. For the bending moment about y-axis (out-of-516 

plane), the amplitudes at the 1st and 2nd natural frequencies of the results from SAF agree well with 517 

those predicted using GH Bladed and NREL Seismic. Regarding the bending moment about x-axis 518 

(in-plane), the amplitude at the 1st eigenmode frequency is equal to the results from GH Bladed and 519 

NREL Seismic, but the amplitude of the 2nd natural frequency is slightly smaller than the ones 520 

predicted using the reference tools. The comparisons for the frequency domain results further indicate 521 

that SAF can be used to accurately predict the seismic responses of offshore wind turbines. It is 522 

expected that following the validation and demonstration of this approach, SAF is expected to be used 523 

by designers looking for a generic and cost-effective tool for the design of wind turbine foundations 524 

in earthquake prone areas. 525 
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Fig.14: Comparisons of the frequency domain results calculated using reference tools and SAF 527 

 528 

4.2 Responses to an earthquake event 529 

In order to obtain a preliminary insight into the sensitivity of the flexible foundation models, 530 

dynamic responses of the offshore wind turbine subjected to a single earthquake event are obtained. 531 

The Imperial Valley earthquake record with a PGA of 0.448 g (ID No. 1 in Appendix A) is selected 532 

as the input ground motion. The average wind speed at the hub of the wind field is 11.4 m/s. The 533 

significant height of the irregular wave is 6 m and the wave period is 9.9 s. The JONSWAP spectrum 534 

is used to generate the wave histories according to the methods presented in section 3.2. The current 535 

velocity at MSL is adopted as 0.55 m/s. The earthquake is assumed to occur at 400th s in a 600 s 536 

simulation with a time step of 0.002 s. 537 

Tower-top displacements of the wind turbine with different foundation models under the 538 

earthquake excitation are presented in Fig. 15. The displacements increase significantly with values 539 

fluctuating once the earthquake occurs (> 400 s). A notable difference can be observed from the results 540 

of rigid and flexible foundation models. The peaks of the displacements in both directions of the rigid 541 

foundation model are smaller than those of the flexible foundation models. This can be explained by 542 

considering that the vibration induced by the earthquake is more severe in flexible foundations 543 

compared to a rigid foundation. The flexible foundation models have lower eigen-frequencies, which 544 

means the eigenmodes are more easily excited due to smaller energy level demand. Regarding the 545 

fore-aft displacement, although the contribution of elastic deformation produced by the aerodynamic 546 

load is dominant, the contribution of vibration amplitude is significant during the strong shaking 547 

period (405 s ~ 415 s). As a result, the fore-aft displacement of the flexible models is larger than that 548 

of the rigid model. 549 
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 550 

Fig. 15: Tower-top displacements of the wind turbine with different foundation models 551 

It can be further observed that the AF and DS models have similar responses but with a slight 552 

difference in the variation period as expected due to similar modal frequencies. The responses from 553 

the AF and DS models are larger than those from the CS model. 554 

With the application of FFT, the amplitudes of tower-top displacements in frequency domain are 555 

obtained and presented in Fig. 16. It is noted that the 1st eigenmodes in both fore-aft (FA) and side-556 

side (SS) directions are activated for all the examined models, while the activation of the 2nd mode in 557 

each direction is only visible in the CS model. The amplitudes at the 1st natural frequency of flexible 558 

foundation models are larger than those of the rigid foundation model in both directions. Once again, 559 

this indicates that the amplitude of vibration induced by the earthquake excitation for the flexible 560 

foundation models is larger compared to the rigid foundation model. In both fore-aft and side-side 561 

directions, the amplitudes of the 1st natural frequency of AF and DS models are of similar sizes and 562 

they are larger than those of the CS model, while the rigid foundation model has the smallest 563 

amplitude at the corresponding 1st natural frequency. 564 

The comparisons indicate that the soil effect has a notable influence on seismic responses of the 565 

wind turbine. This implies that the flexibility of foundation must be taken into account when 566 
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performing seismic analysis. 567 

 568 

 569 

Fig. 16: Amplitude of tower-top displacements in frequency domain 570 

 571 

Time-varying bending moments of the support structure at the mudline and the corresponding 572 

frequency domain results are presented in Fig. 17 and Fig. 18, respectively. It is notable that the 573 

mudline bending moment of the rigid foundation model is larger than those for the flexible foundation 574 

models. Regarding the in-plane mudline bending moment, a significant discrepancy is observed in 575 

the magnitudes of the different foundation models. The maximum magnitude of the rigid model is 576 

