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Distributed Consensus Algorithm for Events
Detection in Cyber Physical Systems

Shancang Li, Shanshan Zhao, Po Yang, Panagiotis Andriotis, Lida Xu, and Qindong Sun

Abstract—In the harsh environmental conditions of cyber
physical systems (CPS), the consensus problem seems to be one
of the central topics that affect the performance of consensus-
based applications, such as events detection, estimation, tracking,
blockchain, etc. In this paper, we investigate the events detection
based on consensus problem of CPS by means of compressed
sensing (CS) for applications such as attack detection, industrial
process monitoring, automatic alert system, and prediction for
potentially dangerous events in CPS. The edge devices in a
CPS are able to calculate a log-likelihood ratio (LLR) from local
observation for one or more events via a consensus approach
to iteratively optimize the consensus LLRs for the whole CPS
system. The information-exchange topologies are considered as
a collection of jointly connected networks and an iterative
distributed consensus algorithm is proposed to optimize the LLRs
to form a global optimal decision. Each active device in the
CPS first detects the local region and obtains a local LLR,
which then exchanges with its active neighbors. Compressed
data collection is enforced by a reliable cluster partitioning
scheme, which conserves sensing energy and prolongs network
lifetime. Then the LLR estimations are improved iteratively until
a global optimum is reached. The proposed distributed consensus
algorithm can converge fast and hence improve the reliability
with lower transmission burden and computation costs in CPS.
Simulation results demonstrated the effectiveness of the proposed
approach.

.
Index Terms—Consensus algorithm, data gathering, security

events detection, Cyber-Physical Systems, Internet of Things.

I. INTRODUCTION

Cyber-Physical-Systems (CPS) can provide a broad range of
control for complex industrial systems in the Internet of things
(IoT) environment through heterogeneous architectures of in-
tegrated sensors and devices [1]. CPS systems are expected to
be able to perform real-time operations, such as information
sensing, processing, communication and actuation by different
nodes in the CPS infrastructure. For in-network processing
techniques, such as estimation, detection, and tracking in CPS,
a compressed sensing based consensus method is introduced
for distributed detection, estimation, and tracking, which can
guarantee the performance in hash environmental conditions
such as random packet losses, asymmetry of the links, etc. [2],
[3].

Shancang Li, Shanshan Zhao and Panagiotis Andriotis are with the Univer-
sity of the West of England, Bristol, UK (Email:{shancang.li, shanshan.zhao,
panagiotis.andriotis}@uwe.ac.uk).

Po Yang is with the Liverpool John Moores University, Liverpool, UK.
(Email: P.Yang@ljmu.ac.uk).

Lida Xu is with the Old Dominion University, Norfolk, VA23529, USA.
(Email: lxu@odu.edu).

Qindong Sun is with the Xi’an University of Technology, China. (Email:
sqd@xaut.edu.cn).

It is reported that most CPS devices are not adequately
designed and more than 47% of all devices in CPS and IoT
distrust the security of CPS and IoT [4], [5]. When security
in CPS is not sufficient in even seemingly harmless devices
or systems, it presents endemic vulnerabilities and risks [4],
[6]. As a CPS consists of numerous devices, it is important
to develop reliable solutions to ensure that security is built-in
against attacks which target connected systems and devices.
The consensus is able to improve the security of all devices
in a CPS system.

Wireless Sensor Networks (WSNs) are basic CPS compo-
nents and they have been successfully utilized in events de-
tection and information collection [6], [7], [8], [9], [11], [12].
Compare with WSNs, the CPS can bring several advantages:
self-organization, real-time information exchange, collabora-
tive controlling, and reliable data consensus to events status
[11]. Through this way, CPS can be run at high efficiency yet
in low cost [12]. However, due to the unique characteristics, to
implement a CPS system involves a combination of expertise
from different professional disciplines [14], [15], [16], [17]:
(1) application background knowledge, which is required in
CPS services development; (2) smart sensor sensing expertise,
which is essential to complete a sensing task; (3) reliable
wireless communication, which is required to provide infor-
mation exchange between nodes or the equipment; and (4)
reliable networked data processing expertise, which is needed
for understanding the reliable data exchange and processing to
provide flexible and scalable networking coverage. The main
technical challenges in the CPS include [11], [12], [13], [18]:

1) Resource constraints. In CPS, many infrastructure de-
vices are designed with limited processing ability, mem-
ory, energy, and communication range. The energy and
communication limitations may restrict the coverage and
connectivity of the entire system.

2) Dynamic topologies. The topology of a CPS changes
dynamically over time due to the reconfiguration of
network or failure of links or nodes. The nodes might
work in both active and inactive mode to save energy,
which can also cause the topology to change over time.

