
Investigating the effectiveness of New Zealand Blackcurrant 

extract to modulate postprandial glycaemia in 

overweight/obese individuals 

 

 

 

 

 

 

Andrew Harry Nolan 

 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements of 

Liverpool John Moores university  

for the degree of 

MASTER OF PHILOSOPHY  

 

December 2018 

 



Abstract 

Obesity and type 2 diabetes mellitus (T2DM) has now reached epidemic proportions, 

and therefore strategies to prevent and treat these conditions are required. Long-

term adherence to current strategies that primarily revolve around increasing energy 

expenditure or reducing caloric intake is poor, and therefore alternative therapies 

need to be investigated. A major component surrounding the progression of obesity 

to diabetes and further co-morbidities is sustained periods of postprandial 

hyperglycaemia. Current epidemiological evidence has suggested that habitual 

anthocyanin intake is linked to lower T2DM risk. The aim of this thesis was to 

investigate whether anthocyanin-rich New Zealand blackcurrant (NZBC) extract could 

be an effective nutritional strategy to reduce postprandial glycaemia in overweight 

and obese individuals. Chapter 2 provides evidence that an acute bolus of NZBC 

extract is unable to mediate postprandial glucose or triglyceride responses to a 

carbohydrate-fat test meal, irrespective of the dose used. Therefore, Chapter 3 

investigated whether 8 days NZBC extract supplementation is effective at reducing 

postprandial glucose responses under free-living conditions using continuous glucose 

monitoring. Chapter 3 showed that NZBC extract supplementation reduced 

postprandial glucose responses to breakfast and dinner (-9% and -8%, respectively), 

as well as improving insulin sensitivity (+22%) in overweight/obese individuals. In 

conclusion, this thesis provides evidence that short-term supplementation with an 

anthocyanin-rich blackcurrant extract is effective in reducing postprandial glucose 

responses under free-living conditions, thereby highlighting the potential for 

anthocyanins to be an effective strategy in mediating postprandial glycaemia and 

improving insulin sensitivity in individuals at risk of developing type 2 diabetes. 
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1.1 Obesity and type 2 diabetes 

The most recent estimates from Public Health England suggest that nearly two thirds 

of adults (63%) are now classified as being overweight or obese and this is expected 

to continue to rise (Public Health England 2017). This can be primarily attributed to 

the evolution of an environment in which sedentary working time has increased, 

leaving less opportunities and desire to undertake physical activity. Combined with 

an environment saturated with readily available high energy-low effort foods, this 

has resulted in an epidemic of obesity and related pathologies, such as type 2 

diabetes mellitus (T2DM). Inevitably, this has created a burden on the health care 

system, with recent estimates suggesting that current costs to the NHS are set to be 

around £6 billion per year (Public Health England 2017).  

Obesity is the result of an imbalance between energy intake and expenditure and is 

therefore considered a consequence of physical inactivity coupled with the 

consumption of an energy dense diet.  Physical inactivity and obesity is also associated 

with insulin resistance, which is characterised by an inability of insulin to effectively 

mediate glucose transport into peripheral tissues.  In healthy individuals, insulin is 

secreted from the pancreas in response to carbohydrate ingestion, and is responsible 

for the clearance of glucose from the plasma into peripheral tissues, such as skeletal 

muscle. Importantly, glucose uptake into peripheral tissue is precisely matched by the 

rate of endogenous glucose production to tightly maintain plasma glucose 

concentration between 3.9-5.5 mmol.L-1 (Abdul-Ghani, Lyssenko et al. 2009). 

However, in the insulin resistant state physiological insulin secretion becomes 

insufficient to stimulate glucose uptake into skeletal muscle, resulting in greater 
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insulin secretion in order to return to a state of euglycemia.  Further progression of 

insulin resistance to T2DM is characterised by prolonged periods of postprandial 

hyperglycaemia and hyperinsulinaemia, where high levels of insulin are inadequate to 

reduce plasma glucose concentrations following a meal.  Ultimately, this leads to 

tissue damage and a myriad of secondary complications including cardiovascular 

disease, nephropathy, microvascular damage and retinopathy (Nathan, Genuth et al. 

1993).  Notably, the progression to T2DM correlates strongly with BMI (Edelstein, 

Knowler et al. 1997), indicating that obesity (and physical inactivity) is a primary risk 

factor for the development of T2DM. 

 

1.2 Glucose homeostasis 

1.2.1 Carbohydrate digestion and absorption 

 

Carbohydrate metabolism and storage is tightly regulated through the actions of 

hormones and digestive enzymes. Carbohydrate digestion begins in the mouth, where 

α-amylase is released and hydrolyses the α (1,4)-glycosidic bonds of polysaccharides. 

These are then broken down into the peptides; amylose and amylopectin. Once the 

carbohydrate reaches the small intestine, additional pancreatic α-amylase is secreted 

alongside α-glucosidase which acts on sucrose and maltose, breaking them down into 

glucose and fructose ready for absorption and transportation into the circulation. The 

surface of the small intestine consists of microvilli which extend into the unstirred 

water-layer phase of the intestinal lumen. This microvillus membrane is known as the 

brush border and contains transporters that take up these monosaccharides into the 
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circulation. Glucose enters the blood through the actions of sodium-dependant 

glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), the latter of which 

is predominantly active during periods in which luminal glucose concentrations are 

high. Sodium-dependant glucose transport is initiated when sodium is pumped from 

the cell to create a sodium gradient between the intestinal lumen and the interior of 

the cell. The resultant sodium gradient drives the co-transporter (SGLT1) so that one 

molecule of sodium and one molecule glucose or galactose are transported into the 

cytoplasm of the enterocyte. Sodium-independent transport works through the action 

of glucose transporters in which glucose is pumped out of the enterocyte and into the 

intracellular space through the actions of GLUT2.  

A rise in plasma glucose levels (due to feeding) causes a compensatory increase in 

insulin secretion from the pancreas. Insulin is secreted by the β-cells of the islets of 

Langerhans in the pancreas and binds to the plasma membrane of skeletal muscle, 

liver and adipose tissue by facilitating the removal of glucose out of the circulation 

through enhancing the activity of tissue-specific glucose transporters. This process 

allows plasma glucose levels to remain at around 5-6 mmol.L-1 60-90 mins post-

absorption, and these levels are tightly maintained with slight reductions only being 

observed during long-term starvation (Owen, Reichard et al. 1974). Upon entry into 

tissue, glucose can then be stored as glycogen or used to provide energy via glycolytic 

processes (or in adipose tissue converted to triacylglycerol via de novo lipogenesis). 

Importantly, skeletal muscle is the primary site of glucose uptake, with skeletal muscle 

being responsible for ~80% of glucose removal from the circulation in healthy, lean 

insulin sensitive individuals during a hyperinsulinaemic euglycaemic clamp (DeFronzo, 

Jacot et al. 1981, Baron, Brechtel et al. 1988).  
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1.2.2 Insulin-mediated vasodilation 

Despite being a key signalling hormone in the uptake of glucose into the peripheral 

tissue via glucose transporters, the pleiotropic properties of insulin involve other 

important homeostatic processes including vascular control. The vasodilatory 

properties of insulin are primarily categorised by its ability to upregulate the 

production of nitric oxide (NO) from the vascular endothelium, independent of other 

classical calcium-dependant mechanisms used by vasodilators such as acetylcholine. 

NO is a vasodilator which acts on the smooth muscle layer of terminal arterioles 

leading to a decrease in vascular resistance and a subsequent increase in 

microvascular perfusion. The process in which insulin stimulates NO production 

involves the phosphatidylinositol-3-kinase (PI3-K) signalling pathway in which 

activation of the insulin receptor tyrosine kinase leads to a phosphorylation of insulin 

receptor substrate 1 (IRS-1) leading to a subsequent binding and activation of PI3-K. 

This then causes a further activation of Akt which directly phosphorylates and 

activates endothelial nitric oxide synthase (eNOS), leading to an increased production 

of NO within minutes (Fleming and Busse 2003). Insulin is also capable of promoting 

vasoconstriction through the synthesis of endothelin-1 (ET-1) using the mitogen-

activated protein kinase (MAPK)-dependant signalling pathway. 

This increase in insulin-mediated vasodilation can lead to a subsequent increase in 

peripheral blood flow, with studies demonstrating leg blood flow is increased 

following consumption of an oral glucose load (Baron, Laakso et al. 1990). 

Furthermore, microvascular blood volume has been shown to increase 15-30 min after 
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the start of a hyperinsulinemic euglycemic clamp and is related to increases in glucose 

uptake (Vincent, Clerk et al. 2004). Conversely, individuals with insulin resistance (such 

as obese and diabetic populations), have a simultaneous impairment in insulin-

induced vasodilation (Baron, Laakso et al. 1991, Baron, Laakso et al. 1991, Clerk, 

Vincent et al. 2006). Ultimately, the role of insulin-mediated vasodilation is to allow 

an increase in microvascular perfusion which subsequently leads to a greater delivery 

of insulin and glucose to the myocyte, allowing for efficient glucose storage. 

 

1.2.3 Insulin-mediated glucose uptake into skeletal muscle 

The process in which glucose enters skeletal muscle is initiated by insulin binding to 

the extracellular α-subunit of the insulin receptor (IR) on the plasma membrane, 

thereby stimulating tyrosine autophosphorylation of the transmembrane β-subunit. 

This leads to activation of the intrinsic tyrosine kinase causing a downstream tyrosine 

phosphorylation of insulin receptor substrate proteins (IRS), leading to two signalling 

cascades; the MAPK and PI3-K pathways. The PI3-K pathway involves first the 

conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol 

(3,4,5)-triphosphate (PIP3). PIP3 then triggers the activation of Akt (specifically Akt2) 

through the actions of intermediate protein kinases, PDK1 and mTOR. 

Phosphorylation of Akt on threonine308 and ser473 residues results in its activation and 

activated Akt downstream targets include glycogen synthase kinase-3 (leading to 

glycogen synthesis) and TBC 1 domain family member 4 (TBC1D4, also known as 

AS160).  Under basal conditions, the GTPase-activating protein domain of TBC1D4 

retains RAB proteins in an inactive (GDP-bound) state.  Insulin stimulation leads to 
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activated Akt phosphorylating TBC1D4, which in turn suppresses the GTPase activity, 

and Rab proteins subsequently become GTP-loaded.  This is critical because it permits 

a reorganisation of the cytoskeleton, which is required for glucose transporter 

mobilisation and translocation. While there are 14 glucose transporter isoforms (Uldry 

and Thorens 2004), glucose transporter 4 (GLUT4) is the predominant insulin 

responsive isoform required for skeletal muscle glucose uptake (Watson and Pessin 

2001). GLUT4 facilitates diffusion-mediated uptake of glucose across the plasma 

membrane.  

 

1.3 Characteristics of obesity and insulin resistance  

One of the major mechanisms underpinning the pathogenesis of obesity and its 

progression to further co-morbidities (including T2DM) is insulin resistance. Insulin 

resistance is defined as an inability for insulin to efficiently mediate glucose entry into 

peripheral tissues, and predominantly skeletal muscle. While insulin resistance can 

occur during the normal life cycle such as in puberty, pregnancy and with aging, 

prolonged hyperglycaemia (such as seen in obesity/T2DM) can lead to tissue toxicity 

and additional complications (Defronzo 1979, Buchanan, Metzger et al. 1990, Moran, 

Jacobs et al. 1999). Furthermore, studies have demonstrated that individuals suffering 

from T2DM can spend as much as 38% of the day (~9 hours 10 min) in a hyperglycemic 

state (van Dijk, Manders et al. 2011). 

The development of obesity-mediated insulin resistance is complex and defies 

explanation by a single etiological pathway. An increase in visceral and abdominal 

adiposity has been shown to correlate with waist circumference, a known clinical 
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marker of metabolic disease risk (Zhu, Wang et al. 2002) and metabolic syndrome 

(Grundy 2004). Moreover, lipolysis of visceral adipose tissue triglyceride stores 

releases free fatty acids (FFA) directly into the portal vein, which is then further 

transported into the liver and can contribute to the development of fatty liver. The 

portal vein is responsible for ~80% of total liver blood flow (Schenk, Mc et al. 1962) 

and studies in obese individuals suggest that plasma IL-6 concentrations were much 

greater in the portal vein than in peripheral arterial blood (Fontana, Eagon et al. 2007), 

indicating the importance of visceral fat in the development of chronic low-grade 

systemic inflammation and the disruption of normal glucose kinetics. 

Furthermore, an impairment in the capacity of adipose tissue to store plasma-derived 

triglyceride (TAG) results in an elevated plasma TAG concentration, thereby leading to 

a ‘spillover’ of fatty acids into the skeletal muscle; this has been proposed to interfere 

with skeletal muscle glucose uptake. Additionally, insulin resistance has been 

characterised as a pro-inflammatory condition in which normal inflammatory 

pathways are disrupted leading to chronic low-grade inflammation. Interestingly 

however, the exact mechanisms surrounding this prolonged inflammatory response 

are unclear. It has been postulated that perhaps obesity not only lends itself to an 

increase in total adipose tissue mass but also adipocyte hypertrophy. This creates 

microvascular complications as an inefficient vascular system is unable to provide 

adequate oxygen supply to the adipocytes leading to hypoxia and ultimately cell 

death. This ‘micro-hypoxia’ may then lead to a recruitment of macrophages into the 

adipose tissue and increase the expression of pro-inflammatory cytokines such as IL-

1β, IL-6 and TNF-α. Alternatively, increased endoplasmic reticulum stress caused by 
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an obesity-mediated increase in synthetic demand, may lead itself to an increase in 

the activation of pro-inflammatory pathways. 

