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ABSTRACT 

 With the rapid improvement of digital technology, Massive Open Online Courses 

(MOOCs) have emerged as powerful open educational learning platforms. MOOCs 

have been experiencing increased use and popularity in highly ranked universities in 

recent years. The opportunity to access high-quality courseware content within such 

platforms, while eliminating the burden of educational, financial and geographical 

obstacles has led to a growth in participant numbers. Despite the increasing 

participation in online courses, the low completion rate has raised major concerns in 

the literature. 

Identifying those students who are at-risk of dropping out could be a promising 

solution in solving the low completion rate in the online setting. Flagging at-risk 

students could assist the course instructors to bolster the struggling students and 

provide more learning resources. Although many prior studies have considered the 

dropout issue in the form of a sequence classification problem, such works only 

address a limited set of retention factors. They typically consider the learners’ 

activities as a sequence of weekly intervals, neglecting important   learning trajectories. 

In this PhD thesis, my goal is to investigate retention factors. More specifically, the 

project seeks to explore the association of motivational trajectories, performance 

trajectories, engagement levels and latent engagement with the withdrawal rate. To 

achieve this goal, the first objective is to derive learners’ motivations based on 

Incentive Motivation theory. The Learning Analytic is utilised to classify student 

motivation into three main categories; Intrinsically motivated, Extrinsically motivated 

and Amotivation. Machine learning has been employed to detect the lack of motivation 

at early stages of the courses. The findings reveal that machine learning provides 

solutions that are capable of automatically identifying the students’ motivational status 

according to behaviourism theory. 

As the second and third objectives, three temporal dropout prediction models are 

proposed in this research work. The models provide dynamic assessment of the 

influence of the following factors; motivational trajectories, performance trajectories 

and latent engagement on students and the subsequent risk of them leaving the course. 

The models could assist the instructor in delivering more intensive intervention 

support to at-risk students. Supervised machine learning algorithms have been utilised 

in each model to identify the students who are in danger of dropping out in a timely 



manner. The results demonstrate that motivational trajectories and engagement levels 

are significant factors, which might influence the students’ withdrawal in online 

settings. On the other hand, the findings indicate that performance trajectories and 

latent engagement might not prevent students from completing online courses. 
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Chapter 1: Introduction 

1.1 Introduction 

Online education has become an area of continuing growth within both industrial and 

academic settings. There were more than 6 million students enrolled in online courses 

in 2012 (Qiu et al., 2016). The new bellwether of online educational platforms is 

Massive Open Online Courses (MOOCs) (Coffrin et al., 2014). MOOCs are open 

educational platforms that deliver learning resources through digital platforms (Hew, 

2016).  

MOOCs provide the same quality of learning as the traditional classroom without the 

time and geographical restrictions. As a result, learners are able to understand and learn 

coursework content at their own pace(Khalil and Ebner, 2014). In MOOC platforms, 

learners are connected with an array of learning resources, including video lectures, 

weekly quizzes, regular assessments and even PDF documents. Additionally, the 

learners can interact asynchronously with the instructors via discussion forum posts 

(Liyanagunawardena, Parslow and Williams, 2014).  

MOOCs  have seen dramatic increases in popularity over the last few years within the 

higher education sector (Qiu et al., 2016). The highest ranking universities have 

developed and delivered hundreds of courses, including HarvardX, Khan Academy, and 

Coursera (Qiu et al., 2016). In 2012, the Open University cooperated with more than 20 

universities and educational institutions to deliver online courses. It offered the courses 

in different subjects such as health, business and management.   

One of the distinctive features of MOOCs is their instant accessibility coupled with the 

elimination of financial, geographical, and educational obstacles. Consequently, the 

proportion of participants engaging in such courses could increase quickly (Qiu et al., 

2016)(Yang and Rose, 2013). For example, the number of participants has rapidly 

expanded in Harvard online courses with 1.3 million unique learners engaged in online 

courses reported at the end of 2014. 

Despite the lowering of barriers to high-quality education, the ability of students to 

enrol and withdraw from courses freely often results in high rates of attrition (Yang and 

Rose, 2013). As such, during 2012, the University of Duke offered a bioelectricity 

course, attracting around 12,175 registered participants, of which only 315 learners 



continued to undertake the final exam. At the end of 2012, It was reported that 93% of 

participants withdrew (Yang and Rose, 2013). 

The low completion rate is a major issue related to MOOCs; research investigations 

reveal on average that out of each one million participants in MOOCs, an overwhelming 

majority of them withdraw from MOOCs prior to completion (Yang and Rose, 2013). 

Due to a lack of face-to-face interaction between instructors and learners in such courses 

it is understandably difficult for instructors to maintain direct awareness of the reasons 

of individual learner withdrawals (Hone and El Said, 2016). 

The early identification of students who are at-risk of withdrawal from a course is 

one of the strategies that can be used to overcome the low completion rate in MOOCs. 

Detecting at-risk students in a timely manner could help the educators to deliver 

instructional interventions and improve the structure of the courses (Hung et al., 2017). 

With a timely intervention solution, the instructors can provide real-time feedback to 

the students; hence, retention rate could be improved. 

In order to build an accurate ‘at-risk’ students prediction model, the researchers 

investigate the reason behind the withdrawals. This has been attributed to a number of 

factors by the literature. The main reasons for students dropping out in the online courses 

include: 

 Lack of motivation: Students’ lack of motivation is the most influential factor that 

prevents them from completing the online course. Learning Analytics (LA) have 

been utilised to investigate the reasons for participants’ motivation in online classes 

through the analysis pattern of students’ engagement (Clow, 2012). The findings 

demonstrate that students engage and participate in the online course for two main 

reasons, namely feeling immediate satisfaction or attaining formal recognition by 

receiving a certificate.  As such, 87% of learners who enrol in online courses tend 

not to complete the full courses they undertake for enjoyment and interest. Only 13% 

of students decide to participate in formal assessments (Dalipi, Imran and Kastrati, 

2018). In addition, they have found the levels of student engagement differ from 

intrinsically motivated students to extrinsically motivated students. 

 Low student performance: The trajectory performance is shown to be another 

reason, which affects the students’ decision to quit the online course. Within certain 

subjects, students have been allowed to engage in multiple courses. Therefore, the 



student performance on a previous course can be used as a predictor of their 

following course completion. In terms of the traditional classroom setting, the 

researchers conclude that students’ prior GPA with a low mark is considered as  a 

significant factor of withdrawal from the next course (Meier et al., 2016). 

 Lack of Time: The amount of time is another factor that causes students to withdraw 

from the course.  The surveys show that students might need more time in the online 

setting course than in the traditional classroom course. This is because MOOC 

requires that the students watch video lectures and participate in a set of quizzes. 

Furthermore, a large number of MOOCs participants start late so it could be hard to 

follow up with the course schedules (Hone and El Said, 2016) (Dalipi, Imran and 

Kastrati, 2018). 

 Inadequate Skills: The online course requires the students to have technical skills 

and a high degree of autonomy. Insufficient academic skill is another reason for 

disengagement. The studies show that if students do not have the knowledge base 

in the specific subject, their engagement level could decrease rapidly  (Dalipi, Imran 

and Kastrati, 2018). References (Dalipi, Imran and Kastrati, 2018)(Kloft et al., 

2014) state that students who do not  have the reading, writing and IT skills feel 

frustrated and struggle to engage with the course in particular if the course requires 

the synchronous ‘chat’ interaction.  

   1.2 Problem Statements 

   Although the literature suggests many factors for students’ withdrawal, few 

researchers’ efforts have been dedicated to investigating how such factors influence 

at-risk students. To this end, the link between the level of engagement, performance 

trajectories and motivational trajectories should be investigated from various 

perspectives. This is a significant challenge. In the following, highlights of the 

limitations of existing research works will be provided: 

 
Evaluating learner motivation In MOOCs 

One of the main shortcomings of existing research is the lack of approach for the 

evaluation of motivation in the online setting. The majority of studies employ both 

quantitative and qualitative methods to measure motivation within MOOCs, 

relying on the analysis of transcripts, interviews and survey data. Consequently, 

learner motivation is evaluated from a narrow perspective, which does not account 



for learner interaction patterns within the MOOCs environment (Barak, Watted 

and Haick, 2016). 

Student motivational status changes over time; for instance, the literature review 

demonstrated that students’ motivational level during the online courses either 

decrees or increases according to social, cognitive and environmental factors. The 

motivational trajectory is an important indicator of students’ dropout rate. As a 

consequence,  motivational trajectories can be used as reliable predictors to detect 

which student is in danger of withdrawal from courses (Turner and Patrick, 2008). 

Motivational trajectories can be measured by exploring the changes in the 

subsequent of learners’ behaviours across various courses. Until now, most 

researchers have not given attention to examining the association between 

motivational trajectories and at-risk students. 

 

Investigate the association of student engagement levels with the withdrawal rate 

In order to examine how the above reasons could influence at-risk students, the 

dynamic link between the level of engagement, performance and withdrawal rate 

should be considered (Hew, 2016). LA is utilised to analyse the students' 

engagement levels by tracking students’ historical clickstream data within a single 

online course. With timely dropout prediction,  educators could deliver timely 

intervention support to at-risk students at any given time (Dalipi, Imran and 

Kastrati, 2018). 

 Although many previous studies have identified at-risk students in a timely 

manner, such works address only a limited set of dynamic behaviours; typically 

students activities have been analysed according to the sequence of the weekly 

intervals. Assessment deadlines have not been taken into consideration. However, 

it has been argued that the assessment deadlines are an essential component of 

students engagement that might influence students performance in the online 

context (Wolff et al., 2014). 

In addition, existing works have been unable to flag at-risk students early and 

accurately as only limited types of learning activities have been analysed. Namely,  

pdf files viewed, videos watched, quizzes viewed and posts in discussion forums; 

they did not involve other significant features such as the number of clicks that 



the student performs per homepage and subpage in addition to the students’ scores 

in previous assessments. 

Furthermore, the lack limitation of features engineering techniques is shown in 

literature review since features are extracted only from the number of clicks in a 

particular activity or the number of times that the student engaged in activity 

within the entire week (Fei & Yeung 2015). 

To the best of our knowledge, none of the current work has paid attention to 

constructing features from the number of times that students launched the specific 

activity per single session for predicting at-risk students. 

Students can participate in multiple courses within a certain subject. The student 

completion rates across various courses can be related to the level of student 

engagement and performance at the previous session (Huang and Fang, 2010). 

Insufficient attention has been paid by literature to evaluate whether the level of 

student engagement and achievement in the prior course could affect the at-risk 

student in the next course. 

 

Inferring Latent Engagement in MOOCs  

To explore how the patterns of engagement could influence the students who are 

at-risk of withdrawal, latent engagement should be investigated (Ferguson and 

Clow, 2015). The inferring of the students' hidden engagement would help 

educators to understand the intention of students to participate in certain activities 

(Ramesh et al., 2014).  

 Categorising the latent engagement patterns of learners concerning the impact on 

their continuation within course activities remains a challenge (Wang and Chen, 

2016) (Lan et al., 2016). Few studies have been undertaken to investigate latent 

engagement as a sequential classification problem (Lan et al., 2016). A notable 

limitation of the few existing studies is that behavioural features are distributed 

weekly. As a consequence, prediction models over time depend on a weekly basis 

without accounting for the assessment submission date as a factor of significant 

influence for student withdrawal. Within this approach, the estimating procedures 

which characterise at-risk students could be inaccurate due to their failure to 



account for context-sensitive factors including the submission date of 

assessments. 

   Research Questions 

1. Can the students' behavior activities  be used  to categorise the motivational status 

in MOOCs platform?     

2. To what extent are the performance trajectories and motivational trajectories 

influencing students’ dropout in MOOCs platforms? 

3. Are the failing and successful learners different in their engagement style? 

4. Is latent engagement a crucial factor that prevents students completing the 

assessments within a single online course? 

1.3 Aims and objectives   

 There are two aims in this reserch. The first aim is to evaluate the learners’ 

motivational statues based on the concept of motivation theory. The second aim is to 

build dynamic dropout predictive models that are capable of identifying the students 

who are in danger of withdrawal from the course at an early stage. Towards achieving 

the research aims, the following objectives are considered.  

 Develop a motivational model for the prediction of student motivational 

categories in an online setting. 

 Investigate the influence of motivational trajectories and performance 

trajectories on students’ decision to quit the online course considering multiple 

courses. 

 Evaluate the impact of latent engagement on at-risk students within a single 

course.  

 Investigate the impact of engagement level on student performance with respect 

to single course and multiple courses. 

 Compare various machine-learning techniques and select the appropriate 

techniques that are suitable for the project. 

 Utilise different classification and regression evaluation metrics to demonstrate 

the predictive capability and generalizability of our results. 

 

 



Table 1.1 Research workflow 

Objective  Methodology  Chapter 

Develop a motivational model for 

the prediction of students’ 
motivational categories in an 

online setting. 

(A)Conduct literature review in 

the behaviourist theory of 
motivation, evaluation of 

motivation in online courses.  

 

(B)LA to categorise the students’ 
motivational statues  

 

(A)Chapter 2 
 

 

 

(B) Chapter4 
 

Investigate the influence of 

motivational trajectories and 
performance trajectories on student 

decision to quit the online course 

considering multiple courses. 

(A)Conduct literature review into 

the factors that influence learners’ 

attrition in online courses. 
 

(B)Propose at-risk student 

framework in Harvard dataset. 

(A)Chapter 2 

 
 

 

(B) Chapter4 

 
Evaluate the impact of latent 
engagement on at-risk students 

within a single course.  
  

A) Conduct literature review to 
examine effect of latent 

engagement in online setting.  

 
 (B)Propose at-risk student 

framework in OULAC dataset.  

  

(A)Chapter 2 
 

 

 
(B) Chapter4 

 

Investigate the impact of 

engagement level on student 
performance with respect to single 

course and multiple courses. 

 

A) Conduct literature review to 

explore effect of engagement on 
student performance in online 

setting.  

 
 (B) Propose student performances 

models in both datasets. 

(A)Chapter 2 

 
 

 

(B) Chapter4 

Compare various machine-learning 

techniques and select the 
appropriate techniques that are 

suitable for the project. 

(A) Set of machine learning 

classifiers to be used in both 
datasets to predict students’ 

performance and identify at-risk 

students.  

(A)Chapter 5 

 

Utilise different classification and 

regression evaluation metrics to 

demonstrate the predictive 

capability and generalisability of 
our results. 

(A) The results of students’ 

performance model and dropout 

predictive models are compared in 

terms of (Sensitivity, Specificity, 
Recall, F1 measures, AUC). 

(A) Chapter 5 

 

 

1.4 Anticipated Contributions  

To overcome the limitations of existing work, this thesis proposes the prediction 

framework for detecting at-risk students early in online courses. The at-risk students 

has been investigated from various aspects including engagement level and 

motivational trajectories, performance trajectories, in addition to students’ latent 

engagement. Two online datasets have been considered: Harvard dataset and Open 



University Learning Analytic Dataset (OULAD). The research project provides four 

major   novel contributions including: 

 The first contribution of this research work is to employ a data-driven 

approach, a LA tool is utilised to characterise student motivational status 

based on Incentive Motivation Theory (IM). This has been accomplished 

using the Harvard dataset. According to the theory, the learners have been 

classified into three categories namely amotivation, extrinsic, and intrinsic.  

A set of machine learning models has been applied in the prediction of 

learners’ motivational status. Hence, the predictors in the experiments depend 

on quantitative log data, rather than questionnaire response. 

 The second contribution of this work is constructing dropout predictive 

models that are capable of delivering timely intervention support for at-risk 

students. LA is utilised to identify the at-risk students in a timely manner by 

tracking learners’ historical behavioural records. In the first predictive 

model, the aim is to investigate whether the students’ performance on the 

previous courses could influence their decision to quit the following courses. 

In the second predictive model, the engagement level in conjunction with 

students’ behavioural status  on the previous course have been examined to 

evaluate the effect of such factors on students persisting with participation in 

the following course. 

 The third contribution of this project is using the novel and robust features 

engineering method. The student's activities are captured on a daily basis in 

the OULAD database; the behavioural features have been extracted from each 

activity according to assessments tradeoff date. With this method, students’ 

records for each activity type are distributed across six-time slices leading to 

a multi-view of behavioural features. For each time interval, the features are 

derived from the number of sessions in which the student undertook the 

specific activity in addition to, the number of clickstreams that have been 

completed by students per single session. 

 The fourth novel contribution that has been provided by this project is 

designing a temporal model for identifying at-risk students in the online 

course focused on the sequences of students’ activities and latent engagement 

across a single course.  



 

1.5 Thesis Structure  

The remainder of this thesis is organised as follows. Chapter two displays the 

background of MOOCs. More specifically,  an overview of students performance and 

the evaluation of performance in online courses is discussed in this chapter.  Chapter 

two also gives a brief overview of motivation theory and summarises the methods that 

have been adopted by the literature for evaluating students’ motivation in online 

courses. The earlier at-risk students models that have been developed by current 

researchers are also presented in this chapter. 

Chapter three provides a brief history of machine learning. A comparison of 

supervised and unsupervised machine learning is explored in this chapter. The 

advantages and disadvantages of each algorithm are also explained. An overview of 

unsupervised machine learning algorithms is also presented in chapter 3 and, 

consequently, a discussion of the most popular unsupervised machine learning 

algorithms. Finally, a description of features selection method is included in this 

chapter. 

A detailed discussion of research methodology is presented in chapter four. The 

description of two MOOCs datasets is discussed in this chapter. The Harvard and Open 

University Learning Analytic Dataset (OULAD) are compared in terms of potentiality 

and limitations followed by the data pre-processing procedure. Three sets of 

experiments are presented in this chapter. More specifically, the performance 

prediction model is proposed over two datasets. 

The motivational prediction model is presented in the second experiment where 

machine learning is utilised to detect the lack of student motivation in the online 

context. In the second experiment, the temporal predictive models are proposed. In 

such models, three crucial factors are investigated; the influence of engagement levels, 

motivational trajectories and performance trajectories. 

Features extracted from the OULAD dataset are discussed in detail followed by a 

description of the proposed algorithm. Finally, the evaluation of student engagement 

levels and latent engagement over a series of intervals on withdrawal rate is examined.  



Chapter five highlights the results and discusses the proposed work. The results of 

supervised and unsupervised machine learning are also presented in this chapter. A 

discussion of the results of student performance predictive models across the 

individual course and multiple courses are presented in this chapter. 

The results of the statistical analysis with respect to the association between the 

students' performance and engagement levels are presented in chapter five. The 

comparison between successful and failing students with respect to students’ 

educational levels is also presented in this chapter. The summary of contribution is 

displayed in chapter six followed by the future work. 

  



CHAPTER 2: Background and Literature Review 

2.1 Introduction  

The traditional teaching strategy is purely focused on the educator (teacher, lecturer, 

tutor or trainer); the students are expected to obtain the information dictated by the 

teacher. The first traditional educational approach depended on the oral recitation of 

students. In such an approach, the lessons are delivered by students themselves and the 

teacher’s role was passive. The teacher only listens to students’ recitations (Dimitrios 

et al., 2013) 

This approach focuses on students’ verbal answers and the emphasis is on rote 

memorisation. The critical limitation of this approach is that it does not take into 

consideration the different levels of the student’s education; it assumes that all students 

should be taught at the same Pace. To maintain positive classroom atmosphere, 

corporal punishment is used as the response to students’ unacceptable 

behaviour(Dimitrios et al., 2013). 

The students would be compulsorily taught in school between ages 5 to 10 years. All 

schools in the UK were private schools belonging to religious institutions until the 

1900 when reforms were introduced. The aim of the reforms was widespread public 

education around the world in the form of an input-output system in that period, local 

authorities established public primary and secondary schools around UK(Hargreaves, 

1994). 

By 1940, a tripartite system had been introduced to shape the education system of 

the UK. This organised schools into three categories: grammar schools, secondary 

technical schools and secondary modern schools. In 1980 the national curriculum was 

introduced in which all schools must deliver the same standards of teaching to students 

across the UK(Hargreaves, 1994). 

The traditional teaching method has a critical flaw in the sense that is only suitable 

for young children and university students. Learners who want to increase their 

experiences by undertaking professional courses cannot attend regular classes 

(Wikramanayake, 2003)(Rovai, 2002). 

Funding restrictions mean that class size has become a crucial learning barrier in 

professional courses. Educators are required to manage larger classes and as such are 



less able to provide specific assistance to individual students. The problems of 

increased class size cause a twofold reduction in the educators’ efficiency. For 

example, the educator may not be able to invest the time required for the needs of 

individual learners and might give poor feedback. This critical issue threatens to 

undermine the capabilities of educators and limit the potential of the students in such 

courses. (Rovai, 2002). 

The geographical factor in relation to a student's ability to attend the physical location 

of course lectures, workshops and meetings can also play a role in how a student can 

engage their learning. Factors such as travel disruption, family life, travel time, work 

commitments, finances and even social life can form a barrier to students attending a 

geographical location, which can become a severe obstacle where important 

information is missed that can affect their understanding of the course subjects as well 

missing out on the guidance required to succeed(Buabeng-Andoh, 2012)(Pamuk, 

2012). 

2.2 Breaking Learning Barriers 

Information Communication Technology (ICT) has become widespread to play a 

vital role in education. ICT has contributed to the support of the academic curriculum 

and allows for the creation of an interactive channel between students and instructors. 

ICT could improve student outcomes and enable the teacher to aid the student in 

solving exercises hence, high quality teaching would be delivered through advanced 

technology(Ghaznavi, Keikha and Yaghoubi, 2011). 

  ICT is capable of enhancing the learning resources and assisting the educators in 

the delivery of efficient teaching strategies. With advanced technology, educators and 

their teaching strategies can heavily influence courses. ICT can be implemented in a 

way that helps the educators to enhance the performance of students (Ghaznavi, 

Keikha and Yaghoubi, 2011)(Sarkar, 2012). 

The issues of class sizes and geographical distances are overcome since, digital 

learning technologies open up opportunities for students, allowing them to attend or 

catch up on lectures and meetings through video and teleconferencing without the need 

to travel. Communications can also be distributed between students, their educators 

and their peers in non-real time. ICT allows the individual learners to respond to their 

learning requirements without taking into account the obstruction time, as opposed to 



the traditional requirement for learners to fit themselves around a fixed learning 

schedule. Ultimately, new technologies allow the opportunity for the deployment of 

new education strategies that are the reverse of traditional teaching. For instance, 

instead of courses being designed around the educator dictating to their students, 

courses can now be designed around the learners. Therefore, the students’ engagement 

could raise rapidly with such platforms(Ghaznavi, Keikha and Yaghoubi, 2011).  

Educators and their requirements should still play a central role in virtual classes, as 

learners will not be able to achieve their full potential without the guidance of 

educators. Instead of new learning technologies replacing the role of the educator, they 

provide assistance to them. The new virtual class could provide better quality feedback 

between educators and their students. In addition, it could open new scope for 

researchers to utilise the AI   for the purpose of investigation into the learner’s 

progression. With educators becoming more  aware of the needs of their students in an 

online setting, teaching strategy could become more effective online than the 

traditional methods(Sørebø et al., 2009)(Wilson, 2004). 

 Table 2.1 Comparison Traditional Learning versus Online Learning 

Traditional Courses  Online Courses  

Course more suitable for learners who aim to 

improve their career opportunities. 

Course more suitable for children and 

teenager students. 

class is  synchronous class is  asynchronous 
More flexible as the student dose not regularly 

attend the class. 

Less flexible as students are regular 

attend the class.      

Small class size. Large class size. 

Lower financial cost. Higher financial cost. 

Self-regulated learner. Educator control learning. 

Face to face communication. Social communication. 

 

 

 

2.3Learning Management System  

The rapid growth of digital technology has increased the growth of distance learning 

by providing different tools to deliver course content using multimedia such as 

animation, pictures, and figures, videos which are used to provide interactive content, 

control of the online activities and motivating the learner to build new cognitive 

skills(Sclater, 2008). To this extent, e learning offers to learners a flexible teaching 

approach that enables them to access information resources from anywhere. With the 

internet revolution, the virtual learning environment has introduced the virtual 



classroom as an alternative to the traditional classroom. It provides facilities and 

breaks down the obstacles of the traditional teaching approach(Weaver, Spratt and 

Nair, 2008). 

Learning Management System (LMS) is a web-based system that is used for 

distributed online courses via ICT. LMS is a rich application that has features to deliver 

online courses in digital form. The attractive learning material could lead to improved 

learners’ attention, and allows them to learn at their own pace. Additionally, learning 

is more easily accessible to students. Educators also benefit by being able to better 

estimate the progression of their student's and help them deploy the learning strategy 

(Weaver, Spratt and Nair, 2008)(Mtebe and Raisamo, 2008). 

The LMS uses social media such as Internet Relay Chat (IRC) and Skype; this is 

especially useful for communication where there is a barrier to Synchronous learning. 

The LMS allows the learner and educator to share the online lesson at the same time 

through computer technologies. As a consequence, providing a synchronous learning 

environment, the LMS has become an effective alternative to face-to-face traditional 

teaching methods(Dutton, H., Cheong, P., & Park, 2004). 

The LMS such as Blackboard, Internet Relay Chat (IRC) and WebCT are widely 

used in higher education and educational institutes as a paradigm integrated e-learning 

platform. It has various levels of complexity with different types. Although, there are 

differences, they perform the same functions and have common 

characteristics(Weaver, Spratt and Nair, 2008). 

The LMS can help the teacher to construct online assessments. With online 

evaluations the teacher can monitor students’ answers and deliver immediate, dynamic 

feedback to students and measure the difficulty of tasks(Botički, I., Budišćak, I. and 

Hoić-Božić, 2008). The LMS presents a promising alternative to traditional student 

assessments, by aiming to overcome the inherent limitations of conventional 

approaches. 

 

 



 

                 Figure 2.1 LMS Functions  

 

 

2.4 Intelligent Tutoring systems  

Intelligent Tutoring Systems (ITSs) are a computer-based formative assessment 

system designed to enhance the student’s experience in e-learning platforms. It is 

based on the artificial intelligence concept that facilitates the learning 

process(Gharehchopogh and Khalifelu, 2011).  

ITSs have the capacity to monitor the sequence of steps undertaken by students 

during interactive engagement with e-learning environments without the need for 

teacher assistance(VanLehn, 2006). ITSs are capable of tracking student behaviours 

during learning activities and providing immediate feedback to students(Koedinger et 

al., 2013). 

Moreover, The ITSs combine automated assistance with assessments to facilitate the 

learning process of students. They allow students to request a hint if they find the 

current task prohibitively difficult. Hints serve to guide the student towards successful 

problem resolutions and help educators to assess the student’s educational level. In the 



case of the student providing an incorrect answer to the current task, the assessment 

model responds by providing the student with a set of scaffold questions in which the 

original question is divided into multiple sub-questions. The model assists the student 

in the form of a sequence of hints, after which the student has the opportunity to 

practice the task multiple times. To avoid unnecessary practice questions and undue 

investment of student time, the tutoring system provides a bottom out hint that delivers 

the correct solution when the student reaches a trial threshold (Gharehchopogh and 

Khalifelu, 2011). 

Cognitive Tutor is an example of an ITS that has been used by schools in the USA 

to assist students with learning maths. Researchers suggest that students performances 

increased by 80% when complex mathematical tasks were delivered through Cognitive 

Tutor. In ITS, structures and interfaces are adapted to the student’s needs, while 

remaining based on  educational theory(Ritter, S., Anderson, J.R., Koedinger, K.R. 

and Corbett, 2007). 

 

2.5 Massive Open Online Courses  

With progress in Open Educational Resources (OER) advancing from an emerging 

field towards an increasingly important learning modality Massive Open Online 

Courses (MOOCs) have become an alternative educational platform that allows 

learners from dispersed geographical locations to access digital learning material, 

regardless of the geographical and time obstructs(Shapiro et al., 2017). 

Massive Open Online Courses (MOOCs) is one of the most widespread e-learning 

platforms.  The MOOCs present the course using digital tool materials in various forms 

such as visual, audio, video and plain text. Most students prefer using the video 

lectures to understand the contents of lessons over fully reading plain text documents. 

The interactive video in the MOOCs could reduce students’ stress, help them to feel 

relaxed and learn quickly(Hew and Cheung, 2014). 

MOOCs can be classified into two distinct types mainly, connectivist Massive Open 

Online Courses (cMOOCs) and eXtended Massive Open Online Courses (xMOOCs) 

The cMOOCs are a new learning model based on connectivist learning theory (Renz, 

Schwerer and Meinel, 2016)(Li, Tang and Zhang, 2016).With the connectivism 

approach the instructor would not provide the actual learning material, the students get 



the course syllabus by asking the questions and sharing this information with other 

participants. References (Renz, Schwerer and Meinel, 2016)(Li, Tang and Zhang, 

2016)(Zutshi, O’Hare and Rodafinos, 2013) posit the learning strategy of cMOOCs 

focused on a collaborative approach in which learning material combined remix, 

repurposable and provided, forwarded to other students. Students within cMOOCs 

control their learning process, have autonomy and create their own network .In 

addition the student can determine how much time they need to engage in the online 

course (Zutshi, O’Hare and Rodafinos, 2013)(Wang et al., 2017). It could be hard to 

evaluate the Student's needs as the course content dynamically evolves as it is 

constructed. The cMOOCs do not include a formal assessment, hence  universities do 

not consider them to be official courses(Wang et al., 2017)(Gallego Arrufat, Gamiz 

Sanchez and Gutierrez Santiuste, 2015). 

The  online survey has been applied by reference (Zutshi, O’Hare and Rodafinos, 

2013) to examine students’ experiences in the cMOOCs environment. The results 

reveal that many factors occurring in such an environment could affect the students’ 

interaction and connection negatively, for example, courses including a lot of 

information, lack of professional knowledge and unsuitable coursework content. 

xMOOCs area learning paradigm based on the principles of cognitivist behaviorist 

theory(Kesim and Alt, 2015)(Zutshi, O’Hare and Rodafinos, 2013). The structure of 

the courses is similar to the traditional course where the syllabus consists of a set of 

video lectures and a set of multiple choice quizzes in addition to the final 

exam(Nkuyubwatsi, 2016). The video lectures featuring the course instructor 

reviewing the content of the previous online lesson are released weekly. The 

participants can watch and pause the video at their own pace.  Moreover, the students 

can socially interact with other participants and the instructor through posting in 

discussion forums. The instructors usually post questions, provide task solutions and 

reply to student questions via these discussion forums; as a consequence the discussion 

forums play a vital role in enhancing the course quality and make online sessions 

collaborative and engaging(Adams et al., 2014). Some xMOOCs tend to make courses 

more engaging by offering online simulation platforms such as serious games and live 

sessions(Staubitz et al., 2014). 

A comparison of xMOOCs and cMOOCs indicates there is a big difference between 

two types of courses in terms of their objectives. xMOOCs place emphasis on 



delivering high-quality learning materials while cMOOCs focus more on the students’ 

interaction and connection with each other and their instructor (Renz, Schwerer and 

Meinel, 2016)(Li, Tang and Zhang, 2016). With cMOOCs, it is impossible to involve 

expertise to assess the students' knowledge whereas in xMOOCs, university lecturers 

can evaluate the students’ knowledge through the use of computer-marked assessment 

feedback (Gallego Arrufat, Gamiz Sanchez and Gutierrez Santiuste, 2015). In 

particular, the computer gives immediate feedback to the student when he completes 

the online assessment. The learner, upon successful completion, will be awarded their 

certification in xMOOCs (Gallego Arrufat, Gamiz Sanchez and Gutierrez Santiuste, 

2015)(Jones, 2014). 

2.6 Education Data Mining and Learning Analytics 

Educational Data Mining (EDM) is an emerging field of research aimed  at extracting 

knowledge from learning processes to support decision makers(Baker and Siemens, 

2014)(Sachin, R. Barahate, 2012). Recently EDM has been used within the higher 

education setting to enhance teaching strategies (Baker and Siemens, 2014). EDM 

involves the use of statistics, visualization, and machine learning methods for the 

exploration and analysis of educational data (Baker and Siemens, 2014) (West, 2012). 

The possibility of capturing big data within MOOCs opens up new horizons to 

educational data mining researchers who can extract deeper insights from the analysis 

of the data (West, 2012). Although a prominent application of EDM is set within the 

online learning environment, the analysis and tracing of actionable data is challenging 

(West, 2012).  

Learning Analytic Model (LAM) has been developed by reference (De Freitas et al. 

2015) LAM is similar to LA dashboard, it aims to examine the factors that affect 

students’ retention in higher education. Hypotheses were extracted from the dynamic 

interaction of students and instructors; hypotheses then iterate through implemented 

statistical methods. With LAM, students were split to groups of learners sharing 

common behavioural patterns hence; the stockholder would be able to capture 

students’ requirements in real time. 

The researchers are able to use the LA to investigate patterns of student engagement 

in MOOCS in further detail. As a result, such data can provide cohort information 

about the learning process, with LA researchers able to visualise and analyse the 



information obtained from each tier of learning. Such analytical capacity may in turn 

enable the accurate prediction of student performance within MOOCs. There are 

various methods of LA utilised by researchers  including Web analytics, Artificial 

Intelligence and Social Network Analysis (Baker and Siemens, 2014). 

The  author in reference  (Yousef et al., 2014) conducted a study to investigate the 

factors that  influence the quality of MOOCs from the learners’ and instructors’ 

perspectives. There were 98 professors and 107 students participating in the survey. 

The result of this survey reveals that LA is the most critical factors that should be 

considered when design MOOCs. The LA was reported as the most important factor. 

There are other criteria, which should be taken into account for achieving successful 

MOOCs platforms such as video content, user interface and social tool.   

Different approaches have been designed using both EDM and LA with the aim of 

understanding and analysing learners interaction in MOOCs efficiently(Baker and 

Siemens, 2014). LA has been used to identify dropout students (Kloft et al., 2014) For 

example, the University of Michigan developed Michigan Tailoring System 

(E2Coach)(Mattingly, Rice and Berge, 2012). The E2Coach is an open source system, 

which aims to identify weaknesses and performance of physics students. E2Coach also 

delivers personalized learning by the customization of course materials. The LA tool 

was implemented in E2Coach to capture and collect data about students’ progress from 

various resources .It  provides indications to educators to reconstruct learning materials 

that match student ability and experience (Mattingly, Rice and Berge, 2012). 

