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Abstract 11 

Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic 12 

and natural factors, such as deforestation and fire. How individual animals exposed to such 13 

changes respond behaviourally and physiologically is poorly understood. We quantified the 14 

phenotypic plasticity of activity patterns and torpor use—a highly efficient energy 15 

conservation mechanism—in brown antechinus (Antechinus stuartii), a small Australian 16 

marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and 17 

control) with a group in a burned open habitat (post-fire). Activity and torpor patterns 18 

differed among groups and sexes. Females in the post-fire group spent significantly less time 19 

active than the other groups, both during the day and night. However, in males only daytime 20 

activity declined in the post-fire group, although overall activity was also reduced on cold 21 

days in males for all groups. The reduction in total or diurnal activity in the post-fire group 22 

was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of 23 

time females and males, respectively, used torpor in comparison to that in the pre-fire and 24 

control groups. Overall, likely due to reproductive needs, torpor was more pronounced in 25 

females than in males, but low ambient temperatures increased torpor bout duration in both 26 

sexes. Importantly, for both male and female antechinus and likely other small mammals, 27 

predator avoidance and energy conservation—achieved by reduced activity and increased 28 

torpor use—appear to be vital for post-fire survival where ground cover and refuges have 29 

been obliterated. 30 

 31 
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 33 

 34 

 35 
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1. Introduction 36 

Anthropogenic environmental changes, such as habitat degradation and an increase in the 37 

variability of weather patterns, are having irreversible impacts on many ecosystems around 38 

the world. Often these changes are intertwined as, for example, land clearing destroys post-39 

fire refuges, replaces forests with more fire-prone vegetation and also increases ambient 40 

temperature (Ta) and therefore fire frequency (McKenzie et al. 2004; Alencar et al. 2015). 41 

The ensuing fires then further contribute to deforestation, placing even more pressure on 42 

ecosystems. The global increase in fires (Stephens et al. 2013) and habitat fragmentation 43 

(Johnstone et al. 2012) are inflicting historically unprecedented levels of stress on individual 44 

animals, threatening the survival of populations and species.  45 

 Small terrestrial mammals are generally not able to flee from a fire, but they have 46 

been shown to survive in situ (Quinn 1979; Banks et al. 2011; Stawski et al. 2015a). Fire-47 

proof refugia, such as deep burrows and rock crevices, are vital to the persistence of small 48 

terrestrial mammals not only during, but also after a fire when the absence of ground cover 49 

increases predation pressure (Banks et al. 2011; Diffendorfer et al. 2012; Robinson et al. 50 

2013; Stawski et al. 2015a). Therefore, small mammal populations often do not require 51 

recolonisation after a fire, provided the remaining individuals are able to survive in a habitat 52 

that is usually depleted of food, water, vegetative cover and refuges (Friend 1993; Banks et 53 

al. 2011; Zwolak et al. 2012; Stawski et al. 2015a; VanTassel et al. 2015). Indeed, many 54 

individuals that survive a fire are often subsequently killed by predators or starve to death 55 

(Sutherland & Dickman 1999; McGregor et al. 2014). The behavioural and physiological 56 

responses of individuals to fire-modified habitat and the subsequent reduction in vegetative 57 

cover will determine whether or not a population can persist and an enhanced phenotypic 58 

plasticity in any of these traits would be of great advantage (Nussey et al. 2007; Canale & 59 

Henry 2010). 60 

Unfortunately, our understanding of how small mammals deal with post-fire 61 

challenges is limited. Some recent evidence suggests that heterothermic mammals, with 62 

fluctuating body temperatures (Tb) and adjustable energy expenditures, may have an adaptive 63 

advantage over homeothermic mammals that maintain a stable and high Tb and have 64 

continuously high energy requirements (Banks et al. 2011; Stawski et al. 2015a). 65 

Heterothermic endotherms can save large amounts of energy and water by employing torpor, 66 

a controlled reduction of Tb and metabolic rate (Ruf & Geiser 2015). While mobility is 67 

generally reduced in torpor, in the context of fire, torpid animals are able to respond to 68 

smoke, an early warning cue to an approaching fire front, by arousing from torpor to find or 69 

remain in a suitable refuge (Stawski et al. 2015b).  70 
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 Behavioural and physiological responses of individuals to changes in their 71 

environment vary among species, which can greatly influence survival. Specifically, 72 

heterothermy has been posited to have enabled small mammals to survive the meteorite 73 

impact that decimated dinosaurs and also the current high levels of mammalian extinctions in 74 

Australia (Geiser and Turbill 2009; Lovegrove et al. 2014). Therefore, the physiological 75 

flexibility afforded to heterotherms is likely advantageous in a rapidly changing environment 76 