214 MN·m, while the corresponding values for the AF, CS and DS models are 119 MN·m, 94 MN·m 577 

and 148 MN·m, respectively. 578 

Although the 2nd eigenmode of the support structure and the 2nd flapwise mode of the blade have 579 

been activated for the flexible foundation models, peaks at the 2nd modal frequencies are one order 580 

lower than those at the 1st fore-aft mode frequency, implying that the main contribution to the in-581 

plane bending moment comes from the 1st mode with exception of the rigid model. In addition, in 582 

terms of the out-of-plane bending moment at the mudline, the amplitudes at 0 Hz of the rigid, AF, CS 583 
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noted that the amplitudes are much higher than the peak values at the 1st side-side mode frequencies 585 

and this is attributed to the effect of wind loading. It can be stated that the wind loading has a dominant 586 

impact on the out-of-plane bending moment for the examined wind and earthquake conditions. This 587 

can further explain why the difference among the out-of-plane bending moments of the foundation 588 

models is insignificant. 589 

 590 

 591 

Fig. 17: Time-varying bending moments of the support structure at the mudline 592 

 593 

Fig. 18: Frequency domain results of mudline bending moments 594 

 595 

The peak distributions of displacement and acceleration along the support structure and above 596 

-50

40

130

M
u

d
li

n
e 

b
en

d
in

g
 m

o
m

en
t

(o
u

t-
o

f-
p

la
n

e)
/(

M
N

·m
) Rigid AF CS DS

-250

-75

100

390 410 430 450 470 490

M
u

d
li

n
e 

b
en

d
in

g
 m

o
m

en
t

(i
n

-p
la

n
e)

/(
M

N
·m

)

Time /(s)

0 1 2 3 4
Frequency /(Hz)

Rigid AF CS DS102

101

100

10-1

10-2

A
m

p
li

tu
d

e 
o

f 
m

u
d

li
n

e

m
o

m
en

t 
(o

u
t-

o
f-

p
la

n
e)

/(
M

N
·m

)

0 1 2 3 4
Frequency /(Hz)

Rigid AF CS DS102

101

100

10-1

10-2

A
m

p
li

tu
d

e 
o

f 
m

u
d

li
n

e

m
o

m
en

t 
(i

n
-p

la
n

e)
/(

M
N

·m
)

1st SS 2nd SS
1st FA

2nd FA

2nd Flap



33 

the mudline are presented in Fig.19. The displacement profiles show that the combined loadings 597 

activate the 1st eigenmode of the support structure. The AF model has the highest tower-top 598 

displacement, while the corresponding value of the rigid model is the smallest. Compared to the DS 599 

model, the rigid, the CS and AF models underestimate the displacements, while the AF model has the 600 

smallest deviation, implying that the AF model has a relative higher accuracy for the response 601 

calculation. 602 

The activation of the 2nd mode of the support structures is visible for all the examined models as 603 

confirmed by the acceleration profiles. As can be seen, significant values are observed from the 604 

acceleration distributions at approximately 60 m above the MSL that is consistent with the 2nd modal 605 

shape profiles as shown in Fig. 5. In addition, the rigid model overestimates the acceleration at a 606 

tower height above 30 m and underestimates the results at a tower height of less than 30 m compared 607 

to the DS model. The prediction for the CS model is conservative for heights above 5 m. The 608 

difference between the results of the AF and DS models is relatively small. It can be argued that the 609 

SSI effect is better addressed with the use of the AF model than the CS model. 610 

 611 

 612 

Fig. 19: Peak distributions of displacement and acceleration along the support structure 613 

 614 

Fig. 20 presents the distributions of maximum loads acting on the support structure. The 615 
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maximum bending moments decrease along with the support structure height, this result is consistent 616 

with the analogous results of the same wind turbine calculated using the boundary element method 617 

[10]. The maximum bending moment of the rigid model at the mudline is close to that of the DS 618 

model, while a significant difference is observed for the AF and CS models. In terms of the maximum 619 

shear force, the prediction for the CS model is the largest at the mudline. The deviation between the 620 

CS model and DS model is larger than that between the AF and DS models. The results from this 621 

investigation imply that the AF model can predict responses more accurately compared to the CS 622 

model. 623 

 624 

 625 

Fig. 20: Peak distributions of the bending moment and shear force along the support structure 626 

