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ABSTRACT This research concerns the detection of abnormal data usage and unauthorised access in 

large-scale critical networks, specifically healthcare infrastructures. Hospitals in the UK are now 

connecting their traditionally isolated equipment on a large scale to Internet-enabled networks to enable 

remote data access. This step-change makes sensitive data accessible to a broader spectrum of users. The 

focus of this research is on the safeguarding of Electronic Patient Record (EPR) systems in particular. With 

over 83% of hospitals adopting EPRs, access to this healthcare data needs to be proactively monitored for 

malicious activity. Hospitals must maintain patient trust and ensure that the information security principles 

of Integrity, Availability and Confidentiality are applied to EPR data. Access to EPR is often heavily 

audited within healthcare infrastructures. However, this data is regularly left untouched in a data silo and 

only ever accessed on an ad hoc basis. Without proactive monitoring of audit records, data breaches may go 

undetected. In addition, external threats, such as phishing or social engineering techniques to acquire a 

clinician’s logon credentials, need to be identified. Data behaviour within healthcare infrastructures 

therefore needs to be proactively monitored for malicious, erratic or unusual activity. This paper presents a 

system that employs a density-based local outlier detection model. The system is intended to add to the 

defence-in-depth of healthcare infrastructures. Patterns in EPR data are extracted to profile user behaviour 

and device interactions in order to detect and visualize anomalous activities. The system is able to detect 

144 anomalous behaviours in an unlabelled dataset of 1,007,727 audit logs. This includes 0.66% of the 

users on the system, 0.17% of patient record accesses, 0.74% of routine accesses, and 0.53% of the devices 

used in a specialist Liverpool (UK) hospital.  

INDEX TERMS Data Analysis, Electronic Patient Records, Healthcare Infrastructures, Information 

Security, Patient Privacy, Visualisation,

I. INTRODUCTION 

The health sector consistently receives the highest number of 

reported data security incidents [1], as the EPR data within 

represents some of the most sensitive and valuable data 

available. At the time of writing this paper, patient privacy 

within EPR systems is typically enforced through corrective 

mechanisms, managed through role-based access [2]. 

However, once a user has been authenticated, they are 

essentially afforded unhindered access. The wealth of 

personal information held is intrinsically valuable on the 

black market, often used for committing identity fraud. 

There is also a tendency for organisational complacency 

within healthcare towards patient privacy violations [3]. 

Recent attacks, such as the WannaCry campaign [4], have 

further reduced the levels of public trust in security leading to 

widespread concern about the health sector’s ability to 

maintain the privacy of patient data. Bell-LaPadula [5], and 

FairWarning [6], are the staple access control systems 

employed but are i) inflexible, presenting issues when 

considering the dynamic boundaries of many modern 

healthcare networks and ii) do not compensate for an attacker 

who has acquired the logon credentials of an approved 

clinician (e.g. through phishing or social engineering). This 

has been a challenge for security experts for many years, 

referred to as a plain recognition problem [7], Information 

Security Officers and IT Managers need to interpret disparate 

data behaviours to preserve privacy and safeguard EPR data 

[8]. They constantly balance privacy with a need for more 

intuitive security solutions. Therefore, confidentiality and 

patient privacy within EPR systems is typically managed 

through an agreed and signed code of practice between the 

organisation and its users [9]. 
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Patients need to be assured of three crucial security 

principles 1) the data stored is trustworthy and accurate. 2) 

Data can be reliably accessed by healthcare professionals 

when needed. 3) Only authorised healthcare professionals 

have access to the data, and only access it when it is 

appropriate to do so. Issues also surround data being 

exchanged across multiple countries that have different laws 

and regulations concerning data traversal, protection 

requirements, and privacy laws. 

The UK, specifically, is a significant contributor to data 

privacy and cyber security research with the establishment of 

14 cyber-security Centres of Excellence from 2011 to 2017 

[10], in addition to the formation of the Malvern Cyber 

Security Cluster in 2011 [11] and the North West Cyber 

Security Cluster in 2014 [12], as examples. The UK 

government does invest into cyber-security schemes, such as 

the £1.9billion investment into the national cyber security 

strategy, aiming to make the UK one of the safest places in 

the world to do business [13]. Yet within healthcare 

infrastructure, privacy and security are still seen as a 

secondary consideration, though the importance to establish 

data access regulations is imminent due to the geographical 

requirements for healthcare data being stored. Compliance 

with NHS guidelines, the Information Governance Toolkit, 

internal audit processes and information security standards 

(e.g. ISO27001 and ISO27002) is an additional concern to 

adhere to. 

