Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE

Thob, ACR, Crain, RA, McCarthy, IG, Schaller, M, Lagos, CDP, Schaye, J, Talens, GJJ, James, PA, Theuns, T and Bower, RG (2019) The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE. Monthly Notices of the Royal Astronomical Society, 458 (1). pp. 972-987. ISSN 0035-8711

stz448.pdf - Published Version

Download (6MB) | Preview


We investigate the connection between the morphology and internal kinematics of the stellar component of central galaxies with mass $M_\star > {10}^{9.5} {\rm M}_\odot$ in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. We model the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes, finding that kinematic diagnostics enable a superior differentiation of blue star-forming and red quiescent galaxies than morphological definitions. Flattened oblate galaxies exhibit greater rotational support than their spheroidal counterparts, but there is significant scatter in the relationship between morphological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dispersion velocities ($v/\sigma$) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed $v/\sigma$, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic morphology of the galaxy's inner dark matter halo, i.e. the halo's morphology that emerges in the absence of dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of galaxies and that of their host dark matter haloes.

Item Type: Article
Additional Information: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 20 Feb 2019 10:44
Last Modified: 04 Sep 2021 09:43
URI: https://researchonline.ljmu.ac.uk/id/eprint/10188
View Item View Item