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Abstract 

Models and computational predictions are useful in identifying certain key 

parameters that play a central role in defining the overall behavior of the system, and 

thus lead to new and more informative experiments. In this thesis, in-silico models 

are developed over a range of individual biological scales (macroscopic, mesoscopic 

and microscopic) for a range of cellular phenomena (cellular interactions, migration 

and signalling pathways) in order to highlight the importance of combined in-vitro – 

in-silico investigations. It is widely accepted that Systems Biology aims to provide a 

simpler and more abstract framework to explain complex biological phenomena. 

However, integration of these models with experimental data is often underutilised. 

Incorporation of experimentally derived data sets into the mathematical framework 

of in-silico modelling results in reliable, well parameterised systems capable of 

replicating dynamical properties of the biological systems. Work in this thesis 

includes the development of a continuous macroscopic in-silico model to identify the 

key mechanisms of interaction between cells present within the gastric tumour 

microenvironment. This model of discovery is used in a predictive capacity to accept 

or reject hypotheses. Next, the construction of a discrete cell based model of 

fibroblast migration is used to determine the degree of bias fibroblast cells 

experience when migrating over different surface topologies. The key results from 

this model show that particular surface topographies can have an effect on migratory 

cell behaviour. Then, the parameterisation of a differential equation model is used 

to quantify the key mechanisms of Nrf2 regulation in the cytoplasm and nucleus. 

Validation with experimentally derived datasets results in the quantification of rate 

ratios important to the dynamics of this signalling pathway. Finally, a stochastic Petri-

net model capable of simulating the dynamical behaviour of functional cross-talk 

between the Nrf2 and NF-κB pathways is developed. This approach allows for the 

evaluation of a wide array of network responses, without the need for 

computationally expensive parameterisation. Together, these models exhibit how 

integration of in-silico models with in-vitro datasets can be used to generate new 

knowledge, or testable hypotheses.  
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Chapter 1: Introduction to Systems Biology 

and its Applications 
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1.1 Background 

In this thesis, systems biology is used to model and discover emergent properties 

over multiple individual scales in biological systems. This holistic approach provides 

a greater insight into the systems as a whole, while also allowing dynamic and 

quantitative conclusions to be drawn. One of the advantages of the work carried out 

in this thesis, upon which the novelty and importance is also highlighted, is that 

experimentally derived raw data is used as the basis for the creation of the 

mathematical models within. Utilising experimental data in this way allows for the 

depiction of more accurate and robust models. This distinction is important for 

drawing conclusions from the models, both qualitatively and quantitatively, and can 

provide the platform for the design of further experimentation for validation or in a 

predictive capacity. 

Systems biology is the computational and mathematical modelling of complex 

biological systems [1]. It is an interdisciplinary field of study that focuses on complex 

interactions within biological systems, using an integrated approach to biological 

research. Systems biology can be seen as an umbrella term which encompasses a 

variety of peripherally overlapping concepts, such as: applied mathematics [2], 

computational biology [3], quantitative systems pharmacology [4], integrative 

biology [5], systems biomedicine [6] and synthetic biology [7]. Almost two decades 

ago, the term was launched into the mainstream in correlation with the completion 

of the Human Genome Project (HGP) [8]. However, the origins of systems biology can 

be traced back even further, to the middle of the 20th century. For example, in 1973 

the theory of metabolic control was developed and as a result, metabolic flux was 
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recognised as a systemic property [9]. From the completion of the HGP, interest in 

systems biology has increased, as evidenced by the increasing number of papers 

published in the field each year (Figure 1-1). This emergence can be attributed to the 

development of new and increasingly powerful computational approaches. It is this 

improved computational power that drives the evolution of systems biology, as more 

complex and sophisticated systems are created. This development falls under 

Moore’s law [10] which states that the overall processing power of computers will 

double every two years. To put this into context, the HGP took 13 years to complete 

whereas, in the last few years, a full human genome can be sequenced in less than 

24 hours [11]. 

Biological systems consist of a large number of functionally diverse components, 

which can interact in highly specific and non-linear ways to produce phenomena such 

as cell migration, cell signalling and gene transcription. Typically, the models used in 

systems biology require iterative building and stepwise improvements based on 

comparison with experiments [1]. These models, once sufficiently refined, can then 

be used to predict the behaviour of the biological system under different 

perturbations that may be of interest or simply deemed unfeasible in an 

experimental setting. This is particularly beneficial when it comes to estimating rate 

constants on reactions that take place rapidly in-vitro. The various models used in 

systems biology can have significant differences depending on several factors, 

relating to the scope of the study, such as: the level of description in the model, 

limitations in the knowledge of the biological system or the ability to observe the 

phenomena of interest experimentally for validation. For example, this thesis focuses 

on the dynamic behaviours of cellular interactions at multiple individual biological 
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scales, i.e. the multicellular (tissue) level, cellular level and cell signalling networks at 

the subcellular (molecular) level. At each individual scale, different systems biology 

approaches are utilised in this thesis. 

 

 

Figure 1-1. Search results for systems biology on Pubmed [12]. The number of 
papers referencing “systems biology” in the Pubmed database are organised by 
year of publication (2000-2017). In 2017, there were 23,070 results compared 
with 3,773 results in 2000. 
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1.2 In-silico modelling motivation 

In the current age of technology, the high number and diversity of experimental data 

available has never been as easy to access [5]. The data available ranges from simple 

processes, such as enzymatic reactions, to the more complex, such as gene 

transcriptions in response to inflammatory stimuli of the cell. Regardless, 

representative models of these systems can be designed based on this empirical 

data. Thus, by combining raw experimental data with mathematical modelling, a 

more accurate model can be created, as it is designed with less theoretical 

assumptions and unknown parameter estimates. Another advantage when using an 

in-silico approach, rather than traditional biological techniques, is that the modelling 

algorithms can be reused many times and applied to differing biological systems. Not 

only does this provide a more cost-effective method, compared with organism-

dependent experiments, but also allows for the replacement, reduction and 

refinement of animal-based experiments [13]. Systems biology is a powerful tool that 

can aid in the understanding of the dynamics of disease mechanisms, ranging from 

cancer [14] to degenerative disease [15], and can also be utilised in drug discovery 

[16]. These approaches have already provided a deeper understanding of diverse 

biochemical processes from individual metabolic pathways [17], signalling networks 

[18] and genome-scale metabolic pathways. Therefore, the continued development 

of in-silico models is an important endeavour to facilitate and enhance our 

understanding of key biological processes.  
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1.3 Mathematical models 

All biological phenomena emerge from an intricate interconnection of multiple 

processes occurring at different levels of organisation. These levels include the tissue, 

cellular and molecular level which can be approximately connected to macroscopic 

(10-5 m), mesoscopic (10-6 m) and microscopic (10-7 m) scales, respectively [19,20]. 

The macroscopic scale typically corresponds to behaviours such as cell population 

dynamics and tissue mechanics. Adhesive interactions, between cells or between 

cells and the extracellular matrix (ECM), and mechanisms of cell motility are common 

phenomena observed at the mesoscopic scale. Finally, the microscopic scale refers 

to processes such as DNA signalling, activation of receptors and the transport of 

proteins (cell signalling networks) [21].  

An exhaustive in-silico model would incorporate all these levels in a multiscale 

fashion. However, a valuable approach in systems biology is to build a model as 

simply as possible, focused on a single scale and based on a minimal set of 

assumptions that can be derived from experimental observations. This is the 

approach selected for the work incorporated within this thesis. Each model is 

contained within a singular scale, so as to capture the dynamics of the critical 

components examined. Gradually, it is then possible to add more components and 

complexity to the model, after refining and validating against experimental results. 

In turn, this allows for a concise description of the essential features of the system of 

interest, whilst also providing the possibility of identifying the most relevant 

mechanisms and parameters.  
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1.3.1 Continuous vs discrete modelling 

There are many mathematical approaches to these problems which can broadly be 

defined into two main categories: continuous and discrete models. Additionally, 

there can be further classifications into deterministic or stochastic models, 

depending on whether they contain a degree of randomness. Continuous modelling 

can be described as the application of mathematics to continuous data, i.e., it 

generally doesn’t require data, just the use of continuous variables [22]. This 

approach is characteristic of a macroscopic point of view, as these methods 

represent populations of biological identities, such as e.g., epithelial cells, as 

densities. This modelling strategy includes using systems of ordinary differential 

equations (ODEs) and partial differential equations (PDEs) to solve for transient or 

steady state solutions [22]. Traditionally, systems of ODEs have been used to 

represent chemical reactions, using the law of mass action kinetics [23,24]. This law 

is defined as the rate of a chemical reaction being directly proportional to the 

concentration of the reactants [25]. In most cases, ODEs contain one or more 

functions of an independent, continuous variable and the derivatives of the functions 

with respect to that variable. These equations can be used to model dynamics over 

time. Whereas, PDEs typically contain multivariable functions and can be used to 

determine multidimensional patterns in the data and model dynamics over several 

independent variables, e.g., spatial variables in addition to time [22]. Conversely, 

discrete models can be used to represent biological individuals (e.g. focusing on the 

cellular level), as a set of discrete units with rules describing the interactions and 

movements of individual cells. Examples of these models are Cellular Automata (CA) 
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[26,27] and Individual Cell-Based Models (IBMs), also known as Agent-Based Models 

(ABMs) [28].  

Given the same parameters and initial conditions, deterministic models will produce 

the same result after each simulation, as there is no random element. While, 

stochastic models provide distributions of simulated outcomes as opposed to a single 

result [5]. Therefore, deterministic approaches are more suitable for modelling 

systems with large numbers of components, where the impact of small fluctuations 

is negligible. Stochastic approaches are more appropriate for modelling systems with 

a small number of components, where the impact of these small fluctuations is more 

relevant within the system. However, utilising both approaches is sometimes key for 

creating accurate models of large systems. One of the biggest challenges with these 

models is accurately obtaining parameter and rate constant values. These models 

form an iterative series of model building and simulation processes that are driven 

by hypotheses to understand how biological systems function as a network of 

biochemical reactions [29]. Linking models and data requires numerical values for all 

the mathematical parameters that describe the system of interest. A traditional 

approach to this challenge is to collect parameter values through a literature search. 

However, inferring the parameters from available experimental data would be a 

much more preferable method [30,31]. Optimisation-based approaches aim to 

reduce the discrepancy between the model predictions and experimental data by 

searching through parameter combinations [32]. Robustness and confidence in these 

optimised parameters presents a challenge also, as many parameter combinations 

could provide locally optimal fits [33]. Therefore, it is important to take measures to 

avoid over-fitting the data. Calibration with experimental data by fitting from initial 
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parameter estimates represents a routinely practiced method for obtaining these 

values. In general, in-silico model development can be broken down into the 

following initial steps [34]: 

1) Make initial assumptions of what is influencing the observed experimental 

behaviour based upon the data. 

2) Derive a system of differential equations (the model) to describe the dynamic 

events taking place. 

3) Parameterise the model 

4) Solve the model equations. 

5) Verify the results by comparing the model simulations to the data using 

various statistical tests. 

6) If the verification is unsuccessful, alter the model and repeat verification 

process. 
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1.4 Continuous modelling of multicellular interactions 

In multicellular organisms, there are evolutionary advantages conferred by the 

differentiation of cells into different types with specialised functions. Coordinated 

cell-cell interactions become vital in maintaining the organisation and function of 

tissues containing multiple cell types, both in development and in tissue repair. In 

the gastrointestinal (GI) tract, for example, interactions between epithelial cells and 

stromal cells control cell proliferation, differentiation and apoptosis. These 

interactions are disrupted in a variety of diseases including inflammatory conditions 

and cancer. Since inflammation is recognised as a driver of cancer progression [35], 

there has been a growing appreciation of the role that cellular microenvironments 

play in carcinogenesis. Amongst the various cells contributing to the tumour niche, 

myofibroblasts have been highlighted by many studies [36-38]. These cells normally 

play an important role in the maintenance of tissue architecture and wound healing 

[39-42]. Myofibroblasts are a rich source of growth factors, cytokines, chemokines, 

extracellular matrix (ECM) proteins, proteases and their inhibitors [43]. However, the 

functional role of myofibroblasts in many cancers is not well understood. One of the 

aims in this thesis is to investigate the effect that Barrett's adenocarcinoma cancer-

derived myofibroblasts (308 cells) have on gastro-adenocarcinoma cancer cells (AGS 

cells) and to develop a mechanistic model describing this interaction (Chapter 2). I 

begin by describing the environment that both these cell types reside within and how 

they behave in-vivo, i.e., their cellular phenotype and secretory profile. 
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1.4.1 Basic organisation of the gastrointestinal tract 

The upper gastrointestinal tract, which consists of the salivary glands, oesophagus, 

stomach and the small intestine, functions to aid food digestion and nutrient 

absorption. The wall of the gastrointestinal tract is divided into layers: an outer 

muscle layer; a mucosal layer consisting of epithelial cells that continuously line the 

luminal surface; and a stromal layer, the lamina propria, consisting of blood vessels, 

ECM, lymphatics, inflammatory cells, immune cells, fibroblasts and myofibroblasts 

[44]. 

There are five main regions in the stomach: i) the cardia; ii) the fundus; iii) the corpus; 

iv) the pyloric antrum; and v) the pyloric sphincter [45]. The epithelium, within the 

stomach, is folded into gastric glands (Figure 1-2). The glands found in the fundus and 

corpus are populated by histamine-secreting enterochromaffin-like (ECL) cells, acid-

secreting parietal cells and chief cells that release pepsinogen, whereas the glands 

found in the antrum are populated by gastrin-secreting G cells [46]. This antral 

hormone, gastrin, stimulates gastric acid secretion in parietal cells via the induction 

of histamine-secretion in ECL cells. Gastrin binds to cholecystokinin-2 (CCK-2) 

receptors expressed in ECL cells, inducing the synthesis and secretion of histamine. 

Then, histamine binds to its H2-receptor on the surface of the parietal cells resulting 

in the secretion of gastric acid [47]. 

The maintenance of the gastrointestinal tract epithelium is achieved through the 

proliferation and differentiation of epithelium stem cells. The cells exhibit 

bidirectional movement towards the surface or base of the glands [48]. Cells moving 

up to the pit region from the isthmus differentiate into mucus-secreting cells, 
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whereas cells moving towards the gland base region differentiate into parietal and 

chief cells [49,50]. There is a tight network of myofibroblasts around the gastric 

glands that are thought to determine organisation and function of the epithelial cells. 

 

Figure 1-2. Schematic diagram of a gastric gland. Diagram showing the different 
cell types present in a gastric gland: surface mucous cells, proliferating cells, 
mucous neck cells, chief cells, G cells and parietal cells. The bi-directional 
migration of the cells occurs from the isthmus region to the gastric pit and the 
fundus region generating the differentiated cell types. Adapted from [45]. 
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1.4.2 Myofibroblasts 

Myofibroblasts are activated fibroblasts. They are dynamic, spindle-like cells sharing 

the functional characteristics of both fibrocytes and smooth muscle cells [51]. They 

are rarely found in most tissues, but in the gastrointestinal tract they are relatively 

abundant, where they are localized in a sub-epithelial compartment. Myofibroblasts 

express alpha-smooth muscle actin (α-SMA) and vimentin, which are specific 

histopathological markers of these cells. A variety of different origins of these cells 

have been discussed by a number of authors, including: (a) rapid stimulation of local 

fibroblasts to differentiate into myofibroblasts [52]; (b) epithelial cell 

transdifferentiation into myofibroblasts via epithelial mesenchymal transition (EMT) 

[37,53]; (c) local or bone-marrow-derived mesenchymal stem cells (MSCs) 

transformation into myofibroblasts [54]. 

Myofibroblasts are rarely found in healthy tissue. However, as described previously, 

they are abundant in the gastrointestinal tract and are also found to increase during 

wound healing within the tract. The key events that characterise GI tract wound 

healing include restitution after tissue damage, inflammation, re-epithelisation and 

tissue remodelling [55]. Restitution is defined as an epithelial migratory response to 

superficial damage in the gut by which a protective layer of epithelial cells is formed 

over the injured site [56]. In damaged tissue, fibrin forms a provisional ECM [57,58] 

that embeds platelets which are an early source of growth factors and chemokines, 

required to further drive coordinated wound healing [59,60]. Myofibroblasts 

regulate this migration and proliferation through the secretion of transforming 

growth factor-beta 3 (TGF-β3), maintaining the integrity of the epithelium [61]. 
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Myofibroblasts that reside in the cancer niche exhibit changes to their phenotype; 

they are designated “cancer associated myofibroblasts” (CAMs) (Section 1.4.4) [62]. 

There is also a role for myofibroblasts identified in mucosal immunology. Intestinal 

myofibroblasts have been associated with innate immune responses through 

regulation and expression of toll-like receptors (TLRs) [63]. When stimulated with 

bacterial lipopolysaccharide or lipoteichoic acid, the expression of TLR-2, TLR-3, TLR-

4, TLR-6 and TLR-7 in intestinal myofibroblasts is increased, leading to the secretion 

of pro-inflammatory cytokines and chemotactic factors that recruit immune cells to 

sites of inflammation [63]. Furthermore, the expression of class II major 

histocompatibility complex (MHC) molecules in colonic myofibroblasts has been 

found, suggesting that these cells may function as antigen-presenting cells which 

activate CD4-positive T-cells during activation of adaptive immunity [64]. 

In addition, myofibroblasts have been shown to deposit ECM proteins (e.g. collagens, 

laminins and fibronectin) and secrete ECM-degrading proteases which regulate 

turnover of the ECM [65]. These proteases are classified into matrix 

metalloproteinases (MMPs); serine proteases, such as urokinase-like plasminogen 

activator (uPA) and tissue-type plasminogen activator (tPA); and cysteine proteases, 

such as collagen degrading cathepsins [66]. Fibrosis is the result of excessive 

deposition of ECM proteins, often with loss of some resident cell types, but increased 

numbers of myofibroblasts. Inefficient removal of scar matrix proteins leads to 

fibrosis [67]. Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of uPA and tPA. 

uPA regulates plasmin abundance, degradation of ECM proteins and also plays a role 

in activating MMPs [68]. The MMPs, which belong to a family of zinc-dependent 
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endopeptidases, are involved in physiological processes (e.g. embryonic 

development, wound healing) and cancer progression [69]. A total of 28 human 

MMPs has been identified, and they are classified into five main categories according 

to their substrate specificity, primary structures, and cellular localization, namely, the 

matrilysins (e.g. MMP7), collagenases (e.g. MMP1), stromelysins (e.g. MMP3), 

gelatinases (e.g. MMP2), and the membrane-type MMPs (e.g. MMP14) [70]. Other 

members of the metalloproteases include a disintegrin and metalloproteinases 

(ADAMs), which are transmembrane proteins, and ADAMs with thrombospondin 

motifs (ADAMTS), which are secreted and bound to ECM proteins [66].  

The MMPs are synthesised as inactive zymogens (i.e. pro-MMPs) and mostly become 

activated after proteolytic cleavage within the extracellular environment [71]. The 

activity of MMPs is low in the normal state, and can be induced in response to 

external stimuli. For example, proinflammatory cytokines stimulate the secretion of 

MMP1, MMP2 and MMP3 in colonic myofibroblasts [72,73]. In intestinal and gastric 

myofibroblasts, the expression of MMP1, MMP2 and MMP3 has also been identified, 

suggesting the importance of these MMPs [74]. Substrates for MMP1, such as 

perlecan and insulin-like growth factor binding protein-3 (IGFBP3), have been shown 

to increase the bioavailability of fibroblast growth factor (FGF) and insulin-like growth 

factor (IGF), respectively [75]. Additionally, studies have shown the proteolytic 

activation of transforming growth factor-beta (TGF-β) by MMP2, and the cleavage of 

E-cadherin, an epithelial adhesion molecule, by MMP3 [71].  

Matrilysin (i.e. MMP7), which is predominantly expressed in epithelium, is implicated 

in regulating myofibroblast function [74]. Gastro-epithelial cells secrete matrix 

metalloproteinase-7 which cleaves insulin-like growth factor binding protein-5 
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(IGFBP-5) secreted by myofibroblasts leading to release of IGF-II which stimulates 

both epithelial and myofibroblast proliferation [74].  

The gastrointestinal tract is normally exposed to many different potentially damaging 

agents including acid, ingested toxins, resident and ingested microbiota. In the upper 

gastrointestinal tract, failure of the normal protective mechanisms is a feature of 

several common conditions including pathology associated with gastric infection 

with Helicobacter-pylori, and reflux of gastroduodenal contents into the oesophagus. 

In both cases chronic inflammation is associated with increased risk of cancer. 

1.4.3 Basic description of cancer and the tumour microenvironment 

Cancer can be described as a wound that fails to heal, indicating that there is a 

correlation between the mechanisms of wound healing and tumour cell response to 

inflammation [76]. Moreover, it is well established that abnormal secretion of growth 

factors and cytokines, dysregulation of signalling pathways, and genetic alterations 

all play a role in the promotion and progression of tumour growth. Famously, 

Hanahan & Weinberg [77] proposed the six hallmarks of cancer that dictate cancer 

growth and malignancy. These hallmarks are as follows: 1) self-sufficiency in growth 

signals, 2) insensitivity to anti-growth signals, 3) tissue invasion and metastasis, 4) 

limitless replicative potential, 5) sustained angiogenesis and 6) evading apoptosis. 

However, in addition to these hallmarks, it is stressed that there is also a key 

contribution of genetic and epigenetic alterations in cancer cells. Epithelial cells are 

characterised by having tight cell-cell adhesions, forming a continuous sheet that 

functions as a barrier. However, for tumour epithelial cells to become invasive, these 

tight adhesions must be shed in favour of loose cell-cell contacts, obtaining 
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mesenchymal properties. This process is known as EMT and is a key process in wound 

healing, fibrosis and metastasis of cancer [78]. Tumour stromal cells, such as cancer-

associated myofibroblasts (CAMs), play a role in promoting tumour angiogenesis 

(formation of new blood vessels from previous vessels), cancer cell growth and 

invasion through ECM remodelling (Figure 1-3). These cells also activate cancer cell 

signalling pathways through the secretion of cytokines and growth factors [79]. 

 

Figure 1-3. Epithelial-stromal interactions in tumour formation and progression. 
In normal mucosa, myofibroblasts (NTMs) are involved in regulating epithelial cell 
function. Chronic inflammation contributes to the formation of cancer through 
genetic and epigenetic changes of epithelial and myofibroblast cells in pre-
neoplastic tissue. Paracrine signalling between cancer cells and CAMs result in cell 
growth and invasion. Myofibroblast populations are increased by bone marrow 
derived MSCs in cancerous tissue. This chemical environment supports EMT, 
metastasis and tumour growth. Adapted from [80]. 
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The tumour microenvironment consists of ECM, blood vessels, soluble paracrine 

factors and non-malignant stromal cells, such as CAMs, endothelial cells and 

inflammatory cells [81]. Malignancy of the tumour and suppression of the anti-

tumour immune response are products of the role these inflammatory cells have 

within the cancer niche [35]. Endothelial cells also contribute to this malignancy by 

maintaining normal physiology of the neoplastic blood vessels [82]. Non-malignant 

stromal cells, such as these, migrate into the tumour site from distant locations 

within the body. However, the cancer niche also depends on resident stromal cells 

from surrounding and neighbouring tissue, such as the myofibroblast. Stromal cells 

progressively increase in cancer either through inward migration, proliferation or 

transdifferentiation from other cell types [81]. In GI tumours, stromal cells constitute 

60-90% of the mass of the tumour, with CAMs showed to play a crucial role in tumour 

progression [83]. 

1.4.4 Cancer-associated myofibroblasts 

These cells undergo changes at the epigenetic level and a difference in gene 

expression [84] has been detected in CAMs from gastric cancer compared with 

“normal tissue myofibroblasts” (NTMs) [85]. This differential expression of genes 

relates to various cellular functions such as cancer cell proliferation, migration and 

invasion [79,86,87]. CAMs are phenotypically more migratory and proliferative 

compared to myofibroblasts from non-cancerous stroma [88,89]. The functional role 

of myofibroblasts in cancer cells is not well understood. However, they have been 

shown to influence proliferation and metastasis of cancer through disruption of 

autocrine and paracrine signalling pathways [43,90].  It has also been shown that 

cross-talk between CAMs and epithelial cancer cells, termed stromal-epithelial 
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interactions, promotes cancer cell growth and induces malignant transformation 

[79]. A decreased sensitivity to chemotherapy has also been demonstrated in CAMs, 

partly due to hypermethylation of CpG DNA and reduced expression of caspase and 

STAT-1 resulting in escape from apoptosis of cancer cells [91].  

1.4.5 Mechanisms of intercellular signalling 

Cell-cell signalling is mediated by various substances including hormones, growth 

factors, cytokines and chemokines [92,93]. In each case, a ligand activates receptors 

on target cells. Where ligands are released in close proximity to target cells the 

mechanisms are collectively known as paracrine signalling. Where they are carried in 

the blood stream to their targets the mechanisms are known as hormonal signalling 

[94]. In some cases, ligands may even act on their cell of origin, known as autocrine 

signalling [95]. Within a tissue, there are frequent interactions that are two-way. An 

example of this is epithelial-stromal cell interactions, where both cell types can be 

the source of signalling ligands and can respond to them by paracrine mechanisms 

(Figure 1-4). 
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Figure 1-4. Schematic diagram highlighting paracrine and autocrine signalling 
within the tumour microenvironment. Cytokines released by the cancer cell 
stimulate the myofibroblast cell to release MMPs and uPA. VEGF is also released 
by the cancer cells and promotes angiogenesis. MMPs released by the 
myofibroblast activate receptors in the cancer cell as well as the myofibroblast’s 
own receptors. The continued release of these compounds results in cell 
migration, ECM degradation and continued release of growth factors, cytokines 
and chemokines. Adapted from [96]. 

 

Gut hormones are shown to be involved in regulating gut secretion, motility and 

growth. The best characterised of these include gastrin, cholecystokinin (CCK), 

secretin and somatostatin (SST) [97]. Cancer cells, stromal cells and epithelial cells 

are all potential sources of growth factors. There are multiple classes of growth 

factors including the families of EGF, IGF, VEGF, TGF-β, HGF, FGF, PDGF, Wnt, 

Hedgehog and Notch [98-102]. Most of these growth factor families play a role in GI 

mucosal regeneration [103]. Many cytokines, which are small cell signalling 
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molecules, are upregulated in cancer. They stimulate growth, differentiation and 

activation of immune cells [104]. Thus, they can either be classified as 

immunoregulatory or pro-inflammatory [104]. Chemokines are defined as 

chemotactic cytokines [105]. They are involved in metastasis and are vital for the 

infiltration of immune cells into the tumour site. Typically, the chemokines expressed 

in cancer belong to the inflammatory group and are induced by pro-inflammatory 

stimuli [105].  

As previously described, in order for the cancer cells to invade normal tissue, they 

must undergo EMT. Therefore, loss of cell adhesions and removal from the primary 

site is necessary. A study has shown that E-cadherin was higher when cancer cells 

were co-cultured with fibroblasts as opposed to cancer cells that were cultured in 

isolation [106]. Contrastingly, when these cancer cells were co-cultured with CAMs, 

the expression of E-cadherin was downregulated, highlighting the possible role CAMs 

play in the EMT of epithelial cancer cells [106]. TGF-β is also a known inducer of EMT 

in epithelial cells and plays a crucial role in tumour progression by downregulating 

epithelial adhesion molecules [107]. TGF-β can be secreted by both cancer cells and 

CAMs within the primary tumour site. When secreted by cancer cells, TGF-β can also 

induce expression of MMP-9 in myofibroblasts. MMP-9, along with MMP-2, 

selectively degrades the components of the basement membrane, further 

contributing to the proliferation of the tumour [108]. Another well-known 

mechanism in cancer is that many neoplastic cells secrete VEGF, which plays a crucial 

role in angiogenesis, an essential mechanism for the development of tumour 

malignancy [109]. The role of CAMs in this process has not been clarified. However, 

many types of fibroblast have been shown to release VEGF in response to IL-6. It has 
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been demonstrated that myofibroblasts and CAMs secrete the same amounts of IL-

6 when stimulated with TNF-α, an inflammatory factor [110]. Therefore, it can be 

hypothesised that some cytokine released from the cancer cells promotes transition 

of myofibroblasts to CAMs, resulting in the secretion of IL-6. Reports show that IL-6 

plays an important role in cancer progression [108]. Finally, it is suggested that the 

CAMs use paracrine and autocrine signalling to increase the proliferation of cancer 

cells, as well as the continued activation of the CAMs themselves, through 

unregulated secretion of pro-inflammatory and pro-tumourogenic molecules. 

1.4.6 Mathematical models of the gastrointestinal tract 

Current mathematical models of the GI tract focus mainly on the electrical activity of 

the stomach wall, specifically, the electrical activity that organises motility of cells 

[111-114]. All these models incorporate a multiscale approach combining complex 

experimental findings with sophisticated systems biology techniques (i.e. such as 

biophysical models [115], channelopathy models [116,117], smooth muscle cell 

models [118] and gastric electrophysiology models [111]) to create a ‘Virtual 

Stomach’ [114]. The experiments focus on co-regulation of gastric waves from 

spontaneous depolarisations of interstitial cell of Cajal (ICC) membrane potentials 

and smooth muscle cells (SMC), ultimately generating GI motility [119]. Anatomically 

realistic models were generated using magnetic resonance images (MRI) and CT 

scans, creating over 60,000 data points [111]. Simulation of the electrical activity of 

the stomach was achieved by adapting an existing finite element (FE) derived finite 

difference (FD) continuum model used for solving cardiac activation problems [120]. 