3) Communication burden. In CPS, too high communi-
cation burden will cause high bit error rate (BER)
and degrade the performance of the networks. Thus,
the goal in communication control is to minimize the
communication burden while trying to provide sufficient
link bandwidth.

4) Data consensus in CPS. Existing centralized schemes
significantly rely on specialized routing protocols and
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require a central fusion center, making the consensus
result unstable for networks with topology changing
or node and link failures. Distributed consensus has
the advantages of improved robustness, scalability, and
efficiency.

In industry, the commonly used methods to deal with
the consensus events detection are conducted through the
centralized consensus algorithms and distributed consensus
algorithms [10]. In the context of centralized consensus al-
gorithm, fusion centers (FCs) are used to collect all nodes’
measurements (i.e., log-likelihood ratio (LLR), etc.) regarding
one or more target events and combine them to reach a final
decision [19], [20]. The fusion centers are selected depends a
number of features required by applications, such as location,
capacity, types, etc. In distributed consensus scheme, each
node is able to calculate a LLR and transmit it to the FC. For
the centralized scheme, the optimization performance depends
significantly upon the number of nodes, if local decisions can
be correctly received at the FC [8]. If measurements from
CPS nodes are not correctively received at the FC due to
multihop transmission impairments, the detection performance
at FC can be significantly affected [19]. The centralized
detection may also cause network congestion when the size of
CPS increases. On the other hand, sparse events detection is
intimately affected by the changes of topology of CPS. In this
paper, sparse events denote events that occur very infrequently
in sparse regions, but may cause quite dramatic consequences
when they do occur [16], [20], [21], [22]. Eventually, the
centralized scheme may increase the energy consumption in
CPS and might be unreliable when the hop count increases
from node to the FC [7], [16], [17].

Aiming at improving the reliability and reducing the com-
munication burden in events detection through CPS [7], [16],
[17], this paper focuses on robust events detection via a
distributed consensus algorithm in CPS, in which the active
CPS nodes can collaboratively detect events and seek to
iteratively reach a global optimum. In the iterative procedure
[8], each node is able to exchange the detection results only
with its active neighbors within transmission range. Distributed
consensus algorithms can be applied to overcome the problems
mentioned before [7], [16], [25], in which only local commu-
nications between neighboring nodes are involved. Through
the iterative updates between neighboring nodes, a consensus
global decision can be achieved at all nodes [8], where a
distributed consensus algorithm with a fast convergence rate
is needed. Furthermore, low information exchanges and trans-
mission is achieved for reliable and energy-effective detection
in CPS [8], [9], [16].

Specifically, a distributed consensus algorithm for sparse
events detection via a topology-changing CPS is proposed.
The monitoring field is represented as a measurement vector,
in which each component denotes the detection result at the
position that the node lies. Compared with nodes in a CPS,
the number of events that might occur is much smaller, which
means the measurement vector is sparse where only a few
elements are non-zeros. This feature enables the measurements
collection by using compressed sensing (CS) based methods,
for which only a few number of random sensory measure-

ments from activate nodes would be enough to accurately
reconstruct all measurements. The resolution for monitoring
can be guaranteed by solving the problem: how to obtain a
robust detection result, based on the measurements of both
active nodes and sleep nodes.

Furthermore, we address the sparse events detection prob-
lem by making the following assumptions: (1) Each node
in a CPS works in two switchable modes: active and sleep
(inactive) modes. Nodes in active mode can actively probe the
environment, and nodes in sleep mode remain idle to save
energy and they can easily switch to active mode to perform
detection; (2) The number of active nodes is much less than
those of the sleep nodes; (3) The number of events that might
occur simultaneously is much smaller than the total number
of nodes (includes active and sleep nodes) in a CPS; and (4)
The received measurements are superimposed all together from
multiple events when events might occur simultaneously. At
the beginning of deployment of a CPS, only a random number
of nodes are configured to be in sleep mode. These nodes
might be switched into active mode or kept in sleep mode
depending on the sleep strategy in topology control which is
defined by routing layer. In this paper, we skip the changes
of topologies from the issues in routing layer by focusing
on improving the reliability of detection and reducing the
transmission burden to save energy. First, we propose a jointly
connected network model, in which the continuous topology of
CPS at different time t can be modeled with jointly connected
graphs collection; then the collaborative events detection can
be formulated as a consensus optimization problem over the
jointly connected networks, which can be solved as a `1-norm
optimization problem [7], [8], [9], [16]. The nodes in active
mode can optimize the detection results for both itself and
its neighbors in sleep mode. Each active node finally reaches
consensus for the sleep node. By this way an event can be
accurately detected even when it occurs at the point where the
node is in sleep mode. The distributed consensus optimization
problem can be solved by alternative direction method and
details can be found in Section II.