The association between the Virtual Learning Environment(VLE) data and student 

exam marks has been investigated at the University of Maryland , Baltimore County 

(UMBC) (Mullan, 2016). LA was used through the implementation of the Check My 

Activity (CMA) tool. CMA can be defined as an LA tool, which compares students 

VLE activities with other activities and provides lecturers frequent feedback of 

students’ emotional status. The results showed the students who engage with the 

course frequently are more likely to earn mark C or higher than those who did not  

engage regularly(Mullan, 2016). 

2.7 Latent Variable in Online Settings  

The latent variable is an unobserved variable that is inferred from the observed 

variable through the statistical model. The mathematical model is called “Latent 



variable modelling”. It aims to measure the impact of the latent variable on the 

observed variable. Latent variables models are currently used in many domains such 

as Education, Psychology, Machine learning, Economics and Image processing 

(Loehlin, 1984). 

Factor analysis is the most popular method used in education. Factor analysis is the 

statistical method used to reduce the number of variables into a lower number of 

factors. In this method, it is assumed that there is a linear relationship between the 

variables and factors(Tahar et al., 2010). The pioneer of factor analysis goes back to 

psychologist Charles Spearman who was trying to measure human intelligence in 

1904. He found that those students’ scores in uncorrelated subjects were positively 

correlated with each other. His postulated that general mental ability (intelligence) is 

the main factor in achieving similar grades in unrelated subjects (Spearman, 1904). 

The Factor Analysis Model (FAM) was proposed to predict the student's performance 

in ITS taking into consideration the difficulty level of assessments based on item IRT 

theory concept (Hao Cen, Kenneth Koedinger and Carnegie, 2006). The difficulty 

level of tasks can infer through measurement of correlation between the student’s 

performances and assessment questions. To compute the probability of a student 

solving a task correctly, a set of predictor variables are defined in the LFA including 

the number of opportunities presented to the student at each task, the duration spent on 

each step and the difficulty level of each question or latent variable. The results reveal 

that incorporating the latent variables into estimates of student performance 

significantly enhances the model (Hao Cen, Kenneth Koedinger and Carnegie, 

2006)(Koedinger, Mclaughlin and Stamper, 2012). 

The Hidden Markov model (HMM) is another method used to measure the latent 

variable. The HMM model is a statistical model used to compute the probability for 

the sequences of observable events based on the Markov chain; The model assumes 

that the probability of events depends on the state that is not directly visible in the 

previous event (Jeong et al., 2008). 

In virtual learning, HMM is used to analyse the students' interaction with ITS. As 

such, the HMM is employed to discover the ‘slip and guess’ of students answers in 

ITS assessments. Bayesian Knowledge Tracing (BKT) is proposed by reference (Beal, 

Mitra and Cohen, 2007) to predict student performance. The authors define the 



students’ response into four categories; P (L0), P (T), P(S) and P(G).  P (L0) represents 

the initial probability that the student knows the skill in specific tasks; P (T) is the 

probability that the student will shift from an unknown state to a known state about the 

skill in tasks. The P(S) is the probability of a student obtaining the incorrect answer, 

given a known level of skill; P (G) is defined as the probability of the student obtaining 

a correct answer in the absence of prior experience. The findings show that inferring 

the guessing and slipping latent variables lead to improvements in the accuracy of the 

prediction model.    

The two-layer hidden Markov model (TL-HMM) was proposed by Geigle to infer 

the latent behaviour pattern of students in MOOCs platforms. The TL-HMM model is 

different from conventional HMM in its capacity to discover the micro-behaviour 

patterns of students in more detail and transition between latent states. For instance, 

when students undertake the quizzes, the student would tend to participate in the forum 

discussion. The model can deeply learn specific transitions between the quiz taking 

and quiz submission. The author concludes that high performing students have fewer 

latent behaviour states due to the fact that they have sufficient knowledge, they do not 

need much assistance (Geigle, 2017). 

The expectation maximisation algorithm (EM) is widely used to measure the latent 

variable. The EM is the statistical model used to find maximum posterior estimates of 

observation when data has hidden variables (Fraley and Raftery, 2007).  Regarding 

online courses, the Latent Dynamics Factor (LADfG) is proposed by (Qiu et al., 2016) 

to predict the learning behaviour based on EM algorithms. The authors employ the 

student activities in forums, assignments and videos to infer their latent behaviour. The 

result shows notable behavioural heterogeneity in students learning pattern. For 

instance, the students who patriciate in the forum are more likely not earn a certificate.     

 

2.8 Learner Performance in Online Course 

 Student performance is considered a key indicator of the effectiveness of the 

MOOCs platform. Researchers have adopted various methods to predict the 

performance of students in the online environment. In this section we will summarise 

the work of other researchers towards predicting student performnce  in MOOCs. 



Within the educational setting, machine learning is an effective technique that has 

been widely applied, primarily to the prediction of student performance in both 

traditional and virtual environments. Kabakchieva (Kabakchieva, 2013) applied 

supervised machine learning to predict student performance at a Bulgarian University. 

The author considers 20 predictive attributes extracted from personal information and 

the pre-university characteristics of students. The Bulgarian Score Level scale was 

used to categorise student performance into five distinctive classes, given as 

“Excellent”,”Very Good”, “Good”, ”Average”, “Bad”. Several supervised Machine 

Learning techniques were used to predict student performance, including Decision 

Trees, Naive Bayes, Bayesian Networks, and k-Nearest Neighbours. The results 

demonstrated that all classifier models suffer from low performance, exhibiting an 

average accuracy range of 52-67% (Kabakchieva, 2013). The authors in reference 

(Asif et al., 2017) applied data mining methods to predict the performance of 

undergraduate students at the Engineering University in Pakistan. Similar to 

(Kabakchieva, 2013), five levels of outcome are considered as targets, for which GPA 

is employed as a predictive feature. The result reveals that Naive Bayes achieves the 

highest accuracy, with a value of 83% (Asif et al., 2017). 

A technique called Deep Knowledge Tracing (DKT) is introduced in (Piech et al., 

2015).The authors implement Recurrent Neural Networks (RNN) on the Khan 

Academy online course to predict the future performance of students. RNN is a 

dynamic model with the ability to continually represent the latent knowledge status 

over time, while evaluating the level of the student’s knowledge. A number of 

variables are considered for the DKT model, these include the student’s previous 

knowledge, student clickstream features, the hidden variables, the factor difficultly 

that is associated with each task, and additionally the duration of task taken by the 

students during the online session. The result showed that the RNN model achieves 

good performance with an AUC value of 0.85 (Piech et al., 2015). 

Students’ marks in the first assessment and quiz scores in conjunction with social 

factors are used to predict students’ final performance in the online course (Jiang et 

al., 2014). Two predictive models were introduced. In the first model, logistic 

regression was used to predict whether students gained a normal or distinction 

certificate. In the second predictive model, logistic regression was also used to predict 

if students achieved a certificate or not. The results indicated that the number of peer 



assessment is the most effective feature for acquiring a distinction. The average quiz 

scores were considered the strongest predictor for earning a certificate. The accuracy 

of distinction and normal models were reported with the percentage of  92.6% for the 

first model and 79.6 % for second model respectively (Jiang et al., 2014). The 

sensitivity and specificity were not reported in this study.  

An online education web-based system was employed to predict student performance 

at Michigan state University (Minaei-bidgoli et al., 2003). A number of features have 

been considered in this study such as how long students interact with the digital 

materials, when students submitted the assessments and the total number of attempts 

undertaken. In order to, enhance the classifier performance, the authors used the 

Genetic Algorithm (GA) to optimize the high ranking features.Four classifiers have 

been considered namely decision tree, neural network, Naïve Bayes and k nearest 

neighbour. The authors compared the classification accuracy in respect to GA versus 

non-GA. The results illustrated the accuracy improved 12% by considering GA 

features.  As such, the binary classifier achieved the percentage of 83.87 % accuracy 

in the case of selecting all features while the performance accuracy acquired a 

proportion of 94.09% when considering GA selected features. 

2.9 Engagement in Online Courses  

Engagement is perceived as the sense or feeling that increases the level of student 

interaction with activities and the duration of such participation. Student engagement 

is considered as an important prerequisite for learning in the online context, impacting 

performance, motivation, and attrition (Trowler, 2010).Engagement can be classified 

into three main categories: behavioural engagement, emotional engagement, and 

cognitive engagement. Emotional engagement occurs when a student senses or feels 

emotionally engaged in a learning activity. Cognitive engagement refers to the 

student’s feeling with regard to progress in the academic task, while behavioural 

engagement refers to the level of student participation in learning activity (Trowler, 

2010). 

Behavioural engagement concerns student behavioural activities. The absence of 

behavioural engagement could negatively influence student academic outcomes 

(Trowler, 2010). Behavioural engagement is considered the crucial factor in increasing 



concentration, persistence, and social interaction, resulting ultimately in improved 

student performance. 

Learner engagement has been widely investigated in online learning. Coffrin et al in 

reference  (Coffrin et al., 2014) employ a learning analytic technique to analyse the 

patterns of participant engagement within MOOCs. The number of video hits and dates 

of assessment submissions are used as features during the assessment of completion 

rates. The result showed that only 29% of participants completed their assessment, 

whereas more than 60 % viewed the video (Coffrin et al., 2014).  

 Video lectures and assessments  marks are used to describe the prototypical patterns 

of learners’ engagement within the Coursera platform on a weekly basis. Four patterns 

of engagement are introduced namely completing, auditing, disengagement, and 

sampling (Kizilcec, Piech and Schneider, 2013). The completing class represents 

learners who submitted assessments on time. Auditing class represents learners who 

did not submit assessments but watched video lecture content; Disengagement 

represents learners who drop out from the course; Sampling represents learners who 

watch video on only a single occasion .k-means cluster algorithm is used to find sub-

populations of this engagement pattern, with results indicating that most learners 

engage with the course for the purpose of watching video lectures (Kizilcec, Piech and 

Schneider, 2013). These taxonomies are suitable for any MOOC platform that 

considers only video lectures and assessment. Consequentially, the narrow focus on 

these features imposes a limit on the generality. 

In reference (Alias, Ahmad and Hasan, 2015) ,the authors employ Self Organised 

Map (SOM) clustering to describe the learners behaviour in the e-learning 

management system. They have found SOM clustering is a powerful approach in terms 

of visualising the behavioural patterns of learners, due to its capacity to analyse highly 

dimensional data with different types of input variables. 

Other researchers examine factors relevant to the structural aspects of MOOCs design 

that could raise the level of participants’ engagement (Hew, 2015). Learner comments 

are used to validate how instructional design promotes students’ engagement. The 

authors’ findings indicated that courses materials, interaction, and persistent 

monitoring of participant progress are critical elements that increase the level of 

engagement  (Hew, 2015). 



Probabilistic Soft Logic (PSL) is used by reference (Ramesh et al., 2013) to model 

students’ engagement. The PSL can be defined as a paradigm for developing the 

probabilistic model. PSL uses first-order logic rules to represent variables in the 

graphical model. Three types of engagement have been defined in this study, namely 

active engagement, passive engagement and disengaged. The learners' activities are 

defined as active when learners demonstrated interaction with the course such as 

posting on the discussion forums and submitting assessments. Passive engagement is 

assigned to the learners who access the homepage of resources, without proceeding to 

further forms of interaction like voting on a post, watching the lectures and viewing 

the discussion forums. Disengaged learners were those who tended to quit from an 

online course. The authors investigated the link between the engagement and 

performance. The findings illustrated that latent engagement enhances the 

performance of the predictive model.  As such, the PSL model that accommodated the 

latent engagement achieved better performance than the model without latent 

engagement. The AUC = 0.7492 for the PSL model with latent variable, while  the 

AUC acquired a value of 0.7393  for the PSL model without latent variable (Ramesh 

et al., 2013).  

 Jiye et al. in reference  (Baek and Shore, 2016) examine the relationship between 

social engagement and performance in the MOOCs platform. In this study, the course 

provided by Boston University is delivered through the edX platform. To measure 

social engagement, the authors split people into large and small groups. The results 

indicated that students within the larger group interacted more with discussion forums 

and acquired better performance than the small group as a consequence.The MOOCs 

can be similar to crowdsourcing where a large number of students who have various 

experiences would provide different resources for solving a particular task (Baek and 

Shore, 2016). 

 Gamification is used to measure students engagement in Blended University 

programming courses (Tvarozek and Brza, 2014). Interactive badges are given to 

students who solve the exercises correctly. Hence, the high skill students may gain 

more badges. The authors conclude the badges are a more accurate method than a self-

reported survey to determine students’ engagement level as self-reported student 

motivation could be evaluated from a narrow perspective; students tend to claim that 

they are engaged in the course to earn high marks in exams (Tvarozek and Brza, 2014). 



The findings indicated that students interact with interactive badges in different ways. 

It was notable only 13.8 % of students frequently engage with gamification while 

around 52.5% interact randomly. The authors also demonstrates a positive impact of 

interactive badges on students’ performance (Tvarozek and Brza, 2014). 

National Survey of Student Engagement (NSSE) is used by  reference (Sinclair and 

Kalvala, 2016) to evaluate students’ engagement in the online course environment; 

NSSE includes ten benchmarks: Higher order learning, Reflective learning, Learning 

strategies, Quantitative reasoning, Collaborative learning, Discussions with diverse 

others, Student-faculty interaction, Effective teaching practice, Quality of interactions 

and supportive environment. The findings reported  that an average of 30% of learners 

collaborated with others (Sinclair and Kalvala, 2016). Approximately 30% of students 

discussed the idea with other participants. Conversely, 10% asked for assistance as a 

consequence, the students' engagement level for collaborative learning criteria is 

significantly low. The result also posits an average 30% of students never interacted 

with any learning activity (Sinclair and Kalvala, 2016).Table 2.2 list the literature review 

work on engagement in online setting. 

 

 

  



Table 2.2 Overview of Researchers Work on Examination of learner Engagement 

Pattern in MOOC 

  Author  Year  Dataset  Provider   Data Mining Method  Feature Set 

ArtiRamesh, et al. 

 

2013 Coursera  PSL Discussion forums, 

assessment marks, 

number of video hits 

René F. Kizilcec 

 et al. 

 

2013 Coursera k-means cluster  Video hits, 

assessments marks 

 

Coffrin et al. 2014 “Principles of 

Macroeconomics and 

Discrete 

Optimization” Course 
university of 

Melbourne 

 

LA Video hits, 

assessments marks 

 

Jozef Tvarozek 

 et al. 

 

2014  Programing courses, 

Blended University  

 

Gamification  

{Interactive badges} 

Number of  

assessments solved 

U. F.Alias et al. 
 

2015 E-learning management  
system 

SOM Student’s action 
 behavioural activities  

Jiye Baek  et al. 

 

2016 edX Survey  Discussion forums post 

 

J. Sinclair et al. 2016 Online course  NSSE Questionnaire 

 

https://dl.acm.org/author_page.cfm?id=99658999964&coll=DL&dl=ACM&trk=0&cfid=1024680430&cftoken=30765215


2.10 Self-Determined Theory 

One of the most empirical theories of motivation in education is Self-Determined 

Theory (SDT). The SDT is a contemporary theory of motivation which has been used 

to explore why human activity occurs and what is the goal of that activity(Hofer and 

Busch, 2011). SDT has been widespread in the educational domain. The theory 

confirm that intrinsic motivation of student propensity is considered as the main factor 

for student participation in the specific task (Zhou, 2016). 

The SDT posits that students have a basic psychological need to engage in learning 

activities. Psychological needs are autonomy, competence and relatedness. Students’ 

satisfaction of these psychological needs could raise intrinsic motivation, and in 

addition, students will tend to elaborate in more advanced learning resource in contrast 

to, deprivation of these Psychological needs could impact negatively on students 

achievement(Zhou, 2016)(Leal, Miranda and Carmo, 2012). 

According to SDT theory, motivation falls into three main categories: intrinsic 

motivation, extrinsic motivation and amotivation. Extrinsic motivation can be further 

classified into four types which are external regulation, interjected regulation, 

identified regulation, and integrated regulation (Leal, Miranda and Carmo, 2012). 

External regulation is the lowest autonomous type of motivation because students are 

undertaking the task in order to obtain tangible rewards or to avoid punishment.  The 

interjected regulation students engage in tasks for eschewal of self-derogation 

purposes. Identified regulation is associated with students who participate in the task 

with the goal  of valuable consequence  outcome or for future career prospects 

(Osborne and Jones, 2011). 

A number of recent studies have been conducted suggesting that SDT is an efficient 

framework to evaluate motivation in the online environment . A notable limitation of 

SDT is that it is focused only on surveys  to categories participant motivation as a 

consequence, the motivation could be measured from the learners’ 

perspectives(Velazquez-Iturbide, Hernan-Losada and Paredes-Velasco, 2017). 

Researchers find learners’ activities are critical factors that could influence motivation. 

Therefore, Incentive Motivation Theory is introduced which considers the learners' 

behavior to evaluate students’ motivation   in the educational setting. 



2.11 Incentive Motivation Theory 

Incentive Motivation Theory (IM) is the behaviourist theory of motivation survey 

developed by B.F. Skinner (Martimort, 1996). IM seeks to explain why human 

activities occur relative to goals. The IM theory introduces the notion of 

“ramifications”, which are posited to be the basis for task focused incentives. In 

particular, ramifications are classified into main subtypes: tangible and intangible 

(Martimort, 1996). The motivation categories are further explained in terms of three 

main dimensions: intrinsic incentive motivation, extrinsic incentive motivation, and 

amotivation (Martimort, 1996)(Ryan and Deci, 2000). Intrinsic motivation is attained 

from a student’s perception of a task as interesting, challenging, and enjoyable. In 

contrast, extrinsic motivation originates from the expectation of rewards that lie 

outside of the activity itself (Martimort, 1996). Intrinsically motivated students feel 

immediate satisfaction while undertaking a task. Conversely, extrinsically motivated 

students derive satisfaction from extrinsic reward mechanisms such as attaining 

favourable exam marks or social rewards. amotivation is an another category of 

motivation in which the lack of incentive represents a key factor in student dropout 

(Martimort, 1996) (Ryan and Deci, 2000). 

The advantage of IM is that it provides an explanation of the student motivation 

process from the different perspectives including psychological and cognitive. 

Additionally, IM addresses the association of motivation types with student academic 

performance Therefore, IM could help the instructors to enhance learning strategies 

and guide them to identify student-learning styles. 

2.12 Motivation in Online Courses 

Motivation is defined as the process for achieving a goal, which provides energy and 

initiates to accomplish a specific task. In terms of education, motivation is described 

as a conceptual construct that directs and improves student behaviour towards a 

specific goal (Cho and Heron, 2015). Although motivation plays an important role in 

online contexts, few contemporary studies have evaluated motivation in online setting. 

Current studies have highlighted the importance of motivation as a factor in the 

learners’ engagement. Much of the research reported in the literature focuses on the 

validation of motivational indicators within the setting of online courses. Osborne et 

al. (Osborne and Jones, 2011) found a strong correlation between motivation and 



domain identification within MOOCs (e.g. job prospects, knowledge expansion, social 

development). The authors demonstrated that social factors play an important role in 

increasing student engagement and enhancing cognitive skill.  

The researchers in (Tatiana, 2016)employ mediation analysis with logistic regression 

to evaluate the correlation between engagement, motivation and achievement. In this 

study, the data was collected from 20 online courses provided by Coursera during 

2014-2015 at the higher school of economics. The database is derived from two 

resources mainly, actionable data and surveys. The results reveal that the level of 

engagement acts as a mediator between motivation and achievement. The results also 

indicate intrinsically motivated students achieve good performance only in the first 

week of the course ,while extrinsically motivated learners have the incentive to 

complete the entire online course successfully(Tatiana, 2016).  

 To validate motivation in MOOCs, several studies have designed questionnaire 

frameworks based on the Glynn scale (“Science Motivation Questionnaire II”) (Glynn 

et al., 2011). The authors employed the Glynn scale to evaluate four types of 

motivation: intrinsic motivation, self-determination, self-efficacy, and career 

motivation, comparing English with Arabic participants within the Coursera platform 

(Barak, Watted and Haick, 2016). The results reveal a similar pattern of motivation 

category for both English and Arabic participants within the studied setting (Barak, 

Watted and Haick, 2016). The Situational Motivation Scale (SIMS) has been adopted 

by (Hartnett, George and Zealand, 2011) to measure learner motivation on two 

“teacher education” courses delivered by New Zealand Tertiary Institution.  Four 

subtypes of motivations have been assessed in these studies, namely Intrinsic 

Motivation, External Regulation, Identified Regulation, and amotivation. The students 

were asked to respond to 16 SIM questions relating to particular assessments. The 

results demonstrate that participants in both case studies score high level of Identified 

Regulation and Intrinsic Motivation (Hartnett, George and Zealand, 2011). 

 Instructional Materials Motivation Survey (IMMS) has been applied by (Huang and 

Hew, 2016) to evaluate the learners’ motivation level in the MOOCs environment. 

Four factors have been considered to model motivation in an online course: attention, 

relevance, confidence and satisfaction (ARCS). There were around 27 learners 

participating in this experiment who were enrolled on various MOOCs platforms. The 

results demonstrated that overall motivation level was positive for all criterias, in 



particular, most learners were satisfied with the learning material and course structure. 

However, the learners were not satisfied with the instructor feedback as a large number 

of learners engage at the same time with an online course; the instructor could find it 

difficult to respond to all students (Huang and Hew, 2016).  

Other researchers adopt machine learning techniques to predict learners’ motivation 

levels (Wen et al., 2014). Three sets of features were considered in this work. The 

“unigram” feature, which represents the main features set. “Linguistic” features that 

only used student comments in post form. If student comments are positive, then the 

post is classified as motivated, otherwise, it is unmotivated. The third set of features is 

“Unigram+Ling” that combines the unigram features with linguistic features. Logistic 

regression was implemented to investigate motivation mode on two Coursera courses. 

The results showed the linguistic feature has not had a significant impact on motivation 

levels. It was reported only 1-3% that enhance the performance of predictive model 

over baseline feature set. The result of logistic regression  also revealed  that 

“Unigram+Ling” achieved the best performance with values of 73%, and 62% for 

“Accountable” and “Fantasy” courses, respectively(Wen et al., 2014) .The sensitivity 

and specificity were not provided in this study.Other studies investigate how 

motivation can positively influence learner performance. For example, Barba et al. (de 

Barba, Kennedy and Ainley, 2016) demonstrated that motivation has a significant 

impact on a learner’s participation. Motivated students are goal-oriented people who 

tend to expand their experiences and overcome challenges (Barak, Watted and Haick, 

2016). In the online context, researchers indicated that most online learners are 

intrinsically motivated rather than extrinsically motivated. 

 LA is used to evaluate learners’ participation and performance in Coursera. The 

authors utilized video hits and quiz attempts as features, serving as an indicator of 

learner participation. The results show that most successful participants tend to be 

intrinsically motivated (de Barba, Kennedy and Ainley, 2016). In another study, 

sentiment analysis of participants’ interview transcript within the Coursera platform 

was adopted in order to investigate the association between motivation and 

engagement (Shapiro et al., 2017). Acquired knowledge and work are reported to be 

the main factors of influence for learner motivation in online course participation. In 

this work, learner experiences were found to be the critical factors affecting 

engagement and motivation levels. Learners with higher levels of education are more 



likely to engage than those with less formal education, as they are found to have the 

ability to overcome barriers including technical and subject difficulty (Shapiro et al., 

2017). 

According to Cho et. al. (Cho and Heron, 2015), Self-Regulated Learning (SRL) is a 

key factor for the achievement of motivation for learning. The SRL framework 

identifies student control, autonomy in the learning process, and time management as 

factors for successful goal achievement. A highly autonomous approach towards 

learning is a distinctive characteristic of the self-regulated learner. Cho et al examined 

SLR regarding motivation and learning strategy in an online mathematics course. The 

results demonstrate that learning delivery strategies did not significantly influence 

motivation. The researchers concluded that self-regulated learners are goal orientated 

and therefore tend to adopt critical thinking strategies in order to solve difficult tasks 

and develop skills. Table 2.3 list the research work on motivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.3 Overview of Researchers Work on Evaluation of Motivation in MOOC 

  

 

2.13 Learner Attrition in Online Courses  

MOOCs have attracted the attention of many researchers, with an aim to provide an 

advantage over traditional classroom environments. Much existing work focuses on 

participant attrition in MOOCs. In this section, we will summarise the work of other 

researchers towards learner attrition in MOOCs. 

The attrition phenomenon was described by (Clow, 2013) as a funnel of participation. 

The term funnel of participation emerges from the equivalent concept in marketing 

(marketing funnel). The LA is used to describe the funnel of participation approach. 

 Author  Year  Method Finding  

M. Hartnett et al 

 

2011  Questionnaire frameworks 
based 

 Situational Motivational Scale 

(SIM) 

 to evaluate  four types of  
motivation 

Most students had high  
level of identified regulation  

and intrinsic motivation 

M. Wen et al. 

 

2014 Machine Learning to predict 

student  
motivation  in Coursera courses 

considering  linguistic and 

baseline  features 

Result of logistic regression 

achieve the best performance 
with values of 73%, and 62%. 

S. Tatiana et al. 2016 Mediation analysis with logistic 
regression to evaluate the 

relationship between 

 engagement, motivation and 
achievement 

  Extrinsically motivated 
 learners incentive to  

complete course successfully 

M. Barak et al. 2016 questionnaire frameworks based 

on Glynn scale to evaluate  four 

types of motivation  

The language barrier does not  

impact on motivation  

B. Huang et al 2016 Questionnaire frameworks based 
Instructional Materials 

Motivation Survey    

 to assess  the level of 
motivation 

 Learners were satisfied with  
material and course structure  

 instructor feedback satisfaction was 

reported low 

de Barba et al 2016 LA was used to evaluate  

learners’ motivation by tracking  

students video hits and quiz 
attempts  

 Most students are 

 intrinsically motivated 

Shapiro et al. 2017 The sentiment analysis of 

participants’  

interview transcript in Coursera 
to examine the factors impacting 

on motivation  

 Acquired knowledge, work 

 and learner experiences are 

the most effective reasons 



LA classify learners’ theoretical stages toward dropout from MOOCs according to four 

main stages. Such stages are defined as Awareness, Registration, Activity, and 

progress (Clow, 2013). The author concludes that the fluctuation of learners’ 

behavioral activities leads to withdrawal from online courses.  

LA was used by reference (Ye and Biswas, 2014) considering temporal features and 

behavioral features to identify early student dropout in MOOCs. The results implied 

that an average 60% of participants who only watched the lecture withdrew from the 

course  Conversely, 20% of participated students who were watched the videos and 

undertook quiz   (Ye and Biswas, 2014). The researchers  in reference (Li et al., 2014) 

propose a multi-view semi-supervised learning model to address the issue of the 

dropout prediction problem.With this approach the unlabelled data was driven from 

the student behaviour record as the result, the prediction performance of inadequate 

label could be improved. In this study, six behavioural features were considered, these 

features included undertaking assessments, watching videos, accessing other objects, 

posting on the forum, and closing the web page. Four types of classifier were used to 

train each feature separately.The findings reveal that accessing other objects feature is 

most effective features into withdrawal rate.The average value of F-measures around 

83%-84% for all classifiers (Li et al., 2014). 

Discussion threads are used to measure the negative behaviors of learners that lead 

to demotivated engagement within MOOCs platforms. Two kinds of features have 

been considered, namely click stream events and discussion threads (Yang and Rose, 

2013). Survival models have been used by (Yang and Rose, 2013) for measuring the 

likelihood of attrition events. Survival models can be described as predictive models 

that apply logistic regression to infer the probability of learners’ survival in the course 

over time. The results indicated  that social factors significantly impact the dropout 

rate.  

 The author in reference (Kloft et al., 2014) applies support vector machine to predict 

the likelihood of learner dropout from MOOCs. Feature engineering over time was 

considered in order to obtain more accurate prediction rates (Kloft et al., 2014). Results 

reveal the good accuracy found at the end of the course, which has improved the 

predictive accuracy by 15% whereas weak accuracy was observed at the beginning of 

the course. 



 Other researchers emphasise on forum posting as a prominent resource of 

information for dropout analysis in MOOCs. In such works, the author in reference 

(Wen, Yang and Rosé, 2014) adopts a sentiment analysis approach considering only 

posts on the forum as the main criteria for analysis. The work considers the daily data 

of user forum posts and undertakes analysis in order to evaluate participants’ opinions 

regarding the quality of teaching, learning materials, and peer-assessments. The results 

show a significant association between learner sentiment and attrition rate.  

Although forum posting acts as a major factor affecting attrition rates, it has been 

observed that around 5-10% of registrants participate in the discussion forums. 

Consequentially, the narrow focus on the forum post data imposes a critical limit on 

the generality of the approach, since other important factors such as behavioural 

activities are not taken into consideration(He, Bailey and Rubinstein, 2015). 

Feedforward neural networks have been implemented in (Chaplot, Rhim and Kim, 

2015) to predict student attrition  rates in MOOCs, using student sentiments feature 

and click stream as baseline features. The data was collected from 3 million student 

click logs in addition to 5,000 forum posts via the Coursera platform at 2014. The  

imbalance data is one of the critical issues of this study. The researchers overcome this 

issue by considering Cohen's Kappa criteria instead of accuracy. The results of neural 

networks achieve 0.74 when considering the sentiment features while results drop 0.70 

in the case of excluding the sentiment attributes. 

The model called “ConRec Network” deep neural networks is proposed by(Wang, 

Yu and Miao, 2017). The authors of this work combined the Convolutional Neural 

Networks (CNN) and RNN to predict whether students are at-risk of dropping out from 

the online course “XuetangX” in the next ten days. The students’ records are structured 

according to the sequence of time-stamps and contain various attributes such as time 

a particular event should happen, the event type and student enrolment date.  The 

neural Network consists of two parts, namely, the lower part and the upper part. In the 

lower part, the hidden layer of CNN was utilised to extract the features automatically. 

In the upper part, RNN used to make a prediction by aggregate and combine extracted 

feature at each time point. 

To evaluate the prediction accuracy of the deep dropout mode. The models have been 

compared with various baseline methods; the results indicated similar performance 



across all models. The F1-score results were reported to range value of 90.74-92. 48. 

Although, there was a similarity in performance, the authors argue that “ConRec 

Network” model is more efficient than baseline methods as it has the ability to  extract 

the features automatically  from student record without need the help of  feature 

engineering(Wang, Yu and Miao, 2017). 

The author in reference (Cobos, Wilde and Zaluska, 2017) examines whether 

differences between MOOCs platforms with respect to structure and theme could 

impact learners’ dropout rate. Various machine-learning algorithms were used to 

compare two different MOOCs platforms: “Future Learn dataset” and “edX MOOCs”. 

The results show that extreme gradient boosting (XGBoost) classifier acquired the 

highest accuracy=0.91 for a course delivered by “Future Learn” platform while 

Generalised Boosted regression Models (GBM) obtained accuracy=0.90 for “edX 

“MOOCs. The author concluded learners who engaged socially with other peers were 

more likely persevere in the “Future Learn ” course. Conversely, the learners who 

spend time reading  digital material completed the “edX” course successfully hence, 

course structure is one important factor  that significantly influences the student 

attrition  in online courses (Cobos, Wilde and Zaluska, 2017). Table 2.4 list literature 

review work on evaluation of students withdraw in online setting. 
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Table 2.4 Overview of Researchers Work on Evaluation of Learners Attrition in 

MOOC 

 

 

2.14 Chapter summary  

 This chapter has discussed the background of MOOCs. A brief description of the 

EDA and LA is provided. The researchers demonstrate that LA is more influential than 

EDA in it is ability to analyze, capture the data in a more precise way and monitor the 

learning process. The background of students’ performance has been introduced; the 

current literature on prediction of student performance has been reviewed in this 

chapter. It also describes the method of evaluating student motivation in online 

courses. A brief description of engagement style has been defined. The work of 

literature regard learner engagement pattern in the online environment has been 

Author   Year  Features Method Finding  

Clow.  2013 click stream features  LA to describe 
funnel of 

Participation 

Fluctuation of  learners’ 
behavioral activities leads to 

withdrawal from online 

courses  
 

Yang & Rose.  2013 Click stream events and 

discussion threads 

Survival models Social factors affect the 

withdrawal rate  

 

Kloft, et al.  2014 click stream features  Support vector 

 machine 

Predictive accuracy  

improved by 15% at end  

of the course 

 

We et al.  2014 Forum posting Sentiment analysis Sentiment analysis 
results show a 

significant association, 

learner sentiment and 

attrition rate 

 Cheng Ye et al.  2014 Temporal 

attributes, 

behaviour features  
 

LA  Undertaking quiz could 

reduce the dropout rate 

by  
by 40% 

 

Chaplot et al.  2015 sentiments features 

and click stream 
features 

feedforward neural 

 networks 

Neural network gain 

 higher performance  
when consider sentiment 

features 

 Wentao Li et al.  2016 Behaviour attributes semi-supervised 

learning model 

Unlabeled data can 

 enhance  performance 
 of model  

Wang  et al.  2017 Behaviour attributes ConRec Network 

 deep neural networks 

Deep learning able to 

 extract the features   
automatically 



presented. The extensive literature reviews show that the major issues relating to 

MOOCs is the low completion rate. This is considered a lack of person-to-person 

interaction between instructors and learners on such courses. Moreover, the ability of 

tutors to monitor learners is impaired, often leading to learner withdrawals. To address 

this problem, learner dropout frameworks have been proposed by researchers. The 

work of other researchers towards learner attrition in MOOCs has been introduced in 

this chapter.  



 

CHAPTER 3:Machine Learning 

3.1 Introduction   

Machine Learning is an application of artificial intelligence that is capable of 

performing a task without explicit human intervention such as recognition, disease 

diagnosis and prediction. The key feature of  machine  learning is providing the 

computer ability to learn from data and make an accurate decision without the need 

for human assistance (Samuel, 1959). 

Warren Mc Culloch and Walter pitts in 1943 proposed the first artificial neural 

network. The network was very simple but had significant computing 

capability(Daniels and Mascini, 1943). Neurophysiologists introduced the idea of the 

artificial neural network with electrical circuits at the end of 1950(Baxt, 1995). They 

described the workflow of the neural network as being similar to human neurones. 

Subsequently, the neural network was designed by computer scientists and 

mathematicians to eliminate echoes over a phone line. The researchers simulated 

neural network processing information to solve a real problem similar to the human 

neural system(Birkett and Goubran, 1995). 

