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1. INTRODUCTION

A number of models have been published that relate different physiological processes in-
volving glial cells to calcium dynamics. De Pittà et al. [22] give an overview of current prob-
lems in the modelling of astrocytes. One area of continuing interest is the propagation of
signals between astrocytes via intercellular calcium waves. Höfer et al. [42] investigated the
spreading of signals between astrocytes via calcium waves based on a model by Sneyd et al.
[76]. Bennett et al. [8, 7] developed a more detailed model of calcium waves that combines un-
derlying calcium dynamics with ATP release by purinergic receptors in order to demonstrate
that calcium waves depend on ATP release rather than on IP3 diffusion through gap junctions
as in the model by Höfer et al. [42]. Edwards and Gibson [27] later published a model that in-
cluded both modes of signal propagation and concluded that both were necessary to account
for data collected from the retina. Recently, the study of calcium waves has been extended from
one- or two-dimensional to three-dimensional spatial domains [45]. Macdonald and Silva [50]
model wave propagation on an astrocyte network derived from experimental data. The Ben-
nett et al. model was used for investigating spreading depression, a wave of electrical silence
that propagates through the cortex and depolarises neurons and glial cells [9].

A fundamental problem in calcium dynamics in general is the question how multiple signals
can be encoded by the dynamics of a single quantity, the concentration of calcium. De Pittà
et al. [24, 20, 23] investigated how a stimulus could be encoded via the frequency or the am-
plitude or both frequency and amplitude which demonstrates that two different signals can
be represented independently in an individual calcium signal. Dupont et al. [26] showed in
a detailed model how the signal received by a particular glutamate receptor is encoded via
calcium oscillations.

Lavrentovich and Hemkin [46], Zeng et al. [87], Riera et al. [62, 63] investigated spontaneous
calcium oscillations in astrocytes and Li et al. [47] explored their role in spreading depression.

Also the coupling of astrocyte network with the neural network has been investigated. At
the single-cell level, De Pittà et al. [21] modelled the interaction of an astrocyte with a synapse.
Allegrini et al. [1], Postnov et al. [59] study the influence of a network of astrocytes on a neural
network.

Most recently, Barrack et al. [5, 6] explored the role of calcium signalling in neural develop-
ment. By coupling calcium dynamics with a model of the cell cycle they examine how glial
progenitors differentiate to neurons triggered by a calcium signal.

This review of the modelling literature on glial cells clearly demonstrates that the impor-
tance of calcium dynamics is well recognised—the majority of studies in the literature accounts
for calcium signalling and often models are used to find a link of physiological processes with
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calcium signalling. In many cell types including glial cells the inositol trisphosphate receptor
(IP3R) plays a crucial role in inducing oscillatory Ca2+ signals. In the presence of IP3, opening
of IP3R channels leads to Ca2+ release from the endoplasmic reticulum (ER), an intracellu-
lar compartment with a very high Ca2+ concentration a few orders of magnitude higher than
that of the cytoplasm. The IP3R is activated by Ca2+ so that such a release event dramatically
increases the open probability of the IP3R which induces further release of Ca2+(henceforth
called calcium-induced-calcium-release, or CICR) until a high Ca2+ concentration in the chan-
nel environment eventually inhibits the IP3R.

The Li-Rinzel model [48], an approximation of the classical De Young-Keizer model [25], is
by far the most commonly used representation of the IP3R in models of glial cells. Only Alle-
grini et al. [1] and Lavrentovich and Hemkin [46] chose different models based on Atri et al.
[3] or Tu et al. [82], respectively. Dupont et al. [26] use the model by Swillens et al. [79] that
explicitly accounts for the effect of interactions in a cluster of IP3R channels. Early models of
the IP3R were designed to account for the bell-shaped Ca2+ dependency of the open probabil-
ity pO of the channel described by Bezprozvanny et al. [10]. Since then the dynamics of IP3R
in response to varying concentrations of IP3, Ca2+ and ATP has been characterised much more
comprehensively as well as the differences between the different isoforms of the IP3R (among
the models mentioned above, in fact, only Tu et al. [82] accounts for the fact that astrocytes
predominantly express type II IP3R).

The scope of current data-driven models of ion channels has advanced beyond representing
the average open probability pO. Recent models capture the stochastic opening or closing of
single IP3Rs in aggregated Markov models i.e. instead of only modelling the stationary be-
haviour of the channel they represent the dynamics of the IP3R (Section 3.4). Accurate repre-
sentation of IP3R dynamics depends on various sources of experimental data (Sections 3.1-3.2)
as well as appropriate statistical methods for fitting Markov models to these data (Section 3.5).
Statistical methods automate the process of estimating parameters for a given Markov model.
Thus, the main challenge of data-driven ion channel modelling is to define the structure of
a Markov model which allows the integration of various sources of experimental data. We
illustrate this process with two recent examples of models for the IP3R (Sections 3.6 and 3.7).

Once a model for a single channel has been developed, data from small clusters of channels
can be used to determine how well the behaviour of a cluster is represented by an ensemble
of single-channel models (Section 4.1). Studying the influence of an IP3R model on calcium
dynamics allows us to evaluate the relative importance of different aspects of single-channel
dynamics. Cao et al. [14] showed that the essential features of calcium dynamics in airway
smooth muscle could be preserved after iteratively simplifying the IP3R model by Siekmann
et al. [73] to a two-state model that only accounted for the switching between the inactive
“park” and the active “drive” mode. In Section 4.2 it is shown that this also applies to the puff
distribution. This demonstrates that modal gating is the most important regulatory mecha-
nism of the IP3R. It also emphasises that data-driven modelling of ion channels does not nec-
essarily have to lead to detailed models based on complicated model structures but rather can
be used so that relevant data is selected to represent ion channels at the appropriate level of
complexity for a given application.

2. MATHEMATICAL MODELS OF CALCIUM DYNAMICS/CICR

The purpose of a mathematical model of CICR is to explain the emergence of complex intra-
cellular calcium dynamics such as oscillations as the result of interdependent calcium fluxes.
This comprises both fluxes into and out of the cell as well as the exchange between the cytosol
and intracellular stores (Figure 1).