The rest of the paper is organized as follows: in Section
II, a jointly connected network model is presented, and a
distributed sparse events detection problem is formulated
as a consensus optimization; in Section III, a collaborative
consensus algorithm is proposed; experiment simulations are
provided in Section IV to evaluate the effectiveness of the
proposed algorithm; Section V concludes the paper.

II. PROBLEM FORMULATION

A. Jointly Connected Networks

In a CPS, consensus means that the detected states of
multiple participants converge to the same state value for an
event. To address this problem, in this work we define each
participant as a node, and in a CPS nodes can communicate
with each other in its communicaton range. Consider a CPS
with N nodes and a fusion center (FC). The topology can be
modeled as a graph with the interconnection links between N
nodes, as G = {V, E}, in which V = {vi, i = 1, . . . , N} is
a set of locations of nodes L = {1, . . . , N}, and E denotes
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the set of edges of the graph. Let set Na consist of all nodes
in active mode, and set Ns include all nodes in sleep mode.
Then we have L = {1, . . . , N} = Na ∪Ns [20], [21], [22].

For node i, if node j lies within its transmission range and
(vi, vj) ∈ E then one can say that node i is a neighbor of
node j. All one-hop neighbors of i are contained in a set
Ni = {i|(vi, vj) ∈ E}. The FC is denoted by vertex v0. In
this case, a CPS can be represented by a graph Ḡ with V̄ =
V ∪{v0}, which includes N nodes and vertex v0 with directed
edges. Note that there may not be any connection between the
nodes and the FC at the moment. If one or more direct edges
from every node to the FC v0 can be found, then the graph Ḡ
is said to be connected graph or sample graph [25], [26].

In CPS, a union of connected graphs {Ḡ1, Ḡ2, . . . , Ḡm}(m ≥
1) that have the common vertex set V̄ are defined as a union
of simple graphs [26]. For simplicity, the union of simple
graphs are denoted as Ḡ1,...,m. It is clear that Ḡ1,...,m includes a
vertex set V̄ and the edges of Ḡ1,...,m is the union of edges of
all simple graphs. To properly describe the union of simple
graphs, a new concept is introduced as “jointly connected
graphs” {Ḡ1, . . . , Ḡm}, in which each simple graph Ḡi is a
connected graph with a common vertex set V̄ and Ei might
be different. It can be understood that a collection of jointly
connected graphs contains at least one simple connected graph
[23], [24], [26].

Theorem 1. A collection of graphs {Ḡ1, Ḡ2, . . . , Ḡm} can
be said jointly connected if its union graphs Ḡ1,...,m are
connected.

Since each graph in the collection contains v0, it guarantees
that each graph contains at least one common node [26], [27].
It should be noticed that if one or more graphs are connected
in this collection, then it is jointly connected. At a time
interval [t, τ ], if n nodes are connected and formed a collection
of simple graphs {Ḡt, Ḡt+1, . . . , Ḡτ}, then the graphs with
different topologies are said to be jointly connected.

Assume a node i is able to make a local decision to
determine the occurrence of an event at a point vi, which is
superimposed of reading from its neighboring points, and can
be modeled as

xi(t+ 1) = xi(t) +
∑

j∈Ni(t)

wijxj(t), i ∈ W (1)

in which xi(t) is LLR at node i at time t, and wij is the
weight between i and j.

For a graph that contains a number of nodes, the links
between nodes change over time and that causes change of
the topologies of the graph [28]. Let P represent a node-set,
in which all simple graphs Ḡp(p ∈ P) defined on V̄ are well
indexed.

The set of LLRs can be easily defined in a state vector form.
For each p ∈ P , define

x(t+ 1) = (Aσ + I)x(t) = Fσx(t) (2)

in which x denotes a vector of LLRs: x = [x1, x2, . . . , xN ]T

and σ : {0, 1, . . .} → P is used to represent a scheduling
signal that reconfigures the networks and hence causes changes
of topology at a specific time t (including CPS reconfiguration,

nodes or links failures, etc.), Fσ = (Aσ + I), and Ap(p ∈ P)
denotes the adjacent matrix of graph Ḡp.

In this model, σ changes as a function of locations of the
active nodes in a CPS. Actually, the convergence analysis of
this model is a very difficult task [29], [30]. We ignore the
dependencies between σ and the node positions and instead of
that σ can be any scheduling signal that is properly predefined.
By doing this, the convergence difficulty can be avoided.
The main goal is to obtain a stable global optimal decision
from all n nodes for any initial set of node local decision,
which is expected to converge to a stable state value xS .
The convergence problem of xi to xS equals to solving the
convergence problem of xS1.