Interestingly, while increased levels of obesity are associated with macrophage 

infiltration into the adipose tissue there is also a distinct shift in macrophage 

phenotypes. Macrophages come in two distinct subtypes; the ‘classically activated 

macrophage’ phenotype, termed M1, which secretes pro-inflammatory cytokines and 

the ‘alternatively activated macrophage’ termed M2, which secretes anti-

inflammatory cytokines. Obesity is associated with a shift from the M2 to M1 

phenotypes which generates a greater inflammatory response and is associated with 

insulin resistance. Ultimately, it is the combination of these mechanisms which explain 

the pathogenesis of insulin resistance and its physiological implications on metabolic 

health. 

 

1.3.1 Insulin resistance and the microvascular system  

The microcirculation encompasses vessels <150 µm in diameter and is responsible for 

nutrient delivery to peripheral tissues, removal of cellular waste products and 

maintenance of capillary hydrostatic pressure (Verdant and De Backer 2005). The 

metabolic action of insulin to stimulate glucose uptake in skeletal muscle is mediated 

through stimulation of PI3-kinase-dependent signalling pathways within the 

endothelium leading to an upregulation of NO production that is required for insulin 

to facilitate its own entry into skeletal muscle. Obesity however, is characterised by 

an increased production of reactive oxygen species (ROS) and NO scavenging by 

superoxide (O2
-) (Laight, Kengatharan et al. 1998, Landmesser and Drexler 2006). An 
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elevation of free fatty acids increases ROS production and inflammation in the 

microvasculature, leading to the induction of NAD(P)H-oxidase and the production of 

superoxide anions which in turn will scavenge NO resulting in a reduction in NO 

bioavailability. Exposure of the vasculature to high levels of free fatty acids also leads 

to the accumulation of diacylglycerol (DAG) and ceramides (Symons and Abel 2013), 

which induces serine phosphorylation of IRS-1 in the endothelium and ultimately a 

reduction in insulin-stimulated Akt phosphorylation and eNOS activation (Naruse, 

Rask-Madsen et al. 2006). Conversely, insulin-mediated vasoconstriction pathways 

seem mostly intact in obesity, with studies showing that the MAPK pathways in obese 

individuals maintain ET-1 production, leading to an imbalance between NO and ET-1 

production, leading to a preference for vasoconstriction (Mather, Mirzamohammadi 

et al. 2002). Moreover, eNOS activity and abundance have also been shown to be 

decreased in obese and diabetic subjects leading to a reduced capacity for NO 

production (Higashi, Sasaki et al. 2001, Gruber, Mayer et al. 2008). 

 

1.3.2 Insulin resistance in the muscle  

In obese individuals with large subcutaneous and visceral adiposity, there is 

considerable evidence to suggest that the ability of adipose tissue to buffer the lipid 

flux is compromised (Lewis, Carpentier et al. 2002, Bays, Mandarino et al. 2004). This 

creates an impairment of insulin mediated adipose tissue lipolysis which subsequently 

results in increased plasma FFAs (Hickner, Racette et al. 1999). Interestingly, it seems 

that the increase in plasma FFA may not directly interfere with insulin action, as rates 

of FFA release in obese individuals are relatively normal when adjusted to total fat 
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mass (Campbell, Carlson et al. 1994). However, the capacity of adipose tissue to store 

plasma-derived TAG is impaired, resulting in an elevated plasma TAG concentration. 

Consequently, these TAG remnants of chylomicron-TAG are then stored within the 

liver and provide substrate to produce very low-density lipoproteins containing TAG 

(VLDL-TAG). The circulating FFAs (generated from the hydrolysis of VLDL-TAG) then 

‘spillover’ into peripheral tissues (including skeletal muscle) and ultimately 

accumulate as intramuscular triglyceride (IMTG). Elevated IMTG content is negatively 

associated with insulin-mediated skeletal muscle uptake in humans and provides a risk 

factor for the development of insulin resistance and/or T2DM (Pan, Lillioja et al. 1997).  

However, endurance-trained athletes also exhibit elevated IMTG stores, but this is 

combined with high levels of insulin sensitivity in the ‘athlete’s paradox’ phenomenon 

(Goodpaster, He et al. 2001). As such, the consensus in the literature is that an 

accumulation of lipid metabolites, such as long chain fatty acyl-CoA’s, diacylglycerol 

(DAG) and ceramides, rather than IMTG per se, are responsible for reducing insulin 

sensitivity.  Indeed, DAGs and ceramides have been shown to accumulate within 

skeletal muscle of obese individuals and T2DM patients and appear to contribute to 

the activation of the inflammatory serine threonine kinases such as conventional 

PKC’s, IKK-β and JNK (Hotamisligil 2006). Specifically, diacylglycerol (DAG) (an 

intermediate in both IMTG synthesis and hydrolysis) can increase serine 

phosphorylation of IRS-1, while ceramides (which require long chain saturated FA for 

their biosynthesis) can dephosphorylate Akt (Itani, Ruderman et al. 2002). Ultimately, 

this leads to downregulation of the insulin signalling cascade and a reduction in GLUT4 

translocation to the plasma membrane, limiting glucose entry into the skeletal muscle.  
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During periods of chronic hyperglycaemia, the pancreatic β-cells will attempt to 

compensate through increased insulin secretion. However, a chronic physiologic 

increase in plasma insulin concentration has a detrimental effect on insulin sensitivity 

as an increase in plasma insulin concentrations in healthy individuals for as little as 72-

96 hrs is enough to reduce insulin-mediated glucose disposal (Del Prato, Leonetti et 

al. 1994). Insulin stimulation of the PI 3-kinase pathway is dramatically reduced in 

obese nondiabetics and is virtually absent in T2DM, primarily through a reduction in 

insulin receptor and IRS-1 phosphorylation alongside a reduction in IRS protein 

association with p85 and PI3-K (Cusi, Maezono et al. 2000). Unfortunately, however 

this can then lead to a plethora of deleterious conditions including dyslipidemia, 

hypertension, systematic inflammation, β-cell dysfunction, endothelial dysfunction 

and cardiovascular disease.  

The development and implementation of strategies to combat these conditions has 

received considerable attention in the past decade. Exercise is one therapeutic 

strategy suggested to improve insulin resistance and ultimately support individuals 

living with metabolic syndrome and T2DM (Poehlman, Dvorak et al. 2000). However, 

exercise is not always an effective solution as long-term adherence alongside 

inadequate exercise prescription can prove difficult in many populations leading to 

ineffective long-term intervention retention (Dishman 1988). Furthermore, weight 

loss is an important strategy to reduce the complications associated with obesity and 

T2DM (Knowler 2006). It is important to note that many individuals with T2DM will 

use medications such as metformin and acarbose, however these medications often 

come with undesirable side effects. To that end, one such strategy that is growing in 
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interest is the use of functional foods as there is expanding evidence in their potential 

to improve metabolic health and insulin sensitivity. 

 

1.4 Polyphenols and anthocyanins  

Polyphenols are a large heterogeneous group of phytochemicals found within plant-

based foods that include flavonoids, proanthocyanidins, phenolic acids and 

resveratrol. Anthocyanins are a major subgroup of the flavonoid class and are one of 

the more recognisable phytonutrients due to their bright blue/purple/red 

pigmentations visible on the outside of the plant (Galvano, La Fauci et al. 2004). 

Anthocyanins are water soluble glycosides of 2-phenylbenzopyrylium or flavylium 

salts with the 6 most commonly found anthocyanins being cyanidin, delphinidin, 

peonidin, pelargonidin, malvidin and petunidin located within dark coloured 

fruits/vegetables including blackcurrants, blueberries, blackberries, bilberries, 

pomegranate, and strawberries. Despite the occurrence of anthocyanin in many 

plants, the total quantity can vary considerably between different fruits and 

vegetables with the total anthocyanin content ranging from 0.28 to 1480mg/100g. 

Berries however, have the highest estimated anthocyanin content in the range of 160-

1300mg/100g fresh weight (Wu, Beecher et al. 2006, Scalzo, Currie et al. 2008, Fang 

2014). Despite the known benefits of a varied a balanced diet, the Look AHEAD 

research group cohort found that only 36% and 38% of individuals with T2DM met the 

recommended daily fruit and vegetable intake, respectively (n=2757) (Vitolins, 

Anderson et al. 2009).  Furthermore, dietary intake of anthocyanins can vary 

depending on global location, with Mediterranean countries (Greece, Spain, Italy, 
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south of France) having higher habitual intakes than other non-Mediterranean 

countries (north-east and north-west of France, Germany, Netherlands, UK, Denmark, 

Swedan and Norway) (Zamora-Ros, Knaze et al. 2016). Finally, intake may also vary 

between sexes given that a Finnish cohort study into total polyphenol consumption 

found habitual daily anthocyanin intake to be higher in females than males (53 ± 76 

and 43 ± 82 respectively) (Ovaskainen, Torronen et al. 2008). 

 

1.4.1 Epidemiological studies 

It has been well documented that polyphenol intake is related to a wide range of 

positive health benefits including reduced risk of cardiovascular disease (Mink, 

Scrafford et al. 2007), hypertension (Cassidy, O'Reilly et al. 2011), and diabetes 

(Jayaprakasam, Vareed et al. 2005). Jennings, Welch et al. (2012) measured habitual 

polyphenol intake of 1898 women aged 18-75 y from the TwinsUK registry and found 

that polyphenol consumption was associated with reduced central systolic blood 

pressure (-3.0 ± 1.4 mmHg), lower mean arterial pressure (-2.3 ± 1.2 mmHg) and 

improved pulse wave velocity. Additionally, berries have been shown to positively 

influence T2DM risk with a Finnish cohort study of 10,054 men and women showing 

an inverse relationship between berry consumption and T2DM risk (Knekt, 

Kumpulainen et al. 2002). Similar findings were also reported in the population-based 

Kuopio ischaemic heart disease risk factor study (n= 2332) which found that 

consumption of >59.7 g berries per day compared with <1.3 g reduced the risk of 

T2DM (Mursu, Virtanen et al. 2014). Interestingly though, in this study total fruit or 
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vegetable consumption was not associated with reduced T2DM risk, indicating a 

potential important role of berries in the mediation of disease risk (Mursu et al., 2014).  

When considering anthocyanins alone, a large prospective study consisting of 3 

cohorts (70,359 women, 89,201 women and 41,334 men) found that higher habitual 

intake of anthocyanins was associated with a lower risk of T2DM when adjusted for 

several covariates (BMI, smoking, physical activity, multivitamin use and family history 

of diabetes) (Wedick, Pan et al. 2012). Importantly though, there were no significant 

associations with T2DM risk found for total flavonoid intake or other flavonoid 

subclasses (Wedick, Pan et al. 2012), highlighting that anthocyanins are perhaps the 

key polyphenol linked with reduced T2DM risk. In the same cohort, Muraki, Imamura 

et al. (2013) found that anthocyanin-rich foods were associated with a reduced T2DM 

risk, with blueberries having the greatest modulating effect. It should be noted, 

however, that these positive findings are not universal, since results from a 

Framingham Offspring cohort (n= 2,915) found a modulating effect of flavonol and 

flavan-3-ol, but not anthocyanin while adjusting for time-dependant covariates (BMI, 

smoking and prevalent CVD) (Jacques, Cassidy et al. 2013). Furthermore, the Iowa 

Woman’s health study prospective cohort (n= 35,816 postmenopausal women) also 

found no association between total flavonoid or anthocyanin intake and risk of T2DM 

(Nettleton, Harnack et al. 2006). Recently, however, in a cohort of 1,997 women, a 

high anthocyanin intake was found to be associated with increased insulin sensitivity 

(measured using the homeostatic model for assessment of insulin resistance; HOMA-

IR), while women reporting a higher habitual intake of anthocyanidins via food 

frequency questionnaires had lower HOMA-IR scores and lower fasting insulin levels 

following adjustment for BMI, medication, medical history and physical activity 
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(Jennings, Welch et al. 2014). Taken together, these observations suggest a possible 

relationship between anthocyanin intake and reduced T2DM risk exists, which occurs 

by anthocyanins modulating insulin sensitivity independent of BMI and other factors.  

 

1.4.2 Bioavailability and enzyme inhibition 

While the link between anthocyanin intake and health has been shown in prospective 

cohort studies, the exact mechanisms that influence the beneficial response are 

unclear. This is partly due to the poor bioavailability of anthocyanins compared to 

other polyphenols in vivo, in which only 1.4-12.4% of total content is detected in the 

plasma post-ingestion (Czank, Cassidy et al. 2013). However, it has been shown that 

anthocyanin metabolites do remain within the blood up to 48 h post-ingestion, 

indicating that it is likely that chronic ingestion of anthocyanin-rich foods will lead to 

an accumulation of anthocyanin metabolites in the blood over time. Furthermore, 

there may be potential synergistic effects with anthocyanins and other compounds, 

as previously it has been shown that quercetin and resveratrol interact with ethanol 

in their stimulation of the nitric oxide pathway (Chan, Mattiacci et al. 2000), and 

therefore significant effects of polyphenols may require broad combinations of 

phytonutrients.   

Fundamentally, it is proposed that anthocyanins can mediate the digestion and 

absorption of glucose from the gut. Anthocyanin has been shown to inhibit α-amylase, 

which can be secreted by the salivary glands and is responsible for initiating the 

breakdown process of glucose for further digestion (McDougall, Shpiro et al. 2005). 