In 1958, Rosenblatt introduced the perceptron algorithm for image recognition. With 

single perceptron, the neural network makes a prediction based on linearly separable 

classes (Schmidhuber, 2015). By 1965, Ivakhnenko and Lapa constructed the first 

neural network with multiple layers. A few years later inductive algorithms called 

“Group method of data handling” was introduced. The algorithms were capable of 

selecting the optimal structure of the neural network and automatically finding 

interrelations between features (Ahmadi, Mottaghitalaband and Nariman-Zadeh, 

2007). 

Samuel proposed a prominent game program to predict the winner in a game of 

checkers by 1950. The program assists the players in enhancing their skills (Samuel, 

1959). The author found that machine learning could evaluate the board positions of a 

player like the human. 

By this time, AI researchers had examined the role of simple machine analogies in 

learning data. They tried to identify the problem as a mathematical model that 

simulates the workflow of biological neurons (Birkett and Goubran, 1995). In 1969, 



Minsky and Papert found two limitations in the machines that process neural networks. 

Firstly, perceptrons were incapable of recognising all of the pixels of the image. 

Second, the limited capacity of the processor to handle the large neural network 

(Schmidhuber, 2015). The neural network became very popular when Paul J. Werbos 

utilised the back-propagation algorithm to train neural network feasibility. In that 

period the researchers described back-propagation as the revaluation of the neural 

network(Nawi, Ransing and Ransing, 2006). 

By 1981, Dejong introduced Explanation-Based Learning (EBL). EBL is an 

approach used in machine learning to learn and analyse data through selecting the 

important features that significantly impact on the target (Dejong, 1986). In 1990, AI 

scientists changed their direction with respect to the role of machine learning from the 

symbolic approach in solving a particular problem to the data-driven approach. With 

the data-driven approach, a large amount of data could be analysed based on the 

statistical approach and probability theory (Langley, 2011). By 1994, the weightless 

neural network was constructed. The topology of the weightless neural network differs 

from the standard neural network as it does not have weight and learning depends on 

memories(Aleksander et al., 2009). 

Deep learning was proposed by  Geoffrey Hinton in  2006 (Sadiku, Tembely and 

Musa, 2017). Deep learning is a family of machine learning that is capable of 

extracting complex features from high dimensional data. The ability to learn the 

various levels of data representations that match hierarchy elements of complex 

relational architecture is one of the distinctive features of deep learning (Sadiku, 

Tembely and Musa, 2017). Alex Krizhevsk built the convolutional neural network in 

2012. The convolutional neural is a difference in the topology. As such, the layer of 

such a network is arranged in three dimensions, which are the width, height and depth. 

In addition, the neurons of one layer are partially connected to neurons of the next 

layers (Schmidhuber, 2015).  

Behemoth’s deep learning system was released in 2014 in Facebook. The system uses 

a deep neural network to recognise the human face in digital images on social media. 

The network shows a 27% improvement over the previous deep neural network 

(Schmidhuber, 2015). During the same period, Ian Goodfellow introduced the 

Generative Adversarial Network (GAN). The GAN type of neural network algorithms 

usually used unsupervised machine learning. The GAN consists of two neural 



networks, generative and discriminative. Generative learns the data from the latent 

space while discriminative discriminates between examples of actual data and 

instances from the generative network (Zhao, Mathieu and LeCun, 2016). 

Although statistical method and machine learning share the same goal, they are 

different. As such, the statistical method is a mathematics model focused on a 

hypothetical test, which requires human effort to make inferences about the 

relationship between variables compared with machine learning where the computer 

can learn without requiring a specific human intervention. Machine learning is focused 

on predictions; it is based on computational learning theory where different 

assumptions of probability are used to evaluate generalisation errors. The statistical 

method’s emphasis is on human assumptions that need a good understanding of data 

whereas machine learning identifies the hidden patterns of data through iterations 

(Goldenberg, Kubica and Komarek, 2003)(Demšar, 2006). 

A key feature of machine learning is adaptive learning; it can learn a task by adopting 

a particular learning algorithm. The learning mode can be classified into two 

categories; supervised learning and unsupervised learning (Lawrence and Giles, 2000). 

A brief explanation of each mode is displayed in the following section.  

3.2 Supervised Learning 

In supervised learning, machine learning can learn the task by mapping function from 

input to output. This approach assumes that training examples contain pairs of input 

and output targets (Tan and Gilbert, 2003). The learning algorithm is used to map the 

given examples with actual outputs and generalised new data. The main issue with this 

learning approach is the bias-variance trade-off. It is simultaneously bias and variance 

error that prevents the learning algorithm from making an accurate prediction and 

generalising beyond training examples (Lawrence and Giles, 2000)(Nilsson, 2005).   

The Bias error occurs due to the erroneousness of learning algorithms. It measures 

the difference between the model’s predictions and actual values. The high bias causes 

the learning algorithms to be incapable of discovering the association of the features 

with target class and leads to the underfitting issue (Lawrence and Giles, 

2000)(Nilsson, 2005). 

Underfitting happens when the size of the dataset is small and the model cannot train 

the data well enough as a result, the model then makes the wrong prediction and gives 

https://en.wikipedia.org/wiki/Supervised_learning


a low performance. Underfitting also occurs when fitting the linear model to nonlinear 

data(Domingos, 2012). To overcome the problem of underfitting, more data must be 

trained. 

On the other hand, the deviation of prediction is called the variance. In this case, the 

predictive model fits well for the training dataset but does not perform well on new 

data. The high variance can add random noise to the learning algorithm and cause the 

overfitting problem (Lawrence and Giles, 2000)(Nilsson, 2005). Overfitting occurs 

when a machine-learning model captures the noise of the dataset. More specifically, 

the model learns the detail in the training dataset. Therefore, it fails to train with more 

observation and negativity affects the generalisation of new data(Domingos, 2012) 

(Lawrence and Giles, 2000)(Nilsson, 2005). 

Several methods are shown by literature to reduce the overfitting issue, the most 

popular solution for overfitting is regularisation. Regularisation adds penalties to 

simplify the model. There are two types of regularisation, namely, Lasso 

Regularization (L1) and Ridge Regularization (L2).  In the neural network, the penalty 

is added to the error function. The sum absolute value of weights is used in the Lasso 

Regularization(L1) method while Ridge Regularization (L2) uses the sum of squared 

values of weights as a penalty (Piotrowski and Napiorkowski, 2013). 

Cross-validation can prevent overfitting by partition data into two subsets namely 

train and test where only one subset allocated for test and use the remaining subsets as 

the train. An early stop is a very intuitive approach and can be used to avoid overfitting. 

With this approach, the dataset is trained until a certain number of iterations are 

reached and the performance of test dataset is monitored. Since new iteration has not 

improved the performance dataset, the learning procedure should be stopped(Kai et 

al., 2008). The ensemble is another approach to overcome the problem of overfitting. 

In this approach, multiple models are trained and an average of these models is used 

to produce the final model. Thus, a sample set of data is trained at each iteration instead 

of for the whole dataset.  Finally, overfitting can be reduced by removing the irrelevant 

features(Domingos, 2012). 

Supervised machine learning can be further classified into two taxonomies: 

classification and regression. In classification, the target class is the discrete label and 

regression is used when outputs are continuous (Tan and Gilbert, 2003). 



In the context of the educational setting, supervised machine learning is used to track 

students’ activities, predict students’ performance and identify students’ learning 

styles. In addition, machine learning is an effective tool which has been used to  

provide better learning materials that match the student’s educational level (Dalipi, 

Imran and Kastrati, 2018)(Kabakchieva, 2013)(Lykourentzou et al., 2009).  

Machine learning is a promising solution for the detection of patterns of learner 

attrition from course activities through the examination of learning behaviour features 

over time. As explained in the previous chapter, supervised machine learning has been 

effectively utilised to tackle the withdrawal issue in virtual learning settings 

(Lykourentzou et al., 2009).  The next section discusses various supervised machine-

learning methods. 

 

3.2.1 Decision Tree 

A decision tree is a hierarchical subtype of directed acyclic graph (DAG), constructed 

by performing two steps; recursion and partitioning. The tree structure consists of three 

canonical components: a root node, a set of internal nodes, and a set of leaf nodes. 

Each node acts as a processing element that acts on a subset of the pattern space 

performing a logical test on a particular attribute, for which outcomes are propagated 

by outgoing edges (Zimmerman et al., 2016). Each successive transfer from a parent 

to a child node is adapted such that the homogeneity of the resulting pattern is 

increased concerning the outcome classes, a property defined as purity. Attributes of 

the highest discriminative power are represented in the root node. With lessening 

power towards the leaf nodes, the overall objective is that all leaf nodes will be 

completely pure (Rounds, 1980). When the tree size becomes too complex, the 

generalization error increases although the training error keeps decreasing resulting in 

the reduction of tree performance (Pal and Mather, 2003).  

The  splitting of the training set into many subsets leads to duplication of the same 

subset within one tree (Phyu, 2009).  In some cases, all the attributes on the right path 

are duplicated on the left path, resulting in creating a tree which has two copies of the 

subset; this is known as a replication problem, and negatively affects the tree’s 

efficiency (Pal and Mather, 2003) (Phyu, 2009).  



Let 𝑋𝑡 represent a set of training examples relevant to node t and Y={𝑌1, … , 𝑌𝑐} is a 

set of target classes. The tree is constructed by spliting the observation feature X into 

the various groups. For continuous features, the tree is  grown up  based on a set of 

test conditions and questions with  expected results in a terms of binary outcomes 

{yes,no}. Node t is partitioned into two branches as follows (Zimmerman et al., 2016).  

 

  t𝑙= {t ∈ 𝑋:A< V} 

                                   𝑡𝑟={ t ∈ 𝑋:A>V} 

                              (3.1) 
 

 

where A is the test condition with outcome V ∈ {0,1},  t𝑙𝑎𝑛𝑑 𝑡𝑟  represents the left 

and right nodes of new tree t.  

To evaluate the best split in feature space, a variety of measures have been utilised 

including Entropy, Gini, and Classification error determined as follows(Zimmerman 

et al., 2016).  

 

 

Where 𝜌(𝑖|𝑡) is the probability of recodes that is associated with class 𝑖 at a given node 

t and C is the number of classes. 

The main advantage of the decision tree is that the output can be easily interpreted, 

even by non-professionals as it is represented in graphical form (Podgorelec, Kokol 

and Rozman, 2002). Another benefit is in the handling of nominal and numeric 

parameters; it is the nonparametric method, which does not require normalisation of 

data. In addition, the decision tree can handle databases that have missing and error 

values. As a consequence, it could easily be incorporated with other classification 

approaches (Podgorelec, Kokol and Rozman, 2002)(Rounds, 1980). 

One of the main drawbacks of the decision tree is the overfitting phenomenon. As 

mentioned, the concept of creating a decision tree model depends on a split dataset, 

which leads to increasing the number of nodes (Pal and Mather, 2003).  

 

                 Entropy(t)=∑ 𝜌(𝑖𝐶−1
𝑖=0 |𝑡) log2 𝜌(𝑖 |𝑡))                (3.2) 

 Gini (t)=1 − ∑ [𝜌(𝑖|𝑡)]2𝐶−1
𝑖=0                 (3.3) 

                       Classification error(t)=1 − max
𝑖

[  𝜌(𝑖|𝑡)]                (3.4) 



3.2.2 Random Forest 

Random forest is an ensemble method that constructs multiple decision trees during 

learning time where each tree is generated using random sample vector provided from 

input features. Random forest can be employed for the classification and regression 

problems (Liaw and Wiener, 2002)(Ham et al., 2005). In terms of classification, 

Random forest uses the voting mechanism that selects the most popular classes to 

classify the target. In regression, the weight averages of trees are used for prediction 

(Biau and Scornet, 2015)(Liaw and Wiener, 2002). 

In theory, the training algorithm of Random forest follows the bootstrap method. 

Given the training dataset consists of N samples and M features. The first step in 

training algorithms is based on a bootstrap technique where each tree is constructed by 

randomly selecting several N samples with replacements. Next, Trees are created by 

selecting the M predictor variables that give the best split. The procedure is repeated 

multiple times, and the tree governs the growth without pruning until stopping criteria 

are achieved (Bharathidason and Venkataeswaran, 2014)(Laboratories, Avenue and 

Hill, 1995). 

The main difference between Bagging and Random forest is that Bagging considers 

all features when splitting nodes while Random forest chooses only a subset of features 

randomly. Features within the particular subset of predictors that give the best split are 

used to obtain nodes in trees (Banfield et al., 2007). 

There are two approaches that can be used to choose the features in Random forest 

namely, Mean Decrease Impurity (MDI) and Mean Decrease Accuracy (MDA). The 

MDI is based on decreased weight of impurity tree. Multiple nodes are created where 

each node corresponds to a single feature. The Gini impurity for classification and 

variance in regression should be computed for each node and averages this quantity 

across all trees to gain weight of tree. The best features selected should have lowest 

impurity weight(Louppe et al., 2013). 

The MDA relies on the Out-of-bag (OOB) error concept. As mentioned previously, 

trees are constructed using bootstrap samples, some of the observation set side from 

bootstrap samples and are not used in building trees (Louppe et al., 2013). The 

prediction error of left-out observations is called OOB error. To evaluate the 

importance of a particular feature, the value of this feature permutes into OOB 



observation. The MDA for this feature is computed by the average difference of OOB 

prediction errors prior and post permutation across all trees. The feature with the 

highest MDI is the most important feature (Biau and Scornet, 2015)(Louppe et al., 

2013).    

Random forest is considered the most accurate machine-learning algorithm due to its 

capacity to discover the nonlinear association between the features and targets. Also, 

it can run efficiently in high dimensional data (Ham et al., 2005) (Biau and Scornet, 

2015). 

Random forest can handle the numerical and categorical values without concern for 

the deletion of observation. When a large amount of data contains the missing value, 

it can deal with missing data by adopting an imputation algorithm that keeps enhancing 

accurate prediction results (Shah et al., 2014). 

The main drawback of Random forest is its huge computational cost. The 

computational complexity of training algorithms is high compared with other machine 

learning models. In a high dimensional dataset, Random forest builds thousands of 

trees. Therefore, it could take more time during the training phase as a result; 

computational efficiently of Random forest is significantly increased(Shah et al., 

2014). 

3.2.3 Gradient Boosting 

Gradient boosting is a sequence of decision trees adopting the ensemble technique 

used for classification and regression tasks. The trees train sequentially where early 

shallow trees fit the sample model of data. Later trees try to fix the error of the previous 

tree. As a consequence, the final prediction model builds in the form of boosting the 

weak classifier into a strong classifier (Natekin and Knoll, 2013)(Ridgeway, 2007). 

The Mean Square error (MSE)  and Logistic Regression (LR) in  regression and  

classification are used as loss functions in the Gradient boosting model where the goal 

is to predict new value by minimizing the error between the predicted values and actual 

values (Friedman, 2002)(De’ath, 2007). The optimisation algorithm of gradient 

boosting utilises to a minimum the expected values of loss functionΨ(𝑌, Ϝ(𝑋𝑖)  as 

follows (Friedman, 2002). 

            Ϝ∗(𝑋𝑖)= arg minϜ(𝑋𝑖)𝐸𝑋,𝑌Ψ(𝑌, Ϝ(𝑋𝑖))       (3.5)                                       



Friedman (2001) developed the first gradient boosting algorithm. The algorithm 

given the training sample {𝑋𝑖, 𝑌𝑖,}1
𝑁 of   N data point. At first iteration M, the algorithm 

assigns the initial loss function. The loss function is used to map the input 𝑋𝑖  to 

response  𝑌𝑖  .The error of loss function can be reduced through utilising the 

optimisation algorithm gradient descent. The ℎ(𝑋𝑖 ) is the sample function used to 

teach trees of  weak learners (“base learners”) which  fit the preemptive predictive 

model. 

 During the iterative learning process, the weight of data corresponding to 

misclassified samples is increased while the weight of correct classified sample 

decreases. With this approach, the errors of the weak learners’ model can reduce and 

be fixed by combining the sum weights of all trees. The final prediction model can be 

provided by average weights of all trees as described in the following equations.  

           Ϝ𝑀+1(𝑋𝑖)= Ϝ𝑀(𝑋𝑖)+ ℎ(𝑋𝑖)= 𝑌𝑖   (3.6) 

      ℎ(𝑋𝑖)= 𝑌𝑖-Ϝ𝑀(𝑋𝑖)   (3.7) 

Where Ϝ𝑀(𝑋𝑖) is the boosting approximates function and ℎ(𝑋𝑖) is the weak “base 

learner” function. 𝑇ℎ𝑒 𝑌𝑖 is the output variable. 

Friedman (2002) developed the stochastic gradient boosting algorithm which 

depends on the randomisation aspect (Friedman, 2002). The random subsample of the 

training dataset was chosen without replacement and then used to fit the base learners 

across each iteration of the learning process. The author concludes that randomisation 

significantly improves the performance of the predictive model (Friedman, 2002).   

The main crucial features of stochastic gradient boosting are the ability to prevent 

Overfitting in the dataset. Using the smaller subsample helps to reduce the variance of 

combined trees over various iterations. Furthermore, the computational cost is less in 

stochastic gradient boosting than original gradient boosting (De’ath, 2007)(Nawar and 

Mouazen, 2017). The algorithm would teach and fit the subsample instead of the full 

sample of the dataset. 

The critical limitation of gradient boosting is the complexity of tuning parameters. 

Gradient boosting builds series of trees. Within each tree, three hyper-parameters 

should be considered: learning rate, number of trees and depth of trees. In contrast, the 

random forest constructs the trees in  parallel where only number and size of the trees 



are taken into consideration during the tuning procedure (Olinsky, Kristin and Brayton, 

2012). 

3.2.4 Generalised Linear Model 

The generalised linear model is a statistical method that is used for linear mapping 

between the observed variables and response variables through a specified link 

function. The Generalized linear model assumes that the observations follow a 

particular distribution, namely; Average, Binomial, Poisson and Gamma distribution 

(Kumar, Naughton and Patel, 2015)(Nelder, J.A. and Baker, 2014)(Czado and Tu, 

2004)(Liang and Zeger, 1986). 

In the Generalised linear model, we assume { 𝑋1,…𝑋𝑛 } is n observation with 

dependent variable 𝜂𝑖 , each linear predictor  𝜂𝑖  is generated from a particular 

distribution. The simple Generalised linear model can be described according to the 

following equation (Nelder, J.A. and Baker, 2014)(Czado and Tu, 2004). 

                    𝜂𝑖= 𝛽0+ 𝛽1𝑋1+…𝛽𝑛𝑋𝑛                           (3.8) 

 

Where Xi is the predictor variables with the coefficients value βi . β0 is intercept, it 

can be interpreted as the mean value of 𝜂𝑖when all predictor variables are set to value 

zero. The link function is used to transfer the mean of expected values of response into 

the linear model form. There are several link functions that can be used to fit the values 

to linear model scale such as Identity, Log, Reciprocal, Logit and Probit (Statistics, 

1986). The basic formula of link function is defined as(Rodriguez, 2013). 

                             𝜂𝑖 = 𝑔(𝜇𝑖)                                                         (3.9) 

                                     𝜇𝑖=𝑔−1(𝑋𝑖𝛽𝑖  )                                                         (3.10) 

Where𝑔(𝜇𝑖) is the link function and 𝜂𝑖  is the linear predictor. As can be seen, in 

equations 3.9 and 3.10 the linear predictor 𝜂𝑖  equals the mean 𝜇𝑖  inverse expected 

value of predictor variables since the data follows exponential family density.  

One example of a Generalised linear model is a logistic regression. The logistic 

regression can be used in a classification problem when the response variables are 

discrete values (Shaliz, 2012). To make a prediction, we assume that the input 

variables correspond to vector features that are denoted as 𝑋𝑖 and response variable 

represented in the target class  𝑌𝑖 . 



To predict class label, the maximum likelihood estimation is used. The gradient 

ascent is utilised to select the best parameter  (Czado and Tu, 2004) (Czepiel, 2012). 

The gradient ascent can be defined as, hill climbing algorithm move small step to 

direction of optimal point. The weight of the previous step combines with the weight 

of the current step during the learning process until the optimal value is achieved. Due 

to maximum likelihood estimates, the class probabilities of the sigmoid function is 

derivative to convert estimated probabilities to discrete value. The sigmoid function is 

an S-shaped curve that transfers any real number in to value between 0 and 1. 

Logistic regression is an efficient technique. It can be implemented easily since scale 

of the features and tuning parameters are not required. It shows an advantage over the 

General linear model.  As such, in Logistic regression, the response variables could be 

generated from different distributions while the response variables should normally be 

distributed in the General linear model (Shaliz 2012). Another advantage of Logistic 

regression is that the cost with respect to computational complexity is low. It takes a 

small amount of time during the learning process (Shaliz 2012). The critical limitation 

of Logistic regression is that it is unable to solve nonlinear problems since it is a 

generalised linear model. 

  

3.2.5 Neural Network  

The human brain contains nearly one hundred billion brain cells, known as neurons. 

These neurons exist to pass information to individual target cells, with communication 

signals being sent through synapses – these are structures that connect the cell's plasma 

membrane to the membrane of the target cell, playing an important role in the nervous 

system (Howard-Johnes,2010). 

Neural Networks are a problem solving methodology grounded in the connectionist 

paradigm, comprising networks of interconnected simple units whose adaptive 

parameters may be tuned to form an emergent solution. In particular, neural networks 

are modelled as a cannibalized abstraction of the biological neural networks found in 

the mammalian brain, aiming to capture the information processing capability of such 

structures(Perner, Zscherpel and Jacobsen, 2001). 

The connected nodes are called artificial neurons; these neurons are connected via 

edges. The synapses can transfer the signal from one node to another similar to 



synapses in the biological nervous system. Each neuron and edge has a weigh. The 

activation function is used to determine the output of neuron by computing the 

weighted sum of input nodes and adding the bias. There are two types of activation 

function, namely; linear activation function and nonlinear activation functions. The 

linear functions have the limited capacity to learn the complex mapping between the 

input variables and the target. Therefore, nonlinear functions are utilised that able to 

represent and learn complicated tasks(Ahmadi, Mottaghitalaband and Nariman-Zadeh, 

2007). 

Most popular activation function used in neural networks are; Linear threshold, 

Sigmoid (logistic) and Tanh(hyperbolic tangent). Since Linear threshold gives the 

discrete output, it is only working with binary classification with the output (Active 

(yes) / not active (no)). It could be hard to train and converge the neural network for 

multiclass tasks. The nonlinear sigmoid and Tanh functions consider probability that 

can be used in multiclass tasks. Nonlinear sigmoid and Tanh are differentiable, 

meaning the slop of functions can be found at any data points. The output of Sigmoid 

and Tanh  functions  are in the ranges  (0,1) ,(-1,1) respectively(Vecci, Piazza and 

Uncini, 1998). 

3.2.5.1 Feed-Forward Neural Network 

The most familiar type of artificial neural network is a Feed Forward neural network. 

The information transfer is in one direction without cycles; in this network, neurons 

belong to layer (i), receive input from layer (i-1) and transmit output to layer (i+1) 

through one hidden layer. The hidden layer contains the number of hidden neurons 

that enhance the sufficiency of the neural network(Hosseini, Luo and Reynolds, 

2006)(Jadhav, Urmi, 2016). 

The simplest type of artificial neural network is single layer perceptron network 

where the information transfers directly from the input layer to output layer via the 

weights. The activation function used in the single layer perceptron network is a linear 

threshold. The Delta rule-learning algorithm is utilized to train single layer perceptron 

network. For Delta rule, gradient descent calculates the error between actual and 

predicted output then choses the lowest error to adjust the network weight (Lambert, 

Johnson and Xue, 1998)(Marcialis and Roli, 2005).The activation function can be 

defined as follow. 



                                                𝑔(𝑥)=
1 𝑖𝑓 𝑧 > 𝜃

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

   (3.11) 

                                          Z=𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚=(𝑥 + 𝑎)𝑛 = ∑ 𝑤𝑚𝑥𝑚
𝑚
𝑗=1     (3.12) 

 

Where 𝑥𝑖the input is value and 𝑤𝑖 is weight. The Z is activation function based on 

the threshold (𝜃), the neuron is active if the out values of activation function is above 

the threshold. 

A Multilayer perceptron (MLP) is a type of feed-forward neural network that is able 

to learn none linearly separable data. It consists of multi-layers of units. Usually, the 

MLP comprises three layers; one input layer, one output layer and at least one hidden 

layer. Each node fully connects to the other nodes in the following layer through a 

sequence of weighted edges(Hosseini, Luo and Reynolds, 2006) (Bullinaria, 2015). 

The basic architecture of MLP is shown in figure 3.1. The MLP formally consists of 

a number of 𝐿 layers where each layer has a number of nodes. The collection of units 

in the input layer can be described  as{(𝐿𝑖)}    𝑖=1
𝑁−1 . The{(𝐿ℎ)}  ℎ=1

𝑚−1  is the vector 

represented by the complete set of units in the hidden layer. The {(𝐿𝑜)}   𝑜=1
𝑈−1 is also 

the vector represented neurons in the output layer. The collection of weight can be 

represented by two matrices { 𝑊𝑖𝑗
1
 , 𝑊𝑘𝑗

2
} .The weight  matrix that connects the input 

neuron to the hidden layer can be represented as 𝑊𝑖𝑗
1
 and the weight that link hidden 

neuron to out layer is 𝑊𝑘𝑗
2
.B is the collection {(𝐵𝑖)} 𝑖=1

𝐿−1, where Bi denotes the column 

vector of biases for layer i + 1. Assuming the training dataset as the pair of input and 

output  {(𝑋1,𝑌1,), … (𝑋𝑛,𝑌𝑛,)}, the input 𝑋𝑖, transfers to input node in the input layer and 

the value of input nodes are multiplied by weight. The equation (3.13) compute 

adjusted weight. The output of input layer  can be gain  by fed weight (𝑢𝑗 ) into 

activation function (σ) as follow(Bullinaria, 2015). 

  𝑢𝑗= ∑ 𝑊𝑖𝑗
1𝑛

𝑖=1 𝑋𝑖
𝑛+b      (3.13) 

                                        𝑑𝑗 = 𝑓(𝑢𝑗)      (3.14) 

 

The similar producer undertakes with output layer. The output of hidden layer is the 

input to output layers. The weight  𝑊𝑘𝑗
2
 is  adjusted and weight sum (𝑣𝑗) also fed into 

transfer function. The output of link function is represented the predicted 

outcome(Bullinaria, 2015).   



There are different types of learning rules utilised to train MLP, the most common is 

Backpropagation. Backpropagation is widely used to train the MLP based on delta 

rules. The Backpropagation algorithm is used to compute neural network weight 

through gradient descent. More specifically, the optimisation algorithm, Gradient 

descent is utilised to find the optimal set of weights by computing the gradient of the 

loss function. The cost function computes the error between the actual inputs and the 

predicted outputs then calculated errors are propagated backwards to the previous 

layer. During the learning, the gradient descent adjusts weight iteratively by computing 

the derivative of cost function until it reaches the lowest error of cost function. (Chu 

et al., 2007) (Schmidhuber, 2015). 

Various factors could affect the performance of MLP such as; the number of hidden 

layers, the number of hidden neurons, the type of activation function and learning rates. 

The researchers demonstrate that increases in the number of hidden layers could 

significantly improve the performance of MLP. In terms of the number of hidden 

neurons, the researchers argue that the nonlinearity relationship between the features 

and the target can be improved by increase the number of hidden neurons. There is any 

assumption made by literature on how to select the optimal cost function(Jadhav, 

Urmi, 2016). 

The learning rate is another important factor that could affect the performance of the 

neural network. If the learning rate is small, the training process becomes slow and 

may lead to a local minima problem. Nevertheless, if the learning rate is high, it might 

cause divergent behaviour of a cost function and might lead to a global minima issue  

(Kwak, Hanock, 2018). The local minima occur when Gradient descent, an adjusting 

weight involves taking steps toward the positive gradient that leads to it getting stuck 

in an undesirable point or local minima(Kwak, Hanock, 2018) .In addition, the learning 

rate of the network structure can influence the local minima. Deterministic and 

probabilistic approaches are used to handle the problem of overfitting (Atakulreka and 

Sutivong, 2007). 

In the deterministic approach, the learning algorithm is global descent rather than 

gradient descent. Global descent computes the error of cost function at each iteration. 

Although global descent can allocate its local minimisers in neighbourhood points that 

give the better estimation, the computational complexity is the main limitation of this 

approach(Doria, Freire and Basilio, 2013). 



The Probabilistic approach is based on the weight initialisation concept. In particular, 

the neural network learning with a random set of weights, the best neural network is 

selected with the lowest error. Although, this method is efficient, it requires a large 

amount of time for training (Kwak, Hanock, 2018).   

The simultaneous training method proposed by(Atakulreka and Sutivong, 

2007).Multiple neural networks train in parallel and all networks have set of initial 

weights. All networks simultaneously start learning from the first epoch until max 

epoch. The removal criteria stop running the neural net with the worst error. In this 

approach, the poor networks are eliminated which can reduce the probability of 

acquiring the local minima. The authors have shown the effectiveness of this method 

to avoid the local minima in comparing with the conventional method. 

MLP can learn and model complex relationships between features. Therefore, they 

have been used to find accurate solutions for complex problems. Another advantage 

of MLP is that they can quickly make the correct prediction upon unseen data. The 

new data can be generalised even if it has a high degree of noise(Tu, 1996).The main 

drawback of MLP is their black-box nature; it could be hard to understand the features 

that affect the prediction. The interpretability of results could be hard to explain. It 

requires huge computational resources. The training of neural networks can take more 

time than traditional algorithms (Tu, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1 Multilayer Perceptron Neural Network Architecture 
 



 

3.2.6 Support Vector Machine  

Support Vector Machine(SVM) is a supervised machine learning algorithm that is 

capable of data analysis and can be used for classification and regression tasks. SVM 

classifies data by constructing the separating hyperplane that splits the data into two 

non-overlapping classes (Burges, 1998). More specifically, datasets split into training 

and test. The training set can be represented as a pair of input and output {(𝑋1,𝑌1,), … 

(𝑋𝑛,𝑌𝑐,)} where 𝑋𝑖 is n dimensional vector that denotes the features and 𝑌𝑐, is the class 

label where𝑌𝑖  ∈{𝑐𝑙𝑎𝑠𝑠−1,𝑐𝑙𝑎𝑠𝑠+1}. In the case where the dataset is linearly separate, 

the SVM predicts the target by finding the optimal hyperplane that maximises the 

margin distance between two classes. With this method, the SVM can differentiate the 

two classes very well. The hyperplane can be described according to following 

formulas (Moro, 2008). 

                                  H   𝑊𝑖 𝑋𝑖+b =1      ∀𝑋𝑖∈ class+1 
 𝑊𝑖 . 𝑋𝑖+ b =-1  ∀𝑋𝑖∈ class - 1 

                       3.15 

 

Where 𝑊𝑖  is the weight that gives information about the association of observation 

𝑋𝑖  with the target𝑌𝑖and b is the bias. 

The distance between the two hyperplanes is described in equation (3.16). The 

following objective function is utilised to find optimal hyperplanes by minimising the 

weight and increasing margin width (Moro, 2008). 

                                     D =
2

||𝑊||
 

𝑓(𝑥) = Min 
1

2
 ||𝑊||2 

3.16 

 

If the data is not linearly separable, the hyperplanes’ margins become soft. The kernel 

function (kernel trick) is used to transform the training data into high dimensional 

features space. The non-linear function kernel performs the linear separation by 

maximising the hyperplane margin in a transformed space (Chang and Lin, 2001). 

There are different types of kernel function, such as; Sigmoid, Linear, Non-linear, 

Polynomial and Gaussian radial basis function. Although the higher dimensional space 

could increase the generalisation error of SMV, the learning algorithm can learn well. 

The kernel function is described as follows (Moro, 2008). 

                                  K(𝑋𝑖,𝑋𝑗)=𝜑(𝑋𝑖). 𝜑(𝑋𝑗) 3.17 

  



Where (𝑋𝑖). 𝜑(𝑋𝑗)are transformation data point for observation X. The classification 

vector (W) in the transformed feature space can be defined as (Moro, 2008). 

                                     W=∑ 𝐶𝑖𝑌𝑖
𝑛
𝑖=1 𝜑(𝑋𝑖) 

 

3.18 

Where 𝐶𝑖 is the tuning parameter that controls the generalisation error of SVM. The 

good classifier should achieve the low weight of C and a wider hyperplanes margin. 

Classification of data using kernel trick is as follows (Moro, 2008). 

                               Z=∑ 𝐶𝑖𝑌𝑖
𝑛
𝑖=1 K(𝑋𝑖,𝑋𝑗) +b 3.19 

 

There are two main advantages of SVM. Firstly, in a nonlinearly separable dataset, 

it works effectively using the kernel trick. The kernel function implicitly performs the 

non-linear transformation without the need for expert human intervention. Secondly, 

the SVM is a powerful classifier that works well even when the dataset has some bias; 

it can give good generalisation if the tuning parameter is appropriately 

chosen(Karamizadeh et al., 2014).    

The main limitation of SVM is in how it chooses the kernel function. The user must 

tune the number of different parameters in order to gain the best classification result 

such as the kernel type, SVM type and gamma. A common disadvantage of SVM is 

the complexity. As such, in high dimensional space, the SVM requires extensive 

memory. With a greater number of samples, SVM becomes very slow. Therefore, it is 

not suitable for a high dimensional dataset (Karamizadeh et al., 2014).    

 

3.3  Unsupervised Machine Learning 

 Unsupervised learning is a type of machine learning that has the capability to infer 

the pattern within a dataset without providing any corresponding output. Unsupervised 

learning is more complicated than supervised learning as it can learn tasks from 

unlabelled data without any response variables.  The purpose of unsupervised machine 

learning is to discover and draw inference about a similar group of input observations. 

Various algorithms have been used in unsupervised learning including; Clustering, 

Mixture model and Self-organised map (Lloyd, Mohseni and Rebentrost, 2013). 

Unsupervised learning has been widely used in a range of domains such as medicine, 

bioinformatics data, speech recognition, image processing, and finance. Researchers 

https://en.wikipedia.org/wiki/Supervised_learning


have adopted unsupervised machine learning to compare the sub-populations of 

learners who engage in different learning activities (Lloyd, Mohseni and Rebentrost, 

2013). The following section introduces the unsupervised machine learning methods 

that have been used in this research. 