For a very small P , σ remains constant make sure G is a
complete graph in p ∈ P . In this case, x can easily converge
to xS1. Let Q denote a subset of P that consists of the indices
of the connected simple graphs in collection {Ḡp, p ∈ P} [31],
[32].

Theorem 2. For a scheduling signal σ : {0, 1, 2, ...} → P , if
x(0) is given and for all t ∈ {0, 1, . . .}, σ(t) ∈ Q holds, then

lim
t→∞

x(t) = xS1 (3)

It is possible that a jointly connected collection of simple
graphs converges to a common decision, which has a less
strength than that in Theorem 2. Meanwhile, Theorem 2
requires the collection {Ḡσ(ti), Ḡσ(ti+1), . . . , Ḡσ(ti+1−1)} in
[ti, τ) to be jointly connected. For a scheduling signal σ,
Eq.(3) holds if an infinite and non-overlapping sequence of
intervals is available across which the collection is jointly
connected. It should be noted that during interval from ti to
ti+1, at least one component in Q is picked up as switching
signal.

Proof. As mentioned above, each Fp is non-negative, and all
the sums of each row of each Fp are equal to 1 (i.e., Fp1 = 1).
So the matrix Fp is stochastic and its diagonal elements are all
non-zeros. For a simple graph Ḡp(p ∈ Q), if m is sufficiently
large then all entries in (I + Ap)

m are positive. Hence both
(I + Ap)

m and Fp are primitive matrices, which means that
the largest eigenvalue of Fp for p ∈ Q is 1, and all remaining
eigenvalues must lie in (−1, 1). Then we have

lim
t→∞

F tp = 1cp (4)

for some row vector cp.
It is clear that all diagonal elements of a stochastic matrix

Fp(p ∈ Q) are positive, and they are primitive.

Theorem 3. For a finite set of ergodic matrices F =
{F1,F2, . . . ,Fm}, then for a stochastic matrix Fp ∈ M,
(Fp)i(i→∞) is a matrix of rank 1.

For simplicity, a connected graph can be used to denote a
network, and a collection of jointly connected graphs can be
used to represent a set of topologies of networks, where the
active nodes may be different for different topologies.

Lemma 1. For a set of jointly connected networks, let
{Ḡp1 , Ḡp2 , . . . , Ḡpm}({p1, p2, . . . , pm} ∈ P) denote the
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corresponding topologies, then the product of matrices
Fp1Fp2 · · ·Fpm is said ergodic.

Theorem 3 can be proved as follows:

Proof. For t ≥ 0, let Φ(t, t) = I hold and τ be an integer
between 0 and t, then we have Φ(t, τ) = Fσ(t+1) · · ·Fσ(τ−1) ·
Fσ(τ). Accordingly, a matrix θ(t) can be reformatted as θ(t) =
Φ(t, 0)θ(0). Actually Eq.(5) is enough to prove Theorem 2

lim
t→∞

Φ(t, 0) = 1c (5)

in which c denotes a row vector. According to Lemma 1,
for an integer j ≥ 0, matrix Φ(tj+1, tj) is said ergodic,
and it can be represented by a product of finite matrices
from {Fp, p ∈ P}. Accordingly, Φ(tj , 0) can be substituted
by Φ(tj , tj−1)Φ(tj−1, tj−2) · · ·Φ(t1, t0). Therefore, Φ(tj , 0)
is ergodic and we have

lim
j→∞

Φ(tj , 0) = 1c (6)

Let jt denote the largest non-negative integer that satisfies
tjt ≤ t. Accordingly, Φ(t, 0) can be represented by the product
of Φ(t, tjt) and Φ(tjt , 0), and we have

Φ(t, 0)− 1c = Φ(t, tjt) · (Φ(tjt , 0)− 1c) (7)

It can be seen that Φ(tjt , 0)→ 0 when t→∞ due to Eqs
(5) and (6), therefore Eq.(4) holds and the proof is complete.

For two non-negative matrices Fi and Fj , if all elements
of Fi − Fj are non-negative, then matrix Fi − Fj is said a
non-negative matrix.