Cyanidin-3-rutinoside (commonly found within blackcurrant) is capable of inhibiting 
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pancreatic α-amylase, the effect of which was further increased with the addition of 

acarbose (a popular diabetic drug for the management of hyperglycaemic episodes) 

(Akkarachiyasit, Yibchok-Anun et al. 2011). It should be noted that data on 

anthocyanins ability to influence α-amylase is limited, and therefore further 

clarification is warranted. However, the greatest effect of anthocyanins on digestion 

and absorption appears to be on intestinal α-glucosidase, with an α-glucosidase 

inhibitory assay demonstrating a significant inhibition of maltase activity by 12 natural 

pigmented anthocyanins, interestingly sucrase activity was unaffected (Matsui, Ueda 

et al. 2001). Furthermore, four diacylated pelargonidin, cyanidin and peonidin 3-

sophoroside-5-glucosides were also subjected to an α-glucosidase inhibitory assay and 

found significant maltase inhibitory activities with no sucrase inhibition (Matsui, Ueda 

et al. 2001). Similarly, Tadera (2006) found that anthocyanin potently inhibited yeast 

α-glucosidase and had a weak inhibition of rat intestinal α-glucosidase. Moreover, 

blackcurrant and rowanberry extracts were both found to inhibit intestinal α-

glucosidase activity, but despite these berries having significantly different 

polyphenolic structures, α-glucosidase activity inhibition was not increased when the 

extracts were combined (Boath, Stewart et al. 2012). Additionally, examination of 

cyanidin-3-rutinoside found that baker’s yeast α-glucosidase inhibition occurred in a 

dose-response manner (Adisakwattana, Ngamrojanavanich et al. 2004) highlighting 

the importance of dosing strategies.  

Studies into the effectiveness of cyanidin-3-galactoside, which are found in high 

concentrations in blueberries and cranberries, showed inhibition of sucrase and 

maltase enzyme activity (Adisakwattana, Charoenlertkul et al. 2009). However, later 

research by the same author found that cyanidin-3-rutinoside largely inhibited 
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intestinal sucrase and maltase activity 30-90 min after loading and was especially 

effective when combined with acarbose (Adisakwattana, Yibchok-Anun et al. 2011). 

Aglycone cyanidin has also been shown to inhibit sucrase enzyme activity but to a 

much lesser extent than its glycosides, and cyanidin 3,5- diglucoside showed no 

inhibition (Akkarachiyasit, Charoenlertkul et al. 2010). Diacylated anthocyanins from 

the purple sweet potato were found to be potent maltase inhibitors reducing blood 

glucose 30 min post-ingestion in rat models, but its effect on sucrase and glucose 

transport was limited (Matsui, Ebuchi et al. 2002). Additionally, a study into the 

polyphenols found in acerola determined that cyanidin-3-alpha-O-rhamnoside and 

pelargonidin-3-alpha-O-rhamnoside were found to be ineffective inhibitors of α-

glucosidase, with only quercetin providing an inhibitory response (Hanamura, 

Hagiwara et al. 2005). Furthermore, when polyphenol-rich extracts from a variety of 

fruits were tested on their ability to inhibit both α-amylase and α-glucosidase, it was 

shown that while all tested fruits had some ability to inhibit α-amylase, α-glucosidase 

was more potently inhibited by fruits with higher total anthocyanin contents including 

blueberry and blackcurrant extracts (McDougall, Shpiro et al. 2005). To that end, the 

effects on digestive enzymes seem to be dependent on the type of anthocyanin 

present within the foodstuff. Moreover, it is plausible that foods with greatest 

quantities/types of anthocyanin may provide the largest inhibitory effect. 

 

1.4.3 Glucose transport and uptake from the gut 

The human epithelial cell line Caco-2 has been widely used as an in vitro model of the 

small intestine, and anthocyanin is known to be absorbed through Caco-2 intestinal 
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cells and may interfere with glucose uptake (Faria, Pestana et al. 2009). It is proposed 

that anthocyanins suppress the activity of sodium dependant glucose transporter-1 

(SGTL-1) and GLUT2 transporters.  Indeed, Manzano and Williamson (2010) found that 

anthocyanin-rich strawberry extract was capable of inhibiting glucose uptake and 

transport via inhibition of SGTL-1 and GLUT2. Furthermore, acute exposure (15 min) 

to a mixed berry extract and individual anthocyanin (cyanidin, cyanidin glucoside, 

cyanidin rutinoside) all significantly decreased both sodium-dependent (total uptake) 

and sodium-independent (facilitated uptake) glucose uptake (Alzaid, Cheung et al. 

2013). The importance of SGTL-1 and GLUT2 for facilitating anthocyanin entry into 

circulation is reinforced through studies in which admistration of pharmacological 

agents phlorizin (an inhibitor of SGTL-1) and phloretin (an inhibitor of GLUT2) to Caco-

2 cells resulted in a marked reduction in cyanidin-3-0-β-glucoside transport within the 

cell (Zou, Feng et al. 2014). Furthermore, Hanamura, Mayama et al. (2006) found a 

reduction in glucose transport across Caco-2 cells, which was attributed to a 

suppression of intestinal glucose absorption alongside an inhibition of α-glucosidase 

activity, indicating the mediation of glucose uptake is likely a combination of both 

these factors. However, while in vitro studies have provided an insight into the ability 

of anthocyanins to influence carbohydrate uptake, they do not account for the 

complexities of in vivo metabolism, especially given the poor bioavailability of some 

polyphenols. Additionally, due to the biodiverse nature of fruits, there may be multiple 

bioactive compounds working synergistically, and therefore it is perhaps difficult to 

elucidate whether the transport inhibition is more effective when combined with 

other bioactives. 



20 
 

 

1.4.4 Glucose transport and uptake into peripheral tissues 

The ability to effectively transport nutrients and hormones to peripheral tissues is an 

important component in the maintenance of glucose homeostasis. To this end, the 

release of vasodilators (such as nitric oxide) is instrumental in supporting nutrient 

transport to peripheral tissues for utilisation or storage. Blackcurrant concentrate has 

been found to cause endothelium-dependant vasorelaxation in noradrenaline pre-

contracted rat aorta (Nakamura, Matsumoto et al. 2002). Similarly, red wine 

polyphenols (delphinidin) have been found to relax rat aortic rings via an increased 

stimulation of Ca2+-dependant nitric oxide (Martin, Andriambeloson et al. 2002). It is 

postulated that bilitranslocase (an endothelial plasma carrier that transports 

flavonoids) mediates an important step in the ability for anthocyanin to increase nitric 

oxide synthase and in turn nitric oxide production, as inhibition of bilitranslocase 

decreases anthocyanin-mediated vasodilation (Ziberna, Lunder et al. 2013). 

Furthermore, in vivo human trials have demonstrated that a single acute bolus of 320 

mg of anthocyanin significantly increased flow mediated dilation (FMD) in 

hypercholesterolic individuals (Zhu, Xia et al. 2011). Similarly, acute anthocyanin 

ingestion has been shown to increase peripheral blood flow at rest and prevent the 

decrease in oxygenation that occurs during typing work (Matsumoto, Takenami et al. 

2005). Interestingly however, the increase in nitric oxide-mediated vasodilation is not 

solely responsible for the increase in skeletal muscle nutrient uptake. Cell based 

bioassays of Canadian lowbrush blueberrys determined root, stem and leaf extracts 

significantly enhanced glucose uptake in C2C12 myocyte cells by 15-25% in the 
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presence and absence of insulin after 20 h of exposure (Martineau, Couture et al. 

2006). Because C2C12 myotubes lack a microvascular component, the increased 

glucose uptake is independent of the vasodilatory effects shown in previous research.  

This highlights that anthocyanin-mediated increases in glucose transport and uptake 

into peripheral tissues may occur through a combination of mechanisms.  

 

1.4.5 Glycaemic control and insulin sensitivity 

Animal studies 

While anthocyanin research in humans has increased dramatically in the past decade, 

previously, animal studies have instead been used to investigate the chronic effects of 

anthocyanins. A marked increase in adipose tissue mass is often associated with 

increased low-grade systemic inflammation, which can lead to the development of 

insulin resistance. Moreover, it is well documented that improvements in low-grade 

systemic inflammation can offset (and even reverse) the negative cascade caused by 

insulin resistance and restore normal glucose dynamics. Studies in mice fed a typical 

chow or high fat diet combined with or without cyanidin-3-glucoside-rich purple corn 

colour for 12 weeks found dietary purple corn colour significantly suppressed the high 

fat diet-induced weight gain as well as increases in white and brown adipose tissue 

mass (Tsuda, Horio et al. 2003). Furthermore, the high fat diet-induced 

hyperglycaemia, hyperinsulinemia and hyperleptinemia were completely normalised 

in the group who were supplemented with purple corn colour. In another study, male 

C57BL/6J mice who were fed a modified diet containing high fat/cholesterol diet 

supplemented with blackcurrant extract displayed significantly lower adipocyte size 
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and reduced inflammatory markers compared to high fat/cholesterol diet control 

group (Benn, Kim et al. 2014). Alongside the potential effect on adipose tissue mass 

and inflammation, cyanidin-3 glucoside and delphinidin-glucoside were found to be 

effective insulin secretagogues, while pelargonidin-3-galactoside caused a 1.4-fold 

increase in insulin secretion (Jayaprakasam, Vareed et al. 2005). This was expanded 

further by Tani, Nishikawa et al. (2017) who orally administered a blackcurrant extract 

high in delphinidin-3-glucoside to Sprague-Dawley rats before a intraperitoneal 

glucose injection, and demonstrated a suppressed rise in plasma glucose after 30 and 

60 min, and an increase in plasma insulin at 15 and 30 min which was attributed to an 

increase in glucagon-like peptide-1 (GLP-1). Interestingly, delphinidin-3-glucoside did 

not significantly degrade in the intestinal tract for at least 45-60 min post blackcurrant 

ingestion, indicating that the GLP-1 mediating effect was likely due to delphinidin-3-

glucoside and not its degradation products.  

AMPK is a metabolic sensor which upregulates catabolic pathways and regulates 

GLUT4 expression or translocation to the plasma membrane through an insulin 

independent mechanism. Furthermore, pharmacological activators of AMPK (such as 

metformin) have widely been used as a means of upregulating skeletal muscle 

transport into peripheral tissue without a concomitant increase in insulin. Takikawa, 

Inoue et al. (2010) administered dietary bilberry extract for 5 weeks to male KK-Ay 

mice and found an increase in total AMPKα and phosphorylation of AMPKα at Thr172 

in white adipose tissue (WAT) and skeletal muscle, along with a 2.1-fold increase in 

GLUT4 protein expression. These findings were repeated in Iizuka, Ozeki et al. (2018) 

in which 7 weeks blackcurrant extract in mice was capable of both upregulating and 

increasing phosphorylation of AMPKα at Thr172 leading to an increase in GLUT4 
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protein expression in the plasma membrane. Therefore, it is becoming evident that 

anthocyanin may be able to influence glucose kinetics through an increase in insulin 

secretion alongside an increase in glucose uptake through both insulin dependent and 

independent pathways.  

 

1.4.6 Acute studies in humans 

In the past decade, there has been a substantial increase in the number of studies 

investigating the acute effects on anthocyanin on glucose control. In this respect, 

Torronen, Sarkkinen et al. (2010) administered a 150 g berry/35 g sucrose (containing 

37.5 g blueberry, cranberry and strawberry) puree or a placebo control load to 12 

healthy participants and found a reduction in glucose concentrations at 15 and 30 min 

post-ingestion.  However, in this study blood glucose concentrations were greater at 

150 min post-consumption, meaning that the anthocyanin-rich puree did not affect 

the overall postprandial glycaemic response. Similarly, when men and 

postmenopausal women were provided a low sugar fruit drink containing blackcurrant 

extract providing 150 mg, 300 mg, 600 mg anthocyanins or a no blackcurrant control, 

early plasma glucose concentrations were significantly reduced following the highest 

anthocyanin dose (600 mg) relative to the control, but again this did not manifest as 

an overall decrease in postprandial glucose response (Castro-Acosta, Smith et al. 

2016). Additionally, plasma insulin, and the incretins glucose-dependent 

insulinotropic polypeptide (GIP) and GLP-1, were also reduced following the high 

anthocyanin dose at 90 min post-ingestion (Castro-Acosta, Smith et al. 2016). The 

same research team then tested a 1200 mg apple polyphenol and 600 mg apple 
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polyphenol/600 mg blackcurrant anthocyanin test drink to a high carbohydrate meal 

and found both drinks improved area under the curve (AUC) glucose, AUCinsulin, C-

peptide concentrations and lowered plasma GIP concentration relative to a control 

(Castro-Acosta, Stone et al. 2017). Interestingly, while AUCglucose was reduced in both 

apple polyphenol and apple polyphenol/blackcurrant anthocyanin at 0-30 min, only 

the latter combined test drink caused a further reduction at 0-120 min indicating a 

potential synergistic effect between polyphenols in mediating glucose absorption. A 

limitation of these studies is the use of an oral glucose tolerance test to investigate 

the effectiveness of anthocyanin on glucose control, because while an oral glucose 

tolerance test is a convenient clinical measure, it does not reflect a typical mixed meal, 

which includes carbohydrate, fat and protein. To address this, Edirisinghe, 

Banaszewski et al. (2011) provided a high carbohydrate-moderate fat meal 

accompanied by either a strawberry or placebo beverage to overweight men and 

women and found that while plasma glucose concentrations were unchanged, 

postprandial inflammatory markers (IL-6 and C-reactive protein) were reduced and 

this was associated with a reduction in postprandial insulin response. Therefore, while 

initial research indicates a potential beneficial effect of acute anthocyanin 

supplementation on postprandial glycaemia, further research is warranted 

particularly in determining optimal dosing strategies. 

 

1.4.7 Chronic studies in humans  

Compared with the number of studies investigating the effect of anthocyanin on 

glucose control in humans, there are a limited number of studies investigating the 
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chronic effects of anthocyanin supplementation. Due to the known accumulation of 

anthocyanin metabolites 48 h following ingestion of anthocyanin-rich foods/extracts 

(Kay, Mazza et al. 2005), it is possible that the positive glycaemic effects of 

anthocyanin supplementation are increased following chronic intake. Zhu, Ling et al. 

