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Abstract— This paper addresses the central problem of 

automatic segmentation of lumbar spine Magnetic Resonance 

Imaging (MRI) images to delineate boundaries between the 

anterior arch and posterior arch of the lumbar spine. This is 

necessary to efficiently detect the occurrence of lumbar spinal 

stenosis as a leading cause of Chronic Lower Back Pain. A patch-

based classification neural network consisting of convolutional 

and fully connected layers is used to classify and label pixels in 

MRI images. The classifier is trained using overlapping patches of 

size 25x25 pixels taken from a set of cropped axial-view T2-

weighted MRI images of the bottom three intervertebral discs. A 

set of experiment is conducted to measure the performance of the 

classification network in segmenting the images when either all or 

each of the discs separately is used. Using pixel accuracy, mean 

accuracy, mean Intersection over Union (IoU), and frequency 

weighted IoU as the performance metrics we have shown that our 

approach produces better segmentation results than eleven other 

pixel classifiers. Furthermore, our experiment result also indicates 

that our approach produces more accurate delineation of all 

important boundaries and making it best suited for the subsequent 

stage of lumbar spinal stenosis detection. 

Keywords—Patch-based classification neural network, lumbar 

spine MRI, lumbar spinal stenosis  

I. INTRODUCTION 

Lumbar spinal stenosis is a narrowing of spinal canal caused 
by inflammation of bone or soft tissues, which in turn produces 
pressure on spinal nerve roots. This pressure could result in 
Chronic Lower Back Pain (CLBP) with symptoms ranging from 
radicular pain to atypical leg pain to neurogenic claudication [1].  

CLBP is a debilitating illness that is affecting the health, 
social life, and employment of millions of people around the 
world. In the UK, the cost of treating patients with CLBP is 
estimated to be around £500 million annually to the National 
Health Service (NHS) [2]. This is on top of other economic cost 

resulting from the loss of productivity and other informal care – 
which is estimated to reach around £10,668 million [3]. 

It is important to emphasise that CLBP is a chronic illness. 
While millions of people experience some sort of back pain at 
one point in their lives, only small percentage of them 
experience what is termed acute lower back pain. This form of 
back pain is often non-specific and may not necessarily caused 
by a serious condition. However, a small percentage of people 
with acute lower back pain can develop CLBP if the underlying 
cause is serious and left untreated. A study [4] discovered that 
the longer a person is disabled by back pain, the less chance he 
or she returns to work and the more health care cost he or she 
will require. It is therefore important for early identification of 
back pain cause to happen in order to improve the chance of 
patient rehabilitation. 

The speediness of early diagnosis can depend on many 
factors including referral time from GP to the hospital, waiting 
time for a specialist appointment, time for an MRI scan and time 
for the analysis result to come out. Due to heavy demand for 
radiologist and clinicians, the whole process could take weeks 
to complete. 

As a short case study, NHS England currently put a target 
for all imaging and radio diagnostics to be within 6 to 13 weeks. 
However, specialist shortages have caused many patients to wait 
longer. A report by NHS England [5] reveals that there is a 
significant number of cases where diagnostic wait time can be 
extended to more than 13 weeks. This problem is expected to get 
worse since the number of scans is historically an uptrend. A 
report [6] by National Office of Statistics shows that there is a 
12.3% average annual growth in demand for MRI scans since 
1995. This rationalises the need for a new approach to increase 
the efficiency and effectiveness of the imaging diagnostic 
process. 



One way to achieve this is to utilise current advances in 
image analysis and machine-learning technologies to develop a 
computer assisted diagnostic software. Clinical studies have 
shown that there are strong correlations between clinical 
outcome and the morphological characteristics of patient’s 
lumbar spine as captured in the MRI images [7]. Using a 
combination of different image analysis and machine learning 
techniques, computers can analyse the images and identify 
regions of interests for clinicians to focus on. The techniques 
could also be used to provide tools for the specialists to help 
them come to the correct diagnosis quickly. 

As with many other medical imaging processes, the 
aforementioned approach will apply image segmentation as one 
of the earliest yet important steps. To ensure the validity of this 
step, the process must be grounded in sound medical evidence 
and reasoning as well as proven methodology. This paper 
presents the result of segmentation of specific area of lumbar 
spine MRI that is important to the diagnosis of lumbar spinal 
stenosis using patch-based Deep Neural Network. 