Proof. (Lemma 1) Let a non-negative matrix F = (I +A), in
which A denotes the adjacency matrix of the collection being
jointly connected graphs {Ḡp1 , Ḡp2 , . . . , Ḡpm}. Then matrix F
is said primitive. According to Lemma 2 we have

Fp1 · Fp2 · . . . · Fpm ≥ ξ(Fp1 + Fp2 + · · ·+ Fpm) (8)

in which ξ denotes a small positive constant. Then for a
primitive matrix Fpi , Fpi ≥ (I +Api) holds, and

Fp1 · Fp2 · . . . · Fpm ≥ ξ(mI +Ap1 +Ap2 + · · ·+Apm) (9)

Since m is an integer then mI ≥ I holds and Eq.(9) is
reduced to

Fp1 · Fp2 · . . . · Fpm ≥ ξF (10)

It should be noticed that the product is bounded below by
ξF , and the product is primitive as well. As mentioned in [16],
[17] the product is also a stochastic matrix, so it is ergodic
[26], [33].

Lemma 2. For an m × m non-negative set Ai, i ∈
{1, 2, · · · ,m}, let µ denote the smallest diagonal element of
Ai and ρ denote the largest diagonal elements of Ai. We have

A1A2 · · ·Am ≥ (
µ2

2ρ
)(m−1)(A1 +A2 + · · ·+Am) (11)

Proof. This can be easily proved by writing Ai as Ai = µI+
Bi, where Bi is non-negative. For any j, k

AjAk = (µI +Bi)(µI +Bi) ≥ µ2 +
µ2

2ρ
(Bj +Bk) (12)

Since (ρI +Bj) ≥ Aj and (ρI +Bk) ≥ Ak, then we have

AjAk ≥ (
µ2

2ρ
)(Aj +Ak) (13)

Using Eq.(12) iteratively, Eq.(11) holds and the proof is
complete.

B. Jointly Connected Graphs based Consensus Algorithm

For a collection of jointly connected networks, each node
is capable of exchanging information with its active neighbors
directly and keeping all the local LLRs vector in the network
to derive a weighted average, which eventually converges to
a global decision vector [34], [35].

As proved in Theorem 2, for x(t + 1) = Fσx(t), weight
matrix Fσ features the sparsity pattern specified by the
jointly connected graphs collection {Ḡ1, Ḡ2, . . . , Ḡm} and σ :
{0, 1, . . .} → P , in which weight matrix Fσ corresponding
to the edges of connected graph. For a t-step transition matrix
Φ(t) = Fp1Fp2 · · ·Fpm , we have

x(t+ 1) = Φ(t)x(0) (14)

and according to Theorem 2, we have

lim
t→∞

Φ(t) =
1

n
11T (15)

which is equivalent to

lim
t→∞

x(t) =
( 1

n
1Tx(0)

)
1 (16)

The weight matrix satisfies the condition in Eq.(16). In prac-
tice, some links might fail permanently, however the jointly
connected scheme guarantees the long-term connectivity of
graphs [36], [37].

III. DISTRIBUTED SPARSE EVENTS DETECTION

When an event occurs around a local node vj , it might
influence its neighboring area by a non-zero influence function
wj(vj), which can be normalized to obey

∑
wj(vj) = 1

[33]. Let yi denote the measurement at point vi that is the
superposition of the influence of all events on vi. LLR will be
obtained at vj , and we have wji = wij , which is the weight
event at vi. Let εi denote the measurement noise of zero mean.
It is easy to understand that the LLRs vector x is sparse, but
the measurement vector yi can be non-sparse.

For a CPS withNa(t) active nodes andNs(t) inactive nodes
at time t, measurement yi at vi can be modeled as

yi =
∑
j∈N

Aj,ixj + εi (17)

in which Ai,j = Aj,i denotes the influence event at vi.
For node i, if node j is out of the transmission range of

i, then let Aji = 0. Accordingly, the observation yi can be
represented as yi = xi +

∑
j∈nAj,ixj + εi. Furthermore, for

a network with Na active nodes, we have

ya = ΦAx + εa (18)

in which Φ denotes the selection matrix, ya denotes the
measurement vector and εa denotes the noise, respectively.
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Here compressed sensing can be used to perfectly recover
x from measurements ya [7], [8]

min
x
‖Ax− ba‖22 + λ‖x‖1 s.t. x ≥ 0 (19)

The neighbors list of node i is denoted by Ni. Node i not
only keeps xi at vi, but also keeps measurements xk (∀k ∈
Na ∩ Ni) that is evaluated at its inactive neighboring nodes.
Actually, neighbors of i include active nodes belong toNi∩Na
and the sleep nodes belonging to Ni ∩ Ns. Then we rewrite
Eq.(19) as

min
∑
i∈Na

(
yi − x(i)i −

∑
k∈Ns∩Ni

Ak,ix
(i)
k −

∑
j∈Na

Ak,ix
(j)
j

)2
+ λ‖x‖1 (20a)

s.t. x
(i)
i ≥ 0,∀i ∈ Na, (20b)

x
(i)
k ≥ 0,∀k ∈ Ns ∩Ni (20c)

Note that here ‖x‖1 can be solved by

‖x‖1 =
∑
i

x
(i)
i +

∑
i∈Ns∪Nk

x
(i)
k (21)

in which Nk denotes the active neighboring nodes at vk and
both x(i)i and x(i)k are non-negative constraints for all decision
variables.