The dynamics of cytosolic (c) and stored calcium (cER) resulting from these fluxes can be
represented by a system of differential equations:
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dc
dt

= JIP3R + JRyR + Jin − Jpm − JSERCA(1)

dcER

dt
= γ(JSERCA − JIP3R − JRyR)(2)

Here, Jin is calcium influx from the extracellular space via calcium channels located in the cell
membrane, Jpm accounts for calcium removed from the cell by the plasma membrane pump.
JIP3R and JRyR represent calcium release from the endoplasmic reticulum (ER) through the IP3R
and the RyR, respectively, and JSERCA stands for reuptake of calcium into the ER by the SERCA
pump. The conversion factor γ, the ratio of the cytoplasmic volume to the ER volume, is nec-
essary because calcium concentrations are calculated with respect to the different volumes of
these two compartments. The model (1), (2) provides a description of Ca2+ concentrations
across the whole cell. This means that we cannot account for spatial effects due to hetero-
geneities of the spatial distribution of IP3R, SERCA and other relevant components of the sys-
tem. By using a deterministic model we further assume that the various Ca2+ fluxes can be
described as deterministic after averaging over a large number of channels and transporters.
In Section 4 we will consider a stochastic model over a small spatial domain for a cluster of
interacting IP3Rs.

In a whole-cell model of calcium dynamics such as (1), (2), a representation of the IP3R must,
in principle, just provide a functional expression for

(3) JIP3R([IP3], [Ca2+], [ATP]),

the ligand-dependent flux through IP3R channels present in a cell. Because the calcium con-
centration [Ca2+] is time-dependent, JIP3R varies over time. In the early days of modelling of
the IP3R, phenomenological models were used for representing the IP3R flux. A good example
is the model by Atri et al. [3]:

(4) JIP3R(p, c) = Nopenk
(

µ0 +
µ1

kµ + p

)(
b +

V1c
k1 + c

)
where p = [IP3], c = [Ca2+] and Nopen is the number of open channels. The model by

De Young and Keizer [25] is derived from more detailed assumptions on chemical interactions
of the channel with its ligands. In Section 3.6 we present a more recent model [84] that is
representative for this approach. The Hill function-type terms in (4) enabled Atri et al. to
interpret their model in terms of a physical process but the main motivation of the model was
to obtain a fit of the calcium-dependent whole-cell flux JIP3R to data collected by Parys et al.
[58]. From a purely mathematical point of view, phenomenological models seem to be the
ideal approach for investigating the role of IP3R in calcium dynamics—restriction to minimal
models that generate the desired behaviour ensures that model behaviour can be analysed to
a great extent. This allows us to test hypotheses on IP3R regulation in an elegant way.

But the capability of simple mathematical expressions for the macroscopic flux JIP3R to per-
form the appropriate functional role in calcium dynamics is only a relatively indirect test for
IP3R models. By following a phenomenological approach we mostly ignore data that gives
more direct information on the IP3R, such as, for example, the molecular structure of the chan-
nel protein which can be obtained from crystallography and time series of opening and closing
of a single channel from patch-clamp recordings. Taking into account these data may allow us
to restrict the set of theoretically possible mathematical expressions and, in this way, also the
set of possible mechanism.
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3. DATA-DRIVEN MODELLING OF SINGLE IP3RS

Because most biophysical data relate to single channels, data-driven modelling involves an
important conceptual step—instead of directly specifying the whole-cell flux JIP3R, we first
construct a model for the flux through a single channel. Whereas for the macroscopic flux JIP3R
which is averaged spatially over many channels distributed across the whole cell the deter-
ministic model (3) is appropriate, representing the flux through a single channel requires a
stochastic model. In a second step, JIP3R is then derived by appropriately averaging over the
stochastic fluxes through individual channels.

In Sections 3.1 and 3.2 we describe two sources of data that are commonly used for the con-
struction of ion channel models. Ca2+ release data from small clusters of IP3R, so-called cal-
cium puffs (Section 3.3), can be used for validating models of single channels. In Section 3.4 ag-
gregated continuous-time Markov models, the mathematical framework common to all mod-
els based on single-channel data, is introduced. A short review of statistical approaches for
fitting Markov models to single-channel data is given in Section 3.5. In Sections 3.6 and 3.7
examples of two recent models of the IP3R are given in order to illustrate different modelling
approaches. Earlier models have been reviewed by [38] and Sneyd and Falcke [77]. Model
comparisons [78, 40] generally show that models not parameterised by fitting to experimen-
tal data may not do a very good job at reproducing the statistical properties of ion channel
kinetics.

3.1. Molecular structure. The mathematical structure of many ion channel models is designed
to mimic the chemical structure of the channel protein. The motivation for this approach is to
link molecular structure of the ion channel to its function.

In vertebrates there exist three different genes encoding three different types of the IP3R. In
mammals, type I IP3R is ubiquitously expressed but most cells express more than one isoform.
The predominant isoform in astrocytes is type II IP3R [69, 43]. For each isoform there are
several splice variants.

Imaging the three-dimensional structure of the complete IP3R and RyR channel proteins is
challenging and only recently have accurate 3D visualisations of complete IP3Rs using electron
cryomicroscopy (cryo-EM) become available [49]. Parts of the channel can be imaged at higher
resolution by crystallography and be superimposed on cryo-EM images [29]. These studies
have revealed that IP3R channels are tetramers i.e. formed by binding of four IP3R proteins.
These tetramers may consist of different IP3R subtypes but experimental studies have so-far
concentrated on investigating homotetramers formed by four copies of the same subtype (but
see Alzayady et al. [2]). The classical description by De Young and Keizer [25] took into account
this information by building a model from identical subunits that all had to be in an open state
for the channel to open, although the model assumed three instead of four subunits.

Analysis of the amino acid sequence by mutation experiments have assigned functional
roles to various segments, for example, the IP3 binding core (IBC) which contains an IP3 bind-
ing site has been identified. There is less information on the number and localisation of Ca2+

binding sites. Because localisation of Ca2+ binding sites by mutation studies has been dif-
ficult, Foskett et al. [31] infer various Ca2+ binding sensors from the observed co-regulation
by IP3 and Ca2+, see Foskett and Mak [30] for a summary. Often models assume a certain
number of IP3 and Ca2+ binding sites and represent binding and unbinding of these ligands
as transitions between states regulated by mass action kinetics. This modelling approach will
be described in more detail in Section 3.6.

3.2. Patch-clamp recordings. Detailed studies of individual ion channels became possible due
to the development of the patch-clamp technique. Neher and Sakmann [56] were the first to
detect the flow of ions through a single ion channel by measuring the resulting current at
constant voltage. The time-course of opening and closing can be inferred from the detected
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current which stochastically jumps between zero (closed) and one or more small non-zero
current levels in the pA range (open) whose sign depends on the valence of the ion and the
direction of the current.