The research presented in this paper demonstrates a 

system that utilises density-based outlier detection 

techniques and an advanced visualisation approach to 

safeguard patient privacy within EPR systems. Density-

based outlier detection can identify when a user’s behaviour 

has changed, by comparing behaviours, such as the type of 

actions being taken and the patients they are viewing. In 

this way, potentially illegitimate access to patient records 

can be highlighted and investigated. 

The remainder of this paper is as follows. Section II 

presents background research on patient privacy within 

EPR systems, the complexity of EPR data and the network 

structures in a typical UK hospital. Section III outlines the 

methodology and systematic approach. Section IV discusses 

our results and a case study. Section V outlines our 

conclusions and the future work to be done.  

 
II. BACKGROUND 

Machine learning algorithms observe and learn data 

patterns and profile users’ behaviour, which can then be 

denoted. Combined with cloud infrastructure and data 

visualisation, the way large datasets are understood is being 

transformed, allowing extraction of otherwise unobtainable 

meaning from vast quantities of information. This is now a 

proven approach for detecting zero day attacks and 

uncovering unknown threats [14]. There is a large volume 

of literature concerning big-data-based privacy-preserving 

machine learning algorithms. Genetics-based machine 

learning (GBML) [15], clustering fuzzy rule-based 

classifiers [16] and Linear Support Vector Machines 

(SVMs) [17] are examples of the general conventional 

means of choice for researchers. Further to this, DarkTrace 

[18], based in the UK, is among the world’s most advanced 

machine learning technologies for cyber defence and an 

advocate for using AI for safeguarding critical systems. 

Their Enterprise Immune System demonstrates the 

effectiveness of switching the security perimeter from an 

external ‘wall’ to an internal-facing adaptive model to 

improve security systems, threat detection and enhances the 

levels of data privacy. 

DarkTrace is testament to the fact that cyber-security 

techniques are trending towards the use of 

reactive/proactive systems rather than passive detection in 

order to deter attacks. Machine learning and data 

visualisation techniques are the technique of choice for 

establishing this security evolution. The concept is that 

security systems should respond to unknown intrusions, 

much like an organic-immune system. 

A. HOSPITAL NETWORKS 

Introducing complex machine learning algorithms to 

interpret patterns of behaviour in hospital networks is a 

considerable challenge. With healthcare networks, devices 

(medical, clinical and personal) are connected to global 

networks for convenient access using platforms, such as 

HomeLinks. Typically, modern healthcare networks are 

overly complex systems, with hospitals having their own 

unique structure. As an example, Figure 1 displays the data 

connections for the Active Directory Domain Controller 

(DC), Electronic Prescribing (EP) and Patient Administration 

System (PAS) at a Liverpool-based hospital. 

 

FIGURE 1.  Data connections for DC, EP and PAS systems at a 
Liverpool (UK) specialist hospital depicted by the Yifan Hu algorithm 

In Figure 1, a layout algorithm displays the data 

connections for DC, EP and PAS within a Liverpool 

Hospital network, demonstrating the complexity of the 

network data being analysed existing security applications 

(such as the IDS). In this case the Yifan Hu algorithm [19] 

is used to model the data connections. This is an approach 

typically used to present network data movement [20]. 

However, the data collected is only a snapshot of the 

network infrastructure using the network statistics (netstat) 

command-line in order to capture incoming and outgoing 
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Transmission Control Protocol (TCP) Data. The DC data 

comprises 590 established connections of 5688 total ports. 

The EP data comprises18 established connections of 88 

total ports. The PAS data comprises 93 established 

connections of 173 total ports. The level of nodes and 

connectivity patterns demonstrate the challenge involved 

for data auditing and uncovering zero-day attacks, network 

weakness/flaws and emerging threats. The problem of 

enabling non-expert users to trust that the systems they use 

are secure when they do not have the technical capability to 

assess it themselves is not an easy problem to solve. 

B. EPR DATA IN HOSPITAL NETWORKS 

A sample of EPR data is presented in Table I. The full 

dataset contains 1,007,727 rows of audit logs. 

TABLE I 

EPR AUDIT SAMPLE DATA 

Date & Time Device ID User ID Routine Description Patient ID Duration (sec) Adm Date Dis Date 

16/02/28 00:00 362 865 Pharmacy Orders 58991 54 28-02-16 29-02-16 

16/02/28 00:02 923 199 Recent Clinical Results: (Departmental Reports).View Orders 17278 77 15-02-16 15-02-16 

16/02/28 00:02 103 677 Assessment Forms 4786 13 22-07-08 22-07-08 

16/02/28 00:02 103 677 Assessment Forms 4786 54 22-07-08 22-07-08 

16/02/28 00:04 923 199 Recent Clinical Results. View Orders 62121 147 08-02-16 08-02-16 

16/02/28 00:04 103 677 Assessment Forms | Visit History 14067 39 28-09-04 28-09-04 

16/02/28 00:04 845 1489 Pharmacy Orders 49304 22 23-01-02 23-01-02 

16/02/28 00:10 748 797 Recent Clinical Results: (Departmental Reports) 2166 20 28-01-16 28-01-16 

The data used in this research is from a specialist hospital. 