The paper will start by describing the process of diagnosing 
lumbar spine stenosis, followed by the design of the network 
architecture, description of the data and the algorithm used, 
followed by experiment results and analysis.  

II. DIAGNOSTIC PROCESS OF LUMBAR SPINAL STENOSIS 

A. Magnetic Resonance Imaging (MRI) 

MRI is the preferred method of medical scans for detecting 
the causes of back pains. MRI images can be used to visualise 
lumbar spine, slice by slice, in three view-planes namely sagittal 
(side), axial (top-down) and coronal (frontal) – typically only the 
first two are used in lumbar spine MRI. 

Sagittal view of lumbar spine MRI is the easiest to 
understand and traditionally is considered the best view that can 
be used to detect certain types of pain including conditions. This 
can be seen from the approach used by some of the earliest 
computer assisted diagnosis of disc herniation [8]–[10]. On the 
other hand, axial view of MRI is much more difficult to read 
because it has much more information about the lumbar spine at 
each vertebrae segment. As a result, in this view, the clinicians 
could pinpoint the exact location of any tissue inflammations, 
facet cysts, disc herniation, stenosis, and fractures. 

Based on the timing of radiofrequency pulse sequences used, 
MRI images can be of any one of two types namely T1- and T2-
weighted MRI. The same tissue could have markedly different 
intensity levels when imaged in each type. One example is 
cerebrospinal fluid (CSF), a clear and colourless body fluid that 
can be found inside our brain and spinal cord. Identification of 
CSF tissue in MRI images has significant relevance to our case 
since it surrounds the many nerve roots inside the spinal cord. 
For any further and more detailed information on MRI and its 
uses as medical imaging technology, interested readers can refer 
to [11] or any other relevant textbooks in this area. 

B. Anatomy of Lumbar Spine 

The lumbar spine is made up of five lumbar vertebrae and 
each vertebra consists of an anterior (body) arch and posterior 

arch. In a mid-sagittal view of the lumbar spine shown in Fig.  1, 
the two arches are separated by a long white opening. The part 
of this opening that is visible in this mid-sagittal cut is thecal sac 
(TS) which contains CSF, the same type of fluid that resides 
inside the brain. The back of the opening, which borders with 
the anterior of the posterior arch, is covered with ligamentum 
flavum (LF). 

The anterior arch of each lumbar vertebra is labelled L1 – 
L5, each separated by an Intervertebral Disc (IVD) labelled D1 
to D4. The last disc, D5, separates L5 and the large triangular 
shaped bone at the bottom of the spine, called the sacrum.  

 

 

Fig.  1. T2-weighted sagittal view MRI of a lumbar spine 
 

 

Fig.  2. T2-weighted axial view MRI of D4 



The axial view of the spine manifests as different slices of 
the MRI images across the vertebra or intervertebral discs. Such 
view, as illustrated in Fig.  2, can show more information on the 
various tissues surrounding each IVD and a part of the posterior 
arch called Lamina. In this view, the opening (the gap) between 
the IVD and the lamina can be seen very clearly as a white 
region that contains the TS. As will be discussed later, 
identifying the area of this opening and its borders with both the 
disc and the lamina, plays an important role in detecting the 
occurrence of stenosis in the lumbar spine. 

C. Lumbar Spinal Stenosis Detection 

The gap between the anterior arch and the posterior arch of 
the vertebrae extends from the cervical spine down to the lumbar 
spine. For the lack of a better word, we refer this gap in this 
paper as the gap. The gap’s width varies depending on the 
location in the spine where the measurement is taken. 
Furthermore, there have been a number of studies [12]–[14], 
which record the measurements of spinal canal widths in a 
population of different countries and the results suggest that the 
gap’s width is also affected by the patient’s ethnicity. 

A lumbar spine stenosis can manifest as the narrowing of any 
parts of the gap and depending on where it occurs can be 
classified as either central stenosis or lateral stenosis. This 
phenomenon is associated as one of the main cause of CLBP 
because of both TS and NF house many nerve roots from 
different parts of the spine to other parts of the body. An 
abnormal compression of either of them would exert pressure on 
these roots and creates a sensation of pain. 