This model has been shown to successfully replicate many of the electrical features 

of the stomach, by solving five ODEs, to include the coupling of ICC-ICCs, ICC-SMCs 
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and SMC-SMCs. These models are still in their infancy and further refinement and 

validation is needed for a wider application [111]. For a detailed review of these 

models and the Virtual Physiological Human (VPH) see [112] and [121]. Alternatively, 

there are also models of intestinal crypts [122,123], which are similar but not 

identical to gastric crypts. Meineke et al. [122] present a lattice-free model 

representing the spatial arrangement and migration of cells within the intestinal 

crypt based upon a scoring system. This model also include cell division, where 

daughter cells form at the bottom of the crypts and existing cells shift upwards. 

Similarly, the work of Van Leeuwen et al. [123] incorporates cell division and 

replacement of the cellular epithelium within the intestinal crypt structure. 

Furthermore, the model has been extended to multiple scales meaning that 

subcellular cell signalling events affect the mechanical cues of the cell migration. 

It is evident from reviewing the literature that there are currently no computational 

approaches dedicated to the relationship between gastric cancer cells and CAMs. 

However, there are many models of cancer present in the literature, such as those 

models which describe stochastic and deterministic models of structured 

populations [124-127]. There are several themes present in these models that can be 

applied to the biological problem our current model is trying to answer. The first is 

to assume a constant population size in the cell mass [124]. At a macroscopic scale, 

the number of cancer cells in a given area may be approximated by a continuous 

density. This can be given by PDEs and any random spatial movements by the cells 

can be approximated as diffusion [125]. Not only can PDEs model the dynamics of 

tumour cell density, they can also model the tumour cells dependence on other 

diffusive factors, such as chemokines [126]. More sophisticated models exist where 
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the position, movement and state of each individual cell can be represented. This 

type of model is known as CA [127]. The dynamics of the cells in CA models are 

governed by a set of rules taking into account interactions with neighbouring cells 

and stimuli. The advantage of having each cell explicitly modelled is outweighed by 

the computational cost in this instance, as the aim is to develop a model that will 

highlight the dynamic behaviour between the cell populations of the gastric cancer 

cells and the CAMs. 
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1.5 Discrete modelling of single cell migration 

1.5.1 Basic cell structure 

The basic mammalian eukaryotic cell comprises of a variety of membrane-bound 

structures, a cytoplasm and a nucleus. Through the advancement of microscopy 

techniques, the basic structure and function of these fundamental units of life 

unfolded. Working inwards, the cell membrane is the outer boundary of the cell 

consisting of a bilayer of phospholipids [128]. The polarity of this double layer helps 

to facilitate the cell membranes role of regulating the exchange of substances 

between the external and internal cellular environments. The membrane surrounds 

the cytoplasm, which comprises cytosol (gel-like substance) and the organelles [129]. 

The major organelles suspended within the cytosol are the mitochondria, 

endoplasmic reticulum (ER) and the Golgi apparatus [130].  The mitochondria is the 

powerhouse of the cell and generates energy through a process called oxidative 

phosphorylation [131]. The ER is a transport network and one of its main functions is 

to transport newly synthesised proteins to the Golgi apparatus. The Golgi apparatus 

then completes the process of synthesising the proteins by packaging them in 

vesicles ready for exocytosis [130]. Finally, the nucleus is a membrane bound 

organelle responsible for controlling gene expression and replicating DNA during the 

cell cycle [132]. A cytoskeleton is also present in all mammalian cells. The 

cytoskeleton acts to maintain cell shape, anchor organelles in place and provide 

mechanical resistance to deformation [133]. 
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1.5.2 Cytoskeleton 

There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the 

intermediate filament network and microtubules; all of which are involved in the 

regulation of cell motility. All three networks are interconnected and they are 

anchored at cell-ECM adhesions and at cell-cell junctions, providing the cell body with 

mechanical support [134]. The complexity of the cytoskeleton and its associated 

proteins have become clear through the advancement of molecular techniques. For 

example, it is widely understood that the cytoskeleton provides a structural 

framework for the cell, determining cell shape and cytoplasmic organisation, as well 

as being responsible for cell movements and internal transportation of organelles 

and other structures within the cytoplasm (Figure 1-5) [129]. In addition, 

disorganisation of the cytoskeleton has been associated with many pathological 

conditions, including cancer and cardiovascular diseases [135].  

1.5.2.1 The actin cytoskeleton  

The actin monomer (G-actin) is the basic building block of the actin filament (F-actin) 

[136]. Dimers and trimers are formed, through a process called nucleation, and rapid 

elongation of the filament commences. This elongation is a function of the available 

G-actin, the most abundant cytoskeleton protein in the mammalian cell [136]. Put 

more simply, each G-actin has binding sites that facilitate head-to-tail binding with 

two other G-actin monomers, resulting in polymerisation to form the F-actin 

filament. F-actin is a polar polymer with a right-handed helical twist [137]. The 

polarity stems from the identical orientation of G-actin and is important for further 

F-actin assembly (elongation) and for establishing a unique direction of myosin 
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movement, relative to actin. This polarity also results in F-actin having two 

distinguishable ends, called the plus (barbed) and minus (pointed) ends [137]. There 

is simultaneous assembly and disassembly of G-actin at the plus end and minus end 

respectively. This process is known as ‘treadmilling’ and is coupled with ATP 

hydrolysis [138]. 

F-actin plays an important role in epithelial cell cohesion, maintaining the integrity of 

cellular layers by a ‘belt’ of actin filaments, and in cell migration, as they are found in 

the plasma membrane protrusion where they form a ‘mesh’ [139]. F-actin can also 

promote edge retraction at the trailing edge of motile cells by converting energy, 

formed by ATP hydrolysis into tensile force. ATP hydrolysis is used by actin-associated 

myosin motor proteins to exert force against the stress fibres during muscle 

contraction [138]. Actin is essential for the survival of most eukaryotic cells as their 

filaments provide internal mechanical support, and force to drive cell movements as 

well as providing tracks for movement of intracellular materials. 

1.5.2.2 The intermediate filament network 

Intermediate filaments (IFs) are composed of one or more members of a large family 

of mainly cytoskeletal proteins. These can be classified into five major types. The first 

four types (I-IV) are cytoplasmic whereas type V IFs are located within the nucleus 

[140]. Type I and II are found in epithelial cells and are typically formed from acidic 

and neutral-basic keratins. Type III IFs are composed of homopolymers of vimentin, 

typically found in fibroblasts, as well as other cytoskeletal proteins such as desmin, 

peripheran and glial fibrillary acid protein (GFAP) [141]. Type IV and V IFs are 

expressed in the nervous system and are comprised of internexins and nuclear 
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laminins respectively [140]. Vimentin IFs preserve mechanical integrity of the cell by 

contributing to cytoplasmic stiffness and enhancing the elastic properties of the cell, 

suggesting that IF networks can adapt to mechanical changes in their environment 

[142]. 

1.5.2.3 The microtubules 

The microtubule is a heterodimer of α- and β-tubulin dimers [143]. These tubulin 

dimers are assembled in a head-to-tail manner culminating in the formation of a 

protofilament. These protofilaments (typically 13) associate laterally and assemble 

into tubular microtubule structures [144]. As with the actin polymers, the 

microtubule is intrinsically polar, with a plus and minus end, due to the organisation 

of the tubulin dimers in the protofilament [145]. For both F-actin and the 

microtubule, the plus end grows more rapidly than the minus. The minus end of the 

microtubule is anchored close to the nucleus of the cell in structures called 

microtubule organising centres (MTOCs), this is known as a centrosome [143]. 

Microtubules are responsible for separating chromosomes and for the long-range 

transport of large particles. Each individual microtubule elongates and shrinks to fulfil 

a specific role (i.e. chromosome alignment). This phenomenon is termed “dynamic 

instability” [146]. 
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Figure 1-5. Schematic illustration of major cytoskeletal components in motile 
cells. The cross-hatched region represents the actin framework of the 
lamellipodia. F-actin is present throughout the cell. Aging focal adhesions in the 
rear are disassembled to allow retraction. Intermediate filaments surround the 
nucleus (N), some of which associate with focal adhesions in the lamellipodia. 
Microtubules are polarised along the direction of migration and accumulate 
toward the front of the cell. Adapted from [147]. 
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1.5.3 Role the cytoskeleton plays in cell migration 

The ability to migrate is one of the most remarkable properties of animal cells. To 

date the majority of the research carried out has been conducted on two-

dimensional (2-D) surfaces, mainly for experimental convenience [148]. This research 

has been pivotal in our understanding of how cells migrate. A large percentage of 

cells migrate primarily within the ECM: during development, specialised cells 

manoeuvre within the embryo to reach their correct orientation, and in disease, 

cancer cells migrate from the primary tumour to metastasise secondary sites [149]. 

Fibroblasts often play a crucial role in the cell migration, for example in wound 

healing by migrating to the wound site and secreting extracellular matrix (ECM) 

proteins, such as collagen, glycosaminoglycans and glycoproteins, to maintain the 

structural integrity of the connective tissue [150]. 

It is generally understood that there are four steps involved in the cycle of cell 

migration (Figure 1-6) [147]. The first step is the formation of a protrusion, called the 

lamellipodia, at the front of the cell in response to biochemical and mechanical 

stimuli. Next, formation of new focal adhesions at the leading edge strengthen the 

cells attachment to the ECM. Third, increased activity of the actomyosin increases to 

reduce retraction of the rear. Finally, focal adhesions within the cell rear are 

dissembled to facilitate the forward movement of the whole cell body [138,151,152]. 

The dynamic formation of lamellipodia is regulated by local actin filament assembly 

and disassembly. During migration, these formations push the cell membrane 

forward to explore the surrounding environment. Depending on the suitability of the 

surrounding environment, the cell will either extend further forward or retract. There 
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are two patterns of actin assembly in lamellipodia, branching and elongation, which 

promote the formation of the actin mesh [153]. Focal adhesions, which are a type of 

adhesive contact between the cell and ECM, are actively assembled and 

disassembled in the front and tail of the cell, respectively. At the site of focal 

adhesion, the extracellular domains of transmembrane integrins connect to the ECM 

whilst their intracellular tails form attachments to linker proteins, such as vinculin 

and talin, which in turn bind to the actin cytoskeleton [147]. This chain of connections 

allow the cell to crawl along the ECM during migration. Subsequently, the triggering 

of this focal adhesion assembly results in the recruitment of structural proteins (α-

actinin, talin, vinculin) and signalling proteins, including focal adhesion kinase (FAK) 

[154]. These structural proteins help to strengthen the attachment to the actin 

cytoskeleton and the signalling proteins promote further actin polymerisation and 

other pathways [155]. Further, after the connection between the ECM and actin 

cytoskeleton has been established, via focal adhesions, external signals induce stress 

fibre assembly. Stress fibres are contractile bundles containing both F-actin and 

myosin II filaments. The assembly of these stress fibres generates traction, via the 

activation of the actomyosin ATPase, propelling the cell forward [147,156]. 

IFs have been shown to physically interact with focal contacts in the lamellipodia, 

raising the possibility that they directly regulate focal adhesion dynamics, and thus 

cell migration. Cells which express high concentrations of vimentin have been shown 

to exhibit increased focal adhesion dynamics and destabilised desmosomes 

[157,158]. As IFs are widely distributed in the cytoplasm, they have also been shown 

to regulate cell contraction and nucleus rigidity. In most motile cells, microtubules 

do not enter the lamellipodia [159]. However, some pioneer cells can extend to the 
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protrusion sites. It is likely that microtubules promote the delivery of vesicles that 

are essential for cell protrusion [159]. They also promote the polarised delivery of 

integrins to the leading edge and facilitate the assembly and disassembly of mature 

focal adhesions within the cells rear, concluding that microtubules play a key role in 

cell protrusion and contraction [159]. 
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Figure 1-6 Schematic representation of the steps in 2D cell migration. 1. The 
extension of a lamellapodium. 2. The formation of a new adhesion. 3. The 
translocation of the cell body. 4. De-adhesion and retraction at the trailing edge. 
Adapted from [160]. 
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1.5.4 The role of mechanotransduction 

Mechanotransduction is a process whereby cells can sense their physical 

surroundings by converting mechanical stimuli into biochemical signals, via the 

activation of diverse intracellular signalling pathways [161]. This complex process is 

not yet fully understood. However, it is known that stretch-sensitive ion channels are 

key regulators of mechanotransduction [162]. The ECM of connective tissues bears a 

considerable physical load and provides protection to embedded cells from excessive 

mechanical forces [163]. Fibroblasts, which are abundant in connective tissues, firmly 

attach to the ECM, via focal adhesions. The link from ECM to the internal architecture 

of the cell, allows the propagation of mechanical forces in both directions. The 

opposing forces, felt internally and externally by the cell, cancel each other out in 

stationary cells [160]. However, an imbalance of force in either directions leads to 

cellular movement [164]. Due to these dynamic interactions, fibroblasts are able to 

use their adhesion contacts to sense the mechanical properties of the surrounding 

extracellular environment [165]. One of the ways in which fibroblasts gain 

information about the elasticity of the surrounding ECM is by pulling on an adhesion 

contact [160]. If there is resistance to the pulling of the fibroblast, this would indicate 

a stiff ECM and lead to the reinforcement of the focal adhesion site; conversely, any 

instability detected, via this mechanism, can result in the disassembly of focal 

adhesions and retraction of the cell [164,166]. Therefore, changes in a cells ability to 

respond to forces are associated with certain disease states, including; muscular 

dystrophies, cardiomyopathies, cancer progression and metastasis [161,167]. This 

process is the driver for the behaviour to be modelled in relation to fibroblasts 

reacting to their physical surroundings. By mimicking the ECM through patterned 
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surfaces, a model of the migrating cells can be built to predict how the fibroblast cells 

react to certain features. 

1.5.5 Replication of Extracellular Matrix (ECM) features 

The interaction between a cell and its environment is pivotal for many cellular 

behaviours such as migration, division, differentiation and proliferation. In-vivo, cells 

depend on an interaction with the ECM scaffold. In order to replicate this 

environment, significant research has focused on the development of cell substrates 

that mimic the features of the ECM [168-170]. This has largely been achieved by 

developing surfaces which have specifically designed features with defined 

geometries and sizes on a range of different materials. For example, surfaces 

patterned with micro- and nano-scale grooves [171], pillars [148] and pits [172] have 

been shown to influence cell adhesion [173] and migration [174] of a range of 

different cell types. 

Although many methods are available for creating and modifying the topography of 

patterned surfaces, the most widely used technique involves placing a template mask 

over the surface that is due to be processed, thereby leaving a predetermined 

pattern. Such an approach can be seen in lithography-based approaches including; 

electron beam lithography [172,175,176], photolithography [171,177,178] and X-ray 

lithography [170,179]. The advantages to using these methods are evident in the 

wide range of well-defined geometries that can be produced on the substrates. 

However, the equipment they utilise is often expensive and time-consuming. A more 

effective method in the creation of micro-patterned surfaces is laser processing. 

Laser processing is a quicker, direct-write and flexible process [169]. It is also capable 
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of processing relatively large areas by a single exposure. Finally, abrasive polishing 

methods, which have so far been largely overlooked, can also develop textured 

surfaces comparable to those produced by lithography-based methods whilst also 

being cost-effective. It has been shown that abrasive polishing can produce 

patterned polyurethane surfaces having ordered, or random, nanoscale features that 

can affect cell adhesion and migration [180]. Note that because of this utility and cost 

effectiveness, an abrasive polishing method was chosen to create patterned surfaces 

for the migration experiments in this thesis. 

Machine grinding was used for this purpose to generate the topographical patterns 

on the polyurethane surfaces. This method involves the micro-patterning of stainless 

steel, which can then be used to cast polymer substrates for observing the migration 

of fibroblasts [180]. An unprocessed plain polymer surface was used as a control and 

was labelled as ‘Flat’. Next, a pattern of parallel lines was cast on the polymer surface 

and was labelled as ‘Linear’. Finally, a pattern of random lines varying in direction 

was etched into the polymer surface and labelled appropriately as ‘Random’. 

Subsequently, a previous study has shown that these machine ground surfaces 

promote adhesion and migration in fibroblast cells compared to unprocessed, flat 

surfaces [180].  

1.5.6 Mathematical models of cellular movement 

In-silico simulation aims to model cellular movement through the use of complex 

numerically implemented mathematical methods, with the goal of facilitating better 

understanding of the phenomena and its role in wound healing, tumour growth and 

tissue formation [181-186]. As previously described in section 1.3.1, these models 
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can be classified as continuous or discrete. As continuous models can be used to 

describe the average of cell populations with continuum variables, cell movement 

can be defined in terms of cell density and average velocities. This method has been 

utilised in the description of adhesion [187], wound healing [188-191] and 

angiogenesis models [192]. For example, continuum models of wound healing have 

been used qualitatively, in a predictive capacity, to aid the understanding of the 

complex underlying mechanisms involved in wound contraction. Murray et al. [190] 

use a base model, with three simplified assumptions, to describe the wound 

contraction mechanism of wound healing only. Qualitatively, there were problems 

when the model output was compared to contraction curves. However, extensions 

of this model, through functional changes of the cell function, allowed incorporation 

of alternative mechanisms of contraction resulting in several scenarios that can be 

considered for further novel in-vitro wound healing assays. Additionally, Arciero et 

al. [188] proposed a two-dimensional continuum model were cell migration occurs 

collectively in a sheet, based on mechanical principles governing its motion [193], 

such as those described in Figure 1-6. This model was able to capture known 

quantitative and qualitative features of a migrating cell layer, with calibration to data 

from scratch wound assays. Although these methods are advantageous in terms of 

requiring less computational power, they require more assumptions than discrete 

models, the individual cell movement cannot be tracked and dynamical individual cell 

behaviour cannot be predicted. However, if cells are interpreted as discrete 

elements, then each cell can be defined as an individual, whose properties can be 

modelled in relation to its position within a cell population [194], the local chemical 

and mechanical environment [195-198], or any other external stimuli that could 
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regulate cell behaviour. This distinction is important for the creation of the cell 

movement model (Chapter 3) proposed as it takes into account the mechanical 

environment that surrounds the individual cells. 

It is clear that mathematical modelling of the movement of cells has great relevance 

in the field of biology. Again, there are many different forms of cell movement 

models. However, the most widely used are based on the extensions of simple 

random walk processes [199]. It is these models that I will base the model for Chapter 

3 upon, as they incorporate random movement or Brownian motion into their 

assumptions. Brownian motion can be described as the random movement of 

particles due to their collisions with other atoms and molecules. This concept is 

named after Scottish botanist Robert Brown, who in 1827, observed pollen grains 

moving randomly in the water [200]. However, he was unable to explain the 

phenomena he had observed and it remained undescribed until 1905, when Albert 

Einstein published a paper explaining that the fast-moving water molecules in the 

liquid moved the pollen [201]. The Weiner process is often used to model Brownian 

motion in cell migration models. The Weiner process is defined as a continuous-time 

stochastic process and is named in honour of Norbert Weiner. Brownian motion is 

considered a Gaussian-Markov process, it has normally distributed random variables 

over a continuous time constant and is considered a memoryless process [199]. 

These walks are uncorrelated and unbiased. Correlated random walks (CRWs) involve 

correlation between successive step orientations, which is termed as ‘persistence’. 

This creates a directional bias where the influence of the initial direction of motion 

gradually diminishes over time [202]. These types of models provide a lot of potential 

in terms of implementing a bias term and can apply to a lot of different situations. 
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For instance, a global directional bias can be introduced by making the likelihood of 

a cell migrating in a particular direction greater. This is most common in chemotaxis 

models where fixed external environmental factors are applied [203,204]. The goal 

is to utilise these models and modify the bias term so that it represents a mechanical 

gradient on the surface that the cells migrate upon. 
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1.6 In-silico approaches to protein signalling networks  

1.6.1 Structure and function of the Nrf2 protein 

The engulfment of aerobic mitochondria by our single cell ancestors, yielded higher 

energy through effective respiratory processes and facilitated the inception of more 

complex life forms. However, the cost of this ‘upgrade’ to the host cell was the 

requirement for an efficient detoxification system to deal with the constant 

production of reactive oxygen species (ROS), which are associated with normal 

mitochondrial activity [205]. More efficient respiration due to oxidative 

phosphorylation results in more ROS being produced. This symbiotic relationship 

significantly contributes to the process of aging and all age-related diseases. The 

aerobic cell defends itself by encoding sensor proteins that react to ROS by turning 

on a collection of cytoprotective antioxidant genes through transcription. The 

nuclear factor erythroid 2–related factor 2 (Nrf2) performs a central role in this 

process, regulating around 1% of human gene expression, many of which perform 

powerful protective functions [206]. Therefore, an increase in ROS leads to a higher 

production of Nrf2 and subsequently, an increase in the transcription of antioxidant 

genes. 

The Nrf2 coding sequence was first characterised by Yuet Wai Kan [207], who 

revealed that Nrf2 was able to bind activator protein-1 (AP-1) and the NEF-E2 tandem 

repeat consensus DNA sequence. The Nrf2 protein belongs to the Cap’n’Collar family 

of proteins (CNC) and to the subfamily of basic leucine zipper (bZIP) proteins 

[208,209]. The transcriptional activity of the Nrf2 protein requires the formation of a 

heterodimer complex with another member of the bZIP subfamily, the small MAF 
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(sMaf) proteins [210]. This interaction facilitates binding to a cis regulatory DNA 

element called the Antioxidant Response Element (ARE), which is contained within 

the promoters of Nrf2 target genes [209,211]. The key characteristic of this 

transcription factor is its very low basal activity and its stringent regulation, as the 

half-life of Nrf2 protein has been estimated to last only 10-30 minutes [212]. The 

stability of Nrf2 dramatically increases as a result of diverse stimuli including plant-

derived phytochemicals and intracellular and extracellular stress factors, such as 

ultraviolet (UV) and gamma (or ionising) radiation, electrophiles, pollution, 

inflammation and ROS [211,213]. Expression levels of the Nrf2 protein are primarily 

controlled at a post-transcriptional level, through an interaction with proteins that 

trigger proteasome mediated degradation [206,210].  

The best understood negative regulator of Nrf2 is the Kelch-like ECH-associated 

protein (Keap1), which is an actin-bound zinc metalloprotein that acts as an E3-ligase, 

facilitating the attachment of ubiquitin chain to Nrf2 [214]. Keap1 binds as a dimer 

to the Neh2 domain within Nrf2 forming bonds with the high affinity ETGE and low 

affinity DLG amino acid sequences. This interaction brings the Nrf2 protein into 

proximity with Cullin3 and Ring Box 1 (Rbx1), which then catalyse the process of 

ubiquitin attachment (Figure 1-7) [215]. Keap1 is located mainly in the cytosol where 

it constantly sequesters Nrf2, thereby restricting basal Nrf2 activity to very low levels. 

An unusually high number of reactive cysteine (Cys) residues are encoded within 

Keap1 (27 Cys residues), which makes it an extremely sensitive sensor of oxidative 

stress, with C151, C257, C273, C288 and C297 being especially sensitive to oxidation 

[211,216]. The oxidation of thiols within Cys residues leads to the formation of 

disulphide bridges between cysteines, resulting in a conformational change in Keap1 
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protein structure, which in turn prevents the effective ubiquitination and 

degradation of Nrf2 [215,217]. 

Newly formed Nrf2 proteins will still bind to free Keap1 dimers. However, as Keap1 

becomes saturated, free Nrf2 is then allowed to enter the nucleus, where it will 

subsequently heterodimerise with sMaf and bind to ARE containing promoter 

sequences (Figure 1-7) [215]. Therefore, antioxidant pathway activation will rely on 

Nrf2 protein synthesis to overcome the levels of Keap1, which are usually present in 

cells, at very low (near-saturated) levels [218]. The Keap1/Cull3/Rbx1 complex is 

extremely robust and efficient in restricting Nrf2 protein expression. However, 

several other negative regulators of Nrf2 protein expression have been described. 

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase and is encoded by 

two isoforms (GSK-3α and GSK-3β) [219]. GSK-3 is active basally and requires priming 

phosphorylation of its targets, which then prompts further attachment of a 

phosphate group onto a serine or threonine residue. In the presence of glucose, the 

insulin/Akt/PI3K pathway leads to GSK-3 phosphorylation at Ser9 (β isoform) and 

Ser21 (α isoform), which terminates its activity [219]. Nrf2 is also a target for GSK-3 

phosphorylation, on the Neh6 domain, facilitating docking of the β-TrCP E3 ubiquitin 

ligase and formation of the β-TrCP/Skp1/Cull1/Rbx1 complex, which like 

Keap1/Cull3/Rbx1 catalyses the ubiquitination of Nrf2 and subsequent degradation 

[220,221]. While Keap1 is thought to dominate the control of cytoplasmic Nrf2 levels, 

the GSK-3/β-TrCP axis is thought to be predominantly active in the nucleus, directing 

Nrf2 protein for nuclear proteasomal degradation [220]. Ultimately, Nrf2 controls the 

transcription of over 200 genes and depending on the tissue context, these genes 

have prominent roles in the maintenance of redox status and the generation of 
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reducing equivalents, protein folding and degradation, cell metabolism, calcium 

homeostasis and drug metabolism [222,223]. 

It is clear from the research described above that Nrf2 is a key transcriptional factor 

in the regulation of cellular response to oxidative stress. However, in most tissues, 

cells are not only exposed to frequent changes in levels of oxidative stress, but also 

inflammation [224]. The key transcriptional factor controlling cellular response to 

inflammation is nuclear factor-κB (NF-κB) and it has been shown, through 

pharmacological [225,226] and genetic [227,228] studies, that there exists a 

functional cross-talk between these two important regulators. 
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Figure 1-7. Keap1-dependent Nrf2 regulation. Schematic diagram of the Nrf2 
pathway. Nrf2 is sequestered by Keap1 under normal conditions and the complex 
closes allowing attachment of the ubiquitin chain. Keap1 is then recycled and 
binds to another Nrf2 molecule. During oxidative stress, there is a modification of 
cysteine residues on Keap1 by oxidation or attachment of electrophilic 
compounds. Keap1 is unable to form the closed complex and therefore catalyse 
the ubiquitin attachment. The newly made Nrf2 is then accumulated in the 
nuclear space and leads to the transcription of ARE genes. 
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1.6.2 Structure and function of the NF-κB protein 

The NF-κB transcription factor mediates immune responses to bacterial and viral 

infections, as well as initiating gene expression supporting inflammation, cell 

development, proliferation, anti-apoptotic pathways, oxidative metabolism and 

protection against UV radiation [229-231]. NF-κB is actually a family of transcription 

factors including RelA (p65), RelB, c-rel, p50 and p52 subunits, which act as homo- or 

hetero-dimers [232]. Only the p65, RelB and c-rel contain the transactivation domain 

required to drive transcription [233]. The p50 and p52 subunits are detected basally 

in the nucleus of unstimulated cells and are thought to have an inhibitory effect on 

gene expression, exerted by blocking DNA sequence availability [232,233]. A complex 

network of protein interactions usually initiated by an extracellular stimulus (e.g. 

stress, cytokines, free radicals, bacterial and viral antigens) mediates NF-κB signalling 

[234]. The NF-κB subunits form homo- and hetero-dimers through their Rel 

homology domains (RHD), which are also necessary for their dimerization, DNA 

binding and association with the IκBα inhibitor [232,234]. 

The p65/p50 (NF-κB) heterodimer is sequestered in the cytoplasm by association 

with IκBα, which obscures one out of two NLS and limits its nuclear entry 

[232,235,236]. Importantly, NF-kB gene transcription is inducible by variety of stress 

stimuli and over 150 different factors have been identified as activators of NF-kB 

mediated gene expression: e.g. LPS, exotoxin B, muramyl peptide, viruses e.g. 

Hepatitis B, Adenovirus, Herpex Simplex Virus-1, HIV, cytokines, but also physical 

stress, UV radiation, shear stress, ischemia oxidative stress and environmental 

hazards [237,238]. NF-κB plays a central role in the maintenance of the immune 

responses by initiating the genetic program designed to modulate the local 
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environment and to attract the immune cells to the site of infection or injury. It was 

found to mediate the expression of approximately 300 genes, including numerous 

cytokines and their receptors, anti-apoptotic genes and adhesion molecules 

[238,239]. 

TNFα is one of the best-studied cytokines and is a potent activator of NF-κB -

mediated gene expression, playing an important role in systemic inflammation and 

the induction of fever [240,241]. It has pleiotropic effects as it can induce a range of 

cellular responses such as proliferation, chemotaxis, apoptosis and inflammation, as 

its downstream signalling can trigger several molecular cascades [242]. Pro-

inflammatory cytokines such as TNFα and IL-1β activate the canonical signalling 

cascade by engaging their extracellular receptors and initiating a relay of intracellular 

phosphorylation events, which co-ordinate signalling and conditional cell responses 

[243]. Activation of the TNFR1 receptor initiates the TRADD/RIP signalling cascade, 

which removes the phosphate group from the IKK kinases complex, comprised of the 

IKKα and IKKβ catalytic subunits and IΚKγ (NF-κB essential modifier, NEMO) (Figure 

1-8). IKK activation results in the phosphorylation of IΚBα on Ser32 and Ser36 and 

parallel activation of several kinases, such as MAPK p38, JNK [232,234,242]. 