A large teaching hospital would have approximately 4 times 

the number of staff and would therefore have a proportional 

increase in data quantity. The task of navigating this data for 

anomalous activity is therefore considerable. 

The dataset presented consists of the following fields. 1) 

Date & Time: The date/time the patient record was accessed; 

2) Device (Tokenised): The name of the device the patient 

record was accessed on; 3) User ID (Tokenised): A tokenised 

representation of the User who accessed the patient record; 4) 

Routine: The routine performed whilst accessing the patient 

record (was the record updated, was a letter printed etc.); 5) 

Patient ID (Tokenised): A tokenised representation of the 

patient record that was accessed; 6) Duration: The number of 

seconds the patient record is accessed for (this number counts 

for as long as the record is on the screen, so may not always 

be an accurate reflection of how long the User was actively 

interacting with the data); 7) Latest Adm Date: The date the 

patient is last admitted to the hospital and 8) Latest Dis Date: 

The date the patient is last discharged from the hospital. 

From datasets such as this, usage patterns of the data 

access can be derived. For example, Figure 2 displays a 

comparison of the durations of routine activity for each user. 

The graph is extracted from a dataset of 1,515 unique User 

IDs and 72,878 unique Patient IDs. The visualisation is 

constructed using a logarithmic algorithm, outlined in (6). 

𝑓(𝑥) = 𝑙𝑜𝑔𝑏(𝑥) 

(6) 

Where the base b logarithm of x is equal to f(x). In this 

sense, a logarithmic heat-map is appropriate as the log scales 

enable a significant range of coefficients to be displayed.  

 

FIGURE 2.  Heat-maps (logarithmic) comparing 1million rows of ID data 
to the duration of the patient record access 

Lower-scale values are not compressed down into the 

congested section of the graph where the unique values 

would be challenging to identify. 

The graph shows a consistent point density of up to 47,341 

patient records in the first row of the matrix, indicating that 

the majority of patient records are only accessed for fewer 

than 300 seconds (5 minutes). This would represent normal 

(expected) behaviour within the hospital (as revealed in 

consultation with the hospital). Whereas, 6 clusters (A-F) 

require investigation, as they represent users performing 

routines for over 16,000 seconds (4.44 hours), which would 

be classed as abnormal (unexpected) behaviour. This 

observation was identified by the Information Security 

Manager at the hospital that provided the dataset. 

Representing the data as a logarithmic heat-map is a clear 

approach for identifying data points of interest. However, the 

density of the dataset prohibits valuable insights from being 
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derived, and a real-time graph would be inefficient. The 

quantity of data prohibits all the data points from being 

visualised. In the following section, data normalisation, 

feature extraction and machine learning algorithms are 

applied to the dataset to detect abnormal EPR access. Once 

the dataset has been administered by these algorithms, 

visualisation techniques are applied. In doing so, the 

situational awareness of a patient privacy officer is enhanced. 

III. METHODOLOGY 

The research is timely due to i) a fundamental switch in 

the technology being used by beneficiaries within health care 

infrastructures; [21] ii) the increased need for 24-hour data 

access; iii) GPs increasingly using Virtual Private Networks 

(VPN) and 3G connections; iv) Most UK hospitals have/are 

upgrading online EMIS-web, EMIS Health is used by over 

half of GP practices across the country and EMIS-Web 

allows hospitals access to primary care, secondary care and 

mental health data vi) more patient remote monitoring is 

taking security outside hospitals. Such trends reduce security 

levels and increases access to hospital networks and exposed 

APIs. 

The contribution of this research, (the novelty is further 

outlined in [22][4]) involves the use of Local Outlier Factor 

(LOF)-based data analytics techniques, an analyst-in-the-

loop and visualisation to safeguard EPR data. The system 

provides contextual awareness to detect anomalous 

behaviour within EPR audit activity, using the following 

multi-stage process:  

A. DATA PRE-PROCESSING 

In order to provide a meaningful visualisation, the dataset 

first undertakes a pre-processing phase. The audit data is 

stored by the EPR and captures every user interaction. Data 

is extracted into comma separated values format and stored 

in a database. 

1) FEATURE EXTRACTION 

Features of the EPR audit data are extracted for the LOF 

classification process. During the pre-processing stage, a 

statistical features based approach is implemented [23]. Four 

measures of central tendency’ are calculated through the 

Frequency, Mean, Median and Mode feature extraction 

process. Five measures of variability are calculated through 

the Standard Deviation, Minimum, Maximum, 1
st
 Quartile 

and 3
rd

 Quartile features. Finally, two measures of position 

are calculated through the 5
th
 Percentile and 95

th
 Percentile 

features.  