Mak and Foskett [53] recently reviewed the single-channel literature of IP3R channels. An
important experimental development that they highlight relates to the difficulty that IP3Rs are
naturally localised within cells rather than in the cell membrane. Whereas in earlier patch-
clamp experiments, IP3R channels were studied in artificial lipid bilayers, more recently in-
vestigating IP3R in isolated nuclei is favoured because it is assumed that nuclei provide an
environment similar to the endoplasmic reticulum (ER), the native domain of the IP3R.

3.2.1. Stationary data. If ligand concentrations (such as IP3, Ca2+ and ATP) are kept constant
for the whole duration of the experiment we obtain stationary data. These data allow us to
observe the “typical” channel dynamics for a given combination of ligands. The reason that
we refer to these data as “stationary” is that we assume that the channel has fully adjusted to
the concentration of ligands—the term stationary suggests that the channel has reached its sta-
tionary probability distribution, see Section 3.4. Because the stationary solution is only reached
asymptotically we can, in theory, never be sure that our ion channel has actually reached equi-
librium. Instead we can check if a data set is not stationary by using indicators such as the open
probability. If the open probability averaged over a sufficient number of data points sponta-
neously changes (which indicates the switching of the channel to a different activity level) the
channel may exhibit modal gating.

3.2.2. Modal gating. Spontaneous switching between different levels of channel activity at con-
stant ligand concentrations has been observed for a long time. The earliest example is perhaps
from a classical study of the large-conductance potassium channel (BK) [52, 51]. In IP3R chan-
nels modal gating was discovered only relatively recently [44]. The authors found three differ-
ent modes characterised by high (H), intermediate (I) and low (L) levels of open probabilities,
pH

O , pI
O and pL

O. They also realised the importance of modal gating for IP3R regulation: they
observed that the same three modes seemed to exist for different combinations of ligand con-
centrations. Because the IP3R mostly seemed to adjust the time spent in each of the three
modes they proposed that modal gating is the major mechanism of ligand regulation in IP3R
channels.

One reason that the significance of modal gating has not been appreciated until recently
is due to the fact that switching between different modes cannot always be recognised eas-
ily without statistical analysis. Recently, Siekmann et al. [72] developed a statistical method
which for a given set of single-channel data detects switching between an arbitrary number
of modes Mi characterised by their respective open probabilities pMi

O . A software implemen-
tation which is publicly available under https://github.com/merlinthemagician/icmcstat.
git was applied to a large data set from Wagner and Yule [86]. Siekmann et al. [72] found that
the same two modes, an inactive “park” (ppark

O ≈ 0) and an active “drive” mode (pdrive
O ≈ 0.7),

were found across all combinations of ligands. There may be various reasons why two modes
were observed rather than the three modes found in the earlier study [44], see Siekmann et al.
[72] for more details. But more importantly, a detailed study of a bacterial potassium chan-
nel (KscA) [17, 16, 15] strongly suggests that the stochastic dynamics characteristic for each
mode may be closely related to distinct three-dimensional configurations (conformations) of
the channel. Thus, whereas it is often difficult to relate individual open or closed states in
ion channel models to distinct conformations of the channel protein, the set of model states
that represents a particular mode may, in fact, have a biophysical counterpart [72]. In order to
confirm this hypothesis, more studies of modal gating for a variety of channels are needed.

Independent from its biophysical significance, appropriately accounting for modal gating is
crucial from a modelling point of view. As we will see in Section 3.4, the phenomenon of modal
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gating demonstrates that a Markov process must be observed for a sufficiently long time in
order to infer the correct stationary distribution, otherwise we observe a “quasi-steady state”.
For example, a channel whose kinetics is restricted to an active and an inactive mode can
produce intermediate activity only by switching between both modes. Thus, a model that is
not capable of switching between different levels of activity is misleading because it produces
a constant open probability instead of alternating between highly different open probabilities.
In their recent review Mak and Foskett [53] explicitly recognise the importance of modal gating
which so far has only been represented in the most recent models [84, 73].

3.2.3. Response to rapid changes of ligand concentrations. Modal gating is an aspect of stationary
data collected at constant concentrations of ligands. In contrast, Mak et al. [54] designed an
experiment where IP3 and/or Ca2+ concentrations in the channel environment were rapidly
altered in order to simulate an instantaneous change of ligand concentrations. Switching from
ligand concentration where the IP3R is inactive to conditions where the channel is maximally
activated (and vice versa), enabled Mak et al. [54] to investigate the question how fast the IP3R
responds to varying ligand concentrations. To illustrate the experiment let us consider the
change from inhibitory to activating conditions. At an inhibitory condition, the open prob-
ability of the channel is very close to zero (pO ≈ 0) so that initially the IP3R is most likely
closed. When changing from an inhibitory to an activating condition the channel will activate
but it needs a certain time to respond to the change. In order to measure this latency, Mak
et al. [54] recorded the time the channel took from when they altered the ligand concentration
until the first opening. For the opposite change from activating to inhibitory conditions they
analogously detected the time the channel needed to switch from a high to a low level of activ-
ity. This experiment was repeated multiple times for switching between the same conditions
which enabled the authors to investigate the latency statistics. It was not only discovered that
for some conditions the latencies were surprisingly long but interestingly, they also found that
for some conditions the latency distributions were multi-modal which shows that multiple
timescales may be observed for the same latency.

Due to the substantial effort required to perform these experiments (which have to be re-
peated multiple times for each condition where each repeat only gives a single data point
rather than a time course) it is unsurprising that these data are very rare. In fact, to date, Mak
et al. [54] is the only data set of this kind currently available. Mak and Foskett [53] explain that
their data suggests that there may be long refractory periods between release events from the
same IP3R which makes these results particularly relevant for the modelling of Ca2+ puffs.

3.3. Calcium puffs. So far we have only considered data recorded from single IP3Rs. In or-
der to understand how the macroscopic flux JIP3R arises from the release of many individual
channels we have to consider the hierarchical nature of Ca2+ release. As reviewed by Parker
et al. [57], Falcke [28], Thurley et al. [80] stochastic opening of a single IP3R channel leads to
a localised Ca2+ release event (a Ca2+ blip). Such a release further sensitises neighbouring
IP3R to induce more Ca2+ release through a few tightly clustered IP3Rs by CICR (a Ca2+ puff).
Sufficiently many puffs could eventually trigger a global elevation of [Ca2+]i that is able to
propagate through the entire cell (a Ca2+ wave) [55]. Thus, Ca2+ puffs play a crucial role: not
only are they essential for the formation of functional global Ca2+ signals [12] but they also
reflect the quantal Ca2+ releases by stochastic openings of IP3R in vivo [75].