(Canale & Henry 2010). These responses can also differ within a species and can be highly 77 

variable among different populations, individuals or even within an individual under different 78 

conditions (Nussey et al. 2007; Canale & Henry 2010; McKechnie & Mzilikazi 2011). For 79 

example, the duration and depth of torpor bouts as well as activity patterns have been 80 

observed to be different between sexes in a number of heterothermic mammals (Geiser 1988; 81 

Körtner et al. 2010; Sheriff et al. 2013; Rojas et al. 2014). Some of these differences can be 82 

attributed to sexual dimorphism in body size and/or reproductive effort, which is 83 

energetically costly in both sexes. Males often have to invest more time in searching for a 84 

mate whereas females spend more energy on pregnancy and raising young (Körtner et al. 85 

2010). Whether or not the sexes have varying adaptations in response to environmental 86 

catastrophes, such as fires, is largely unknown. 87 

 To reveal the key adaptations used by small mammals to survive a controlled fire we 88 

studied the brown antechinus (Antechinus stuartii), a small dasyurid marsupial mammal that 89 

occurs in south-eastern Australia, forages terrestrially and arboreally and also use nests in a 90 

variety of locations such as tree hollows, rock crevices and logs (Wood 1970; Crowther & 91 

Braithwaite 2013). Brown antechinus have an unusual life history; after a short two week 92 

mating period during the austral late winter (August-early September) all of the males die 93 

whereas most females survive until after the young have been weaned in summer and some 94 

will live for a second breeding season (Woolley 1966; Wood 1970; McAllan et al. 2006). 95 

Brown antechinus can use daily torpor throughout most of the year, often in response to 96 

unfavourable environmental conditions (Rojas et al. 2014; Stawski et al. 2015a). As brown 97 

antechinus typically consume insects (Crowther & Braithwaite 2013) their food source is 98 

likely to become limited with cold ambient conditions and also after a fire (Coleman and 99 

Rieske 2006; Stawski 2012; VanTassel et al. 2015), times when torpor expression would be 100 

beneficial. Because of the unique life history of this species, we aimed to determine whether 101 

and how male and female brown antechinus differ behaviourally and physiologically in 102 

dealing with the thermal and energetic challenges in a post-fire environment. We 103 

hypothesised that both sexes would show phenotypic plasticity and increase torpor use and 104 

decrease activity in response to a prescribed burn to save energy and ameliorate predation 105 
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pressure to increase their chance of survival. However, we also expected that females would 106 

express more torpor than males as is typical in this species (Geiser 1988; Rojas et al. 2014).  107 

 108 

2. Material and methods 109 

Permits to conduct this study were issued by the University of New England Animal Ethics 110 

Committee (AEC13-088) and the New South Wales National Parks and Wildlife Service 111 

(SL100791). 112 

 113 

2.1. Study site 114 

This study was undertaken during April-May 2014 (austral autumn), ~3 months before the 115 

breeding season, at Guy Fawkes River National Park (30°04’58.6”S, 152°20’0.9”E) in 116 

Australia. A hazard-reduction burn was performed by New South Wales National Parks and 117 

Wildlife Service (NSW NPWS) on 8-9 May 2014. The affected area (our prescribed fire site) 118 

was 379 hectares and was bordered by an escarpment and dirt roads. Our control site was 119 

situated in the unburned forest beyond these roads. Three treatment regimes were 120 

investigated in the study: (i) pre-fire group: prescribed area before the fire, (ii) post-fire 121 

group: prescribed area after the fire and (iii) control group: control area after the fire. As we 122 

were only given two weeks’ notice prior to the prescribed fire we only had time to capture 123 

and undertake surgeries on a limited number of individuals from the treatment site only. The 124 

amount of time for data collection in the pre-fire group was obviously also limited.  125 

Throughout the study period Ta was measured at 10min intervals at both the 126 

prescribed fire site and the control site using temperature data loggers (± 0.5°C, iButton 127 

thermochron DS1921G, Maxim Integrated Products, Inc., Sunnyvale, California, USA). 128 

These loggers were suspended in trees ~1m off the ground and placed in inverted Styrofoam 129 

cups to prevent direct sun exposure. 130 

 131 

2.2. Study protocol 132 

Brown antechinus were captured using aluminium box traps (Elliott Scientific Equipment, 133 

Upwey, Australia) baited with oats, peanut butter and honey. Bedding material was provided 134 

to prevent hypothermia in animals confined to traps overnight. Before the prescribed fire four 135 

male and four female antechinus were trapped in the prescribed fire site and immediately 136 

following the fire another four male and two female antechinus were captured in the control 137 

site. As one male and two females in the pre-fire group perished before/during the fire, we 138 

captured an additional two females just prior to the fire, which were included in the post-fire 139 

group only. Mean body mass of males was 27.7 ± 2.3 g (n = 8) and of females was 25.6 ± 4.2 140 
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g (n = 8). Individuals were implanted intraperitoneally with temperature-sensitive radio-141 

transmitters that had individual frequencies (1.8 to 2.1 g, Sirtrack, Havelock North, New 142 