The resulting eleven features are extracted from the dataset 

for each ID (User, Patient, Device and Routine). Table II 

displays the features selected, with an accompanying 

description. 

 

 

 

 

TABLE II 

DATASET FEATURE NAMES AND DESCRIPTIONS 

Feature 
Name 

Feature Description 

Frequency The number of times the ID featured in the dataset 

Mean The ‘average’ ID value in the dataset. The sum of the durations 
for all values for a particular ID, divided by the frequency of that 
ID. 

Mode The value that appears most in the ID range 

Standard 
Deviation 

The measure of the dispersion of the ID range from its mean 

Minimum The data value that is less than or equal to all other values in the 
ID range 

5th Percentile The value below which the lowest 5% of the data falls 

1st Quartile The median of the lower half of the data set 

Median The value that separates the higher and lower half of the ID 
range 

3rd Quartile The median of the upper half of the data set 

95th 
Percentile 

The value above which the upper 5% of the data falls 

Maximum The data value that is greater than or equal to all other values in 
the ID range 

The mean (μ) is calculated using the equation outlined in 

(7). 

𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

(7) 

From this, the standard deviation (σ) is calculated using 

the equation outlined in (8): 

𝜎 = √
1

𝑚
∑(𝑥𝑖 − 𝜇)2

𝑚

𝑖=1

 

(8) 

The remaining frequency, mode, median, minimum, 

maximum, 5
th

 percentile, 95
th
 percentile, 1

st
 quartile and 3

rd
 

quartile are calculated using sort functions. For example, 

the mode employs the computation outlined in the 

following pseudo code (9). 

𝑋 = 𝑠𝑜𝑟𝑡(𝑥); 

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑓𝑖𝑛𝑑(𝑑𝑖𝑓𝑓([𝑋;  𝑟𝑒𝑎𝑙𝑚𝑎𝑥])  >  0); 

[𝑚𝑜𝑑𝑒𝐿, 𝑖] = 𝑚𝑎𝑥 (𝑑𝑖𝑓𝑓([0;  𝑖𝑛𝑑𝑖𝑐𝑒𝑠])); 

𝑚𝑜𝑑𝑒 = 𝑋(𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑖)); 

(9) 

2) DATA CLEANSING 

Once the features are extracted, missing or null values 

(represented by an N/A in the dataset) are replaced with a 0 

then the Median value for that feature class. However, 

within the raw EPR dataset used in this research, no null 

values are present. 

3) FEATURE SCALING 

At this stage of the pre-processing, an example of the 

pre-scaled features dataset is displayed in Table III. In order 

to ensure the data conforms to a common scale for the 

classification, the features are scaled. 
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(a) (b) 

FIGURE 3.  (a) Min-Max scaling (b) Z-score normalisation 

The Min-Max approach scales the data to a fixed range, 

between 0-1. The normalised value is obtained using the 

method outlined in (10) and presented in Figure 3(a). 

𝑀𝑀(𝑥𝑖𝑗) =
𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(10) 

Having a bounded range results in lower standard 

deviations and suppresses the effect of outliers. Decimal 

scaling normalises by moving the decimal point of values 

of feature 𝑥. Therefore, a 𝐷𝑆(𝑥) value is obtained using the 

method outlined in (11). 

𝐷𝑆(𝑥𝑖𝑗) =
𝑥𝑖𝑗

10𝑐
 

(11) 

Where 𝑚𝑎𝑥 [\(𝐷𝑆(𝑋𝑖𝑗))\] < 1 and 𝑐 is the smallest 

integer. The Z-score normalisation approach rescales 

features so that they have the properties of a standard 

normalisation. The Z-score approach scales the data to a 

standard normal distribution. The scaled value is obtained 

using the method outlined in (12) and presented in Figure 

3(b).  

𝑥𝑖𝑗 = 𝑍(𝑥𝑖𝑗) =
𝑥𝑖𝑗 − 𝑥𝑗

𝜎𝑗
 

(12) 

Where 𝑥𝑗 and 𝜎𝑗 are the sample mean and standard 

deviation of the jth attribute respectively [24]. 

B. MACHINE LEARNING 

Typically, for the analytic process a machine learning 

approach is considered. Machine learning emphasises the 

design of self-monitoring systems, which self-diagnose and 

self-repair [24]. The technique is commonly used in web 

search algorithms, spam filters, recommender systems, ad 

placement, credit scoring, fraud detection, stock trading, 

drug design and a number of other real-world applications 

[25]. 