Experimentally, Ca2+ release at a specific spatial position can be initiated by triggering re-
lease of caged IP3 using a laser. A relative measure for the local Ca2+ concentration is obtained
by detecting fluorescent dye bound to Ca2+ using a light microscope. For a given point within
the cell the resulting time series is characterised by a sequence of stochastic spikes that are
highly variable as far as the spike amplitude, the frequency and the time interval between sub-
sequent spikes, the inter-puff interval, is concerned. From a modelling point of view, these

6



data can be used to test wether the single-channel behaviour represented in a model is able
to account for the release from a cluster of interacting IP3Rs. As explained in Section 4.1, Cao
et al. [13] found that the original model by Siekmann et al. [73] was incapable of generating the
correct stochastic puff distribution as long as the adaptation to different ligand concentrations
was assumed to occur instantaneously. After augmenting the model so that it accounted for
the latency data by Mak et al. [54] presented in the previous section the puff statistics could be
reproduced accurately.

The only other model that accounts for latency data is the model by Ullah et al. [84]. Because
the models by Siekmann et al. [73], Cao et al. [13] and by Ullah et al. [84] are the only models
that account for all aspects of single-channel data assumed to be necessary for an understand-
ing of the IP3R we focus on these models and the alternative modelling approaches that they
represent in Sections 3.6 and 3.7.

3.4. Aggregated continuous-time Markov models. The most natural model for the stochas-
tic process of opening and closing of a single ion channel is the aggregated continuous-time
Markov model. A good introduction to the theory reviewed here is the classical paper by
Colquhoun and Hawkes [18] which also gives some simple but illustrative examples.

An aggregated continuous-time Markov model is a graph on a set of nC closed and nO open
states S = {C1, . . . , CnC , OnC+1, . . . , OnC+nO} (Figure 2).

Between adjacent states Si and Sj the transition rate (from Si to Sj) is given by qij > 0 so
that the whole model is represented by a matrix with constant coefficients, the infinitesimal
generator Q = (qij). The time-dependent probability distribution p(t) over the state set S is
the solution of the differential equation

(5)
dp(t)

dt
= p(t)Q, p(0) = p0.

The stochastic interpretation of (5) is as follows: for a given point in time, one particular
state Si of the model is “active”. But how long it will take until the current state Si is vacated
and which state Sj will be active after a time t cannot be answered with certainty (i.e. deter-
ministically) due to the stochastic transitions between states.

For the model defined by (5) the Markov property holds both for the stochastic sequence of
active states as well as for the time that it takes until the active state is left. In fact:

(1) which state Sj will be the next active state only depends on the currently active state Si,
not on previously active states.

(2) the time tSi it takes until the model exits from the state Si, also called the sojourn time
in Si, does not depend on the time already spent in Si.

The second point implies that sojourn times tSi must be exponentially-distributed because
the exponential distribution is the only continuous probability distribution with this property.
This explains why multiple open and closed states may be needed for accurately representing
the opening and closing of ion channels.

In order to ensure that p(t) is a stochastic vector i.e. ∑nS
i=1 pi, pi ≥ 0 for all t ≥ 0, the matrix Q

must be conservative, i.e. for the diagonal elements qii we have

(6) qii = −∑
j 6=i

qij, i, j = 1, . . . , nS.

Provided that (6) holds, the solution

(7) p(t) = p0 exp(Qt),
7



is a stochastic vector for all t > 0 if and only if the initial distribution p0 is a stochastic
vector. From (7) the time-dependent open probability pO(t) of the channel can be calculated
by summing over the individual probabilities of all open states.

For large times t the solution p(t) approaches a stochastic vector π which is known as the
stationary distribution. This means that provided we wait sufficiently long, the expected fre-
quency of observing a state Si approaches a probability πi. Because p(t) is the solution of a
differential equation, π is, in fact, a stationary solution of (5) i.e. can be obtained by solving
the equation

(8) πQ = 0.

This homogeneous linear equation has non-trivial solutions because the matrix Q is singular
by (6). An argument based on Perron-Frobenius theory for non-negative matrices ensures
that π is a unique strictly positive stochastic vector. Moreover, π is stable so that for t → ∞
indeed p(t) approaches π, i.e. we have limt→∞ p(t) = π [68].

3.5. Estimation of Markov models from experimental data. Whereas the mathematical frame-
work of aggregated Markov models was developed a short time after single channel data be-
came available, the statistical estimation of these models is a topic of current research. Most
commonly used are approaches based on Bayesian statistics. For a given time series Y of open
and closed events recorded from an ion channel the conditional probability density f (Q|Y),
known as the posterior density in the Bayesian framework, is used for determining a suitable
Markov model with infinitesimal generator Q. Note that both Y and Q are considered as ran-
dom variables, thus the posterior distribution quantifies how likely a model Q is under the con-
dition that data Y have been observed. Direct calculation of the posterior distribution f (Q|Y)
is analytically intractable and computationally prohibitive but efficient approaches for maxi-
mum likelihood estimation (MLE) i.e. estimating

(9) Q̂ = argmaxQ f (Q|Y)

were published in the 1990s [60, 61, 19]. Software implementations of these methods have
been made available freely for academic use. Currently, the methods by Qin et al. [60, 61] can
be obtained under the name QUB as standalone GUI applications at http://www.qub.buffalo.
edu/. DCPROGS based on Colquhoun et al. [19] is still under active development and the source
code of the most recent version has been published on github: https://github.com/DCPROGS.

An alternative approach to maximum likelihood estimation has been pursued since the late
1990s. The aim of Markov chain Monte Carlo (MCMC) is to approximate the posterior den-
sity f (Q|Y) by sampling. MCMC enables us to randomly generate a sequence (Qk)N

k=1 of
models such that the expected frequency of a model Qk within this sequence is as large as the
density f (Qk|Y). Thus, by generating a sufficient number of samples, the posterior f (Q|Y) is
approximated.

The early method by Ball et al. [4] for estimation of a Markov model Q depends on a suit-
able idealisation of discretely sampled measurements to continuous open and closed times.
This leads to a difficult statistical problem that has been discussed widely in the ion channel
literature as the “missed events” problem. Rosales and colleagues were the first to propose
a method that directly uses the discrete measurements and thus does not require further ide-
alisation of the data [65, 64]. Their algorithm estimates a discrete-time Markov model which
describes the transition probabilities between states during a sampling interval rather than
the so-called infinitesimal generator Q. Gin et al. [36] were the first to propose a method for
estimating Q from discretely-sampled data, their method was extended to models with ar-
bitrary numbers of open and closed states by Siekmann et al. [74] and Siekmann et al. [70].
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The current version of the software implementation of this method is available on github:
https://github.com/merlinthemagician/ahmm.git. For an overview of various approaches
to statistical modelling based on single-channel data, see Gin et al. [38].