Phosphorylation primes IΚBα for interaction with the β-TrCP/Skp1/Cullin1 complex, 

which drives IΚBα ubiquitination and proteasomal degradation, finally releasing the 

NF-κB subunits to the nucleus [244].  

The entire signalling process from TNFR1 activation to κB transcription is very rapid, 

taking place within minutes [234]. The activation of inflammatory gene transcription 

also initiates multiple negative feedback loops, which prevents the inflammatory 

signalling uncontrollably increasing. The IΚBα protein is one of the earliest gene 
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targets of NF-κB signalling, in response to the TNFα cytokine. Shortly following 

translation, IκBα localises to the nucleus and removes p65 from the DNA, and 

sequesters it back into the cytoplasm [245]. In addition, NF-κB also transcribes the 

deubiquitinating enzyme (DUB) A20, which terminates the signalling cascade 

upstream of the IΚK complex by modification of the receptor interacting protein 

(RIP), which is essential for TNRF1 receptor signalling (Figure 1-8). The A20 protein 

removes Lys-63 chains from the RIP protein leading to Lys-48 ubiquitination and 

targeting for proteasomal degradation, leading to inactivation of the downstream 

phosphor-relay signalling [246,247]. Therefore, both IΚΒα and A20 create safety 

loops which can terminate the signalling from the inflammatory signalling. 
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Figure 1-8. The Canonical NF-kB Pathway. Schematic diagram of the NF-kB 
pathway. The canonical/classical pathway of NF-κB activation involves 
inflammation that triggers a downstream cascade of ubiquitination and 
phosphorylation events leading to nuclear occupancy of p65/p50 heterodimers. 
The p65/p50 dimer then translocates to the nucleus and mediates transcription 
of κB driven genes. 
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1.6.3 Molecular cross-talk between Nrf2 and NF-κB response pathways 

The initial insights to an existing functional cross-talk between the Nrf2 and NF-κB 

pathways came through the study of Nrf2 knockout (KO) mice, which exhibit a 

phenotype of neurodegeneration. This loss of Nrf2 results in enhanced NF-κB 

dependent inflammation via the augmentation of cytokines [227]. Moreover, further 

studies have shown comparable results of amplified cytokine production in mouse 

models lacking Nrf2, resulting in pronounced levels of NF-κB activity [228,248,249]. 

Additionally, pharmacological studies focusing on the application of Nrf2 activating 

phytochemicals, such as sulforaphane (SFP), or synthetic inducers of Nrf2, such as 2-

cyano-3,12 dioxooleana-1,9 dien-28-imidazolide (CDDO-Im). The result of these 

studies concluded that pre-stimulation of Nrf2 caused a dampening of inflammatory 

cytokines and therefore a decrease in NF-κB activity [225,250]. Furthermore, HO-1 is 

an Nrf2 target gene and is central to the Nrf2-mediated inhibition of the NF-κB 

response pathway [251]. Finally, another link between these two pathways is the 

Keap1 protein [252]. Aside from its regulatory role in the Nrf2-ARE pathway, Keap1 

has been found to inhibit the phosphorylation and degradation of IKKβ. This 

ultimately leads to the stabilisation of IKKα and the negative regulation of NF-κB 

[252]. Despite this evidence, many aspects of the cross-talk dynamics remain 

unknown. As such, many important features of co-regulation, feedback loops and 

competitive binding remain undefined. However, the importance of this cross-talk 

cannot be understated, as these pathways regulate the fine balance of cellular redox 

status and response to stress and inflammation. Deeper understanding of these 

cross-talk points can facilitate in the identification of therapeutic targets, as the anti-

inflammatory potential of the Nrf2 protein can be utilised in the treatment of many 
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neurodegenerative diseases, such as amytrophic lateral sclerosis (ALS), multiple 

sclerosis (MS) and Parkinson’s disease (PD) [253-255]. 

1.6.4 Mathematical models of NF-kB and Nrf2 

In a recent review, Quanstrom et al [256] discussed the current state of 

computational modelling of the NF-kB signalling pathway. There have been a number 

of computational models developed of the signalling pathway over the past two 

decades. It is increasingly appreciated that the robustness of various cellular 

processes (i.e. signalling pathways, regulatory mechanisms) is rooted in the dynamic 

interactions among the cell’s many constituents, such as proteins, DNA, RNA and 

small molecules [256]. A significant body of knowledge has been generated through 

wet-lab experimentation since the discovery of NF-κB in 1986. Recently, equation-

based and agent-based models have been used within a predictive capacity to 

generate hypotheses for testing through this supportive wet-lab experimentation 

[257-259]. The first model of NF-κB dynamics used mass action derived kinetics to 

focus on IκBα association and dissociation rates, along with IκBα and NF-κB nuclear 

import and export rates [260]. Hoffmann et al [261], then developed an ordinary 

differential equation (ODE)-based model that incorporated the wider NF-κB network, 

including the other IκB isoforms. This model also focuses on reactions that affect IκB 

dynamics, paying particular attention to the temporal control of NF-kB activation 

through the coordinated synthesis and degradation of IκB proteins. Other authors 

have since built on this deterministic ODE model by performing new wet-lab 

knockout experiments on IκB isoforms [262] and recalibrating the model with 

outputs from single cell analysis rather than population-based wet-lab experiments 

[263]. This approach yielded the first working model to show NF-κB oscillations at the 
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single cell level. In recent years, additional components of the pathway have been 

added by various authors, to include IKK, A20 and their subsequent feedback loops 

[264]. An alternative method is to model cells or molecules individually and assign 

probabilities to each possible interaction or state change through rule-based 

techniques. It may then be aggregated up to system-level dynamics, to be 

extrapolated in order to make predictions of the system-level behaviours in the real 

biology [265,266]. The first such agent-based model of NF-kB used the concept of 

communicating X-machines, which is a formalised version of an ABM, to represent 

the individual agents and their associated interactions [267]. An important aspect of 

communicating X-machines is that each agent has memory, which in this instance, 

holds the current physical location and current state to further instil stochasticity into 

the model. Graphical visualisation of the resulting reactions then allows us to view 

the dynamics of the system over time. However, it has been argued by several groups 

that the complexity of such models makes them too computationally expensive to 

run and also requires complicated analytic tools to make inferences from the 

simulated results. 

In contrast, computational models of the Nrf2 pathway are limited, with work mainly 

focusing on in-vivo and in-vitro models [268]. Khalil et al [269] developed a model 

describing the Nrf2-keap1-dependent mechanism of redox homeostasis regulation 

and Nrf2 signalling. This kinetic model of Nrf2 signalling comprises 16 ODEs with 

parameters that were chosen based on experimental data. The model they proposed 

captures the Keap1-dependent degradation of Nrf2, and gene regulation of the 

antioxidant system. This lack of published Nrf2 models is a consequence of the 

limited quantitative data available. Due to the lack of in-silico models available in the 
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literature, a minimalist approach was taken in the process of the model build i.e., 

only key components were included based on a review of the literature. Additionally, 

the parameter values from the Khalil et al. paper will be used as initial estimates for 

the parameter optimisation.  In this thesis, a quantitative model of the Nrf2 pathway 

(Chapter 4) combining mathematical assumptions with raw experimental data is 

proposed. This data will be used to inform and validate the model in the hope of 

extracting vital information regarding the dynamical interactions of the individual 

pathway components. This illustrates the novelty of the work being carried out in this 

study. In addition, a further petri-net (PN) model is to be developed, incorporating 

both the Nrf2 and NF-kB response pathways (Chapter 5), and highlighting the areas 

of cross-talk in an effort to draw conclusions on the cyclic behaviour of their 

interactions, based upon feedback loops of activation and inhibition. 

Although quantitative mathematical models are well established tools for modelling 

complex biological phenomena, they typically require an exhaustive set of kinetic 

parameters to be estimated for each reaction. This approach is manageable for 

smaller models that align to the dynamics of a few components. However, these 

models tend to suffer from limitations in accuracy as the scale and complexity of the 

model is increased to capture more realistic details at a system-level. As such, we 

utilise minimal modelling for the creation of the Nrf2 quantitative system, as they 

have been shown to replicate the majority of the phenomenological behaviours with 

the minimum number of equations possible [270-273]. An alternative approach is 

PNs. The classical PN is a directed bipartite graph [274]. The two types of nodes are 

called places and transitions. In a PN, places and transitions are connected via arcs. 

Places are graphically represented by circles, transitions by boxes or bars. Places can 
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store tokens, represented by black dots or numbers. A distribution of tokens on the 

places of a net is called a marking, and corresponds to the “state” of the PN [275]. A 

transition of a net is enabled at a marking if all its input places (the places from which 

some edge leads to it) contain at least one token. An enabled transition can fire: it 

removes one token from each of the input places, and adds one token to each of its 

output places. This is called the firing rule. This flow of tokens represents the 

dynamical behaviour of the model [276]. While such approaches somewhat relax the 

necessity for biologically exact kinetic parameters, current PN-based approaches still 

require the selection of weights and/or probability distributions for individual 

interactions in the model. As a result, selecting the values for PN parameters presents 

challenges similar to those encountered in ODE modelling. PNs have been extensively 

used for simulating the dynamics of signalling networks [277-280]. These PN models 

are constructed with the same framework as described above. Places represent the 

entities within the signalling pathway, such as proteins. Transitions represent 

processes such as enzymatic reactions and lead to new places which represent the 

outcome of the process i.e., binding of proteins. Token numbers are equivalent to 

the amount of protein present and can be weighted to specific reactions. For 

example, in the Nrf2 pathway two keap1 tokens would react with one token of Nrf2. 

In general, the following steps are followed in model design [279]: 

1. Identification of the key events in the selected pathway 

2. Identification of objects related to the key events that also need to be 

represented as places 

3. Identification of the interactions between the objects, which are then 

represented by transitions 
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1.7 Thesis outline 

In this thesis, there is a combination of experimental data with mathematical 

formulae to produce several in-silico models depicting cellular phenomena across a 

range of individual scales (macroscopic, mesoscopic and microscopic).  The 

advantage and novelty to creating mathematical models in this way, results from the 

higher accuracy achieved through the utilisation of experimental data. Furthermore, 

the models proposed in this thesis, require less theoretical assumptions or 

estimation of parameters.  

Chapter 2 describes a continuous macroscopic in-silico model of the tumour 

microenvironment of the gut. The model was reduced so that only the cancer and 

immune cells involved in the experiments are relevant in the model. This continuous 

model is used to determine the dynamic nature of the interactions between the cells 

and provide insight into the underlying mechanisms of cell-cell communication.  

Moving down a scale, Chapter 3 describes a discrete model of individual fibroblast 

migration. This model incorporates cell migration mechanics with surface 

topography to assess the effect of differing topographical features on cell speed and 

direction. Microscopy image data was uploaded into the model the simulated 

migration paths were compared to the experimental observations to determine 

which, if any, of the surface features resulted in more directed cell migration of the 

fibroblast cell.  

Continuing with the progression down biological scales, Chapter 4 describes a 

molecular quantitative model depicting the processes involved in the life cycle of the 

Nrf2 protein. These processes include the production, translocation, degradation and 
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decay of the protein. A minimal model was generated to describe these components 

based on ODEs. Parameterisation and fitting of the model resulted in quantitatively 

derived values for the kinetic rates in the equations. Subsequently, the model was 

able to provide kinetic rates describing the dynamics of the Nrf2 protein. 

Finally, staying on the microscopic scale, Chapter 5 describes the interaction of the 

Nrf2 protein with the NF-κB protein. The pathways of both these proteins are 

extensive with multiple cross-over points. Therefore, these pathways were reduced 

to their key functional components, through analysis of the relevant biological 

literature. As with Chapter 4, the model comprises the production, translocation, 

degradation and decay of the proteins. However, this model also includes activation 

and inhibition of the proteins as part of the mechanism of cross-talk between the 

pathways. This model was used to provide important insights into the dynamic 

properties of the cross-talk mechanisms that were not feasible through 

experimentation alone. 
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Chapter 2: Systems Biology of the Tumour 

Microenvironment 
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2.1 Introduction 

In this chapter, a continuous macroscopic in-silico model of the tumour 

microenvironment of the gut is introduced. More specifically, a model that aims to 

investigate the underlying mechanisms involved in the interaction between epithelial 

cancer cells (AGS) and stromal myofibroblasts (308/1). As previously mentioned in 

Section 1.4, both of these cell types reside in the gastrointestinal tract. Due to the 

harsh nature of this environment, continued maintenance and regulation of the 

gastrointestinal tract epithelium is essential. When this epithelial layer becomes 

compromised, through inflammation and cancer, myofibroblasts form a key part of 

the immune response. They are involved in many vital processes of wound healing, 

such as tissue remodelling [46] and re-epithelialisation [47]. Myofibroblasts regulate 

these processes through secretion of cytokines and other factors, such as TGF-β [52]. 

Again, as highlighted previously cancer can be considered as a wound that does not 

heal [66]. The inflammatory response from the presence of these cancer cells 

promotes the recruitment of myofibroblasts to the cancer site, where they can 

undergo phenotypic changes and become designated as CAMs [74]. The functional 

role of these CAMs and the underlying mechanism of the cell-cell signalling between 

them and the cancer cells is not very well understood. However, as it is abundantly 

clear that myofibroblasts release a plethora of chemicals in response to stress (i.e. as 

a result of injury caused by inflammation and cancer), this will form the basis of the 

investigation into the mechanism at play between the cells. In-silico models allow us 

to study dynamics of biological cells which cannot be easily defined using 

experimental approaches. The strength of the modelling in this chapter is based upon 
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the experimental data that is used in its design. To my knowledge, there are no 

existing models in the literature based upon the interaction between these cell types. 

The experimental approach to the problem in this chapter involves carrying out cell 

migration assays on both cell types simultaneously. Ordinarily with these types of 

experiments, a scratch wound assay is performed on a monolayer of the first cell type 

in the presence of complemented media from the second cell type [281]. However, 

in the experiments described in this chapter, there is a monolayer of both cell types. 

These monolayers are separated by a uniform gap, created through the use of a gel-

insert. This allows the interaction between the cells to be recorded via time-lapse 

microscopy, with the resulting data utilised to create and inform the model. The key 

hypothesis is to investigate whether a ‘chemical inhibitor’ produced by the 

myofibroblasts is the driver (i.e. main influencer) of the observed cell migrations. 

In summation, this chapter describes the evolution of a continuous model from a 

simple diffusion based approach to a system that incorporates chemotaxis and 

density-based diffusion. By using computational approaches to reproduce properties 

that the biological system displays, a better understanding of how the mechanism of 

interaction between the myofibroblast cells and the cancer cells can be discovered 

[282]. It is important to stress that the models in this chapter are semi-quantitative. 

In other words, the research is primarily explorative and the models are being used 

to gain an understanding of the underlying interactions between the different cell 

types. 
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2.1.1 Chapter aims 

1. To complete in-vitro experiments on AGS and 308/1 cells. 

2. To use in-vitro results to develop an in-silico model that best describes the 

phenomena captured by the experimental data. 

3. Compare simulated output to the experimental data to assess 

appropriateness of model design and refine if necessary. 

4. Explore the underlying mechanism of interaction. 
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2.2 Experimental Methods 

Cell culture materials, namely 0.25 % w/v trypsin-EDTA, Dulbecco's modified Eagle's medium 

(DMEM), L-glutamine, non-essential amino acids, antibiotic-antimycotic solution, penicillin-

streptomycin solution and phosphate buffered saline (PBS) were obtained from Sigma 

(Dorset, UK); RecoveryTM cell freezing medium came from Invitrogen (Paisley, UK). Foetal 

bovine serum (FBS) was purchased from Lonza. Ibidi cell culture inserts for migration assays 

was purchased from SLS (Nottingham, UK).  The gastro adenocarcinoma cancer cell line (AGS) 

were derived from fragments of a tumour resected from a patient who had received no prior 

therapy. AGS was obtained from American type culture collection, ATCC, VA, US. Human 

primary myofibroblasts were obtained from resected oesophageal cancers and adjacent 

non-cancerous tissue during surgery for removal of tumours at First Department of Surgery, 

University of Szeged, Szeged, Hungary. Myofibroblasts were prepared in the Department of 

Medicine, University of Szeged, Hungary as described in [74] and transported to the 

University of Liverpool in liquid nitrogen and cryopreserved until use. Myofibroblasts were 

derived from three Barrett's adenocarcinoma, recovered from the oesophagus and 

oesophagus/cardiac junction. From each patient, CAMs and ATMs were cultured.  

2.2.1 Tissue culture  

2.2.1.1 Human myofibroblasts.  

The myofibroblasts (referred to hereafter as "308/1” unless otherwise stated) were 

maintained in T-75 flasks in DMEM supplemented with 10% v/v FBS, 1% v/v penicillin-

streptomycin, 2% v/v antibiotic-antimycotic and 1% v/v non-essential amino acids. 

This is referred to as "full medium” (FM) unless otherwise stated. Cells were grown 

at 37oC in a 5% v/v CO2 atmosphere and the medium was changed every 48 h. For 

passaging, cells at 80% confluence or above were washed twice with PBS followed by 
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incubation for 5-8 min in 2 ml 0.25 % w/v trypsin-EDTA. Trypsinised single cell 

suspensions were then added to 8 ml of FM and cells were re-plated in T-75 flasks. 

Aliquots of 10 μl of cell suspensions were used for cell counting using a 

haemocytometer.  

2.2.1.2 Human gastro adenocarcinoma cancer cell line.  

Gastro adenocarcinoma cancer cell lines (referred to hereafter as “AGS”) were 

cultured in Ham’s F-12 Nutrient mixture supplemented with 10% v/v FBS, 1% v/v 

penicillin-streptomycin, 2% v/v L-glutamine. Cells were maintained at 37°C in a 5 % 

v/v CO2 atmosphere, and media was changed every 48-72 h. Confluent cells at 80% 

were washed twice with PBS, trypsinised using 0.25% w/v trypsin-EDTA and cells 

were added to 8 ml FM and re-plated in T-75 flasks.  

2.2.1.3 Cryopreservation of cell lines. 

Cells were trypsinised at 80% confluence, centrifuged at 800 x g for 7 min at 4oC and 

supernatants discarded. Pellets were resuspended in 1 ml recovery cell freezing 

medium and cell suspensions stored in 1.5 ml cryovials. These vials were placed in a 

plastic holder in a bath containing propane-1, 2,-diol and then transferred to a -80°C 

freezer overnight and then to liquid nitrogen for long-term storage. 

2.2.1.4 Recovering frozen cell lines.  

Cells were removed from liquid nitrogen, thawed by hand or in a water bath at 37oC 

and added to a T-75 culture flask with 19 ml FM and maintained 37oC in a 5 % v/v CO2 

atmosphere. 
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2.2.2 Migration assay 

Cells were grown to confluence in six-well dishes. In co-culture experiments, 100,000 

AGS and 50,000 308/1 cells were cultured in each well. The experiment was setup 

using an Ibidi chamber, which is a small gel insert containing two wells with the 

dimensions 7000 μm x 3250 μm. The two cell types were segregated into different 

parts of the well by applying them to either side of the Ibidi chamber. A monolayer 

of 100,000 AGS cells were added to the left well and a monolayer of 50,000 308/1 

cells were added to the right layer. Before removing the Ibidi chamber, cells were 

kept in an incubator for 24 h (in FM). Ibidi chambers were then removed, leaving a 

uniform gap of 500 μm between the cell populations (Figure 2-1), and each well 

underwent a double PBS wash before 800µl of 50/50 mixed DMEM and F12-Hams 

medium with 2% FCS was added to each well. The number of cells crossing a margin 

of 500 μm into an acellular area was recorded using time-lapse microscopy. Time-

lapse image series were analysed using Scion Image software (Scion, Frederick, MD), 

which is based on the National Institutes of Health Image. Cell tracking and frame-

by-frame recording of movements were used to calculate cell speed over 30-minute 

periods. Manual cell tracking was performed with Image J using the Manual Tracking 

plugin. Statistical analysis was performed in Microsoft Excel and MATLAB.  
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Figure 2-1. Diagram showing the dimensions of the cell populations in each well 
of the Ibidi chamber. Wells are 7000 μm x 3250 μm with a 500 μm gap. The left 
and right well contain a monolayer of approximately 100,000 AGS cells and 
50,000 308/1 cells respectively. The inner cell boundaries either side of the gap 
are referred to as the ‘proximal’ side of the cells, while the opposite outer 
boundaries are referred to as the ‘distal’ side. Red squares indicate the area 
recorded by time-lapse microscope. The red squares for the distal side of the AGS 
ce population have been excluded for readability. However, it is identical to the 
red squares visible for the distal side of the 308/1 population. 
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2.3 Mathematical modelling 

The cell migration assays were performed under a time-lapse microscope. Images of 

the assay were taken every 30 minutes over a period of 24 hours. Cell migration 

videos were manufactured by stitching these images together and later analysed 

using ImageJ software. In the first frame of the video (t=0), the area of the cell mass, 

visible in the frame, was measured for each cell type on both the proximal and distal 

side of the experiment. For each subsequent frame of the video, this initial cell area 

was subtracted from the new total area of the cells measured, to give the area of 

migration from the cell mass. Collectively, this data was used to produce a graph 

showing the average of the total cell migration of the two cell types over time (Figure 

2-2). The cells located on the proximal sides were labelled as ‘AGS proximal’ and 

‘308/1 proximal’. The cells located on the distal sides were used as a control and were 

labelled as ‘AGS distal’ and ‘308/1 distal’. To incorporate the total proximal edge of 

each cell population, 7 videos were recorded per experiment (Figure 2-1, red 

squares). Similarly, the distal edges had 3 videos recorded per experiment (Figure 2-

1, red squares). 
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Figure 2-2: AGS cells exhibit increased migration. Graph showing migration of 
AGS and 308/1 cells over time. The AGS and 308/1 proximal cells are represented 
by the blue and red lines respectively. The AGS and 308/1 distal cells are 
represented by the green and purple lines respectively. Error bars are also 
included for each of the cells. 

 

 

2.3.1 Increased cell migration in epithelial cancer cells (AGS) 

AGS cells exhibited loss of epithelial phenotype from t=0. That is, the cells underwent 

EMT and quickly began migration into the 500 micron space. The proximity of 

myofibroblasts had a pronounced effect on the speed of migration of the AGS 

proximal cells (Figure 2-2), as the divide between cell types narrows, the AGS cell 

progression on the proximal side decreases (approx. t=4h). Initially, the 308/1 

proximal cells maintain cellular phenotype and exhibit low amounts of cell migration. 

In subsequent modelling of the proximal AGS cells, it is assumed that the 308/1 cell 

population is non-migratory for simplicity. This is reasonable given the much lower 

migratory potential of the 308/1 cells vs the AGS cells displayed in the experiments 

but is something that could potentially be explored in the future. 
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At the moment of initial contact between the cell types, there is a decrease in cell 

migration of AGS cells and inversely, an increase in the cell migration of the 308/1 

proximal cells observed in the time-lapse videos. Significantly, an increase can be 

seen in cell migration between the proximal AGS cells and the distal AGS control cells. 

At t=18h, the AGS distal cells have migrated into an area 2.5 times larger than that of 

the AGS proximal cells. In contrast, there is also a larger increase in the area covered 

by the 308/1 distal cells than that of the 308/1 proximal cells, although on a much 

smaller scale. The AGS distal cells exhibit the biggest increase in cell migration. 

2.3.2 AGS cell migration appears directed 

Using manual tracking software on Image J, individual AGS cells were tracked from 

t=0 to t=18h, using images taken every 15 minutes from a time-lapse microscope 

(Figure 2-3). The data obtained from these tracks show a direct migration pattern 

away from the original colony of AGS cells. As shown in the migration assays, the AGS 

proximal cells migratory behaviour changes with increased proximity to the 308/1 

proximal cells. For example, in Figure 2-3A, the direction of migration by the cell 

denoted with a green track appears to be directed towards the 308/1 proximal cells 

but then switches to apparent random behaviour as it approaches the 308/1 

proximal cells. The cells appear to exhibit the characteristics of random motion once 

this degree of proximity to the 308/1 cells has been reached. The AGS distal cells 

exhibit a similar pattern of migration (Figure 2-3B). 
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Figure 2-3. Cell migration tracking data. Image showing the migration track patterns of individual AGS cells on the proximal side (A) and 
distal side (B). Initial migration appears directed. However, the trajectory of the paths tend towards a more random pattern as the AGS 
proximal cells approach the 308/1 cell mass (A, right hand side). AGS distal cells exhibit similar features. The directed migration trajectory 
appears to last longer with cells at the distal side. 
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2.3.3 Model I – Simple diffusion 

Subsequent cell migration simulations are used to inform and refine model equations 

and ultimately explore the underlying mechanisms of interaction present in the 

biological experiment. Diffusion occurs when particles spread. Fick’s law describes 

diffusion as the net movement of cells from a region of high concentration to a region 

of low concentration [283]. In particular, the diffusive flux versus the concentration 

gradient of the variable under the assumption is given by:  

 
𝐽 = −𝐷

𝜕𝑢

𝜕𝑥
, (2-1) 

in which J (mol/µm2/h) represents the particle flux and is proportional to the 

diffusion coefficient, D (µm2/h), and negative gradient of the concentration 
𝜕𝑢

𝜕𝑥
 

(mol/µm4). For the modelling, we assume that the 2D experiment can be sufficiently 

modelled in one dimension, i.e. it is assumed there is no significant variance in the y-

direction and that the dominant migration direction is in the x-direction. This is 

informed by the experimental observations. For simplicity, it is also initially 

hypothesised that any cell movement from the distal side of the cell populations can 

be attributed to the effects of diffusion only, although we later readdress this 

assumption. Therefore, the preliminary model of distal cell movement can be 

represented using the following partial differential equation (PDE): 

 
𝜕𝑢

𝜕𝑡
= −

𝜕𝐽

𝜕𝑥
= 𝐷

𝜕2𝑢

𝜕𝑥2
, (2-2) 

where cell density is represented by u (cells/μm2), the location of the cell is 

represented by x (μm) and D (μm2/h), is the diffusion coefficient. The diffusion 

coefficient can be derived from experimental data by taking the average cell 
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extension in the x-direction and substituting it into Einstein’s formula for Brownian 

motion, which is defined as relating the diffusion coefficient to the mean squared 

displacement of a Brownian particle. It can be defined as follows: 

 〈𝑥2〉 = 2𝐷𝑡. (2-3) 

This expresses the mean squared displacement 〈𝑥2〉 in terms of time-elapsed, ti and 

the diffusion coefficient, D. Therefore, the diffusion coefficient is the result of 
𝑥2

2𝑡
. For 

example, at t=18h, the mean squared displacement of the AGS proximal cells is 41157 

µm2, resulting in a diffusion coefficient of 1143.25 µm2 h-1. A further assumption 

made within the model is that there is a fixed cell density at the source mass of cells 

(𝑥 = 0). This is based on the assumption that there is a large enough supply within 

the monolayer population to maintain this density at the distal and proximal regions. 

The cell density is rescaled so that 𝑢𝜖[0,1] and u is equal to the maximum density 

(u=1) at the monolayer cell boundary. In relation to Figure 2-1, x=0 refers to the 

boundary of the cell monolayer (on either the distal or proximal sides, depending on 

the reference point-of-view for the chosen simulation). As time increases, the cells 

migrate outwards from the cell monolayer to a maximum value of L. Here, L 

represents either the gap (proximal side) or a sufficiently long, arbitrary distance 

away from the original cell population within the wells (distal side) in which the 

migration assay takes place, to give the following initial condition for the cells: 

 
𝑢(𝑥, 0) = {

1,                𝑥 = 0
0,       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (2-4) 

 

 

with boundary conditions, 
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𝑢(0, 𝑡) = 1,

𝜕𝑢(𝐿, 𝑡)

𝜕𝑥
= 0. (2-5) 

The boundary conditions state that at x=0 the density is fixed at the maximal level 

and if x equals the right-hand boundary, L, there is zero flux. As flux can be defined 

as the action of flowing or movement, zero flux is the result of the cell migration 

ending. As mentioned above, on the proximal side of the cell monolayer, L represents 

the location of the boundary of the other cell mass (308/1 proximal).  

 

2.3.3.1 Analysis of the cell migration  

Figure 2-4 shows model simulations based on the experimental data for the AGS 

distal and 308/1 distal cells previously plotted in Figure 2-2. The experimental ‘area’ 

values were converted to migration distances so that there would be consistent 

output from the experiments and simulations. The simulated migration distance, 

“Xmean”, was matched to the experiments for the AGS and 308/1 distal cells by using 

Equation 2-3 to simulate migration distances for different values of D. For example, 

the Xmean for the AGS distal cells (Figure 2-4A, subplot)  and 308/1 distal cells (Figure 

2-4B, subplot) is approximately 225 and 90 µm at t=18h, respectively. This 

approximately relates to the distance the simulated cell front has migrated, using 

𝑢 = 0.5 as a reference cell density. Comparatively, the AGS distal cells (Figure 2-4A) 

migrated into 2.5 times more space than the 308/1 distal cells (Figure 2-4B) over the 

same time period (~600 µm vs ~225µm). Also, the AGS distal cells migrate into the 

space approximately seven times faster than the 308/1 distal cells when comparing 

the diffusion coefficients (1143.25 vs 174.79 µm2 h-1). 