Machine learning techniques principally consist of 

combinations of three components, Representation, 

Evaluation and Optimisation [25] where the data is 

modelled as a set of variables [26]. The following metrics 

are employed, a particular task T, a performance metric P, 

and a type of experience E. If a system reliably improves its 

performance P at task T, following experience E, then it can 

be said to have ‘learned’ [24].  

1) LOCAL OUTLIER FACTOR 

The system employs a density-based Local Outlier Factor 

algorithm. The Local Outlier Factor (LOF) process involves 

five stages [27]: 

i) k-distance computation: The Euclidian distance of the k-

th nearest object from an object p is calculated and defined 

as k-distance, where parameter k is the number of nearest 

neighbours.  

ii) k-nearest neighbour set construction for p: Set kNN(p) is 

constructed by objects within k-distance from p. 

iii) A reachability distance computation for p: Reachability 

distance of p to an object o in kNN(p) is defined as follows: 

𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝒑, 𝒐)  =  𝑚𝑎𝑥{𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒐), 𝑑(𝒑, 𝒐)} 

(13) 

where d(p,o) is Euclidian distance of p to o. 
 

iv) lrd computation for p: Local reachability density (lrd) of 

p, defined as follows: 

𝑙𝑟𝑑𝑘(𝒑) =
𝑘

∑ 𝑟𝑒𝑎𝑐ℎ0∈𝑘𝑁𝑁(𝒑) − 𝑑𝑖𝑠𝑡𝑘(𝒑, 𝒐)
 

(14) 

v) LOF computation for p: LOF of p is computed defined 

as follows: 

𝐿𝑂𝐹(𝒑) =

1
𝑘

∑ 𝑙𝑟𝑑𝑘(𝒐)𝑜∈𝑘𝑁𝑁(𝒑)

𝑙𝑟𝑑𝑘(𝒑)
 

(15) 

The LOF process exposes anomalous data points by 

measuring the local deviation. In other words, patterns in 

data that do not conform to the expected behaviour are 

revealed. In the case of EPR data, employing a LOF 

process is effective in that it recognises points, which are 

outliers from similar/related points in one area of the 

dataset. Therefore, the algorithm is particularly applicable 

to a dataset, where multiple job types/roles are present. It 

considers the relative density of points and can detect data 

in biased datasets. This means that it is advantageous over 

proximity-based clustering. LOF employs the relative-

density of a coefficient against its neighbours as the 

indicator of the degree of the object being an outlier [28]. 

If a global outlier is employed, the detection of irregular 

behaviours would not be possible without correlating the 

different hospital roles (as demonstrated in Table I) with 

each other, adding an extra stage to the detection process – 

one which might not be possible. This is due to the process 

that a global outlier detection process undertakes in 

identifying data points that are far from other points in the 

dataset.  

C. FEATURE TESTING 

Given the mean expressed in (7), the scatter matrix is the 

m-by-m positive semi-definite matrix. Where T denotes 

matrix transpose, and multiplication is with regards to the 

outer product [29], as expressed in (16). 

𝑆 = ∑(𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇 =

𝑚

𝑖=1

∑(𝑥𝑖 − 𝜇) ⊗ (𝑥𝑖 − 𝜇)𝑇 =

𝑚

𝑖=1

(∑ 𝑥𝑖𝑥𝑖
𝑇

𝑚

𝑖=1

) − 𝑚𝜇𝜇𝑇  

(16) 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2906503, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2018 6 

The scatter matrix, displayed in Figure 4 (all features 

have been abbreviated in the graph labels) visualises the 

relationship between the features to predict the most 

appropriate for the LOF classification.  

(a)   (b) 

 (c)  (d) 

FIGURE 4.  (a) Scatter Matrix of extracted features for UserID, (b) Scatter Matrix of extracted features for DeviceID, (c) Scatter Matrix of extracted 
features for PatientID, (d) Scatter Matrix of extracted features for Routine 

The scatter matrix displays the positive and negative 

correlation between the features. In this case, from the 

visual inspection, the majority of features have a positive 

correlation. However, based on Figure 4, the consideration 

would be to remove the feature Frequency for each Unique 

Identifier (FUID) for the UserID, Routine and Device 

Interaction classification but retain it for PatientID. 

Referring to the Routine and Device Interaction, the data 

collected relates predominately to unique routine 

combinations, so logically the FUID feature is less 

significant, as confirmed by the scatter matrix.  

IV. EXPERIMENT AND RESULTS 

A case study of actual EPR audit data is presented as an 

evaluation of the system methodology. This rich dataset 

contains 1,007,727 rows of audit logs of every user and 

their EPR activity in a single UK specialist hospital over a 

period of 18 months (28-02-16 – 21-08-17). The dataset 

contains four distinct ID types, User, Patient, Device and 

Routine. Each User ID, Patient ID and Device ID is 

tokenised by isolating the unique entries and assigning each 

value an incrementing number. This is done to anonymise 

the dataset. The Routine ID was not tokenised as it denotes 

the tasks performed by the User on the EPR for the 

interaction. For example, in the first row of Table 1, User 

865 accesses the ‘Pharmacy Orders’ function of the EPR on 

Patient 58991 whilst using Device 362. 