(2013) investigated the effect of 320 mg purified anthocyanin (cyanidin-3-O-β-

glucoside and delphinidin-3-O-β-glucoside) capsule (two 80 mg capsule twice daily) on 

150 subjects with hypercholesterolemia and found significant reductions in C-reactive 

protein and plasma IL-1β, both inflammatory markers associated with insulin 

resistance. Currently, evidence surrounding chronic anthocyanin supplementation is 

limited with Stull, Cash et al. (2010) determining that 6 weeks ingestion of a twice daily 

high anthocyanin blueberry smoothie improved insulin sensitivity (measure via a 

hyperinsulinaemic euglycemic clamp) with no concomitant change in adiposity, 

indicating an improvement in insulin dependent or independent mechanisms. 

Furthermore, ingestion of 7 days of 6 g/day blackcurrant powder dissolved in water 

before undertaking an oral glucose tolerance test improved both plasma glucose (8% 

lower at 60 min) and insulin (18% lower at 30 min and 39% at 60 min), which resulted 

in a decrease in AUC for both glucose and insulin (Willems, Silva et al. 2017). Whilst 

this study provides proof-of-principle evidence for a positive effect of blackcurrant 

extract on postprandial glucose control, it was only conducted in relatively healthy 

individuals.  Furthermore, the product itself has a limitation in its current form, given 

the requirement of dissolving the blackcurrant powder in water to consume it. 

Therefore, more convenient methods of supplementation that are more amenable 

should be investigated, especially due to current difficulties in long-term participant 

retention to supplementation interventions.  
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1.5 Thesis aims 

While epidemiological data alongside in vitro studies have helped to determine the 

potential benefits of anthocyanin supplementation, alongside determining some of 

the potential mechanisms surrounding this effect, current research into the 

effectiveness of anthocyanin supplementation on at-risk populations, particularly 

under ‘free-living’ conditions are limited. Using a high-anthocyanin supplement (New 

Zealand blackcurrant [NZBC] extract), the aim of this thesis is to 1) determine the 

effect of NZBC at different doses on acute blood glucose control after consumption of 

a mixed meal, and 2) examine whether NZBCs supplementation is a viable means of 

modulating postprandial hyperglycaemia in free-living conditions. Given the link 

between overweightness/obesity and the development of T2D, these studies will be 

conducted in overweight/obese sedentary individuals. Ultimately, it is the aim that 

these studies will provide the basis for NZBC supplementation to become one new 

strategy with which to improve glycaemic control and therefore limit the progression 

of obesity to T2DM.  
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Chapter 2  

 

A single bolus of New Zealand blackcurrant extract does not 

improve postprandial blood glucose and triglyceride 

responses to a carbohydrate-fat meal in sedentary, 

overweight individuals.  
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           2.1 Abstract 

Consumption of low-quality, high-energy diets in combination with a sedentary 

lifestyle have made obesity and type 2 diabetes mellitus (T2DM) into worldwide 

epidemics. Regular consumption of flavonoids (such as anthocyanins) is associated 

with reduced T2D risk. 7 day high-anthocyanin blackcurrant extract supplementation 

has been shown to improve glycaemic responses to a glucose challenge in healthy 

individuals. We examined whether a single bolus of New Zealand blackcurrant extract 

(NZBC) can improve glucose and triglyceride responses to a mixed-meal in sedentary 

overweight individuals and whether a dose-response relationship exists. In a double-

blind, randomised, cross-over, placebo-controlled design, 13 sedentary overweight 

office workers (10 male, 3 female, 30±10 y, BMI: 27.6±1.3 kg·m-2, ingested a single 

dose of NZBC extract (300, 600, 900 mg) or a visibly identical placebo (PLC) 30 minutes 

prior to consuming a mixed-meal test drink (75g carbohydrate, 50g fat). Intermittent 

blood sampling was undertaken for 3 h postprandial, with samples analysed for both 

glucose and triglyceride concentrations. Postprandial fasting glucose and triglyceride 

concentrations were similar between conditions, and peaked at 90 min and 120 min, 

respectively. There was no significant difference for glucose AUC (P=0.918) or 

triglyceride AUC (P= 0.834) between doses or conditions. A single bolus of NZBC 

extract is unable to positively influence postprandial blood glucose or triglyceride 

responses to a carbohydrate-fat meal in overweight and obese individuals, 

irrespective of anthocyanin dose. The inclusion of fat in the meal tolerance test 

alongside the limited bioavailability of anthocyanins may have blunted any potential 

postprandial benefits of acute NZBC extract ingestion, therefore more chronic doses 

of NZBC extract may be more beneficial.  



29 
 

 

2.2 Introduction 

Recent estimates suggest that nearly two-thirds of adults (63%) in England are 

currently classified as overweight or obese (Public Health England 2017). This can be 

attributed to lifestyles in which sedentary behaviour and overconsumption of 

hypercaloric foods are commonplace, leading to increased levels of obesity. Although 

sedentary behaviour and obesity are often interlinked, prolonged sitting is associated 

with premature cardiovascular and all-cause mortality independent of physical activity 

and adiposity (Tremblay, Colley et al. 2010). Therefore, office-workers are particularly 

at risk due to the large periods of sedentarism present throughout the working day. 

Both sedentary and overweight/obese individuals exhibit elevated postprandial blood 

glucose and triglyceride responses (Mekki, Christofilis et al. 1999, Dunstan, Kingwell 

et al. 2012), which increases the risk of developing insulin resistance (Cavalot, Petrelli 

et al. 2006). Indeed, a characteristic of individuals with T2DM is an elevated 

postprandial glycaemic response to each meal, with some estimates suggesting they 

may spend as much as 38% of the day in a hyperglycaemic state (9 h 10 min) (van Dijk, 

Manders et al. 2011).  Therefore, the development of novel strategies to improve the 

postprandial glycaemic response remains an important area of research.  

 

Anthocyanin is a flavonoid subclass commonly characterised by its bright 

blue/red/purple pigmentations and is therefore found in high concentrations in 

blackcurrant, blueberry, blackberry and cherries. Epidemiological studies 

demonstrate that higher habitual anthocyanin intakes are associated with a reduced 
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risk of cardiovascular disease, hypertension, cancer and T2DM (Knekt, Kumpulainen 

et al. 2002, Lala, Malik et al. 2006, Wallace 2011, Jennings, Welch et al. 2012). While 

all fruits containing anthocyanin show some ability to suppress the activity of enzymes 

regulating carbohydrate digestion and uptake from the gut, fruits with the highest 

anthocyanin concentration exhibit the largest suppressive effect (McDougall, Shpiro 

et al. 2005), indicating a potential dose-response relationship exists. The mechanisms 

surrounding this modulating effect are suggested to be due to both an inhibition of 

pancreatic α-amylase (Akkarachiyasit, Yibchok-Anun et al. 2011) and intestinal α-

glucosidase enzymes (McDougall, Shpiro et al. 2005), alongside a disruption of 

sodium-dependent glucose transporter-1 (SGLT1) and glucose transporter-2 (GLUT-2)-

mediated intestinal glucose transport (Alzaid, Cheung et al. 2013). While in vitro 

studies highlight the potential mechanistic effects of anthocyanins on carbohydrate 

digestion and absorption, few studies have investigated its effectiveness in vivo. Two 

studies have reported that acute consumption of mixed berry purees (containing 

bilberries, blackcurrants, cranberries and strawberries) high in anthocyanins are 

effective in delaying the early postprandial glucose spike (30-45 min post-

carbohydrate ingestion), although the overall postprandial response was not affected 

(Torronen, Sarkkinen et al. 2010, Torronen, Kolehmainen et al. 2012).  Blackcurrant 

(Ribes nigrum) has one the highest known concentrations of the anthocyanins 

delphinidin-3-rutinoside, delphinidin-3-glucoside, cyanidin-3-rutinoside and cyanidin-

3-glucoside, equal to approximately 160-1300 mg.100g-1 fresh weight (Scalzo, Currie 

et al. 2008). In this regard, Castro-Acosta, Smith et al. (2016) reported that ingestion 

of a sugar free drink containing a blackcurrant extract prior to consuming a 

carbohydrate-rich meal improved the postprandial glucose, insulin and incretin 



31 
 

responses in a dose-dependent manner, with the highest blackcurrant dose (600 mg 

anthocyanin) showing a greater modulating effect than a medium or low dose (300 

and 150 mg anthocyanin, respectively). Therefore, while there is evidence that acute 

blackcurrant extract consumption is capable of modulating glycaemic responses to 

carbohydrate ingestion (Castro-Acosta, Smith et al. 2016), it is less clear whether 

improved glycaemic control continues with the inclusion of protein and/or fat in the 

meal. This is important, because a mixed meal is more reflective of what is usually 

consumed under ‘real-world’ conditions, in which dietary fat delays the digestion and 

absorption of carbohydrate within the meal. If including fat in a meal tolerance test, 

the triglyceride response of a meal is then also an important factor to consider given 

that postprandial triglyceride handling is directly related to cardiovascular disease risk 

(Trombold, Christmas et al. 2013).  

 

To this end, the primary aim of this study was to investigate whether a single bolus of 

New Zealand blackcurrant (NZBC) extract (high in anthocyanins) can improve 

postprandial glucose and triglyceride responses to a carbohydrate-fat meal.  A 

secondary aim was to determine whether a dose-response relationship existed in the 

postprandial glucose and triglyceride responses. We hypothesised that NZBC extract 

would improve both glucose and triglyceride postprandial responses to a 

carbohydrate-fat meal, with the largest dose showing the greatest glucose and 

triglyceride-lowering effect. 
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         2.3 Methods 

Subjects 

13 sedentary, overweight participants (see Table 1 for subject characteristics) 

volunteered to take part in the study, which was approved by the Liverpool John 

Moores University Research Ethics Committee. Written, informed consent was 

obtained following an explanation of the experimental procedures. Participants were 

deemed to be inactive if they undertook <1 h structured physical activity per week (in 

the preceding 6 months).  All participants were absent of any other metabolic co-

morbidities and cardiovascular disease.  

 

Table 1     Participant characteristics (n = 13) 

M/F 10/3 
Age (y) 30 ± 10  
Height (m) 1.75 ± 0.10  
Weight (kg) 83.6 ± 6.4 
BMI (kg·m-2) 27.6 ± 3.3 
Lean mass (kg) 64.0 ± 7.2 
Fat mass (kg) 25.5 ± 5.6 
Daily anthocyanin intake (mg·day-1) 30 ± 25 

Values are means ± SD 

 

 

             Experimental design and protocol 

Participants initially visited the University laboratory where height and weight were 

measured, alongside body composition using electrical bio-impedance (Tanita BC 418 

MA Segmental Body Composition Analyser, Tanita, Japan). Participants then visited 

the laboratory to undergo an experimental trial on 4 separate occasions.  Twenty-four 

hours prior to each experimental trial participants consumed a standardised diet (50% 

carbohydrate, 30% fat, 20% protein) that was otherwise matched to habitual intake. 
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On the morning of each experimental trial, participants attended the laboratory 

following an overnight fast (> 10 h) and first consumed a standardised breakfast (25% 

daily caloric intake) before working at a computer or sitting quietly for 2-3 hours. In a 

randomised, double-blind crossover design, participants then ingested either NZBC 

extract (300, 600, 900 mg) or a visibly identical placebo with water 30 min prior to 

lunch. Each 300 mg NZBC capsule contained 105 mg of anthocyanins, consisting of 35-

50% delphinidin-3-rutinoside, 5-20% delphinidin-3-glucoside, 30-45% cyanidin-3-

rutinoside, and 3-10% cyanidin-3-glucoside (CurraNZTM, Health Currancy Ltd, Surrey, 

UK). Each placebo capsule contained 300 mg microcrystalline cellulose. Following 

ingestion of NZBC or placebo, an indwelling cannula was placed into the antecubital 

vein of one arm and a blood sample was obtained. Thirty min following ingestion of 

NZBC or placebo, participants then consumed a carbohydrate-fat liquid test meal 

consisting of 75 g maltodextrin (MyProteinTM, The Hut Group, Cheshire, UK) and 50 g 

unsaturated fatty acids (Calogen, Nutricia, Amsterdam, NL) (see Table 2 for nutritional 

breakdown of test drink). Blood samples were subsequently collected at 15 min 

intervals for the first hour and 30 min intervals for the remaining two hours. Once the 

testing procedure was completed the cannula was removed and participants were 

able to leave the laboratory. All experimental trials were separated with a washout 

period of 7 days.  
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Table 2 Nutritional information of test drink 

Average contents Per 100 ml 
    
Energy (Kj) 1850 
Protein (g) 0 
Carbohydrate (g) 0.1 
of which sugars (g) 75.1 
Fat (g) 50 
Saturates (g) 5.3 
MUFA (g) 30.4 
PUFA (g) 14.3 
%LCT (%) 100 
n6: n3 (ratio) 5:1 
Dietary fibre (g) 0 

 

Habitual dietary intake and anthocyanin consumption 

Habitual dietary intake was assessed using a written diary for 72 h (see table 3 for 

macronutrient and energy intake). Food diaries were analysed for total energy intake 

and macronutrient composition of the diet. At the first visit, participants also 

competed a food frequency questionnaire which listed the quantity and frequency of 

anthocyanin-containing foods and drinks compiled from the Phenol Explorer database 

(Neveu, Perez-Jimenez et al. 2010). By multiplying the anthocyanin content of the 

portion size by the total consumption frequency of each food, daily anthocyanin intake 

was calculated.  

 
 
 
 
 
 
 
 
 
 
 

monosaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), % long chain triglyceride 

(%LCT), omega 6: omega 3 (n6: n3). 
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Table 3 Daily absolute and relative macronutrient and energy intake via 72 h self-reported diet diary 

Carbohydrate   
  G 242 ± 42 
  g kg body mass-1 2.6 ± 0.6 
Protein  
  g 95 ± 12 
  g kg body mass-1 1.0 ± 0.1 
Fat  
  g 98 ± 27 
  g kg body mass-1 1.0 ± 0.2 
Total energy intake   
  kJ 9306 ± 1248 
  kJ kg body mass-1 98.6 ± 12.2 

Values are means ± SD 

 

Blood sample analysis 

Plasma samples were obtained through centrifugation (10 min at 3000g at 4°C) and 

stored at –80°C for subsequent analysis. Plasma glucose and triglyceride 

concentrations were determined spectrophotometrically using a semi-automatic 

analyser in combination with commercially available kits (Randox Laboratories, 

Antrim, UK). Each sample was analysed in duplicate.  