 

 3.3.1 Fuzzy Cluster  

The fuzzy cluster is a method of the cluster where each data point belongs to more 

than one cluster. The data points within each group should have similar measures while 

they are dissimilar in different clusters (Irani, Pise and Phatak, 2016)(Pal and Bezdek, 

1995). A number of  similarity measuring techniques can be used to measure the 

relationship between data such as; Euclidean distance, Manhattan distance and 

Minkowski distance (Jyoti Bora and Kumar Gupta, 2014). The Fuzzy cluster can be 

defined as the soft cluster where each data point assigns a different partial membership 

degree to all groups. The membership value is between 0 and 1 in contrast to hard 

cluster where each data point fully belongs to one cluster (Irani, Pise and Phatak, 

2016)(Pal and Bezdek, 1995). 

The most popular algorithm of the fuzzy cluster is Fuzzy C-Means clustering (FCM). 

The FCM was proposed by Dunn in 1973 and improved by Bezdek 1981(Pal et al., 

2005). It depends on minimising the objective function, in particular, the algorithm 

increases the similarity of data points within one cluster; however, the similarity of the 

data point is minimised among various clusters. The objective function can be defined 

as (Jyoti Bora and Kumar Gupta, 2014).   

 

               𝐽𝑚= ∑ ∑ 𝑤𝑖𝑗
𝑚𝐶

𝐽=1
𝑁
𝑖=1 ‖𝑋𝑖 − 𝐶𝑗‖

2
,1  <-𝑚 <∞                                             (3.20) 

 

Where 𝑤𝑖𝑗
𝑚  is degree membership of data point  𝑋𝑖  belongs to cluster J. 𝐶𝑗  is the 

centre of the cluster and 𝑋𝑖 the data point measured. At each iteration, the membership 

degree for each data point is measured. This can be achieved by computing the distance 

between the data point 𝑋𝑖 and cluster centre𝐶𝑗. The probability of data point 𝑋𝑖 across 

all clusters should equal one. The membership value of each data point is updated by 

selecting the cluster, which is nearest to it. The cluster centre 𝐶𝑗is also updated by 

recomputing the mean of all data points that belonged to it. The iterative optimisation 



of the objective function continues until the cluster centre cannot be changed (Jyoti 

Bora and Kumar Gupta, 2014).   

. 

3. 3.2 Gaussian Finite Mixture Model 

Mixture model is a probabilistic model that infers groups of observations within a 

population without prior knowledge of sub-group memberships. Mixture model has 

been widely applied in various domains such as; Statistical inference, Machine 

learning, Clustering, Classification, and Hidden variable modelling. The estimation of 

the parameters is based on cluster analysis, where the components represent a 

probability distribution across cluster memberships (Fraley and Raftery, 2007). 

Different approaches have been used in the literature to determine the number of 

clusters. Such approaches can be classified into two categories, namely; Stochastic and 

Deterministic (Bouguila and Ziou, 2007). In stochastic approaches, the Markov Chain 

Monte Carlo (MCMC) method is employed. Deterministic approaches can be 

categorised into two main categories. In the first category, Bayesian criteria are 

employed such as the Bayesian Information Criterion (BIC) and Laplace Empirical 

Criterion (LEC) (Fraley and Raftery, 2007). In the second category, coding theory is 

considered for selecting the number of clusters, for instance using Minimum Message 

Length (MML) and Akaike's Information Criterion (AIC) (Figueiredo and Jain, 2002).  

Gaussian finite mixture model is a popular type of mixture model. The key feature 

of this approach is the capacity to model complex data by mixing the properties of a 

density function of sub-populations into finite mixtures of components. In the finite 

Gaussian mixture, BIC  and Integrated Completed likelihood (ICL) criterion are used 

to determine the number of clusters (Figueiredo and Jain, 2002). 

Let X={𝑋1,…. 𝑋𝑛} a sample of n univariate observations. The probability of Xi can 

be derived from the probability density function (PDF) as follows (Figueiredo and 

Jain, 2002). 

P [𝑋𝑖] = ∫ 𝑝(𝑥) 𝑑𝑥
𝑏

𝑎
                        (3.21) 

In mixture models, we assume observations are denoted by𝑋𝑛 = (𝑋1, … , 𝑋𝑛), where 

each observation belongs to g components. The empirical estimate of the PDF of  𝑋𝑖 

can be computed as (Fop, Murphy and Raftery, 2016). 



𝑓 (𝑋𝑖) = ∑ 𝒯𝑔
𝐺
𝑔=1 𝑓𝑔(𝑋𝑖; 𝜃𝑔)          (3.23)                                           

Where G is number of components and 𝒯𝑔 is mixing weight of observation 𝑋𝑖 

associated with components of the 𝑔𝑡ℎ (∑ 𝒯𝑔 = 1; 𝒯𝑔 > 0). 𝑓𝑔(𝑋𝑖; 𝜃𝑔) is the density of 

𝑔𝑡ℎ component with estimated parameter 𝜃𝑔  in mixture model. 

If the observation data follows a normal distribution, the Gaussian density function 

is considered to characterise the finite mixture model (FMD). In this case, within each 

cluster, the data is centred by the mean  𝜇𝑔  and the covariance∑𝑔. The density of 

observation 𝑋𝑖 takes the following form (Russell, Cribbin and Murphy, 2012). 

                                      𝑓 (𝑋𝑖) = ∑ 𝒯𝑔
𝐺
𝑔=1 𝜃𝑔 (𝑋𝑖 |𝜇𝑔, ∑𝑔) (3.24) 

The covariance ∑𝑔 is used to specify the Geometric characteristics {shape, volume, 

orientation} of each cluster.  Reference (Russell, Cribbin and Murphy, 2012) applies 

constraints on the covariance ∑𝑔 to represent the various models of elliptical clusters. 

The authors proposed the eigenvalue decomposition framework. The eigenvalue 

decomposition can be describe as follows (Russell, Cribbin and Murphy, 2012). 

Where 𝐷𝑔  is an orthogonal matrix and  𝐴𝑔  is a diagonal matrix. The 𝐷𝑔, 𝐴𝑔 

parameters control the shape and orientation of 𝑔𝑡ℎ components in the mixture model 

while 𝜆𝑔 is constant which governs the volume of the 𝑔𝑡ℎ components. 

3.3.3 Mixture Discriminant Analysis  

The Mixture Discriminant Analysis (MDA) is a predictive model used for the 

supervised classification problem based on the mixture model. The model aims to 

assign the observation data belonging to the unknown class, to one of the true classes. 

The density of each class in the MDA model follows a finite Gaussian mixture 

distribution. The MDA can be described according to (Fop, Murphy and Raftery, 

2016) formally defined as: 

𝑓(𝑋𝑐)=∑ 𝒯𝑔𝑐
𝐺𝑐
𝑔=1 𝜃 (𝑋|𝜇𝑔𝑐 , ∑𝑔𝑐)  (3.25) 

 

Where 𝒯𝑔𝑐  is the mixing weight of class c associated with the 𝑔𝑡ℎ component, such 

that (∑ 𝒯𝑔𝑐 = 1; 𝒯𝑔𝑐 > 0). Accordingly, 𝜇𝑔𝑐 , ∑𝑔𝑐 represents the mean and covariance 

of components g for class c respectively. 

                                                                                   ∑𝑔= 𝜆𝑔 𝐷𝑔𝐴𝑔𝐷𝑔
𝑇                  (3.22) 



The MDA model, which assumes the number of components associated with each 

class, is known and the covariance matrix within each class is similar. In another study, 

Eigenvalue Decomposition Discriminant Analysis (EDDA) has been proposed by 

(Bensmail et al., 1996), assuming that each class belongs to a single Gaussian 

component. 

The Expectation-Maximization (EM) algorithm is typically used to estimate the 

model parameters in EDDA (Bensmail et al., 1996); The EM algorithm consists of two 

steps, namely; Expectation (E) step and Maximization (M) step (Fraley and Raftery, 

2002). During the E step, the conditional probability that an observation 𝑥𝑖 associated 

with the gth component is computed. In the subsequent M step, further parameter 

estimates are computed to maximise the expected log-likelihood obtained during the 

E step. The estimated parameters are then used to initiate further E-M steps iteratively 

until convergence. The ML procedure, therefore, continues until all observations are 

assigned to a cluster corresponding to the highest posterior probability (Fraley and 

Raftery, 2002). 

 

3.4 Feature Selection  

Feature selection has been used to reduce noise components and improve the 

performance of the prediction model. In terms of machine learning, feature selection 

selects a subset of features by eliminating redundant and irrelevant features (Guyon 

and Elisseeff, 2003)(Chandrashekar and Sahin, 2014). Applying the features selection 

approach to classification problems has been proved to enhance the predictive 

accuracy, decrease the training time and reduce computational complexity (Guyon and 

Elisseeff, 2003)(Chandrashekar and Sahin, 2014). There are various feature selection 

methods, namely; Wrapper approach, Filter approach  and embedded method. 

In the Wrapper approach, the classifier model is employed to evaluate the subset of 

the feature. Search algorithms are used to find an optimal number of features 

heuristically. In particular, the dataset is split to train and cross validation, backwards 

algorithm runs with a different number of features on each set, the set with the lowest 

validation error is selected as the final set. Although, the potential of the wrapper 

approach is in enhancing the predictive model’s accuracy, the wrapper approach acts 

as a black box in the high dimensional dataset since the number of features have been 



increased. In this case the features selction method could become computationally 

expensive (Chandrashekar and Sahin, 2014). 

With regards to the filter approach, the optimal number of features are selected 

according to heuristic criteria without considering the classifiers process. There are 

various heuristic criteria which rank features in such a method, these including; 

Correlation coefficient, Chi-Square, Information Gain, Cross Entropy. More 

specifically, the weight is assigned to features based on these heuristic statistical data 

and features below the threshold are eliminated (Chandrashekar and Sahin, 2014). 

As mentioned, the filter approach is independent of any type of classifier 

consequence. The machine learning algorithms that rely on the filter approach might 

achieve lower performance than the wrapper approach. Nevertheless, the filter 

approach could select the optimal number of features that might exist in the redundant 

subset. One of the advantages of the ranking method is the low computational cost 

(Guyon and Elisseeff, 2003). The brief description of features selction that has been 

used in this reserch project is presented in the following section.  

 

3.4.1 Recursive Feature Elimination  

The Recursive Feature Elimination (RFE) is one of most popular wrapper feature 

selection approaches. The RFE can be defined as an optimisation algorithm based on 

backwards selection and resampling techniques (Yun et al., 2007).  It keeps recursively 

creating the model until it gets a small number of features. The data set is partitioned 

into train and bootstrap samples with the different elements. At each iteration, the 

algorithms are chosen as the most important features. To assess probability of ranking 

features, the new model that includes the most important predictors is retained until all 

features are exhausted. 

3.4.2 Hill Climbing 

The Hill climbing is the search algorithm used in the wrapper selection method. It 

performs a partial exploration of features to find a candidate that is close to 

optimal(Nunes et al., 2004). The algorithms perform sequential backwards selection 

to select the subset of features. The two subsets of features are compared to evaluate 

whether the new subset enhances the performance of the classifiers. The most popular 

algorithm of hill climbing is Random Mutation Hill Climber (RMHC). At each 



iteration, the RMHC chose the random sample of observation, call it “best evaluated” 

then select a subsample of observation that nearest neighbour to the best-evaluated 

sample.  

The algorithm compares the best-evaluated sample with selected subsample. If the 

prediction model of simple gives the better performance than best evaluated, then swap 

the samples until get the best features(Chandrashekar and Sahin, 2014).  The hill 

climbing is described as the anytime algorithm which can give the optimal number of 

the features in all situations even if interrupted prior it ends. 

  3.5 Application of machine learning to identify at-risk-students in online 

setting 

The low completion rate in MOOCs is the main concern of researchers. To tackle 

this problem machine learning has been used to identify the at-risk student at an early 

stage of the course. In the following sections, we summarise the other research work 

towards detection of at-risk students. 

The authors in reference (He, Bailey and Rubinstein, 2015) identify at-risk students 

by applaying various machine learning algorithms including; Regularised logistic 

regression, Support vector machine, Random forest, Decision tree and Naïve bays. A 

set of features have been extracted from behavioral log data such as the number of 

times students visit a home page and the length of the session. The results illustrated 

that regularised logistic regression acquired the best AUC (He, Bailey and Rubinstein, 

2015). 

The VLE  dataset is also employed  to identify the students who are at-risk of failure 

(Wolff et al., 2014). The authors select only three types of activities, namely; 

Resource, Subpage, and Forum to represent behavioral features. The input variables 

consist of three set of behavioral features followed by demographic features and 

students’ previous assessment grades. The K nearest Neighbours, Classification & 

Regression tree and Bayes network are used for the prediction of an at-risk student. 

The result shows the first assessment has been shown to be a strong predictor of final 

success or failure. The sensitivity and specificity are not provided in this study.    

The at-risk students were also identified on a weekly basis by reference (Jakub 

Kuzilek, Martin Hlosta, Drahomira Herrmannova, Zdenek Zdrahal, 2015) using the 

Virtual Learning Environment(VLE)  dataset of the open university. Two sets of 



features have been considered in this study namely behavioral attributes and 

demographic features. The results of machine learning indicates the proportion of at-

risk students increased overtime. As such, the precision value dramatically increased 

from 0.50 at the beginning of the course to 0.90 at the end of the course while recall 

average value was stable with the range of 0.50-0.30. Again, the sensitivity and 

specificity are not provided in this study. 

Other researchers  consider the student dropout issue in the form of a time series 

classification problem (Balakrishnan and Coetzee, 2013)(Wang and Chen, 2016) 

(Taylor, Veeramachaneni and O’Reilly, 2014) (Fei and Yeung, 2015) (Li et al., 2014). 

The Hidden Markov Model (HMM) has been applied  on data collected from edX’s 

platform to predict the student retention over time (Balakrishnan and Coetzee, 2013). 

In this work, the author proposed both a composite and an individual HMM. The study 

reported satisfactory performance for the composite HMM, obtaining an AUC value 

of 0.71, for which multiple behavioural features were considered as a source of input. 

Subsequently, the individual HMM provided insight into patterns of student activity, 

for instance, participants who do not check the course progress frequently were found 

to be more likely to withdraw following the fourth week of the course (Balakrishnan 

and Coetzee, 2013). 

Clickstream data has been considered from which a series of features are extracted, 

such as the number of lecture videos viewed, the number of threads posted in online 

forums, and the number of quizzes attempted. The author in (Taylor, Veeramachaneni 

and O’Reilly, 2014) employs logistic regression to predict student dropout events 

within 6.002x platform. The authors split the course into fifteen time slices based on 

the weekly interval. The results show a best predictive performance of AUC 0.95, 

obtained from a week situated around the approximate midpoint of the course duration, 

with the lowest AUC of 0.77 obtained at the end of course (Taylor, Veeramachaneni 

and O’Reilly, 2014).  

The Long Short Term Memory Neural Network (LSTM) has been applied by (Fei 

and Yeung, 2015) to predict student dropout in two MOOCs platforms, Coursera and 

edX. The results show that LSTM is the best classifier that is capable of discovering 

the nonlinear latent representation of the model.The accuracy, sensitivity and 

specificity are not provided in this study. 



In a further study, at-risk students within online course settings have been 

investigated by (Wang and Chen, 2016). To understand the student motivation in 

relation to a particular activity, hidden latent engagement was analysed through 

application of a Nonlinear Status  Space Model (NSSM) (Wang and Chen, 2016). The 

NSSM model was compared empirically with several other models, namely; Logistic 

regression (LG), Simultaneously smoothed logistic regression (LR-SIM) and Long-

short-term memory (LSTM).Experimental results showed NSSM to acquire the 

highest performance, exhibiting an AUC value of 0.9 at the beginning of course. In 

contrast, the lowest AUC appeared at the end of the course with an AUC of 0.7. The 

results obtained indicate that the latent engagement patterns under analysis are time 

varying in nature (Wang and Chen, 2016). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

3.6 Summary  

  The chapter has presented an overview of machine learning algorithms with 

emphasis on the comparison between Supervised and Unsupervised algorithms. The 

machine learning that has been used in the project is introduced in this chapter. 

Learning algorithms have been described briefly. The section has highlighted the 

advantages and limitations of each classifier. Unsupervised machine learning has also 

been presented followed by the explanation of Cluster analysis and Mixture model. 

Mixture Discriminant Analysis (MDA) can be used as supervised classifiers. The 

Features selection method has been discussed, the difference between Wrapper and 

Filters approaches also explained followed by brief definitions of   RFE and Hill 

climbing algorithms.  At the end of chapter three, the application of machine learning 

for identification of at-risk students in the online context was introduced. 

Author  Year  Features Method Finding  

Girish Balakrishnan 

  et  al. 
2013 Temporal attributes  

 Behaviour 

attributes  

Hidden Markov 

Model(HMM) 

HMM provided insight Into 

latent characteristics of 

students  
Colin Taylor et al. 2014 Temporal attributes  

 Behaviour attributes 
Logistic 
regression 

The AUC decrease 
over time and achieve 

value of 0.77 at the 

end of course  

Wolff  et al. 2014 Behaviour attributes 

 (OULAD dataset) 

(CART) 

classifier   

 (k-NN )  

 Bayes Network  

The first assessment 

is a strong predictor of 

final success and 

failure  

Jiazhen He et al. 2015 Click stream features   Set of Machine  

Learning  

models 

Regularized logistic 

regression acquired 

the best AUC 

Jakub Kuzilek et al. 2015  Demographic and 
Behaviour attributes  

(OULAD dataset) 

Set of Machine  
Learning  

models 

Machine learning 
gives a better result at 

the end of course 

Fei Mi et al. 2015 Behaviour attributes Long Short-
Term (LSTM) 

netwrok  

LSTM can find 
nonlinear  

representation of data 

Feng Wang et al. 2016 Behaviour attributes Nonlinear State 

Space Model 
(NSSM) 

NSSM to acquire the 

highest performance, 
exhibiting an AUC 

value of 0.9 at the 

beginning of course  

 
 

Table 3.1 Overview of Researchers Work on identification of at- risk students in 

MOOC 



CHAPTER 4:  Proposed Methodology 

4.1    Introduction 

LA is an effective tool for tracking student knowledge, precisely analysing 

behaviour, and measuring how such factors can affect ‘at-risk’ students (Siemens, 

2013). Machine learning (ML) is capable of detecting potential patterns of learner 

attrition from course activity data, through the examination of learning behaviour 

features over time (Lakkaraju et al., 2015). Moreover, machine learning has the scope 

to infer the underlying emotional status of learners, by discovering latent patterns of 

learner behaviour (Altrabsheh, Cocea and Fallahkhair, 2016). In the present study, 

machine learning, in conjugation with LA is applied to detect at-risk students. The 

proposed framework for the early detection of at-risk students has been  explained in 

this chapter. The purpose of the proposed framework is to help educators flag at-risk 

students in their early stages and deliver timely intervention assistance to those 

students. 

Further towards the above goal, both Harvard and Open University datasets are 

discussed, followed by an explanation of the data pre-processing procedure. The 

chapter also illustrate a detailed discussion of the set-up procedure of three 

experiments. The first two experiments applied to the Harvard dataset aim to predict 

students’ performance during an independent course, and further evaluate the dynamic 

link between learners’ educational background, engagement level and performance. 

The influence of crucial factors such as motivation and performance on students who 

are at-risk from withdrawal from such courses is investigated in the second 

experiment.  

The LA is also used to characterise learner engagement patterns in MOOCs platform 

in first experiment. The student engagement pattern has been divided into two styles: 

{active} and {passive and active}. The unsupervised machine learning is used to 

discover the group of learners who share similar characteristics. The third experiment 

considers the Open University dataset. A detailed explanation of the extraction and 

selection features for VLE behavioural attributes is provided in this chapter. The 

analysis is performed according to the assessment submission date. The influence of 

performance trajectories on a given student’s outcome is highlighted in this chapter, 

by considering former assessment grades as input to predict final student performance. 



Our work differs from the prior research works as it concentrates on the analysis of 

various factors affecting the learners’ outcome in MOOCs. As such, student 

performance and student behavioural activities at previous time interval consider as 

the input predictors. The regression analysis was used to predict student assessment 

grade based on the history of the student. Feature selection  techniques were employed 

to discover if students performance in the previous assessments would impact his 

performance in next assessment.Furthermore, the impact of latent engagement on 

students and their subsequent risk of leaving a given course has been evaluated.  

4.2 Database Introduction 

In order to answer the research questions, two datasets were used. The first dataset 

was obtained from Harvard University, and contained information about 597,692 

students during the first year of their courses. The second database was obtained from 

the Open University, which comprised of VLE data for a single course, namely, 

“Social Science”. A total of 4,000 individual students were available for consideration. 

The two datasets differ in both scope and attributes. Table 4.1 compare datasets. 

Table 4.1 Comparison of Harvard and OULAD Datasets 

Harvard dataset  OULAD dataset 
Multi-course scope 

The Harvard dataset is an aggregate dataset, 

comprising of course records over a set of 
differing topics. As a result, student 

behavioural activity for multiple courses is 

available to use during predictive inference, 

namely the use of information from a 
previous course to infer the trajectory of an 

independent course. 

Single Course scope 
The OULAD dataset is a relational 
dataset that contains student records 

relating to the behavioural activity only 

for a single course. As a result, inference 

is limited to in-course analysis, where 
generalisation to additional courses 

cannot be evaluated. 

 
Optional Assessment 

Students may choose whether to work 

towards a formal certification; the course 
material is made available, but assessments 

(including the final exam) are optional. 

Additionally, the student can access 

learning material after the course end date. 
An analysis of the participant’s activity can 

therefore be used to identify intrinsically 

motivated learners. 

Mandatory Assessment  

The students are required to undertake 

assessments (including a final exam) if 
they wish to remain on the course. 

Additionally, the students cannot access 

learning material after the course ends. 

Consequently, the intrinsic motivation of 
students cannot be evaluated for this 

dataset. 

Video Engagement is Available 

The dataset includes features documenting 

the count of video views for each student in 

connection with their courses, providing a 
basis to examine the relationship between 

such activities and student risk factors. 

Video is not delivered 

 Videos content cannot be delivered 

through the course platform, meaning 

video engagement cannot be evaluated.  

Course totals only Daily activity values 



The database does not provide a granular 

record structure for student activity over 

time; summary values are provided that 

incorporate totals, with the intermediate 
structure discarded. Consequently, intra-

course dynamic engagement patterns cannot 

be evaluated. 

Daily learning activities are provided, 

such that the evolution of student activity 

may be evaluated over the duration of the 

course. As a result, dynamic patterns in 
student activity can be evaluated. 

 

4.3 Data Description 

4.3.1 First Dataset Description 

The Harvard University collaborates with The Massachusetts Institute of Technology 

(MIT) to deliver high quality MOOCs (Massive Open Online Courses). During the 

first year of providing MOOCs, 16 courses have been offered by Harvard and MIT 

(Ho et al., 2014). The courses cover a variety of subjects, such as Computer Science, 

Mathematics, Humanities, History, Health, and Social Sciences (Ho et al., 2014). 

Across all courses, only 30% of registrants succeeded in achieving certification (Ho et 

al., 2014). The approximate percentage of learners who viewed the main course 

content and then subsequently dropped out from the courses is reported to be around 

25%. (Ho et al., 2014). The number of overall participants has markedly increased, 

with 1.3 million unique learners engaged in multiple courses reported at the end of 

2014 (Ho et al., 2015). Two sets of features are considered in the dataset - learner 

behavioural features, followed by demographic attributes (Ho et al., 2014)(Ho et al., 

2015).  

The primary feature of the dataset is the ‘Click stream’, which represents the number 

of user events relating to video lecture views, course content interaction, access to 

assessments, and posts in discussion forums (Ho et al., 2014)(Ho et al., 2015). The 

participants’ demographic information is also considered in the dataset (‘age’, ‘gender’, 

and ‘educational background’). Additionally, the date of learner registration in the 

course and the last learner activity was also captured (Ho et al., 2014)(Ho et al., 2015). 

The features denoting user exploration and viewed content are binary features that 

discretise the percentage of exploration and course content viewing, respectively (Ho 

et al., 2014)(Ho et al., 2015). If participants access more than half of the course content 

(chapter), the explored feature is encoded as 1, or 0 if otherwise. The viewed content 

is encoded as 1 when the participants access the home page of assessments and related 

videos, or 0 if otherwise (Ho et al., 2014)(Ho et al., 2015). The researchers have used 

these aforementioned features to measure what kinds of behavioural data could affect 



the likelihood of certification gain. As such, the results show that during the first year 

there was a certification rate of 40%, where around 60% of the certificated learners 

fulfilled the criteria for explored participants (Ho et al., 2014)(Ho et al., 2015). A brief 

description of the dataset attributes is explained in Table 4.2. 

Table 4.2 Harvard Database Description 

Features Type Description 
User-Id Demographic    Learner identification number 
YOB Demographic    Learner date of birth 
Gender Demographic    Learner sex 
LOE_DI Demographic    Learner educational level 

final_cc_cname_DI Demographic    Learner continent area  
Start_time_DI Temporal  First date of  learner activity  
last_event_DI Temporal Last date of learner activity  
ndays_act Temporal Number of unique days that 

learner interacts with course  
Course Id  Course identification code 
Nevent Behavioural Number of click stream 
nplay_video,   Behavioural Number of video viewed by 

learner 
Nchapters Behavioural Number of chapter read by 

learner 
nforum_post Behavioural Number of forum post by learner 
Viewed Behavioural Discrete value describing if user 

accesses home page of videos 

Explored Behavioural Discrete value describing if user 
accesses home page of chapter 

 

4.3.2 Second Data Set Description 

The second database in this study was obtained from the Open University, an 

institution located in the UK (Kuzilek, Hlosta and Zdrahal, 2016). The Open 

University delivers various online courses for undergraduate and postgraduate 

students. During 2013-2014, the Open University released a dashboard known as the 

Open University Learning Analytic Dataset (OULAD) (Kuzilek, Hlosta and Zdrahal, 

2016). Two kinds of features have been considered in the database - namely 

demographic and behaviour. Here we consider the “Social Science” ( “BBB”) course, 

which launched in October during 2013. The “BBB” module ran over 268 days. 

The database is structured according to a relational schema, where all tables are 

joined to form a central composite table. The central table is designated “studentInfo”, 

and contains information relating to student demographic characteristics, such as 

gender, age, geographic area, and educational level (Kuzilek, Hlosta and Zdrahal, 

2016). 



In particular, the database contains fields relating to student performance and 

assessments, in addition to student interaction with online courses. In terms of 

behavioural features, a Virtual Learning Environment (VLE) system was used to 

capture student interaction within the online course setting. Each VLE is represented 

as an activity type, indicating the type of learning resources that the students are 

required to engage with within each module. There are various types of learning 

resources, such as reading PDF files, access to the home and sub-pages, and taking 

part in quizzes (Kuzilek, Hlosta and Zdrahal, 2016). 

The table “StudentVle” includes information relating to student activities in 

particular modules. A series of student activities were collected on a daily basis and 

recorded in this table. The database captures daily information relating to student 

behaviour within an online course, in addition to the number of clicks that correspond 

to the students’ interaction with the learning material on each day. The students are 

identified within both the “Vle” and “studentInfo” tables through unique numbers, 

providing consistent access to records (Kuzilek, Hlosta and Zdrahal, 2016). 

The table labelled “Assessments” contains information about the number, weight and 

the type of assessments required for each module. In general, each module involves a 

set of assessments, followed by the final exam. There are two types of assessments, 

namely, the Tutor Marked Assessment (TMA) and the Computer Marked Assessment 

(CMA). The final average grade is computed with the sum of all assessments (50%) 

and final exams (50%). The “Student Assessment” table involves information relating 

to student assessment results, such as the date of the submitted assessment and the 

assessment mark. The student will succeed in the module if s/he gains an overall grade 

greater than 40%. To gain further information regarding the assessment, the Student 

Assessment table is linked to the Assessments through assessment identification 

number attributes (Kuzilek, Hlosta and Zdrahal, 2016). 

The “Student Registration” table contains information about the date the students 

registered and unregistered in a particular module. The overall date is measured by 

counting numbers of unique days that students interact with courses until the course 

ends. In Open University online courses, students are able access a module even before 

being a student of the course; however, it is not possible to access the course post 

course close date.  



4.4 Data Pre-Processing 

Data Pre-Processing is an important step that enhances the performance of classifier 

models (Kotsiantis, Kanellopoulos and Pintelas, 2006). To achieve a more accurate 

analysis of the data, different data pre-processing methods have been applied over the 

two datasets. 

4.4.1 Data Pre-Processing for the Harvard Dataset 

Due to the large size of the dataset, a sample of 9,857 log file entries was sampled 

for each experiment. The log file records represent completed activities undertaken by 

learners on the respective MOOC platforms, where each entry corresponds to a single 

user session. The data Pre-Processing is divided into two distinct phases, implemented 

during the course of the procedure, namely, data cleaning and data transformation. 

Data cleaning was used to remove missing values, reduce noise, and remove 

inconsistencies within the data. On inspection, approximately 15% of the observations 

were missing for several behavioural variables, namely “Nevent”, “nplay_video”, 

“Nchapters” and “nforum_post”. The “YOB”, “Gender” and “LoE_DI” attributes are 

also included in the missing values. As a result, each incomplete observation was 

excluded from the candidate dataset. Subsequently, the dataset duplicate rows were 

also removed.  

The Harvard dataset features have skewed distributions. Consequently, the data could 

suffer from the presence of non-normality. To overcome this issue, the Box-Cox 

transformation was used. This is a member of the class of power transform functions, 

which are used for the efficient conversion of variables to a form of normality, e.g.,  

the equalization of variance, and to enhance the validity of tests for linearly correlated 

variables(Osborne, 2010). The data are furthermore standardised through scaling and 

centering, such that a mean value of 0 and standard deviation of 1 is obtained. The 

result of the transformation is shown in figure 4.1. The Box-Cox transformation was 

applied to only 10 of the features, as shown in Table 4.3. 

 

 
  



Table 4.3 Box-Cox Transformation Harvard dataset 

 
 

 

 
 

 

 
 

  

  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

4.4.2 Data Pre-Processing for the OULAD Dataset 

Because features are extracted in the OULAD dataset, the Pre-Processing procedure 

for OULAD is explained in section (4.8.3). 

4.5 Predictive Model Evaluation Parameters  

The Confusion matrix is used to evaluate the predictive model’s performance. 

Furthermore, sensitivity, specificity, the F1-Measure, and accuracy are also utilized as 

quality measures, which are defined as (Oruç and Kanca, 2011)(Sing et al., 2009). 

   Sensitivity = True Positive Rate (TPR) 

                                             TPR = 𝜌(�̂� = ⨁|𝐶 = ⨁) ≃  
 𝑇𝑃

𝑃
                                  (4.1)                                                                    

    

Specificity = True Negative Rate (TNR) 

                                        TNR = 𝜌(�̂� = ⊝ |𝐶 = ⊝)  ≃
𝑇𝑁

𝑁
       (4.2) 

    
False Positive Rate (FPR)  

                                        FPR=𝜌(�̂� = ⊝ |𝐶 = ⨁)  ≃ 
𝐹𝑃

𝑁
          (4.3) 

    
False Negative Rate (FNR)  

   

Features  Sample Skewness Estimated Lambda  

userid_DI 0.0135 0.7 

final_cc_cname_DI -0.569 1.2  

LoE_DI -0.163  0.7 

YoB -1.4  2  

start_time_DI -0.107  0.7  

last_event_DI 0.0376  0.7  

nevents 3.18  -0.1 

ndays_act 1.76  0 

nplay_video 6.21  0.1 

nchapters 1.07  -0.4 

                                        FNR=𝜌(�̂� =  ⨁|𝐶 =⊝)  ≃ 
𝐹𝑁

𝑃
             (4.4) 

9857 samples and 15 variables 

Pre-processing: 

- Box-Cox transformation (10) 

- centered (15) 

- ignored (0) 

- scaled (15) 

 Figure 4.1 Data Pre-Processing transformation Harvard dataset 
 



 Accuracy (ACC) 

   recall (r) 

 

F1-Measure (F1) 

 

Where, �̂� and 𝑪 are random variables that define class probability distributions for 

the prediction response and the actual class, respectively. The class outcomes are 

denoted as (⨁) for positive class and (⊝) for negative class outcomes. The empirical 

quantities P and N represent the number of positive and negative observations 

The Receiver Operator Characteristic (ROC) and Area Under Curve (AUC) are also 

considered. ROC is a graphical representation in which TPR is plotted against FPR to 

generate a parametric curve that may subsequently be used to select appropriate cut-

off values. AUC is defined according to (Vuk, 2006): 

                 AUC=∫
TP

P
   𝑑

𝐹𝑃

𝑁

1

0
=

1

𝑃𝑁
 ∫ 𝑇𝑃 𝑑𝐹𝑃

𝑁

0
 

     (4.9) 
 

AUC is used to measure the probabilistic classifier, which with the perfect classifier 

has a value close to 1. The probabilistic classifier randomly assigns a score for positive 

instances higher than the negative instances (Vuk, 2006). The scoring is computed 

based on the MaNnet Wilcoxon test (w) rules. The MaNnet Wilcoxon test is non-

parametric, and is used to detect if observations in two different populations are 

identical. The MaNnet Wilcoxon test rules are described as (Hanley and McNeil, 

1982): 

                   𝒔(𝑋𝒑, 𝑋𝒏) = {

1, if 𝑋𝑝 > 𝑋𝑛

0.5, if 𝑋𝑝 = 𝑋𝑛       

0, if 𝑋𝑝 < 𝑋𝑛

        (4.10) 

The AUC is equivalent to the MaNnet Wilcoxon test (w), and can be computed as: 

 

                                  𝐴𝑈𝐶 =W=  
1

𝑃𝑁
∑ ∑ 𝑠(𝑋𝑝 , 𝑋𝑛)𝑋𝑛∈𝑛𝑒𝑔𝑋𝑝∈𝑝𝑜𝑠  

 

                                                    
(4.11) 

 

                   (�̂� = 𝐶) ≃  
TP+TN

P+N
         (4.5) 

 precision(p)  

                                       p= 
TP

TP+FP
         (4.6)  

                     r= 
TP

TP+FN
         (4.7) 

                                             𝐹1 =
2

1
𝑟   +

1
𝑝

 
 (4.8) 



                                        𝐴𝑈𝐶 = 𝜌(𝑋𝑝 > 𝑋𝑛) +
1

2
  𝜌(𝑋𝑝 = 𝑋𝑛) 

 

                                    
(4.12) 

Where 𝒔(𝑋𝒑, 𝑋𝒏) the score for probabilistic classifier is, 𝑋𝑝, 𝑋𝑛  are probability-

ranking examples that belong to positive and negative class, respectively. 