Zealand). Before implantation, transmitters were coated in inert wax (Paraffin/Elvax, Mini 143 

Mitter, Respironics Inc. OR, USA) and then calibrated in a water bath over a temperature 144 

range of 10 to 45°C to the nearest 0.1°C. All antechinus were weighed using an electronic 145 

balance to the nearest 0.1 g and a transmitter <10% of body mass was chosen for each 146 

individual (Rojas et al. 2010). For details on the surgical procedure see Stawski et al. 147 

(2015b).  148 

Field data were collected from four male brown antechinus in the pre-fire group, three 149 

males in the post-fire group and four males in the control group (Table 1). For the females, 150 

field data were collected from four females in the pre-fire group, four females in the post-fire 151 

group and two females in the control group (Table 1). Some of the collected data from the 152 

female brown antechinus have been published previously (Stawski et al. 2015a), but these are 153 

not included here and in the current study we present new physiological and behavioural data 154 

with an emphasis on phenotypic plasticity and comparing differences between sexes. 155 

Each individual was radio-tracked daily to its nest except for four days during and 156 

after the fire as the study site was inaccessible. Coordinates of every nest site were recorded 157 

with a GPS. Once an individual was found a remote receiver/data logger and an antenna were 158 

placed in range of the transmitter signal (Körtner & Geiser 2000). Each logger was 159 

programmed to record the pulse rate of the transmitter once every 10min, which was then 160 

converted into Tb using the calibration equations for each individual transmitter. Whenever 161 

animals moved nests the loggers were transferred to the new location to ensure they were in 162 

range of the transmitter signal.  163 

Four remote cameras (HC600 Hyperfire, Reconyx, Inc., Wisconsin, USA) were 164 

placed along the road bordering the prescribed fire site closest to the nests of the study 165 

antechinus, recording the presence of predators (i.e. foxes, feral cats and wild dogs) along the 166 

road for three days before the fire and for eight days after the fire.  167 

 168 

2.3. Torpor and activity definitions 169 

The torpor onset Tb value of antechinus in the current study was calculated as 31.5°C from 170 

equation 4 by Willis (2007). For antechinus this formula is particularly important as it 171 

provides a threshold estimate that detects shallow torpor bouts. Therefore, a Tb of 31.5°C was 172 

used to calculate torpor bout entries and arousals for those that lasted longer than 30min. The 173 

proportion of day spent torpid was calculated as the amount of time (min/per day, sunrise-174 

sunrise) each individual spent below the torpor onset Tb, but only for days when individuals 175 
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did not change nests (i.e. the logger recorded the complete rest phase of an animal). 176 

Additionally, the depth of torpor bouts was measured as the absolute minimum Tb of each 177 

bout. 178 

Activity periods were calculated from the time the individual’s transmitter signal was 179 

absent on the logger to the time the signal returned for periods of longer than 30min. These 180 

were calculated for three time frames: (i) whole day = 24 h from sunrise-sunrise, (ii) daytime 181 

= sunrise-sunset, (iii) night time = sunset-sunrise. Days when an individual changed nests and 182 

the logger did not record the end of the activity phase were excluded.  183 

Figures 1 (males) and 2 (females) provide example traces of recorded Tb and Ta over 184 

three days of the study period for an individual from each of the groups.  185 

 186 

2.4. Data analysis 187 

Statistical tests were undertaken in R (R v. 3.0.1, R Core Team, 2014) and StatistiXL (v 1.10, 188 

2015). Means for each measured variable were first calculated for each individual and then an 189 

overall mean was derived from these individual means and are represented with ± 1 standard 190 

deviation (SD); n = the number of individuals, N = the number of observations. A 191 

significance level (p) of <0.05 was assumed. An analysis of variance (ANOVA; function 192 

‘aov’) was undertaken to establish if Ta variables differed among the three sites. Linear 193 

mixed-effects models (package ‘nlme’) were fitted to test for differences among the treatment 194 

groups (pre-fire, post-fire and control) for the measured variables (activity, torpor bout 195 

duration, proportion of day spent torpid, minimum torpor Tb), with sex and daily minimum Ta 196 

as covariates, treatment:sex as an interaction term and individuals were included as a random 197 

factor. As a significant interaction was found between treatment and sex for all the measured 198 

variables (p < 0.0001) we performed separate analyses for males and females for each 199 

variable using the model stated above, but removing sex and the interaction term. For all 200 

models body mass was initially included, however, there was no significant effect of body 201 

mass on any of the variables so it was removed. Percentages for the proportion of day spent 202 

torpid were arcsine transformed for analyses. Further, a residual plot to test for 203 

homoscedasticity and a normal Q-Q plot to test for normal distribution were used for all 204 

models. If there was a significant difference among the groups a post-hoc Tukey test 205 