 

Data and statistical analysis 

All data are expressed as means ± SD. Statistical significance was set at the 0.05 level 

of confidence. The area under the curve (AUC) for glucose and triglyceride was 

calculated using the trapezoid method. AUC and time-dependent changes were 

investigated using a two-way within-subjects ANOVA, with the factors ‘time’ and 

‘condition’. Significant main effects or interactions were assessed using Bonferroni 

adjustment post hoc analysis. 
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2.4 Results 

Plasma glucose  

There was a main effect of time for glucose concentration during the carbohydrate-

fat tolerance test (P<0.001). Glucose peaked at 60 min in the placebo and 300 mg trial, 

and peaked at 90 min in the 600 and 900 mg, before decreasing to baseline levels by 

150 min, with no difference between trials (P=0.872). Similarly, there was no 

difference in baseline (P=0.471) or peak glucose concentration (P=0.495) between 

conditions. There was also no interaction effect between time and condition (P= 

0.843). AUCglucose was not significantly different between conditions (P= 0.982). 

 

Plasma triglyceride 

There was no main effect of time for triglyceride concentration during the 

carbohydrate-fat tolerance test across all doses (P=0.168). In all trials, triglyceride 

concentration peaked at 120 min, with no difference between trials (P= 0.210). 

Additionally, there was no difference in triglyceride baseline (P= 0.550) or peak (P= 

0.808). There was also no interaction effect between time and condition (P= 0.513). 

AUCtriglyceride was not significantly different between doses (P=0.834). 

 

Bivariate correlation analysis was performed to investigate whether a relationship 

between habitual anthocyanin intake and AUCglucose (300 mg: r= -0.135, P= 0.660; 600 

mg: r= -0.421, P= 0.152; 900 mg: r= -0.156, P= 0.612) and AUCtriglyceride (300 mg: r= -

0.072, P= 0.833; 600 mg: r= -0.286, P= 0.395; 900 mg: r= -0.169, P= 0.620), but no 

relationships were observed for either variable. 
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Figure 1. (A) Plasma glucose responses over 3 h postprandial period. (B) Overall postprandial glucose AUC response. (C) Plasma triglyceride responses over 3 h 

postprandial period. (D) Overall postprandial triglyceride AUC response.  
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2.5 Discussion 

The aims of this study were two-fold; 1) to determine whether ingestion of a single 

bolus of NZBC extract could improve postprandial glucose and triglyceride responses 

to a carbohydrate-fat liquid test meal, and 2) whether a dose-response relationship 

existed. The novel finding from this study was that a single bolus of NZBC extract in 

overweight, sedentary participants did not alter the postprandial glucose and 

triglyceride responses to a carbohydrate-fat test meal.  Moreover, this remained true 

across three NZBC doses with increasing anthocyanin content. 

 

Our observation that acute ingestion of an anthocyanin-rich extract/foodstuff is 

unable to influence postprandial glucose responses could be considered to run 

contrary to several other studies.  For example, (Torronen, Sarkkinen et al. 2010) 

provided healthy participants with a drink containing 35g sucrose in combination with 

or without 150g of berry puree (containing bilberries, blackcurrants, cranberries and 

strawberries), and found that inclusion of the berry puree reduced plasma glucose 

concentrations at 15 and 30 min, which is indicative of a delayed postprandial 

response.  However, in the same study plasma glucose concentrations were 

significantly higher at 150 min following ingestion of the sucrose and berry puree drink 

meaning that overall there was no reduction in glucose AUC between conditions 

(Torronen, Sarkkinen et al. 2010). Similarly, when men and postmenopausal women 

were provided with blackcurrant extract providing either 150mg, 300mg and 600mg 

total anthocyanin’s or placebo, early plasma glucose concentrations (10-30 min) to 

glucose ingestion were significantly reduced following the high anthocyanin dose 

relative to placebo, but this was followed by a rebound (at 75 min) meaning that no 
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overall difference in glucose AUC was observed (Castro-Acosta, Smith et al. 2016). In 

the present study, we found that peak glucose occurred much later in the 600 and 900 

mg (90 min) than the placebo and 300 mg condition, however this difference was non 

significant. Furthermore, the peak at 90 min was much later than  previously reported 

in the literature, which is likely due to the inclusion of fat in the liquid test meal. 

Indeed, it is well documented that fat ingestion inhibits gastric emptying and digestion 

and subsequent diffusion across the intestinal membrane via a contraction of the 

pyloric sphincter region (Quigley 1941). Moreover, this effect likely explains why the 

results of this study do not support a glucose-lowering effect of anthocyanins 

previously reported in the literature. Considering the mechanisms surrounding the 

ability of anthocyanins to regulate glucose metabolism, it is believed that 

anthocyanins delay glucose digestion via a reduction in α-amylase (Akkarachiyasit, 

Yibchok-Anun et al. 2011) and α-glucosidase activity (Matsui, Ueda et al. 2001, 

McDougall, Shpiro et al. 2005, Tadera 2006), alongside an inhibition of glucose 

transport along the intestinal membrane through SGTL1 and GLUT-2 (Faria, Pestana 

et al. 2009, Alzaid, Cheung et al. 2013). Interestingly however, despite some evidence 

demonstrating an ability for anthocyanins to improve blood flow responses via 

increased glucose delivery to the peripheral tissue and improvements in blood 

pressure responses (Martineau, Couture et al. 2006, Asgary, Sahebkar et al. 2014), this 

did not seem to influence glycaemic control in this instance.  Therefore, the observed 

delay in postprandial peak glucose concentrations in this study are likely related to the 

inclusion of fat in the test meal, and as a result mask any anthocyanin-mediated 

improvements which tend to occur in the early-postprandial phase. It is also possible 

that the suppression of glucose digestion and absorption by fat simply overrides the 
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reported glucose-lowering effects of anthocyanin, which also may explain why no 

effect of NZBC extract on postprandial glucose responses was observed.  

 

It should be noted that some studies have demonstrated that anthocyanin 

supplementation is capable of influencing time-dependent changes in postprandial 

insulin, like that observed for plasma glucose (reduction at 15-45 min with a rebound 

at ~90 min) (Torronen, Sarkkinen et al. 2010, Torronen, Kolehmainen et al. 2012). 

Interestingly however, Edirisinghe, Banaszewski et al. (2011) provided a high 

carbohydrate, medium fat meal accompanied by either a strawberry anthocyanin 

beverage or a placebo and while there was no difference in postprandial serum 

glucose responses there was an improvement in insulin concentrations. According to 

the authors, this was perhaps due to a reduction in inflammatory markers (high 

sensitive C-reactive protein and IL-6) as the insulin signalling cascade is highly sensitive 

to the redox balance of the cell. Importantly though, these results suggest that 

anthocyanin is potentially capable of lowering insulin secretion independent of a 

decrease in plasma glucose. 

 

Currently, there is limited evidence on the effects of anthocyanins on postprandial 

triglyceride responses, largely since a direct mechanism for anthocyanins to mediate 

triglyceride digestion and absorption is yet to be identified. However, the postprandial 

triglyceride response is a predictor for cardiovascular disease incidence, nonfatal 

myocardial infarction, ischemic stroke and fatal cardiovascular events (Zilversmit 

1979, Bansal, Buring et al. 2007), and therefore it is important to investigate whether 

strategies that target a reduction in postprandial glucose responses also attenuate the 
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transient postprandial increases in plasma triglyceride concentrations. Pancreatic 

lipase is an important enzyme in the breakdown of dietary fat and is responsible for 

50-70% of the hydrolysis of dietary triglyceride (Mukherjee 2003). There is emerging 

evidence that anthocyanin (particularly cyanidin) may competitively inhibit pancreatic 

lipase and cause a reduction in dietary fat absorption (You, Chen et al. 2011, Fabroni, 

Ballistreri et al. 2016). However, this is not ubiquitous as McDougall (2009) found 

anthocyanin was unlikely to inhibit pancreatic lipase due to fruits high in anthocyanin 

(including blackcurrant) showing no inhibitory effect and that perhaps the inhibition 

displayed in other fruits (including cloudberry, raspberry and strawberry) involved a 

synergistic interaction between phytonutrients (such as tannins and ellagitannins) due 

to the use of whole plant extracts. Furthermore, some studies have demonstrated that 

a high polyphenol intake does not increase faecal lipid excretion, as would be 

expected if lipase was inhibited and that perhaps any inhibition is offset via a 

compensatory increase in lipase secretion (Griffiths 1986, Tsuda 2008). Therefore, 

further work is required to confirm if bioactives can inhibit lipase in vivo and whether 

they are a viable method of preventing weight gain. 

 

While epidemiological evidence suggests that polyphenol consumption is associated 

with improved arterial health (Jennings, Welch et al. 2012), reduced cardiovascular 

disease risk (Cassidy, O'Reilly et al. 2011) and reduced T2DM risk (Knekt, Kumpulainen 

et al. 2002, Wedick, Pan et al. 2012, Mursu, Virtanen et al. 2014), these effects may 

manifest after prolonged anthocyanin exposure, thereby making acute doses less 

effective. Kay, Mazza et al. (2005) found that anthocyanin metabolites were present 

in the blood 48 h following ingestion of cyanidin 3-glycosides from chokeberry extract, 
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highlighting that there is potential for a residual increase in serum anthocyanin with 

habitual intake that is not observed with acute ingestion. Furthermore, while in vitro 

experiments have allowed us to determine the potential mechanisms by which 

anthocyanin can modulate digestion and absorption of carbohydrate, it should be 

noted that these responses may not manifest in vivo since anthocyanin bioavailability 

is very low (~12%) (Czank, Cassidy et al. 2013). However, the metabolism of 

anthocyanin is suggested to involve a number of biotransformations with studies 

indicating cyanidin-3-glucoside (C-3-G) is associated with 17 compounds in the serum 

during digestion, including protocatechuic acid (PCA), phloroglucinaldehyde (PGA), 13 

downstream metabolites of PCA and 1 metabolite derived from PGA (de Ferrars, Czank 

et al. 2014). Furthermore, the half life of the anthocyanin metabolites are much 

greater than parent anthocyanin with ferulic acid (metabolite derived from PGA) 

displaying a much greater serum half life (~96 hr) compared to the parent anthocyanin 

C-3-G (0.4 hr). Interestingly, anthocyanin metabolites have been shown to directly 

interfere with mechanisms of vascular function with vanillic acid (metabolite derived 

from PCA) being shown to NO synthesis (Edwards, Czank et al. 2015). Taken together 

this suggests that the magnitude and duration of exposure is important, with some 

evidence suggesting duration is more important than dose (Hassellund, Flaa et al. 

2013), further highlighting the potential benefits of chronic supplementation. In 

support, Willems, Silva et al. (2017) recently investigated the effect of 7 days 

supplementation with NZBC powder (6 g.day-1 NZBC powder containing 138.6 mg 

anthocyanin) on plasma glucose and insulin response to an oral glucose tolerance test.  

They reported that after 7 days, NZBC powder lowered plasma glucose at 60 min post-

glucose ingestion, and plasma insulin at 30 and 60 min, as well as reducing both 
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AUCglucose and AUCinsulin over the 2 h postprandial period. While a single bolus of NZBC 

extract may only delay the postprandial glycaemic response, more chronic 

supplementation may well alter the overall response, thereby highlighting the 

potential for NZBC to improve insulin sensitivity.  

 

The strength of this study relates to its design which included the use of a 

carbohydrate-fat test drink which is more indicative of what would be habitually 

consumed under free-living conditions. Furthermore, the inclusion of 

overweight/obese individuals is important due to their obesity related changes in 

glucose kinetics as well as being an important target demographic for health and 

lifestyle interventions. A limitation of this study was that anthocyanin intake was 

determined by a food frequency questionnaire and self-reporting errors may well 

have occurred, causing a discrepancy. However, calculated habitual anthocyanin 

intake was found to be ~30 mg per day, indicating that habitual intake was well below 

even the lowest anthocyanin dose (105 mg) provided in this study.  

 

In conclusion, acute NZBC ingestion is unable to alter postprandial glucose or 

triglyceride responses to a carbohydrate-fat meal in sedentary, overweight 

individuals. In this instance, the inclusion of dietary fat in the test meal likely overrides 

the previously reported glucose-lowering effect of anthocyanins. Future studies 

should now aim to determine the effects of postprandial insulin responses to a mixed 

meal as 600 mg anthocyanin has been shown to influence insulin dynamics via a 

reduced plasma insulin, plasma GIP and plasma GLP-1 to an OGTT (Castro-Acosta, 

Smith et al. 2016). Therefore, whether these responses manifest in mixed meals may 
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highlight whether anthocyanin can be a viable supplement in improving insulin 

secretion. Furthermore, more chronic supplementation of NZBC extract on 

postprandial glucose and triglyceride responses in free-living conditions may 

determine the usefulness of anthocyanin as a dietary intervention.  
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Chapter 3 

8 days supplementation with New Zealand blackcurrant 

extract improves free-living glycaemic control and insulin 

sensitivity in sedentary, overweight individuals 
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           3.1 Abstract 

Prolonged periods of postprandial hyperglycaemia are shown to be an independent 

risk factor for the development of T2DM. Short-term anthocyanin supplementation 

has been shown to improve glycaemic control, however currently all evidence has 

been conducted using laboratory-based control drinks. In a double-blind, randomised, 

placebo-controlled design, 12 sedentary, overweight, office workers (6 male, 6 

female, 28 ± 9 yr, BMI 29.9 ± 4.8), ingested 8 days of NZBC extract (600 mg.d-1) or a 

visibly matched placebo before undertaking a 2 h OGTT where glucose and insulin 

concentrations were determining via intermittent blood sampling. Participants also 

wore a continuous glucose monitoring system (CGMS) and consumed a 24 h 

standardised diet under free-living conditions where interstitial glucose excursions 

were determined. Postprandial glucose and insulin were similar between conditions. 