A. Collaborative Consensus Optimization

It is crucial to perform collaborative detection by fusing y
to obtain a global optimal estimation of the sparse decision
x. For a CPS with N = |Na| + |Ns| nodes and a FC, x
can be reconstructed from the following `1-norm optimization
formulation

min
∑
i∈Na

a2i +
∑
i

x
(i)
i +

∑
i∈Ns∩Nk

x
(i)
k (22a)

s.t. ai = yi − x(i)i −
∑

k∈Ns∪Ni

Ak,ix
(i)
k −

∑
j∈Na

Ak,ix
(j)
j

(22b)

x
(i)
i ≥ 0,∀i ∈ Na, (22c)

x
(i)
k ≥ 0,∀k ∈ Ns ∩Ni (22d)

Eq.(22) might yield a globally optimal result, in which the
linear measurements from all the nodes are centrally fused at
the FC. It is costly but easy to be implemented. Not only all
measurements, but also the measurement matrices of all nodes
need to be collected at FC.

Let J denote the number of active nodes, then the problem
reduces to J least-squares sub-optimal functions. This may
cause a very expensive computation cost when the number of
nodes increases.

min
x
‖x‖1 +

J∑
j=1

λj‖y(j) −Ax(j)‖22 (23)

where the positive parameter {λi} describes the noise re-
silience of the samples {x(j)t } and λ =

∑
j λi describes

the trade-off between noise resilience and events sparsity. As

mentioned above, the centralized fusion may cause high com-
munication burden and hence cause unstable optimal results
and high energy consumption.

A distributed consensus algorithm may overcome the draw-
backs of centralized consensus fusion, which uses only local
optimal between one-hop neighbors to iteratively estimate the
decision. In this case, each active node j keeps a local copy
of the local decision x(j)j and collaboratively consent on their
copies [16], [35]. Let G = {G1,G2, · · · ,Gm} be a collection
of jointly connected networks depicting the connectivity of
the CPS, in which each network Gi = (Vi, Ei) includes active
nodes for the set of vertices Vi(i = 1, . . . ,m) and each edge
(j, k) ∈ Ei connects an unordered pair of distinct nodes within
one-hop neighborhood. Different from the centralized fusion
formula, each node j locally performs the following consensus
optimization

min
x(j)
‖x(j)‖1 + λj‖x(j) −Ax(j)‖22 (24)

It can be seen that Eq.(24) enforces the consensus between
j and its one-hop active neighbors, which can be solved as
a LASSO problem [17], [34]. Each local LLR at an active
node is shared with its one-hop neighbors and will be updated
and percolated throughout the network after performing an
iterative consensus procedure that converges to an optimal
result. Upon convergence, all neighboring nodes will have
consented on the same globally optimal x. It can be seen
that when

∑
j

∑
k wjk = 1, Eq.(24) forces the LLR copy xj

to consent to a weighted neighboring LLR by a reminiscent
phase. Thus, the weighting matrix A can be easily obtained
by setting its (i, k)-th element as wjk by adhering to A1 = 1,
where 1 is the all-one vector.

B. Distributed Consensus Implementation via the Alternating
Direction Method of Multipliers

The iterative optimization can be implemented via the
global consensus discussed above. For Eq.(24), an augmented
Lagrangian function can be created as

L
(
x(j), λj , zj , {x(j)}

)
= ‖y(j) −A(j)x(j)‖22 + zTj x(j)

+
β

2
‖x(j) −

∑
k∈Nj

wjkx
(k)‖22 (25)

where zj denotes a Largrangian operator, and β denotes the
augmented Lagrangian multipliers in the consensus optimiza-
tion constraints. zTj x(j) is applied to guarantee that Eq.(25) is
fulfilled by properly setting zT (x(j) −

∑
k∈Nj

wjkx
(k)) = 0.