(package ‘multcomp’) was performed to determine which groups were significantly different 206 

from each other. An analysis of covariance (ANCOVA; function ‘aov’) was  performed 207 

separately for each of the groups to determine if any of the measured variables varied 208 

between the sexes, with daily minimum Ta as a covariate and individuals as a random factor. 209 

Least square linear regressions (activity and torpor bout duration against daily minimum Ta; 210 
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function ‘Linear Regression’) for each of the treatment groups were compared using an 211 

ANOVA (function ‘Compare Linear Regressions’), separately for males and females. Data 212 

were pooled and regressed together if no significant differences were found in the slope and 213 

intercept among the treatment groups. As Ta was lower and more variable before the fire than 214 

after (Fig. 3), a significant relationship between torpor bout duration and daily minimum Ta 215 

could be established in the pre-fire group in both sexes. However, the narrower Ta range after 216 

the fire precluded a comparable analysis and therefore daily minimum Ta was included as a 217 

covariate when comparing torpor bout durations among all treatment groups as stated above.   218 

 219 

3. Results 220 

3.1. Habitat variables and predator numbers  221 

Significant differences among the sites were found for mean (p = 0.002, f2,31 = 8.0), 222 

maximum (p = 0.006, f2,31 = 6.1) and minimum (p = 0.008, f2,31 = 5.7) daily Ta (Fig. 3). 223 

However, for the post-fire and control animals that were measured at the same time in 224 

adjacent areas, all Ta variables were statistically indistinguishable between the two sites 225 

(mean = 11.1 ± 1.2°C, n = 15; maximum = 16.5 ± 1.7°C, n = 15; minimum = 7.4 ± 1.4°C, n = 226 

15; Fig. 3). Conversely, the pre-fire group was measured before the burn when mean (8.3 ± 227 

2.8°C, n = 8), maximum (13.5 ± 2.6°C, n = 8) and minimum (4.8 ± 2.8°C, n = 8) daily Ta 228 

were all on average ~3°C lower (Fig. 3). Similar significant differences in mean (day: p = 229 

0.0004, f2,31 = 10.0; night: p = 0.004, f2,30 = 6.7), maximum (day: p = 0.006, f2,31 = 6.0; night: 230 

p = 0.005, f2,30 = 6.2) and minimum (day: p = 0.04, f2,31 = 3.2; night: p = 0.006, f2,30 = 6.1) 231 

daytime and night-time Ta were found between the pre-fire site (mean day = 10.2 ± 2.6°C, n = 232 

8; mean night = 6.4 ± 3.1°C, n = 7; maximum day = 13.5 ± 2.6°C, n = 8; maximum night = 233 

9.1 ± 3.1°C, n = 7; minimum day = 5.4 ± 3.1°C, n = 8, minimum night = 4.6 ± 2.9°C, n = 7) 234 

and the other two sites (mean day = 13.6 ± 1.4°C, n = 15; mean night = 9.3 ± 1.4°C, n = 15; 235 

maximum day = 16.5 ± 1.7°C, n = 15; maximum night = 11.8 ± 1.4°C, n = 15; minimum day 236 

= 8.0 ± 1.9°C, n = 15, minimum night = 7.6 ± 1.8°C, n = 15).  237 

Ground cover in the prescribed area before the fire and also the control area consisted 238 

of herbs, grass, Lomandra (a monocod with grass-like appearance), shrubs and also fallen 239 

timber. Especially along drainage lines, grasses and Lomandra formed dense mats totally 240 

obscuring the ground and any small animals underneath. After the fire about 70% of the 241 

ground cover was obliterated (NSW NPWS, personal communication) leaving only bare 242 

ground, but the mid- and upper-layers of the forest remained intact.  243 

No mammalian predators were recorded by the trail cameras along the border of the 244 

prescribed area before the fire. During the first week after the fire three feral cats, two wild 245 



8 
 

dogs and one fox were recorded, suggesting an influx of predators after the burn. 246 

Nevertheless, before the fire one male and one female antechinus from the pre-fire group 247 

were killed by a predator, most likely by a cat. However, after the fire no predation events 248 

were recorded in either the post-fire or control groups. Further, only one of the tagged 249 

individuals perished as a direct result of the fire. 250 

 251 

3.2. Activity  252 

Importantly, none of the individuals tracked in the burn site left the area after the fire. 253 