Following NZBC ingestion plasma glucose was lower at 45, 60 and 90 min with an 8% 

reduction in AUCglucose (P<0.001) There was no time effect for insulin (P=0.226), 

however AUCinsulin was 14% lower (P=0.018). Free-living glucose excursions were lower 

during breakfast (9%; P=0.010) and lunch (8%; P=0.02), with no difference at dinner 

(P=0.643). There was no difference in HOMA-IR (P=0.413), hepatic (P=0.430) or 

peripheral insulin resistance (P=0.426), however Matsuda index was 22% higher 

following NZBC ingestion (P=0.011). Short-term NZBC extract supplementation can 

enhance postprandial glucose and insulin responses to a glucose challenge and whole-

body insulin sensitivity, as well as improving free-living glycaemic responses under 

standardised dietary conditions. Future work should establish the mechanism(s) by 

which these effects are induced by NZBC extract.  
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            3.2 Introduction 

In chapter 1 it was explained that obese individuals and T2DM patients exhibit lower 

insulin sensitivity alongside greater postprandial glucose excursions, when compared 

to lean, healthy individuals. It was also highlighted that epidemiological evidence 

suggests higher anthocyanin intake is associated with lower T2DM risk (Jennings, 

Welch et al. 2012).  Several studies have been able to demonstrate that acute 

ingestion of anthocyanin-rich foods or extracts improve the early postprandial glucose 

response to a glucose challenge (Torronen, Sarkkinen et al. 2010, Torronen, 

Kolehmainen et al. 2012). However, this is often offset by a later postprandial rise in 

glucose concentrations which means that the overall postprandial glucose response is 

unaffected (Torronen, Sarkkinen et al. 2010). Furthermore, in chapter 2 it was 

observed that a single bolus of an anthocyanin-rich New Zealand blackcurrant (NZBC) 

extract was unable to mediate blood glucose and triglyceride responses to a 

carbohydrate-fat meal, independent of the dose used. As such, more chronic periods 

of anthocyanin supplementation may be required to convey desirable effects on 

postprandial glucose responses and insulin sensitivity.  In support, Stull, Cash et al. 

(2010) found that 6 weeks of blueberry supplementation in obese, insulin resistant 

individuals improved insulin sensitivity during a hyperinsulinaemic euglycaemic clamp 

with no concomitant change in adiposity . More recently, Willems, Silva et al. (2017) 

reported that short-term (7 days) supplementation with NZBC powder reduces both 

postprandial glucose and insulin responses to a glucose challenge. However, this study 

was only conducted in healthy individuals, and therefore the effects of short-term 
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supplementation on individuals with lower insulin sensitivity, such as those who are 

overweight/obese, is currently unknown.  

 

The effectiveness of most interventions aimed at improving glycaemic control were 

evaluated by using an OGTT. However, this is a clinical test which is undertaken in a 

controlled environment using a purely carbohydrate challenge. This is far removed 

from what is habitually consumed during meals under ‘real-world’ situations, whereby 

meals consist of a more mixed macronutrient content. Continuous glucose monitoring 

systems (CGMS) provide an opportunity to evaluate the effectiveness of an 

intervention on postprandial glucose responses under free-living conditions. 

Furthermore, continuous glucose monitoring systems (CGMS) have been found to be 

an effective and reliable way of measuring daily glucose excursions under free-living 

conditions (Rodbard 2017). To that end, we aimed to investigate whether 8-day 

supplementation of NZBC would improve glycaemic control in overweight/obese 

participants in response to an OGTT and under free-living conditions. We 

hypothesised that NZBC supplementation would improve both glucose and insulin 

responses to and OGTT and would improve glycaemic control in free-living conditions.  
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3.3 Methods 

Subjects 

12 sedentary, overweight participants (see Table 1 for subject characteristics) 

volunteered to take part in the study, which was approved by the Liverpool John 

Moores University Research Ethics Committee. Written, informed consent was 

obtained following an explanation of the experimental procedures. Participants were 

deemed to be inactive if they undertook <1 h structured physical activity per week (in 

the preceding 6 months).  All participants were absent of any other metabolic co-

morbidities and cardiovascular disease.  

 

Table 1     Participant characteristics (n = 12) 

M/F 6/6 
Age (y) 28 ± 9  
Height (m) 1.73 ± 0.10  
Weight (kg) 88.9 ± 16.1 
BMI (kg·m-2) 29.9 ± 4.8 
Lean mass (kg) 62.1 ± 14.2 
Fat mass (kg) 25.5 ± 12.8 
Daily anthocyanin intake (mg·day-1) 15.3 ± 16.3 

Values are means ± SD.  

 

 

Experimental design 

Participants initially visited the University laboratory where height and weight were 

measured, alongside body composition using electrical bio-impedance (Tanita BC 418 

MA Segmental Body Composition Analyser, Tanita, Japan). After this initial visit, 

participants then undertook two supplementation periods in a randomised order, 

where they ingested either NZBC extract (two 300 mg capsules) or a visibly-identical 
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placebo with water, twice a day (one prior to breakfast and one before dinner) for 8 

days. Each 300 mg NZBC capsule contained 105 mg of anthocyanins, consisting of 35-

50% delphinidin-3-rutinoside, 5-20% delphinidin-3-glucoside, 30-45% cyanidin-3-

rutinoside, and 3-10% cyanidin-3-glucoside (CurraNZTM, Health Currancy Ltd, Surrey, 

UK). Each placebo capsule contained 300 mg microcrystalline cellulose. Each 

supplementation period was separated by 14 days, which acted as a washout. Both 

participants and investigators were blinded to the condition. Participants were 

inserted with a Dexcom G4 platinum (Dexcom, San Diego, USA) and instructed to 

consume a standardised diet. Participants returned to the laboratory on day 7 

following an overnight fast to undergo an oral glucose tolerance test (OGTT).  

Following collection of a fasted blood sample from an indwelling cannula placed in an 

antecubital forearm vein, participants consumed 75 g maltodextrin (MyProteinTM, The 

Hut Group, Cheshire, UK) diluted in 220 ml of water. Further blood samples were 

collected at 15 min intervals for the first hour and 30 min intervals for the second hour.  

On day 8 participants undertook their usual daily activities, and thus postprandial 

glucose responses to breakfast, lunch and dinner were examined under free-living 

conditions using continuous glucose monitoring.  

 

Continuous glucose monitoring 

Participants were required to enter the laboratory on day 5 of supplementation where 

a Dexcom G4 Platinum continuous glucose monitoring (CGM) device (Dexcom, San 

Diego, USA) was inserted subcutaneously into the lower abdominal region. 

Participants were then instructed on how to use the device efficiently and then 
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allowed to exit the laboratory and the monitor would record glucose excursions under 

‘free-living’ conditions. The monitor remained in place for the next 4 days, during 

which participants were provided with a standardised diet to consume (50% 

carbohydrate, 30% fat, 20% protein) that was otherwise matched to habitual energy 

intake and the remainder of day 5 and 6 served as the ‘bedding in’ period for the 

monitor. Participants were allowed to start consuming breakfast between 7-9 am, 

however there was a  minimum 3 hr period between meals ensuring an uninterrupted 

postprandial period. Furthermore, the standardised diet was to be consumed in 3 

complete meals (see table 2). Participants were required to enter the laboratory on 

day 7 however food consumption remained the same as that of the free-living days. 

 

 

 

Table 2 Relative macronutrient intake over free-living day 

Breakfast CHO/FAT/PRO %  (73%/11%/14%) 
    Carbohydrate (g.kg body mass-1) 6.28 ± 1.13 
    Fat (g.kg body mass-1) 0.95 ± 0.17 
    Protein (g.kg body mass-1) 1.22 ± 0.22 
Lunch CHO/FAT/PRO% (54%/22%/22%) 
    Carbohydrate (g.kg body mass-1) 4.62 ± 0.83 
    Fat (g.kg body mass-1) 1.84 ± 0.33 
    Protein (g.kg body mass-1) 1.88 ± 0.33 
Dinner CHO/FAT/PRO (35%/45%/18%) 
    Carbohydrate (g.kg body mass-1) 3.98 ± 0.71 
    Fat (g.kg body mass-1) 5.06 ± 0.9 
    Protein (g.kg body mass-1) 1.88± 0.55 

Values are means ± SD 
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Habitual dietary intake and anthocyanin consumption 

Habitual dietary intake was assessed using a written diary for 72 h (see table 3 for 

macronutrient and energy intake). Food diaries were analysed for total energy intake 

and macronutrient composition of the diet. At the first visit, participants also 

competed a food frequency questionnaire which listed the quantity and frequency of 

anthocyanin-containing foods and drinks compiled from the Phenol Explorer database 

(Neveu, Perez-Jimenez et al. 2010). By multiplying the anthocyanin content of the 

portion size by the total consumption frequency of each food, daily anthocyanin intake 

was calculated.  

 

 

Table 3 Daily absolute and relative macronutrient and energy intake via 72 h self-reported 
diet diary 

Carbohydrate   
  g 238 ± 71 
  g kg body mass-1 1.8 ± 0.8 
Protein  
  g 96 ± 38 
  g kg body mass-1 1.1 ± 0.4 
Fat  
  g 86 ± 36 
  g kg body mass-1 1.0 ± 0.3 
Total energy intake   
  kJ 8991 ± 2204 
  kJ kg body mass-1 101.7 ± 19.3 

Values are means ± SD 

 

Blood sample analysis 

Plasma samples were obtained through centrifugation (10 min at 3000g at 4°C) and 

stored at –80°C for subsequent analysis. Plasma glucose concentrations were 
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determined spectrophotometrically using a semi-automatic analyser in combination 

with commercially available kits (Randox Laboratories, Antrim, UK). Plasma insulin 

concentrations were determined via a commercially available enzyme linked-

immuno-sorbent-assay (ThermoFisher Scientific, UK). Each sample was analysed in 

duplicate. 

 

Data and statistical analysis 

All data are expressed as means ± SD. Statistical significance was set at the 0.05 level 

of confidence. The area under the curve (AUC) was calculated using the trapezoid 

method. From the CGMS data obtained on day 8 the 3 h AUC was calculated for each 

meal. Additionally, average glucose was calculated for the entire 24 h period 

alongside average glucose during the day (0600-0000) and during the nocturnal 

period (0000-0600).  

Glucose and insulin AUC was calculated during the OGTT using HOMA IR: 

Fasting glucose x fasting insulin / 22.5 

Additionally, Matsuda index of whole-body insulin sensitivity was also calculated  

(Matsuda and DeFronzo 1999) using the following equation: 

(10,000/√[fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]) 

Using the equations proposed by Abdul-Ghani et al. (2007), we also estimated hepatic 

and peripheral insulin sensitivity, as follows: 

Hepatic insulin sensitivity was calculated as: 
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glucose0–30[AUC] x insulin0–30[AUC] 

Peripheral insulin sensitivity was calculated as: 

(dG/dt)/ mean plasma insulin 

where dG/dt is the rate of decline in plasma glucose concentration and is calculated 

as the slope of the least square fit to the decline in plasma glucose concentration from 

peak to nadir. 

Time-dependent changes were determined using a two-way within-subjects ANOVA, 

using the factors ‘time’ and ‘condition’. Differences in AUC between conditions were 

investigated using a paired samples T-test. Significant main effects or interactions 

were assessed using Bonferroni adjustment post hoc analysis. One oral glucose 

tolerance response did not generate the typical ‘bell-shaped’ time-course and 

therefore this participant was omitted from the OGTT analysis. Therefore, all OGTT 

data is presented for n=11. 

 

3.4 Results 

Oral glucose tolerance test 

Plasma glucose  

Fasting plasma glucose concentrations were not different between conditions 

(P=0.634) (see figure 1). There was a main effect of time for glucose during the OGTT 

(P<0.001), with glucose concentrations peaking after 45 min in both conditions and 

returning to baseline by 120 min.  Moreover, a significant interaction was observed 
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(P=0.005), such that glucose concentrations were significantly lower after NZBC 

supplementation, with post hoc analysis revealing significant reductions at 45 min 

(P=0.003), 60 min (P=0.001) and 90 min (P=0.008). AUCglucose was 8% lower after NZBC 

supplementation compared to placebo (P<0.001). 

 

Plasma insulin  

Fasting plasma insulin concentrations were not different between conditions 

(P=0.226) (see figure 1). There was a main effect of time for insulin during the OGTT 

(P=0.002), with insulin concentrations peaking at 60 min in both conditions. However, 

no significant interaction was observed (P=0.696). AUCinsulin was 14% lower after NZBC 

supplementation compared to placebo (P=0.018).  

 

 

 

Markers of insulin sensitivity 

There was no significant difference in HOMA-IR between NZBC and placebo conditions 

(P=0.413). Matsuda insulin sensitivity index was 22% higher following NZBC 

supplementation compared to placebo (P=0.011). Hepatic insulin sensitivity was not 

significantly different between conditions (P=0.430), nor was there a difference in 

peripheral insulin sensitivity(P=0.426). Participants were also screened on their level 

of insulin resistance and 1 participant displayed normal insulin sensitivity, 2 showed 
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early insulin resistance (HOMA > 1.9) and the other 9 displayed significant insulin 

resistance (HOMA >2.9). 