With regard to the regression problem, Root Mean Square Error (RMSE), and 

relative square error (RSE), R-Square ( 𝑅2)are used to measure the performance of the 

regression model. The regression performance metrics are defined as follows (Huang 

and Fang, 2010). 

    RSE =
  ∑ (Yî − Yi)

2n
i

∑ (Yi̅ − Yi)2n
i

 

                                                               

(4.14) 

               R2  = 1- RSE                                                               

Where, 𝐘𝐢, 𝐘�̂�)  are vectors of actual values ( 𝐘𝐢 ) and predicted values (𝐘�̂�)  for N 

observation. The 𝐘�̅� is the mean of actual values 𝐘𝐢.The difference between these two 

values is called a residual. 

 

4.6 Experiment One Introduction    

There are two sets of case studies presented in this experiment. The first case study 

examines the effectiveness of LA and machine learning approaches for the analysis 

and prediction of student outcomes within MOOCs. Behavioral features were used in 

conjunction with demographic features to predict whether learners gained a 

certification in MOOCs. LA are utilised to analyse the actionable data in greater detail. 

Machine learning is an effective technique that can be applied to LA, and has the 

capacity to discover patterns of student interaction with the MOOCs. 

In this case study, machine learning in conjunction with LA is applied to predict if 

learners will achieve certification or not at the end of the respective course. The results 

of this experiment will assist educators in drawing inferences about students’ 

performance and offer deeper insights. In the second case study, we suggest the use of 

unsupervised machine learning to discover prototypical learner engagement 

behaviour. We describe engagement patterns in two main categories: {active} and 

                         RMSE = √∑(𝑌�̂� − 𝑌𝑖)
2

𝑛

𝑖

                                                           (4.13) 



{passive and active} engagements. The fuzzy clustering technique has been used to 

group learners who have similar prototypical engagement patterns. The Figure 4.2 

shows the flowchart of experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2   Experiment One Flowchart 
 

4.6.1 Exploratory Data Analysis  

The Exploratory Data Analysis (EDA) is implemented in this study in order to gain 

an insight into the learners’ behaviour, in conjunction with their performance. EDA is 

an important step within the machine learning approach, providing an intuition of the 

structure and relationships within the dataset (Kraska, T., Talwalkar, A., Duchi, J.C., 

Griffith, R., Franklin, M.J. and Jordan, 2013)(Leban, 2006). The objective of data 

visualisation is to provide information and an understanding of which type of features 

are more relevant to students’ performance. The correlation matrix is applied to 

measure the dependency between the behavioural data and learners’ certification. A 

heat map is used to visualise the correlation matrix more intuitively.  

The Principal Component Analysis (PCA) is adopted to reduce the dimensionality 

and variance of a dataset. The PCA procedure facilitates a mapping from the original 

 
 



feature space to a lower dimensional space, which is more conducive to learning (Chu 

et al., 2007)(Pahor, 2009). To determine the number of principal components, the 

Kaiser method is used. The Kaiser approach is based on 𝜎2 to detect the number of 

optimal components, and retains components that have √𝜎 > 1(Ferré, 1995). 

4.6.2 Case Study One 

4.6.2.1 Student Performance Prediction Model  

The performance prediction model is designed to estimate learner certification rates 

in MOOCs. The learner must register in a course prior to accessing the coursework 

content. In order to be certified, the participant needs to achieve greater than 40% of 

the average grade. The average grade is calculated based on coursework, two mid-

exams, and a final exam (Reich, J., Nesterko, S., Seaton, D., Mullaney, T., Waldo, J., 

Chuang, I. and Ho, 2014)(D Seaton, J Reich, S Nesterko, T Mullaney, 2014). The 

coursework should be handed in on a weekly basis, and has a weight of 10% of the 

average grade, the two mid exams weighting is 40% and the final exam mark weighting 

is 50% of the average grade (D Seaton, J Reich, S Nesterko, T Mullaney, 2014). The 

certification is considered an inaccurate indicator of learning within the MOOCs. Due 

to free enrolment, a large number of learners interact with the course without aiming 

to undertake the final exam. Moreover, the participants who register after the course 

end date are precluded from obtaining a certificate. However, certificates are a good 

indicator to identify at-risk students as registrants who persisted in completing the 

entire course (Ho et al., 2014).  

Various linear and non-linear Machine Learning models have been used in the 

present study. The data is segmented into a number of subsets, with records of 8,000 

learners in each subset. All dataset features have been considered, including both 

behavioural features and demographic variables. 

4.6.2.2 Feature Selection  

To identify the most important factors that impact student performance, a feature 

selection is used. Feature engineering could improve the performance of the predictive 

model by eliminating redundant variables (Granitto et al., 2006). 

The most important features that influence learners’ performance are investigated. 

Two methods of wrapper approaches has been implemented namely Feature 

Eliminator algorithm (RFE) and hill climbing algorithm. RFE was used to select the 



most important features. Each feature is ranked based on importance, using the random 

forest model (Yun et al., 2007).The Hill climbing algorithm was applied  to search for 

the optimal subset of features.  

 

4.6.2.3 Synthetic Minority Oversampling Technique (SMOTE) 

In binary classification, the number of instances should be equal for each class. The 

Harvard database is an unbalanced dataset, since 90% of the records are not certified 

(majority class) and 10% are certified (minority class). In this case, the predictive 

model will be more sensitive in predicting the majority class than the minority class; 

this leads to a bias problem. 

To overcome this issue, the training data set should be re-sampled. In this work, the 

Synthetic Minority Over-Sampling Technique (SMOTE) is applied. SMOTE equalizes 

the class proportions by generating additional minority class examples. In particular, 

SMOTE applies a K nearest neighbours algorithm to interpolate new instances of each 

minority class through an evaluation of its nearest neighbors, according to a specific 

distance metric. Using this approach, the decision region of a minority class in the 

feature space becomes larger and more specific, and as a result, the training algorithm 

will obtain more results for the minority class. samples(Fernández et al., 2018). The 

figure 4.3 offers a visualisation of the distribution of certified and non-certified 

students, using the SMOTE oversample approach. 

 
                              Figure 4.3 Smote Harvard Dataset 



 

4.6.2.4 Evaluating Predictive Model  

A ten-fold cross-validation involves five replications that are applied to assess the 

performance of classifier models. Cross-validation is capable of overcoming the 

problem of over-fitting by randomly partitioning the original sample of data into folds 

based on re-sampling (Pereira, Mitchell and Botvinick, 2009). Accordingly, 70% of 

the original dataset was allocated to the cross-validation training set; the subset 

elements of the training set were randomly partitioned into 10 equal-size subsets. For 

each round of cross-validation, 9-fold subsets are used as the training set, and the single 

subset is used as a test sample. A further 30% of the data is disjointed from the cross-

validation set, and was used to evaluate the generalisation errors for each classifier. 

To measure the predictive capabilities of classifiers over the test data, both ROC 

analysis and confusion matrix values were computed, forming the basis for comparing 

model responses to ground truth labels over each model. The details of ROC and the 

confusion matrix are explained in the “Predictive Model Evaluation Parameters 

section”. 

 

   4.6.3 Case Study Two 

4.6.3.1   Categorization Learners Based on Engagement Type    

The LA approach is used to describe prototypical user engagement patterns. Only 

behavioural features were considered. Our hypothesis is based on the feature 

descriptions, as explained in the previous section. Here, members of the set of 

behavioural features have been combined to categorise the learner engagements within 

MOOCs in a meaningful way. We define the construction of the derived features 

according to logical aspect. The learners have been categorised based on engagements, 

into two main categories: {active} and {passive and active}. Below, a brief 

explanation of each class is provided. 

Let V represents a set of students records, |V| = N which is the number of students. 

Let Ri ∈ 𝑉 represents the ith student record, given as: 

 
Ri = <vi, gi, si, ei, ci, li, wi di ui pi oi > 

                                  
where vi -  Identity of the student for the ith record 



 gi -  Grade of  the ith student record 

 si -     Start date of the associated student interact with course 

 ei - End date of the associated student interact  with  course 

 ci -     Identity of the course associated with the ith entry 

 li -     Launch date of the course referred to by ci 

 wi -    Wrap date of the certification is issued by ci 

 di -     Number of videos viewed by ith student 

 ui -     Number of chapters read by ith student 

 pi -     Number of forum post by ith  student 

 hi -     Learners access home page of course content (chapter) 

  
                        

 Active Learners: Learner activity is defined as an active engagement 

activity, wherein learners demonstrate interaction with the course platform, 

such as interaction with a particular chapter, watching a video, and posting 

in forum, as defined in Equation 4.15. 

                                      𝐴𝐿𝑔 = {∀𝑣 ∈ 𝑉|[[d > 0] ∨ [𝑈 > 0] ∨ [𝑝 > 0] ∧ [h = 0]] (4.15) 
 

 Active & Passive Learners: Learner activity is described as comprising of both 

active and passive characteristics, wherein learners explore both the content of 

the home pages and subsequently continue to make use of the chapters. This 

group of learners are described in Equation 4.16. 

                      𝐴𝑃𝐿𝑆 = {∀𝑣 ∈ 𝑉| [[d > 0] ∨ [𝑈 > 0] ∨ [𝑝 > 0]  ∧ [h = 1]]  (4.16) 

 

4.6.3.2 Unsupervised Machine Learning to Describe Prototypical Engagement  

In order to analyse the structure of the data, the use of unsupervised clustering was 

considered by applying the Fuzzy C-means clustering (FCM)(Suganya and Shanthi, 

2012). Euclidean distance is used as a metric to compute dissimilarities between 

observations. The features associated with the target are removed when implementing 

the fuzzy clustering algorithm. The aim of the procedure is to establish a comparison 

between the engagement types established in the literature, as described previously, in 

contrast with the evidence represented by our empirical dataset. Such a data driven 



approach provides a viable means to test the learner engagement type’s hypothesis, 

which features in the work of other researchers.  

The use of an unsupervised data analysis exposes the intrinsic structure of the data, 

such that the correspondence between engagement types and localized data structure 

can be reviewed. In the aforementioned procedure, we derived four distinct 

engagement types to serve as training patterns, while a total of four clusters were 

defined as a convergence imperative. To obtain the four features, the two original 

engagement types  that were discussed previously were further subdivided by learner 

success outcome, namely, a binary value comprising of a certification/no certification 

dichotomy. The derived features used as input for the fuzzy cluster algorithm are 

shown in Table 4.4. 

Table 4.4 Features Definition Based on Engagement Type 

 

  

 

4.7 Experiments Two Introduction  

Two sets of case studies are conducted in this experiment, with the aim of offering 

key decision makers the opportunity to intervene to assist at-risk students. In the first 

case study, the relationship between students’ performance and engagement is 

investigated with a view to consider behavioural features. 

The statistical techniques has been applied to find the association between learner 

engagement level and performance in the context of the learner educational 

background and geographical location. The associated statistical analysis identifies the 

key discriminative features between the successful and failing groups and provides a 

segmentation of the outcomes in the context of learners’ educational background and 

geographical location, which can facilitate educators in future MOOCs design. 

In the second case study, the impact of motivation and performance on students who 

are considered at-risk of not completing the courses has been examined. The Harvard 

dataset did not explicitly define the students’ motivational label. Therefore, LA is used 

to derive learners’ motivations, based on IM theory.  

Feature Id Definition   

1                  Active & cert 

2                  Active &no cert 

3                  Passive-Active & cert 

4  Passive-Active & no cert 



80 
 

Two temporal predictive models are built in this case study. The first model is 

designed to investigate the impact of students’ performance in prior courses on 

students’ decisions to drop out in the following courses. The second model is 

constructed to examine the influence of changes in students’ motivational status on at-

risk students. The figure 4-4 displays the flowchart of experiment two.  

 

 

 

 

 

 

 

 

 

 

 
 
 

     

 

 

 

 

 Figure 4.4 Experiment Two Flowchart 
 
 

4.7.1 Course Description 

In the present experiment, four courses are selected for analysis - “Introduction to 

Computer Science”, “Circuits and Electronics”, “Health in Numbers: Quantitative 

Methods in Clinical & Public Health Research” and “Human Health and Global 

Environmental Change”. 

In “Introduction to Computer Science”, the course is focused on teaching students 

the use of computation in task solving (Guttag, 2014). The “Circuits and Electronics” 

course is an introduction to lumped circuit abstraction. The course was designed to 

serve undergraduate students of the Massachusetts Institute of Technology and was 

available online to learners worldwide (Mitros et al., 2013). The “Health in Numbers: 

  
 

 

 

 
 



Quantitative Methods in Clinical & Public Health Research” is a health research course 

that is designed to teach students adopting the quantitative method to monitor the 

health records of patients. In the “Human Health and Global Environmental Change” 

course, students learn to investigate how changes in the global environment could 

impact individual health. The reason why these particular four courses were selected 

is that the temporal information was only available for these courses. 

All courses run in two semesters: Fall and spring. Fall courses were delivered in the 

fall of 2012, and the spring courses were covered in the spring of 2013. The courses 

differ in their structures and length. As such, all MITx courses run over a 15-week 

period, including a final exam and two examination periods. The HarvardX courses 

run over approximately 12-13 weeks. The MITx courses are entitled: “Circuits and 

Electronics Fall”, “Circuits and Electronics Spring”, “Introduction to Computer 

Science and d Programming Fall.” In addition, “Introduction to Computer Science and 

d Programming Spring”. The “Health in Numbers: Quantitative Methods in Clinical 

& Public Health Research” course provided by HarvardX launched by the end of 2012. 

Harvard also delivered “Human Health and Global Environmental Change” in the 

spring of 2013.

 

 

 

4.7.2 Case Study One 

4.7.2.1 Statistical Analysis Methods for Analysis Students’ Activities  

Various statistical methods have been employed in this case study to understand the 

patterns of participants’ behaviour and explore how behavioural engagement can 

influence performance in MOOCs courses. A statistical analysis is capable of tracing 

and tracking learning activities in online courses hence, it could assist decision makers 

Course Course Acronym 

Circuits and   Electronics Fall Electronics Fall 

Circuits and  Electronics Spring Electronics Spring 

Introduction to Computer Science and Programming Fall Computer  Science Fall 

Introduction to Computer Science and Programming Spring Computer  Science 
Spring 

Health in Numbers: Quantitative Methods in Clinical & 

Public Health Research 

Health Fall 

Human Health and Global Environmental Change Health Spring 

Table 4.5 Course Acronym 



in identifying the most effective learning tool (Brinton et al., 2014). Brief descriptions 

of the statistical methods explored in our experiments are offered below. 

 Descriptive Statistics: Descriptive statistics considers the utilisation of the 

mean and the standard deviation method (𝜇, 𝜎). Those parameters are used in 

our case study to compare successful completion learners and non-successful 

completion learners in terms of location and engagement level. The students 

are distributed into 5 geographical areas, and 2 behavioural features are 

considered: the “nplay_video” and the “Nchapters”. Learners are allowed to 

reattempt activities frequently, meaning that there is no specified boundary on 

the number of recorded attempts for each student per activity. Therefore, it is 

not possible to set a specific threshold relating to the number of click events 

for users watching the video and reading PDF files. Descriptive statistics help 

educators highlight the reason behind students’ success and failure. The (𝜇, 𝜎) 

descriptive statistics are described as follows (Friedman, 2001). 

 𝜇𝑗 = (
1

𝑁𝑗
∑ 𝑋𝑗𝑖

𝑁𝑗

𝑖=1

) 

 

               𝜎𝑗 = √
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∑ 8
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(𝑋𝑗𝑖 − 𝜇𝑗)
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      (4.17) 
 

 

     (4.18) 

Where j is the location parameter, Nj is the total number of students at location 

j and Xji is a students’ interact with online courses from location j.The 𝜇𝑗 is the 

mean of ith   per particular location. 

 Analysis of Covariance: To evaluate the results of descriptive statistics, the 

analysis of covariance (ANCOVA) is used. It is a statistical test used to test the 

mean of the independent variable across two groups. In our experiment, 

ANCOVA is used to determine whether the 𝜇 of successful and failing learners 

are identical, regarding their engagement level. The ANCOVA variable is 

defined as (Gribble, 2014): 

      𝛶𝑗=∑ 𝜇 + 𝛵𝑗 + 𝛽( 𝐶𝑗 − 𝑋𝐶𝑗) +  𝜖𝑗
𝑚
𝑗  

 

(4.19.1) 

Where m is the number of geographical locations𝐺1, 𝐺𝑚  and n is the number 



of success and failure students. In this case, 𝜇 is the population mean and Cj is 

a group mean. 𝛵𝑗 is the effect of jth group on the independent variable, and 𝜖𝑗 

is the error term per jth geographical location and 𝑋 is the observation under 

the jth group. 𝛽 is the slope of regression line. 𝐶𝑗 is the covariate values of 

success and failure students in jth geographical location. The  𝐶𝑗  is defined 

according to the following equation. 

                                                    𝐶𝑗  = #{𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑆1,.., 𝑆𝑛 ∈ 𝐺𝑗}=∑ 𝜌𝑛
𝑖=1 (𝑆𝑖 ∈ 𝐺𝑗) (4.19.2) 

Where 𝜌(𝑆𝑖 ∈ 𝐺𝑗)  is the probability of student Si belong to particular 

geographical area. 

 Chi-Squared Test: The Chi-squared Test is a statistical hypothesis test, which 

has been used to examine the difference between failure and success groups 

per course, with respect to learners’ academic level. The Chi-squared test 

summarises differences between observed frequency values and expected 

frequency values for educational levels. The revealed results of the Chi-

squared test help educators to determine if educational level factors can impact 

a learner’s performance. A Chi-squared is defined as follows(Agresti, 2007). 

Let r represent the levels of educational background 𝐿1 ,…,  𝐿𝑟   and n 

represents the total number of success and failure students. 

 

    χj
2  = ∑

(Oj − Ej)
2

Ej

r

j

 

 

 
  (4.20) 

Where 𝑂𝑗 is the number of success and failure students per jth educational level  

described as (Agresti, 2007). 

                            𝑂𝑗 = #{𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑆1,.., 𝑆𝑛 ∈ 𝐿𝑗}=𝜌(𝑆𝑖 ∈ 𝐿𝑗)  (4.21) 

𝐸𝑗 is the expected frequency of the number of success and failure students per jth 

educational level and 𝜌(𝑆𝑖 ∈ 𝐿𝑗) is  probability of student Si belong to jth . 𝐸𝑗  is 

given as (Agresti, 2007). 

 

                              𝐸𝑗 = # ∑ 𝐸𝑛
𝑖=1 (𝑆𝑖 ∈ 𝐿𝑗)= ∑ 𝜌𝑛

𝑖=1 (𝑆𝑖 ∈ 𝐿𝑗) 

  

(4.22) 



4.7.3 Case Study Two 

4.7.3.1 Machine Learning Techniques  

To evaluate the influence of engagement levels and motivations for students who are 

at-risk of quitting their courses, three predictive models were carried out in the present  

study namely, motivational predictive model and two temporal dropout predictive 

models. 

The purpose of a motivational predictive model is to predict students’ motivational 

categories in online courses. The problem is defined as a multi-class classification 

problem in such a model. Two temporal predictive models are proposed to predict at-

risk students. The first temporal predictive model analysis is conducted according to 

student performance, while the analysis of the second predictive model depends on 

students’ motivational status. 

Machine Learning is applied over three predictive models. It represents a powerful 

data-intensive approach, which we apply within our proposed LA framework. Machine 

Learning is appropriate for the detection of students who are at-risk of not completing 

their next courses. In the following section, a brief description of the predictive models 

has been presented.  

4.7.3.2 Categorization Learners Based on Motivational Status     

Motivation and engagement are crucial factors that affect at-risk students. The 

Harvard database does not include the categories of student motivation, therefore, LA 

is employed in this experiment to understand the patterns of participants’ engagement 

and motivation, and further explore how engagement could influence their 

performance in a MOOCs course. With LA learning, the students’ performance 

trajectories can be examined in greater depth therefore. The decision makers should 

be able to acquire a deeper insight into the ground truth behind learner success and 

failure within MOOC platforms across various courses (del Blanco et al., 2013). In 

addition, decision makers will be able to provide more attention to students who lack 

the motivation to persevere in their courses (Fei and Yeung, 2015).   

To examine how such factors, influence students who are at-risk of dropping out, the 

taxonomy of learners is constructed, which relies on the Incentive Motivation Theory 

(IM) aspect. The following categories are defined based on IM: 



Assume V represents a set of students records, |V| = N which is the number of 

students. The explanation of students record Ri has been already described in section 

(4.6.3.1). Let Ri ∈ 𝑉 represents the ith student record, given as: 

Ri = <vi, gi, si, ei, ci, li, wi di ui > 
 

Retention, completion and attrition learners are defined in detail below. 

 Retention Learners (intrinsically motivated) are defined as those who engage 

in a given course without aiming to earn a certification, as defined in Equation 

(4.23) 

                       𝑅𝐿 =  {∀𝑣 ∈ 𝑉|  𝑔 = 0 ∧  [[ 𝑙 < 𝑠]  ∨ [𝑤 < 𝑒]]} (4.23) 

 Where 𝑉 is the student’s records, g is the grade, 𝑠 is the join day, 𝑙 is the course 

launch day, w is the leaving date, and  𝑒 is the course end day. 

 

 Completion Learners (extrinsically motivated) undertake courses with the 

expectation of obtaining a certification. Group is further divided into two 

subsets: those who pass and achieve certification, and those who do not pass. 

Pass Completion learners are defined in Equation (4.24), whereas Failure 

Completion learners are defined in Equation (4.25). 

                                        𝐶𝐿𝑠𝑐 = {∀𝑣 ∈ 𝑉 |  𝑔 ≥ 40 ∧ 𝑠 ≤ 𝑙     (4.24) 

            𝐶𝐿𝑠𝑛 = {∀𝑣 ∈ 𝑉 | 0 < 𝑔 < 40 ∧ 𝑠 ≤ 𝑙     (4.25) 

 

 Attrition Learners (amotivation) withdrew from the course within the same 

week, as expressed in Equation (4.26). 

       𝐴𝐿 = {∀𝑣 ∈ 𝑉 | 𝑔 = 0 ∧ 𝑒 − 𝑠 < 8 (4.26) 
 

    Algorithm 4.1 shows the groups of learners according to IM theory. Three groups 

were defined by considering the students' exam grades, course start and end dates, in 

addition to the first and last date that students interacted with the course. In both the 

𝑅𝐿 and 𝐴𝐿 groups, students did not undertake the assessment, however, in the  𝑅𝐿 

group, they engaged in the course longer than the 𝐴𝐿 group. Completion learners can 

be further classified into {CLsc, CLsn}. The assessment cut-off grade was used for 

distinguishing between these two groups. Due the records of extrinsically motivated 



who engage after the course start date contain NA values of behaviours features, theses 

group of learners have been excluded.  

Algorithm 4. Algorithm 4.1 Learners group according to IM Theory 

1. ∀𝑉 ∈ 𝑅𝑃: 𝑅𝑖 = < 𝑣𝑖 , 𝑔𝑖 , 𝑠𝑖 , 𝑒𝑖 , 𝑐𝑖 , 𝑙𝑖 , 𝑤𝑖 , 𝑑𝑖 , 𝑢𝑖  > 

2. 𝑅𝑖 ∈ 𝑅𝐿 ↔ 𝑔𝑖 = 0 ; 𝑙𝑖 < 𝑠𝑖 ,  𝑤𝑖  < 𝑒𝑖 

3. 𝑅𝑖 ∈ 𝐴𝑙 ↔ 𝑔𝑖 = 0 ; 𝑒𝑖 − 𝑆𝑖 < 8 

4. 𝑅𝑖 ∈ 𝐶𝐿𝑠𝑐 ↔ 𝑔𝑖 ≥ 40 ;  𝑠𝑖 ≤ 𝑙𝑖 

5. 𝑅𝑖 ∈ 𝐶𝐿𝑠𝑛 ↔ 0 < 𝑔𝑖 < 40; 𝑠𝑖 ≤ 𝑙𝑖 

 

 

 

4.7.3.3 Motivational Prediction Model  

Students’ motivation is the most important aspect of students’ learning process. 

According to the previous definition of learning categories, the motivation predictive 

model is built in this case study. The multiclass classification is used where the set of 

label 1… L represents the target classes. In this experiment, learner motivation is 

classified into three distinct categories: amotivation, extrinsic, and intrinsic. The 

training dataset is represented as the pair(𝑭𝒊, 𝑻𝒊), where 𝑭𝒊 ∈  ℝ𝒑, denotes features of 

ith observation and 𝑻𝒊 are the targets. 𝑻𝒊 ∈{1…, L}. 

Our training set consists of 3,373 data points, randomly sampled specifically from a 

subset of the courses considered, namely “Health Fall”, “Electronic Fall” and 

“Computer Fall”. Subsequently, a further 1,424 data points are randomly sampled from 

a separate subset of courses, comprising of “Health Spring”, “Electronic Spring” and 

“Computer Spring”, which is then used to evaluate the generalisation errors of each 

classifier model. The classifier model has been trained in one course, and the predictive 

model has been tested in another course. Such a scheme enables the generality of the 

features learned by the classifiers to be examined beyond the specific differences of 

the individual courses. The data has been selected with a balanced class over training 

and cross-validation. The proportion of each motivation category represented within 

the data for amotivation, Extrinsic and Intrinsic was 29%, 35%, and 36 %, respectively. 

4.7.3.4 Temporal Models for Identifying At-risk Students 

It would be impossible to track the temporal intervention behaviour of learners over 

a single course in the Harvard dataset. However, we can build a temporal model by 

adopting the course trajectories mechanism. In this case, LA is used for the students’ 



temporal records over their previous courses, with a view to investigate whether or not 

the students are at-risk of dropping out in the proceeding courses.To capture how 

students’ performance and motivation could influence students’ decision to abandon a 

course or not, the following two definitions of at-risk students are introduced.  

 At-Risk Student Definition(1):Here, we consider the students who 

participated in the fall and spring courses within the same topic. In this case, if 

students engaged in fall courses and did not interact in the spring courses, they 

are defined as withdrawal students. 

 At-Risk Student Definition(2):The learners who were engaged in both Fall 

and Spring courses are considered. As mention earlier, the students who 

withdrew from the course within one week are considered “amotivation” 

students. If a student’s motivational status is “amotivation” during the Spring 

courses, then the student can be defined as withdrawal. Using this approach, 

LA could help course instructors provide the timely intervention to assist at-

risk students. Figure 4.6 illustrates the  at-risk student framework. 

  

 

 

 

 

 

 

 

 

 

 
 
  
 

 

 

 

 

Figure 4.5 AT- RISK Student Framework in Harvard Dataset 
 

 
 
 
 
 
 
 
 
 



4.7.3.5 Dropout Prediction Model Based on Student Performance   

The first prediction model is based on the first at-risk student definition, and aims to 

investigate the impact of failure factors that influence students’ decisions to persist in 

participating with another course. Therefore, only completion learners’ groups who 

participated in the same topic are considered. for example, the students who failed the 

“Introduction to Computer Science” course, which was run in fall 2012. In the event 

that they were to re -enrol in the next “Introduction to Computer Science “course   

which was delivered in spring 2013, the students’ record and their performance in 

previous courses are factors used to predict whether they were at-risk of dropping out 

in future courses. The trajectory analysis is based on course temporal launch data. The 

courses are split into two intervals t, where t ∈ {1,2}. The label withdrawal   students 

is derived from students’ trajectories records. It can be represented as a vector 𝑌(𝐶) 

where 𝑌(𝐶) ∈{0,1}. If students participated in previous and current courses at time t-1 

and t respectively, 𝑌(𝐶) denoting 0, and 1-otherwise.Withdrawal students are compared 

with non-Withdrawal students according to demographic features and students’ 

grades. The students’ records contain 6 demographic attributes that are driven from 

2,175 records of Withdrawal students and 870 non-Withdrawal students.  

The behavioural features have not been considered as there were insufficient 

behavioural records for at-risk students on the second time interval. A series of 

machine learning algorithms are applied over two sets of features. In the first set, we 

consider all demographic features, including students’ grades (GPA), whereas in the 

second set of features, GPA is excluded from the analysis. 

Class imbalance is an issue, which occurs in this subset. In this case, 74% of class 

instances occurred with the class “Withdrawal”, whereas 26% of the data occurs with 

the class “not Withdrawal”; to solve this problem, Smote has been used.   

4.7.3.6 Dropout Prediction Model Based on Student Motivational Status    

The second temporal dropout predictive model is based on the second definition of at-

risk students, and aims to examine the influence of motivational trajectories and 

engagement level on students’ decisions to quit their courses. The motivation status is 

considered a high value factor that could impact at-risk students. As such, students with 

low motivation achievements in the current cohorts are more likely to withdraw from 

courses in the future cohorts.  



To deliver timely intervention for at-risk students ,we consider only students who 

engage in the same Fall and spring courses. The students who lack motivation to persist 

in spring courses are classified  as withdrawal students. The course is divided into two 

intervals t, where t ∈ [1,2] . Here student records can be described as 

𝑋𝑖,𝑗
(𝑡)

= [𝑋𝑖,1
(𝑡−1)

,  𝑋𝑖,1
(𝑡)

, … , 𝑋𝑖,𝑛
(𝑡)

] where 𝑋𝑖,1
(𝑡−1) ∈ { 𝑅𝐿, 𝐴𝑙, 𝐶𝐿𝑠𝑐, 𝐶𝐿𝑠𝑛 }  is 

dimensional vector that represent student motivational statues in Fall courses. The 

𝑋𝑖,1
(𝑡)   is an activity  undertook by student 𝑆𝑖 at time t. The target class ‘at-risk’ student 

can be described as 𝑌(𝐶). The 𝑌(𝐶) takes value of 1 when student motivational status is 

reported as “amotivation” on the following courses, and 0 otherwise. 

An analysis of motivational trajectories will provide new insight into the motivation 

behind at-risk students. As a result, the course instructors could immediately provide 

support for these students, by improving their motivation and increasing their learning. 

The correlation analysis is undertaken in this study with the aim to examine the 

relationship between the response variable (target) class and independent variables.   

Various machine-learning algorithms are used to predict whether a student is at-risk 

or not. Machine Learning is capable of detecting changes in students’ motivational 

status over time. The dataset contains 4,800 records for  non-withdrawal students and 

6,500 records for withdrawal students. The student's behavioural features of following 

courses, along with student motivational categories features at the pervious courses are 

used in the prediction of at-risk students. 

4.7.3.7 Evaluating Temporal Prediction Models  

For each predictive model, we split the original dataset into 50% for a cross-

validation training set. A ten-fold cross-validation is considerd with five repetitions 

where training dataset is further divided into 10 different sets, 9 sets are used to train 

the classifier, and one is used as a test set. A further 50% of the data is used as an 

external test dataset to validate generalisation errors for each model. The training set 

can be described as {(𝑋1,𝑌1,), … (𝑋𝑁,𝑌𝐶,)} where 𝑋𝑖 ∈  ℝ𝒑  𝑐𝑎𝑛  be represented by the 

ith observation and  𝑌𝐶, is the target where 𝑌𝑖 ∈ {0,1}. 

The empirical results of both temporal predictive models has been compared in terms 

of performance metrics comprising accuracy, specificity and sensitivity, precision, 



recall, ROC, and AUC. A detailed explanation of performance metrics can found in 

the “predictive model evaluation parameters” section. 

4.8 Experiment Three Introduction 

Due to the student behavioural attributes represented as daily activities, the feature 

extraction procedures applied. Each student activity type aggregates into a single 

action according to the assessment cut-off date. Two features have been extracted over 

each activity, the number of sessions that a student engages in individual activity type 

and number of clickstreams that the student performs in each activity. As mention 

previously, the OULAD data set consists of several relation tables. We defined various 

feature sets such as static behavioral features, dynamic behavioral features, 

demographic features and assessment grades features. According to these features set 

we carried out two set of experiments. 

In the first set of experiments, student performance in OULAD dataset is considered. 

For the prediction of students’ assessment scores, the regression analysis is 

implemented. The student past and current activities in addition to past performance 

are employed to predict student outcome. Tracing student performance over time will 

assist the educator to monitor the progress of the student in more detail. 

The Final students’ performance prediction model is also proposed in this work. It It 

is computed based on the six TMA assessment, five CMA and final exam. The 

supervised machine learning method have been utilized to predict the long-term 

student performance. Three type of types of candidate predictors have been considered 

firstly behavioural features, followed by the temporal and demographic features. The 

Performance prediction offers new insight into determining the most important 

learning activity and assist the educators in keeping tracking of timely student 

performance. To best of our knowledge, the student performance has been evaluated 

in online course consider only two targets: success and fail. The long-term student 

performance predicts the performance with three-class labels success, fail and 

withdrew. 

The influence of latent engagement on at-risk students is investigated in the second 

case study. The Gaussian Mixture Models   is applied   which aims to capture such 

important dynamics, providing an analytical assessment of the influence of latent 

engagement on students and their subsequent risk of leaving the course. Additionally, 

a set of machine learning models are used to provide a performance comparison. The 



features used in the study were constructed from student behavioural records, 

capturing activity over time, which were subsequently organized into six time 

intervals, corresponding to assessment submission dates. Figure 4.6 describes the 

flowchart of the experiment. 

  

 

 

 

 

 

 

 

 

 

 
 

  

 
 

 

 

 

 

4.8.1 Features Extraction 

As the student VLE the data  has been captured on  daily basis, the feature extraction 

procedure has been undertaken. The VLE features were extracted according to the 

assessment submission dates. The course is split into seven time slices, where each 

time slice mapping is oriented around the final date of the TMA assessment 

submission. However, the first time slice captures student VLE information relating to 

learning activity prior to the course start, since students are permitted to enrol prior to 

the official course commencement. Our analysis of VLE features is undertaken to 

examine the association between student performances and the measured behavioural 

features, with respect to the assessment submission dates. For each student, there are 

a number of VLE learning activities at a specific time t.  