Antechinus were active on average between 6 and 13 hours per day, with about a third of the 254 

activity occurring during the daytime and the remainder at night for individuals in the pre-fire 255 

and control groups (Fig. 4a,b). Radio-tracking revealed that when active during daytime 256 

hours animals regularly foraged in patches of matted grass and Lomandra where they could 257 

not be seen. Interestingly, the amount of time male antechinus spent active significantly 258 

increased at higher Ta (p = 0.005, R2 = 0.2, f 1,72 = 8.4, y = 0.5x + 3.2), whereas there was no 259 

significant relationship for females (p = 0.585, R2 = 0.01, f1,74 = 0.3). Consequently, when Ta 260 

was lower in the pre-fire group females were active significantly longer over the whole day in 261 

comparison to males (p = 0.003, f1,25 = 10.7), whereas when Ta was warmer in the control 262 

group males were active significantly longer than females (p = 0.019, f1,33 = 6.0; Fig. 4a,b). 263 

Both males and females in the post-fire group significantly reduced daytime activity, 264 

which did not differ between the sexes (p = 0.851, f1,73 = 0.04; Fig. 4a,b). However, while 265 

females in the post-fire group also reduced nocturnal activity, males in this group did not and 266 

therefore were active longer than females (p = 0.0002, f1,69 = 15.2; Fig. 4a,b).  267 

For male antechinus the time spent active during the whole day differed significantly 268 

among the groups (p < 0.0001, t6,63 = 17.3; Fig. 4a) and activity duration was ~1.7-fold longer 269 

for animals at the control (12.6 ± 3.5 h, n = 4, N = 28) site than individuals in both the pre- 270 

(7.9 ± 2.4 h, n = 4, N = 14) and post-fire (7.6 ± 0.6 h, n = 3, N = 31) sites. Importantly, at the 271 

fire site whole day activity did not change between before and after the fire. However, the 272 

partitioning between daytime and night time activity shifted after the fire. While males in the 273 

pre-fire (2.7 ± 2.2 h, n = 4, N = 14) and control (4.7 ± 1.5 h, n = 4, N = 28) groups spent about 274 

one third of their total activity during the day, in the post-fire (0.4 ± 0.5 h, n = 3, N = 31) 275 

group this was reduced to 5.3% (Fig. 4a).  276 

 In females, whole day activity also differed significantly among the three groups (p < 277 

0.0001, t6,67 = 6.4; Fig. 4b), but they decreased total activity time by 60% after the fire in the 278 

post-fire (6.8 ± 3.1 h, n = 4, N = 45) group in comparison to both the pre-fire (11.6 ± 1.1 h, n 279 

= 4, N = 16) and control (10.3 ± 1.8 h, n = 2, N = 14) groups. This reduced level of activity 280 
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encompassed both daytime and night time activity, but daytime activity more so. While pre-281 

fire (3.3 ± 0.4 h, n = 4, N = 16) and control (2.4 ± 0.7 h, n = 2, N = 14) animals spent on 282 

average 28.2% and 23.4% of the total activity time during the day, respectively, diurnal 283 

activity was reduced to 4.4% in post-fire (0.3 ± 0.3 h, n = 4, N = 45) animals (Fig. 4b).  284 

 285 

3.3. Torpor  286 

After the fire, antechinus in the post-fire group expressed longer torpor bouts in comparison 287 

to the pre-fire and control groups (Fig. 5a,b). However, in all groups females were torpid 288 

longer than males (pre-fire: p < 0.0001, f1,16 = 173.1; post-fire: p < 0.0001, f1,67 = 495.4; 289 

control: p < 0.0001, f1,21 = 145.5) and torpor bouts were generally shallower in males than in 290 

females (pre-fire: p = 0.039, f1,18 = 4.9; post-fire: p < 0.0001, f1,64 = 67.4; control: p = 0.154, 291 

f1,26 = 2.2; Fig. 6a,b). Furthermore, in both males (p = 0.037, R2 = 0.4, f1,8 = 5.3, y = -15.5x + 292 

159.7) and females (p = 0.011, R2 = 0.5, f1,12 = 9.3, y = -29.4x + 285.0) torpor bout duration 293 

in the pre-fire group increased as daily minimum Ta decreased. 294 

Over the study period for males the proportion of day spent torpid (p < 0.0001, t6,88 = 295 

5.2; Fig. 5a) as well as mean torpor bout duration (p < 0.0001, t6,88 = 5.2) differed 296 

significantly among the groups. Males from the post-fire group were torpid ~2.2-fold more 297 

each day in comparison to both of the other groups and torpor bouts were also ~1.5-fold 298 

longer in the post-fire group (127.3 ± 38.4 min, n = 3, N = 26), in comparison to torpor bouts 299 

expressed by males from both the pre-fire (84.6 ± 37.1 min, n = 4, N = 11) and control (84.3 ± 300 

26.8 min, n = 4, N = 20) groups. However, the depth of torpor bouts was the same for all 301 

groups (p = 0.228, t6,41 = 1.2; pre-fire = 31.0 ± 0.2°C, n = 4, N = 8; post-fire = 30.8 ± 0.3°C, n 302 