For every value of each of the four IDs, a LOF anomaly 

score was calculated. The LOF anomaly score measures the 

local deviation of density through determining how isolated 

the value given by k-nearest neighbours (k is set to 5). A 

LOF anomaly score of 1 indicates that an object is 

comparable to its neighbours and represents an inlier. A 

value below 1 indicates a dense region, and would therefore 

also be an inlier. A value significantly above 1 therefore 

indicates an outlier (anomaly). As all values within the 

range 0-1 are classified as inliers, values within the range 1-

2 were also classified as inliers. Any value above 2 was 

considered to indicate an outlier for the purposes of this 

experiment.  
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A LOF anomaly score is calculated by taking the number 

of variants according to the mathematical combination and 

is calculated using the equation in (17). As there are ten 

features, 45 LOF scores are calculated to account for all the 

feature combinations for every ID in the dataset. There are 

90,385 unique IDs in the dataset in total (for user, patient, 

device and routine combined), and a LOF score is 

calculated for the 45 combinations (of the 10 features) for 

each of the unique IDs in the dataset. Therefore 4,067,325 

unique LOF scores are calculated in total. Data cleaning is 

then performed on the LOF scores in order to convert the 

‘NaN’ and ‘Inf’ values. A NaN value indicates that a point 

has many neighbours in the same location, therefore the 

ratio of densities is undefined, and the points are not 

outliers. An Inf value occurs when a point is next to several 

identical points, but is not itself a member of that cluster, 

they are therefore ‘infinite’ and can be classified as 

anomalous. The NaN values are therefore assigned a value 

of 1, to indicate it is not anomalous, and the Inf values are 

assigned a value of 2, to indicate they are anomalous. The 

mean LOF scores for each ID is then calculated and the 

highest anomaly scores are presented in Table III and IV. 

(
𝑛

𝑘
) =

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑘(𝑘 − 1) … 1
 

(17) 

A. USER, PATIENT AND DEVICE ID 

There are 1,515 unique User IDs, 72,878 unique Patient 

IDs and 2,270 unique Devices within the dataset. In Table 

III, IV, and V LOF identifies anomalous User IDs, Patient 

IDs and Device IDs. The neighbourhood radius is defined 

in stage 3 of the LOF algorithm (Section B, 1), the density 

score is defined in stage 4, and the anomaly score is the 

final LOF value, as defined in stage 5. 

TABLE III 

LOF (MEAN) ANOMALY SCORES FOR USER ID 

User 
ID 

Density 
Score 

Anomaly 
Score 

Neigbourhood 
Radius 

685 3.03 4.36 0.546 

260 5.73 3.54 0.518 

1037 69.14 2.80 0.251 

1002 46.81 2.61 0.051 

1401 16.55 2.56 0.153 

707 19.05 2.28 0.207 

1311 83.73 2.23 0.016 

242 77.78 2.13 0.024 

1493 47.75 2.03 0.134 

507 28.66 2.00 0.103 

Within the User ID range, the most notable ID is #685, 

with an anomaly score of 4.36. There are 10 User IDs with 

an anomaly score above 2. Therefore LOF has indicated 

that 0.66% of the User IDs are anomalous.  

TABLE IV 

LOF (MEAN) ANOMALY SCORES FOR PATIENT ID 

Patient 
ID 

Density 
Score 

Anomaly 
Score 

Neigbourhood 
Radius 

35888 371.74 9.41 0.006 

19327 175.92 8.81 0.018 

58816 794.70 8.58 0.003 

69053 51.59 8.55 0.053 

51280 765.21 7.61 0.003 

41306 150.01 7.53 0.014 

46695 647.07 7.32 0.008 

13704 1315.64 6.99 0.002 

34419 23.12 6.97 0.101 

56428 2570.47 6.94 0.003 

Similarly, the most notable Patient ID is #35888, with an 

anomaly score of 9.41. There are 122 Patient IDs with an 

anomaly score above 2, indicating 0.17% of the Patient IDs 

are anomalous.  

TABLE V 

LOF (MEAN) ANOMALY SCORES FOR DEVICE ID 

Device 
ID 

Density 
Score 

Anomaly 
Score 

Neigbourhood 
Radius 

2258 374.85 4.86 0.003 

1082 2.26 4.75 0.730 

1557 168.84 2.92 0.009 

729 5.26 2.80 0.303 

499 29.58 2.52 0.048 

527 6.84 2.43 0.206 

896 10.35 2.32 0.170 

2014 6.75 2.29 0.216 

1104 107.50 2.28 0.033 

523 17.38 2.25 0.077 

Finally, the most notable Device ID is #2258, with an 

anomaly score of 4.86. There are 12 Device IDs with an 

anomaly score above 2, indicating that 0.53% of the Device 

IDs are irregular.  Overall therefore, LOF identifies 0.45% 

of IDs as anomalous, which would be highlighted to a 

patient privacy officer for investigation. 