 

Free living glucose excursions 

3 h AUCglucose concentrations were 9% lower at breakfast (P=0.010) and 8% lower at 

lunch on the free-living day (P=0.02) following NZBC supplementation compared to 

placebo. However, 3 h AUCglucose during dinner was not significantly different between 

conditions (P=0.643). Furthermore, there was no significant difference in 24 h average 

glucose (P=0.444), daytime average glucose (P=0.328) or nocturnal average glucose 

concentrations (P=0.959) was observed between conditions. 

 
Table 4 CGMS time-course glucose concentrations  

 Placebo  NZBC  
     
24 h average glucose (mmol·L-1) 5.25 ± 0.36 5.12 ± 0.38 
   
    
Daytime glucose (mmol·L-1) 5.32 ± 0.33 5.18 ± 0.33 
   
     
Nocturnal glucose (mmol·L-1) 5.00 ± 0.56 5.02 ± 0.64 
   

Values are means ± SD 
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Figure 1. Time-course of plasma glucose (A) and insulin (C) concentrations during oral glucose tolerance test, and subsequent glucose (B) and insulin AUC 

(D).  *P<0.05 vs. placebo. 

A 
B 

C 
D 



58 
 

0

1

2

3

4

5

6

7

8

9

10

0
0

:0
0

:0
0

0
3

:0
0

:0
0

0
6

:0
0

:0
0

0
9

:0
0

:0
0

1
2

:0
0

:0
0

1
5

:0
0

:0
0

1
8

:0
0

:0
0

2
1

:0
0

:0
0

0
0

:0
0

:0
0

G
lu

co
se

 m
m

o
l.L

-1

Time

Placebo NZBC

Figure 2. (A) 24 h time-course CGMS data from 00:00 to 00:00 following NZBC and placebo supplementation. Dashed lines indicate the time 
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Figure 3. (A) HOMA-IR insulin sensitivity index, (B) Matsuda insulin sensitivity index, (C) Hepatic insulin sensitivity, (D) Peripheral insulin sensitivity.  

*P<0.05 vs. placebo.  
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3.5 Discussion  

The overall aim of this study was to investigate whether short-term supplementation 

with NZBC extract can improve glycaemic control and insulin sensitivity in sedentary, 

overweight individuals. The novel observations are that short-term NZBC extract 

supplementation can 1) improve glucose and insulin responses to a glucose challenge, 

resulting in enhanced whole-body insulin sensitivity, and 2) improve postprandial 

glucose control under free-living conditions.  

Our data from the OGTT agrees with that reported by Willems, Silva et al. (2017), who 

found that after 7 days supplementation with NZBC blackcurrant powder (providing 

138.6 mg anthocyanins) both plasma glucose (8% lower at 60 min) and plasma insulin 

(18% at 30 min and 39% at 60 min) responses to a glucose challenge were reduced in 

healthy individuals. We now extend these observations to sedentary, overweight 

individuals, and importantly we report that both glucose and insulin AUC were 

reduced following 7 days supplementation with NZBC extract. Interestingly, chronic 

supplementation of anthocyanin extract seems to have a more profound effect on 

glycaemic control when compared to single, acute doses. When a single bolus of 

anthocyanin-rich puree or extract is administered prior to a glucose challenge there 

only seems to be a reduction in the early postprandial glucose response (15-45 min), 

which is followed by a rebound at ~90 min resulting in no overall change in AUC 

(Torronen, Sarkkinen et al. 2010, Torronen, Kolehmainen et al. 2012). Furthermore, 

any apparent effect of acute anthocyanin intake was absent when we investigated the 

glucose and triglyceride responses to a carbohydrate-fat meal (chapter 2), indicating 

that the benefits of acute anthocyanin intake are limited to the early postprandial 



 

61 
 

period following the ingestion of carbohydrate only. The beneficial effects of acute 

anthocyanin doses are also likely to be limited due to the very low bioavailability of 

anthocyanins in vivo (~12%). Importantly, Kay, Mazza et al. (2005) found that 

anthocyanin metabolites were present within the circulation 48 h following ingestion 

of cyanidin 3-glycosides from chokeberry extract, indicating that chronic ingestion will 

lead to a residual increase in anthocyanin (metabolite) concentration that perhaps 

lends itself to greater postprandial benefits in vivo.  

A limitation of the previous literature is the measurement of glycaemic control using 

controlled test drinks (such as an OGTT) which are clinical tests, undertaken under 

controlled laboratory-based conditions and may not be reflective of actual 

improvements in daily glycaemic control. To overcome these issues, we used CGMS to 

investigate changes in free-living postprandial glucose excursions following 

anthocyanin supplementation. We report for the first time that postprandial glucose 

responses to both breakfast and lunch were improved following NZBC 

supplementation compared to placebo in our sedentary, overweight participants. 

Notably, however, there was no difference in the postprandial glucose response to 

dinner. This is likely explained by the macronutrient content of dinner being higher in 

fat than carbohydrate (Table 2), especially when compared to both breakfast and 

lunch which had a higher proportion of calories from carbohydrate sources. It is likely 

that the high fat content within the dinner meal masked any postprandial benefit of 

anthocyanin ingestion. This has been previously suggested by us (chapter 2), and 

Edirisinghe, Banaszewski et al. (2011) who found that overweight adults who 

consumed a strawberry anthocyanin beverage alongside consumption of a high-

carbohydrate/moderate-fat meal had no changes in postprandial glucose 
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concentrations. It should also be noted that average 24 h, nocturnal and daytime 

glucose concentrations were all similar between doses indicating that the potential 

benefit of anthocyanin supplementation may reside solely in mediating the 

postprandial glycaemic response. This effect is important as elevated postprandial 

glucose responses are linked to both macro and micro vascular complications (Qiao, 

Tuomilehto et al. 2003, van Genugten, Serne et al. 2013). Fundamentally, NZBC extract 

supplementation was still capable of improving postprandial glycaemic responses to 

mixed-meals when administered under free-living conditions, highlighting the 

potential for an anthocyanin-rich product(s) to be used in individuals at risk of 

hyperglycaemic complications.  

As well as improving postprandial glucose and insulin responses, our results 

demonstrate that short-term NZBC extract supplementation also improved whole-

body insulin sensitivity, as assessed through the Matsuda insulin sensitivity index. This 

is in line with the observations of Stull, Cash et al. (2010) who determined that 6 weeks 

ingestion of a high anthocyanin blueberry smoothie twice daily improved insulin 

sensitivity. We also calculated hepatic and peripheral insulin sensitivity based on the 

equations of Abdul-Ghani, Matsuda et al. (2007), but no differences in hepatic or 

peripheral insulin sensitivity were demonstrated to exist. Therefore, it is not currently 

possible to determine whether the improvements in the postprandial glucose 

response and whole-body insulin sensitivity is related to beneficial adaptations to 

skeletal muscle or the liver.  However, given that skeletal muscle is believed to be the 

primary site for glucose disposal following a meal, it could be speculated that 

adaptations to support greater delivery and uptake of glucose into muscle will 

underpin these improvements.  In support, administration of blackcurrant juice 
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concentrate to human umbilical vein endothelial cells (HUVECs) significantly increased 

Akt and eNOS phosphorylation (Edirisinghe, Banaszewski et al. 2011). Furthermore, 

treatment of bovine artery endothelial cells (BAECs) with a comparable dose of 0.1 

µmol.L cyanidin-3-glucoside significantly enhanced eNOS protein expression (Xu, 

Ikeda et al. 2004). In addition, Matsumoto, Takenami et al. (2005) demonstrated that 

acute anthocyanin intake can increase peripheral blood flow at rest. Therefore, it is 

possible that an increase in peripheral blood flow could potentially lead to an increase 

in peripheral glucose disposal, particularly as insulin is known to facilitate its own 

glucose disposal into the skeletal muscle via increased microvascular perfusion. 

Alternatively, anthocyanin may be able to impact on the myocyte itself as it has been 

shown that root, stem and leaf extracts from Canadian lowbrush blueberry (containing 

high anthocyanin levels) significantly enhanced glucose uptake in C2C12 myocyte cells 

by 15-25% in the presence and absence of insulin after 20 h of exposure (Martineau, 

Couture et al. 2006). Importantly, because C2C12 myotubes lack a microvascular 

component, this indicates that anthocyanins could also directly mediate adaptations 

in muscle that would lead to improved glucose uptake.  In support, 3T3-L1 adipocytes 

cells which were treated with cyanidin-3-glucoside demonstrated a significant 

upregulation of GLUT4 gene expression (Inaguma, Han et al. 2011). However, caution 

should be taken as the cyanidin-3-glucoside dose provided (20 and 100 μM) is much 

larger than what would commonly be experienced in vivo. Therefore, whether 

anthocyanin has the potential to increase GLUT4 expression and translocation and 

whether this adaptation occurs in vivo is yet to be determined.  

It is well documented that an overproduction of pro-inflammatory cytokines leading 

to low-grade systemic inflammation is an important marker for the development of 
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insulin resistance (Xu, Barnes et al. 2003). Furthermore, Interventions which reduce 

plasma cytokine levels (such as weight loss) are associated with a concurrent decrease 

in insulin resistance (Ryan and Nicklas 2004). Therefore, positive improvements in 

markers of inflammation may lend itself to an increase in peripheral glucose uptake. 

Anthocyanin has previously been shown to influence markers of inflammation as 320 

mg purified anthocyanin (cyanidin-3-O-β-glucoside and delphinidin-3-O-β-glucoside) 

on 150 subjects with hypercholesteremia was capable of markedly reducing both C-

reactive protein and plasma IL-6 (Zhu, Ling et al. 2013). Taken together, it is possible 

therefore that anthocyanins lead to improvements in insulin sensitivity through a 

synergistic interaction between multiple mechanisms, although future research is 

warranted to determine this.  

A strength of this study is the use of continuous glucose monitoring systems to 

measure postprandial glycaemic responses under free-living conditions. Continuous 

glucose monitoring has been previously shown to be an effective measure in 

determining instantaneous real-time displays of glucose levels and is an effective tool 

in the management of diabetes (Rodbard 2017). There are variations in accuracy of 

CGMS monitors, however the Dexcom G4 sensor used in the present study has been 

shown to be one of the most accurate widely available CGMS devices with a mean 

absolute relative difference of ~14%, (Matuleviciene, Joseph et al. 2014). Another 

strength of this study was the very low self-reported habitual intake which provided 

an opportunity to highlight the effects of increasing anthocyanin intake through 

supplementation as habitual intake was almost non-existent. A limitation of this study 

was that due to the free-living element of the study we cannot say for certain whether 

participants followed the standardised diet provided, however fluctuations in plasma 
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glucose coincided with meal times therefore it seems unlikely that this had a 

detrimental effect. 

In conclusion, 8 days NZBC supplementation can improve postprandial glucose 

responses under dietary controlled but otherwise free-living conditions. Furthermore, 

8-day NZBC supplementation can improve postprandial glucose and insulin responses, 

alongside an improvement in ISI when subjected to an OGTT. Future studies should 

aim to determine the effects of longer duration supplementation, and whether NZBC 

can improve markers of inflammation in overweight/obese populations.  
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Chapter 4 General discussion 
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4.1 Thesis overview 

The rise in global obesity crisis can now only be described as an epidemic, with >650 

million adults worldwide classified as obese (BMI ≥30 kg∙m-2), which is expected to rise 

to 1.12 billion by 2030 (Kelly, Yang et al. 2008, WHO 2018). The Public Health England 

‘All Our Health’ resource, which aims to guide health professionals in promoting 

health and wellbeing, describes low fruit and vegetable intake, low physical activity 

and consumption of high energetic foods as major components of obesity (Public 

Health England 2018). Furthermore, in 2016 overweight and obesity-related ill-health 

was estimated to have cost the NHS £6.1 billion, with the wider economic 

development cost much higher at £27 billion (Public Health England 2017). 

Interventions aimed at reducing obesity levels through dietary modification or 

physical activity promotion have been found to be effective in reducing levels of 

obesity and its comorbidities (Poirier, Giles et al. 2006, Colberg, Sigal et al. 2016), 

however long-term adherence to these lifestyle changes is often poor (Curioni and 

Lourenco 2005). 

A major component in the progression of obesity and T2DM to further comorbidities 

is sustained periods of postprandial hyperglycaemia throughout the day (Bonora and 

Muggeo 2001). Indeed, postprandial glucose has been shown to be an independent 

risk factor for cardiovascular disease, with therapies aimed at reducing postprandial 

glucose found to be more effective than those that target improved fasting glucose at 

managing diabetic complications (Bastyr, Stuart et al. 2000). The inclusion of 

‘functional foods’ in the diet has been shown to improve outcomes associated with a 

wide range of diseases including cardiovascular disease, T2DM, cancer and 
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neurodegenerative diseases (Pandey and Rizvi 2009). It is possible that the inclusion 

of easy-to-consume dietary supplements may be an effective method of administering 

the health promoting benefits of these plant-based phytonutrients. As such, the 

overall aim of this MPhil was to investigate whether an anthocyanin-rich blackcurrant 

extract could be used to help mediate the postprandial glucose response in 

overweight/obese individuals.  Chapter 2 first aimed to investigate whether a single 

bolus of NZBC extract could improve postprandial glucose and triglyceride excursions, 

and if this was dose-dependent. Chapter 3 then attempted to determine the 

ecological validity and effectiveness of short-term NZBC extract supplementation 

using CGM alongside more typical glucose tolerance testing.  