  

Figure 4.6 Experiment Three Flow Chart  

 
 



The VLE activity types for each student are aggregated per time interval into single 

values. Hence, at each time interval, the students’ VLE information records include 11 

VLE activity types. Two features are extended, namely the number of sessions (𝑜𝑡) 

and total number of clicks (𝑐𝑡). The number of sessions is defined as the number of 

sessions wherein students engage in specific activity during the entire course. The 

number of clicks can be defined as the number of click-streams that students 

participate in per each activity during a single session. The procedure of feature 

extraction is described in Algorithm 4.2. Table 4.6 lists the set of extracted features. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 Table 4.6 Set of Extracted Features 

 
 

 
 
 

 
 
 
 
 

Algorithm  4.2 Feature Extraction procedure 

1. Split course into 7 interval  t where t ∈ [1,7] 

 2. For each student  𝑆𝑖, i= 1…n, do 

   3.   For each course activity type 𝑋𝑗,, i = 1…m, do 

 4.      For each session 𝑂𝑝per activity type 𝑋𝑗, p = 1…w, do 

𝑂𝑡 = ∑ 𝑂𝑝

𝑊

𝑝=1

 

     5.       For each sum_click 𝐶𝑒𝑝𝑒𝑟  activity type 𝑋𝑗,𝑒 = 1…c, do 

                        𝐶𝑡 = ∑ 𝐶𝑒

𝑐

𝑒=1

 

 6.                                  End  

 7.                                  End  

 8.                                        End 

 9.                                             End 

number of sessions (𝑜𝑡) number of clicks(𝑐𝑡) 

session.forumng sum_click.forumng 

session.glossary sum_click.glossary 

session.homepage  sum_click.homepage 

session.oucollaborate sum_click.oucollaborate 

session.oucontent sum_click.oucontent 

session.ouellumi0te sum_click.ouellumi0te  

session.quiz   sum_click.quiz  

session.resource  sum_click.resource  

session.sharedsubpage sum_click.sharedsubpage 

session.subpage sum_click.subpage 

session.url sum_click.url  



 

4.8.2 OULAD Features 

  Behavioural features: The behaviour features have been extracted from the activity 

types. The OULAD dataset contains 11 VLE activity types. For each student at 

specific time t, two features are extracted: the number of sessions (𝑜𝑡)  and the 

number of clicks ((𝑐𝑡). The behavioural features can be divided as either static or 

dynamic. 

 Static Behavioural features: These are a set of behavioural features that are 

corresponding to student activities since the first time they engaged in the course 

till last day they quit the course. Let the tensor𝑋 ∈ ℝ𝑇 × 𝑛 × 𝑚, in which 𝑋𝑡,𝑖,𝑗 

represents the jth activity of the ith student at time t. S is a set of students denoted 

as an n-dimensional vector [S1 …., Sn], where n is the number of students. 

Furthermore, M is defined as an m-dimensional vector that represents VLE 

learning activity types, M = [M1 …., Mm], where m is the number of learning 

activities that the ith student is assigned.  

 Dynamic Behavioural Features: These are a set of behavioural features that 

vary over time. Let t be a sequence of disjointed time intervals, where t ∈ [1,6]. 

To represent all student activities at time t, we define the type of student’s 

activity records as the vector𝑋𝑡,𝑖,𝑗 = [𝑋𝑡,𝑖,1, 𝑋𝑡,𝑖,2, … , 𝑋𝑡,𝑖,𝑚,]. Here the jth denotes 

learning activity that is undertaken at time t by student Si, such that j = 1, … , m; 

where m is given as the number of learning activities. 

   Demographic Features: These are given as𝐺 ∈ ℝ𝑛 × 𝐿 , in which 𝐺𝑖,𝑘  represents the 

kth demographic feature for the ith student, where the set of demographic features 

assigned to each student are considered constant over the course duration. The 

demographic features for the ith student may therefore be given by the L dimensional 

vector 𝐺𝑖,𝑘 =  [𝐺𝑖,1, 𝐺𝑖,2, … , 𝐺𝑖,𝐿] , where k = 1… L. Table 4.7 describes the 

demographic attributes. 

  Temporal Features: The temporal features represented the date of student’s 

registration and deregistration from the online course. Table 4.8 lists the temporal 

features. 

  Assessment Grades Features: These are a set of assessments submitted by student 

Si at time t, we define the vector𝐴𝑡,𝑖,𝑎 =  [𝐴𝑡,𝑖,1, 𝐴𝑡,𝑖,2, … , 𝐴𝑡,𝑖,𝑎]. Here, 𝐴𝑡,𝑖,𝑎 denoted 



the  𝑎𝑡ℎ  assessments undertaken by student Si at time t. Additionally, 𝑡 ∈ [1,6] 

indexes course time intervals, where within each, students are allocated a single 

assessment. 

Table 4.7 Demographic Features OULAD Dataset 

 

 

 

 

 

 
 

                                        

 
 

                       Table 4.8 Temporal Features OULAD Dataset  

 

 

 

 

 

4.8.3 Data Pre-Processing 

Data Pre-Processing is applied over the extracted behavioural features and 

demographic variables, with the aim to achieve the best performance from machine 

learning. As previously discussed, the analysis of the Open University database relies 

on the assessment submission dates, wherein we split the course into six-time intervals. 

At each interval, there are 11 learning activities. Two features have been extracted over 

each learning activity: number of sessions and number of clicks.  

The first step in pre-processing the data is to investigate the highly correlated 

variables. We set a correlation cut off - if the correlation between two features >0.8, 

then these features are highly correlated. The highly correlated features are removed 

from the final model, given that the problem of feature redundancy could be solved. 

In addition, the issue of over-fitting might therefore be reduced. The zero and near-

zero variance predictors are also investigated in this database; the features that same 

values that appear frequencies become zero variance predictors when the data is split 

into training and test. These features, which have a “near-zero-variance” are diagnosed 

Features      Description 
id_student Learner identification number 

age_band Learner age 
Gender Learner Sex 

highest_education Learner educational level 
Region Learner geographic area  

studied_credits The number of credits for the module that the 
learner is currently involve 

disability Indicator of student disability 
num_of_prev_attempts Number of time that student undertook the course 

imd_band Social-economic indicator measure student 
economic level 

Feature                 Description 

        id_student          Student identification number 

date_registration The date of learners registration in the course 

   date_unregistration         The date of learners quit the course 



and eliminated during the pre-processing procedure. The Table 4.9 lists the near-zero 

predictors. 

The Open University dataset is non-normally distributed; in order to address this 

problem, the transformation methods are applied. Yeo-Johnson is one of the data 

transformations methods, and performs a similar function to the boxCox 

transformation method, but applies a continuous variable that has a raw value equal to 

zero (Weisberg, 2001). In the present case, when a student did not participate in a 

particular activity, the value of the extracted features become zero. To this end Yeo-

Johnson is more useful than boxCox. The figure 4.7 compares the results of both 

transformation methods over six time intervals. The results of all behavioural features 

are transformed by Yeo-Johnson; only two of features are processed by boxCox. 

Table 4.9 Near Zero-Variance Predictors OULAD Dataset 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.8.4 Exploratory Data Analysis  

The EDA is applied in this case study, with the aim to obtain insight into behavioural 

features in association with students’ performance. EDA helps educators gain 

           Zero- and Near Zero-Variance Predictors 

“ session.ouellumi0te” 

“ sum_click.ouellumi0te” 

“session.oucollaborate” 

“sum_click.oucollaborate 

“ sum_click.oucontent” 

“ session.sharedsubpage” 

“ sum_click.glossary” 

“ session. glossary” 

 Figure 4.7 Data Pre-Processing transformation OULAD dataset 
 

 
 

Pre-processing BoxCox 

- Box-Cox transformation (2) 

- centered (86) 

- ignored (0) 

- scaled (86) 

 

Pre-processing Yeo-Johnson 

- Yeo-Johnson transformation (85) 

- centered (86) 

- ignored (0) 

- scaled (86) 



intuitions into the data and guides their decisions concerning teaching strategies. Such 

graphical tools could help educators fulfil the requirements of students. In the present 

case study, EDA is applied to the OULAD dataset as a precursor to the modelling 

phase. The objective of data visualisation is to provide insight into the correlation 

between extracted features and student performance.  

The correlation matrix is used to evaluate the dependency between the behavioural, 

demographic variables and learners’ outcome. A heat map is utilised to visualise two 

correlation matrices. The PCA is used to reduce dimensionality by eliminating the 

correlated variables. In this case, study, the PCA is applied only on behavioural 

features in order to remove any redundancy in the extracted features. 

4.8.5 Case study One 

4.8.5.1 Student Performance Prediction Model  

The first case study in the OULAD dataset focuses on performance predictions. The 

problems are formulated as classification and regression problems. The regression 

setting is considered when we aim to predict students’ assessments grades, whereas 

classification setting is utilised when we seek to predict final student performance in 

the  entire course. It is considered a multi-class problem where the target class is 

whether students pass, fail or withdraw from courses.   

Early grade prediction could help educators deliver timely intervention support and 

additional learning materials to help students who have low scores. As discussed 

previously, the student should participate in five CMA assessments and six TMA 

assessments, in addition to the final exam. The assessments should be handed in within 

a specific time period. Due to the TMA assessment weighing 45% of the final result, 

while the CMA assessment weighs only 5%, our temporal analysis is based on the 

submission date of the TMA. Students are allowed to submit after the deadline, but 

they might lose some marks. Furthermore, the student can access learning prior to the 

course, but are not allowed to engage with the course after it closes. Table 4.10 shows 

the TMA assessments submission date. 

To predict student performance in a timely manner, as can be seen, in figure 4.8 the 

course is subsequently organised into six-time intervals, corresponding with 

assessment submission dates. The student behavioural records are distributed 

according to assessment date. With regards, to the regression analysis, the students’ 



performance during the early stages in conjunction with their interaction behaviour 

should be considered when predicting student assessment grades. For a specific student 

Si across time interval t,  the student record Ri  , can be obtained from the student’s 

learning activity and performance, which are described as an input 

sequence (𝑋𝑗
(𝑡−1)

, … , 𝑋𝑛
(𝑡−1), 𝐴𝑎

(𝑡−1), 𝑋𝑗
(𝑡)

, … , 𝑋𝑛
(𝑡)

).  Here 𝑋𝑗  represents the jth 

behavioural activity attempts by Si at time t and t-1.  𝑇ℎ𝑒 𝐴𝑎  denotes the  𝑎𝑡ℎ  

assessments undertaken by Si at time t-1. The corresponding target can be represented 

as a sequence of output (𝐴1
𝑡−1

… 𝐴𝑎
𝑡
). 

In terms of classification analysis we aggregate the  student’s behavioural  activities 

across the six time slices into a single time slice.Three sets of features are considered 

in this anlysis the behavoural features ,deomogrphic features and temporal features. 

We didn’t account  for past assessments grade and final exam mark as the  final target 

class is computed based on these features. The dataset contains 4004 records where 

the proportion of “fail”, “withdrawn” and “pass” classes are 28% ,40% and 32% 

respectively. Different linear and nonlinear regression algorithms and classifications   

have been used in this study.  

 

 

                                

 
 
 

                       

Table 4.10 TMA Assessments Submission Date 

                                        
 
 
 
 
 

 

 
 

 

 

Module name  Weight  Day 

2013B 5 19 

2013B 18 47 

2013B 18 89 

2013B 18 124 

2013B 18 159 

2013B 18 187 

2013J 5 19 

2013J 18 47 

2013J 18 96 

2013J 18 131 

2013J 18 166 

2013J 18 208 

 

 
Figure 4.8 Student behavioral features based on TMA intervals 



4.8.5.2 Feature Selection  

To detect the most important activity types that reflect on students’ performance, 

feature selection is utilised. As previously discussed, the database contains many 

features, for instance, at each time interval, past student behavioural features were 

aggregated with current behavioural features, although some of these features could 

be considered irrelevant. The RFE is utilised to examine the high-ranking features that 

influence the learners’ performance in particular assessments. Furthermore, the RFE 

is also used to discover behavioural features that affect students’ final performance 

during the entire course. 

With the RFE approach, irrelevant and redundant features are eliminated, and as a 

consequence of this, the predictive models will perform faster and more efficiently, in 

addition to reducing the over-fitting of the data and improving the generalisation of 

the learning algorithm. 

4.8.5.3 Evaluating Student Performance Prediction Model 

In order to evaluate the student performance predictive model, several metrics have 

been considered. In terms of the regression analysis, the RSME and  𝑅2 are used to 

predict students’ assessment grades. With regards, to the classification analysis 

accuracy, specificity and sensitivity, F-Measure, ROC, and AUC are employed to 

predict final student performance. Furthermore, a tenfold cross-validation is used for 

both a regression and classification analysis; 50% of the dataset is selected to train the 

model and 50% is selected to test the model. 

4.8.6 Second Case Study 

4.8.6.1 Temporal Model for Identify At-Risk Student in OULAD  

In OULAD dataset, the timely behavioral intervention of learners can be traced by 

analyzing historical data.  In this case study, LA is utilized to detect the students who 

participated in the current and past assessments using historical behavioral data. Based 

on the feature extraction procedure, the student records R are distributed across ssix-

timeinterval according to assessment date tradeoff. We consider one definition of at-

risk students in the OULAD dataset as explain in the following paragraph. 

 At- Risk Student Definition: The students who have undertaken a sequence 

of assessments in a single course. The at-risk student is derived from assessments 

scores features which can be represented as 𝑌𝑡(𝑖)vector where 𝑌𝑡(𝑖) ∈ {0,1}, if 



student Si undertook assessment𝐴𝑎
𝑡
 at time t,  then student is defined as  non-

withdrawal  and denoting 0 , and 1 otherwise. 

 

 

 

 

4.8.6.2 Dropout Prediction Model Based on Latent Engagement  

The temporal predictive model is based on the previous definition of at-risk students 

that aims to investigate how a student’s engagement affects the at-risk student. Student 

engagement is a significant factor that influences the learning outcome. Behavioral 

records such as watching a video, undertaking assessments, accessing the home page, 

can dictate the student engagement and reading PDF documents .Categorizing the 

latent engagement pattern of learners concerning the impact on their continuation 

within course activities is crucially important to predict at-risk students.  

Figure 4.9 AT -RISK Student Framework in OULAD Dataset 
 



The main challenge of a mixture model is how determined the number of the 

components. It has been attempted to increase the number of the component to be more 

than 10 but, the computational burden was the crucial issue as the higher number of 

clusters more time would be required to learn a model. In this project (1, 2, 3, 4, 5,10) 

components has been tested for each class. It has been found that selecting one cluster 

for each class would acquire the best accuracy result. 

Eigenvalue Decomposition Discriminant Analysis (EDDA) model is utilised for the 

prediction of at-risk students within course environments, and considers two 

categories, “at-risk”, or “not at-risk”. The supervised classification algorithms did not 

take into consideration the impact of unlabelled data on one class (Bouveyron, 2014). 

Mixture model is capable autonomously of discovering unobserved latent engagement 

and assigns these unlabelled data to one of the classes. The mixture model is a powerful 

inference framework that can approximately represent high dimensional data as a 

linear combination of multiple Gaussian components (Bouveyron, 2014)(Moe and 

Fader, 2004). 

To include all information about the learners past behaviour at each interval, we 

combine the student’s behavioural features at the current time t with the student’s 

learning behavioural attributes at the previous time t-1. A total of 30 behavioural 

features are considered across each time interval , denoted as the n-dimensional 

vector 𝑋𝑡(𝑖), producing a sample indexed over each student 𝑆𝑖 , per each completed 

time interval t, where t ∈ [1,6]. Subsequently, we split data into 60% for use with 

model training and 40% for test evaluation. We consider the training dataset as the 

complete form of the variables, consisting of set observations, denoted𝑋𝑡(𝑖), and a set 

of latent variables. The latent variables can be represented by𝐿𝑡(𝑖), whose unknown 

labels can be described as 𝑍𝑡(𝑖) =  [𝑍𝑡,𝑖,1, 𝑍𝑡,𝑖,2, … , 𝑍𝑡,𝑖,𝑚,], such that 𝑍𝑡(𝑖) ∈ {0,1}. 

The class label for the ith observation,𝑋𝑡(𝑖), is given as 𝑌𝑡(𝑖) ∈ {0,1}. For example, if 

the ith student submits the  𝑎𝑡ℎ  assessment at the current time interval t, and his 

previous latent status at time t-1 was active, then 𝑌𝑡(𝑖) = 0, else 1. The Algorithm 4.3 

describes the learning procedure of EDDA model per each interval. To evaluate 

whether the latent engagement influences negatively or positively on the students who 

are likely to drop out from the course, the mixtures models are compared to a set of 

the supervised classifier. 



Algorithm 4.3  Learning Procedure by Mixture Model 

 1:Given the incomplete training dataset {(𝑋1,𝑌1,), … (𝑋𝑁,𝑌𝐶,)} 

     2:  For each 𝑋𝑖,i=1 … N do 

     3:    Initialize model parameters 𝜃 

        4:    Initialize the hidden engagement status  Z 

   5:         Repeat 
6:          Procedure E-Step 

                                  7:          Use the estimate parameters: 𝒯�̂�  , 𝜇�̂� , ∑�̂� 

      8:            Compute initial expected value of latent engagement  𝑍𝑖�̂�by using Eqn. 4.27 

      9:           End Procedure 

10:         Procedure M-Step 

                    11:         Update expected value of latent engagement 𝑍𝑖𝑔 via Eqn. 4.28 and  Eqn. 4.29  

    12:         End Procedure 

13:          Until Converged 

       End do  

 

 

  𝑍𝑖𝑔 =̂
𝒯�̂�𝜃(𝐿𝑖|𝜇�̂�, ∑�̂�) 

∑ 𝒯�̂�𝜃(𝐿𝑖|𝜇�̂�, ∑�̂�)𝐺
𝑔=1

 
(4.27) 

                      𝐿(𝜃𝑔,𝒯𝑔, ∑𝑔,|𝐿𝑖𝑔) =  ∑ 𝑙𝑜𝑔 [∑ 𝒯𝑔𝜃 (𝐿𝑖|𝜇𝑔,∑𝑔)

𝐺

𝑔=1

]

𝑛 

𝑖=1

 

(4.28) 

𝑍𝑖𝑔   {
1 𝑖𝑓 𝐿𝑖 belong to group g

     0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
 

(4.29) 

To gain maximum likelihood for initial estimates parameters (𝒯�̂� , 𝜇�̂�, ∑�̂�  ), the 

function L(𝜃𝑔,𝒯𝑔, ∑𝑔,|𝐿𝑖𝑔) is applied. These estimates are calculated by considering 

latent variable𝐿𝑖 .The expected value of latent variable 𝑍𝑖𝑔 are updated until latent 

variables 𝐿𝑖 assign to component g that matching the highest probability.   

 

4.8.6.3 Evaluating Student Dropout Prediction Model   

To evaluate the performance of the student dropout  predictive model, both ROC 

analysis and confusion matrix values were computed, forming the basis for comparing 

model responses to ground truth labels, over each model. Various performance 

summary metrics are considered, namely accuracy, sensitivity, specificity, the F1 

measure, and the AUC. 



4.9 Chapter Summary  

This chapter has presented a detail explanation of the methodology used in this thesis. 

The detailed analysis of  two MOOCs datasets have been discussed in this chapter. 

The Harvard and OULAD datasets. Harvard dataset contains the behavioural student 

activities for multiple courses while OULAD includes the behavioural student 

activities of a series of assessments within the single course.  

Three definitions of at-risk students have been introduced in this research project. 

The student motivational categories have been evaluated only over Harvard dataset, as 

it is not possible to evaluate the student motivational statues in the OULAD dataset 

since all students were categorized as extrinsically motivated. Moreover, students’ 

latent engagement cannot be inferred in the Harvard dataset because the latent 

variables depend on estimation of student activities in the prior time steps within a 

single course and this does not exist in such a dataset. 

With these three definitions, factors that impact at-risk students from such as, 

students’ performance, students’ motivation status and students’ engagement can be 

investigated. Statistical techniques have been applied to examine the relation between 

learner engagement level and performance in the context of the learner educational 

background and geographical location. As such, descriptive statistics, analysis of 

covariance and the chi-squared test are used to distinguish between failing and 

successful learners.   

We proposed performance and dropout prediction models over each dataset. For each 

predictive model description of data pre-processing, exploratory data analysis, features 

selection, oversample and predictive models evaluations have been provided. The 

mixture Model has been used to predict at-risk student. The mixture model is a useful 

probabilistic model that can be applied to infer the student's latent engagement state 

over time. Mixture model provides advantages over traditional machine learning with 

the capability of automatically identify unlabelled data. The results of experiments are 

displayed in the following chapter. 

  



Chapter 5: Results and Discussion 

5.1 Introduction  

This chapter produces the results of three experiments. The same set of supervised 

machine learning algorithms have been used. These are including Random Forest(RF), 

Decision Tree(Rpart), Feedforward Neural Network with single hidden 

layer(Nnet/NN), Multiple Layer Perceptron(Mlp), with two hidden layers, Gradient 

Boosting Machine (Gbm), Logistic regression(Glm/LR).  

In the first experiment, a set of supervised machine learning algorithms is used to 

predict student performance. Moreover, the unsupervised machine learning is 

employed to explore whether students share similar characteristics.  In the second 

experiment, the association between students’ performance and engagement levels 

will be explored. The impact of temporal students’ performance and motivational 

status  on  at-risk students have been also investigated. 

Various statistical techniques and hypothesis tests are utilised including descriptive 

statistics, analysis of covariance and Chi-squared. As such, the successful students and 

failure students are compared according to descriptive techniques. Machine learning 

is utilised to identify the at-risk student in the early stage. The results of two dropout 

prediction models have been provided in this chapter. 

In the third experiment, the regression and classification are considered to predict 

student performance. The dynamic behaviour features are employed to predict 

students’ assessment scores. The static behavioural features are used to predict final t 

student performance. The purposes of these analyses are to investigate the influence 

of students’ activities on students’ performance. In addition, it could determine which 

interval contains the lowest number of students. 

 Furthermore, the mixture models and six sets of supervised machine learning used 

to identify the students who are at-risk to drop out from the courses. 

5.2 Experiment One Results 

In this section, we present the details results for the first experiment, which includes 

the results of EDA features selection, and machine learning.   

5.2.1   Exploratory Data Analysis Results  

A heat map is applied to visualize the correlation analysis.  Figure 5-1 presents the 



heat map of the Harvard dataset. The cell is colored based on the degree of correlation 

between the variables. The map shows that the attributes (ndays_act ,nchapters, 

Nevents) tend to be positively correlated with a target (certified attribute), showing 

coefficient values of 0.72,0.71 and 0.68 respectively. The remaining behavioral 

features display a weak positive correlation, such as (noforum_post) attributes, 

achieving a value of 0.09. It is notable that the demographic features are not highly 

correlated with student performance. The results of the PCA are shown in Figure 5.2. 

As can be seen, Harvard dataset exhibits high variance. The number of principal 

components was reported as 7 in this dataset. Figure 5.3 visualizes the result of the 

Kaiser method. The figure shows only first component  Comp1  is chosen as an 

optimal component. 

                 

 

Figure 5.1 Heat Map For Harvard dataset 

 

 

 

 

 

 

 

   
 

Figure 5.3 selected component Kaiser Method 

 
 

 

Figure 5.2 PCA for Harvard dataset 



5.2.2 Feature Selection Result  

The results obtained by both RFE and Hill climbing algorithms show that both 

indicate the same subset of features. Figure 5.4 illustrates the result of RFE based on 

accuracy criteria. The features with higher accuracy correspond to the most important 

features. The top five features are "nchapters","nplay_video","ndays_act", "nevents" 

and “explored". 

 

 

  

 

 

 

 
 

 

 

 

 

5.2.3 Student Performance Prediction Model Result  

Supervised machine learning has been applied to two subsets of features, namely all 

dataset features and high weighted features, evaluated using the RFE. During the 

model training stage, cross-validation was used to evaluate the fit of classifiers. Figure 

5.5 and Figure 5.6 show the classifier accuracy of the training set for all models over 

both subsets. The graphs show that both set of features have nearly the same accuracy. 

The RF acquired the best performance over the trained dataset for both sets of features.  

 The results are listed in Tables 5.1 and 5.2 respectively. As can be seen, simulation 

results show all features yield a slightly higher performance than the selected features. 

The Gbm achieves the highest accuracy, with a value of 0.967 in the first set of 

features, while both Mlp and RF gain the best performance, with a value of 0.963 in 

the second set of features. Glm, RF, and Mlp give albeit compelling results, with an 

accuracy of 0.963, 0.962, and 0.958 respectively in the first set of features. Conversely, 

Nnet and Gbm achieved similar accuracy, with values of 0.96 in the second set of 

features. In both sets of features, Rpart shows a lower performance than the other 

classifiers, acquiring values of 0.92.4 and 0.908 respectively. 

 
 

 

Figure 5.4 RFE Feature Ranking for Harvard Dataset 
 
 



Due to the Harvard dataset being imbalanced, an F1–Measure could be an effective 

metric to evaluate the performance of the classifiers. The F1–Measure accounts for 

both precision and recall (Bekkar, Djemaa and Alitouche, 2013). The F1–Measure 

metric produced a relatively similar result to accuracy. Over both sets of features, Glm, 

RF, Mlp, achieves the best F1–measure whereas Rpart obtained the lowest F1–

measure value.  

Specificity (true negative) results over all the classifiers are seen to be slightly higher 

in the second set of features than the first set of features. However, the RF model 

obtains similar specificities values over two sets of features, with a value of 0.974. The 

Nnet gains weakness specificities, with 83% over the first set of features. In contrast, 

the  Nnet model obtains the highest sensitivity with a value of 0.99 over the same set 

of features.  

 In terms of true Positive, all classifier models over both sets of features obtained 

viable sensitivity values 0.99 to 0.91. However, Rpart obtains the lowest range of 

sensitivity, with a true positive percentage of 87% over second set of features. 

The ROC and AUC were considered. Figures 5.7 and 5.8 show ROC for both 

experiments. The curves are shown to converge to roughly the same semblance of the 

plot, indicating similarities of performance across models. 

In order to evaluate the feasibility of the classifier models for both sets of features, 

computational performance was considered. Figure 5.9 shows the speed run time 

measured in seconds for each learning algorithm. In general, the time required to train 

all features is longer than the selected features for all classifier models. The fastest 

algorithm speeds were Glm, and Rpart, which achieved 60 and 120 seconds 

respectively, for the first features while it takes 40 seconds for the second set of 

features.   

The Nnet algorithm is not particularly affected by size of features. As can be seen, 

the average run time in Nnet achieves a value of 720 seconds when selecting all 

features, which slightly declines when selecting the highest-ranking features. 

Conversely, the Mlp model requires greater time to train in entire set of features than 

selected features. There is a gap in the training time between both sets of features for 

RF classifiers, in which approximately a third of the time declined when training high-

ranking features. The RF is the slowest learning algorithm compared with the other 



algorithms. A number of reasons could affect the speed of the RF. The most significant 

one is that it is a learning algorithm based on the bootstrap method (Koch, Konen and 

Hein, 2010). 

 

Table 5.1 Classification Performances for First Set of Features 

 

 
 

 

 

 
 

 

 
 

 

 

Table 5.2 Classification Performances for Second Set of Features 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

                                                                                                        

 
 

 

Classifier Acc. F-Meas. Sens. Spec. AUC 

Mlp 0.958 0.968 0.954 0.966 0.932 

RF 0.962 0.971 0.955 0.974 0.994 

Rpart 0.92.4 0.941 0.912 0.947 0.965 

Glm 0.963 0.971 0.959 0.971 0.995 

Gbm 0.967 0.974 0.965 0.971 0.995 

Nnet 0.94 0.956 0.992 0.836 0.961 

Classifier Acc. F-Meas. Sens. Spec. AUC 

MlP 0.963 0.972 0.952 0.985 0.995 

RF 0.963 0.972 0.957 0.974 0.995 

Rpart 0.908 0.926 0.87 0.981 0.980 

Glm 0.959 0.969 0.96 0.958 0.994 

Gbm 0.96 0.969 0.95 0.979 0.994 

Nnet 0.96 0.969 0.952 0.974 0.994 

 
 
 
 
 
 
 
 

 

 
 

Figure 5.6 Estimation Accuracy Classifier 

Second Set of Features      

Figure 5.5 Estimation Accuracy 

Classifier First Set of Features      



  
           
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

5.2.4 Unsupervised Machine Learning Results  

The results for the fuzzy cluster are provided as follows. The Table 5.3 describes the 

descriptive statistics of the FCM algorithm. As can be seen, the values range of 

DuNnet's Fuzziness Coefficients, was reported at 0.25. According to the reference 

(Noordam et al., 2000) ,if the value of DuNnet's Fuzziness Coefficients is close by 0, 

this indicates that the clusters are very fuzzy clusters. 

  Figure 5.7 Roc Curve First set of Features 
 

 Figure 5.8 Roc Curve Second set of Features 
 

 
Figure 5.9 Comparing Computational Training Time 



The results also reveal that an association membership of observations across all 

clusters is equalised. Table 5.4 lists the number of learners across each cluster, based 

on engagement type. The table shows that only one student fits with cluster 1, while 

cluster 2 and cluster 3 contain the homogeneous data of students who were different 

in their prototypical engagement. The figure 5.10 shows that the cluster’s boundaries 

are determined by the learning process overlap with a two-dimensional representation 

of the feature space. The FCM could provide an explanation in the patterns of students’ 

behaviour. As such, the  results  demonstrate that learners share similar characteristics, 

although they do differ in their engagement categories.  

Table 5.3 Fuzzy C-Means Cluster Result for Harvard dataset 

DuNnet's Fuzziness Coefficients 0.25 

Root Mean Squared Deviations (RMSD) 3.113661 

Mean Absolute Deviation (MAD) 86.83641 

 
 
      
 

 
 
 
 

 

 
 

 

 
 

                                        Figure 5.10 Cluster Plot  

 

 
 

Table 5.4 Learners’ Distribution per Cluster Based on Engagement Type 

Cluster Active No Cert Active Cert Passive-Active Cert Passive-Active  No Cert 

1 0 0 1 0 

2 37 

 
15 2394 292 

3 4639 17 292 418 

 



5.3 Experiment Two Result 

The experiment two results are displayed in the following section. The first case 

study describes the statistical method result. The second study involves machine 

learning. 

5.3.1 Engagement Level of Failing and Successful Learners Results 

Descriptive statistics are computed and stratified according to the demographic 

region. The engagement levels of learning activities are determined. A comparison 

between failure groups with success groups was conducted, whilst accounting for 

geographical location (“Africa”, “Asia”,” Australia”,” America”,” Europe”), in 

conjunction with behavioural features (nplay_video, Nchapters). 

The findings’ results in Tables 5.5 and 5.6 indicate that there is a significant 

difference between the two groups for each course. The results also demonstrate that 

successful learners watch more videos than failure students. Europe dominated the top 

ranking of successful learners with 𝜇( 1376.21,1332.6, 1010.67, 734.74,560.85) for 

“Health Fall”, “Electronics Fall”, “Electronics Spring”,” Computer Science Fall” ,” 

Computer Science Spring” courses, respectively, during  2012 and 2013. However, the 

highest number of successful learners in “Health Spring” were living in America with 

𝜇(338.39). 

As can be seen in appendix 2 .The result also reports that “Health Fall” is considere

d the most watched course, with approximately 355,583 videos viewed by certified st

udents. Conversely, “Health Spring” was the lowest viewed course, in which successf

ul learners viewed only 41,710 videos. Within the successful group of learners, Europ

ean students watched an average 30% of videos in” Health Fall”, whereas the Americ

an learners viewed around 52% of the videos in the “Health Spring” course. 

The African and Australian learners viewed the lowest percentage of videos. In the 

“Computer Science Spring” and “Electronics Fall” course, European learners 

undertook once again the highest percentage of video usage, with approximately 50-

70%, of the video resources used by this group of students. Please refer to Appendix 

6. 

For the the failure group of students, the largest proportion of videos is watched by 

the American participants in all the courses, who used 30-40% of the video resources. 

However, Asian students in “Electronics Spring” and “Electronics Fall” achieved the 



highest proportion, and used around 35% of the videos. In all courses, the lowest rate 

of video usage was reported again for the Australian participants, except in “Health 

Spring” .African students showed the lowest percentage. All of these results can be 

found in the appendix 1 and 6. 

The result shows that there is significant variability between the successful 

participants and the failed learners in respect to the number of chapters read. In general, 

successful learners read learning materials three times more than non-successful 

learners.  For example in America the mean number of chapters read is reported 

as    𝜇 (16.30; 16.94;  14.82,17.94;  16.54,8.39)  in “Electronics Fall”, “Computer 

Science Fall”, “ Health Fall”, “Electronics Spring” , “Computer Science Spring”  and 

“Health Spring” courses for each successful group, in contrast to a reduction by one 

third, as seen in the failure peers 𝜇(6.45,4.68,6.35,6.42,4.81,3.69). 

With respect to the number of chapters read, the most successful students are reported 

again as European, with an average of 40%- 46% of chapters viewed by the group 

across all courses. However, in the “Electronics Spring” the American students 

acquired the highest 𝜇 with a value of 17.94. 

 With regards, to non-successful students, students who engaged in “Health Spring” 

and “Electronics Spring” respectively reported the lowest rate viewed. Participants 

within this group read only a small proportion of the available materials. Moreover, 

the proportion of failure students who engaged in reading chapters rose to 90% in the 

“Computer Science” course, for which the percentage of reading material was greater 

than in the other courses. There was a similar average of chapters read by students who 

enrolled in “Health Fall” and “Electronics Fall” across all courses. The Australian 

students used the least reading material. Again, American participants in “Computer 

Science” courses and “Health Fall” achieved the highest rate, using around 40%-28 

percentage of the Chapters. 

Figures 5.11 and 5.12 show the box plot, in general, the engagement level of the 

successful group is higher than the failure group, over “nplay_video” and “Nchapters”. 