The stenosis could occur in any part of the gap and could be 
caused by different types of defect such as 
posterior/posterolateral disc herniation, osteoarthritic thickening 
of the posterolateral vertebral body, or hypertrophy of 
ligamentum flavum (LF). In all of these cases, clinicians will 
perform manual delineation of the boundaries between the gap 
and the IVD, between the gap and the left and right facet joints, 
and between the gap and LF. These three boundaries are 
illustrated in Fig.  3. 

 

Fig.  3. The three important boundaries for stenosis detection 

between the gap and 1) Intervertebral Disc, 2) Ligamentum 

Flavum and 3) Facet Joints 

A hastily done observation of the above case would suggest 
that the boundaries could be located by applying an edge 
detection algorithm. However, it should be noted that lumbar 
spine MRI images can have a varyingly wide spectrum of edge 
strengths with the strength of those three edges is somewhat 
convoluted in the middle. This makes detection of those three 
edges alone a challenge. To illustrate this claim, two results of 
applying the Canny edge detection using two sets of thresholds 
and sigma values to capture different levels of edge strength are 
shown in Fig.  4.  The figure shows that the three edges cannot 
be reliably located without losing accuracy or having too much 
noise.     

 

  

Fig.  4. The results of Canny edge detection. The left image is 

produced to capture strong edges only using higher threshold 

and sigma values than the one on the right. 

 
This then leads to our conclusion that the three boundaries 

can be located by first performing segmentation on the MRI 
image to separate the gap region from the rest of the lumbar 
spine areas before applying the edge detection algorithm. It is 
also important to note that this approach will consider both TS 
and NF as one homogenous part of the gap hence T2-weighted 
MRI should be used. 

III. PATCH-BASED IMAGE SEGMENTATION 

Image segmentation is one of the fundamental processes in 
image analysis. Traditional approaches to image segmentation 
include clustering techniques based on pixel values such as k-
means clustering, histogram-based clustering, and probabilistic-
based model. However, current state-of-the-art image 
segmentation techniques are dominated by different types of 
Deep Neural Network to achieve semantic segmentation. There 
are two main approaches of semantic segmentation namely 
patch-based pixel classification [15]–[17] using convolutional 
and fully connected layers, and whole-image segmentation 
[18]–[20] using fully convolutional and convolution-transpose 
layers. 

In this paper, we utilise a patch-based classification approach 
to image segmentation to separate the gap area from other tissues 
in lumbar spine MRI. For each pixel, p, in the input image, a 
patch centred at p is considered. The patch dimension, w, is set 
to an odd number to enforce symmetry. The network will 
classify each pixel based on the information contained in the 
patch into one of two possible classes namely NF (0) and non-
NF (1). The process flow of image segmentation using this 
architecture is illustrated in Fig.  5. 



A. Deep Neural Network Architecture 

Our neural network shares a similar architecture to other 
patch-based deep neural networks. It includes an Image Input 
Layer, a cascade of Convolution Layers that will produce 
multiscale classification features and a Fully Connected Layer 
for classification of these features. 

The Image Input Layer contains a 2D array of nodes that act 
as a receptor to each pixel in the patch. The dimension of this 
layer is identical to the dimension of the patch. A data 
normalisation step is applied to the pixel values by subtracting 
the mean pixel value before generating the output of this layer.  

 

Fig.  5. The process flow of image segmentation using patch-

based pixel classification approach. 
 

The output of the Image Input Layer is fed to a cascade of 
Convolution Layers. In our network, each convolution layer has 
a fixed number of equal-sized kernels. The kernel size chosen is 
relatively small since the input of the network is already a small 
subset of the entire image. Each kernel corresponds to each 
classification feature trained within the layer. Each of the output 
of these layers is calculated as the dot product of the input and 
the kernel. As the signal is passed across these layers, it gets 
down sampled hence the output of each layer covers an 
increasing support area of the input patch. Each layer, however, 
is set to have an increased number of kernels compared to the 
last. This decision is made to allow more features to be trained 
as the support area of the convolution layer increases. 