 627 

4.3 Trends of maximum responses related with PSA 628 

A set of earthquake data is selected as input ground motions in order to investigate the seismic 629 

behaviour of wind turbines influenced by different earthquake intensities. For each of the 28 630 

earthquake records listed in Appendix A, two simulations are conducted for each foundation model, 631 

which interchanges the horizontal components to reduce the biases due to relative orientation with 632 

the wind direction. The peak values of the responses from the two simulations for each earthquake 633 
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event are averaged. In total, 224 simulations have been conducted for the rigid model and the three 634 

flexible foundation models. 635 

The average peaks of the tower-top displacement for the four foundation models versus PSA at 636 

the 1st fundamental period are presented in Fig. 21. The dash lines represent the response level without 637 

earthquake excitations. The black, blue, green and red lines represent the result from rigid, AF, CS 638 

and DS models, respectively. As can be observed, the AF model has excitation values that are similar 639 

to those of the DS model but they are larger when compared to the CS and rigid models. The peak 640 

tower-top displacement increases with PSA almost linearly for all the examined models when the 641 

PSA is larger than 0.1 g, while the influence of PSA is insignificant when the PSA is lower than 0.1g. 642 

This is because the wind loading dominates the tower-top displacement if the underlying loading 643 

comes from an earthquake with a low intensity excitation. In this condition, the elastic deformation 644 

is the main contributor to the displacement rather than the vibration amplitude dominated by the 645 

earthquake loading. In addition, the main contribution to the vibration amplitude at tower-top comes 646 

from the 1st eigenmode as stated and illustrated previously. This further affirms why the peak tower-647 

top displacement is sensitive to PSA at the 1st fundamental period. 648 

 649 

Fig. 21: The peak tower-top displacement versus PSA 650 
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presented in Fig. 22. For each record, the DS model has a larger mudline bending moment compared 652 

to the AF and CS models, indicating that the AF and CS models would potentially underestimate the 653 

bending moment at the mudline. Similar to the observations from the tower-top displacement, the 654 

mudline moment approximately increases linearly with the PSA. It should be noted that the 655 

predictions of the rigid model are higher compared to the flexible models. This confirms that ignoring 656 

the soil effect will overestimate the bending moments of the wind turbine.  657 

 658 

Fig. 22: The peak mudline bending moment versus PSA 659 

Fig. 23 presents the peak bending moment at blade-root versus PSA for the examined models. 660 

As can be observed, the response level of the CS and rigid models is closer to the level without 661 

earthquake loading for most of the examined cases. In this condition, it was anticipated that the blade 662 

dynamic response is dominated by wind loading which turned out to be correct. While earthquake 663 

loading has a significant influence on the blade bending moments for the AF and DS models, it can 664 

be explained by considering that the eigenmode of the blade has been activated by earthquakes as 665 

shown in Fig. 18. It is further observed that the increasing trend of the blade-root moment is nearly 666 

linear with the PSA for the AF and DS model, while the linear trend is not obvious for the rigid and 667 

CS models. Similarly, the rigid, AF and CS models underestimate the blade-root bending moment 668 

compared to the DS model. The AF model has a relatively smaller difference when compared to the 669 
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CS model. 670 

 671 

Fig. 23: The peak blade-root bending moment versus PSA 672 

5 Conclusions 673 

In this study, the sensitivity of foundation models to the dynamic behaviour of an offshore wind 674 

turbine under earthquake loadings has been investigated. In order to consider the influence of flexible 675 

foundation and earthquake loading, SAF is developed and implemented in an open source tool named 676 

FAST. The validation of SAF is carried out through comparisons with some experimentally validated 677 

numerical tools, GH Bladed and NREL Seismic. Three distinct flexible foundation models are 678 

established for the NREL 5 MW offshore wind turbine using the AF, CS and DS methods. An 679 

earthquake dataset of 28 records is selected as input ground motions. The earthquake records are 680 

scaled using the target spectrum matching technique defined in accordance with the ASCE 7-10 681 

standard. In total, 224 fully coupled nonlinear simulations have been conducted. Based on the results 682 

and discussions described, the following four key conclusions are given: 683 

(1) A generic SAF is developed and presented to investigate the sensitivity of the foundation 684 

model to the dynamic behaviour of an offshore wind turbine subjected to multiple loadings 685 