71 
 

 

 

Figure 2-4. Distal cell population migration into space. Simulation of the distal side of the AGS cell population (A) and 308/1 cell population 
(B) into surrounding area, x. The green line represents the boundary of the cell  at t = 0 were cell density is 1 (normalised scale). The five blue 
lines represent the distance travelled by the cells for each subsequent time-point. The red line represents the final time-point (t = 18h). 
Subplot graphs show experimental data highlighting the x-mean over time. X-mean is equivalent to the distance travelled by 50% of the cell 
populations i.e., u = 0.5. The diffusion coefficient for each cell population is indicated below these subplots. 



72 
 

2.3.4 Model II – Density-dependent diffusion 

At x=L=500μm on the proximal side, the migrating AGS cells meet the 308/1 cells 

which they are unable to pass through, resulting in zero flux. As Equation 2-2 results 

in solutions that are non-compactly supported i.e., 𝑢 → 0 as 𝑥 → ∞, this made it 

difficult to estimate the true migration front in the simulations. Consequently, 

comparison of the simulations to the experiments also proved difficult. Therefore, 

Equation 2-6 is preferred as it has a clearly defined migration front: 

 𝜕𝑢

𝜕𝑡
= 𝐷

𝜕

𝜕𝑥
(𝑢𝑛

𝜕𝑢

𝜕𝑥
). (2-6) 

The effect of crowding due to the movement of cells based upon density is 

represented by 𝑛. This density-dependent diffusion model can be simulated by using 

Equation 2-6. The boundary conditions remain the same and the results from the 

simulation are plotted on Figure 2-5B.  
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2.3.5 Model III – Addition of inhibitory chemical to proximal cell migration 

Due to the observable differences between the proximal and distal cell movement 

characteristics (Figure 2-2), the third model makes the assumption that the proximal 

side of the AGS population are affected by some inhibitory chemical, I, produced by 

the 308/1 cell population, namely, 

 𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘𝑢𝑛

𝜕𝑢

𝜕𝑥
+ 𝛼𝑢

𝜕𝐼

𝜕𝑥
), (2-7) 

with inhibitor chemical dynamics, described by, 

 
𝜕𝐼

𝜕𝑡
= 𝐷𝐼

𝜕2𝐼

𝜕𝑥2
− σI, (2-8) 

and boundary conditions, 

 𝐼(𝐿) = 1, lim
x→−∞

𝐼 = 0. (2-9) 

The additional flux term, 𝛼𝑢 𝜕𝐼/𝜕𝑥 represents cells moving down a gradient of I at 

some rate, α. For simplicity, we assume that the concentration of inhibitor I 

equilibrates quickly as it is assumed to be a small rapidly diffusing chemical with 

dynamics that are much faster than that of the slowly moving cells. To solve for I, a 

steady state is assumed for Equation 2-8, to give: 

 𝑑2𝐼

𝑑𝑥2
−

𝜎

𝐷𝐼
𝐼 = 0. (2-10) 

This is a second order homogeneous differential equation and so we assume a 

solution of exponential form, namely: 

 𝐼 = 𝑒𝑚𝑥 ⇒ 𝐼′′ = 𝑚2𝑒𝑚𝑥, (2-11) 

where 𝑚 is a constant, to be determined, and prime represents derivative with 

respect to 𝑥. Substituting this into Equation 2-10 gives: 
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𝐼′′ −
𝜎

𝐷𝐼
𝐼 = 𝑒𝑚𝑥 (𝑚2 −

𝜎

𝐷𝐼
) = 0 ⇒ 𝑚 = ±√

𝜎

𝐷𝐼
. (2-12) 

 

This gives us a general solution for I as follows: 

 

𝐼 = 𝐴𝑒
√

𝜎
𝐷𝐼

𝑥
+ 𝐵𝑒

−√
𝜎
𝐷𝐼

𝑥
, (2-13) 

where 𝐴 and 𝐵 are constants defined by the boundary conditions. By applying the 

boundary conditions from Equation 2-9 to this formula for I, the following is 

obtained: 

 

𝐼(𝐿) = 𝐴𝑒
√

𝜎
𝐷𝐼

𝐿
+ 𝐵𝑒

−√
𝜎
𝐷𝐼

𝐿
= 1,    

⇒ 𝐴 = 𝑒
−√

𝜎
𝐷𝐼

𝐿
− 𝐵𝑒

−2√
𝜎
𝐷𝐼

𝐿
,        

(2-14) 
and 

 

lim
𝑥→−∞

(𝐴𝑒
√

𝜎
𝐷𝐼

𝑥
+ 𝐵𝑒

−√
𝜎
𝐷𝐼

𝑥
)  = 0. 

 

(2-15) 

To satisfy the second boundary condition (Equation 2-15), it must have B=0. 

Therefore, the solution for A and I is as follows: 

 

𝐴 = 𝑒
−√

𝜎
𝐷𝐼

𝐿
, (2-16) 

and therefore, 

 

𝐼 = 𝑒
√

𝜎
𝐷𝐼

(𝑥−𝐿)
. (2-17) 

Equations 2-7 and 2-17 are used to represent density-dependent diffusion with an 

inhibitory chemical substance, 𝐼, for the proximal side of the cells.  
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2.3.5.1 Addition of chemotaxis to the model 

The solution of this modified density-dependent diffusion model with inhibitory 

chemical is plotted in Figure 2-5C. Again, the model appears to give a good account 

of the qualitative dynamics observed in-vitro. However, comparison of the 3 model 

simulations to the experimental plots (Figure 2-6) suggests that the non-inhibition in-

silico simulations do not appear to fit the data for the proximal side very well. In 

particular, this graph shows that the simple diffusion model (blue trace) appears 

unable to describe the proximal AGS cell data.  The density-dependent model shows 

similar qualitative features and comparison to the data for the distal side as the 

diffusion data. But the best comparison to the data for the proximal side comes from 

the inhibitor density dependent model. These comparisons have been explored for a 

range of parameters producing the same key result i.e., proximal AGS cell migration 

is best described by a model with density dependence coupled with the effect of an 

inhibitory chemical. 
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Figure 2-5. Model simulations of migrating AGS cells. All graphs show AGS cells 
spatially extending into open space over time. Each blue trace represents a time 
point of three hours. The green trace represents t=0 and the red trace represents 
t=18. (A) Simple diffusion simulation of AGS distal cells. (B) Density-dependent 
diffusion model of AGS distal cells. (C) Density-dependent diffusion model with 
chemotaxis of AGS proximal cells. The magenta trace represents the amount of 
inhibitory chemical, I. 

 

 

AA

BB

C
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Figure 2-6. Comparison of the three simulated model results with the 
experimental data. AGS cell extension was plotted over time for the simple 
diffusion model (blue), density-dependent diffusion model (red) and the density-
dependent diffusion model with chemotaxis (black). These were compared to the 
experimental results of the AGS distal cells (red asterisk) and AGS proximal cells 
(black asterisk). 
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2.3.6 Model IV - Addition of the action of an inhibitory chemical to distal cells 

In order to model the effect of an inhibitor on the distal cells, the following equations 

are used, 

 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘𝑢𝑛

𝜕𝑢

𝜕𝑥
+ 𝛼𝑢

𝜕𝐼

𝜕𝑥
) (2-18) 

with inhibitor chemical dynamics, described by, 

 
𝜕𝐼

𝜕𝑡
= 𝐷𝐼

𝜕𝐼2

𝜕𝑥2
− σ𝐼, (2-19) 

and boundary conditions, 

 

𝐼(0) = 𝑒
√

𝜎
𝐷𝐼

(−3250−𝐿)
,   lim

𝑥→∞
𝐼 = 0. (2-20) 

where 3250 represents the width in μm of the AGS cell mass (Figure 2-1). Different 

boundary conditions are needed for this model as the distal side of the AGS cell mass 

is further away from the source of the inhibitory chemical (308/1 cells). Again, we 

can solve for 𝐼 by assuming a steady state and applying the boundary conditions 

(Equation 2-20) to give: 

 

𝐼 = 𝐴𝑒
√

𝜎
𝐷𝐼

𝑥
+ 𝐵𝑒

−√
𝜎
𝐷𝐼

𝑥
, (2-21) 

where 𝐴 and 𝐵 are constants. Now, we apply the boundary conditions from Equation 

2-20, namely: 

 

𝐼(0) = 𝐴 + 𝐵 = 𝑒
√

𝜎
𝐷𝐼

(−3250−𝐿)
 (2-22) 

 

⇒ 𝐴 = 𝑒
√

𝜎
𝐷𝐼

(−3250−𝐿)
− 𝐵 

 
(2-23) 

and   
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lim
𝑥→∞

(𝐴𝑒
√

𝜎
𝐷𝐼

𝑥
+ 𝐵𝑒

−√
𝜎
𝐷𝐼

𝑥
)  = 0. 

 
(2-24) 

In this instance, A=0 in order to satisfy the second boundary condition, resulting in 

the following solutions for B and 𝐼: 

 

𝐵 = 𝑒
√

𝜎
𝐷𝐼

(−3250−𝐿)
, (2-25) 

 

𝐼 = 𝑒
√

𝜎
𝐷𝐼

(−3250−𝐿−𝑥)
. 

 
(2-26) 

As with the proximal AGS cells model, it is assumed that the inhibiting chemical, 𝐼, 

has an effect on the distal AGS cells, which reduces as the cells migrate away from 

the source. Secondly, the parameters are the same as they were for the proximal AGS 

cell model, but the spatial reference is different and thus the model simulation is 

achieved through calculating new inhibitory dynamics and boundary conditions, 

using Equations 2-18, 2-19 and 2-20. The results for the density-dependent diffusion 

models with added inhibitory chemical effect are plotted in Figure 2-7. The inhibitory 

chemical,𝐼, decreases exponentially with distance relative to the normalised 

maximum chemical concentration at the source (u=1). On the distal side of the AGS 

cells (Figure 2-7A), the amount of chemical acting on these cells is smaller (8 orders 

of magnitude lower) when compared to the concentration of inhibitor at the 

proximal side of the AGS cells. Comparison of these simulations to the AGS 

experimental data (Figure 2-8) suggest that the inclusion of this inhibitor chemical 

doesn’t significantly alter the migration of the distal AGS cells. This is rather intuitive 

as the distal cells are a significant distance from the potential inhibitor source and so 

it effects would be relatively diminished.  
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In summary, there are four distinct models describing the in-vitro experiments. 

Model I attempts to describe the cell migration due to effects of simple diffusion only 

(Equation 2-2), whereas model II describes the experiment results as a density-

dependent diffusion model (Equation 2-6). Motivated by the experimental data, 

model III incorporates a chemical gradient of substance, I, into the density-

dependent diffusion model and is applied to the proximal side of the cell AGS cell 

mass only (Equation 2-7). Finally, model IV is adapted from model III and applied to 

the distal side of the cell mass (Equation 2-18). The key finding is that distal AGS cell 

movement appears to depend on the action of an inhibitor chemical produced by the 

308 cells. These results are inconclusive regarding the migration of the proximal cells, 

which are equally modelled well with either simple diffusion or density/inhibitor 

effects. 
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Figure 2-7. Effect of inhibition on dynamic profile of AGS cell migration. All 
graphs show AGS cells spatially extending into open space over time. Each blue 
trace represents a time point of three hours. The green trace represents t=0 and 
the red trace represents t=18h. Magenta traces represent amount of inhibitory 
chemical, I. (A) Density-dependent diffusion model with chemotaxis of AGS cells 
on the distal side. (B) Density-dependent diffusion model with chemotaxis of AGS 
cells on the proximal side.  
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Figure 2-8. Comparison of the inhibition model simulations with the 
experimental data.  Simulated AGS cell extension was plotted over time for the 
density-dependent diffusion model with added chemotaxis for the AGS distal cells 
(red) and the AGS proximal cells (black). These were compared to the 
experimental results for the AGS distal cells (red asterisk) and AGS proximal cells 
(black asterisk). 
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2.4 Chapter Discussion 

This chapter describes the evolution of a number of in-silico models in an effort to 

describe the migratory cellular phenomena observed during in-vitro cell migration 

assays. Furthermore, this approach was extended to include interaction between the 

AGS proximal cells and 308/1 proximal cells, through the addition of an inhibitory 

chemical. Initially, the migration of the AGS cells are described by a simple diffusion 

model. Upon comparison with corresponding traces from the experimental data 

(Figure 2-6), this model was deemed insufficient, in terms of describing the dynamic 

movement exhibited by the AGS cells on the distal side. Therefore, the model 

required updating to replicate the observations from the in-vitro experiments. Before 

the cell migration assay began, the AGS cells, which are epithelial cancer cells, were 

cultured in a monolayer. This means they were exhibiting an epithelial phenotype, 

tight cell-cell adhesions, before undergoing EMT. This cell-cell adhesion provided 

motivation for a density-dependent dispersal form of diffusion. Therefore, we 

modified the model to account for density-dependent diffusion (Model II). Model II 

appeared to better describe the dynamic characteristics exhibited by the migratory 

AGS cells. However, the expansion of these cells into the acellular space appeared 

too rapid. This observation provided the motivation to add the inhibiting chemical, I. 

The manual tracking data also suggests an inhibition model would be appropriate, as 

it clearly shows the direct migration of the AGS cells followed by a delayed inhibition. 

In Figure 2-6A, the tracked cells migrated in a direct, unidirectional manner and as 

the acellular space between the AGS and 308/1 cells decreased, so too did the direct 

migration pattern of the tracked cells. In contrast, the cessation of direct migration 
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by the tracked cells in Figure 2-6B was less obvious as there was no decrease in 

acellular space.  

Fick’s first law describes that the flux due to diffusion is proportional to the 

concentration gradient [283]. Qualitatively and quantitatively, the time lapse 

microscopy data can be used to observe and predict the cellular migration patterns 

of the cell types. This is where in-silico modelling approaches prove useful. For 

example, the diffusion coefficient, D, was calculated from the input of cellular 

density, u, and extension of the cells into the space, x, using Equation 2-3. The 

diffusion coefficient represents the driving force which arises from the differential 

surface energies in the system, i.e. the difference in surface energy between 

homotypic cells, heterotypic cells and between the cells and the external 

environment. The AGS cells on the distal side have a diffusion coefficient of 1143.25 

µm2 hr-1 and the AGS cells on the proximal side have a diffusion coefficient of 174.79 

µm2 hr-1. This greatly reduced diffusion coefficeint on the proximal side provides 

further support for the assumption that the 308/1 cells release an inhibitory 

chemical. Subsequently, to describe the proximal side of the AGS cell movement, 

further modification was again needed. As previously mentioned, 308/1 cells are 

CAMs and it has been shown that CAMs are involved in multiple cell signalling 

networks and express a range of growth factors, cytokines and chemokines. 

Therefore, their interaction with the AGS cells needs to be taken into account within 

the model, by incorporating an inhibitory chemical effect into model II.  The 

simulations of model II and III were also plotted against the experimental traces in 

Figure 2-6. Model III showed a better fit to the AGS proximal data from the 

experiments (black traces), than model I and II (red traces). Next, the effect of the 
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chemical, I, on the distal side of the AGS cells was tested, but the effect was found to 

be minimal, which is intuitive given the distance of these cells from the inhibitor 

source. However, future work for this project can clarify these assumptions through 

the addition of controls to the study. For example, the next logical experiment to be 

performed would be a cell migration assay containing two independent cell 

monolayers of AGS cells. The data obtained from observing these cells migrate in the 

absence of the 308/1 cells could indicate exactly the type of effect the 308/1 cells 

had on the AGS population i.e., attraction, inhibition or a combination of the two. 

Unfortunately, due to technical difficulties with the equipment and a change in 

institution, this work was prematurely ended. Additionally, further control 

experiments with just the CAM cell monolayers present would help to focus the 

direction of subsequent model building.  

The key result is that the inhibitor model appears to describe the dynamic profile 

exhibited in the in-vitro experiments better that the simple diffusion and density-

dependent diffusion models. However, it is still insufficient to describe the system 

fully. There is increasing evidence that the presence of CAMs contribute to tumour 

growth [284]. The mechanisms of homing and migration remain incompletely 

understood. Previous studies have reported that CAMs evoke a more aggressive 

phenotype in cancer cells compared with myofibroblasts derived from normal tissue 

environments [96]. This was observed from the experimental data where, initially, 

the AGS proximal cells migrated directly towards the 308/1 cells. Nevertheless, 

inhibition was also present between the cell types, as the experiments displayed a 

decrease in migration as the AGS cells encroached upon 308/1 cell monolayer. 

Potential theories as to why this happened include: (a) contact inhibition from the 
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decrease in acellular space for the AGS cells to migrate into [285]; (b) the release of 

a compound from the CAMs that directly inhibits the migration of the AGS cells, or; 

(c) the AGS cells slow down due to the energy spend required to remodel the 

extracellular network that has been laid down by the myofibroblasts [80]. Recently, 

an integrated multi-omics study [286] revealed for the first time that myofibroblasts 

derived from the site of gastric adenocarcinomas (CAMS) are epigenetically 

reprogrammed through DNA methylation and enhance the proliferation and 

migration of cancer cells. Therefore, this study provides motivation for further model 

refinement to include mechanisms of attraction in an attempt to define the 

underlying mechanism of interaction between these key cell types. 
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Chapter 3: Discrete Cell Based Model in 

Fibroblast Cell Migration 
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3.1 Introduction 

This chapter focuses on modelling cell movement at the mesoscopic scale. The 

internal architecture and mechanisms, described previously in section Error! 

Reference source not found., involved in the migration of an individual cell are not 

considered explicitly in this model. However, the role they play in 

mechanotransduction and polarised cell movement are reflected implicitly. For 

example, the cell is considered to sense its external environment and extend through 

a leading edge, by forming adhesions and assembling cytoskeletal machinery. Thus, 

it can be assumed that the cell will migrate in the direction of the leading edge. In 

other words, it is assumed that the cell is unlikely to make sudden 180° turns in its 

migration pathway and is much more likely to make smaller, smoother gradual 

movements as it senses the surrounding environment. Cell migration assays 

conducted on polyurethane surfaces containing varying topographical features were 

used to inform and validate the mathematical model. Using this model in 

combination with the experimental data, key question of whether surface topology 

affects the migratory cell path of fibroblasts can be addressed.  This work on 

mechanotransduction offers great potential into the possibility of controlling cell 

behaviour, using physical cues. Biofilm formation and the impact of implant 

integration are some of the key areas that may benefit from this control [287]. 

Biofilms are communities of adherent cells held together in a self-produced matrix 

of extracellular polymeric substances (EPS) [288]. The formation of biofilms during 

infection in wound sites and in inorganic materials such as catheters and stents can 

be detrimental as they exhibit increased protection from antibiotics [288,289]. 
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Therefore, understanding how to control cellular behaviour in such a system by 

altering its physical environment could provide the platform for a major 

breakthrough into tackling this complex problem. Also, it has been shown that 

increasing the surface roughness on the implants also increases the adhesive 

properties for fibroblast cells and suggests that there could be an improvement in 

wound healing, limiting the risk of capsular contracture [290].  

3.1.1 Mathematical modelling of cell migration 

Multiple mathematical models exist to describe the process of cell migration, as 

previously described in section 1.5.6. However, random walk models were 

determined to be the most appropriate for modelling the experimental observations 

in this chapter. These random walk models are based primarily on Brownian motion 

[199]. Brownian motion can be described as the random movement of particles due 

to their collisions with other atoms and molecules. A theoretical process describing 

Brownian motion is called the Weiner process [199]. The Weiner process is defined 

as a continuous-time stochastic process and is named in honour of Norbert Weiner 

[199]. Brownian motion is considered a Gaussian-Markov process, in that it has 

normally distributed random variables over a continuous time constant and is 

considered a memoryless process [199]. 

In this chapter, a stochastic mathematical model is proposed for the random motility 

and mechanotransduction of single cells and evaluate the migration paths on 

patterned surfaces. In the model, cell velocity is described as a persistent random 

walk using the Ornstein-Uhlenbeck (O-U) process [291].  
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3.1.1.1 Ornstein-Uhlenbeck process 

The advantage of using this model is that it allows the simulation of individual cell 

migration paths. The O-U process has previously been proposed to quantify 

individual cell random motility in a number of studies [291-294]. For example, by 

incorporating a discrete description of the O-U process, Dunn and Brown [295] were 

able to successfully demonstrate that the O-U process characterizes fibroblast 

random motility through use of the autocorrelation functions of cell displacements 

during discrete time intervals.  

In general terms, using the O-U process, the velocity of a cell can be described in 

terms of two processes: i) stochastic fluctuations in velocity and ii) deterministic 

resistance to the current velocity. The stochastic term represents all of the 

probabilistic processes that might affect cell velocity (e.g. response mechanisms to 

gradient of the cell surface features, etc). The deterministic term affects the 

persistence of motion mimicking e.g. surface friction, viscosity, etc. 

This approach was extended by Stokes et al. [291]: first by using a continuous version 

of the O-U process; and second, by adding a term to represent directional bias in 

response to the presence of a chemoattractant gradient. In the present work, the 

directional bias term is adapted to represent an environmental gradient (i.e. surface 

pattern) instead of a chemical gradient.  This is applied to an extended model to 

analyse the experimental data of migrating lung fibroblast (LL24) cells on three 

different surface types with varying topological features (Flat, Linear and Random). 
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This chapter begins with a description of the continuous version of the O-U process 

with the adapted directional bias extension. The standard O-U process is 

characterised by two parameters. These parameters are α (µm2/min4) and β (1/min) 

and these represent magnitudes of random fluctuations in velocity and velocity 

decay, respectively. The model’s applicability is validated for random fibroblast 

migration and provides relative estimates for α and β. Then, an additional parameter, 

𝜅 (µm/min2), is introduced to account for the directed motion of the fibroblast cell 

in response to the surface gradients. The 𝜅 -parameter could not be measured 

directly but it is shown how it can be estimated using model-generated cell paths. 
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3.1.2 Chapter aims 

1. To create an extended continuous O-U model to accurately describe random 

motility and surface bias. 

2. To use combined in-silico and in-vitro results to determine the mobility 

parameters α and β and the bias parameter 𝜅. 

3. To validate the in-silico output with the experimental data. 

4. Use the in-silico model outputs to predict how different surfaces (Flat, Linear, 

Random) can affect cell motility.  
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3.2 Materials and Methods 

The experiments performed in this chapter were completed in collaboration with Dr 

Mark Murphy’s lab in the General Engineering Research Institute (GERI) at Liverpool 

John Moores University (LJMU). The generation of the patterned surfaces were 

conducted by this lab and a summary of these methods are contained in Appendix A 

(Section 7.1). All the other experiments including cell culture, migration assays and 

mathematical modelling were performed by myself and are detailed below. 

3.2.1 Cell culture 

The cells described in this work are human lung fibroblast cells (LL24) which have 

been purchased from the European Collection of Animal Cell Cultures (ECACC) UK. 

Fibroblast cells were chosen because there is extensive evidence showing that 

fibroblast cells respond to changes in surface topography both in-vitro and in-vivo 

[180]. The LL24 cell line was chosen as it is a well characterised, stable, normal human 

diploid cell line [180]. All cell culture work was carried out under aseptic conditions 

in a grade II laminar flow cabinet (EBSCO). Cells were maintained at 37 °C in a 

humidified 5% CO2/95% air atmosphere in Dulbecco's Modified Eagles Medium 

(DMEM) (Sigma-Aldrich, D6429) supplemented with 10% foetal bovine serum 

(Sigma-Aldrich, 0804) and 1% penicillin-streptomycin. All experiments were carried 

out using cells at passage numbers 20–24. 

3.2.2 Cell migration assay 

To determine if the different surfaces affected cell migration, time-lapse imaging and 

subsequent cell tracking was performed over a four-hour period using a Zeiss LSM 

510 confocal microscope. Briefly, the polymer surfaces were sterilised in 70% 
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ethanol, washed in PBS then placed into 35 mm cell culture dishes. Next 100,000 

cell/cm2 were seeded onto the polymer surfaces and the dish was placed into a 

microscope environmental chamber (S-2, PeCon GmbH, Germany). The chamber was 

maintained at 37°C, 5% CO2 in a 60–70% humidified air atmosphere using a 

Temcontrol 37-2 and CTI-controller 3700 (PeCon GmbH, Germany). Images were 

taken every 10 min for 2.5 h using a 20× Plan-Apo/0.75 NA DIC objective lens, while 

scanning using a Helium- Neon (HeNe) laser at 543 nm. Images of the patterned 

surfaces without any seeded cells were also taken. This was done so that the specific 

features of each surface could be transferred to the in-silico model framework 

(Figure 3-2). 

3.2.3 Measurement of cell trajectories, mean squared displacement and 

tortuosity 

Cell movement tracks were analysed using ImageJ software (National Institute of 

Health, NIH) with a manual tracking plugin (Institute Curie, France) used to analyse 

the data produced from the time-lapse image series. The centroid of the cell area 

was used to represent the cell position. The time increment between image frames 

was ten minutes. This was long enough to discern cell movement without losing track 

of the cell’s position. The result was a series of migration distances vs time for each 

individual cell. The net displacement was calculated by the difference of the position 

at the beginning and end of each time step. The displacement, which is the measure 

of the cells position relative to its starting point over time, was calculated by 

subtracting the cells origin point from its current position. This was done for each cell 

at each time point. The mean of the square of the values was calculated to give the 

mean square displacement (D2) vs time.  D2 measures the deviation of the position 
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of a cell with respect to a reference position over time, and is useful in determining 

if the movement of a cell is solely down to diffusivity or if an external force is directing 

the motion. Tortuosity, τ, can be defined as the property of a curve being tortuous 

i.e. having many turns (a twisted path). Tortuosity can be estimated using the arc-

chord ratio (Figure 3-1): the ratio of the length of the curve (L) i.e. the actual path 

travelled by the cell to the straight-line distance between the ends of this path (C), 

namely: 

 
τ= 

L

C
. (3-1) 

L is the total curved-line distance and is measured by obtaining the total distance 

travelled by the fibroblast from t=0 to t=160. C is the straight-line distance travelled 

by the fibroblast and can be obtained by measuring the distance of the cell’s position 

at t=160 from its starting position at t=0. 

 

Figure 3-1. Schematic illustration of tortuosity calculation of cell migration 
path. Black line represents the migratory path taken by fibroblast cell from its 
origin (A) to its destination point (B). Using this example, L equals the length 
of the black line and C equals the length of the blue line.  
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Figure 3-2. Microscope images of the patterned surfaces. (A & B) These images 
show the linear and random patterned surfaces, respectively. The linear surface 
exhibits features in a ‘ploughed field’ pattern with straight lines etched from left 
to right. The random surface exhibits features producing a network of 
overlapping lines. (C & D) These are 3D schematic images of the linear patterned 
surface and random patterned surfaces, respectively.  The scale in the z-axis 
represents intensity which is subsequently used to represent feature 
depth/height in the in-silico simulations. 

  

A B

DC
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3.2.4 Mathematical model 

The cell motility is studied in terms of a stochastic O-U process which is used to 

describe a random cell motility model, updated via a Markov process. This means 

that only the current state of the cell is taken into account and the cell’s previous 

positions have no bearing on its future movements; i.e. there is no memory to the 

motion (white noise) [291]. Although this may seem oversimplified, Dunn and Brown 

[295] showed that this process is sufficient to describe random motility in fibroblast 

cells. Initially, this model is used to describe an unbiased random walk process (i.e., 

cells moving on a smooth surface). Then, through the addition of a haptotactic 

gradient term, it is extended to a biased random walk model. For this model, it is 

assumed that the cell responds to a spatial gradient of focal adhesions between the 

cellular membrane and the surface topography, although there are no assumptions 

made about the cell’s actual underlying mechanism of perception. It is also assumed 

that the fibroblast cell moves perpendicular to the gradient of the features of the 

surface i.e. the cell migrates along the surface grooves rather than up/down them.  

The details of the mathematical model are as follows: Equation 3-2 describes the 

velocity of a single cell as it evolves across an (𝑥, 𝑦) ∈ ℝ2 plane with time; a second 

equation (Equation 3-3) is then used to determine the cell’s (x, y) position from this 

velocity, producing a calculated trajectory for the cell; from this trajectory, the 

squared displacement and tortuosity can be calculated. Comparison of these 

predicted metrics to those obtained experimentally will allow us to: (1) examine the 

validity of the model and (2) determine values of the model parameters, appropriate 

for the fibroblast migration.  
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The rate of change of cell velocity is the sum of three components: the first two 

components represent the random motility behaviour, and the third represents the 

haptotactic, or directed, behaviour. For random motility, the first term describes the 

deterministic resistance to the cell's current velocity, and the second represents the 

random accelerations (or fluctuations) of this velocity. The third component that 

describes the haptotactic behaviour provides a directional bias in the presence of a 

patterned surface gradient. Mathematically, these three components are summed 

to give the following stochastic differential equation for the rate of change of the cell 

velocity, 𝑉: 

 
𝑑𝑉(t) =  −𝛽𝑉(𝑡)𝑑𝑡 +  √𝛼𝑑𝑊(𝑡) +  𝛹(𝑡)𝑑𝑡, (3-2) 

where α (µm2/min4) and β (1/min) are the motility parameters, t (min) is time, 𝑊 is 

the vector Weiner process (white noise), and 𝛹 is the haptotaxis function (see 

Equation 3-4), which describes the effect of the surface features on the velocity of 

the cell. The terms 𝑉, 𝛹and 𝑊 are vectors in ℝ2, capturing the x and y components 

of the cell velocity. As the velocity of the cell is a rate of change of the cell’s position, 

the position of the cell, 𝑥 ∈ ℝ2 can be obtained from the following: 

 𝑑𝑥

𝑑𝑡
 =  𝑉(t). (3-3) 

The parameter β can be viewed as the magnitude of resistance to motion, leading to 

a decrease in the persistence of velocity as β increases. The haptotactic term provides 

the directional bias in velocity caused by a cell reacting to the presence of surface 

topologies. As previously mentioned, it is assumed that the cell responds to a spatial 

gradient of focal adhesions between the surface of the cell and the surrounding 

environment. The gradient will be dependent on the steepness of the surrounding 
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pattern features, denoted by ∇𝑎, where 𝑎 is the height of the feature (see Figure 

3-2(D)) and ∇ is the spatial gradient. Let the haptotactic term be proportional to 

cos 𝜃, where θ is the angle between the direction of the cell and the direction of the 

surface pattern at the cells current position. Thus, introducing 𝜅 as the 

proportionality constant gives: 

 𝛹 =  𝜅∇𝑎 cos 𝜃. (3-4) 

Equations (3-2) and (3-4) provide a description of the velocity process of a single cell 

moving with the properties represented by the random motility parameters α and β 

and the haptotaxis parameter 𝜅 (µm/min2). Each cell described by equations (3-2 – 

3-4) with a given set of parameters, α, β and 𝜅, will have a different path or trajectory 

(owing to different realisations of the random noise process, 𝑊) but the same 

'degree' of randomness (described by α), velocity decay rate constant, and sensitivity 

to attractant gradients.  