To further speed up the training process and reduce the 
sensitivity of the network to its initial weight values, we opt to 
apply batch normalisation [21] [22] to the convolution layer 
output. This approach works by subtracting the output of the 
previous convolution layer by the batch mean and dividing the 
result by the batch standard deviation. The increase in training 
speed and stability are achieved since the batch normalisation 
process reduces the variability of the input signal into two 
trainable parameters namely, the batch means and batch 
standard deviation. 

As with other deep neural network architectures, we opt to 
use Rectified Linear Unit (ReLU) activation function [23]. This 
decision is based on the function’s advantages over others, such 
as Sigmoid function, that include faster training speed due to a 
reduced likelihood of vanishing gradient. ReLU activation 
function also has been proven to train networks with sparser, and 
hence considered better, weights representation.  

We set the convolution stride to one and apply an appropriate 
number of pixel padding to its input to ensure the length of input 
and output of each convolution layer remain the same. A down 
sampling process is applied at the end of each convolution layer 
by taking the maximum of the activation signals inside a 2x2 
non-overlapping region to produce a signal that has half the 
dimension. In total, our network uses three convolution layers to 
perform the feature weight training.  

After the end of the last convolution layer, we use two Fully 
Connected Layers to learn all high-level combinations of the 
features learned by the earlier layers. Since the network will 
classify the central pixel in each patch into one of the two 
possible classes, the last layer will have two neurons. For 
classification, our network uses the soft max classifier. This 
classifier produces the probability of the input to belong to each 
class and can produce a more representative loss value when 
evaluating the network [24].  

For ease of reference, throughout the remainder of this paper, 
we will refer to this network as PALMSNet which is an acronym 
for Patch-based Axial-view Lumbar-spine MRI Segmentation 
Neural Network. The overall architecture of PALMSNet is 
summarised in Table I. 

TABLE I.  THE ARCHITECTURE OF PALMSNET 

Layer Type Number of 
Neurons 

Kernel Size Number of 
Kernels 

0 Image Input 25x25   

1 Convolution 25x25 3x3 16 

2 Batch Normalisation 25x25   
3 ReLU 25x25   

4 Max Pooling 25x25   

5 Convolution 12x12 3x3 32 
6 Batch Normalisation 12x12   

7 ReLU 12x12   

8 Max Pooling 12x12   
9 Convolution 6x6 3x3 64 

10 Batch Normalisation 6x6   

11 ReLU 6x6   
12 Max Pooling 6x6   

13 Fully Connected 2304   

14 Fully Connected 2   

15 Soft Max 1   

 

B. Training 

The training data consists of 400,680 image patches of size 
25x25 pixels. They are taken from T2-weighted axial lumbar 
spine MRI images of the last three IVDs (D3-D5) of seven 
patients. The images are cropped to provide better focus on the 
areas around the IVD, the gap, and the lamina. Ground truth 
images were created with the assistance of physicians in this 
field by creating a binary image marking the area of interest. An 



example of the MRI and ground-truth (label) image pair is 
shown in Fig.  6. 

 

Fig.  6. An example of MRI and ground-truth image pair 
used for training. 

Furthermore, we exploit the fact that all axial view of lumbar 
spine MRI images are always taken from the same orientation 
and similar scale to avoid having to augment the image patches 
synthetically. However, this approach may not be suitable when 
using the network to segment other types of medical images. 

The network is trained using the popular Stochastic Gradient 
Descent with Momentum algorithm [25] to update the network 
weights and biases. The algorithm works by taking small steps 
in the direction of the negative gradient of the loss function to 
minimize the error function. The size of the step is modulated 
by a learning rate parameter that is set to 0.001. 

The training is performed on a personal computer in 
Windows 10 with i7-7700 CPU @ 3.60GHz, 64 GB RAM, and 
two NVIDIA Titan X GPUs. The training process takes 2,102 
seconds and 9.5 x 104 iterations to complete.  

IV. EXPERIMENT RESULTS 

Once trained, the network is used to classify pixels from test 
images. The test data consists of 171,720 image patches of size 
25x25 pixels extracted from T2-weighted axial lumbar spine 
MRI images of D3-D5 of three patients. They are different 
patients from the seven whose MRI images are used for training. 