= 3, N = 22; control = 30.4 ± 0.6°C, n = 4, N = 21; Fig. 6). 303 

 Similarly to the males, for females the proportion of day spent torpid differed 304 

significantly among the groups (p < 0.0001, t6,89 = 7.0; Fig. 5b) and females from the post-305 

burn group were torpid ~3.4-fold more each day in comparison to both of the other groups. 306 

Mean torpor bout duration of all bouts recorded for female antechinus also differed among 307 

the groups (p < 0.0001, t6,89 = 6.9) and torpor bouts were ~2.5-fold longer in the post-fire 308 

(267.5 ± 61.9 min, n = 4, N = 57) group in comparison to torpor bouts expressed by females 309 

from both the pre-fire (118.0 ± 76.1 min, n = 4, N = 15) and control (94.2 ± 83.7 min, n = 2, N 310 

= 8) groups. Importantly, mean minimum torpor Tb of female antechinus was 4°C lower in 311 

the post-fire (26.0 ± 1.3°C, n = 4, N = 44) group in comparison to both the pre-fire (29.7 ± 312 

1.7°C, n = 4, N = 14) and control (30.2 ± 1.3°C, n = 2, N = 21) groups (p < 0.0001, t6,55 = 313 

45.3; Fig. 6).  314 

 315 
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4. Discussion 316 

The results of our study support our hypothesis and reveal that individual male and female 317 

brown antechinus responded behaviourally and physiologically to fire and the removal of 318 

ground cover. Antechinus reduced diurnal activity and increased torpor use to save energy 319 

and likely to avoid predation by foxes, wild dogs and feral cats. This flexibility in 320 

behavioural and physiological traits suggests that brown antechinus, and presumably other 321 

small heterothermic mammals, are able to adapt readily to sudden environmental changes and 322 

therefore enables them to survive catastrophic events. Indeed, phenotypic plasticity has been 323 

previously proposed to play an important role in vertebrate resilience in the light of climate 324 

change and habitat degradation (Nussey et al. 2007; Canale & Henry 2010). 325 

 Although the fire did not significantly change climate conditions in comparison to the 326 

control area and therefore thermoregulatory demands, the obliteration of ground cover 327 

increased visibility and thus exposure to predators. It is therefore not surprising that fire 328 

changed the activity patterns of brown antechinus in the post-fire group and both sexes 329 

reduced daytime activity to as little as 5% pre-fire levels. Brown antechinus, like most small 330 

mammals, have been considered to be strictly nocturnal in the past (Woolley 1966; Körtner & 331 

Geiser 1995). However, from a thermoregulatory point of view activity during the daytime 332 

has energetic advantages especially in a cold climate, as the warmer temperatures and solar 333 

radiation from the sun reduces the amount of energy needed for thermoregulation while 334 

foraging (Scholander et al. 1950). Accordingly, our study clearly shows that male and female 335 

antechinus were active for 23 to 37%, respectively, during the daytime when ground cover 336 

was available in the pre-fire and control groups. Daytime activity in other small dasyurids has 337 

been reported, but usually occurs in species that inhabit complexly structured habitats with 338 

shelters from visually hunting predators (Pavey & Geiser 2008). The kaluta (Dasykaluta 339 

rosamondae), for example, is currently the only known small dasyurid that is strictly diurnal 340 

in winter (Körtner et al. 2010) and it occurs in areas densely covered with spinifex, a spikey 341 

grass that not only offers a visual but also a physical shield against most predators. 342 

Apparently, the presence of abundant ground cover is also important for brown antechinus 343 

(Crowther & Braithwaite 2013), as they are often only found in habitats with low burn 344 

frequencies (Mowat et al. 2015). Our data suggest that this dense cover can be especially 345 

important during winter when shifting the activity period into the daytime can reduce 346 

thermoregulatory costs. However, since predator avoidance becomes crucial in a burnt 347 

landscape with limited protection, daytime activity would be risky and the observed reduction 348 

in daytime activity seen in the post-fire group would account for this.  349 
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Whereas females reduced overall activity, males in the post-fire group shifted their 350 

activity into the night and in comparison to pre-fire conditions males in both the post-fire and 351 

control groups maintained a high level of night-time activity. This was likely facilitated by 352 

the warmer Ta, as activity in males increased with Ta which was possibly a response to higher 353 

food availability as they primarily feed on insects that often become more prevalent at 354 

warmer temperatures (Stawski 2012). The overall higher levels of activity seen in males in 355 

the current study may be related to pre-mating season preparation to establish home ranges 356 

and indeed an increase in movements by male brown antechinus have been recorded as early 357 

as May (Wood 1970), which corresponds to the timeframe of the current study. However, 358 