Additionally, the boxplot shows successful learners in fall courses read more learning 

resources than those in the spring courses. Boxplot also shows that most successful 

learners in the “Health Fall” and “Electronics Fall” courses viewed an average of 

1,000-1,200 videos and read approximately 15 chapters. The percentage of resource 



usage drops slightly in “Health Spring” and “Electronics Spring” courses to 1000-400 

videos. As can be seen, the number of videos viewed by the most successful group is 

slightly higher in the “Computer Science Fall” course rather than “Computer Science 

Spring” course. However, the percentage of reading documents is similar across both 

courses. In this study, ANCOVA is used to determine whether the mean of success 

and failure learners are identical, with regards, to their engagement level. The results 

reveal a notable difference between the two groups across all courses. The p-value was 

(p<0.0002) for all behavioural features. Hence, there is a significant difference 

between certified versus failure students. Table 5.7 lists the results of ANCOVA. 

 

   

  



Table 5.5 Descriptive statistics of Analysis Failure Learners 

 

 
Table 5.6 Descriptive Statistics of Analysis Success Learners 

Courses  Mean                                                                                        SD 

“2012 Courses” Africa Asia Australia America Europe  Africa Asia Australia America Europe 

Electronics Fall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nplay_video 

 
876 275.6 155.12 

 

200.81 

 

485.3 

 
 3693 

 

425.5 

 
194.56 

 

280.33 

 

567.1 

 
Nchapters  7.65 7.76 

 

7.875 

 

6.45 

 
8.30 

 
 3.95 

 

4.06 

 

5.19 

 

3.13 

 

4.34 

 
Computer Science 

Fall 

 

 

 

 

 

 

 

 

 

nplay_video 

 
  371.5 

 

213.58 

 
162.11 

 
76.167 202.78  447.6 

 

258.3 

 
287.63 282.96 

 
267.5  

Nchapters 4 .97 5.22 

 
4.67 

 
4.68 5.33  3.57 3.58 3.48 

 

3.20 

 
3.58 

Health Fall  

nplay_video 

 
531.7 

 

333.2 

 

    184.78 

 

311.48 

 

311.48 

 
 859.6 

 

745.9 

 

238.79 

 

611.65 

 

611.6 

 

          Nchapters 8.68 

 

8.125 

 

8.35 

 

6.35 

 

7.84 

 
  4.95 

 

4.75 

 

5.38 

 

4.52 

 

4.81 

 
“2013 Courses” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Electronics Spring 

nplay_video 231.17 144.25 247.21 

 

209.72 

 
220.53    575.10 256.97 202.88 312.27 315.21 

Nchapters 6.36 5.90   6.81 6.42 5.92   4.91 

 
3.60 4.47 3.86  3.41 

Computer science 

spring 

 

 

nplay_video 123.1 134.20 105.14 

 
130.83 140.05    174.90 266.48 173.74 203.19 217.6 

Nchapters 5.08 5.21 4.64 4.81 5.27  3.40 3.53 3.09 3.27 3.46 

 

 Health Spring  

nplay_video 

 
74.54 

 

74.34 

 

92.14 

 

61.12 

 

62.56 

 
   108.36 152.74 

 

118.28 

 

73.68 

 

84.36 

 

Nchapters 
4.59 

 

3.946 

 

2.85 

 

3.69 

 

3.918 

 
 

 2.50 

 

2.13 

 

0.690 

 

1.989 

 

2.175 

 

Course  Mean                                                                                       SD 

  “”2012 Course”   Africa  Asia  Australia  America Europe  Africa Asia Australia America  Europe 

Electronics Fall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nplay_video 

 

383.57 

 

   576.08 

 

62.66 

 

1003.0 

 

1332.6 

 

 399.2 

 

713.88 

 

84.29 

 

1056.6 

 

1496.1 

 
Nchapters 16.34 15.16 14.3 16.30 16.42  2.   09.1 2.12 3.62 1.63 1.64 

Computer Science      

Fall 

 
 

nplay_video 

 
5   538.6

4 

 499.78 197.8 634.12 

 

734.74  579.90 759.37 189.9 

 
509.38 

 

753.15 

 Nchapters 16.41 

 

16.11 

 

16.36 16.94 

 

17.11  2.34 2.62 

 

2.54 

 

1.69 1.61 

Health Fall  

nplay_video 

 

981.7 

 

    717.04 

 

1357.8 

 

1035.5 

 

1376.2 

 

 2007.5 

 

782.4 

 

1725.0 

 

1075.6 

 

1203.2 

 
Nchapters 14.27 

 

14.27 

 

15 14.82 

 

15.07 

 

 1.425 

 

1.44 

 

0.816 

 

1.28 

 

1.24 

 
“2013 Courses” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Electronic Spring  

nplay_video 

 

  616.55 333.50 

 

 

212.66 

 

801.70 

 

1010.67 

 

 704.34 505.91 328.35 

 

609.45 

 

1 1258.61 

Nchapters    17.61 1   16.01 16.43 17.94 17.35  2.25 

 

2.80 2 2.22 2.33 

Computer Science 

Spring 

nplay_video 

Nchapters 

 

nplay_video 

 

287.14   36.06 342.6 472.37 

 

560.85 

 

 258 1.544 

 

 

224.29 

 

410.11 

 

567.89 

 
Nchapters 16.6 1  16.63 16.73 

 

16.54 

 
16.83 

 

 1.40 1.46 1.334 

 

1.56 

 

1.51 

 
Health Spring  

nplay_video 

 

171.0 

 

171.02 

 

157.16 

 

338.39 

 

242.6 

 

 382.93 

 

380.9 

 

71.51 

 

606.72 

 

208.49 

 
Nchapters 

7.78 

 

7.620 

 

8.333 

 

8.39 

 
8.44 

 

 1.999 

 

1.862 

 

1.63 

 

1.32 1.64 

 

 
 
 
 
 
 
 
 



 
 
 

 
 

 
 

Figure 5.11 Mean values of failing and successful learners per video view 



 
 

 
 

 
Figure 5.12 Mean values of failing and successful learners per chapters read 
 



Table 5.7 ANCOVA Result 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

  
  

 
 

 

 

 

 

 

 

 

5.3.2 Educational Level of Failing and Successful Learners Result 

In this section, the distributions of educational level across success and failure 

learners is investigated. Table 5.8 illustrates the Chi-squared result. The DF stands for 

the degrees of freedom and can be defined as the number of independent values that 

vary in the final calculation. The result indicates a p-value of (p < 0.05) for all courses, 

except the “Computer Spring” and “Health Spring” courses, allowing for a rejection 

of the null hypothesis. 

Figures 5.13 and 5.14 show the distribution of the success and failure of learners per 

each course in respect to their educational level. Overall, most completion learners are 

reported as being secondary, bachelors and masters qualified, with a smaller number 

of doctorate learners aiming to earn certification. An average of 20%-30% of learners 

who have bachelors or secondary degrees failed in “Electronic Fall”, “Electronic 

Spring” “Computer Fall”, and “Computer Spring” courses. The students with 

bachelors and masters qualifications dominated the highest rate of non-successful 

Courses DF Sum Sq Mean Sq F value Pr(>F) 

"Electronics Fall"  

1 

 

8.91 

 

8.91 

 

97.92 

 

< 2e-16 nplay_video 

Nchapters 1 115.94 115.94 1273.74 < 2e-16 

Residuals 953 86.75 0.09   

“Computer Science Fall”  
1 

 
29.32 

 
29.32 

 
449.09 

 
<2e-16 nplay_video 

Nchapters 1 74.51 74.51 1141.38 <2e-16 

Residuals 1295 84.54 0.07   

“Health Fall”  
1 

 
19.91 

 
19.91 

 
156.74 

 
<2e-16 nplay_video 

Nchapters 1 60.55 60.55 476.81 <2e-16 

Residuals 910 115.57 0.13   

"Electronics Spring"  

1 

 

11.67 

 

11.67 

 

155.41 

 

< 2e-16 nplay_video 

Nchapters 1 41.42 41.42 551.37 < 2e-16 

Residuals 528 39.66 41.42   

“Computer Science Spring”  

1 

 

18.67 

 

18.67 

 

391.3 

 

< 2e-16 nplay_video 

Nchapters 1 50.99 50.99 1068.4 < 2e-16 

Residuals 1354 64.61 64.61   

“Health Spring”  

1 

 

8.26 

 

8.26 

 

73.780 

 

<2e-16 nplay_video 

Nchapters 1 52.98 52.98 473.017 <2e-16 

Residuals 558 62.49    



learners for the “Health Fall” and “Health Spring” courses respectively. Around 46% 

of certificated learners in the “Electronic Fall” course have a secondary degree, 

whereas the percentage of such students drops to 36%-33percentage in the “Computer 

Spring” and “Computer Fall” courses. Most of the successful learners with a 

bachelor’s degree are shown in “Electronic Fall” course. An average of 44%-

35percentage of certified students had a masters degree in the “Health Fall” and 

“Health spring” courses. Please refer to appendix 8 and 9. 

Figures also show that learners with fewer secondary and doctorate qualifications 

reported the lowest percentage of participation across all courses. An average of 2% 

students with fewer secondary degrees failed in “Electronic Fall” and “Electronic 

Spring” courses, whereas conversely, the percentage of failure students in “Computer 

Fall” and “Computer Spring” courses is 2% higher, with doctorate qualifications 

applicable to approximately 2%-0.5percentage of the student participants. The course 

“Health Fall” has the highest number of doctorate qualifications learners. To 

summarise, the failure group includes double the number of students of the successful 

group per each educational level. As a result, educational levels cannot be considered 

the vital factor that influences student performance. 

         Table 5.8 Results of the Chi-squared Test  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Course χ
2
 statistic df P-value 

Electronics Fall 32.012 4 < 1.902e-06 

Electronics Spring 3.4134 4 0.4912 

Computer Science Fall 34.734 4 <5.268e-07 

Computer Science Spring 64.434 4 <3.386e-13 

Health Fall       23.936 4 <8.227e-05 

Health Spring       1.8792 4 0.758 

 
Figure 5.14 Failing Learners by  

Educational Level 

 
 

Figure 5.13 Successful Learners by  

Educational Level 



5.3.3 Machine Learning Results  

            In the following section, the results of the second case study will be discussed. 

Machine learning has been used as the promising solution for detecting the student 

motivational category and identifying at-risk students early.  

5.3.3.1 Motivational Prediction Model Results  

   The classification results of the motivational predictive model are presented in this 

section. Figure 5.15 compares an estimation of the performance of classifiers over the 

training set. The Figure shows that RF achieves the highest performance, whereas Nnet 

achieved the lowest performance. The simulation results are compared according to 

confusion matrix metrics and ROC curve, as listed in Tables 5.9 and 5.10 .Table 5.9 

summarises the overall accuracy results, showing the best result of 0.802 yielded by 

the RF, whereas Nnet achieved the lowest result, with an average value of 0.734. 

As can be seen in Table 5.10, the class “extrinsic” acquired the best performance for 

all classifiers, the ACC = 87%-90%. Conversely, the “amotivation” class yielded the 

lowest result for all classifiers. However, in the Nnet model the class “intrinsic” gives 

the poorest performance, with a value of 0.71. 

In terms of sensitivity (true positive) analysis, the class “extrinsic” has gained the 

highest sensitivity for all the classifier models. As such, the RF produces the best 

performance, which achieves sensitivity=0.851, whereas Mlp gives the low sensitivity, 

with a value of 0.70. Over the three classes, the Nnet for class “intrinsic”, followed by 

Gbm, which achieve the values of 0.51 and 0.621 respectively, yields the poorest 

sensitivity. 

Table 5.10 shows that specificity (true negative) is higher than sensitivity (true 

positive) across all classifiers. However, the class “amotivation” for Gbm provides 

better sensitivity. Again, the RF obtains the best specificity for the class “extrinsic”, 

which acquired the value of 0.965. All other models over the “extrinsic” label gain 

very good specificity with a range values of 0.91-0.96, whereas the Gbm acquired the 

lowest specificity = 0.764 for the class “amotivation.” 

The ROC analysis was used to choose a decision threshold value for the true and 

false positive rate. Figure 5.16 shows the similarity of performance for all classifier 

models over the class “amotivation” and “extrinsic”, achieving a range of AUC values 



within 83%-93% across all classes. The worst AUC gained by the Rpart model for 

class “intrinsic” gained a value of 0.79. 

Table 5.10 also shows that the F1-Measure for RF has slightly better results than 

another model over the three classifiers, obtaining a value of 0.78, 0.88, 0.76 

respectively. The lowest F1-Measure is reported for class “extrinsic” with a value of 

0.62 in respect to the Nnet model. 

Overall, the results show that there is no significant difference between the accuracy 

of an Mlp,Gbm and the Rpart tree. One possible explanation for the Mlp and Gbm 

slightly superior performance in comparison to the decision tree, is their ability to build 

internal abstractions to aid in the analysis of the complex relationship between the 

input features and the target. The hidden unit in the neural network creates a new 

feature space, which can be used to facilitate class discrimination. In addition, the Gbm 

reweight the week learners by adopt the ensemble methods. However, both Mlp and 

Gbm act as a black box, impeding the interpretation of feature contributions.  

 In contrast, decision trees provide an easily accessible representation, which may be 

used to understand which features have an impact on prediction. In our case, we find 

that “clickstream” followed by “ndays_act” features are the most important for the 

purposes of prediction. 

 

 

 

 

 

 

 

 

 

 
 

 
 
  
 

 

 
 

Figure 5.15 Estimation Accuracy for motivational predictive model 
 



 

Table 5.9 Accuracy Result for Motivational Prediction Model 

 
 
 
 

 

 

 
 

Table 5.10 Classification Performances Result for Motivational Prediction Modal 

 
 
 
 
 
 

Classifier Accuracy 

Mlp 0.755 

RF 0.802 

Rpart 0.746 

Gbm 0.774 

Nnet 0.734 

Classifier       Performance Metric 

                   Mlp    ACC. F-Meas. Sens. Spec. AUC          

               amotivation     

               extrinsic                                                                         
    intrinsic    

0.756 

0.878 
0.814 

0.705 

0.847 
0.714 

0.702     

0.819 
0.750 

0.809 

0.938 
0.879 

0.920 

0.929 
0.837 

                       RF ACC. F-Meas. Sens. Spec. AUC 

               amotivation     
             extrinsic    

              intrinsic    

0.804 

0.908 

0.845 

0.761 

0.887 

0.757 

0.754 
0.851 

0.809 

0.855 

0.965 

0.882 

0.929 

0.939 

0.866 

                   Rpart ACC. F-Meas. Sens. Spec. AUC 

                  amotivation     
               extrinsic   

               intrinsic    

0.741 
0.880 

0.817 

0.6815 
0.8426 

0.7136 

0.641 
0.844 

0.775 

  0.841 
  0.915 

  0.860 

 0.884 
0.865 

0.796 

                    Gbm ACC. F-Meas. Sens. Spec. AUC 

             amotivation     
              extrinsic   

               intrinsic    

0.791 
0.895 

0.774 

0.752 
0.870 

0.679 

0.819 
0.837 

0.621 

0.764 
0.954 

0.928 

0.932 
0.938 

0.871 

                    Nnet ACC. F-Meas. Sens. Spec. AUC 

                amotivation     
              extrinsic   

               intrinsic    

0.844           
0.879 

0.711 

0.742 
0.831 

0.621 

0.867 
0.877 

0.517 

0.821 
0.882 

0.904 

0.931 
0.936 

0.853 



 
     a) Mlp Classifier 

 
        b) RF Classifier 

 
    c) Rpart Classifier 

 
        d) Gbm Classifier 

 
     e) Nnet Classifier 

 
 

 
 
 

5.3.3.2 Dropout Prediction Model Result Based on Student Performance  

In this analysis the problem is followed by binary classification, wherein dropout 

students represented the positive class, whilst non-dropout students are assigned to the 

negative class. The empirical results compare the classifier models over two sets of 

Figure 5.16 Roc Curve for motivational predictive model        
 



features, where students’ demographic attributes and grades are considered in the first 

set of features, and student grade is eliminated in the second set of features.  

Tables 5.11 and 5.12 show the simulation results obtained for each classifier 

respectively, over both sets of variables. As can be seen, accuracy is low for all 

classifiers over both sets of features. The Gbm acquired the highest accuracy in the 

first set of features, with a value of 0.53, while Glm offers the best accuracy in the 

second set of features, where a value is obtained of 0.57. The Rpart gives the lowest 

accuracy in both sets of features, achieving values of 0.332 and 0.189 respectively. 

F-Measure is also used in this case study, and gives a better indication of the classifier 

model than the other performance metrics. The findings that result from the F-Measure 

are similar in accuracy. Gbm and Glm show the highest values for both sets of features, 

while Rpart achieves the poorest result.   

Sensitivity (true positives) and specificity (true negatives) acquire the low values for 

all classifiers for both sets of features, with an approximate range of values from 0.40-

.0.59. However, Rpart yields the highest specificity, with values of 0.72, 0.87 

respectively in contrast with sensitivity where the lowest one   is achieved by Rpart. 

The Receiver Operator Characteristic (ROC) and Area Under Curve (AUC) were also 

considered. Figures 5.17 and 5.18   show the ROC results for both sets of variables. 

The curves are shown to converge to roughly the same poor result on the plot, 

indicating a similarity in performance across models in both features sets, resulting in 

values of around 43% and 53%. 

In general, not all the classifier models performed well. The poor results 

demonstrated that demographic features are incapable of distinguishing withdrawal 

and non-withdrawal students, due to such features having weak associations with the 

target class. The results reveal that behavioural features can sufficiently differentiate 

students who are at-risk of dropout. 

  



Table 5.11 Classification Performances for dropout Model First Set of Features 

 
 

 
 

 

 

 

 
 

 

  

Table 5.12 Classification Performances for dropout Model Second Set of Features 

 
 

 

 
 

 

Classifier Acc. F-Meas. Sens. Spec. AUC 

Mlp 0.502 0.637 0.497 0.538 0.458 

RF 0.511 0.645 0.504 0.565 0.435 

Rpart 0.332 0.424 0.279 0.72 0.488 

Glm 0.481 0.645 0.509 0.489 0.501 

Gbm 0.533 0.672 0.544 0.446 0.466 

Nnet 0.497 0.633 0.493 0.522 0.456 

Classifier Acc. F-Meas. Sens. Spec. AUC 

Mlp 0.537 0.675 0.541 0.501 0.504 

RF 0.498 0.636 0.492 0.547 0.464 

Rpart 0.189 0.185 0.104 0.878 0.471 

Glm 0.571 0.712 0.59 0.413 0.535 

Gbm 0.447 0.58 0.43 0.581 0.489 

Nnet 0.486 0.625 0.49 0.457 0.525 

 
Figure 5.17 Roc First Set of Features                         

 
Figure 5.18 Roc Second Set of Features 



 

5.3.3.3 Dropout prediction Model based on student motivational status Result 

This section presents the results for the predictive model, according to the second 

definition of at-risk students. The table 5.13 shows the correlation analysis between 

the features and the target class. The results demonstrate a strong association between 

the behaviorur features at the second time interval with the target. The “Nchapters” 

acquired the coefficient value of 0.59, and conversely has a weak correlation with 

students’ behavioral attributes at the first-time interval with the response variable. 

The good relation between students’ motivational status at the first time interval with 

the target at-risk students achieves a value of 0.34. The significant result indicates that 

student interventional motivation can be used as a robust predictor to estimate students 

who are at-risk from the dropping out in future courses.  

To gain deeper insight, the statistical analysis has been applied. The result of 

statistical analysis is display in appendix 7. In all courses, the highest percentage of 

retention learners in the following course were unmotivated in the prior course. In 

contrast to students who were shown intrinsically and extrinsically motivated in the 

previous course, they were withdrawn from the course within a week. The appendix 7 

shows that only 31% of amotivation students withdraw in the following course while 

the proportion of withdrawal students sharply increased for intrinsically and 

extrinsically motivated. It is noticeable that 84% -77% of intrinsically motivated and 

extrinsically motivated drop out in the next course. 

The empirical results over each classifier have been compared in respect to their 

performance metrics, including accuracy, specificity and sensitivity, precision, recall, 

and AUC. Table 5.14 shows the results obtained for each classifier, respectively. As 

can be seen, the Nnet model shows the highest level of accuracy in comparison to other 

models, with the value of 0. 909, followed by RF. Both Mlp and Glm occupy the third 

highest accuracy models, having values of 0.870, 0.879 respectively. The Gbm and 

Rpart are considered the weaker classifiers, and achieve the lowest range of 

performance, with accuracies of 0.839 and 0.811, respectively. 

 Sensitivity is seen to be slightly higher than specificity. In particular, models Nnet, 

RF,Mlp and Glm obtained average values of 95%, 91%, and 88% respectively. 

Conversely, Rpart and Gbm achieve the lowest sensitivity. Rpart and Glm gained the 



highest specificity with average values of 0.87. The worst specificity is yielded by RF. 

Figure 5.19 shows ROC for the predictive model. The results indicate a similarity of 

performance across all classifiers. 

 

 

 

 

 

  

   
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Table 5.14 Classification Performances for dropout Prediction Model 
 
                                         
 
 
 

Classifier Acc. F-Meas. Sens. Spec. AUC 

Mlp 0.870 0.895 0.881 0.852 0.928 

RF 0.888 0.911 0.919 0.837 0. 941 

Rpart 0.811 0.836 0.770 0.878 0.906 

Glm 0.879 0.901 0.883 0.873 0.937 

Gbm 0.839 0.865 0.822 0.867 0.944 

Nnet 0.909 0.9503 0.9503 0.8421 0.933 

Table 5.13 Correlation Analysis 

According to Second at- risk Student 

Model 

 
 
 
 
 

Features Correlation Coefficient 
YOB 0.03 

Gender 0.07 
LOE_DI 0.01 

final_cc_cname_DI -0.04 
ndays_act/t1 0.10 

Nevent/t1 0.06 
nplay_video /t1 0.01 

Nchapters/t1 0.15 
nforum_post/t1 0.01 

Explored/t1 0.02 
motivational  statue/t1 0.34 

ndays_act/t2 0.01 
Nevent/t2 -0.34 

nplay_video /t2 -0.32 
Nchapters/t2 -0.59 

nforum_post/t2 -0.10 
Explored/t2 -0.30 
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                  Figure 5.19. Roc Curve for Second Dropout Prediction Model 
        

5.4 Experiment Three Results 

 The results relevant to the OULAD dataset is illustrated in the following section. 

The EDA results, features selection in addition to simulation results of prediction 

models have presented in next section.  

5.4.1 Exploratory Data Analysis Results 

The correlation analysis between the extracted behavioural features and the final 

student results is visualized in figure 5.20. The map shows a positive relationship 

between the behavioural features and the “final_result” class. The features 

“session.quiz” and “sum_click.quiz” have the highest degree of relationship, with the 

target, achieving a coefficient value 0.69 and 0.62 respectively. This is followed by 

“session.homepage” gaining a value of 0.51. The positive correlation with 

“final_result” is shown in other behavioural features. The approximate range of 

coefficient values are 0.20-0.36. 

The weakest association of behavioural features with the target is acquired by 

“session.sharedsubpage” and “sum_click.sharedsubpage”. It is notable that none of the 

feature has negative correlations with a given target. The positive correlation of 

behavioural features with target could demonstrate that our approach of feature 

extraction is sufficiently robust.The map in Figure 5.21 shows that there is a weak 

positive relationship between the demographic features and the “final_result”. The 

attributes “gender” and “region” have a negative correlation with the target. In spite of 

the Harvard dataset and OULAD database having different structures, the behavioural 

features obtain the highest degree of correlation with learning outcome, while the 

demographic features yield low values for their relationship with student performance.  



The OULAD dataset exhibits low variance. The number of Principal components 

was reported as 10 in this dataset. The Figure 5.23 describes the results of the Kaiser 

method. The Figure shows that nine components are chosen as the optimal 

components. 

 
  

 Figure 5.20 Heat Map for Behavioral Features OULAD Dataset 

 
 

  Figure 5.21 Heat Map for Demographic Features OULAD Dataset 

 

  



 
 

Figure 5.22 PCA for OULAD Dataset 
 

 

 

5.4.2 Features Selection Results  

RFE are considered only for regression analysis, the results of RFE across six 

intervals are listed in table 5.15 and Figure 5.24. The figure displays the results of the 

RFE, based on RMSE criteria. The results reveal that students’ assessments grades 

during the previous slice occupy the position of highest top features across all intervals.  

“session.quiz/T6”,“sum_click.quiz/T5”,“session.homepage/T6”,“sum_click 

,homepage/T6” are the top five features for intervals 5 and 6, respectively. The 

“session.homepage” and “sum_click.homepage” of the previous and current time slice 

are the most important features across all intervals. It also appears that 

“sum_click.forumng” and “session.forumng” have been selected as top features, only 

for interval 1 and 2. In general, the activities (“homepage”,”quiz”,” subpage”) robustly 

predicted the students’ grades over all time intervals.   

  

Figure 5.23 select PCA with Kaiser 

Method 
 



Table 5.15 High Ranking Features OULAD Dataset across Six Time Intervals 

 

 
 

Interval 1 
 

Interval 2 
 

Interval 3 

 
Interval 4 

 
Interval 5 

 

 
Interval 6 

Figure 5.24 High Ranking Features OULAD Dataset across Six Time Intervals  

Interval Five Top Features 

Interval 1  “session.homepage/T2”    

   “sum_click.forumng/T2” 

“session.resource/T2” 

“session.forumng/T2” 
“sum_click.subpage.T2” 

Interval 2  “Score.Assessment 1” 

“session.homepage/T3” 

“session.quiz/T3” 

“session.homepage /T2” 

“sum_click.forumng/T3 

Interval 3 “Score. Assessment 2”  

“sum_click.homepage/T3”  

“sum_click.subpage/T3” 

“session.homepage/T3” 

“session. subpage/T3” 

Interval 4   “score. Assessment 3”  

  “sum_click.quiz/T5”,  

  “session.quiz/T5”,  

 “sum_click.homepage/T5”,  
 “session.homepage/T5” 

Interval 5   “score. Assessment 4”,  

 “session.quiz/T6”, 

 “sum_click.quiz/T5”, 

 “session.quiz/T5” 

“ sum_click.homepage/T6” 

Interval 6 “Score. Assessment 5”, 

“session.homepage/T6”,  

“sum_click.homepage/T6”,  

“sum_click.homepage/T7” 

 “ session .homepage/T7” 



5.4.3 Students Assessments Grades Predication Model Results  

The regression analysis has been applied to predict students’ assessment grades over 

six time intervals. Two sets of features are considered. In the first set of features, 

dynamic behavioural features and student performance are used as predictors, while 

only the top five features are employed in the second set of features. 

The empirical results from the first set of features have acquired slightly better 

performance than the selected features. However, the Mlp and Rpart in the second set 

of features offer better results. The RMSE metric measures the difference between the 

predicted values and the actual observations. The lowest RSME value demonstrates 

better performance of the predictive model. In terms of the first set of features, RF 

obtains the best RMSE achieving values of 8.131 over interval 3. For the second set of 

features, the Gbm model gives the best RMSE, with a value of 11.230 over the interval 

1. 

As can be seen, for both set of features the Gbm models over interval 1, 2, 4, 5, and 

6 give the best RMSE, with averages values of 11-22. RF occupies the second best 

model. The RMSE increases by 3% in Glm across all intervals and acquired an average 

value of 11-23. Mlp acquired the worst RMSE, with a value of 44.904 and 39.215 at 

interval 6 for both sets of features. In general, Mlp achieves the poorest RSME across 

all intervals for both sets of features. 

The  𝑅2is the percentage of variation in the predicted variables used to evaluate the 

goodness of fit predictive model into the regression line. This is called the coefficient 

of determination. The best  𝑅2 was obtained by RF, which gives the values of 0.937 

and 0.853 at interval 3 and interval 4 for the first and second set of features 

respectively. Again, for both sets of features the RF acquired the best  𝑅2across all 

other intervals, with approximate range values of 0.85-0.64. All models over interval 

1 for the second set of features gain poor  𝑅2 results, with an average value of 0.170-

0.274.  

 

 

 

 

 

 



 

 

 

5.4.4 Final Students Performance Prediction Model Results   

The classification analysis results from the first case study are presented as follows. 

As can be seen in a table 5.17 all classifiers obtain similar ideal results, the highest 

performance achieved by Gbm with the value of 0.868 while RF, Nnet producing the 

value of 0.854, achieved the lowest accuracy. 

As can be seen in table 5.18, the class “Withdrawn” acquired the best accuracy of all 

Classifiers reaching an average value of 0.99 whereas the class “Fail” gives the lowest 

performance, with approximate range of accuracy between 0.76-0.80. 

 

Interval  Model  RMSE  𝑅2 

Interval 

1 

Mlp 18.162 0.483 

RF 11.395 0.790 

Rpart 11.647 0.780 

Glm 11.382 0.790 

Gbm 11.230 0.204 

Interval 

2 

Mlp 29.517 0.427 

RF 18.221 0.640 

Rpart 22.400 0.459 

Glm 19.116 0.604 

Gbm 18.145 0.644 

Interval 

3 

Mlp 20.564 0.641 

RF 8.131 0.937 

Rpart 13.760 0.18 

Glm 15.376 0.773 

Gbm 11.506 0.873 

Interval 

4 

Mlp 18.205 0.768 

RF 13.904 0.853 

Rpart 16.264 0.799 

Glm 15.354 0.821 

Gbm 13.892 0.853 

Interval 

5 

Mlp 29.665 0.428 

RF 19.900 0.716 

Rpart 25.001 0.553 

Glm 21.708 0.663 

Gbm 19.871 0.718 

Interval 

6 

Mlp 44.904 0.147 

RF 21.529 0.688 

Rpart 25.259 0.569 

Glm 22.058 0.673 

Gbm 21.425 0.691 

 

 

 

Interval   Model  RMSE  𝑅2 

Interval 

1 

Mlp 24.324  0.170 

RF 21.366 0.272 

Rpart 22.457 0.198 

Glm 22.344 0.204 

Gbm 11.230 0.274 

Interval 
2 

Mlp 26.374 0.558 

RF 18.062 0.643 

Rpart 22.628 0.444 

Glm 18.831 0.612 

Gbm 18.321 0.634 

Interval 
3 

Mlp 27.574 0.405 

RF 16.225 0.764 

Rpart 24.304 0.434 

Glm 23.106 0.489 

Gbm 22.600 0.512 

Interval 

4 

Mlp 16.733 0.790 

RF 13.905 0.853 

Rpart 16.264 0.799 

Glm 15.787 0.811 

Gbm 14.074 0.849 

Interval 

5 

Mlp 26.271 0.54 

RF 19.259 0.737 

Rpart 25.001 0.553 

Glm 21.831 0.659 

Gbm 19.478 0.728 

Interval 

6 

MLP 39.215 0.067 

RF 22.794 0.650 

Rpart 25.919 0.546 

Glm 23.332 0.633 

Gbm 22.761 0.650 

 

Table 5.16 Regression Result for Predication Students’ Assessments Grades Model 

  
 

All Features Set Selected Features 



The sensitivities are high over all classifiers for class “Withdraw” and “Pass”. The 

best sensitivity achieved by Rpart reported the values of 0.99 and 0.92. The class “Fail” 

gained very low sensitivities across all classifiers. This is expected since the number 

of records with target class “Fail” are limited hence, the algorithm cannot learn well. 

 With regards, to true negative instance, the Gbm and Nnet produce the best result, 

specificity =0.998 for class “Withdrawn”. The poorest specificity gained by Rpart for 

class “Pass” obtained the values of   0.81. As can be seen, the best F1-Measure gained 

by Gbm yielded value of 0.993, 0.864, 0.772, for the class “Withdrawn”,” Pass” and 

“Fail” respectively. The lowest F1-Measure is shown for Rpart with the value of 0.67 

over class “Fail”. 

ROC is used in this study to choose a decision threshold value for the true and false 

positive rate across each class. Figure 5.26 lists ROC curves. Overall, a range of AUC 

values  between 0.99-0.82 for all classes was obtained. 

As previously mentioned, the demographic behavioural and temporal features in 

classification analysis were combined. In this model, the total numbers of variables are 

35. As a result, the predictive model may suffer from the overfitting issue.  In this case, 

we compare classifiers results in terms of train and test error, which could give an 

indication of the overfitting problem. Figure 5.25 displays the result of overfitting 

evaluation. It can be observed that training and test error are low for all classifiers.  

The lowest test and train error was obtained by Gbm .The RF ,Nnet obtained a similar 

test error with an approximate percentage of 14% .The training errors are slightly 

higher in  these classifiers. The largest error was acquired by the Mlp model. Although, 

all models  fit well for most classifers  , Mlp  suffers from overfitting. 

Table 5.17 Accuracy Result for Final Students Performance Model 

 
 

 

 
 

 

 

 
 

 

  

Classifier Accuracy 

Mlp 0.858        

RF 0.854           

Rpart                        0.862          

Gbm 0.868         

Nnet 0.854           



Table 5.18 Results for Final Students Performance Prediction Model 

 
            

 

 
Figure 5.25 Comparing Computational Training and Test Time 
 

Classifier                    Performance Metrics 

   MLP ACC. F-Meas. Sens. Spec. AUC 

         Pass 

        Fail 

       Withdrawn 

0.858 

0.782 

0.993 

0.850 

0.690 

0.992 

0.892 

0.631 

0.989 

0.824 

0.932 

0.996 

0.916 

0.886 

0.996 

 

   RF ACC. F-Meas. Sens. Spec. AUC 

         Pass        

 Fail    

        Withdrawn         

0.855  

0.808 

0.995                

0.843 

0.713  

0.993                 

0.844 

0.712 

0.991                  

0.866 

0.904  

0.990               

0.924 

0.892 

0.995 

 Rpart ACC. F-Meas. Sens. Spec. AUC 

        Pass        

Fail    

        Withdrawn    

0.866 

0.767 

0.997                  

0.865      

0.671   

0.991  

0.923 

0.582 

0.996 

  0.810 

   0.952   

   0.992      

0.867 

0.821 

0.997 

 Gbm ACC. F-Meas. Sens. Spec. AUC 

        Pass        

Fail    

        Withdrawn         

0.872  

0.802 

0.994                  

0.864   

0.722  

0.993                

0.903 

0.665 

0.991                  

0.841  

0.939   

0.998              

0.925 

0.900 

0.997 

 

 Nnet ACC. F-Meas. Sens. Spec. AUC 

         Pass        
Fail    

        Withdrawn        

0.856 
0 .795 

0.994 

0.8471       
0.7045   

0.9934           

0.870 
0.670   

0.991               

0.843 
0.920 

0.998             

0.925 
0.900 

0.998 



          
a) Mlp  Classifier 

   

               
b)RF Classifier 

 
      c)Rpart Classifier 
 

 
           d)Gbm Classifier 

 
      e)Nnet Classifier 

Figure 5.26 Roc Curve for Final Students Performance Prediction Model 
 

 
 



 

5.4.5 Dropout Prediction Model based on Latent Engagement Result  

Model responses from the experimental procedure were obtained for the classifiers 

under study, namely the EDDA, Mlp, RF, Rpart, Gbm ,Glm and Nnet classifiers, 

designed within the context of a discrete binary outcome. Ground truth labels were 

defined as "Withdrawal" and "No withdrawal" respectively. Different model types are 

used to represent the clusters. The best model is selected for each interval based on 

cross-validation error, and test error. As can be seen in table 5.21, some models do not 

fit the data in interval 1, 3, 5 and 6. 