We carried out four different experiments to measure the 
performance of PALMSNet. The first experiment uses the 
images from all three IVDs for training and testing whereas the 
other three use only those from each disc separately. This 
experiment setup is used based on our hypothesis made during 
observation and analysis of the MRI images, that separation of 
the disc images during training will improve the classification 
results. 

We will use four performance metrics that are common in 
other semantic segmentation evaluations [19]. They are pixel 
accuracy (𝑎𝑝 ), mean accuracy (𝑎𝑚 ), mean intersection over 

union (𝑖𝑜𝑢𝑚) and frequency weighted intersection over union 
(𝑖𝑜𝑢𝑓𝑤). The formula to calculate these metrics are shown in Eq. 

(1) to (4). 

 𝑎𝑝 =
∑ 𝑛𝑖𝑖𝑖

∑ 𝑡𝑖𝑖
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 𝑖𝑜𝑢𝑓𝑤 =
∑
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𝑖 

∑ 𝑡𝑖𝑖
 

Where 𝑛𝑖𝑗  is the number of pixels of class 𝑖  predicted to 

belong to class 𝑗 , and 𝑛𝑐𝑙  is the number of classes and 𝑡𝑖 =
∑ 𝑛𝑖𝑗𝑗  is the total number of pixels of class 𝑖. 

For comparison purposes, we perform another image 
segmentation using SegNet [20], a fully convolutional neural 
net, and using ten other, but more conventional, image 
segmentation algorithms. Four of these ten algorithms are 
variants of the decision tree (complex/medium [26]–[28], and 
ensemble [29], [30]). A further four are based on the modified 
k-nearest neighbour (medium, weighted, coarse and cubic [31]–
[34] ) and the other two are based on modified SVM (fine and 
medium Gaussian [35]). The features used in these ten 
conventional algorithms are the raw pixel values and their 
corresponding locations. Pixel locations have been used in 
conjunction with pixel values to provide better spatial coherence 
to the segmentation result [36].   

TABLE II.  PERFORMANCE USING ALL INTERVERTEBRAL DISCS 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚  𝑖𝑜𝑢𝑓𝑤  

Fine Gaussian SVM 0.78 0.77 0.62 0.64 

Medium Gaussian SVM 0.79 0.78 0.64 0.66 
Cubic k-nearest neighbour 0.79 0.78 0.64 0.66 

Medium k-nearest neighbour 0.79 0.78 0.64 0.66 

Weighted k-nearest neighbour 0.77 0.77 0.62 0.64 

Coarse k-nearest neighbour 0.79 0.79 0.64 0.66 

Complex Tree 0.75 0.75 0.59 0.61 

Medium Tree 0.75 0.75 0.59 0.61 
Boosted Tree Ensemble 0.76 0.76 0.60 0.62 

Bagged Tree Ensemble 0.75 0.75 0.59 0.61 

SegNet 0.75 0.67 0.53 0.58 
PALMSNet 0.86 0.85 0.75 0.76 

TABLE III.  PERFORMANCE WHEN TRAINED AND TESTED USING D3 ONLY 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚  𝑖𝑜𝑢𝑓𝑤  

Fine Gaussian SVM 0.81 0.77 0.62 0.70 

Medium Gaussian SVM 0.79 0.78 0.60 0.68 
Cubic k-nearest neighbour 0.79 0.78 0.60 0.68 

Medium k-nearest neighbour 0.79 0.78 0.60 0.68 

Weighted k-nearest neighbour 0.79 0.78 0.61 0.69 
Coarse k-nearest neighbour 0.80 0.78 0.61 0.69 

Complex Tree 0.74 0.74 0.54 0.62 

Medium Tree 0.76 0.75 0.56 0.64 
Boosted Tree Ensemble 0.71 0.74 0.52 0.59 

Bagged Tree Ensemble 0.79 0.78 0.60 0.68 

SegNet 0.79 0.73 0.58 0.68 
PALMSNet 0.93 0.92 0.85 0.87 

 

The results of the segmentation as measured using the four 
performance metrics are shown in Table II-V. The results shown 
in the Table II-IV indicate that PALMSNet performs 
significantly better than the other eleven.  The other DNN-based 
algorithm, however, has a similar level of pixel accuracy than 
the more conventional methods but performs slightly worse 



using the other three metrics. It is important to note from these 
tables that the training and testing on D3 or D4 separately yield 
significantly better results than on all of them together. 