while a shift towards nocturnal activity somewhat reduces predation risk in comparison to 359 

diurnal activity, physical protection at night is still limited after fire. Therefore, an overall 360 

reduction of both daytime and night time activity as observed in female antechinus appears to 361 

be a prudent strategy since animals resting in a secure location are less exposed to predation 362 

than when active (Turbill et al. 2011). Further, the major food resource of antechinus, insects, 363 

is often significantly reduced after a fire (Coleman and Rieske 2006; VanTassel et al. 2015), 364 

suggesting that increasing energy savings is paramount. Importantly, this can only be 365 

achieved if daily energy demands can be lowered substantially, and in heterothermic 366 

endotherms an avenue for accomplishing this effectively is the use of torpor (Ruf & Geiser 367 

2015).  368 

Torpor not only reduces energy demands, it also enhances predator avoidance 369 

(Stawski & Geiser 2010; Turbill et al. 2011; Geiser & Brigham 2012; Vuarin & Henry 2014). 370 

This in turn appears to contribute to the lower extinction rates in heterothermic compared to 371 

homeothermic mammals (Geiser & Turbill 2009; Hanna & Cardillo 2014). While individual 372 

survival and longevity increase with the amount of time spent torpid (Turbill et al. 2011), the 373 

state of torpor cannot continue forever, but must be interrupted for activity and especially 374 

reproduction (Sheriff et al. 2013; Lovegrove et al. 2014). Although torpor and reproduction 375 

are not mutually exclusive, certain phases during the reproductive cycle are often 376 

incompatible with entering torpor (McAllan & Geiser 2014). For example, in many species 377 

the hibernation season is often shorter in males, as they need to emerge earlier from 378 

hibernation to commence spermatogenesis and to secure territories for the mating period 379 

(Barnes et al. 1986). Similarly, male antechinus show increased levels of activity and 380 

metabolism, continue to grow and generally enter torpor rarely throughout winter (June-July), 381 

when the size of testes is greatest (Woolley 1966; Geiser 1988; Rojas et al. 2014). The sexual 382 

differences for torpor use and activity patterns observed here are therefore not unexpected. 383 

The unusual reproductive strategy of male antechinus entails a high level of energy turnover 384 
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that eventually culminates in complete male die-off (Woolley 1966; Wood 1970) and 385 

therefore the time leading up to reproduction likely influences the behavioural and 386 

physiological responses to a catastrophic event such as fire. Consequently, while female 387 

antechinus minimised energy expenditure as well as predator exposure by considerably 388 

increasing torpor use after the fire, males increased torpor use only marginally, confirming 389 

our prediction that females would express more torpor than males. Nevertheless, the 390 

strategies employed by both sexes were successful at least in the short to medium term, as no 391 

deaths were recorded in the weeks after the fire event. Obviously, flexibility in behavioural 392 

and physiological traits in individuals of both sexes is advantageous, as it allows a population 393 

to respond to sudden changes in environmental conditions and food supply (Nussey et al. 394 

2007; Canale & Henry 2010; Stawski & Geiser 2012; Nowack et al. 2015).   395 

Even though the present study involved only a low-intensity burn, a large proportion 396 

of the habitat was severely degraded. Fires leave a fragmented patchwork of more or less 397 

suitable habitats that at least temporarily results in a significant reduction in habitat size and 398 

food availability, leading to increased levels of stress and decreased health in antechinus 399 

(Dickman 1989; Johnstone et al. 2012). Fire regimes in Australia have been altered for 400 

millennia, with Aborigines regularly burning patches to maintain a variety of habitats for 401 

animals they could hunt (Bowman 1998). However, these fire regimes have been radically 402 

changed since European settlement with drastic impacts on ecosystems contributing to the 403 

exceptionally high rate of mammal extinctions in Australia’s recent history (Woinarski et al. 404 

2015). While the negative impacts of modified fire regimes have also occurred in other parts 405 

of the world (Stephens et al. 2013; Kelly et al. 2014; VanTassel et al. 2015), in Australia such 406 

changes were confounded by the introduction of new predators, namely feral cats and 407 

European red fox (Woinarski et al. 2015). Importantly, after a fire an influx of predators is 408 

common, as the removal of ground cover facilitates their hunting effort (Quinn 1979; 409 

McGregor et al. 2014). It is this outcome of fires that often results in more deaths and decline 410 

in small mammal populations than the fire itself (Quinn 1979). 411 

 Habitat structure is vitally important for the survival of animals during a fire and to 412 

their recovery after a fire, thus understanding the relationships between individuals and 413 

aspects of their environment is paramount (Friend 1993; Diffendorfer et al. 2012). Therefore, 414 

maintaining a mosaic of habitats through varying fire regimes and intensities also appears to 415 

be important to conserving biodiversity and, in particular, ensuring that some old vegetation  416 

remains intact to provide refuges, cover for foraging and food resources (Coleman and Rieske 417 