The crucial advantage of MCMC methods over MLE approaches is that uncertainties can
be comprehensively understood by analysing the posterior f (Q|Y). Already marginal dis-
tributions for individual rate constants (Figure 3) are helpful for localising and quantifying
uncertainties within a model Q.

But even more can be gained by analysing statistical relationships between combinations
of model parameters as, for example, demonstrated by Siekmann et al. [70]. An important
drawback of aggregated Markov models is non-identifiability i.e. model structures whose
parameters cannot be inferred unambiguously from experimental data. Unfortunately, non-
identifiable aggregated Markov models have not been completely classified [32, 33, 11]. But
non-identifiability can at least be detected by analysing the posterior distribution f (Q|Y) [70].
Thus, MCMC allows us to disentangle different causes of model uncertainty because it en-
ables us to distinguish between parameter uncertainties due to insufficient or noisy data from
pathologies in the structure of the model itself.

3.6. The Ullah et al. model. A common approach for selecting a model structure for an ion
channel model (which goes back at least to the classical model by De Young and Keizer [25])
is to identify the states of the Markov model with different chemical states of the channel
protein. As explained in Section 3.1, the IP3R has various binding sites that allow specific
ligands such as Ca2+ and IP3 to bind to the channel protein and induce conformational changes
of its three-dimensional structure. To account for this, model states are distinguished by how
many particles of each ligand are bound to the channel. This assumption not only determines
the state set of the model but also the possible transitions between states—in each state we can
either bind a ligand to a free binding site or remove a ligand from an occupied binding site.
The dynamics of binding and unbinding of ligands is modelled by the law of mass action so
that, in principle, the model is completely specified by the number of binding sites for each
ligand. However, in practice, such a model would be heavily overparameterised when fitted
to experimental data, so it is necessary to simplify the model.

To illustrate this with an example, consider the recent model by Ullah et al. [84] which is
representative for this approach. The model states in Figure 2c are arranged in a grid whose
coordinates are mapped by a two-digit subscript. The horizontal axis of the grid (left digit)
show how many Ca2+ molecules are bound to the channel, whereas the vertical axis of the
grid (right digit) indicates how many IP3 binding sites are occupied, and whose columns.
Thus, the position within the grid of a specific model state reflects how many Ca2+ ions and
how many IP3 molecules, respectively, are bound to the channel. For example, neither Ca2+

nor IP3 are bound to the state CL
00 in the lower left corner whereas two Ca2+ and four IP3

binding sites are occupied for the states CI
24, OI

24, CH
24 and OH

24. This is also indicated by the
subscript indices—the first digit stands for the number of Ca2+ ions whereas the second digit
accounts for the number of IP3 molecules bound to the channel. Figure 2c shows that only
a subset of eight combinations, out of twenty possible combinations of occupying Ca2+, ATP
and IP3 binding sites, appears in the model. This considerable reduction is due to the removal
of “low occupancy states”—Ullah et al. [83] developed a perturbation theory approach that
allows them to omit states with low stationary probabilities while at the same time accounting
for the delays caused by passing through these states.

The model is constructed in an iterative four step process integrating several sources of data.
In a first step, Ullah et al. [84] use Ca2+ and IP3 dependency of the average open probability pO
in order to determine a minimal set of model states. By optimising an Akaike information
criterion (AIC) score function, a model with five closed, C00, C04, C24, C32 and C34, and one
open state, O24, was selected as the best fit for the pO data.

9

https://github.com/merlinthemagician/ahmm.git


In a second step, the ligand-dependent average probabilities πL, π I and πH of being in
modes characterised by three different levels of activity as well as the open probabilities in
each mode (pL

O, pI
O and pH

O ) are used for assigning each of the six model states with a mode. At
this step, some additional states are added because, for example, the state C04 must exist both
in the low (CL

04) as well as the intermediate mode (CL
04) in order to get a good fit to the data.

To properly account for the Ca2+ dependency of pI
O, the open probability in the intermediate

mode, an additional state OI
14 had to be introduced.

In the first two steps, Ullah et al. [84] use stationary probabilities in order to determine which
states should appear in the model without considering transitions between states. In step 3 the
authors infer the transitions that are needed to account for the average sojourn times τL, τ I

and τH in the three modes whereas in step 4, data on the IP3R response to rapid changes
in Ca2+ and IP3 (latencies) is used for determining the remaining transitions. Two additional
states, CL

20 and CL
30 are introduced in order to account for the latency data.

Until this point, data is only used for determining the model structure but not for parameter
estimation. The model is finally parameterised using the latency data from Mak et al. [54] or
a combination of these data and single-channel time series obtained at three different constant
Ca2+ concentrations.

3.7. Siekmann et al. “Park-Drive” model. The main aims of the modelling study by Siek-
mann et al. [73] were first to account for switching between an inactive “park” and an active
“drive” mode observed in the data set by Wagner and Yule [86]. As mentioned by Mak et al.
[54] and Foskett and Mak [30], Mak and Foskett [53], the importance of modal gating is well-
recognised and the implications for not appropriately capturing the timescale separation of
fast opening and closing and slower switching between different activity levels is obviously
unsatisfactory from a modelling point of view.

Second, these data provided the possibility to build a model of two different mammalian
isoforms of the IP3R, type I and type II IP3R. In addition to a comparative study of type I and
type II IP3R, these data also include ligand-dependency of ATP in addition to IP3 and Ca2+.

Third, Siekmann et al. [73] followed a primarily statistical approach to inference, rather than
deriving the model from a binding scheme as the model by Ullah et al. [84] discussed above.
Based on the experience of the earlier study by Gin et al. [37] where similar data could be fitted
satisfactorily by a model with four states and only one ligand-dependent pair of rate constants,
the number of parameters required to account for binding of IP3, Ca2+ and ATP were likely to
lead to a highly overparameterised model.

Due to these considerations, Siekmann et al. [73] made the inactive “park” and the active
“drive” mode the construction principle of their model. In a first step, Markov models repre-
senting the stochastic dynamics for these two modes were constructed based on representative
segments of the time series data that were characteristic for one of the two modes. Models
with different numbers of states and model structures were fitted to these segments using the
method by Siekmann et al. [74, 70]. It was observed that the best fits for either of the two modes
across all combinations of ligands available in the large data set by Wagner and Yule [86] were
quantitatively similar. In agreement with Ionescu et al. [44], this strongly suggested that the
dynamics within park and drive modes are ligand-independent and that ligand-dependent
regulation of IP3R activity is achieved by varying the prevalence of park or drive mode.