Examples of audit log data classified as inlier, outlier and 

abnormal data for User ID is presented in Table VI. Audit 

log data classified as an inlier within the dense region (<1) 

is User ID 571, with a LOF score of 0.95. Audit log data 

classified as an outlier within the normal region (>1 and <2) 

is User ID 1486, with a LOF score of 1.12. Audit log data 

classified as an outlier within the abnormal region (>2) is 

User ID 707, with a LOF score of 2.28. 

TABLE VI 

EPR AUDIT LOG DATA EXAMPLES FOR INLIER, OUTLIER AND ABNORMAL DATA POINTS FOR USER ID 

Date & Time Device ID User ID Routine Description Patient ID 
Duration 

(sec) Adm Date Dis Date 

17/03/08 01:32 2046 571 Visit History 33727 28 08/03/2017 08/03/2017 

17/08/07 15:37 396 1485 Current Medication Orders | Pharmacy Orders 62584 58 16/10/2001 16/10/2001 

16/05/30 11:09 936 707 Visit History | Radiology Reports | Maternity Data | Cancelled 
Account.UK.Letter | Cancelled Account.UK.Scheduling 
UK.View Orders 

28160 385 26/01/2016 26/01/2016 

The results presented here demonstrate a technique for 

uncovering anomalous or irregular behavioural patterns 

from a complex dataset that would otherwise not be 

possible from either a visual inspection/visualisation of the 

whole dataset (such as the heatmap presented in Figure 2). 
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B. ROUTINE ID 

However, the LOF technique cannot be applied as 

effectively to the Routine ID. Table VII presents a sample 

of the highest LOF anomaly scores for the Routine ID 

dataset. 

The EPR audit logs calculate a string of routines 

performed on the same patient as a unique Routine ID. The 

differing routines are delimited with a pipe (|). Therefore 

there are 13,722 Routine IDs in the dataset, whereas there 

are more accurately approximately 100 unique routines a 

user could perform. 

TABLE VII 

LOF (MEAN) ANOMALY SCORES FOR ROUTINE ID 

Routine Set Description 
Density 
Score 

Anomaly 
Score 

Neigbourhood 
Radius 

Assessment Forms | Maternity Data | Care-Area Administrative Data | Admissions Demographic Data 1043.094 13.34 0.003 

*** | UK.View Orders | Admissions Demographic Data | Pharmacy Orders 1649.703 11.64 0.005 

*** | Cancelled Account.UK.Letter | Admissions Demographic Data 2213.821 11.41 0.004 

Maternity Data | Theatre Management | Assessment Forms | Visit History 581.246 11.35 0.004 

Theatre Management | Cancelled Account.UK.Letter | Cancelled Account.UK.Scheduling | Admissions 
Demographic Data 

632.774 9.70 0.005 

Recent Clinical Results | Recent Clinical Results:(Departmental Reports) | Pharmacy.Medication Order History 
| UK.View Orders 

70.561 9.54 0.035 

Assessment Forms | Admissions Demographic Data | Visit History | Alerts 601.429 9.29 0.004 

Cancelled Account.UK.Letter | Pharmacy Orders | Admissions Demographic Data 470.423 8.81 0.005 

Assessment Forms | Cancelled Account.UK.Letter | Cancelled Account.UK.Scheduling | Medication Order 
History 

646.410 8.32 0.006 

Internet Access | Alerts | Assessment Forms 693.934 8.22 0.005 

There are 102 routine sets with an anomaly score above 2. 

Therefore LOF has indicated that 0.74% of the routine sets 

are anomalous. The most notable routine set is the 

combination ‘Assessment Forms | Maternity Data | Care-

Area Administrative Data | Admissions Demographic Data’, 

with an anomaly score of 13.34. This specific routine 

combination only occurs twice in the audit logs of over 

1,000,000 rows. However, in order for the LOF scores for 

routine to be of value, each routine (rather than the routine 

combination) would need to be calculated. Unfortunately, 

this cannot be differentiated within the dataset. For example, 

if the LOF scores for each routine are calculated individually 

(rather than as a routine set), such as ‘Assessment Forms’ 

and ‘Maternity Data’, then these values can be compared 

with other instances of that routine, to determine whether 

certain log accesses are anomalous. However, as these cannot 

be separated within the combinations of routines, then an 

informative LOF score cannot be determined for Routine ID. 