For this framework to be meaningful, it must first be demonstrated that it is a valid 

description of the experimental cell trajectories. Before estimation of the haptotactic 

responsiveness (𝜅) can be accomplished, the polyurethane surface patterns and 

features need to be encoded in the model. A flow diagram depicting this process in 

available in Figure 3-3. This was achieved by taking the microscope image data, from 

Figure 3-2, saving it as an ASCII-delimited file and using the MATLAB function 

‘dlmread’ to convert it into a matrix. This matrix now contains numerical values which 

represent intensity values between 0 and 255 for each point of the image (0 = lowest 

height feature; 255 = tallest feature). These intensity values represent the depth and 

height of the surface features and were subsequently normalised to [0,1] and then 

converted into gradient values, using the Matlab function scatteredInterpolant, for 
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each x-y coordinate (denoted ∇𝑎). The ‘scatteredInterpolant’ creates an interpolant 

that fits a surface of the form 𝑣 = 𝐹(𝑥, 𝑦).  Vectors x and y specify the (𝑥, 𝑦) 

coordinates of the gradient values and 𝑣 contains the gradient values associated with 

the points (𝑥, 𝑦). This allowed the steepness of the topological features of the 

experimental polymers to be incorporated into the simulations. Firstly, experimental 

metrics were used to optimise the parameters α and β for the flat model simulation 

(𝜅 = 0). These α and β values were then fixed for all subsequent simulations on each 

of the patterned surfaces. In these subsequent simulations, cell velocity was updated 

using Equation 3-2 with 𝜅 ≠ 0. For Equation 3-4, θ is calculated using the dot product 

between the vector ∇𝑎 (i.e. describing the gradient of the surface topology at the cell 

position (x,y)) and the cell velocity vector 𝑉=(Vx, Vy), namely: 

 
𝜃 =  cos−1 (

𝑉. ∇𝑎

‖𝑉‖. ‖∇𝑎‖
), (3-5) 

 where θ is the angle between 𝑉 and ∇𝑎. 

The key aim of all these simulations is to obtain values for the parameters α, β and 

𝜅, which then provide a quantitative description of the characteristics of the actual 

cell's intrinsic motility properties on the different polyurethane surfaces from which 

predictions can be made about how the different patterned surfaces affect the cell 

movement. 
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Figure 3-3: Schematic of image conversion to code. Flow diagram shows basic 
steps involved to convert microscopic data into MATLAB code to have accurate 
gradient information for simulated cell to migrate upon. 
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3.3 Results 

3.3.1 Cell trajectories 

Several typical cell paths for fibroblast cell migration on the experimental polyurethane 

surfaces are shown in Figure 3-4. The paths reveal that fibroblast cells migrate with a 

combination of smooth and twisted trajectories. The persistence time in a given direction 

does not appear to be very long. The duration of all cell paths ranged from 140-160 minutes. 

The final measurement of the cell path is represented by the round head feature of the trace 

(—•), whereas the origin of the cell trajectory is represented by the tail like feature (—).  The 

cells that extended beyond the reach of the domain were ignored. The cell paths for fibroblast 

cell migration on the Linear and Random patterned surfaces are shown in Figure 3-4B and 

Figure 3-4C, respectively. These paths represent the movement of the centroid of the cell 

area. Qualitatively, directional changes in the cell paths appear smooth initially, before more 

frequent turns in trajectory. Certainly, initial inspection suggests that the fibroblast cells on 

the linear pattern (Figure 3-4B) travel a greater distance from their origin site compared to 

the cells on the other polyurethane surfaces.  

3.3.2 Experimental metrics  

Individual fibroblast cells were tracked using ImageJ (n=13 for flat and random, n=41 for 

linear), as previously described in section 3.2.3. Firstly, the multiple individual cell trajectories 

were averaged and the tortuosity was calculated for each of the three surfaces (Flat, Linear 

and Random).  These values are plotted with associated error bars indicating standard 

deviation in Figure 3-5A. The mean tortuosity measured for each surface was 3.4 ±2.12 (Flat), 

2.95 ±0.31 (Linear) and 2.96 ±1.62 (Random). For reference, if a cell were to have a tortuosity 

ratio equal to 1, that cell path would have a trajectory in a perfect straight line.  There is a 
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large variance in tortuosity on the flat and random surfaces, compared to that of the linear 

surface. This suggests that there is a greater persistence time in cell direction for fibroblast 

cells migrating on a surface with linear features. However, note that there is no statistical 

significance in tortuosity between the three surface types (Figure 3-4). What is apparent from 

the values outputted from these measurements is that the cells have a slightly more directed 

migration on the surfaces containing the linear and random nano-scratch features i.e. have a 

lower tortuosity value indicating greater straight line movement. Recall that the curved line 

distance is the total distance travelled by the cell and the straight-line distance is the distance 

the cell has travelled from its point of origin. For illustration, the means of both these metrics 

for the migration of the fibroblast cells on each surface were plotted in Figure 3-5B. The flat 

surface had a mean curved line distance of 76μm and straight-line distance of 25μm. Similarly, 

the mean curved line distance travelled by the cell population on the random surface was 

62μm with a straight-line distance of 23μm. Contrastingly, the distances travelled by the 

fibroblast cells on the linear surface were much greater. The mean curved line distance and 

straight-line distance measured for this surface was 134μm and 53μm, respectively. Again, as 

with the tortuosity measurements, there is a smaller variance in individual cell distance 

travelled along the linear surface compared to the other surfaces, particularly for the curved 

distance metric.  
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Figure 3-4. Tracking of cell migration on the polyurethane surfaces. Image showing the 
migratory paths of fibroblast cells on the flat surface (A), Linear surface (B) and Random 
surface (C). Scale in microns at bottom right corner.  
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Figure 3-5. Experimental metrics from cell migration experiments. Column chart showing 
the tortuosity (A) and distances travelled (B) by the fibroblast cells on each polyurethane 
surface.  (*) denotes P < 0.01. 

  

A

B
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A single factor ANOVA was conducted to compare the tortuosity, curved line and straight-line 

distance between the different surface types. There was no significant effect on tortuosity at 

the p<0.05 level for the three surfaces (p=0.53). However, there was a significant effect on 

the curved-line distance (p=4.4x10-6) and the straight-line distance (p=5x10-6) between the 

three surfaces. A Bonferroni correction test was utilised to counteract the problem of multiple 

comparisons and to reduce the chance of false positives. In other words, the confidence 

intervals are adjusted to compensate for the increase in number of hypotheses tested, using 

the following calculation 
𝑝

𝑛
. In this example, p=0.05 and n=3, to represent each surface type. 

Therefore, the Bonferroni correction now tests each individual hypothesis at p=0.0167. Post 

hoc comparisons using a Bonferroni corrected t-test indicated that the mean for the curved-

line distance for the flat surface was significantly different (p=7.5x10-4) than the linear surface. 

This was also true for comparison between the linear surface and the random surface 

(p=1.2x10-5). However, the flat surface mean did not significantly differ from the random 

surface mean (p=0.34). Similarly, this trend of significance was upheld for the straight-line 

distance means between the flat and linear (p=2.7x10-4), flat and random (p=0.79) and linear 

and  random (p=1.4x10-4) surfaces. Taken together, these results suggest that the linear 

surface has a statistically significant effect on the migration of the fibroblast cells, compared 

to migration on flat and random surfaces. 

In Figure 3-6, the mean squared displacement (D2), is plotted against time. The time course 

of the experiments varies between 130-160 minutes. This is due to the initial frames of some 

of the time-lapse videos having fibroblast cells still in the attachment phase of the 

experiment. For comparison of the D2 measurements, between the different surfaces, we 

focus on the D2 values at the end time of the experiments (i.e. at t = 160 min). These D2 values 
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were: for the flat surface 1076 μm2; the linear surface 2367 μm2; and the random surface 

1326 μm2. There is high variance in all 3 results leading to large error bars in the results, which 

is to be expected when taking the mean of multiple individual cell migration paths (n>10) 

from differing starting points on non-uniform surfaces i.e. different feature depths. Once 

more, it is clear that there is greater directionality of cell migration on the linear surface with 

approximately twice as much displacement compared with the flat and random surfaces. This 

is more clearly seen in Figure 3-6D. For the early time frames, the linear and random 

trajectories are almost identical, suggesting that the movement has a directional bias as the 

cells they attach to the pattern features. However, as time increases, the random trajectory 

more resembles the flat trajectory, which is more typical of random motility.  
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Figure 3-6. Experimental mean squared displacement results. Graphs showing experimental mean squared displacement (D2) as a function 
of the time increment for all the migrating cells on the flat (A), linear (B) and random (C) patterned surfaces. (D) All D2 measurements are 
plotted on the same graph with legend indicating which trace belongs to which surface. 
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3.3.3 Applicability of the model for migration on Flat surfaces 

The first level of validation of the model is to show that related average metrics produced by 

the in-silico model are the same as those produced by the real cells in the experiments. For 

the model, the related average metrics are the mean squared displacement of the cells, 

tortuosity, and curved and straight-line distances. Initially, only the flat surface is modelled 

using Equation 3-2, without the haptotactic part (𝛹), and Equation 3-3 to yield an actual cell 

path for the migrating in-silico cells.  

To initialise the model, the positional coordinates of the cells origin were set to (0, 0) and the 

initial cell velocity in the x and y directions was randomised to have any value ranging from -

10μm/min to 10μm/min. The time of the in-silico experiment, t, was set to match the 

experimental time (t = 160 min) with the time increments, dt, being as small as possible to 

ensure numerical accuracy (dt = 0.5). The two random motility parameters, α and β, were 

initially set as 73.6 and 0.22, respectively, to mimic the mean values obtained in a comparable 

O-U model designed by Stokes et al. [291]. Once initialised, the cells velocity and position 

were updated using Equations 3-2 and 3-3 for the duration of the time course.  A flow diagram 

depicting this process in available in Figure 3-7. These equations were solved using the Euler-

Maruyama and Euler method, respectively [296]. The Euler-Maruyama method is used to 

approximate numerical solutions for stochastic differential equations (SDE), adapted from the 

use on ODEs for the Euler method.  Using the Euler-Maruyama method, the next x-position 

can be updated if the current x-position is known. This allows for the velocity to be solved and 

for the positions to be updated with that velocity, using the Euler method. Example velocities 

and positions of the individual cells are plotted (Figure 3-8) as well as the simulated 

trajectories of these cells (Figure 3-9). Finally, relevant metrics (tortuosity, curved and 

straight-line distance) are produced and the mean squared displacement for these in-silico 
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simulations plotted. In Figure 3-8, the velocity changes in both axes are plotted. The influence 

of the α parameter is evident by the fluctuations observed in the traces. If this parameter 

were to be set to zero, the deterministic parameter, β, would produce traces showing the 

velocity reverting to zero over time. The cells were simulated separately in the model. 

Therefore, cell-cell interactions are not taken into account. 

 

 

 

 

Figure 3-7: Initialisation of Euler-Maruyama equations. Initial parameters were set as 
stated in the flow diagram (green code). The cell velocity and position is updated every 
iteration based on the Euler-Mayurama equations and the velocity and position of the 
previous iteration. The dW parameter represents the Weiner process and is a random 
number in each iteration.  
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Figure 3-8. Cell velocities (μm/min) and positions (μm) in x and y position over time. Graphs showing the simulated positions and velocities 
on both axes for 10 migratory model cells for the flat surface simulation.  Parameters for this simulation were as follows: α=73.6, β=0.22.
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Figure 3-9. Simulation of cell migration paths. This graph shows the 10 simulated cell 
paths for the flat surface described in Figure 3-8. The initial x and y position (μm) of each 
cell was (0, 0). The parameters were as those indicated in Figure 3-8. 
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3.3.4 Determination of random motility parameters 

Now that there is a working model of cell migration that visually aligns well with the 

experimental system, the parameters, α and β, can be optimised to find values that best 

describe the behaviour of the experimental system. The experimentally derived metrics from 

this system can be used for parameter (α and β) estimation and production of a value of best 

fit for the experimental data. To begin, we run the in-silico model, varying α and β between 

the values α = 0.1-1 and β = 0-1. The mean tortuosity, curved line distance, straight-line 

distance and D2 (end time) values are then calculated for each individual combination of these 

α and β values (see Figure 3-10). To aid comparison to the experiments, a contour plot was 

added to each graph (white curves). These contour plots represent the corresponding 

experimentally derived metrics from the fibroblast migration experiments on the flat surface. 

In other words, any α and β combination falling on these contours can be assumed to be an 

appropriate combination to describe the experiments.  

A more quantitative test for goodness of fit between the model and experiments is the sum 

of squared errors (SSE). The SSE is a measure of the discrepancy between the experimental 

data and estimation model. In other words, it is used in a test for goodness of fit of an 

observed set of data to a theoretical one. The SSE calculations for tortuosity, curved line 

distance, straight-line distance and mean squared displacement were calculated using 

Equation 3-6, namely; 

 

𝑆𝑆𝐸 =  ∑
(𝑆𝑖 − 𝐸𝑖)

2

𝐸𝑖
,

𝑛

𝑖=1

 (3-6) 

where Si is the simulated measurement of the metric (e.g. tortuosity, etc.) and Ei is the 

experimentally derived measurement of the same metric. A small SSE value indicates a tight 
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fit of the model to the data. Here, it is used as an optimality criterion in parameter selection. 

In the model, SSE values were calculated for each of the four flat surface metrics (tortuosity, 

curved line distance, straight line distance and mean squared displacement) and used to 

generate plots to help determine the optimal value of α and β (Figure 3-11).  

 

Figure 3-10. In-silico generated metrics. Plots show a range of α and β values (0 – 0.1) 
with tortuosity (A), curved line distance (B), straight line distance (C) and the end time 
mean squared displacement values (D), plotted on a colour scale with values indicated on 
the relevant colour bar. The white contours indicate the experimentally derived values for 
the metrics. 
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The SSE values for each of the metrics are plotted against the same range of α and β values 

(Figure 3-11). To find a combination of α and β values that will give a good fit (i.e. the 

minimum) of all four metrics simultaneously, their respective SSE values were totalled and 

plotted against α and β (Figure 3-3A). Figure 3-3B show the minimum SSE values from the 

respective plots in Figure 3-11 for the four metrics, i.e. contour plot of the minimum SSE for 

the α-β pairs. This plot shows that lower values of α and β appear to give the best fits for the 

experimental data. Therefore, the total SSE values were alternatively plotted as a colour 

projection against the range of α and β values (Figure 3-3C). The darker colours indicate a 

lower SSE value. Subsequently, it was found that a quadratic curve (Equation 3-7) maps well 

onto the minimum SSE values as indicated in (Figure 3-12C), suggesting (α,β) pairs given by 

this relationship predicted cell migration paths comparable to the experiments. The best fit 

polynomial given in Figure 3-11D is as follows: 

 𝛼 = 4.975𝛽2 + 0.002781. (3-7) 
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Figure 3-11. Sum of squared Errors (SSE) plots for metrics. Individual SSE- values are 
given in the colour bar for α versus β plots for the (A) tortuosity, (B) curved line distance, 
(C) straight line distance and (D)  end time mean squared displacement. 
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Figure 3-3. Sum of Squared Errors (SSE) plots. (A) Total SSE- values (i.e. SSEtotal = SSEtortuosity 

+ SSEcurved line + SSEstraight line + SSEmean squared displacement) are plotted on z-axis for α versus β 
plot. (B) Plots showing minimum values of the tortuosity (blue), curve-line (red), straight 
line (black) and D2 (green) SSE values on alpha versus beta plot. (C) Polynomial curve fitting 
plot for the minimum of the total SSE- values.  
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3.3.5 Determination of haptotactic responsiveness  

The experimental metrics for the patterned surfaces can be used along with the full version 

of Equation 3-2 (i.e., with 𝛹 = 0) to optimise and determine the haptotactic responsiveness 

parameter, 𝜅. The α and β values are fixed at 0.01 and 0.04, according to Equation 3-7. These 

low values of α and β are chosen to prevent the simulated cells from ‘exiting the boundary’ 

of the topographical space i.e., the data uploaded from the microscopic images in Figure 3-2. 

100 cells were simulated with a range of 1000 𝜅-values from 0.1 to 0.8 and the resulting mean 

values for tortuosity, curved distance, straight-line distance and the mean end-time squared 

displacement (D2
t=160) were plotted against the range of 𝜅-values for the linear (Figure 3-4 – 

3-15) and random (Figure 3-7 – 3-18) surfaces. Figure 3-4 and 3-16 show the simulated 

predicted values with mean (black curves) and standard deviation (grey error bars) indicated. 

These simulated metric values, for the wide range of 𝜅-values inputted into the model, can 

be optimised using the experimentally derived metrics. Thus, the most appropriate 𝜅-value 

that best describes the in-vitro experiments can be determined. For the linear surface case, 

the experimental numbers were superimposed onto the plots (Figure 3-5 – red line) for 

tortuosity (2.95 μm), curved distance (134.26 μm), straight-line distance (53.60 μm) and the 

end time mean squared displacement (2367 μm2). Additionally, the SSE values were also 

calculated for these metrics, using Equation 3-6 and Figure 3-14, and the total SSE plotted 

against 𝜅 (Figure 3-6). Through comparison of these plots (in particular, see Figure 3-6), it can 

be observed that a 𝜅-value in the range 0.5-0.6 would be optimal to describe the linear 

experiments (i.e., minimise SSEtotal). Similarly, on Figure 3-8, the experimental values for the 

random surface were superimposed on the plots for tortuosity (2.94 μm), curved distance 

(62.62 μm), straight-line distance (23.62 μm) and the end time mean squared displacement 

(1326 μm2). Again, the most appropriate 𝜅-value can be derived from comparing the total SSE 
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values against 𝜅. In this case, it yields a much lower optimal 𝜅-value (i.e., min SSEtotal) in the 

range of 𝜅 = 0.01 − 0.07.  

 

Figure 3-4. Determining the haptotactic gradient for the linear surface. Graphs showing 
simulated mean metric values (black curves) with standard deviation (grey) for range of 
𝜅-values (0 – 0.8).  
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Figure 3-5. Optimisation of 𝜿 for the linear surface for individual metrics.  Experimentally 
derived values (red) superimposed over simulated mean values against 𝜅 (see Figure 3-
13). Optimal values of 𝜅 selected from points of crossover for each metric.  
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Figure 3-6. Optimisation of the haptotactic term for the linear surface. Total SSE-values 
(i.e. SSEtotal = SSEtortuosity + SSEcurved line + SSEstraight line + SSEmean squared displacement) of the four 
metrics plotted against 𝜅. Lower SSE-value indicates a stronger fit between the 
experimental data and the model. 
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Figure 3-7. Determining the chemotactic gradient for the random surface. Graphs 
showing simulated mean metric values (black curves) with standard deviation (grey) for 
range of 𝜅-values (0 – 0.15).  
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Figure 3-8. Optimisation of 𝜿 for the random surface for individual metrics.  
Experimentally derived values (red) superimposed over simulated mean values against 𝜅 
(see Figure 3-16). Optimal values of 𝜅 selected from points of crossover for each metric. 
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Figure 3-9. Optimisation of the haptotactic term for the random surface. Total SSE-values 
(i.e. SSEtotal = SSEtortuosity + SSEcurved line + SSEstraight line + SSEmean squared displacement) of the four 
metrics plotted against 𝜅. Lower SSE-values indicate a stronger fit between the 
experimental data and the model.  
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The in-silico model is now simulated using the fixed α =0.01 and β = 0.04 (satisfying Equation 

3-7) and 𝜅 values representing the linear (𝜅 = 0.5) and random (𝜅 = 0.02) patterned surface 

experiments. The resulting 10 model cell migration paths derived from these simulations are 

shown in Figure 3-10 and the corresponding mean squared displacement values were also 

plotted (Figure 3-20). Table 3-1 shows comparisons of the migration metrics (for tortuosity, 

curved line distance, straight line distance and mean squared displacement) for all three 

surfaces. The model parameters were those identified as being optimal in the above analysis 

for these surfaces. Significance levels are derived using a paired Z-test to calculate the 

difference between the observed means in the experimentally derived and simulated 

samples. There is an excellent comparison between the data in the flat surface with no 

significant difference shown for tortuosity (p=0.79), curved line distance (p=0.63), straight 

line distance (p=0.23) and mean squared displacement (p=0.58). Similarly, there is no 

significant difference between the experimentally derived and simulated means in the 

random surface for these metrics, respectively (p = 0.4, p=0.59, p=0.12 and p=0.98). However, 

there is an inconsistency in the curved line distance for the linear surface (p<0.0001). This 

outlier can be also be observed in Figure 3-14. This is likely an artefact of lowering the α-β 

values to prevent simulated cells from migrating off the simulated polyurethane surface. 

Subsequently, this significance is present between the tortuosity values (p<0.0001) for the 

linear surface. There is no significant difference between the means for the straight-line 

distance (p=0.12) and mean squared displacement (p=0.77) for the linear surface. Otherwise, 

the models show a good recreation of the key migratory features as observed in the 

experiments. 
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 Tortuosity Curved-line distance (μm) Straight-line distance (μm) Mean squared end-time 

displacement  (μm2) 

 Exp Sim Exp Sim Exp Sim Exp Sim 

Flat 3.4 ± 2.12 3.2 ± 1.55 

P=0.79 

75.89 ± 55.6 84.56 ± 14.2 

P=0.63 

24.81±15.9 32.22 ± 16.7 

P=0.23 

1075 ± 1196.4 1291 ± 406.4 

P=0.58 

Linear 2.95 ± 0.31 2.01 ± 0.8 

P<0.0001 

134.3 ± 21.8 86.09 ± 19.2 

P<0.0001 

53.6 ± 11.2 47.87 ± 17.5 

P=0.12 

2367 ± 2111 2566 ± 801.4 

P=0.77 

Random 2.96 ± 1.62 2.5 ± 0.73 

P=0.4 

62.62 ± 35.1 68.9 ± 14.9 

P=0.59 

23.62 ± 14.9 33.17 ± 17.3 

P=0.12 

1326 ± 1211.7 1318 ± 414.2 

P=0.98 

Table 3-1. Experimental and simulated values for the metric values. Table showing the mean and standard deviations for the in-vitro (Exp) 
and in-silico (Sim) results for tortuosity, curved-line distance, straight-line distance and the final mean squared end-time displacement on 
each of the three polyurethane surfaces (Flat, Linear and Random). P-values indicate significance between the in-vitro and in-silico results for 
each metric on each surface. 
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Figure 3-10. Simulation of cell migration paths. Example of 10 simulated cell 
paths for flat (A), linear (B) and random (C) surfaces. A magnified look at the cell 
paths across the features is included for the linear and random surfaces. All 
simulations had a starting point of (0, 0). The α and β values were fixed to 0.01 
and 0.04 for all simulations. The 𝜅 values were fixed to 0.5 and 0.02 for B and C, 
respectively. 
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Figure 3-20. Simulated mean squared displacement results. Examples of 
simulated mean squared displacement (D2) as a function of time increment for all 
the migrating cells on the Flat (A), Linear (B) and Random (C) patterned surfaces. 
Same parameters as Figure 3-19. 

A

B

C
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3.4 Chapter Discussion 

This chapter describes the development of an in-silico model for analysing the 

migration of fibroblast cells on polyurethane surfaces with varying nano-

topographical features, based on the stochastic O-U process introduced by Dunn and 

Brown (1987) [295]. In addition, we have extended this process to include a surface 

topology bias. In this model, random motility can be described as a mixture of 

random fluctuations and deterministic decay in cell velocity. These respective 

unknown quantitative parameters were optimised by comparing experimental 

results to the in-silico output. This permitted comparison of a large range of 

parameter values to be narrowed down to a specific subset of α-β pairs, which when 

inputted back into the simulation, results in an in-silico model that accurately 

describes the experimental cell migration patterns. A third term was added to the O-

U process to account for the effects of the surface gradient on the cells velocity. This 

term is proportional to the deviation of the current direction of the cell from the 

surface gradient. Again, this term was determined through a combination of 

experimental results and multiple model simulations, producing a range of values for 

each surface. Further simulations, with the parameters fixed to the predicted optimal 

values, resulted in in-silico models showing a good match to the in-vitro experiments. 

Therefore, the extended quantitative framework appears to be an appropriate 

description of the motility observed in the cell migration assays. 

Comparison of the metrics derived from the experiments (Figure 3-5) reveal that 

there was a significant difference between the flat and linear surfaces and the linear 

and random surfaces. There was no observable significant difference between the 
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flat and random surfaces for the curved-line distance (p=0.34) and straight-line 

distance (p=0.79) travelled by the fibroblast cells (Figure 3-5B) or for any of the 

tortuosity values generated (Figure 3-5A). An explanation for this lack of significance 

could be due to the orientation of the surface pattern features on the random 

polymer (Figure 3-2B). It is possible that the cells could be adhering and migrating 

along the pattern features while simultaneously exhibiting random motility, as 

observed on the flat surface, thanks in part to the criss-cross (random) nature of the 

pattern. However, the tortuosity for this experiment is almost identical to the 

tortuosity of the linear experiment (Figure 3-5A), suggesting that the motility in this 

experiment is more directed. Furthermore, observation of the mean squared 

displacement plot (Figure 3-6D) infers that, initially, the displacement of the cells on 

the random surface closely match that of the linear surface. However, as time 

increases, this trend changes and migration on the random surface more closely 

resembles the displacement of the fibroblast cells on the flat surface. Therefore, even 

though it is likely that the fibroblast cells on the random surface are influenced by 

the nano-features present on the polymer, it can’t be shown to have any significant 

effect on the cell migration pattern.  

As shown by the match of the O-U process to data for mean squared displacement 

(Table 3-1), the random motility parameters provide appropriate description of the 

fibroblast migration. This agreement strengthens the verification of the applicability 

of the model. While the actual mechanical and biochemical processes that α and β 

should represent are not presently defined, these parameters provide a direct means 

of relating observable quantities, such as cell speed, to basic motility mechanisms. 

These parameters are fixed for all subsequent simulations meaning the only 
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differences between the in-silico models for the different surfaces are the value of 

the haptotactic parameter 𝜅 and the surface gradients obtained from the 

microscopic data. By taking the SSE-values for the motility parameters, α and β, and 

fitting them to a polynomial curve (Figure 3-11D), a range of α-β pair values can be 

acquired. This suggests there is a quadratic relationship between the ratio of random 

fluctuations and velocity decay. Theoretically, any α-β value can be chosen as long as 

it satisfies this relationship. However, as alluded to in the results, smaller α-β values 

were chosen to prevent the simulated cells from leaving the simulated polymer 

surface. Experimentally, this isn’t a problem as the fibroblasts that migrated ‘out of 

frame’ in the time-lapse microscopy results were discounted. Nonetheless, when this 

event occurs in the model simulations it results in massive skewing of the data. 

Lowering the α-β pair values reduced the distance possible for the simulate cells to 

migrate into which allowed for simulated cells to remain within the boundary of the 

in-silico polymer space. A combination of this solution with each simulated cell having 

a starting origin in the middle of the polymer space (0,0) contributes towards the 

poor fit of between the experimentally derived mean curved-line and straight-line 

distance values and the simulated mean values for the linear (Figure 3-14) and 

random (Figure 3-17) polyurethane surfaces. However, for the purposes of 

optimising the haptotactic parameter, the ratio of these distances was more 

important than the values. Ultimately, the mean squared displacement plots were 

the biggest indicator of optimal 𝜅 values for the linear and random polyurethane 

surface.  

SSE-values for the haptotactic parameter were also utilised in the optimisation of 𝜅. 