In a second step after both park and drive mode had been modelled separately, a model
of the ligand-dependent switching between the ligand-independent modes was constructed.
The structure for the full Park-Drive model (Figure 2a) was found by connecting the Markov
models of park and drive mode obtained previously with a pair of transition rates. Due to
the infrequent switching between park and drive mode observed in the data it was decided
that adding more than a single pair of transition rates was statistically unwarranted. The full
Park-Drive model was then fitted to time series for all combinations of ligands of the study
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by Wagner and Yule [86]. The results of these fits established the ligand-dependency of modal
gating by the IP3-, Ca2+- and ATP-dependent variation of the two transition rates.

Probably the most important result of this study is that only models that take into account
modal gating are able to accurately capture IP3R kinetics. A channel whose kinetics is restricted
to an active and an inactive mode can produce intermediate activity only by switching between
both modes. Thus, a model that is not capable of switching between different levels of activity
is misleading because it produces a constant open probability instead of alternating between
highly different open probabilities. However, Cao et al. [13] showed that accounting for modal
gating alone was insufficient for modelling stochastic Ca2+ release events (puffs) that arise
from the interactions of a few IP3R channels. This study showed that the Park-Drive model has
to be augmented by latency data [54] in order to account for the delayed response of individual
channels to changes in ligand concentrations.

Constructing the Park-Drive model based on the two modes proved very useful in the study
by Cao et al. [14]. The authors iteratively reduced the Park-Drive model to a two-state model
that only approximates the dynamics of opening and closing within the modes and focuses on
the level of activity determined by the relative prevalence of the modes. This further empha-
sises that switching between park and drive mode rather than stochastic dynamics within the
modes is the most important mechanism of IP3R regulation.

3.8. Comparison of type I and type II IP3R. The experimental study by Wagner and Yule [86]
not only investigated the IP3R under a wide range of ligand conditions but also contrasted the
behaviour of type I and type II IP3R. In the models for type I and type II IP3R constructed by
Siekmann et al. [73] at a first glance the similarities between both subtypes are probably more
obvious than the differences. First of all, it is striking that both IP3R subtypes can not only be
represented in the same model structure but that active and inactive modes in both channels
are nearly identical. This indicates that both subtypes have the same modes and that their
differences are entirely due to differences in modal gating.

One difference is that type II IP3R responds more sensitively to IP3, in contrast to type I IP3R.
The most important differences between both subtypes was found to be ATP regulation, see
Wagner and Yule [86], Siekmann et al. [73] for details.

4. USING DATA-DRIVEN IP3R MODELS IN CALCIUM DYNAMICS

So far we have focused on the dynamics of individual IP3Rs. In order to investigate the role
of IP3Rs in calcium dynamics we will now consider the interaction of IP3Rs within a cluster.

4.1. Modeling calcium puffs using the Park-Drive IP3R model. There is a large literature on
stochastic models of calcium puffs for which we refer to the recent review by Rüdiger [66].
Here we present a simple model based on the Park-Drive model [73] which is based on the
following assumptions:

• The ER contains sufficiently high [Ca2+]i to keep a nearly constant Ca2+ release rate
through a cluster of IP3R [85]. Thus, ER [Ca2+]i dynamics is not explicitly modeled.
• Ca2+ fluxes through the cell membrane have little effect on the very localised Ca2+

puffs far from cell membrane.
• We compartmentalise our model to capture heterogeneity within a cluster of IP3Rs. We

assume that sufficiently far away from individual channels we have a homogeneous
basal Ca2+ concentration c =[Ca2+]i that slowly responds to the total Ca2+ flux JIP3R
through all IP3R channels. In the vicinity of an open IP3R channel this basal concentra-
tion c is elevated by a constant ch; once the channel closes it instantaneously equilibrates
to the basal concentration c.
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Furthermore, Ca2+ buffers are not considered except a Ca2+ fluorescence dye. With these
assumptions, the model is given as follows,

dc
dt

= JIP3R + Jleak −
Vdc

c + Kd
− kon(B− b)c + koffb(10)

db
dt

= kon(B− b)c− koffb(11)

where Vdc/(c + Kd) models the flux (mainly via diffusion and SERCA) removing Ca2+ from
the puff site. Jleak represents Ca2+ leak current from the ER for stabilising the resting [Ca2+]i
of 0.1µM (a typical value). B and b represent the total dye buffer concentration and Ca2+-
bound dye buffer concentration respectively, and the buffering process follows the mass action
kinetics. JIP3R is the Ca2+ flux through open IP3R, which is modeled by the production of
a constant release flux rate (Jr) and number of open IP3R channels (No), i.e. JIP3R = Jr No.
Each open IP3R will equally contribute to the elevation of cluster [Ca2+]i, c. Note that the
actual [Ca2+]i modulating each IP3R is either c, when the receptor is in closed states, or c + ch,
when it is in open states. Parameters values are Jr = 200 µM, Vd = 4000 µMs−1, Kd = 12 µM,
Jleak = 33 µMs−1, B = 20 µM, kon = 150 µMs−1, koff = 300 s−1 and ch = 120 µM [13]. The cluster
is assumed to contain 10 IP3R channels.

The Park-Drive IP3R model is used to simulate IP3R state and coupled to the deterministic
equations via a hybrid-Gillespie method [67]. However, the puff model based on the Park-
Drive model fails to reproduce nonexponential interpuff interval (IPI) distribution due to the
sole use of stationary single channel data (i.e. Ca2+ is fixed during measurement) in IP3R
model construction. This does not allow the model to capture the transient single channel
behaviour when Ca2+ experiences a rapid change [54, 13]. Thus, the Park-Drive model is
modified by incorporating time-dependent inter-mode transitions so that the transient single
channel behaviour is captured. In detail, the transition rates q24 and q42 are changed from
constants to functions of four newly-introduced gating variables,

q24 = a24 + V24(1−m24h24)(12)

q42 = a42 + V42m42h42(13)

where m24, h24, m42 and h42 are gating variables obeying

(14)
dG
dt

= λG(G∞ − G), G = m24, h24, m42, h42.

G∞ is the steady state which is a function of channel-sensed Ca2+ and IP3 concentrations and
is determined by stationary single channel data (i.e. the Park-Drive model). λG is the rate
at which the steady state is approached. This is based on the fact that a IP3R channel cannot
immediately reach its steady state upon a transient change in Ca2+ concentration [54]. The val-
ues of λG for m24, h24 and m42 are found to be large so that the three gating variables could be
approximated by their steady states i.e. G = G∞, a method called quasi-steady-state approx-
imation. However, λh42 at low [Ca2+]i should be very small, reflecting a very slow recovery
of IP3R from high Ca2+ inhibition [54]. Note that when λh42 is sufficiently large, quasi-steady-
state approximation applies and the modified IP3R model reduces to the original Park-Drive
model. Details about the functions and parameters can be seen in [13].