2006; Robinson et al. 2013; Stephens et al. 2013; Kelly et al. 2014; Stawski et al. 2015a; 418 

VanTassel et al. 2015). Fortunately, in an undulating forested landscape characteristic for the 419 
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east coast of Australia, even severe wildfires leave pockets of unburned vegetation often 420 

along wet gullies. These remnants constitute vital refuge areas for small mammal 421 

populations, as during previous research following a wildfire most agile (A. agilis) and dusky 422 

antechinus (A. swainsonii) were trapped along such drainage lines (Davies and Drew 2014). 423 

Interestingly, during our study radio-tagged antechinus were never observed to move into 424 

such refugia, even though the low intensity control burn left about 30% of the area untouched 425 

and further unburned habitat could be found in the control site just across a narrow forest 426 

trail. This could be a result of the unburnt areas already being occupied and defended, or a 427 

risk of venturing too far in the newly created open habitat and brown antechinus do generally 428 

show strong site fidelity (Wood 1970). Understanding the phenotypic plasticity of these 429 

mechanisms linking the fate of individuals with changes seen on a population level is vitally 430 

important for understanding fire ecology and to effectively manage fires in a conservation 431 

context.  432 
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Table 1. The number of days data was recorded for each individual in all three groups: pre-572 

fire, post-fire and control. Also shown are the total (n = the number of individuals) and mean 573 

number of days of data for each group. 574 

 575 

 
Pre-fire 

(Days recorded) 
Post-fire 

(Days recorded) 
Control 

(Days recorded) 

 Females Males Females Males Females Males 

 7 7 15 11 7 11 

 6 7 15 11 10 9 

 7 7 12 11  10 

 5 6 14   7 

Total 25 (4) 27 (4) 56 (4) 33 (3) 17 (3) 37 (4) 

Mean 6.3 ± 0.9 6.8 ± 0.5 14.0 ± 1.4 11.0 ± 0.0 8.5 ± 2.1 9.3 ± 2.1 
 576 
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 577 
Fig. 1. Examples of Tb (dotted line) and Ta (solid line) data for male brown antechinus over a 578 

three day period during the study for an individual from the (a) pre-burn, (b) post-burn and 579 

(c) control groups. The dashed line represents the torpor onset Tb and times when Tb data are 580 

missing represent activity periods. The black and white bars along the bottom of the graphs 581 

represent night and day, respectively.  582 
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 583 
Fig. 2. Examples of Tb (dotted line) and Ta (solid line) data for female brown antechinus over 584 

a three day period during the study for an individual from the (a) pre-burn, (b) post-burn and 585 

(c) control groups. The dashed line represents the torpor onset Tb and times when Tb data are 586 

missing represent activity periods. The black and white bars along the bottom of the graphs 587 

represent night and day, respectively. 588 
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 589 
 590 

Fig. 3. All ambient temperatures (°C) recorded throughout the study period in each of the 591 

sites: the pre-fire site that was measured before the fire (n = 9 days) and the post-fire (n = 15 592 

days) and control (n = 15 days) sites which were measured concurrently after the fire. The 593 

middle line in the boxes is the mean daily Ta, whereas the bottom of the box is the 25th 594 

percentile and the top is the 75th percentile. The lower error bar represents the 10th percentile 595 

and the upper error bar the 90th percentile. The lower and upper dots denote the absolute 596 

minimum and maximum Ta recorded in each of the sites, respectively. 597 
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 598 
 599 

Fig. 4. The amount of time (h) male (a) and female (b) antechinus spent active throughout the 600 

whole day (24h, sunrise-sunrise) for the pre-fire, post-fire and control groups. Means for 601 

whole day activity are shown with ± 1 SD (n = the number of individuals, N = the number of 602 

observations) and significant differences are represented by different letters. Night time 603 

activity (sunset-sunrise) is represented by the black and daytime activity (sunrise-sunset) by 604 

the white portion of each bar.  605 

 606 

 607 

 608 
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 609 
 610 

Fig. 5. The mean proportion of time each day male (a) and female (b) antechinus spent torpid 611 

over the entire study period for the pre-fire, post-fire and control groups. Means are shown 612 

with ± 1 SD (n = the number of individuals, N = the number of observations) and significant 613 

differences are represented by different letters. 614 

 615 

 616 

 617 

 618 
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 619 
 620 

Fig. 6. Torpor bout depth shown as mean minimum torpor Tb (°C) of male (a) and female (b) 621 

antechinus for the pre-fire, post-fire and control groups. Means are shown with ± 1 SD (n = 622 

the number of individuals, N = the number of observations) and significant differences for the 623 

females are represented by different letters; no significant differences were found for the 624 

males. 625 