The parameter 𝜅 represents the ability of the cells to respond to a perceived surface 
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gradient in its surrounding environment. A range of 0.5-0.6 for the 𝜅-parameter was 

predicted as optimal for the linear surface. For the random surface a much lower 𝜅-

value range of 0.01-0.07 was predicted. This lower value of 𝜅 suggests the random 

surface features have less effect on the migrating fibroblast cells compared to those 

features present on the linear surface, as 𝜅 represents a bias towards the surface 

gradient in the model. This result is in line with the statistical analysis as it was stated 

previously that there was no statistical significance between the flat and random 

surfaces (Figure 3-5). Ultimately, the lower 𝜅-value is needed on the random surface 

to generate the best fit to the experimental data. The higher 𝜅-value associated with 

the linear surface simulations would suggest that these features activate a more 

prolonged mechanism of sustained migration biologically within the fibroblast cells. 

Full simulation of the model, incorporating optimised derived values for α, β and 𝜅, 

result in the production of D2 plots (Figure 3-20) that accurately mimic what occurred 

in the in-vitro experiments (Figure 3-5).  

In summary, I have proposed a mathematical model of fibroblast migration and 

haptotaxis across varying polyurethane surfaces, containing nano-topographical 

features through abrasive polishing, which provides a quantitative framework in 

which to assess cell migration on these surfaces. The model has been shown to 

accurately replicate key migratory features observed in the in-vitro experiments and 

establishes a precise relationship between α and β values for fitting of the 

experimental data. The model was also able to provide distinct 𝜅-values for the linear 

and random surfaces. These values indicated the amount of bias shown by the cells 

to each particular surface. This information can be utilised in the design of smart 

materials to influence the adhesion and migration of cells.   
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Chapter 4: Mathematical modelling of 

Nrf2 dynamics 
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4.1 Introduction 

In this chapter, an in-silico model designed to highlight the subcellular machinations 

of the Nrf2 protein signalling pathway is introduced. As previously described in 

section Error! Reference source not found., the Nrf2 protein is a vital transcriptional 

regulator in response to oxidative stress. However, the key characteristic of this 

transcription factor is its very low basal activity and stringent regulation [212]. Some 

of the key questions the model aims to address involve the basic rates of interactions 

and translocations of Nrf2. These include production and decay rates, as well as the 

import-export rates across the nuclear membrane. To begin, the Nrf2 pathway is 

reduced to only include the essential components necessary to capture these rate 

profiles, based upon a review of the literature (section 1.6.1). For simplicity, within 

the cytoplasm, it is assumed that the Nrf2 protein undergoes the processes of 

production, decay, proteasomal degradation and nuclear translocation. Proteasomal 

degradation involves interactions with Keap1, the best understood negative 

regulator of Nrf2 [214]. For the model, it is assumed that Keap1 is constantly available 

to inhibit newly formed Nrf2, as it would under normal in-vivo conditions [211]. As 

such, there is no need to include the production or decay of Keap1 within the model. 

Instead, its involvement within the model includes binding to the Nrf2 protein and 

ubiquitously marking it for degradation. Within the nucleus, it is assumed the Nrf2 

has two pathways for decay and degradation. The simulated Nrf2 protein either 

undergoes a basal decay within the nucleus or it is exported back to the cytoplasm, 

to be degraded by the Keap1 protein.  This is explained in more depth in the methods 

(section 4.2.2 below). 
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A novel component of this work is the close interplay of the in-silico model with 

experimentally derived data. Note that the work in this chapter involves 

collaboration with Professor Chris Sanderson’s lab in the University of Liverpool. They 

provided experimental data sets for the validation of the Nrf2 signalling pathway 

model. These data sets contain experimental results of Nrf2 expression in wildtype 

cells and cells that have undergone various treatments to perturb the Nrf2 signalling 

system. A brief overview of the key information obtained from this experimental data 

is provided in section 4.2. Moreover, a detailed description of the experiments 

conducted by Dr Jo Wardyn (Sanderson lab) is included in Appendix B (section 7.2).  

4.1.1 Chapter aims 

1. To design an in-silico model to accurately describe the Nrf2 signalling 

pathway and capture the system dynamics based on a review of the literature. 

2. To parameterise the model using initial input values obtained from the Khalil 

et al. paper 

3. To validate the optimised in-silico output based upon agreement with the 

experimental data 

4. Use the in-silico model outputs to quantify the key mechanisms of Nrf2 

regulation in the cytoplasm and nucleus, proposed by Sanderson lab  
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4.2 Methods 

As mentioned above, this chapter was completed in collaboration with the University 

of Liverpool and all imaging experiments were performed by Dr Jo Wardyn 

(Sanderson lab). The raw data generated from these experiments were used as the 

basis for building the mathematical model. However, for completeness, a brief 

overview of the key information obtained from these experiments is provided below.  

4.2.1 Summary of wet lab experiments 

Real time imaging experiments were conducted on live cells with the aim of 

measuring Nrf2 expression via fluorescence. This was achieved by transfecting 

primary cells with fluorescent protein plasmids. Two cell types were used in these 

experiments with each cell type expressing a different fluorescent protein. BAC 

(bacterial artificial chromosome) cells stably expressed the Nrf2-Venus fluorescent 

protein, which exhibits a very low expression. These cells will be referred to as ‘BAC 

cells’ throughout the chapter. The photoswitchable fluorescent protein pDendra2 

was transiently expressed in SK-N-AS cells and will be referred to as ‘pDendra cells’ 

from this point forward. The pDendra2 emits naturally in a green light spectrum. 

However UV irradiation results in irreversible transition in emission to the bright and 

photostable red fluorescent protein (RFP) spectrum. The BAC cells were treated with 

MG132 (proteasome inhibitor) and CHX (translation inhibitor) to perturb the system 

and the results were recorded, containing nuclear fluorescence measurements only, 

which were then normalised to the initial value. These BAC cell data sets only contain 

nuclear fluorescent measurements, as Nrf2-Venus fluorescence is confirmed to be a 

nuclear fluorescent signal under lambda scanning [297]. Similarly, wildtype 
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experiments were conducted in the pDendra cells and measurements of green 

fluorescence were normalised to the initial fluorescence intensity. Note that the red 

data is normalised to the value after photoconversion. Experiments in these cells 

were also repeated with a knockdown of Keap1 (siKeap). Data obtained from the 

pDendra experiments provide distinct measurements for cytoplasm and nucleus. 

Therefore, there are four experimental data sets to validate the model, namely two 

data sets from the pDendra cells (wildtype and siKeap) and two data sets from the 

BAC cells (MG132 and CHX). 

4.2.2 Mathematical Model 

The starting point in the creation of the model involved the inclusion of the most 

important processes involved in the Nrf2-Keap1 interaction. These processes include 

the production, translocation, degradation and decay of the Nrf2 protein. The model, 

shown schematically in Figure 4-1, represents the regulation of Nrf2 within two 

compartments, the cell nucleus and the cytoplasm. Nrf2 is produced (at rate 𝑟4) in 

the cytoplasm and can translocate into the nucleus (rate 𝑟2). Due to the different 

transfection methods for pDendra cells and BAC cells, an additional parameter (𝑧) is 

required to modify the production rate of Nrf2 in the cytoplasm. That is the r4 

parameter is multiplied by the 𝑧 < 1 parameter to give a reduced basal synthesis 

rate for the BAC cell experiments. In the nucleus, the Nrf2 protein is either exported 

to the cytoplasm (rate 𝑟1) or decays within the nucleus (rate r5). Cytoplasmic Nrf2 can 

also bind with Keap1 whereupon it is targeted for proteasomal degradation (maximal 

rate 𝑟3). This Keap1-mediated removal of cytoplasmic Nrf2 protein is governed by a 

threshold (𝑟6). This simple description of Nrf2 dynamics in the cell is used for 

modelling the green fluorescent data. The red-Nrf2 system is modelled in the same 
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way as the green, but lacks the basal synthesis rate (𝑟4 = 0) as there are no newly 

synthesised Nrf2 proteins emitting red fluorescence by definition.  

The mathematical model, comprises two ordinary differential equations (ODEs) for 

each of the two cellular compartments (subscript c for cytoplasm and n for nucleus): 

 𝑑𝐺𝑐

𝑑𝑡
= 𝑟4 + 𝑟1𝐺𝑛

𝑉𝑛

𝑉𝑐
− 𝑟2𝐺𝑐 −

𝑟3𝐺𝑐

𝐺𝑐 + 𝑟6
, (4-1) 

 

 𝑑𝑅𝑐

𝑑𝑡
= 𝑟1𝑅𝑛

𝑉𝑛

𝑉𝑐
− 𝑟2𝑅𝑐 −

𝑟3𝑅𝑐

𝑅𝑐 + 𝑟6
, (4-2) 

 

 𝑑𝐺𝑛

𝑑𝑡
= 𝑟2𝐺𝑐

𝑉𝑐

𝑉𝑛
− 𝑟1𝐺𝑛 − 𝑟5𝐺𝑛, (4-3) 

 

 𝑑𝑅𝑛

𝑑𝑡
= 𝑟2𝑅𝑐

𝑉𝑐

𝑉𝑛
− 𝑟1𝑅𝑛 − 𝑟5𝑅𝑛, (4-4) 

 

where 𝐺𝑐 denotes the concentration of green-Nrf2 in the cytoplasm, 𝐺𝑛 represents 

the concentration in the nucleus, 𝑉𝑐 denotes the volume of the cytoplasm and 𝑉𝑛 

denotes the volume of the nucleus. The variables 𝑅𝑛 and 𝑅𝑐 represent the 

concentration of red-Nrf2 protein present in the nucleus and cytoplasm, respectively. 

All these dynamic processes are governed by parameters whose description and 

respective units are given in Table 4-1. 
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Figure 4-1. Minimal Mathematical Model. Schematic diagram showing the cycle 
of the Nrf2 protein within the cytoplasm and nucleus. In the cytoplasm, Nrf2 is 
produced and then sequestered by Keap1 and marked for degradation. The other 
elements of the minimal-model include nuclear import, nuclear decay and export 
of the nuclear Nrf2 protein to the cytoplasm. Rate descriptions included in Table 
4-1. 

 

 

 

Parameter Description [units] 

𝒓𝟏 Nuclear export rate [1/min] 

𝒓𝟐 Nuclear import rate [1/min] 

𝒓𝟑 Maximal Keap-mediated cytoplasmic removal rate 

[nM/min] 

𝒓𝟒 Basal synthesis rate of pDendra cells [nM/min] 

𝒓𝟓 Nuclear removal rate [1/min] 

𝒓𝟔 Keap-mediated cytoplasmic removal threshold [nM] 

z Modifier for BAC basal synthesis rate [dimensionless] 

Table 4-1. Description and units of the seven parameters. Table showing the 
seven parameters for the Nrf2 signalling processes included within the in-silico 
model design. A description of what each parameter represents and the 
respective units is also provided. 
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4.2.3 Parameterisation and Latin Hypercube sampling 

To initialise the model, the preliminary model uses values for the six parameters (𝑟1 

– 𝑟6) obtained from a publication by Khalil et al. [269]. A description of each of the 

parameters used in this study, the values of these parameters and how they 

correspond to the parameters outlined in the model above are given in Table 4-2. 

The value for the z parameter (0.01) was obtained experimentally from the 

Sanderson lab. Parameter optimisation was conducted in order to modify these 

initial parameter values and give the best possible fit between the model and the 

data. Latin hypercube sampling (LHS) was used to generate a distributed sample set 

of initial parameter estimates for this fitting. LHS is a way of generating random 

samples of parameter values [298]. The reasoning behind the use of LHS in the model 

is due to the computational power needed to optimise these parameters using 

general random sampling methods. In random sampling, the model would not take 

into account previously generated sample points when selecting new sample points, 

which has the potential to generate a poor spread of the data points. However, with 

LHS it can be decided how many sample points are needed and the sampling also 

accounts for which ranges of values have already been selected. Therefore, LHS 

sampling provides initial parameter estimates that incorporate the entire spread 

while remaining computationally efficient and preventing the model becoming 

trapped in local minima. A paper by Pan et al. [299] shows how LHS sampling can be 

used to improve the efficiency in terms of computational time and space-filling 

properties. LHS has also shown to optimally represent the multivariate distribution 

of input datasets better than other sampling methods [300].  
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Parameter Initial value [269]  Description and source [269]   

𝒓𝟏 0.1 min-1 Rate of cytoplasmic/nucleus exchange of Nrf2 [269] 

𝒓𝟐 0.1 min-1 Rate of cytoplasmic/nucleus exchange of Nrf2 [269] 

𝒓𝟑 0.1 µM-1 min-1 Reaction rate of the binding of Nrf2 with Keap1 [269] 

𝒓𝟒 2x10-2 µM/min Synthesis rate of Nrf2 [269] 

𝒓𝟓 5x10-2 min-1 Degradation rate of Nrf2 [269] 

𝒓𝟔 5 nM Dissociation constant of Nrf2 with Keap1 [269] 

z 0.01  Modifier for BAC basal synthesis rate (Sanderson) 

𝑽𝒄 2.2x10-12 L Cytoplasmic volume [301] 

𝑽𝒏 5x10-13 L Nuclear volume [301] 

Table 4-2. Parameter values derived from literature. Table showing the initial 
values derived from Khalil et al. for the parameters 𝒓𝟏 – 𝒓𝟔.  These values are used 
for the initial parameterisation of the mathematical model. A description of what 
each parameter represents in the Khalil et al paper is also provided for clarity. 
Also included in this table are the other parameters used within the model. The 
𝒛 parameter was derived from the Sanderson lab (as described in the main text). 
The volume parameters were adapted from red blood cell volumes from the 
literature [301].  
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4.2.4 Fitting algorithm 

Optimised model parameter values were obtained by fitting the model to the 

experimental data, using the non-linear optimisation function (“fminsearch”) in 

Matlab. The fminsearch function finds the minimum of a scalar function of several 

variables, starting with the initial estimates. This is an unconstrained multivariable 

function using a derivative-free method based on the Nelder-Mead simplex method 

[302]. Simply, this function identifies parameter values that correspond to the 

minimum distance between the model output and the data. A limitation of this 

function is its tendency to only give local solutions if the initial parameter estimates 

do not fall near the global optimal solution. This is another benefit to using initial 

guesses from a spread of LHS generated samples as it provides a wide range of initial 

parameter estimates, diminishing the chances of the fminsearch algorithm becoming 

trapped within local minima. A range was taken for each parameter e.g. for 

parameter 𝑟1, the range generated was [𝑟1/10, 10𝑟1]. This range was then subdivided 

into 200 intervals, using a logarithmic scale, and then numbers were drawn from each 

of these 200 intervals using LHS. This gave a set of 200 randomly perturbed numbers 

from 𝑟1/10 to 10𝑟1. This was repeated for each parameter and each time the fitting 

was conducted, a random value was selected from these numbers for each 

parameter. Therefore, through the combination of LHS and fitting to the 

experimental data, 200 samples were optimised. This was further reduced to 98 

samples through further optimisation, described in the results section (4.3). From 

here further parameterisation was conducted, utilising experimental estimates, until 

the most appropriate parameter values for fitting the experimental data were 

identified. A flow diagram depicting this process in available in Figure 4-2.  



143 
 

 

Figure 4-2 Schematic of modelling strategy. This general schematic specifically 
highlights the simplified process implemented to optimise the model from 200 
potential samples to 3.  
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4.3 Results 

4.3.1 Nrf2 expression in cells using pDendra2 

pDendra2 is a green-to-red photoswitchable fluorescent protein. This fluorescent 

protein is fused with Nrf2 and irreversibly changes to emit red fluorescence when UV 

light is applied [303]. At the beginning of the experiment, all Nrf2 cells emit green 

fluorescence. When the pDendra2 is irradiated at time 4 minutes by UV light, 

approximately 50% of the Nrf2 cells switch to red fluorescence (Figure 4-3). This half 

maximal fluorescence change was deliberate by Sanderson’s lab to measure the 

equivalent import and export rates between nuclear and cytoplasmic compartments 

in their experiments. The fluorescence of the cells is measured in the cytoplasm and 

the nucleus to give two distinct measurements. The fluorescence scale is normalised, 

such that a value of 1 arbitrary unit (AU) corresponds to maximum fluorescence. 

There should be zero cells emitting red fluorescence before UV application. However, 

in Figure 4-3B, it can be seen that the initial red fluorescence measurement is 

approximately 0.2 AU. This is most likely due to background fluorescence in the 

experiment possibly due to e.g. autofluorescence, spectral overlap or undesirable 

antibody binding [304]. To allow comparison with the mathematical model, it is 

important to rescale this data (Figure 4-4) to remove any background signal that was 

measured in the experiment. This rescaling of the data was achieved by using 

equation 4-5 combined with the raw data values, namely: 

 
𝑥𝑁𝐸𝑊(𝑡) =

𝑥𝑅𝐴𝑊(𝑡) − 𝑥𝐵𝐴𝐶𝐾𝐺𝑅𝑂𝑈𝑁𝐷

1 − 𝑥𝐵𝐴𝐶𝐾𝐺𝑅𝑂𝑈𝑁𝐷
, (4-5) 
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where 𝑥𝑁𝐸𝑊 represents the rescaled pDendra2 fluorescence, 𝑥𝑅𝐴𝑊 represents the 

pDendra2 fluorescence from the raw data at time point t and 𝑥𝐵𝐴𝐶𝐾𝐺𝑅𝑂𝑈𝑁𝐷 

represents the observed background pDendra fluorescence at t=0 (approx. 0.2 AU). 

 
 

 
  

Figure 4-3. Green-Red pDendra-Nrf2 data. UV treatment is applied at t= 4 min 
and irreversibly switches pDendra-Nrf2 from green to red fluorescence. (A) Graph 
showing Green pDendra-Nrf2 fluorescence levels in the cytoplasm (dotted line) 
and in the nucleus (solid line). (B) Graph showing Red pDendra-Nrf2 fluorescence 
levels in the cytoplasm (dotted line) and in the nucleus (solid line). Green data 
normalised to initial fluorescence intensity and red data normalised to the value 
after photoconversion. 
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The photoconversion experiment was repeated with Nrf2 cells treated with siKeap1 

(Figure 4-5), which is a short interfering RNA (siRNA) that targets human Keap1 and 

silences the expression of this protein, which would be expected to lead to an 

increase in Nrf2 abundance. To achieve this in the model the parameter 𝑟3 was set 

to zero. One effect of silencing this protein appears to be a faster recovery of newly 

synthesised green pDendra-Nrf2 protein. At time point 40 minutes in Figure 4-3, the 

green pDendra-Nrf2 measurement is approximately 0.8 AU compared with a 

measurement of 0.9 AU at the same time point in Figure 4-5. This would suggest that 

overall production of Nrf2 is higher when Keap1 is silenced, which is what would be 

expected. Contrastingly, there is no comparative difference between the red 

pDendra-Nrf2 measurements at the same time point in Figure 4-4 and 4-5, which 

result in a measurement of approximately 0.3 AU. This would suggest that the rate 

of Nrf2 removal is unchanged. 

To measure the relative effect of proteasome-mediated degradation, an experiment 

was performed in stably expressed Nrf2-Venus cells imaged after treatment with 

10μM of MG132. MG132 is a proteasome inhibitor that blocks degradation. As a 

result, nuclear Nrf2 fluorescence increases twelve-fold over the duration of the 

experiment (Figure 4-6). The measurements in this experiment represent nuclear 

values only and are normalised based upon the initial fluorescence intensity in the 

nucleus. To mimic the inhibition of proteasomal degradation in the model, basal 

decay rates 𝑟3 and 𝑟5 are set to zero. Also, as these experiments were performed in 

BAC cells, parameter 𝑟4 is multiplied by parameter 𝑧 to represent the reduced Nrf2 

production in this cell type 
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Figure 4-4. Re-scaling of red data. The data is re-scaled to zero at t = 0 minutes 
to remove any background fluorescence and allow for model comparison. 
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Figure 4-5. Green-Red pDendra-Nrf2 experiment using siKeap-1. Green-Red experiments repeated with knockdown of Keap-1. UV 
treatment applied at t = 4 minutes.  (A) Graph showing Green pDendra-Nrf2 fluorescence levels in the cytoplasm (dotted line) and 
in the nucleus (solid line). (B) Graph showing Red pDendra-Nrf2 fluorescence levels in the cytoplasm (dotted line) and in the nucleus 
(solid line).
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Figure 4-6. Nrf2-Venus experiment using MG132. MG132 treatment was applied 
at t=0.4 hours. The experiment measures the Nrf2-Venus fluorescence levels in 
BAC cells. The data includes nuclear fluorescence measurements only and was 
normalised to the initial value. MG132 is a proteasome inhibitor. 

 

The relative nuclear fluorescence of green Nrf2-Venus is measured after treatment 

with 5ug/ml of CHX (Figure 4-7). CHX is an inhibitor of translation and effectively 

prevents the synthesis of Nrf2 proteins. This is clearly evident from the results in 

Figure 4-7. Previously, Nrf2 exhibited a distinct recovery pattern (Figure 4-3 & 4-5) 

which is absent in Figure 4-7. Instead, Nrf2 levels in Figure 4-7 decrease gradually 

until it reaches a steady state of approximately 0.2 AU (due to background 

fluorescence). As above, this data is rescaled to omit background fluorescence 

(compare Figure 4-7 and Figure 4-8). 
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Figure 4-7. Nrf2-Venus experiment using CHX. CHX treatment was applied at t = 
0.4 hours. The experiment measures the Nrf2-Venus fluorescence levels in BAC 
cells. The data includes nuclear fluorescence measurements only and was 
normalised to the initial value. CHX inhibits the synthesis of Nrf2. 

 
 
 
 
 

 

Figure 4-8. Re-scaling of CHX data. Data re-scaled to remove background signal. 
According to the structure of the model, Nrf2 should decay to zero with the 
addition of CHX. 
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4.3.2 Model optimisation through data fitting 

The model was run as described above (in section 4.2.3) using a range of initial 

parameter estimates centred on the values given in Khalil et al. [269]. The fitting 

routine was sensitive to the initial parameter estimates which motivates the use of 

Latin hypercube sampling (LHS) to supply a range of initial parameter estimates. Of 

the 200 initial parameter estimates, 98 samples produced a fit between the model 

and the data that gave R-squared (R2) values of 0.85 or higher. The model was fit to 

the different data sets simultaneously, with the appropriate scenario-dependant 

model terms omitted to represent the silencing of Keap1 (siKeap), inhibition of 

proteasomal degradation (MG132) and inhibition of translation (CHX). These 98 

optimised values were plotted against the corresponding initial parameters for each 

of the initial parameter sets, to identify trends in parameter sensitivity (Figure 4-9). 

Parameters are optimised using MATLAB function fminsearch to minimise the 

relative error, χ, for the 10 time-series (4 WT, 4 siKeap, 1 MG132 and 1 CHX):  

 

𝜒 =  ∑ ∑ (
𝑀𝑜𝑑𝑒𝑙𝑖(𝑡) −  𝐷𝑎𝑡𝑎𝑖(𝑡)

𝐷𝑎𝑡𝑎𝑖(𝑡)
)

2

𝑡

.

10

𝑖=1

 (4-6)  

 

The main result to be seen from this graph is the relatively small variability in 

optimised parameter values for the parameter sets 𝑟3 (Figure 4-9C), 𝑟4 (Figure 4-9D), 

𝑟6 (Figure 4-9F) and 𝑧 (Figure 4-9G). For these parameters, there are a wide range of 

initial parameter estimates imported into the model which produce a reasonably 

tight range of optimised parameter values. Compare that to the 𝑟1 (Figure 4-9A), 𝑟2 

(Figure 4-9B) and 𝑟5 (Figure 4-9E) parameter sets, where the range of optimised 

parameter values are much wider. Some clustering of optimised values can be 
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observed and becomes more apparent when the initial parameters are plotted 

against the optimised parameters (Figure 4-10). Red circles indicate possible 

clustering of the optimised parameter values for each of the seven sets. For example, 

for the 𝑟1 parameter, the initial estimate range of 0 to 10 results in an optimised 

range of 0 to 2 (Figure 4-10A). The initial estimate range for parameter 𝑟2 (Figure 

4-10B) is the same as parameter 𝑟1 but results in a much tighter optimised parameter 

range of 0.055 to 0.065. The optimal ranges for the other 5 parameter sets are 

produced at the low end of the initial ranges for 𝑟3 (Figure 4-10C), 𝑟4 (Figure 4-10D), 

𝑟5 (Figure 4-10E), 𝑟6 (Figure 4-10F) and 𝑧 (Figure 4-10G).  
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Figure 4-9. Goodness of fit estimates between initial and optimised parameters. Graphs showing initial parameter estimates against the 
optimised parameter values with R2≥0.85. CHI represents the relative error calculated using Equation 4-6. 
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Figure 4-10. Observed clustering of parameters. Graphs showing the initial 
parameter estimates against the optimised parameter values for 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 
𝑟6 and 𝑧.  Red circles show clustering of optimised parameter values. 

 

Another way to display the distribution of data obtained from the parameter 

optimisation is to look at the median optimised values and the corresponding 

interquartile ranges (Figure 4-3). From this, the full range of variation and the average 

value (median) for each parameter set can be displayed. In Figure 4-3, parameters 1, 

2 and 5 have comparatively shorter ranges than the other 4 parameters. This trend 

suggests that these parameter sets are potentially sensitive to perturbations from 

the median value. 
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Figure 4-3. Box plots for each of the seven parameters. Box plots showing a range 
of parameter values with a R2 > 0.85. Parameters 1-7 correspond 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 
𝑟6 and 𝑧 values respectively. The median and IQR values for each parameter set 
are given below the box plot. Outliers are denoted by crosses (+). 
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4.3.3 Further parameterisation of the model 

The next step is to narrow down the 98 (R2 > 0.85) samples and identify the most 

appropriate parameterisations for the model. One way of doing this is to exclude the 

samples that do not actually replicate features of the in-vivo system that the model 

is supposed to be simulating, e.g. the steady state concentration of nuclear Nrf2 

(estimated to be 2.8nM) and the cytoplasmic estimate (1.88nM) result in a 𝐺𝑛: 𝐺𝑐  

ratio of 1.5:1 (personalised communication, Sanderson). Figure 4-4 shows a plot of 

the 𝐺𝑛: 𝐺𝑐  steady state ratio for each of the 98 samples. The 𝐺𝑛: 𝐺𝑐  experimental 

steady state is represented by the horizontal blue line. Of the 98 optimised samples, 

3 were selected based upon the similarity of their 𝐺𝑛: 𝐺𝑐  ratios to the 1.5:1 

experimental estimate. The seven parameter values (𝑟1 to 𝑟6 and 𝑧) were then 

extracted from these three samples (#14, #27 and #53 out of the 98 parameter sets) 

and compared in Table 4-3 along with a value for 1/z and the 𝐺𝑛: 𝐺𝑐ratios. Note that 

1/z is equivalent to the ratio between pDendra2 and BAC Nrf2 expression. 

Parameters 𝑟1, 𝑟2 and 𝑟5 show the least percentage difference, which were calculated 

using Equation 4-7 and 4-8, across the three sample sets. Note that the parameter 

values in set #27 were used as reference values to calculate percentage differences: 

 
% 𝑑𝑖𝑓𝑓 1 = |2 ×

#14 − #27

#14 + #27
× 100| (4-7) 

 
% 𝑑𝑖𝑓𝑓 2 = |2 ×

#53 − #27

#53 + #27
× 100|. (4-8) 

 

These parameter sets are almost identical between samples #27 and #53. However, 

the other 4 parameter values show approximately 200% difference between the 

sample sets. In contrast, there is an approximately 90% difference between samples 
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#14 and #27 for parameters 𝑟4 and 𝑧. Sample #53 has a very large 1/z value compared 

to the other two samples and is too large to be considered to be biologically viable, 

which would suggest that samples #14 and #27 are more appropriate and 

representative. Parameter sensitivity analysis was then performed on the three 

samples and displayed in Figure 4-5. The seven parameters were plotted with their 

corresponding χ values (Figure 4-5, left hand panel) and R2 values (Figure 4-5, right 

hand panel) over a two-fold change (-2 to 2) in optimised values for each of the 

optimised sets #14, #27 and #53. Again, parameters 𝑟1, 𝑟2 and 𝑟5 exhibit the most 

sensitivity to variation as the change in χ was comparatively greater than for the 

others. Sample #14 show the least sensitivity for the other four parameter values, 

whereas samples #27 and #53 show increased χ values for 𝑟3, 𝑟4, 𝑟6 and 𝑧 as the fold 

change reached its upper and lower limit. Similarly, the behaviour was observed for 

the three parameter sets when also looking at the respective R2 values. For sample 

#14, parameters 𝑟1, 𝑟2 and 𝑟5drop below an R2 value of 0.85 with only small changes 

in their respective parameter values. The R2 value for the other parameters remains 

relatively constant for parameter changes. This sensitivity analysis shows that 𝑟1, 𝑟2 

and 𝑟5 are the most sensitive, i.e. the model output varies significantly with only small 

variations in the parameters. These parameters are the most consistent across all 

three parameter sets. This indicates the values predicted for these parameters are 

most likely to be optimal. Subsequently, the sensitivity analysis also indicates less 

confidence in the other parameters. Now that optimised parameter sets have been 

identified, the in-silico results can be compared to the experimental results. For the 

point of illustration, the optimised parameter set #14 is used for the input values for 

the model.  