An example of simulation results using the modified Park-Drive model is given in Figure 4.
The waiting time between two successive puffs (or interpuff interval, IPI) is a key statistics to
quantify the underlying process governing the emergence of puffs. Figure 5 shows that, as
λh42 at low [Ca2+]i increases, the IPI distribution changes from nonexponential to exponential,
demonstrating that the missing slow time scale in the original Park-Drive model is very crucial
to explain the inhomogeneous Poisson process governing puff emergence found by (Thurley
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et al. [81]). The IPI distributions were generated by fitting the probability density function pro-
posed by Thurley et al. [81] to the simulated IPI histograms [13]. The proposed IPI distribution
is

(15) P = λ(1− e−ξt)e[−λt+λ(1−e−ξt)/ξ],

where t represent IPI. λ is the puff rate, a measure of the typical IPI (similar to average puff
frequency), and ξ is the recovery rate.

Hence, this example shows the particular importance of considering both stationary and
nonstationary data when constructing an IP3R model. However, even if a model is constructed
based on both data sets, it could also fail to reproduce Ca2+ puffs. One example is the Ullah
model [84] as introduced in Section 3.6. A model simulation using the same puff model (10),
(11) with the Ullah model is given in Fig. 6 where the Ca2+ signal behaves very irregularly and
no puffs are clearly detected.

4.2. The role of modal gating of IP3R in modulating calcium signals. The Park-Drive model
(and its modified version) has the feature that IP3R exist in two different modes, each of which
contains multiple states, some open, some closed. Intermode transitions are important for
modulating Ca2+ signals because of their ligand- and time-dependent property. However,
structure within each mode may also have substantial contribution to the formation of dif-
ferent Ca2+ signals. Here, we examine the relative importance of intermode and intramode
transitions using model reduction methods. By reducing the 6-state IP3R model to a 2-state
open/closed model, we will remove the intramodal structure, and a direct comparison be-
tween the statistics generated by the two IP3R models will show the importance of intramodal
structure.

The model reduction takes the following steps:

• The low probabilities of C1 , C3 and O5 (sum of which is less than 0.03 for any [Ca2+]i)
means that the IP3R either rarely visit those states or have very short dwell time in
those states. This allows to completely remove the three states from the 6-state model.
• Transitions q26 and q62 are far larger (about two orders of magnitude) than q24 and q42.

By taking a quasi-steady state approximation to the transition between C2 and O6, we
have O6 = C2q26/q62. Combining C2 and O6 to be a new state D, i.e. D = C2 + O6, the
6-state model becomes a 2-state model, where D represents a partially open state with
Ca2+ flux through the channel decreased by a factor of q26/(q62 + q26). Moreover, q24
needs to be rescaled by q62/(q62 + q26) due to the quasi-steady state approximation so
that the effective closing rate is q24q62/(q62 + q26).

For model simulations, the state of each IP3R is determined by the reduced IP3R model and
the equations governing the cytoplasmic calcium concentration and the calcium dye buffer re-
main Eqs. (10) and (11) except that calcium flux Jr is replaced by q26/(q26 + q62) · Jr. Parameter
values remain unchanged (Table ).

Figure 7 shows the distributions of interpuff interval, puff duration and amplitude gener-
ated by using the 6-state IP3R model (the Park-Drive model) and the reduced 2-state model.
Reducing the intramodal structure does not qualitatively change the distributions but may
lead to quantitative difference, which could be caused by missing open state O5 that signifi-
cantly contributes to the fluctuations of basal level of [Ca2+]i. However, if the IP3R channel
is not very sensitive to small fluctuations of basal [Ca2+]i, the quantitative difference is signif-
icantly reduced [14]. Thus, the fundamental process governing the generation of Ca2+ puffs
and oscillations is primarily controlled by the modal structure but not the intramodal structure
which improves the model fitting to the single-channel data.
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5. CONCLUSIONS

The IP3R plays a major role in CICR. For this reason, more and more aspects of its behaviour
have been investigated by experiments. It usually turned out that new types of data had to be
explicitly included in a model to account for them. For example, in early models such as the
De Young-Keizer model [25], the rate constants were determined by fitting to the pO observed
at different calcium concentrations. But it soon became obvious that models parameterised
with pO data could not be used for extrapolating the channel kinetics, i.e. the stochastic open-
ing and closing. See Sneyd and Falcke [77] or Ullah et al. [84] for a more detailed explanation
why it is impossible to infer kinetics from the ligand dependency of the open probability pO.

Just as kinetics cannot be inferred from pO it turned out that the response of the IP3R to
varying ligand concentrations cannot be predicted from data collected at constant ligand con-
centrations. This was demonstrated by the next generation of models that were directly fitted
to single-channel data, taking into account the stochastic process of opening and closing. The
simplest assumption for integrating models for different ligand concentration is that the IP3R
adjusts instantaneously. If this were true in practice, we could represent the channel kinetics
appropriately by simply replacing the model for the kinetics at 0.05 µM with the model for the
kinetics at 0.2 µM calcium as we increase the calcium concentration. But Cao et al. [13] showed
that only after taking into account rapid-perfusion data generated by Mak et al. [54] was the
model of Siekmann et al. [73] capable of generating the correct puff distribution.

It is important to note that taking into account more data does not necessarily have to lead
to more complicated models. Instead, after taking into account that the simpler kinetics of
modal gating should capture the part of the channel dynamics that is most important for the
functional role of the IP3R in CICR, Cao et al. [14] were able to reduce the six-state model by
Siekmann et al. [73] to a two-state model. Thus, after interpreting experimental data in the
right way, we are able to build models for the functional role of IP3R that are nearly as simple
as the early phenomenological models.

6. FUTURE WORK

After reviewing the current state of data-driven approaches to investigating the IP3R we
would like to take a look at promising future directions. In order to address the particular
importance of modal gating, Siekmann et al. [71] develop a novel hierarchical model structure
that enables us to combine Markov models that represent the stochastic switching between
modes with models that account for the characteristic opening and closing within different
modes. Thus, models for both processes can be fitted separately (e.g. using the method by
Siekmann et al. [74, 70]) after analysing the data with statistical method presented by Siekmann
et al. [72]. This allows us to build models for modal gating following a completely data-driven
approach.