By using the alternating direction of multipliers, each node
can update x(j)(t) by iteratively solving

x(j) = argmin
x(j)
L
(
x(j), λj , zj , {x(j)}

)
(26)

in which the multipliers can be updated via a gradient-based
iteration

z(j)(t) = z(j)(t− 1) +
β

2

(
x(j) −

∑
k∈Nj

wjkx
(k)
)

(27)
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Algorithm 1: Distributed Fusion Algorithm

Input: Each node calculates LLR as x
(j)
t , sets λj and c

empirically, initializes estimate x(j)(0) = 0 and
local multiplier vector z(j)(0) = 0. Let T be the
maximum number of iterations and e be the
tolerable deviation, both are at convergence
conditions.

Output: Algorithm converges to an optimal result and
each node obtains the global estimation
x = x(j)(T ),∀j ∈ N .

repeat
All nodes update z(j)(t) and x

(j)
t via Eqs (26) and

(27), ∀j;
All nodes transmit x

(j)
t (t+ 1) to their one-hop

neighbors in Nj ,∀j;
t← t+ 1.

until t > T or ‖x(j)
t (t+ 1)− x

(j)
t (t)‖ ≤ e;

In Eqs (26) and (27), the iterative steps constitute a dis-
tributed scheme, and details can be found in Algorithm 1.

In the t-th iteration, a node j first collects x(j) from its
one-hop neighbors k ∈ Ni, which is then used to update
the local multiplier vector z(j)(t) as described in Eq.(27). By
doing this, Eq.(26) can be solved as a quadratic optimization
problem and the updated local LLR estimation x(j)(t + 1)
will be yielded. Then, all nodes locally update the decision
and exchange the sparse estimation x(j)(t+1) with their one-
hop neighbors. This procedure repeats until converged to the
specific condition.

During iterations, nodes are not required to synchronize the
measurements, which makes it easily implemented in a large-
scale CPS. The convergence of Algorithm 1 can be proved as
follows:

Proof. In [17], the iterative alternating direction method have
been proved to converge to a minimizer of Eq.(26) for any
positive constant β.

IV. PERFORMANCE EVALUATION

In this section, a CPS will be created to perform the
sparse events detection using proposed distributed consensus
algorithm. Considering an event detection scheme in a small
network with 5 nodes (ni, i = 1, . . . , 5), which are deployed
in a two-dimensional area and the distance between two
neighboring nodes is 20, and communication range is 50 as
shown in Fig.1.

It can be seen that the neighbor-set of n1 includes nodes
{n2, n3}. Similarly, n2 has a neighbor-set as {n1, n3, n4}, n3
has a neighbor-set as {n1, n2, n4, n5}, n4 has a neighbor-
set as {n2, n3, n5}, and n5 has a neighbor-set as {n3, n4},
respectively. As mentioned in Section III, each node does not
only hold its local decision, but also holds the decisions of its
neighbors (both active and sleep neighbors). Let ci denote the
possibility that event might occur at the position that ni lies
(vi), and all five nodes are in active mode. Assume that three
events occurred at v1, v3, and v5, respectively. The detection

Fig. 1. Consensus algorithm on 5 active nodes

TABLE I
DETECTION RESULTS AFTER 200 ITERATIONS

c1 c2 c3 c4 c5
n1 1.000 0.000 0.9987 N/A N/A
n2 1.000 0.000 1.000 0.000 N/A
n3 1.000 0.000 1.000 0.000 0.9918
n4 N/A 0.000 1.000 0.000 1.000
n5 N/A N/A 0.9991 0.000 1.000

results from all five nodes are reported in Table I, where the
possibilities of events occurred are reported and N/A means
that the detection is not available. For example, node n1 can
successfully detect events occurred at n1, n2, n3, but cannot
detect events occurred at n4 and n5. It is reasonable that nodes
n1, n2, and n3 are in the neighbors list of n1.

Fig.2 presents the optimization results when all nodes are
active vs the number of iterations. In practice, in order to save
energy not all nodes are in active mode. Assume the distance
between these nodes is 20 and the transmission range is 25.
Let nodes n2 and n4 be in sleep mode, then the consensus
algorithm can only be performed on nodes n1, n2, and n3, and
can report the decision results. However, as discussed above,
the active nodes are able to report the decision result by itself.
Meanwhile its neighboring active nodes are able to report the
decision results of its neighboring inactive nodes. In Fig.3, n1
has an inactive neighboring node n2, node n3 has two inactive
neighboring nodes {n2, n4}, and n5 has an inactive neighbor
n4, respectively.

Table II depicts the detection results of CPS with 3 active
nodes and 2 inactive nodes, where each node is able to keep its
local decision and decisions of its one-hop neighbors. It can be
seen that the decision results converge to 0.9967 for c1, 0.9989
for c3, and 0.9971 for c5, respectively. The decisions near to
1 converged faster than the above scenario. It is due to the
fact that each active node holds a small number of neighbors.
Fig.4 shows the optimization results at node n1, n3, and n5,
when events c1, c3, and c5 occurred at n1 and n3, and n5.
Nodes n2 and n4 are inactive.