158 
 

 

Figure 4-4. Nuclear vs cytoplasm steady state ratios. Graph showing the 
nuclear/cytoplasm steady state ratios for each of the 98 parameter sets. Red line 
shows level of 1:1 ratio and blue line shows the level for 1.5:1 ratio. The 
parameter sets closest to the blue line are highlighted with red circles (#14, #27 
and #53). 
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Parameter Units #14 % diff 1 #27 % diff 2 #53 

𝒓𝟏 [1/min] 0.086 38.1 0.0585 2.8145 0.0601 

𝒓𝟐 [1/min] 0.696 21.2 0.0562 0.0248 0.0563 

𝒓𝟑 [nM/min] 0.0059 199.8 15.382 199.99 1.38x10-5 

𝒓𝟒 [nM/min] 5.1345 89.4 1.9599 195.51 172.93 

𝒓𝟓 [1/min] 0.1089 0.1438 0.1087 1.1002 0.1099 

𝒓𝟔 [nM] 322.93 195.99 3.2x104 175.21 4.85x105 

𝒛 n.d 0.0135 90.4 0.0358 195.52 4.05x10-4 

𝟏/𝒛 n.d 74.07  27.96  2.47x103 

𝑮𝒏: 𝑮𝒄 ratio 1.57:1  1.48:1  1.46:1 

Table 4-3. Optimised parameter sets. The optimised values for the three samples 
#14, #27 and #53 are given in column 3, 5 and 7. % diff 1 and %diff2 refer to the 
percentage difference between parameter estimates for sets #14 and #27 and 
#27 and #53, respectively (calculated by equations 4-7 and 4-8).  
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Figure 4-5. Sensitivity analysis for each of the seven parameter (#14, #27 and 
#53). Box plots showing a range of parameter values with a R2 ≥ 0.85. Parameters 
1-7 correspond to 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6 and 𝑧 values respectively. Left hand panel 
shows the effect on the relative error χ as each parameter is varied from a -2 to 2 
fold change. Right hand panel shows corresponding effect on R2. 
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4.3.4 Fitting of the experimental data 

Figure 4-6 shows the green and red-Nrf2 results in the wild type pDendra-Nrf2 

experiments and simulations. The solid and dashed lines with circular markers 

represent the results from the wet lab experiments and the solid and dashed lines 

without markers represent the results from the in-silico simulation. The simulated 

results fit to the experimental results for both the green and red components giving 

confidence in the design of the model structure. Figure 4-7 shows the pDendra-Nrf2 

results that were treated with siKeap1. To achieve this knockdown effect in the 

model, the 𝑟3 parameter, representing the proteasomal degradation of cytoplasmic 

Nrf2 by Keap1, is set to zero. Again, the impact of these results adds weight to the 

reliability of the model. Figure 4-8 displays the Nrf2 dynamics after treatment with 

MG132. Comparison of the traces show another strong correlation of results. The 

final experiment involved the nuclear Nrf2 measurements in BAC cells in the 

presence of CHX. As CHX interferes with the synthesis of newly formed Nrf2 proteins, 

the basal synthesis parameter, 𝑟4, is set to zero for this simulation. The results are 

plotted in Figure 4-9. The fit between the experimental and simulated results is again 

encouraging. The overall outcome from these simulations shows that the optimised 

parameter set accurately depicts the dynamics of the Nrf2 system. The overall rate 

ratios for these three parameter sets are given in Table 4-4. These relative rates 

(nucleus influx/efflux and cytoplasmic vs nuclear decay) are of interest to biologists, 

and currently unknown from the experiments. Estimates of these rates can be 

calculated using the optimised parameters and taking steady state levels for 𝐺𝐶   and 

𝐺𝑁. From these calculations, the rate of influx is more than twice (2.26, 2.86) that of 

the rate of efflux across the nuclear membrane and that there is much less decay 
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(4.7x10-4, 0.0132) in the cytoplasm compared with the nucleus. Note that  set #53 is 

discounted because of the unrealistic 1/z value produced in Table 4-3. 

 

 

Figure 4-6. Wildtype experiment fitting. Nrf2 values are plotted in the graph for 
the cytoplasm (dashed line) and the nucleus (solid line). The experimental results 
are depicted by the traces with circular markers and the simulated results lack 
any markers. 
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Figure 4-7. siKeap experiment fitting. Nrf2 values are plotted in the graph for the 
cytoplasm (dashed line) and the nucleus (solid line). The experimental results are 
depicted by the traces with circular markers and the simulated results lack any 
markers. The 𝑟3 parameter value is set to zero for the simulated result to mimic 
the siKeap in the experiment. 
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Figure 4-8. MG132 experiment fitting. Nrf2 values are plotted in the graph for 
the cytoplasm (dashed line) and the nucleus (solid line). The experimental results 
are depicted by the traces with circular markers and the simulated results lack 
any markers. The 𝑟3 and 𝑟5 parameter values are set to zero for the simulated 
result to mimic the effect of MG132 in the experiment. 
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Figure 4-9. CHX experiment fitting. Nrf2 values are plotted in the graph for the 
cytoplasm (dashed line) and the nucleus (solid line). The experimental results are 
depicted by the traces with circular markers and the simulated results lack any 
markers. The 𝑟4 parameter value is set to zero for the simulated result to mimic 
the effect of CHX in the experiment. 

  



166 
 

Rate ratios Calculation #14 #27 #53 

Nucleus 
influx/efflux 𝑟2𝐺𝑐𝑉𝑐

𝑟1𝐺𝑛𝑉𝑛
 

2.2664 2.8597 2.8281 

Relative 
cytoplasm/ 
nuclear decay 𝑉𝑐𝑟3𝐺𝑐

(𝐺𝑐 + 𝑟6)(𝑉𝑛𝑟5𝐺𝑛)
 

BAC 
(stable) 

4.7x10-4 0.0132 7.83x10-10 

pDendra 
(transient) 

3.36x10-4 0.0131 7.75x10-10 

Table 4-4. Characterisation of the key mechanisms of Nrf2 regulation in the cytoplasm 
and nucleus. Table showing the relative rate ratios for the nuclear influx/efflux and 
cytoplasm/nuclear decay for the three optimal parameter sets #14, #27 and #53. The rates 
produced for each of the cell types (BAC and pDendra) are also given. 
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4.4  Discussion 

This chapter describes the development of an in-silico model of Nrf2-Keap1 

interaction in the subcellular cytoplasmic and nuclear compartments. This model is 

validated through parameterisation and fitting of experimentally-derived data sets 

to provide key insights on associated mechanistic rate profiles of the proteins. 

Normalised data sets of Nrf2 expression in untreated cells and cells treated with 

siKeap, the proteasome inhibitor MG132 and the translational inhibitor CHX were 

used to inform the model. In order to establish the model, initial parameter values 

were obtained from the literature [269]. By taking appropriate ranges of values 

around these initial estimates and fitting against the data, optimised values were 

obtained for the seven model parameters. A sub group of our initial parameter sets 

were determined to be a good fit through comparison of goodness of fit R2 values 

(R2>0.85). These sub samples (Figures 4-9 – 4-11) were further analysed by plotting 

the initial parameter estimates against the optimised values. A trend from these plots 

appeared to suggest that some parameters are more sensitive to variation. Outliers 

from these sub samples increased the range for parameters 𝑟3, 𝑟4, 𝑟6 and 𝑧 leading 

to the conclusion that these parameters are less sensitive to initial input values. This 

trend continued in subsequent analysis wherein the parameter sets were compared 

against data for steady-state cytoplasmic-nuclear concentration derived from 

experimental analysis (personal communication). The parameter values from these 

three sets were compared in Table 4-3. Interestingly, the percentage difference 

between parameters for 𝑟1 (nuclear export rate), 𝑟2 (nuclear import rate) and 𝑟5 

(nuclear removal rate) are much smaller than the percentage difference for the other 
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parameter values across the three sets. These sensitive parameters have the same 

unit of 1/min (Table 4-2) and do not rely on concentrations as the other parameters 

do. This may indicate one of the reasons why they are more sensitive to 

perturbations within the model, as the experimental data provided was measured in 

arbitrary units instead of concentration i.e., normalised data sets were provided. 

Therefore, to resolve this problem and increase reliability in the model, the 

experimental data for these concentration dependent parameters needs to be 

measured in non-normalised units.  However, the datasets provided were sufficient 

to answer the key rate questions (Table 4-4) proposed by the collaborators 

(Sanderson lab). Further comparison of Table 4-3 shows that one of the optimised 

parameter sets predicts a very large ratio of Nrf2 expression between the pDendra 

and BAC cells. It is unlikely that the Nrf2 expression would be 3 orders of magnitude 

greater from one cell type to the other. Therefore, the remaining two parameter sets 

were identified to be more appropriate. Simulation of the model results in a good fit 

to the data (Figure 4-6, 4-15, 4-16 & 4-17). However, Figure 4-14 and 4-15 exhibit a 

‘blip’ in the experimental measurements at t=68h. This artefact is also present at the 

same time point in Figure 4-3 and 4-5. The reason for the presence of this ‘blip’ 

remains unclear and is most likely a result of a technical malfunction in the 

fluorescence equipment towards the end of the experiment. In addition, the 

optimisation and identification of these three parameter sets allowed us to evaluate 

the key rate profiles addressed in the conception of the model (Table 4-4). That is, 

the motivation for creating an in-silico model of the Nrf2 signalling pathway was to 

establish and quantify the translocation and removal rates of the Nrf2 protein, as this 

is difficult to determine experimentally due to the rapid half-life of Nrf2. The rates 
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produced by the model for the influx/efflux are tightly regulated across the three 

parameter sets. This could again be attributed to the calculation requiring those rates 

(𝑟1 and 𝑟2) which were shown to be most sensitive to perturbations in the previous 

simulations and therefore have little variation across the three optimal parameter 

sets (Table 4-3). The relative rate ratio for the nuclear influx/efflux produced by the 

model shows that the rate of influx is over twice that of the efflux rate. A greater 

amount of Nrf2 is being imported into the nucleus than out meaning that Nrf2 

accumulates in the nucleus. The other key ratio established by the model is the 

relative cytoplasmic/nuclear decay rate. There are two results provided for each 

parameter set as a result of the differing transfection methods for the pDendra and 

BAC cells, meaning different background Nrf2 production rates in the simulation. 

Both cell types produce rates showing a higher decay in the nucleus, which is 

appropriate given the previous result regarding the influx of Nrf2.  

In summary, I have developed a novel in-silico model capable of simulating the Nrf2 

signalling pathway and producing results that provide key insights into the relative 

transport rates into and out of the nucleus, , based upon the experimental data sets 

provided . Reliability of the accuracy of the model can be improved through 

validation of the simulation output with the raw experimentally-derived data sets 

highlighting Nrf2 expression in differing cell types undergoing various treatments 

designed to perturb the system. 
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Chapter 5: Understanding Nrf2 and NF-κB 

cross-talk using in-silico modelling 
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5.1 Introduction 

5.1.1 Overview 

In this chapter, a stochastic Petri net (PN) model is developed to describe the 

dynamical cross-talk behaviour of the Nrf2 – NF-κB signalling pathways. In the 

previous chapter, an in-silico ODE model of the Nrf2 signalling pathway 

parameterised with experimentally-derived Nrf2 expression data was designed. 

Ideally, the same approach would be adopted for the creation of an extended Nrf2 

model and encompass the NF-κB pathway. However, there is a lack of experimental 

data available to parameterise this scale of ODE model for Nrf2 and NF-κB. Therefore, 

the framework of this model design is to be reduced to be less dependent on 

parameters and more reliant on the overall topology of the signalling pathways and 

their interactions. Following this approach, the key components of the pathways, as 

well as their points of interaction, can be compiled into a Petri net model. PNs have 

been extensively used for simulating the dynamics of signalling networks (such as 

MAPK and EGFR) [277-279].   

Both Nrf2 and NF-κB pathways have been previously described in depth in section 

Error! Reference source not found.. To recap, a brief description of the proteins and 

processes selected to represent the structure of this PN model from these pathways 

will be provided. For the Nrf2 pathway, the Keap1, cullin-3 and GSK-3β proteins are 

included. During steady state conditions, the Nrf2 protein is initially bound to Keap1 

in the cytoplasm before being marked for proteasomal degradation in combination 

with cullin-3 [215]. GSK-3β performs a similar process of proteasomal degradation of 

Nrf2 within the nucleus [220]. However, when the system is perturbed in the model, 
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phosphorylation events inhibit both the Keap1 and GSK-3β proteins allowing newly 

formed Nrf2 to translocate to the nucleus and transcribe cytoprotective genes (HO-

1). For the NF-κB pathway section of the PN model, the IKK and IκBα proteins are 

included. During steady state conditions, the NF-κB heterodimer is sequestered in 

the cytoplasm by association with IκBα [232,235,236]. Perturbation of the system 

results in phosphorylation of the IKKα catalytic subunit which results in further 

downstream phosphorylation of the IκBα protein, driving ubiquitination and 

proteasomal degradation, ultimately releasing NF-κB into the cytoplasm [244]. 

Subsequently, NF-κB translocates to the nucleus activating transcription of the pro-

inflammatory and anti-inflammatory genes. Within the PN model, it is assumed that 

NF-κB transcribes A20, IκBα and Nrf2. Therefore, this transcription provides several 

negative feedback loops in the NF-κB pathway branch of the PN model. It is also 

assumed that there are three points of interactions between the Nrf2 and NF-κB 

pathways within the PN. The first assumption is that the product of Nrf2 transcription 

(HO-1) modifies NF-κB, preventing it from translocating to the nucleus [224,251]. 

Secondly, it is assumed that NF-κB transcription results in increased Nrf2 production 

[224,305]. Finally, it is assumed that the IKK protein is inhibited by Keap1 [224,252].  

In the following section, simulations of the PN model are calibrated against 

experimentally-derived data of Nrf2 and NF-κB expression, again provided by the 

Sanderson lab. In these experiments, Nrf2-Venus and p65-dsRED fluorescence were 

measured in BAC cells for Nrf2 and NF-κB, respectively. Co-administration of CDDO 

and TNFα in these experiments initiate perturbations in the Nrf2 and NF-κB 

pathways, respectively. Note that CDDO is an activator of the Nrf2 pathway [224] 

whereas TNFα is a potent activator of NF-κB -mediated gene expression [240,241]. 
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Once calibrated, the model is used to determine key characteristics about the 

dynamics of the signalling pathway and their cross-talk interactions. Understanding 

of these mechanisms is important as Nrf2 and NF-κB have been shown to, for 

example, play a role in neurodegenerative disease. Nrf2 has been identified as a 

promising target in treating several neurodegenerative diseases, such as multiple 

sclerosis and Parkinson’s disease [253]. Also, a review has indicated that NF-κB plays 

a role in amyloid plaque accumulation in Alzheimer’s disease [306]. This highlights 

the importance in understanding the interaction between these pathways and 

utilising this information to develop potential therapeutic targets. 

5.1.2 Chapter aims 

1. To create a Petri net model that accurately replicates observed NF-κB 

dynamics and also includes the major Nrf2 pathway components with critical 

cross-over links. 

2. To calibrate the initial PN simulations with the experimental data. 

3. Use the PN model outputs to characterise the key mechanisms and dynamics 

of both signalling pathways and their cross-talk interactions. 
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5.2 Material & Methods 

This chapter was completed in collaboration with the University of Liverpool and all 

experiments were again performed by Dr Jo Wardyn (Sanderson lab). The raw data 

generated from these experiments were used as the basis for calibrating the PN 

model. The imaging experiments conducted in this chapter are the same as those 

conducted for the data used in the previous chapter (Appendix B). 

The Nrf2 and NF-κB pathways and their interactions are modelled using a stochastic 

PN model. PNs model signal flow as the pattern of token accumulation and 

dissipation within places (proteins) over time. Transitions in the network represent 

directed protein interactions; each transition models the effect of a source protein 

on a target protein, transfection, production and decay. Through transition firings, 

the source can influence the number of tokens assigned to the target, called the 

token-count, thereby modelling the way that signals propagate through protein 

interactions in cellular signalling networks. In order to overcome the issue of 

modelling reaction rates in the network, signalling dynamics are simulated by 

executing the signalling Petri net (SPN) for a set number of steps (called runs), each 

time beginning from some initial marking. For each step, the individual signalling 

rates are simulated via generation of random orders of transition firings (interaction 

occurrences). The results of multiple runs are then averaged together. Note that the 

tokenized activity-levels computed by the PN method should be taken as abstract 

quantities whose changes over time correlate to changes that occur in the amounts 

of active proteins present in the cell. It is worth noting that some of the most widely 

used experimental techniques for protein quantification—western blots and 
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microarrays—also yield results that are treated as indications, but not exact 

measurements, of protein activity-levels within the cell. Similarly, the PN method is 

designed to operate on tokenized models of signalling networks with the ultimate 

intent of predicting the activity-level changes of proteins in the underlying signalling 

network over time. In the next sections, the core design decisions underlying the PN 

method are discussed, such as the signalling PN, transition firing, constructing the 

initial marking for the model, and sampling signalling rates, followed by a discussion 

on how the PN approach can be used to predict the outcome of perturbation 

experiments. 

 
5.2.1 Stochastic Petri Net model 

In Figure 5-1, the PN for the Nrf2-NF-κB model (described in overview above) is 

depicted. The PN model was built using a unifying PN tool called Snoopy [307]. The 

classical PN is a directed bipartite graph [274]. The two types of nodes are called 

places and transitions. In a PN, places and transitions are connected via arcs. Places 

are graphically represented by circles, transitions by boxes or bars. Places can store 

tokens, represented by black dots or numbers. A distribution of tokens on the places 

of a net is called a marking, and corresponds to the “state” of the PN (mt is used to 

denote the marking of a PN at time t). A transition of a net is enabled at a marking if 

all its input places (the places from which some arc leads to it) contain at least one 

token. An enabled transition can fire: it then removes one token from each of the 

input places, and then adds one token to each of its output places. This is called the 

firing rule. For example, when a signalling interaction A→B (A activates B) occurs, it 

has the effect of changing the activity level of A and/or B. Thus the associated 
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transition will fire at time, t, and produce a marking mt+1 from m. When this transition 

fires, some number of tokens are moved from place A to place B via an arc. In a single 

time block every enabled transition fires once exactly. The order of the firing 

sequence is chosen randomly and changes for each time block. Therefore, within 

each time block all transitions are evaluated once, though not necessarily in the same 

order [308]. Since the rate parameters are not known, many simulation runs are 

executed to sample the space of possible outcomes and markings returned by these 

runs are averaged. The initial marking for the system is constructed on the 

assumption that the system is in an initial basal state until acted upon by an external 

stimulus. The basal initial state is a distribution of activation levels when the cell has 

no impulses propagating through it. For this reason, the model is run to a steady state 

before perturbations are executed. Assigning the correct number of tokens to each 

place as an initial condition to get to this basal state was the main challenge of 

constructing the model. Tests were performed to assess the effect of differing token 

values for each place (protein), ranging from 1-100 tokens. It was found that 10-20 

tokens, for Nrf2, Keap1, Cullin-3, GSK-3β, pFyn, IKK and IκB, were sufficient to 

replicate the results observed in-vitro. The accuracy and performance of the method 

was tested by simulating the activation of NF-κB and Nrf2 simultaneously, and 

compared the outputs to the experimentally derived data provided by the Sanderson 

lab.  
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Figure 5-1. The Petri Net model. Schematic outlay of the PN model. The model contains the Nrf2 and NF-κB pathways and the interactions 
between both indicated by red circles (nNF-κB/Nrf2, Keap1/IKK, HO-1/NF-κB). 
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5.3 Results 

To simulate the effects of TNFα and CDDO in the PN model, the firing of two time 

delayed places (both shown on the signalling network in Figure 5-1 in shaded 

squares) were used. These perturbations are set to occur 50 time units (AU) in order 

to allow the simulated system to reach a steady state before the perturbation takes 

place. The PN model has been minimised to only include functional parts, i.e. 

downstream proteins that do not provide feedback or alter the overall outcome of 

the pathway activation are omitted for clarity. The inclusion and omission of pathway 

components was decided through reading literature detailing the workings of both 

pathways. For further readability, Figure 5-2 shows the PN model as a simplified 

schematic diagram of both the Nrf2 (green) and NF-κB (red) pathways with some 

minor components removed, such as pFyn and intermediary states of 

activated/inactivated proteins. Three points were chosen to demonstrate the cross-

talk between both pathways. These three components are: 1) Nrf2 gene transcription 

modifies NF-κB preventing it from translocating into the nucleus [224,251], 2) NF-κB 

gene transcription of Nrf2 [224,305] and 3) Keap1 mediated inhibition of IKK 

[224,252]. In order to evaluate the accuracy of the stochastic model and these three 

cross points, the model simulation output was tested against the experimental data 

results (Figure 5-3).  
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Figure 5-2. Diagram showing key elements of the Petri Net model. Schematic outlay of the PN model. The minimal Nrf2 pathway is shown 
in green. Nrf2 is initially bound to Keap1 (Keap) and marked and degraded in combination with Cullin-3 (Cul 3). CDDO perturbs the system 
releasing Nrf2, where it translocates to the nucleus activating transcription. GSK-3β removes Nrf2 from the nucleus as the effects of CDDO 
decay. The NF-κB (p65/50) pathway is shown in red. NF-κB is initially inhibited by IκBα. Similarly, perturbation by TNFα releases NF-κB into 
the cytoplasm, where it translocates to the nucleus activating transcription. Phosphorylation events are indicated by P.
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5.3.1 Validation of PN model against experimental results 

CDDO activates the Nrf2 pathway and mimics the effect of the cells response to 

oxidative stress. The introduction of CDDO in-vitro results in an increased peak of 

Nrf2 activity followed by smaller damped oscillations before returning to a steady 

state level (Figure 5-3A). Mimicking this perturbation in the PN model, NF-κB activity 

increases, in response to the administration of TNFα, giving off a singular large peak 

followed by several smaller damped oscillations before returning to its original 

steady state level (Figure 5-3B). When a transition is fired in the model there is an 

increase in the activity of both NF-κB and Nrf2 levels followed by smaller peaks and 

a return to a base line level. It is known from the literature that these oscillations are 

present in the pathways, ultimately being used to control expression of the target 

genes [309]. This validation gives us confidence that the regulatory mechanisms 

encoded in the structure of the PN, informed by pathway information in the 

literature, are well suited to simulate the dynamics observed experimentally, 

consistent with expected oscillatory response of these signalling pathways. To add a 

quantitative element to the results, the time units were converted from arbitrary 

units to hours. This was achieved by matching the first peak of the NF-κB trace in 

Figure 5-3A with the subsequent peak in the simulated result (Figure 5-3B). The same 

conversion of time units in the PN is used in all subsequent simulations. The levels of 

NF-κB were altered in the PN model by changing the multiplicity on the relevant arcs 

(NF-κB → nNF-κB) to 2- and 4-fold the amount of tokens transferred. These changes 

were made to assess if the oscillatory behaviour shown by Nrf2 was driven by NF-κB. 
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All 3 Nrf2 runs were plotted on the same graph for comparison (Figure 5-4). The 

original values were plotted in blue, the 2-fold NF-κB increase was plotted in red and 

the 4-fold increase was plotted in yellow. The corresponding NF-κB traces are also 

shown in Figure 5-4B. In the original Nrf2 trace, the initial peak is approximately 9 

arbitrary units high. This initial peak then increases to approximately 16 and 25 

arbitrary units respectively when NF-κB is doubled and quadrupled, respectively. 

Increasing NF-κB results in larger and smoother oscillations in the Nrf2 trace, 

suggesting it could play a part in the overall oscillatory behaviour of the Nrf2 protein. 

It is expected that Nrf2 would increase as NF-κB increases, as NF-κB transcribes the 

Nrf2 protein.  

  



182 
 
 

 

 

 

Figure 5-3. Qualitative validation of the Petri net model through comparison of experimental vs simulated data. (A) Co-administration of 
CDDO and TNFα in BAC cells expressing p65-dsRED. Peaks in p65 (NF-κB) nuclear levels (red) induce subsequent Nrf2 (green) accumulation. 
(B) Co-stimulation of CDDO-Me and TNFα by the model produce peaks in NF-κB levels that also lead to Nrf2 accumulation. The PN qualitatively 
represents Nrf2/NF-κB dynamics. 
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Figure 5-4. High levels of NF-κB expression promote oscillatory behaviour in 
Nrf2. (A) Plot showing Nrf2 levels when NF-κB is background (blue), increased 2-
-fold (red) and increased 4-fold (yellow). (B) Plot showing NF-κB levels when NF-
κB is background (blue), increased 2-fold (red) and increased 4-fold (yellow). 
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5.3.2 Characterisation of the dynamics of the pathways 

One of the biggest limiting factors in the Nrf2 pathway is Keap1 [211]. Therefore, it 

is important to show the effect of Keap1 on the dynamics of the model. The initial 

level of Keap1 in the original simulation (Figure 5-3B) was 20 tokens. To showcase 

the effect of Keap1 on Nrf2 activity, the initial amount of Keap1 was altered across a 

3-fold range (0-3) and plotted against the resulting maximal peak of Nrf2 (Figure 5-5). 

The obvious trend shown from the results is that a decrease in Keap1 leads to an 

increase in Nrf2 and vice-versa. More specifically, a 2-fold increase in Keap1 causes 

an approximately 90% reduction in Nrf2 whereas half the initial amount of Keap1 

results in approximately 1.5 times more Nrf2 protein. 

Next, the model is modified to answer key questions about the mechanisms of the 

coupled signalling pathways. The key questions to be addressed are as follows: (1) 

what effect does an increase in Keap1 due to the CDDO have on Nrf2 and NF-κB? (2) 

What effect does an increase of Keap1 due to transcriptional activity have on Nrf2 

and NF-κB? (3) What effect does an increase in cullin-3 due to transcriptional activity 

have on Nrf2 and NF-κB? (4) What effect does decreasing A20 have on Nrf2 and NF-

κB? (5) Is there an upper threshold limit of Nrf2 concentration in the model? (6) What 

is the effect on Nrf2 if GSK-3β plays a role in nuclear decay or acts as a nuclear 

exporter? 
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Figure 5-5. Changing Keap1 levels alter network dynamics. Decrease in the 
representative peak number of Nrf2 tokens when initial Keap1 token levels are 
increased. 

 

Figure 5-6 shows the results of increasing Keap1 through varying CDDO activity. The 

goal in this simulation is to show how any dynamical changes in the system are 

affected by an external increase in Keap1. This result was achieved by adding an edge 

between Keap1 and CDDO, within the model, and increasing the multiplicity of 

tokens from one- to eight-fold. Biologically, this would represent increased 

transcription of Keap1. Figure 5-6A shows the Nrf2 trace as Keap1 is increased. As 

the amount of Keap1 increases, the overall level of Nrf2 activity decreases. At normal 

background Keap1 levels, the number of Nrf2 tokens at the maximal peak is 
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approximately 9 tokens compared with 5 tokens when Keap1 is at an eight-fold 

increase. Figure 5-6B displays the NF-κB trace for each fold increase of Keap1. There 

is very little difference in NF-κB activity as the Keap1 is increased, as expected.  

In contrast, when Keap1 is increased via transcription, rather than via CDDO, there is 

very little difference between the Nrf2 activity (Figure 5-7A) and NF-κB activity 

(Figure 5-7B) for any of the Keap1 fold increases. This result was achieved in a similar 

way to Figure 5-6, i.e. an extra arc was added from nuclear Nrf2 to Keap1 and the 

multiplicity changed from one-fold to eight-fold. Again, biologically this would 

represent increased transcription of the Keap1 protein. This corresponding Keap1 

trace is shown in Figure 5-7C. This result is again reiterated in Figure 5-8. When cullin-

3 levels are increased though the addition of an arc between nuclear Nrf2 and the 

cullin-3 place, there is very little change in the activity levels for Nrf2 (Figure 5-8A) 

and NF-κB (Figure 5-8B).  

A20 was decreased to observe the effect it has on the Nrf2 and NF-κB traces (Figure 

5-9). Again, this was achieved by altering the multiplicity on the arc (A20 → IKK) to 

50% and 25% of its initial value (Figure 5-9C). This decrease had relatively more effect 

on the Nrf2 trace (Figure 5-9A) than the NF-κB trace (Figure 5-9B). For example, when 

the amount of A20 was reduced to a quarter there was a subsequent decrease of 

~25% in the Nrf2 trace (Figure 5-9 – yellow). 
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Figure 5-6. Effect of CDDO-increased Keap1 on Nrf2 and NF-κB. (A) Simulated 
plot showing Nrf2 levels in response to the increasing fold change of CDDO on 
Keap1. (B) Simulated plot showing NF-κB levels in response to this change. (C) Plot 
showing Keap1 traces for each fold change. 
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Figure 5-7. Effect of transcribed Keap1 on Nrf2 and NF-κB. (A) Simulated plot 
showing Nrf2 levels in response to the increased fold change of transcriptionally 
produced Keap1. (B) Simulated plot showing NF-κB levels in response to this 
increase. (C) Plot showing Keap1 traces for each fold change. 
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Another key question that was proposed involves whether or not an upper limit 

exists for Nrf2 activity. As CDDO is used as an Nrf2 activator, the initial number of 

tokens in this place were increased up to 200-fold, representing an increase in the 

transcription of Nrf2 protein (Figure 5-10). The Nrf2 trace remains relatively 

unchanged when CDDO is increased up to ten-fold (Figure 5-10 – light blue, Figure 

5-10 – orange). However, for the twenty-fold trace (Figure 5-10 – yellow) the Nrf2 

token count for the maximal peak increases to 13 tokens from 9 tokens. This 

threshold is maintained for all the following fold changes in CDDO with only the time 

taken for each trace to return to steady state increasing.  