More generally, we have compared two current models as representative examples for dif-
ferent modelling approaches, the Ullah et al. [84] and the Park-Drive model [73, 13, 14]. Al-
though both approaches ultimately meet in the middle, their different construction principles
impose different requirements for future progress. From a statistical point of view, representa-
tion of ligand interactions with a channel by mass action kinetics as in Ullah et al. [84] defines
a sufficiently large search space of models. It is crucial to select from this search space an
appropriately simplified model that is obtained by removing states of the full model in a con-
sistent way. A method for model reduction is provided by Ullah et al. [83] and Ullah et al. [84]
demonstrate how data can be used to statistically select from all possible simplified models. A
central principle of the biophysical approach is to design models in a way that closely follows
physical principles. In this context, the bond-graph approach to modelling ion channels by
Gawthrop and Crampin [34], Gawthrop et al. [35] is highly relevant because it ensures that
physical principles are enforced when choosing a model structure.
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For models that primarily focus on a statistically satisfying representation in a first instance,
the model selection problem arises again but in the other direction. Rather than starting from
a model structure determined by an underlying mass action model, Gin et al. [37] and Siek-
mann et al. [73] iteratively increased the number of states in their model structure until fur-
ther increasing the number of parameters appears statistically unwarranted. This process is
time-consuming and may be computationally prohibitive if models exceed a certain number
of states. Developing a method that is able to automatically compare models with an increas-
ing number of states has proven to be difficult, as indicated by the few number of studies that
have appeared on this subject after an early article on comparison of a finite number of models
[41]. A promising new direction is the non-parametric Bayesian method developed by Hines
et al. [39] which allows the authors to estimate the number of states within an ion-channel data
set. Determining the required number of open and closed states in a first step may increase
efficiency because it restricts the class of models which have to be compared in a second step.
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TABLE 1. Model parameters. IP3-dependent parameters are evaluated at a con-
centration of 0.1 µM as indicated by subscripts. Full model details are given in
Cao et al. [13].

Symbol Description Value Units
Gating kinetics

a24 Basal level of q24 29.85p=0.1 µM s−1

V24 Gating-dependent part of q24 312.85p=0.1 µM s−1

a42 Basal level of q42 0.05p=0.1 µM s−1

V42 Gating-dependent part of q42 100 s−1

λh24 Rate of approach to steady state of h24 40 s−1

n−24 Hill coefficient for Ca2+ dependency of h24∞ 0.04p=0.1 µM

k−24 Half-saturation constant for Ca2+ dependency of h24∞ 97.00p=0.1 µM

h24∞ Steady state of h24
kn−24
−24

cn−24 + kn−24
−24

ah42 Basal level of λh42 (tuning parameter) 0.5 s−1

Vh42 Ca2+-dependent part of λh42 100 s−1

Kh42 Half-saturation constant for Ca2+-dependency of λh42 20 µM

λh42 Rate of approach to steady state of h42 ah42 +
Vh42 c7

c7 + K7
h42

s−1

n−42 Hill coefficient for Ca2+ dependency of h42∞ 3.23p=0.1 µM

k−42 Half-saturation constant for Ca2+ dependency of h42∞ 0.17p=0.1 µM

h42∞ Steady state of h42
kn−42
−42

cn−42 + kn−42
−42

λm24 Rate of approach to steady state of m24 100 s−1

n24 Hill coefficient for Ca2+ dependency of m24∞ 6.31p=0.1 µM

k24 Half-saturation constant for Ca2+ dependency of m24∞ 0.549p=0.1 µM

m24∞ Steady state of m24
cn24

cn24 + kn24
24

λm42 Rate of approach to steady state of m42 100 s−1

n42 Hill coefficient for Ca2+ dependency of m42∞ 11.16p=0.1 µM

k42 Half-saturation constant for Ca2+ dependency of m42∞ 0.40p=0.1 µM

m42∞ Steady state of m42
cn42

cn42 + kn42
42

Ca2+ balance
ch Elevated Ca2+ in vicinity of open IP3R channel 120 µM

B Total buffer concentration 20 µM

kon Binding of fluo4 buffer to Ca2+ 150 µMs−1

koff Unbinding of fluo4 buffer from Ca2+ 300 s−1

Jr Flux of Ca2+ through single channel 200 µMs−1

Jleak Ca2+ influx from cluster environment 33 µMs−1

Vd Rate of cytoplasmic Ca2+ removal from the cluster 4000 µMs−1

Kd Half-saturation constant for cytoplasmic Ca2+ removal 12 µM
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FIGURE 1. General structure of calcium fluxes in glial (and other non-excitable)
cells. The central component is the flux JIPR through the inositol trisphosphate
receptor (IP3R). The IP3R is activated by binding of IP3 which is generated upon
stimulation of the cell by an agonist. This causes the release of Ca2+ from the
endoplasmic reticulum (ER) to the cytoplasm. The resulting elevated Ca2+ con-
centration increases the open probability of the IP3R and the ryanodine recep-
tor (RyR) which stimulates further Ca2+ release. This mechanism is known as
calcium induced calcium release (CICR). At high concentrations, Ca2+ inhibits
the IP3R, i.e. the open probability of the IP3R decreases. In consequence, JSERCA
influx into the ER through the SERCA pump dominates the efflux through IP3R
and RyR so that Ca2+ is reabsorbed by the ER. Ca2+ exchange with the extra-
cellular space is controlled by uptake through various channels (Jin) and by
extrusion via pumps (Jpm).
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FIGURE 2. Two examples of recent Markov models of the IP3R. Two versions
of the Park-Drive model are shown in (A) and (B) whereas the model by Ul-
lah et al. [84] is shown in (C). The original six-state Park-Drive model (A) by
Siekmann et al. [73] has been simplified by Cao et al. [14] to a two-state model
(B). As described in more detail in the main text, C1, C3 and O5 were omitted
due to their low occupancy. The two states C2 and O6 of the Drive mode were
approximated by a partially open state D which releases a ratio of q26

q26+q62
of the

flux Jr assumed to flow through a single channel. Due to the altered occupancy
of the state D the rate q24 must be corrected by the scaling factor so that we
obtain q̃24 = q24

q62
q26+q62

.
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FIGURE 3. Two examples for marginal distributions of rate constants. (a) shows
a histogram with a well-defined mean µ and a low standard deviation σ which
indicates a low level of parameter uncertainty whereas the histogram in (b)
shows a complex multi-modal distribution which shows that multiple values
of the rate constants are capable of representing the data.

19



0

2

4

c
(µ
M
)

0

5

10

15
F
/F
0

0 5 10 15 20 25 30 35 40 45 50
0

5

10

N
o

time (s)
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corresponding states. Parameter values for the puff model remain the same.
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Thurley et al. [81]. Puff amplitude distributions were fit by normal distribution.
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