C. VISUALISATION OF RESULTS 

A visualisation of the LOF results for each ID is 

presented in Figure 5. 

(a) (b) 

(c)     (d) 

FIGURE 5.  (a) Scattergraph of LOF results for UserID, (b) Scattergraph of LOF results for DeviceID, (c) Scattergraph of LOF results for PatientID, (d) 
Scattergraph of LOF results for Routine 

Through visualising the anomalies in this way, outliers 

can be highlighted to an analyst for scrutiny. In our 

visualisation engine, outliers in the top quarter of each ID 

range are highlighted as red, to be investigated as a priority. 
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Outliers in the 3
rd

 quarter appear orange, and outliers in the 

2
nd

 quarter appear yellow. This creates an interactive live 

task list for the analyst, with an anomaly priority ordering. 

Clicking on a point displays the ID number, which allows 

the analyst to investigate the activity associated with the ID. 

The display updates when new data is input and new LOF 

scores are calculated, providing a current view of 

anomalous EPR activity within a hospital. Activity such as 

insider threats (a staff member misusing their access 

privileges), or external threats (such as credentials accessed 

through social engineering and utilised for data 

exfiltration), can be investigated. In this way, the system 

provides situational awareness to aid patient privacy 

officers to monitor for malicious or unusual activity 

proactively.  

V. CONCLUSION AND FUTURE WORK 

The far-reaching consequences of this work are 

illustrated with a prediction: This research project will 

increase the situational awareness of data flow and actively 

address this issue of data misuse. Machine learning 

algorithms have the capability to observe and learn patterns 

of data and profile users’ behaviour, which can then be 

represented visually. The far reaching consequences of this 

work will result in the development of a system that can be 

used by healthcare practitioners to increase the protection 

of their EPR records. This will make the UK, not only one 

of the safest places to conduct business, but also one of the 

securest in protecting patient privacy in healthcare systems. 

Future Work will involve normalising the data further 

with a case study of the routine ‘Pharmacy Orders’. This 

routine accounts for approximately 21.27% of the actions 

performed on the EPR. It is therefore possible to use this as 

a case study to understand user roles within the dataset and 

compare similar actions, in order to identify anomalous 

behaviours. Factors other than solely the duration of the 

routine (such as the date and time an action is performed) 

will be considered. Additionally, a quantitative model-

based approach that takes into account the duration and the 

sequence of events during the interaction of the user with 

the EPR will be explored.  

The features discussed in the paper compare every 

activity performed associated with each ID, but without 

detail. For example, for each User it compares the duration 

of all actions performed for that user. This can broadly 

identify anomalous behaviour, but for a more nuanced 

approach, other factors can be taken into consideration. For 

example how long a user typically spends performing a 

certain task, or accesses a specific device, or with a 

particular patient. By calculating the local outlier factor for 

these behaviours, and assigning each a weighted score, 

these can be factored together to provide data-driven insight 

of potential EPR misuse. Additionally, currently inputting 

new data to calculate their LOF values is a manual process 

and not in real-time. This will be explored further with an 

aim to automate this and improve update efficiency within 

the big data context of EPR audit logs. 

Future work will also incorporate game theory through 

the use of an interactive visualisation. The vision is that the 

operator interacts with and manipulates the visualisation in 

order to set their own data parameters. This increases their 

situational awareness of the data flow within the healthcare 

infrastructure. Additionally, The Theory of Gamified 

Learning infers that gamification can positively affect 

learning and decision making through a more direct 

mediating process and a less direct moderating process 

[30]. Firstly, gamification affects learning via mediation 

when a user’s behaviour is encouraged in such a way that it 

itself improves learning outcomes, such as a fitness app 

[31]. The theory therefore mediates the relationship 

between game elements and learning. Secondly, 

gamification affects learning via moderation when pre-

existing information is improved through strengthening the 

relationship between instructional design quality and 

outcomes [32]. For the moderation theory, the moderator 

does not influence the outcome construct independently of 

the causal construct, therefore the pre-existing information 

must be of high quality, or the addition of gamification 

techniques would be of no benefit. Through the use of 

visualisation techniques to enhance the results of the local 

outlier factor results, gamification moderation theory is 

implemented.  

Supervised learning techniques will be implemented to 

compliment the unsupervised LOF scores. Access to 

labelled data for EPR audit logs is often not available or 

comprehensive. However, through displaying LOF results 

to an analyst, upon investigation the analyst can label the 

data as legitimate or illegitimate. Through this process, the 

combined use of unsupervised and supervised machine 

learning algorithms results in a semi-supervised approach to 

the challenge of detecting EPR misuse. Additionally, once 

semi-supervised techniques are employed, the accuracy of 

the algorithms in detecting outliers can be quantified 

through feedback from analysts. 
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