Another feature of the model is the delayed response of GSK-3β in the removal of 

Nrf2 from the nucleus. The model was designed to include the GSK-3β-mediated 

response as a nuclear exporter of Nrf2 (Figure 5-11 - blue) or as a decaying factor of 

Nrf2 (Figure 5-11 - red). The decay rate of both was plotted against the peak level of 

cytoplasmic Nrf2 (Figure 5-11). As an exporter, GSK-3β maintains an Nrf2 peak 

between 8 and 10 arbitrary units across a range of decay rates. In contrast, as an 

agent of decay, the GSK-3β maintains a lower threshold of Nrf2 activity (4 -6 AU). In 

Figure 5-11B, the corresponding nuclear Nrf2 levels were plotted. This plot shows 

that GSK-3β has a much greater effect on the nuclear Nrf2 levels than on cytoplasmic 

Nrf2. The level of Nrf2 increases in both circumstances, as the rate at which GSK-3β 

exports (Figure 5-11B –red) and decays (Figure 5-11B – blue) nuclear Nrf2 decreases. 
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At the lowest rate, the number of tokens has increased 5-fold for the export trace 

and 7-fold for the decay trace. 

 

Figure 5-8. Effect of transcribed cullin-3 on Nrf2 and NF-κB. (A) Simulated plot 
showing Nrf2 levels in response to the increase of the Nrf2-dependent 
transcription rate of cullin-3. (B) Simulated plot showing NF-κB levels in response 
to this increase. (C) Plot showing cullin-3 traces for each fold change. 
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Figure 5-9. Effect of decreased A20 on Nrf2 and NF-κB. (A) Simulated plot 
showing Nrf2 levels in response to a decrease in A20. (B) Simulated plot showing 
NF-κB levels in response to a decrease in A20. (C) Plot showing corresponding A20 
traces. 

 

  



192 
 
 

 

 

 

Figure 5-10. Upper limit of Nrf2. Plot showing Nrf2 activity against time for CDDO 
fold changes in the range x1 – x200. 
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Figure 5-11. Effect of GSK-3β-mediated nuclear export and nuclear decay. (A) 
Simulated plot showing cytoplasmic Nrf2 levels after the addition of nuclear 
export (blue) and decay (red). (B) Simulated plot showing nuclear Nrf2 levels after 
the addition of nuclear export (red) and decay (blue). 
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5.4 Discussion 

In this chapter, a Petri net-based method that qualitatively predicts the dynamics 

between the Nrf2 and NF-κB pathways is described. Once the scheduled transition 

fires in the model, representing the activation of the signalling pathway (Nrf2 and 

NF-κB), there is a rapid increase in Nrf2 before both Nrf2 and NF-κB display decayed 

oscillations that tend towards a steady state. This result mimics the outcome of the 

observed experimental behaviour (Figure 5-3). It has been noted that this oscillatory 

behaviour is a hallmark of the interaction of these pathways and it is suggested that 

this is driven by NF-κB [309]. Capturing this key known feature present in these 

pathways is important for showing the reliability of the model. However, the lack of 

replicates in the datasets provided introduces uncertainty in the results. Therefore, 

integration of the PN model with more datasets would be the next logical step in the 

progression of this work. Despite this, the PN model captures the dynamics we would 

expect to see in these pathways. Figure 5-4 shows the effect of increasing NF-κB 

levels on the system. It is clear to see that larger, smoother oscillations of Nrf2 are 

produced when NF-κB is elevated. For lower values of NF-κB, a singular peak is 

observed in the Nrf2 trace (Figure 5-4, blue). There are two and three peaks observed 

respectively when NF-κB is doubled (Figure 5-4, red) and quadrupled (Figure 5-4, 

yellow), respectively. Also, the ratio between both proteins (Nrf2: NF-κB) during 

these NF-κB changes is maintained. Therefore, the PN model adds weight to the 

hypothesis that NF-κB drives Nrf2 dynamics. The biggest limiting factor in the Nrf2 
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pathway is the presence of Keap1 [211]. Therefore, Keap1 levels were varied in the 

in-silico model to observe the effect on the Nrf2 levels (Figure 5-5). The simulations 

conclude that increasing Keap1 levels leads to a decrease in Nrf2 activity and, 

conversely, a decrease in Keap1 levels give rise to higher amounts of Nrf2. Thus, 

Keap1 is indeed crucial in the maintenance of Nrf2 levels and acts as the dominant 

mechanism of decay in this model. Additionally, Keap1 has a basal production and 

decay rate which maintains it at a constant level. It quickly reaches a steady state and 

only subsequently changes when CDDO perturbs the system and it becomes 

sequestered in an Nrf2 complex. In Figure 5-6 and 5-7, the model explores what 

would happen when there is an addition of an extra source of Keap1. In Figure 5-6, 

Keap1 levels are altered by varying the amount of CDDO added. This leads to modest 

decreases in cytoplasmic Nrf2 levels as Keap1 is more readily available, as shown in 

Figure 5-6C. However, in Figure 5-7, when instead Keap1 has an additional source via 

transcription, the overall levels of Nrf2 and Keap1 remain relatively unchanged. A 

possible explanation for this difference may be that, once CDDO perturbs the system, 

it becomes the dominant mechanism and overpowers any response from the 

transcription of Keap1, which is a much slower process. Similar conclusions can be 

drawn from the cullin-3 results (Figure 5-8), and again, a comparable trend can be 

observed in the traces of Nrf2 and NF-κB when changing A20 levels (Figure 5-9). This 

can be partially explained by the time delay of sending tokens through the 

transcription pathways. This time delay represents the period between gene 

activation and protein formation within the cell. As the rate of A20 is decreased, in 
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the PN model, the level of Nrf2 also slightly decreases. This change is not large 

enough to draw any conclusions from and is most likely due to noise of the system.  

The next question proposed to the model was whether or not it can replicate an 

upper limit of Nrf2. In Figure 5-10, it can be clearly seen that from a 20-fold to 200-

fold increase of CDDO activity the level of Nrf2 reaches an upper limit. It would 

therefore seem that the dynamical behaviour of the model does not allow for an 

unchecked increase of Nrf2 and that Nrf2 does indeed have an upper limit. Another 

consideration in the design of the PN model was whether to include a nuclear 

exporter or nuclear decay via the GSK-3β pathway. It has been shown in the literature 

that GSK-3β degrades the Nrf2 protein in the nucleus [310]. Therefore, this GSK-3β 

mediated decay (Figure 5-11A) results in the decrease of cytoplasmic Nrf2 levels. 

However, the level of Nrf2 remains constant as the amount of decay changes. This 

suggests that there is an upper limit on the amount of cytoplasmic Nrf2 that is 

susceptible to a decay pathway in the nucleus. The decay transition was then 

removed and GSK-3β-mediated nuclear export was introduced to the model. In 

Figure 5-11B, the same conditions were applied and the nuclear Nrf2 traces were 

plotted. These results showed that there is an increase in Nrf2 levels within the 

nucleus when the rate of GSK-3β activity is decreased. As with the cytoplasmic values, 

the export trace has a higher value than the decay trace. We observe that there is 

very little variability in Nrf2 activity upon the addition of an export transition. This 

suggests that the inclusion of the nuclear export is more appropriate as it upholds 

the network dynamics as observed experimentally (Figure 5-3).  
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Despite the complexity of the network dynamics, it was straightforward to find and 

integrate the connectivity information to build the model. However, although the 

information sources [210,224,232,236] provided information on existing pathways, 

little was offered in the way of biochemical or kinetic detail. Thus, it is difficult to use 

the evidence in the literature to assemble a parameterised ODE model. This further 

underlies the advantage of using the PN model as a way of quickly characterising the 

network dynamics of the pathways without the need for extensive model 

parameterisation.  

Although the predictions derived from the PN model may not be as quantitative as 

results returned from a parameterized ODE system, biologists using the PN method 

can derive information about a network’s qualitative dynamical behaviour without 

having to conduct extensive experimentation and computationally expensive 

parameter estimation. This novel capability offers scientists the exciting prospect of 

being able to test hypotheses regarding signal propagation in-silico. Furthermore, by 

using the PN method, researchers can evaluate a wide array of network responses in 

order to determine the most promising experiments before even entering the 

laboratory. 

 

  



198 
 
 

 

 

Chapter 6: Discussion  
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Systems Biology aims to provide a simpler and more tractable framework to explain 

complex biological phenomena. Most research labs focus on specific proteins and 

genes of interest or particular sections of a cell signalling pathway, with the goal of 

deriving as much information as possible about the structure, function, etc. of that 

particular protein. This has led to the availability of a wealth of experimentally 

derived data sets that can be integrated into in-silico models to generate testable 

hypotheses or allow the dynamical properties of the system to be deduced providing 

potential novel insights into the role and function of the system components [5]. 

Other potential benefits from designing robust predictive models include the 

identification of new biomarkers of disease, stratification of medicine, based on 

unique genetic patient profiles, and the targeting of drugs and other treatments, etc. 

Within this thesis, several models are presented across three individual biological 

scales (macroscopic, mesoscopic and microscopic). These include the description of 

cancer and immune cells interactions (multicellular), the movement of fibroblast cells 

on varying surface structures (cellular) and cell signalling models within the 

cytoplasm and nucleus (subcellular). One of the key strengths of these models is the 

integration with experimentally derived results. This corroboration is important as it 

provides confidence in the results produced, such as dynamical properties and 

parameter estimates. Further benefits of such systems biology approaches include 

the reusability of the algorithms and their versatility in terms of being adapted and 

extended to fit similar biological systems and cell signalling pathways. 
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Chapter 2 describes a continuous macroscopic in-silico model of a highly simplified 

version of the tumour microenvironment of the gut. Specifically, this model was 

developed to characterise the underlying mechanism of reaction between epithelial 

cancer cells and cancer associated stromal immune cells, namely myofibroblasts. Due 

to problems with technical equipment and relocation to a new university, the data 

collection was insufficient for a more complex model of the tumour 

microenvironment. Therefore, this model was purely explorative and was tasked 

with qualitatively identifying the mechanism of interaction. Migration assays 

between these cell types produced data on the diffusion rates of the cells when co-

cultured. Initially, the observed interaction was described through the design of a 

simple diffusion model. This description was found to be inadequate for defining the 

mechanism of interaction observed in the migration experiments. Therefore, the 

model was adapted to simulate density-dependent diffusion. This method produced 

a much more appropriate portrayal of the qualitative dynamics observed on the 

distal side of the epithelial cancer cells. However, this model only provided an 

adequate description of one side of the experiment. This promoted the incorporation 

of a chemotaxis type term into the model, as it has been well documented that 

myofibroblasts release a plethora of chemicals [37,73,311]. Thus, an inhibitory 

chemical was incorporated into the model framework. One such extended model 

depicted the inhibitory profile of the chemotaxis on the proximal side of the epithelial 

cells whereas a second model portrayed the distal side. Each side of the AGS cell 

monolayer (proximal and distal) needed an individual inhibitory profile term due to 
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differences in the distance from the source and direction of migration.  This 

additional refinement of the model provided a better comparison of the 

experimental data than the previous model iterations, suggesting a possible 

chemical/signalling interaction between the two cell types. However, this 

comparison remained insufficient in characterising the exact mechanism of 

interaction present between the cell types. Further experimentation and 

incorporation of controls into this study is clearly needed in order to select 

appropriate model design progression and theories of interaction. Therefore, this 

simplified model of interaction highlights which mechanisms do not describe the 

underlying mechanism which is novel as it rejects previous theories and can inform 

new hypotheses. 

This was the first model investigating the mechanisms of interaction between these 

two cell types in the GI tract. Although the model wasn’t able to provide any 

definitive/quantitative answers on the underlying mechanism driving the interplay 

between the cells, it was clearly able to show which mechanisms were insufficient in 

describing the cellular phenomenon observed in the time-lapse experiments. The 

data derived from these experiments was instrumental in terms of motivating the 

evolution and subsequent iterations of the model. Cumulatively, these iterations 

produced a model capable of replicating several features of the underlying cell 

movements. This is encouraging as there is now potential for further modification 

that can potentially highlight the missing component that would allow for accurate 



202 
 
 

 

 

representation of this multicellular interaction. As mentioned above, with more 

substantial data to work with, a more detailed and complex model of these cellular 

interactions can be developed. This more complex model can feature elements 

present in current wound healing models, as the experiment design is similar to a 

scratch wound assay. For example, Dallon et al. [312,313] use force balance 

equations in mechanical models to define the interaction between fibroblast cells 

and newly reforming ECM. This specific feature would be of interest as a possible 

theory in describing the AGS cell migration was whether or not it remodelled ECM 

formed by the 308/1 cells [80]. It would provide insight into the role tissue tension 

plays in the cells migratory behaviour. Another potential theory to investigate was 

the effect of contact inhibition on these cells [314]. This would require switching the 

continuous model to an agent-based model, in which the biological cells are 

represented as individual entities governed by a set of rules. Walker et al. [315] were 

able to successfully show how this method can accurately model wound healing in 

epithelial scratch wound assays. 

Chapter 3 described a discrete cell based in-silico model of fibroblast migration, in 

the mesoscopic scale, utilising cell movement data derived from cell migration 

assays. A novel component of these cell migration assays was the use of engineered 

polyurethane surfaces containing different surface topologies, which have been 

‘nano-scratched’ through abrasive polishing [180]. Initially, the cell motility was 

modelled in terms of a stochastic Ornstein-Uhlenbeck process [291]. Cell velocity, 
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position and random fluctuations were all incorporated into the stochastic model 

through a series of differential equations, resulting in a model producing random cell 

walk migratory paths. Parameterisation of the model with the experimental data 

resulted in the optimisation of the model parameters, yielding an in-silico model 

depicting the cell’s intrinsic motility properties on ‘flat’ surfaces. This approach was 

extended to the ‘linear’ and ‘random’ surfaces, were optimisation of the parameters 

with the experimental metrics resulted in the production of values for the haptotactic 

parameter for each surface. The model was able to replicate the in-vitro experiments 

accurately, while also providing values for the parameters of random motility and 

haptotaxis. 

To the best of my knowledge, there are no other mathematical models of fibroblast 

migration on polyurethane surfaces. However, the model depicts the evolution of 

random walk models that are present in the literature [199]. To begin, the model is 

simply a basic random walk model with no topographical features present to affect 

the migratory behaviour of the cells.  By defining mechanical cues in the design of 

the topographical features of the polyurethane surfaces, it allowed in-vitro 

quantification and real time visualisation of the cell migration paths and upgraded 

the model to a biased random walk. This model confirms the findings by Irving et al. 

[180] that these machine ground polyurethane surfaces enhance cell migration. It 

also reaffirms that grinding technology can be used as an alternative, cost effective 

method to generate functional surfaces that can be used to control fibroblast 
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behaviour.  One improvement that could be made to this model is the inclusion of a 

barrier to confine cell movement to the polyurethane domain i.e., migrating 

fibroblast cells will automatically turn and move away in the opposite direction upon 

reaching the barrier. Although, this isn’t necessary as the model produced 

satisfactory results without this feature. However, it would be beneficial in future 

iterations if longer migration times are needed, particularly on the linear surface as 

cell migration is less tortuous and therefore spreads into space quickly. Mechanistic 

insights derived from this model could now be applied to investigate the possibility 

of controlling cell behaviour on other surfaces i.e., implants, thereby improving 

clinical outcomes [178,290]. 

Chapter 4 describes the development of an in-silico model of Nrf2-Keap1 interaction 

in the subcellular cytoplasmic and nuclear compartments. Key components of the 

pathway incorporating this protein interaction were consolidated into a 

mathematical framework to create an ODE minimal model. This ODE model was 

validated against several experimental data sets. Seven parameters were identified 

to describe all the interactions within the ODE model. Parameter estimates were 

optimised through parameterisation with experimental data. Simulation of the 

model resulted in three optimal parameter sets to describe the Nrf2-Keap1 network. 

This was further reduced to two parameter sets using experimental data to compare 

Nrf2 production rates. Sensitivity analysis revealed that the parameters for nuclear 

influx, efflux and decay were the most sensitive to the model output. The model was 
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able to estimate the relative nuclear influx/efflux rate of Nrf2 and the relative 

cytoplasmic vs nuclear decay of Nrf2 (Table 4-4). Nuclear influx was shown to be 

more than two times greater than nuclear efflux and decay of the Nrf2 protein was 

also greater in the nucleus. 

Although the Nrf2 pathway is widely recognised as an important stress pathway, few 

dynamical models have been developed for it [268,269]. This outcome is a 

consequence of the lack of quantitative data available. Using the Khalil et al. [269] 

model as a starting point for parameterising the minimalist model developed in 

Chapter 4, the model was able to answer key questions proposed by the 

collaborators of this project i.e. relative nuclear influx/efflux rate of Nrf2 and the 

relative cytoplasmic vs nuclear decay of Nrf2. This model was essential to obtaining 

these results, as these rates are experimentally challenging to quantitate due, in part, 

to the short half-life of the Nrf2 protein. The reliability of the model is justified 

through its ability to fit multiple experimental data sets of differing drug incubations. 

However, only normalised datasets were provided for the integration with this 

model. Therefore, the integration with raw datasets would further increase the 

reliability of the model. This integrated in-vitro – in-silico framework offers a novel 

approach for the investigation of the Nrf2 pathway.  

Chapter 5 describes a stochastic Petri net model describing dynamical cross-talk 

between the Nrf2 and NF-κB pathways. A reductionist approach was considered to 

remove dependence on parameterisation as sufficient data was unavailable to 
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parameterise a model of this scale. Nrf2 and NF-κB expression data combined with 

initial in-silico results allowed confirmation that the underlying dynamics in the 

model reflected those in-vitro. This step provided assurance that the model was 

capable of replicating typical dynamical behaviour associated with both pathways, 

namely the oscillations of the Nrf2 and NF-κB proteins [270,309]. Subsequently, the 

model was utilised in a predictive capacity to answer questions about the Nrf2-NF-

κB network. Firstly, the model was tasked with determining the effect of increasing 

Keap1 levels on the network. As expected, the results concluded that there would be 

a marked decrease in Nrf2 protein, as the Nrf2 protein decreased approximately 90% 

for a 2-fold increase in Keap1. Further model predictions were used to explore other 

scenarios, such as increased production of interacting proteins, removal of key 

components and how particular proteins behave when assigned specific roles (i.e. as 

a transporter of decay or exportation). The advantages of the stochastic PN model 

are underlined by its ability to quickly characterise the network dynamics of these 

pathways, without parameterisation, and provide a means for testing hypotheses 

regarding the propagation of signals throughout the network. 

Nrf2 and NF-κB pathways are key for regulating the fine balance of cellular redox 

status in response to stress and inflammation, respectively [217]. Extensive research 

has provided convincing evidence that functional cross-talk exists between these two 

networks [224,227,249,316-318]. However, many aspects of the conditional and 

dynamic nature of this interplay remain unknown. Although, there are many models 
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dedicated to investigating the NF-κB pathway, the limited amount of computational 

Nrf2 models means there are very few models depicting functional cross-talk 

between the two. In particular, there are no PN models describing these pathways. 

This stochastic PN model highlights several points of interaction, providing insight 

into many undefined features of co-regulation, negative feedback loops and post 

transcriptional mechanisms through validation with experimental data. Therefore, 

this novel systematic model provides the capacity to define many important aspects 

of these regulatory pathways as well as driving the development of improved 

strategies to manipulate the balance between the pathway responses, under both 

physiological and disease conditions. 

The results presented in this thesis provide motivation for utilising experimental data 

in the development and validation of mathematical models. In order to obtain 

complex robust models, researchers should seek to obtain high quality quantitative 

data of the system of interest. However, the results of this thesis also demonstrate 

how dynamic qualitative behaviour can be obtained from in-silico models using 

simplistic inputs such as pathway design. There are numerous and variable 

approaches to addressing researchers questions, via in-silico modelling, dependent 

upon on the level of information known about the system of interest and quality of 

data available.  Overall, combination of the experimental and modelling worlds 

allows for key biological questions to be addressed and new hypotheses to be 

theorised. Ideally, a model built with experimental input would yield results that 



208 
 
 

 

 

would promote the development of new hypotheses and experimentation which 

would then, in turn, feed back into the model building up multiple iterations and 

increasing the robustness and reliability of its output. A future challenge in the field 

of systems biology is the generation of such large-scale robust models, containing 

the data of multiple signalling networks and protein pathways. The availability of 

data on particular systems can present its own challenge, resulting in models that are 

built upon assumptions. These challenges can be addressed through continued 

collaboration of biologists and mathematicians, as well as improvements in model 

design and computational power. 
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Chapter 7: Appendix 
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7.1 Appendix A – Mark Murphy lab methods 

7.1.1 Preparation of stainless steel moulds 

All patterned surfaces were generated upon a biocompatible polyurethane polymer. 

Patterns were developed on the polymer indirectly, by casting the flat end surface of 

a cylindrical stainless steel mould that had been cut from stainless steel rods (grade 

316, cylinder height 13 mm, diameter 18 mm). To prepare the stainless steel moulds 

for patterning, their flat surfaces were first polished to remove all marks caused by 

the cutting process. This was achieved using a METASERV universal polisher and 

silicon carbide sheets of decreasing grit size (60 to 1200 B) followed by a polishing 

cloth. This resulted in the stainless steel cylinder having a mirrored surface finish 

(mean Ra value of approximately 0.02 μm) which could then be used for processing. 

7.1.2 Abrasive patterned surface development 

Machine grinding was used for this purpose to generate the topographical patterns 

on the polyurethane surfaces. This method involves the micro-patterning of stainless 

steel, which can then be used to cast polymer substrates for observing the migration 

of fibroblasts [180]. An unprocessed plain polymer surface was used as a control and 

was labelled as ‘Flat’. Next, a pattern of parallel lines was cast on the polymer surface 

and was labelled as ‘Linear’. Finally, a pattern of random lines varying in direction 

was etched into the polymer surface and labelled appropriately as ‘Random’. 

Subsequently, a previous study has shown that these machine ground surfaces 



211 
 
 

 

 

promote adhesion and migration in fibroblast cells compared to unprocessed, flat 

surfaces [180].  

Once polished to achieve an initial mirrored finish (as described above in Section 

1.2.1) the stainless steel cylinder was then polished to achieve a topographical 

surface patternation through the use of abrasive paper (1200 B). By controlling the 

motion of the stainless steel cylinders relative to the silicon carbide abrasive paper, 

surfaces having either directional, or random, sub-micron abrasive marks could be 

produced, termed here as ‘nano-scratches’. The directional (linear) features are a 

result of the METASEV universal polisher's spinning motion, while the more random 

features are the result of manually rubbing the steel mould across the surface in 

different directions. The surface topography was subsequently characterised by 

white light interferometry and scanning electron microscopy. These stainless steel 

cylinders could then be used as master moulds to cast polymer substrates. In total 

two different patterns were produced; having linear and randomly organised 

features. 

7.1.3 Casting polymer substrates 

Casting the polymer over the stainless steel moulds produces an inverted pattern on 

the polymer surface. Employing this indirect processing method ensures that only 

the surface topography/roughness of the material is altered and not the material 

chemistry. The polymer used here was polyurethane and was provided by Biomer 

Technology Ltd. The polymer substrates were produced using 8% polyurethane in 2:1 
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Dimethylformamide (DMF) and Tetrehydrofuran (THF). This was poured onto the 

stainless steel moulds and cured at 60°C for 2 h. Following this the mould/cast was 

allowed to cool before peeling off the polymer from the mould following the grain of 

the pattern. Prior to cell culture all polymer surfaces were sterilised by washing with 

70% ethanol then exposed to UV light for 30 min. Finally, the polymers were washed 

with sterilised distilled H2O. 

7.1.4 White light interferometry for surface characterisation 

A Bruker Contour GT-K 3D optical microscope equipped with Vision 64 software 

was used to image the surfaces of the patterned polymers. This enabled feature 

heights/widths and roughness to be determined.  
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7.2 Appendix B – Chris Sanderson lab methods 

7.2.1 Live Cell Imaging 

BACNrf2-Venus
 were generated by stable integration of bacterial artificial chromosome 

(BAC) encoding Nrf2-Venus fluorescent protein fusion into neuroblastoma SK-N-AS 

cells. The pDendra2-Nrf2 fusion was transiently expressed in SK-N-AS cells. BACNrf2-

Venus were treated with 10μM MG132 and 10μg/ml in separate experiments. To 

silence the expression of the Keap1 protein in the pDendra2-Nrf2 experiments, short 

interfering RNA (siRNA) duplexes targeting human Keap1 (siKeap) (SMART pool ON-

TARGET plus Keap2 siRNA, Darmacon, L-012453-00-000) were transfected at 10nM 

final concentration alongside a scrambled control (siCTR) siGENOME Non-Targeting 

siRNA Pool no 1 (Dharmacon, D-001206-13-05). For real-time imaging of live cells, 

cells were seeded onto the 1 or 4 compartment 35mm glass bottom dishes (Greiner 

Bio-One). The 4 compartments allowed imaging of 4 different experimental 

conditions in parallel. The imaging experiments were performed under humidified 

atmosphere, at 5% CO2 and 37°C on two imaging systems. The primary cells 

expressing plasmid encoded fluorescent protein fusions were imaged on the Zeiss 

Axiovert 5.10 (Zeiss Germany) confocal microscope using 40x oil immersion objective 

with numerical aperture (NA) of 1.4. The image acquisition on this system was 

coupled with autofocus Marco (Ellenberg lab, EMBL), which enabled maintenance of 

stable Z-plane position of the imaged cells, avoiding the problems of focal drifts that 

can occur during the long acquisition times. The LSM 7.80 (Zeiss, Germany) system 
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was used for monitoring low expression of fluorescent proteins, as it has superior 

resolution and sensitivity of detection, using 40xoil immersion objective (1.4 NA) and 

LSM ZEN 2010 image acquisition software (Zeiss). In both systems the image 

acquisition was performed, using 512x512 pixel resolution, 7 scanning speed with the 

pinhole diameter adjusted to the fluorescence intensity of imaged samples. The 

image acquisition of single fluorophore was performed by taking one acquisition 

frame at 8min interval in 1-20 imaging locations, and the time taken to acquire image 

at all selected positions did not exceed the 8min interval. When imaging two separate 

channels (or fluorescent probes) the image acquisition was performed every 7min at 

up to 16 locations. The drug treatment was usually performed following initial three 

frames were acquired, which served as a baseline fluorescence measurement. Both 

imaging protocols were carried out at various lengths of time between 2-14h, and 

the drug of interest was added following 3 initial frames, which were taken to 

establish a signal baseline. 

7.2.2 Lambda Scan 

Lambda Scan imaging mode was used for spectral unmixing of fluorophores with 

overlapping fluorescence emission peaks. This mode was predominantly used to 

image cells exhibiting very low expression of fluorescent protein fusions such as 

BACNrf2-Venus
 or primary astrocytes transduced with 2kb-Venus-msNrf2. The levels of 

Venus fluorescence in those models was close to autoflourescent signal and 

therefore there was a considerable autofluorescent noise being detected. The 

spectral images were then combined using LSM ZEN 2010 software (Zeiss). 
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7.2.3 pDendra2 Imaging 

The photoswitchable fluorescent protein pDendra2 was isolated from Octocoral 

Dendronephthya. It matures completely at 37°C, its pH stable and monomeric. The 

pDendra2 emits naturally in a green light spectrum, however UV irradiation results 

in irreversible transition in emission to bright and photostable red fluorescent 

protein (RFP) spectrum. The pDendra2-Nrf2 fusion was transiently expressed in SK-

N-AS cells (3μg of plasmid p/35mm dish) 24h before the experiment. To image the 

turnover of Nrf2, four locations were selected with each localization treated with a 

different compound (4 compartment dishes) and the 2 regions of interest (ROIs) were 

selected, each of 13x13 pixel size. The fluorescent signal was collected for the Green 

and the Red channels and following acquisition of three imaging frames, the drug 

was added and one more frame was collected (3min interval between acquisitions). 

Then the photoconversion of pDendra2 was performed by a UV lamp at 75% power 

for 45s. Local pDendra photoconversion was used to monitor nuclear import and 

export rates of pDendra2-Nrf2. The data measurements were performed using ZEN 

2010 and exported and averaged using Microsoft Excel, the averaged data was 

exported to GraphPad Prism 5.  

7.2.4 Image Analysis 

Image analysis post-acquisition was performed using Cell Tracker software Version 

6.0 (www.dbbkgroup.org/celltracker/). The nucleus was drawn manually and 

adjusted on every acquisition image, either manually or automatically by cell tracker 

software. The data was averaged and exported to Excel file format. It was normalized 
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to the initial fluorescence levels and the noise was reduced by averaging the values 

using third order moving average (three frame smoothing).  

7.2.5 Fluorescence Cross Correlation Spectroscopy (FCCS) 

The data collection was performed using LSM 780 with confocor 3 mounted on Axio 

observer Z1 microscope using oil immersion 100x lens (N.A. 1.46) and using ZEN2010 

software (Zeiss). The pinhole was set to 1 airy unit and the laser power was typically 

set to 1% laser power, adjusted to avoid photobleaching and to maximize the count 

per minute (cpm) fluorescent signal to minimum 0.5 kHz value. The data collection 

protocols were carried out 10x for 10s each and the fluorescence signal of channels 

was then compared using first correlation and then cross-correlation logarithms 

using LSM ZEN 2010B FCS function.  
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