The table 5.19 list the result of EDDA model over six intervals. The results indicate 

that the number of estimated parameters varies significantly over time. However, a 

similar number of latent variables were found to be present among intervals 3 and 5. 

A possible interpretation is that the student’s hidden status of engagement could vary 

at the beginning and end of the course while in the middle and the end of the course it 

was stable. Although, the estimated numbers of hidden variables are approximately 

similar for intervals 1 and 2, the clusters per each EDDA model are different in shapes 

and sizes for both intervals. 

The highest BIC value was achieved at interval 2 with a value of -406158.9. As a 

result, the strongest and best model was obtained at interval 2 while weakness EDDA 

was acquired by interval 1. The latent engagement affects 10% of students at interval 

4 while only 1% of students are affected by such engagement at interval 1. Table 5.20 

give more detail in respect to volume, shape and orientation of clusters.it is clear that 

model type was EEI across intervals 3 and 5. It means clusters in both models are the 

same sizes and shapes but have a different orientation. BIC value of EDDA models 

are reported -978205.4 and -957081.5 respectively. 

F1-Measures are suitable summary computations in the presence of imbalanced class 

data, as is the case in the current study. In general, unbalanced data can result in 

misclassification through biased selection of the majority class.The empirical results 

in table 5.22  shows that the highest F1-Measure is acquired by RF followed by Mlp, 

Rpart , and Gbm classifiers, with values of 0.991 ,0.987 across interval 3. In intervals 

1 and 4, the Rpart model achieved the highest F1-Measure, obtaining average values 

of 0.898 and 0.965. The EDDA occupied the second best classifier gaining range 

values of 0.840 -0.958. The  EDDA classifier obtained a moderate to the similar range 



of accuracy with F1-Measure values of 0.899-0.923 across interval 5 and interval 6. 

The lowest F1-Measure is seen at interval 3 resulting from the EDDA classifier, 

yielding a value of  0.778. 

Considering the sensitivities outcomes, the RF classifier achieves the highest value 

at interval 3 with a value of 0.987. Although the good sensitivity is produced by the 

EDDA model compared with the other classifiers over intervals 2,3,4,5 and 6, with 

average values of 0.864 -0.941, the EDDA model acquired low sensitivity over interval 

1. The RF model achieved the lowest sensitivity at interval 1 yielding values of 0.715. 

All classifier models obtained a good specificity values over all intervals ranging 

over between 0.98 -0.81. However, Mlp, Nnet and EDDA models present slightly 

lower specificity with values of 0.786, 0.710 respectively over interval 1. Rpart obtains 

the lowest range of specificity at interval 1 with a true negative percentage of 66%. 

ROC is used in this study to select a decision threshold value for the trade-off between 

true and false positive rates across each time interval. Figure 5.27 lists the ROC curves 

respectively. Overall, the range of AUC values falls within 0. 99-0. 0.87 for intervals 

2, to 6. Conversely, intervals 1 acquired the lowest AUC values, yielding 0.88-0.77 

respectively. 

Table 5.19 EDDA Model Result 

 

                                 

                                          Table 5.20 EDDA Model Type                  
 
 
 
 
 
 
 
 
 
 
 
 

 

Interval No. Training 

Example 

No. Estimate 

Parmeters 

Log. likelihood     BIC Model Type 

Interval 1 1225 1130 -412321.23 -1080271.2 VII 

Interval 2 2303 1023 -199119.4 -406158.9   EEV 

Interval 3 4683 87 -488735.1 -978205.4   EEI 

Interval 4 4473 462 -372407.1 -748697.7 EEE 

Interval 5 4788 84 -478184.8  -957081.5  EEI 

Interval 6 938 53 -317146 -634654.6 EII 

Model Type Volume Shape Orientation 

        VII Variable  Equal NA 

EEV Equal  Equal Variable 

EEI Equal  Equal  Coordinate axes 

EEE Equal  Equal  Equal  

EII Equal  Equal  NA 



 

Table 5.21   EDDA Model Type According to Test Error 
 
 
 
 
 

   
  

Interval  Model _Type  BIC 10-fold CV    Test error 

Interval 1 VVV -98735.7 0.5654   0.10732 

 VII -1080271.2   0.5314   0.10774 

EEI -250721.9   0.2604   0.34805 

VEI -232015.3   0.3069   0.44051 

EVI -247679.1   0.2604   0.36631 

VVI -228184.0 0.2832   0.39517 

EEE -126804.7   0.2375   0.35041 

Interval 2 EII -1837857.0   0.4355  0.2067 

 VII -1832638.7   0.4355 0.2067 

EEI -490586.8   0.1841   0.2144 

VEI -457386.4   0.2353   0.2987 

EVI -481823.7   0.2075   0.2589 

VVI -443390.9   0.2179   0.2712 

EVE -408269.0   0.1489   0.2038 

VEE -380239.9   0.2205   0.2729 

VVE -379471.8   0.2092   0.2530 

EEV -406158.9   0.1406   0.1915 

VEV -370181.3   0.1706   0.2015 

EVV -403886.3   0.1636   0.2255 

VVV -364961.3   0.1793   0.2044 

Interval 3 EII -3482765.8   0.5016   0.2392 

VII -3423472.8   0.5443   0.2392 

EEI -978205.4   0.1129   0.1391 

VEI -907554.8 0.125    0.16950 

Interval 4 EII -3246627.7 0.4386 0.3688 

 VII -3241475.4 0.4379 0.3688 

EEI -893190.1 0.0990 0.1276 

VEI -819512.1 0.1041 0.1165 

EVI -882401.3 0.0836 0.0772 

VVI -788149.7 0.0561 0.0573 

EEE -748697.7 0.0507 0.0544 

EVE -738797.7 0.0672 0.0603 

VEE -672752.1 0.1019 0.1329 

VVE -663385.8 0.0666 0.0644 

EEV -737424.3 0.0684 0.0761 

VEV -640366.4 0.0771 0.0930 

EVV -732692.3 0.0753 0.0889 

VVV -625234.9 0.0751 0.0913 

Interval 5 VII -3389710.4   0.5524   0.4121 

 EEI -957081.5   0.1856   0.1902 
 VEI -760913.8   0.2280   0.2330 

Interval 6 EII -634654.6 0.3752   0.1247 

 VII -632052.7   0.3827   0.1247 

EEI -144698.8   0.1567 0.1588 



138 
 

 Table 5.22 Classification Performances for Dropout Prediction Model 

 

 

Intervals  Performance Metrics 

 

Interval 1 

 

Classifiers    ACC. F-Meas. Sens Spec AUC          

EDDA 0.7462 0.840 0.750 0.710 0.775 

MLP 0.7473 0.838    0.742 0.786    0.821 

RF 0.7326 0.826   0.715   0.874    0.875 

Rpart 0.8281 0.898 0.846      0.664 0.810 

Gbm 0.8814 0.8397 0.736 0.841 0.881 

Glm 0.7485 0.8394 0.736    0.847    0.861 

Nnet 0.7473 0.8399 0.742        0.786   0.822 

 

Interval 2 

EDDA 0.8576 0.905 0.864   0.832      0.881 

Mlp 0.8576      0.905 0.856      0.861        0.891 

RF 0.8518    0.900   0.843      0.883    0.902 

Rpart 0.8793      0.881 0.892   0.827   0.871 

Gbm 0.8442        0.894   0.833       0.883        0.926 

Glm 0.9155 0.584        0.909 0.915 0.925 

Nnet 0.8412        0.894       0.849        0.810          0.907 

Interval 3 EDDA 0.9354      0.778  0.894    0.941  0.961 

Mlp 0.9806     0.987    0.981       0.977       0.987 

RF 0.9871      0.991      0.987    0.984  0.994 

Rpart 0.9806         0.987   0.981      0.979 0.980 

Gbm 0.9803 0.987     0.979     0.983      0.993 

Glm 0.9776   0.985         0.976      0.980     0.987 

Nnet 0.9786      0.985  0.978     0.977        0.990 

Interval 4 EDDA 0.9479           0.958   0.941   0.958 0.983 

Mlp 0.9451  0.955    0.936      0.958 0.980 

RF 0.9485     0.958  0.931 0.977   0.988 

Rpart 0.9573       0.965    0.954     0.961    0.990 

Gbm 0.9567    0.965 0.953     0.961      0.990 

Glm 0.9561   0.964 0.949     0.966    0.986 

Nnet 0.9438 0.955 0.949     0.934    0.968 

Interval 5 EDDA 0.8788 0.899 0.921   0.819        0.906 

Mlp 0.8841          0.907  0.967 0.765    0.925 

RF 0.9093           0.923      0.934   0.874 0.929 

Rpart 0.8811    0.901    0.927      0.816      0.873 

Gbm 0.9204       0.932   0.931 0.905      0.947 

Glm 0.9093   0.922   0.922 0.891 0.942 

Nnet 0.911     0.923   0.915     0.905 0.945 

Interval 6 EDDA 0.8743       0.923         0.869       0.906   0.913 

Mlp 0.9123    0.948    0.920     0.851       0.934 

RF 0.9396     0.964     0.938     0.945      0.973 

Rpart 0.9123 0.948   0.922    0.843    0.924 

Gbm 0.9045   0.943     0.909       0.867      0.937 

Glm 0.8772     0.916         0.871   0.914       0.916       

Nnet 0.8626   0.911 0.857     0.898      0.907 



     
         a) Interval 1 

 
          b)Interval 2 

 
c)Intervel3 

 
       d)Interval 4 

 
e)Interval 5 

 
f)Interval 6 

 

Figure 5.27 Roc Curve for Dropout Prediction Model  

 

 

 

 

 

 

      



5.5 Results Discussion  

The supervised machine learning utilized to predict learner outcome in Harvard 

courses. In order to evaluate which feature has a greater influence on the student 

outcome in an online setting, the FRE is used to ascertain the highest rank features. 

The results of the FRE illustrate that the behavioural 

features:”nchapters","nplay_video","ndays_act","nevents" and  "explored" are the 

most important features. The machine learning results for all features and selected 

features are compared, whilst observing a number of similarities between them in 

terms of performance metrics. The results of the F1–Measure show that Gbm and RF 

obtain the highest performance for the first and second set of features respectively, 

whereas Rpart acquires the lowest performance over both sets of features. 

The main reason that Gbm and RF achieved the highest performance is that both 

classifiers are ensemble machine learning models that are capable of reducing the 

variance and decreasing the bias of the dataset. In particular, the gradient boosting 

advantages a multiplicity of weak base classifiers to form a strong classifier with 

adaptive re-weighting of the data during the iterative learning process. The RF model 

creates many classification trees during the learning process; each node of the tree 

randomly selects the most important features, and will produce its own classification 

result. The RF classifier uses the majority of votes to predict the final result 

(Bharathidason and Venkataeswaran, 2014). 

Nevertheless, the Gbm acquired good performance in the second set of features. The 

RF achieved the best performance, since RF is capable of ascertaining the best 

behavioral features that discern the positive and negative class through adopting a 

voting mechanism (Ganjisaffar, Caruana and Lopes, 2011). 

Although both sets of features approximately acquire similar accuracy, there is a 

considerable difference in their computational complexity. The fastest models were 

LG and the slowest models were RF. The RF was the lowest algorithm - the time 

required to train RF in the second set of features is less than that of the second fastest 

model in the first set of features. 

The unsupervised machine learning is used to examine the whether students who are 

different in their engagement types, they are similar in their achievement. The results 



show that students have the similar characteristic although, they engage in different 

activities 

The descriptive statistical analysis is utilized to compare the successful learning with 

the failing   in respect to geographical location. The result shows that Europe and Asia 

rank the highest in terms of learner success rates, whereas the highest ratio of failure 

groups is distributed across various regions. Due to the availability of advanced 

technological integration of universities around the world, students in any region may 

interact with courses through the internet. However, language is considered a barrier 

that could affect student performance. The course is delivered in English; hence, 

second language learners might be less motivated to exchange knowledge with other 

participants. Geographical location may not be considered a crucial factor that could 

significantly affect student performance in online courses. Student performance could 

be more heavily associated with the engagement levels of students. Specifically, it is 

more relevant to the number of chapters read by students. 

A Chi-squared test was applied to investigate the presence of a significant difference 

in the education level of learners between the success and failure groups. The results 

reveal that the distribution of students according to their educational levels is 

significantly different. The lower qualified students show the largest percentage of 

successful completion learners in some courses, due to how these courses are designed 

to serve students who had less knowledge in a particular topic. An analysis of such 

descriptive statistics could be conducted by enhancing learning resources through the 

early identification of failure students 

As discussed earlier, the target is to identify the at-risk students and understands the 

reason behind student dropout from various angles. A trajectories analysis is capable 

of investigating how the level of student engagement and motivation could influence 

at-risk students. With a trajectories analysis, the failure factor could be inspected by 

temporally tracking the students’ engagement levels across courses. In addition, 

deterioration of student motivation could be detected over time by tracing learner 

intervention motivation prior to students deciding to quit the course.  

The traditional statistical analysis has a limited ability to perform a trajectories 

analysis due to the fact that the statistical analysis is not designed to capture arbitrary 

non-linear patterns. As a result, such procedures require an expert assumption about 



the form of the data before analysis, relying on the notion of a super-population in the 

form, which must be chosen on a prior basis (Chu et al., 2007). Moreover, in the 

present context, hypothesis tests and inference procedures are not conducive to an 

analysis of the behavioral intervention over a period since the data is not guaranteed 

to satisfy classical statistical constraints. To investigate whether or not factors such as 

learner motivation and level of engagement could influence at-risk students in danger 

of withdrawal in the next course, a further analysis was therefore performed using 

machine learning techniques that do not rely on classical assumptions. 

The Harvard dataset did not explicitly define the students’ motivational label. 

Therefore, LA is used to derive learners’ motivations, based on IM theory. To examine 

how motivation trajectories influences at-risk students, the LA is utilized to categorise 

the taxonomy of learners, based on the IM concept. Students’ motivation can be 

broadly divided into three statuses, “amotivation”, “extrinsic” and “intrinsic”. 

The result of  ML shows all classifiers acquire good performance, the RF achieve the 

best F1-Measure over three classes obtaining a value of 0.88, 0.76, 0.75 respectively. 

The lowest F1-Measure is reported for class “extrinsic” with a value of 0.62 in respect 

to the Nnet mode. 

 At-risk students are defined in terms of two factors, namely performance and 

motivational status. Two temporal predictive models are designed with the objective 

of helping educators provide timely intervention and support for at-risk students.  

Only demographic features are considered in the first temporal predictive model. 

These features include students’ date of birth, educational level, sex, geographical 

location and GPA (grade), to evaluate how students’ performance during previous 

courses could affect at-risk students in the following course. All the demographic 

features are accounted in the first set of the features, whereas the students grade of the 

previous courses are excluded in the second set of features. 

The result of ML over both set of features are very low. The F1-Measure shown for 

all classifiers less than 72%. The results reveal that sensitivities and specificities are 

relatively low for all classifiers. This is expected due the fact that the demographic 

features are inadequate to differentiate withdrawal students from non-withdrawal 

students. The empirical result of machine learning demonstrate that failure is unlikely 

to be the key reason prevents students from completing the following courses. 



The second temporal predictive model uses the students’ behavioural features in the 

following course in addition to students’ motivational status during the previous 

course. A correlation analysis is applied to measure the association link between 

students’ motivational categories and at-risk students. The results show that students’ 

motivational statuses are relevant to at-risk students. The result shows significant 

improvements in the second temporal predictive model. This is because student 

behavioural features and motivational categories are better reflected in the at-risk 

student than the demographic features. 

The best F1-Measure obtained by Nnet with a value of 0.95 follow by RF and Glm. 

The lowest F1-Measure was gain by Gbm and Rpart with values of 0.865and 0.836 

receptively. Sensitivities (withdrawal students) are slightly higher than specificities 

(non-withdrawal students). The finding reveals that all classifiers acquire good 

performance. The simulation result demonstrates that Feedforward Neural Network 

with a single hidden layer achieves the highest performance. This was attributed to the 

learning algorithm. The Broyden-Fletcher-Goldfarh-Shanno (BFGS) optimisation 

algorithm was utilized to train the neural network with a single layer while the 

backpropagation (BP) is used to train a neural network with two hidden layers. The 

BFGS is optimisation algorithms is used for solve complex nonlinear problem. The 

BFGS has an advantage over BP as its capacity to find the second derivative of the 

activation function. More specifically, the BFGS change the gain of activation function 

adaptively for each neuron. The gradient descent compute error considers the weight 

and gain values as a consequence, the search direction of the learning algorithm is 

improved and achieve better convergence rate resulting to enhance the accuracy 

performance of neural network  and better convergence rates.  

 Again, the database is balanced regarding the second at-risk students’ model. 

However, the number of withdrawal students’ records is slightly higher than that of 

non-withdrawal students’ records. This could have an influence on learning of 

classifier, since it is easier for the classifier to predict the positive class (withdrawal 

student). In this study, sensitivities are more of a priority than the specificities, since it 

is considered worthwhile to predict withdrawal students, rather than non-withdrawal.   

 



The machine learning results reveal that motivation trajectories is a valuable factor 

for estimating dropout learners in the online course. It can be used as significant 

indicator of at-risk students. The proposed temporal predictive models could help 

decision makers identify at-risk students in the early stages of their studies. Moreover, 

educators may gain a richer understanding by considering students’ motivational status 

as the main reason behind learners’ withdrawal within the online course setting. 

 With regards to OULAD dataset two student performance predictive models are 

designed consider regression and classification analysis. The results of predicting 

students’ assessments grades model show that the best RMSE and  𝑅2were acquired 

over interval 3 while the worst RMSE and  𝑅2were given by interval 5 and 6. This 

could be attributed to a number of students record over interval 3 highest than another 

interval as a result; the algorithm can learn more and the model will fit well. In contrast, 

the lowest number of training example shown was over interval 6. 

The final student performance predictive model revealed ideal sensitivities and 

specificities for all classifiers Although, the sensitivities and specificities are balanced 

for all classifiers over class “Withdrawn” and “Pass”, the specificities are higher than 

corresponding sensitivities for class “Fail”. This is because the database is skewed in 

favour of choosing the majority classes “Withdrawn” and “Pass”. In this case, 

predicting withdrawal students is more of a priority than predicting success and fail 

students as it is worthwhile to predict students who withdraw from the entire course 

rather than students who stay engaged with the course. 

The primary reason the machine learning models obtain higher performance in 

classification than regression is related to the type of features sets. As such, in 

classification analysis, the static behavioral features in conjunction with the temporal 

features and demographic features are used as the input variables in the prediction of 

the final student performance model while only dynamic behavioral features are 

employed to estimate students’ assessments grades. As the correlation analysis 

demonstrates there is a weak association between the students’ performance with 

demographic features accordingly, the demographic features cannot be accountable for 

the sufficient features. The temporal features that include the date of student 

registration and deregistration in an online course are robust predictor features that 

adequately affect student achievement. It could be impossible to combine the temporal 



features with behavioral features with respect to regression analysis as the database 

includes student temporal information for the entire period. 

To examine how the levels of student engagement and latent engagement influence 

at-risk students, the temporal prediction models have been introduced in OULAD. The 

model could help educator detect the disengaged students since the beginning of the 

course. The simulation results of machine learning demonstrated that engagement has 

a significant impact on students’ withdrawal within the MOOCS environment. The 

estimation of the student engagement status could help to identify at-risk students 

early. 

The results reveal that the EDDA model is capable of inferring latent characteristics 

of the students. The number of latent variables decreased about 90% at the end of the 

course therefore; the student emotional status could be more stable at the end of the 

course.  The number of the hidden variables are few compared with the number of 

examples across all intervals. As a result, latent engagement cannot be considered the 

vital factor that distinguishes the at-risk student and not at-risk students. The 

simulation results have shown that all classifiers   achieve the high performance over 

all intervals. In contrast, the RF and EDDA show low performance at intervals 1 and 

3 respectively. 

The empirical results reveal that the EDDA models in the middle and the end 

acquired best sensitivity of course while EDDA achieves the lowest sensitivity in 

interval 1. The number of unobserved variables was approximate 50% higher at 

interval 1 than interval 4. This implication of increasing the number of hidden variable 

could affect the true positive rate within a particular interval. As a result, latent 

variables could lead to misclassification problems. Although, the proportion of latent 

variables at interval 2 is slightly less than interval. 

 

5.6 Chapter summary  

This chapter  has prsensted the simulation results of three experiments.The results 

are demonstrated that supervised machine learning is capable to traceing the students' 

activities over time. The results of students performance prediction models have 

achieved  a high value of accuracies. The AUC acquired approximate values of 0.88-

0.99 across two datasets. The finding of students’ assessments grades predication 



model gives the lower result than the final student performance model, in such model 

the temporal features has been excluded. 

The results of descriptive statistics show the vast difference between failing and 

successful learners in term of engagement level. As such, The successful student read 

material three times more than failing students, however, in some courses the failing 

learning watched videos twice time than their pairs. The result of Chi-squared shows 

failing and successful students different with respect to their educational levels. More 

specific, the successful completion learners reported as the low qualified learners. 

The chapter also explains in details result of dropout Prediction model, the finding 

indicated that student performance trajectories could not be considered as a vital factor 

that impacts student performance. The AUC value was shown 0.50 for dropout model, 

however, the finding shows that students motivational statues is an important factor 

that significantly impacts the at-risk student. The finding state that around 70 %of 

demotivated student in the previous course re-engage in the following course. The 

finding has recommended considering the motivation trajectories as one of the 

predictors for at-risk students. 

Nevertheless, the results status that students’ failure in the prior course cannot 

influence the student decision to participate in the future courses. However, a student’s 

failure in previous assessment can be the main reason for preventing the students from 

engaging in the following assessments within a single course. 

The result of dropout Prediction Model based also posit that engagement levels can 

be used to detect at-risk students. The engagement levels of disengaged students are 

shown lowly. Due the simulation results of traditional machine learning are quite 

similar to conventional machine learning models therefore, latent engagement cannot 

be consider the direct reason of student withdrawal.   

  



Chapter 6: Conclusion and and Future Work 

 

         6.1 Conclusion  

A comprehensive understanding of the reasons behind student withdrawal in the 

online environment has been provided in this thesis. More specifically, this project 

focuses on those students who engage in the course through participation in digital 

learning materials and then drop out for a particular reason. This project takes an initial 

step towards delivering effective intervention support for the at-risk student. In this 

work, lack of motivation, low engagement level and latent engagement has been 

suggested as significant factors that hinder students from completing the courses. 

In this thesis, the proposed motivation predictive model successfully achieves the 

first objective of the prediction of students’ motivational status. LA is utilised to 

categories the learners’ motivation status according to IM theory. The students’ 

motivation is classified into three categories; ML is used to estimate the students’ 

motivational category. The resulting findings of six classifiers reveal that adoption of 

IM theory to predict student motivation in future is highly successful and promising. 

The work in this project is different from that carried out in the literature. In their work, 

the students have been categorized as either motivated or unmotivated. In our work, 

the interpretation of motivation is based on psychological theories. 

As the second objective, two dropout prediction models are designed taking into 

consideration the Harvard dataset. The models can help the educator to deliver early 

intervention support for at-risk students. The findings of ML show that low student 

performance in the previous course cannot be considered a crucial factor that could 

influence the participation of students in a subsequent course. However, the students’ 

motivational status is a valuable indicator in identifying dropout learners in the online 

course. In addition, the result demonstrates that most intrinsically and extrinsically 

motivated students in the previous course were motivated in the following course. On 

the other hand, unmotivated students in a prior course were engaged in following 

course. The findings could assist the educator to monitor changes in students’ 

motivational status. Hence, the educator can easily identify those students who need 

support and provide additional learning materials.    



The third objective is also achieved by investigating the dynamic link between 

engagement in a sequence of assessments within a single course and withdrawal rate. 

Latent engagement has semantic meaning but cannot be directly observed in the 

dataset. It can be measured from students’ activities. Temporal prediction models, 

which have been introduced, consider the OULAD dataset. The Mixture model is 

utilised to infer Latent variables. The findings of ML indicate that few numbers of 

students’ withdrawal from the course are due to latent engagement. Consequently, the 

latent variable cannot significantly discriminate between the dropout and non-dropout 

students. In addition, the results reveal that the engagement level is a crucial indicator 

that is directly related to dropout. 

As the fourth objective, the effect of behavioural engagement on students’ 

performance is investigated through tracking students’ activities. Student performance 

predictive models have been proposed in our work over two datasets. The input 

predictors consist of behaviour features followed by the date of students’ registration 

and deregistration from the courses in addition to demographic features. The machine 

learning results show that the students’ performance in a particular assignment relies 

on students’ mark in the previous assignment within single Courses.   

Although machine learning results demonstrate that students’ engagement level is a 

significant predictor of student performance in online settings over both datasets, the 

engagement style might be more relevant. As such, the results show the students' 

performance prediction model in the Harvard dataset achieves better accuracy than the 

prediction model in OULAD dataset due to, the exclusion of videos lectures in 

OULAD dataset. This is due to video lectures providing interactive means of learning 

that could help the student to process information more easily than conventional 

teaching materials. Additionally, the videos are more suitable for auditory and visual 

learners. The students have the option to listen, watch or read the learning material. 

The findings suggest using an educational YouTube channel to deliver the online 

courses. The findings also demonstrate that the date of student deregistration from the 

course is a valuable predictor that is significantly correlated to student performance 

across two datasets.  

With the students’ assessment grades prediction model, the data does not provide the 

last date of students’ activity prior to undertaken assessments. The findings’ are 



recommended taking into account the temporal features in predicting subsequent 

assessments grades. 

In conclusion, various factors influencing at-risk students have been evaluated over 

Harvard and OULAD datasets. Both dataset results demonstrate that clickstream 

features can be reliable predictors, which are remarkably relevant to the prediction of 

students’ outcomes and subsequent assessment grades and for the estimation of 

students’ dropout. The temporal features are also important attributes. For instance, 

the number of days that students interact with the course can be strongly used to 

identify the students who are in danger of withdrawal.  

This project provides the significant contribution towards the early identification of 

at-risk student in MOOCs. The project tackles the withdrawal problem in the online 

setting and provides some valuable insights and recommendations that might lead to 

the fully automated intervention of the decision maker. The educators can handle the 

dropout issue by providing more teaching assistants or deliver additional teaching 

material in a personalised way to at-risk students. 

 

6.2 Future Work 

In the current study, many factors have been evaluated to flag and detect at-risk 

students in the online context. It is possible to suggest other approaches that could 

improve proposed predictive models. In the following paragraphs, the future research 

work on enhancing this research project is introduced. 

Emotion is a critical factor that has a significant impact on modulating the learning 

process and offers insight into monitoring the students’ attitudes toward MOOCs. 

Many psychologists’ and neuroscientists’ findings have observed the influence of both 

positive and negative aspects of student cognitive engagement on withdrawal rate 

(Wen, Yang and Rosé, 2014). The sentiment analysis provides more information, 

which is valuable for tracking students’ behavior and monitoring students’ opinions. 

Although, many studies pay more attention to inferring the student negative emotional 

effects such as boredom, frustration and fatigue that would lead a student to withdraw 

from the course. These studies rely on post-course surveys to obtain students’ feedback 

on the quality of the course; few students actually respond and fill in surveys. 



Sentiment analysis can be utilized to discover the students' opinions toward e 

MOOCs. As such, the post-forum can be used to capture students’ attitudes and flag 

those who tend to drop out from the course. Different emotional status can be inferred 

from discussion forums such as frustration, fatigue, and boredom. This emotional 

status provides the students with motivational encouragement and stimulation to 

facilitate an interactive learning environment; including feedback modalities such as 

visually oriented hints. Additionally, the instructors would be able to recognize the 

reasons underpinning student withdrawal from the course in a more precise manner. 

Harvard dataset and OULAD dataset did not include the text of discussion forums. 

The datasets only contain information that was relevant to the number of clicks that 

the student performs on the forum. Therefore, a web-based system could be designed 

to capture the student sentiments in an online course through the post forum. The 

system can follow an emotional coping strategy for the tracking of the users’ emotional 

status. The emotional coping strategy is a psychological strategy that aims to reduce 

the stress, minimize emotional arousal and promote the effect of progress in a specific 

task. The system will allow students to write a short sentence to express their emotional 

statuses. The LA can be employed to infer the students' emotional statuses from the 

written text for example; LA could be tracking events that could cause students’ 

depression or frustration. Furthermore, the instructor would encourage students to 

release their negative emotions in such things as interactive video games and deliver 

immediate support. 

Machine learning is an effective approach that has seen widespread use in the online 

context for the purpose of facilitating automated detection of at-risk students. 

Although, much more work has adopted the machine learning using students’ activity 

data in predicting of at-risk students, few tasks incorporate the student sentiments in 

the detecting of at-risk students. To this end, the various techniques of the machine-

learning model can be used to automatically predict students who are in danger of 

dropout from the course considering sentiments. For instance, the RNN can be used to 

measure the students’ sentiments and discover the impact on at-risk students through 

inferring the sequences of temporal events. 

In the future more advanced machine learning models can be used, deep machine 

learning can be considered given its capability to represent the complex representation 

of students behaviour features without the need to engineer features and could enhance 



the accuracy of the dropout prediction model (Gan et al., 2015). Various models of 

deep learning can be used such as, Deep belief neural network, Deep relational 

learning, Convolutional neural network and Stacked Autoencoders (Gan et al., 

2015)(Wang, Shi and Yeung, 2017). 

 Because a large volume of data can be captured from MOOCs platform, deep 

learning might be more suitable for high dimensional data. Features could be extracted 

from large data without the need for human intervention. Also, the tuning  and 

selecting of the optimal parameters without any human help, as a result, a more robust 

predictive model can be obtained by adopting deep learning(Gan et al., 2015). 
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Appendix 
 

Appendix 1. Number of videos and chapters view by failing learners 

 

  

Appendix 2. Number of videos and chapters view by successful learners 
Course  Number of videos watch by 

 Successful group 

Number of chapter read by  

Successful group 

Health Fall 355583 5543 

Health Spring 41710 1602 

Electronics Fall 307040 6074 

Electronics Spring 85876 2156 

Computer Science Fall 171451 4339 

Computer Science Spring 78659 3040 

  

Appendix 3. Number of chapter read  by successful students per continent 

 
 

Appendix 4. Number of chapter read by failing students per continent 
Learners Group Africa Asia Australia America Europe 

Failing Health Fall 651 815 74 1243 532 

Failing Health Spring 172 359  20 478 314 

Failing Electronics Fall 249 1723 63 729 954 

Failing Electronics Spring 155 1194 51 522 534 

Failing Computer Science Fall 320 1194 77 2307 1683 

Failing Computer Science Spring 239 1810 56 2561 1847 

 

 

 

 
 

 

 
 

 

Course Number of videos watch by 

 failing  group 

Number of chapters read by  

failing  group 

Health Fall 3144383 3283 

Health Spring 22039 1332 

Electronics Fall 183983 3673 

Electronics Spring 58641 2439 

Computer Science Fall 230913 6137 

Computer Science Spring 154775 6465 

Learners Group Africa Asia Australia America Europe 

                 Successful  Health Fall 915 1980 148 1121 1379 

      Successful  Health Spring 200 445 50 931 1707 

      Successful  Electronics Fall 113 3278 45 931 1707 

      Successful  Electronics Spring 68 1289 64 271 542 

    Successful  Computer Science Fall 70 874 30 1273 2058 

Successful  Computer Science Spring 17 944 18 940 1121 



Appendix 5. Number of videos watch by successful students per continent 

 

Appendix 6. Number of videos watch by failing students per continent 
Learners Group Africa Asia Australia America Europe 

Failing Health Fall 34009 29936 1790 57754 23373 

Failing Health Spring 2735 6663  645 7612 4536 

Failing Electronics Fall 34323 59871 1241 31129 58498 

Failing Electronics Spring 3142 23155 989 14184 17412 

Failing Computer Science Fall 20184 54388 3213 84698 70652 

Failing Computer Science Spring 4978 42261 1322 60655 46247 

 

Appendix 7. Percentage of motivational status in trajectories courses 
 Number of 

motivation student 

in pervious courses 

Number of 

extrinsically student 

in pervious courses  

Number of 

intrinsically student 

in pervious courses 

Withdrawal  750   986             1261 

Non Withdrawal 1957 294       234 

 

Appendix 8. Number of Successful Learners per educational level 
Learners Group Less than 

Secondary 
Secondary Bachelor's Master's Doctorate 

  Successful Health Fall 2 29 166 172 19 

  Successful Health  Spring 3 40 86 66 7 

Successful Electronics Fall 7 180 129 70 4 

 Successful Electronics                  
Spring 

7 57 53 18 0 

  Successful Computer 

Science Fall 

12 87 84 72 24 

 Successful Computer  

        Science Spring 

8 68 68 41 8 

 

Appendix 9. Number of Failing Learners per educational levels 
 Learners Group Less than 

Secondary 
Secondar
y 

Bachel
or's 

Master's Doctorate 

Failing Health Fall 7 75 239 162 34 

Failing Health  Spring 6 63 151 124 10 

 Failing Electronics Fall 6 223 214 92 1 

Failing Electronics Spring 8 184 138 60 1 

Failing Computer Science  23 337 408 230 17 

Failing Computer Science 

Spring  

48 460 414 210 24 

 

Learners Group Africa Asia Australia America Europe 

Successful  Health Fall 67016 99218 10582 70383 108384 

Successful  Health Spring 4330 4886 943 21972 9579 

Successful  Electronics Fall 3352 121223 188 53836 128441 

Successful  Electronics Spring 5550 26613 232 14986 38735 

Successful  Computer Science Fall 1882 23346 1543 44642 100038 

Successful  Computer Science 

Spring 

92 16656 101 44642 35809 