including wind and earthquake. Comparisons against alternative numerical tools are 686 

presented. Good agreements between the results in both time and frequency domains are 687 
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observed, indicating that SAF has a high accuracy and reliability to conduct seismic 688 

behaviour assessment for offshore wind turbines. 689 

(2) The AF and DS models have larger displacement at tower-top in fore-aft and side-side 690 

directions due to more severe vibrations induced by earthquakes. The tower-top vibration 691 

amplitudes of the flexible models are larger compared to the rigid model as observed in the 692 

spectra. The 1st eigenmodes in both fore-aft and side-side directions dominate the vibration, 693 

meanwhile the activations of the 2nd eigenmodes are visible in the examined cases. 694 

(3) The main contribution to the out-of-plane bending moment at the mudline for all foundation 695 

models could come from wind loading as observed from the frequency domain results 696 

associated with specific loading of the examined conditions. In terms of the mudline bending 697 

moment, the influence of the 1st eigenmode is more significant than that of the 2nd eigenmode. 698 

Activation of the 2nd flap mode of blade is observed from the spectra of in-plane bending 699 

moments for the AF and DS models, while it is invisible in the rigid and CS models. 700 

(4) The peak tower-top displacement increases linearly with PSA for all the foundation models 701 

while the trend is also visible for mudline bending moments. Due to the contribution of the 702 

blade eigenmode, the blade-root bending moment of the AF and DS models is more sensitive 703 

to earthquake loading compared to the CS and rigid models. Moreover, it is noted that the 704 

results from the AF model are closer to the ones from the DS model in terms of the 705 

magnitudes and trends. Therefore, the AF model can be used to produce realistic results 706 

compared to the CS model. 707 
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Appendix A. Summary of earthquake records 717 

The summary of earthquake records applied in this study for seismic analysis is listed below. 718 

ID 

No. 
Earthquake Name Year Station Magnitude 

PGA 

(g) 

PGA/(g) 

(Scaled) 

1 Imperial Valley-06 1979 El Centro Array #6 6.53 0.448 0.589 

2 Imperial Valley-06 1979 El Centro Array #7 6.53 0.437 0.623 

3 Imperial Valley-06 1979 Bonds Corner 6.53 0.687 0.399 

4 Imperial Valley-06 1979 Chihuahua 6.53 0.265 0.597 

5 Superstition Hills-02 1987 Parachute Test Site 6.54 0.433 0.671 

6 Erzican, Turkey 1992 Erzincan 6.69 0.445 0.626 

7 Northridge-01 1994 Rinaldi Receiving Sta 6.69 0.708 0.910 

8 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 0.640 1.009 

9 Northridge-01 1994 LA - Sepulveda VA Hospital 6.69 0.753 1.084 

10 Northridge-01 1994 Northridge - 17645 Saticoy St 6.69 0.388 1.096 

11 Nahanni, Canada 1985 Site 1 6.76 1.160 0.306 

12 Nahanni, Canada 1985 Site 2 6.76 0.398 0.965 

13 Gazli, USSR 1976 Karakyr 6.80 0.702 0.319 

14 Irpinia, Italy-01 1980 Sturno (STN) 6.90 0.282 0.654 

15 Loma Prieta 1989 Saratoga - Aloha Ave 6.93 0.369 2.123 

16 Loma Prieta 1989 BRAN 6.93 0.463 0.983 

17 Loma Prieta 1989 Corralitos 6.93 0.500 0.323 

18 Cape Mendocino 1992 Petrolia 7.01 0.624 2.650 

19 Cape Mendocino 1992 Cape Mendocino 7.01 1.396 0.728 

20 Duzce, Turkey 1999 Duzce 7.14 0.434 0.650 

21 Landers 1992 Lucerne 7.28 0.727 0.903 

22 Kocaeli, Turkey 1999 Izmit 7.51 0.194 2.086 

23 Kocaeli, Turkey 1999 Yarimca 7.51 0.286 1.113 

24 Chi-Chi, Taiwan 1999 TCU065 7.62 0.689 0.588 

25 Chi-Chi, Taiwan 1999 TCU102 7.62 0.267 0.466 

26 Chi-Chi, Taiwan 1999 TCU067 7.62 0.425 0.621 

27 Chi-Chi, Taiwan 1999 TCU084 7.62 0.738 1.306 

28 Denali, Alaska 2002 TAPS Pump Station #10 7.90 0.324 0.400 

  719 
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