 

4.2 Key findings 

4.2.1 Chronic supplementation with NZBC extract is required to mediate the 

postprandial glucose response  

Chapter 2 demonstrated that a single, acute dose of NZBC extract was unable to alter 

postprandial glucose or triglyceride responses to a carbohydrate-fat meal. The lack of 

response found is likely linked to the inclusion of dietary fat in the test drink, as other 

research showing positive effects have only used glucose/sucrose control loads 

(Torronen, Sarkkinen et al. 2010, Torronen, Kolehmainen et al. 2012, Castro-Acosta, 

Stone et al. 2017). Moreover, Edirisinghe, Banaszewski et al. (2011) also used a 

combined carbohydrate-fat test meal and found no beneficial effect on postprandial 

glucose responses. Interestingly however, they did find an improvement in plasma 

insulin concentrations, leading to speculation that perhaps acute doses can increase 
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insulin secretion with no change in glycaemic responses. It is also possible that acutely 

there is an inability for NZBC extract to mediate the high-fat meal indicating a potential 

fat percentage threshold within the meal at which NZBC supplementation becomes 

ineffective. It could be argued that more chronic supplementation is required to 

induce a glucose-lowering effect to a mixed-meal, and in this respect chapter 3 

provides some of the first data to support this notion. Importantly, the use of CGMS 

in chapter 3 provided an insight into glycaemic responses to mixed-meals under free-

living conditions, rather than in laboratory settings as seen in the previous literature 

(Willems et al., 2017). To our understanding this was the first investigation into the 

effect of anthocyanin supplementation on glycaemic control using CGM systems. 

Here, we were able to demonstrate that some of the masking effect fat has on glucose 

responses to a mixed-meal are overcome when more chronic periods of 

supplementation are undertaken, as evidenced by the 9% and 8% reduction in glucose 

responses to breakfast and lunch, respectively. This builds on data from others 

showing that glucose and insulin responses to a glucose challenge are improved 

following short-term blackcurrant extract supplementation (Willems et al., 2017).  

Moreover, we provide novel evidence for the efficacy of NZBC supplementation in 

overweight/obese individuals to improve postprandial responses under both 

scientifically rigid and ecologically valid conditions.  
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4.2.2 Chronic supplementation with NZBC extract improves whole-body insulin 

sensitivity 

Through the measurement of insulin during the OGTT in chapter 3, it was possible to 

estimate insulin sensitivity. While HOMA-IR was similar between doses, it should be 

noted that it only takes into consideration fasting glucose and insulin concentrations. 

Moreover, the effects of anthocyanin supplementation only seem to influence 

postprandial glycaemia, with minimal effects on fasting concentrations. Furthermore, 

Willems, Silva et al. (2017) also demonstrated an improvement in glycaemic responses 

with no change in HOMA-IR. Interestingly, in chapter 3 we observed a 22% 

improvement in Matsuda insulin sensitivity index, highlighting an improvement in 

whole-body insulin sensitivity. Importantly, this is the first data to demonstrate an 

improvement in insulin sensitivity following NZBC extract supplementation.  This 

improvement is similar to that reported in other lifestyle interventions such as drastic 

weight loss (39.5%) and exercise training (23%). However, the inclusion of a 

supplement into the diet requires less motivation and lifestyle change than exercise 

or weight loss interventions, and may therefore be more applicable to many 

individuals (Barwell, Malkova et al. 2008, Rabol, Svendsen et al. 2009).  Given that no 

changes in hepatic or peripheral insulin resistance were observed though in chapter 

3, it remains to be determined what the precise mechanism(s) are that underpin the 

improvement in whole-body insulin sensitivity.   

Taken together, the evidence provided in chapter 2 and 3 helps provide insights into 

how acute and chronic NZBC supplementation influences postprandial glucose 

responses under more ecologically valid conditions. 



 

71 
 

4.3 Lipid metabolism  

In chapter 2 blood samples were analysed spectrophotometrically to quantify plasma 

triglyceride concentrations. This analysis aimed to determine the effect of NZBC 

supplementation on fat metabolism and specifically whether NZBC extract was 

effective in reducing postprandial triglyceride concentrations. Increased fasting and 

postprandial triglyceride concentrations are commonly found within obese subjects 

(Couillard, Bergeron et al. 1998). The effect of anthocyanin on postprandial 

triglycerides has so far gone unreported in the literature, however previous research 

into acute anthocyanin doses found an inability to influence substrate metabolism 

(Edirisinghe, Banaszewski et al. 2011). This could be explained through the limited 

ability for anthocyanin to interact with lipid digestion compared to the carbohydrate 

digestive pathways.  Digested fat begins its entry into the circulation via hydrolyzation 

in the small intestinal lumen through the action of pancreatic lipase. While some 

evidence suggests anthocyanin may be capable of competitively inhibiting pancreatic 

lipase (Fabroni, Ballistreri et al. 2016), this in controversial due to the lack of increased 

faecal lipids that would be associated with a reduction in lipid digestion (Griffiths 1986, 

Tsuda 2008). Furthermore, fatty acid digestion is much slower than glucose due to a 

contraction of the pyloric sphincter region to allow for bile production for lipid 

digestion (Quigley 1941). The ability for fatty acid to enter the circulation differs from 

carbohydrate fat passing into the plasma in the form of chylomicron triacylgleride 

(TAG) and due to its hydrophobic nature, is required to be bound to albumin for 

transport thereby ignoring intestinal sugar transporters.  
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Ultimately, this helps explain why anthocyanin may be unable to interact with lipid 

digestion processes and instead may only be able to interfere with carbohydrate 

pathways.  

 

4.4 Directions for future research  

4.4.1 What are the mechanisms by which anthocyanins lead to improvements in 

insulin sensitivity 

While our understanding into the mechanisms surrounding the ability for anthocyanin 

to mediate glycaemic control have improved over the last few years, current evidence 

surrounding how anthocyanin mediates microvascular perfusion and glucose uptake 

are limited. Evidence currently suggests that anthocyanin is capable of endothelium-

dependant vasorelaxation, alongside stimulation of Ca2+ -dependant nitric oxide 

(Martin, Andriambeloson et al. 2002, Nakamura, Matsumoto et al. 2002). To fully 

investigate this, in vitro trials exposing human endothelial cells to anthocyanin extract 

may help to determine the effect anthocyanin has on eNOS expression and 

subsequent NO activity within the endothelium and to what extend anthocyanin has 

on increasing microvascular perfusion. Furthermore, currently only one study has 

attempted to investigate the effects of anthocyanin extract on peripheral blood flow 

in humans (Matsumoto, Takenami et al. 2005). Therefore, future studies in humans 

consisting of short term NZBC supplementation and its effects on microvascular 

function, including NO activity and peripheral blood flow.  
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Furthermore, anthocyanin has been shown to be capable of increasing glucose uptake 

in C2C12 myocyte cells by up to 15-25% (Martineau, Couture et al. 2006). Interestingly, 

the lack of a microvascular component within the C2C12 myocytes indicates a 

potential ability to increase GLUT4 translocation independent of an increase in 

microvascular perfusion. Therefore, the next would be to investigate the effect of 

anthocyanin on C2C12 myocyte cells to see whether anthocyanin can increase GLUT4 

expression and/or insulin-induced translocation.  Furthermore, these mechanisms 

could be investigated in human supplementation studies, by obtaining muscle 

biopsies and employing immunofluorescence microscopy assays to investigate 

endothelium-specific eNOS expression and phosphorylation  (Cocks, Shaw et al. 2013) 

as well as GLUT4 translocation (Bradley, Shaw et al. 2015). 

 

4.4.2 What is the optimal strategy to improve insulin sensitivity in T2DM  

Short-term supplementation can help mediate the postprandial glycaemic responses 

associated with carbohydrate-rich control meals and more ecologically valid mixed-

meals. Currently our understanding into the effects of long term supplementation is 

limited with our current knowledge being limited to the effects of 8-day 

supplementation. While epidemiological evidence has helped suggest that long-term 

supplementation may well be effective in the mediation of some metabolic disorders 

(Jayaprakasam, Vareed et al. 2005, Mink, Scrafford et al. 2007, Cassidy, O'Reilly et al. 

2011), it is so far unknown whether these effects manifest early in the supplemental 

period or whether these effects continue to manifest over time (6+ weeks). This is 

particularly important as while we are aware that anthocyanin metabolites can be 
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present within the circulation ~48 hours post ingestion (Czank, Cassidy et al. 2013), 

previous evidence has suggested that supplemental duration has the most profound 

effect on anthocyanin modulating responses (Hassellund, Flaa et al. 2013). Therefore, 

NZBC supplementation for a period of 6-8 weeks in overweight/obese individuals 

would help further our understanding surrounding the long-term beneficial effects of 

anthocyanin for the treatment of metabolic disorders, particularly surrounding 

whether the improvements in glycaemic control continue to increase over time or 

whether there is in fact a plateau or even a decrease glycaemic control. 

Furthermore, dosing strategies also need to be developed, particularly surrounding 

washout periods and the effects of halting NZBC supplementation alongside 

determining the minimum effective dose. While we now understand that short-term 

NZBC supplementation is more effective at modulating glycaemic responses than a 

single acute bolus, determining whether the beneficial effects on insulin sensitivity are 

also lost upon cessation of supplementation and returning to baseline need to be 

investigated. To determine this a short-term supplemental period (7 days) followed 

by a washout period in which regular blood samples are taken over the course of the 

washout period, quantifying serum anthocyanin content could be undertaken. 

Alongside this, intermittent tolerance tests could additionally be undertaken, helping 

to determine insulin sensitivity changes (if any) over the course of the washout period. 

Additionally, a comparison of weekly, equal doses of daily NZBC ingestion vs. sporadic 

ingestion (such as 2 or 3 times weekly) would determine whether daily ingestion is 

necessary in mediating postprandial responses.  Additionally, varying doses of 

anthocyanin (like chapter 2) taken for extended periods of time (7+ days) would help 
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determine whether the glycaemic benefits of NZBC supplementation continue to 

increase or whether the effects reach a dosing limit.  

Individuals suffering from T2DM regularly take medication designed to alleviate 

extended periods of hyperglycaemia. These medications can vary from reducing 

glucose entry in the gut, increasing insulin sensitivity and even insulin secretion. 

Metformin is the most commonly taken first-line, diabetic medication and works to 

increase glucose entry into the peripheral tissue through the increase in AMPK 

mediated glucose uptake without a concomitant increase in insulin secretion. A major 

downside to Metformin however, is the associated side-effects which may range from 

diarrhoea, nausea to severe abdominal pain. Therefore, determining whether 

anthocyanin ingestion may supplement or even alleviate the need for glucose 

lowering medication may help improve the lives of individuals currently suffering from 

T2DM. To test this, an investigation into the effects of NZBC supplementation on 

individuals suffering from T2DM but who are not currently taking any anti-diabetic 

medication with tolerance tests performed at the start and conclusion of 

supplementation would help to determine whether the effects of NZBC 

supplementation are effective enough at improving glycaemic control.  

 

4.4.3 The effect of blackcurrant extract on mixed diets  

The combined evidence from chapter 2 and 3 indicates an attenuation in the positive 

postprandial effects of NZBC supplementation. The data provided gives an insight into 

the potential positive effects on carbohydrate digestion after consumption of high 

carbohydrate meals. However, under free-living conditions meals often consist of 
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varying macronutrient combinations, therefore more insight into the effects of NZBC 

supplementation on mixed and high fat meals needs to be undertaken before the 

complimentary effects of NZBC on glycaemic control are properly supplementation on 

mixed-meal or high fat tolerance tests. To date no study has administered a high-fat 

or mixed meal tolerance test after chronic anthocyanin supplementation and as 

previous found, chronic supplementation has a greater benefit on overall glycaemic 

responses when tested via an OGTT (Willems, Silva et al. 2017). However, mixed meal 

tolerance tests are likely more reflective of the normal postprandial response (when 

compared to an OGTT), due to an impairment of microvascular perfusion which occurs 

during periods of acute hyperglycaemia (Russell, Hu et al. 2018). Therefore, by using 

a mixed meal tolerance test, this may provide a greater indication as to the effect 

NZBC supplementation has in increasing skeletal muscle insulin sensitivity and 

whether this explains the reported increase of whole body insulin sensitivity.  

Additionally, chapter 3 helped provide evidence that NZBC extract can improve 

glycaemic responses to high-carbohydrate meals, however further research should 

aim to determine whether individuals consuming high-fat vs. high carbohydrate meals 

still receive a postprandial benefit from NZBC supplementation. This may help 

determine whether certain individuals subscribing to dietary restrictions (in this case 

high-fat) can still benefit from NZBC supplementation or whether the free-living 

benefits are primarily restricted to individuals consuming high carbohydrate diets.   
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4.4.4 NZBC on T2DM  

While chapters 2 and 3 aimed to quantify the effects of NZBC ingestion in individuals 

at risk of developing T2DM, due to the deterioration of insulin signalling present within 

T2DM it would be useful to determine whether these metabolic improvements are 

present within this population. A major issue in the progression of T2DM to further 

complications such as CV disease is the sustained elevated hyperglycaemia (Laakso 

1999). While chapter 3 helped demonstrate the increase in whole body insulin 

sensitivity associated with short term NZBC supplementation. This increase of 22% is 

similar to that reported for other interventions such as exercise and weight loss 

(Barwell, Malkova et al. 2008, Rabol, Svendsen et al. 2009), but requires far less 

lifestyle mediation. A large percentage of individuals suffering from T2DM are aged 65 

years or over (Center for Disease Control and Prevention 2011). Due to the difficulty 

this demographic would have undertaking exercise interventions, perhaps nutritional 

interventions aimed at improving diabetic outcomes would be more effective. A 

chronic supplemental period (4-6 weeks) of NZBC on individuals suffering from T2DM 

would help provide an insight into the potential usefulness of bioactives on treating 

T2DM.  

 

4.5 Final conclusions  

The work provided within this MPhil provides solid evidence for the use of NZBC 

supplementation in the mediation of postprandial hyperglycaemia in 

overweight/obese individuals. Chapter 2 determines that a single bolus of NZBC 

extract is ineffective at improving postprandial glucose and triglyceride responses to 
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a carbohydrate-fat tolerance test. Chapter 3 demonstrates that 8-day 

supplementation is capable of improving postprandial glucose, insulin and insulin 

sensitivity to an OGTT, as well as improving daily glucose excursions under free-living 

conditions using CGMS equipment.  
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