TABLE II
DETECTION RESULTS AFTER 50 ITERATIONS

c1 c2 c3 c4 c5
n1 0.9967 0.001 N/A N/A N/A
n3 N/A 0.000 0.9989 0.000 N/A
n5 N/A N/A N/A 0.000 0.9971
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(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n2 vs Iteration number

(c) Consensus result at n3 vs Iteration number

(d) Consensus result at n4 vs Iteration number

(e) Consensus result at n5 vs Iteration number

Fig. 2. Consensus algorithm on 5 active nodes

Fig. 3. Consensus algorithm on 3 active nodes and 2 inactive nodes

(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n3 vs Iteration number

(c) Consensus result at n5 vs Iteration number

Fig. 4. Consensus algorithm on 3 active nodes vs Iteration number
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Fig. 5. Consensus algorithm on 3 active nodes

In order to evaluate the performance of sparse events
detection in a large CPS, we create a network with 50 nodes.
Consider 50 nodes are randomly deployed in a normalized
square, as shown in Fig.5. Nodes are connected with its
neighbors if its neighbors are within the transmission range. If
the graph (network) is not connected, the locations of nodes
are re-generated randomly until the graph is connected. In
Fig.5, four active nodes n1, n2, n3, and n4 are located at
points v47, v17, v30, and n38, respectively. Assume events c1
and c2 occur at v47 and v30, respectively. Fig.6 shows the
detection results at active nodes n1, n2, n3, and n4. At node
n1, the events c1 and c2 are successfully detected as shown in
Fig.6(a). In Fig.6(b) n2 successfully detected the occurrence
of c1, c2, and c3 since node n1 and n2 are its neighbors. Since
the status of c3 and c4 are 0, which means no event occurred at
v3 and v4, however nodes n3 and n4 successfully reported its
neighbors’ detection results, as shown in Fig.6(c) and Fig.6(d).

In this work, the following normalized mean squared error
(MNSE) is used to evaluate the performance of decision
making

NMSE =
E[||x̂− x||2]

E[||x||2]
(28)

Fig.7 shows the NMSE of decision results made by node
n1 in Fig.5 (the NMSE values obtained by simulations of
100 runs), where N1 denotes the MNSE results when c1 is
made, N2 denotes the MNSE results when c2 is made, and
N3 denotes the MNSE results when c3 is made, respectively.

V. DISCUSSION

This paper proposes a simple but compelling jointly con-
nected graph model for topology-changing CPS, which can
significantly improve the reliability of distributed consensus
decision-making. Although several decentralized consensus
schemes have been reported in [19], [37], [20], however
most of them are developed for decentralized in-networking
consensus without supporting the changes of topologies of
WSNs. This paper uses the idea of consensus optimization
and compressed sensing to develop a distributed consensus

events detection scheme by exploiting sparsity, which has the
following key differentiating features:

(1) This scheme can still perform consensus optimization
when the topology dynamically changes, which avoids the
reconfiguration of CPS caused by the switch of node work
model (between active and sleep modes). This feature signifi-
cantly increases the reliability of CPS and decreases the power
consumption in network reconfiguration and re-organization.

(2) Different from the existing distributed consensus scheme
reported in [19], [37], [20], where each node holds a local
decision vector of the whole network, it is too costly for
each node in a large network. In our scheme, each active
node holds an LLR vector for itself and its inactive neighbors.
This significantly reduces the computation and communication
costs per node, and improves the reliability and scalability of
the algorithm for a CPS with a large number of nodes.

(3) The proposed scheme exploits compressed sensing to
recover LLRs by distributive joint sparsity local estimations.
This can improve the reliability of consensus optimization by
tolerating the failure of nodes or links without causing the
reconfiguration or rebuilding of CPS.

VI. CONCLUSION

This paper proposed an iterative distributed consensus al-
gorithm that can be employed for sparse events detection in
CPS, which was originally derived for achieving consensus by
providing each node the full detection information even when
the topologies change. Each node is able to iteratively calculate
the LLR of itself and LLRs of neighbors by communicating
with the neighboring active nodes. Using the notion of com-
pressed sensing, the estimation of decision can be converged
faster. The numerical results showed that the estimation of
sparse events detection can be successful calculated with the
proposed distributed consensus algorithm.
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(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n2 vs Iteration number

(c) Consensus result at n3 vs Iteration number

(d) Consensus result at n4 vs Iteration number

Fig. 6. Consensus algorithm on 4 active nodes vs Iteration number
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