TABLE IV.  PERFORMANCE WHEN TRAINED AND TESTED USING D4 ONLY 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚  𝑖𝑜𝑢𝑓𝑤  

Fine Gaussian SVM 0.82 0.78 0.63 0.71 
Medium Gaussian SVM 0.81 0.78 0.62 0.70 

Cubic k-nearest neighbour 0.80 0.78 0.61 0.68 

Medium k-nearest neighbour 0.80 0.78 0.61 0.69 
Weighted k-nearest neighbour 0.80 0.78 0.61 0.69 

Coarse k-nearest neighbour 0.81 0.78 0.63 0.70 

Complex Tree 0.76 0.76 0.57 0.65 
Medium Tree 0.77 0.75 0.57 0.65 

Boosted Tree Ensemble 0.79 0.77 0.59 0.67 

Bagged Tree Ensemble 0.78 0.77 0.59 0.67 
SegNet 0.73 0.69 0.53 0.57 

PALMSNet 0.92 0.91 0.84 0.85 

 

The last experiment results are shown in Table V also 
indicate the superiority of PALMSNet over the other eleven 
methods. However, the gaps between them are less pronounced 
than the previous three results. For example, only 0.02% 
difference in mean accuracy between the best of the eleven and 
PALMSNet in Table V compared to 0.06% in Table I. 

TABLE V.  PERFORMANCE WHEN TRAINED AND TESTED USING D5 ONLY 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚  𝑖𝑜𝑢𝑓𝑤  

Fine Gaussian SVM 0.68 0.71 0.48 0.55 
Medium Gaussian SVM 0.68 0.71 0.49 0.56 

Cubic k-nearest neighbour 0.66  0.70    0.47    0.53 

Medium k-nearest neighbour 0.66 0.70 0.47 0.53 

Weighted k-nearest neighbour 0.67 0.69 0.47 0.54 

Coarse k-nearest neighbour 0.69 0.72 0.49 0.56 

Complex Tree 0.66 0.68 0.46 0.53 
Medium Tree 0.65 0.65 0.44 0.52 

Boosted Tree Ensemble 0.64 0.68 0.45 0.51 

Bagged Tree Ensemble 0.65 0.68 0.46 0.52 
SegNet 0.60 0.62 0.43 0.43 

PALMSNet 0.74 0.74 0.59 0.59 

 

The results provide a mixed degree of validation to our initial 
hypothesis.  While the decision to separate the disc yields much 
better results for D3 and D4, the same cannot be said for D5. As 
can be seen in Table VI the net trained using data from all discs 
still yields better performance on D5 test data than the network 
that is trained using only D5 data. 

TABLE VI.  PALMSNET PERFORMANCE WHEN TESTED ON D5 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚  𝑖𝑜𝑢𝑓𝑤  

PALMSNet trained using all discs 0.80 0.80 0.66 0.66 

PALMSNet trained using D5 only 0.74 0.74 0.59 0.59 

 

V. DISCUSSION AND ANALYSIS 

The experiment results presented in the previous section 
clearly show that PALMSNet can produce more accurate 
segmentation than the other eleven techniques.  However, while 
the segmentation metrics that are used provide us with a measure 

of how well each algorithm is in segmenting the MRI images, 
they do not provide a good visual indicator on how each of the 
algorithm fares in providing accurate delineation of the MRI 
images. This is because if we were to use the result of this 
segmentation to assist detection of lumbar spinal stenosis, the 
next step will rely heavily on the accuracy of the edges found 
around the areas shown in Fig.  3, rather than the entire 
segmented image.  

To provide better visual cues on the suitability of the 
network for this purpose, we show the result of superimposing 
the resulting edges with the ground truth. In the interest of 
conciseness of the discussion, we only show the result using 
PALMSNet trained on all discs. These are shown in Fig.  7. 

The images illustrated in Fig.  7 confirm our finding in the 
previous section that the results are markedly worse when 
applied to D5 compared to the other two discs.  

 

  

  

  

Fig.  7. The result of superimposing the edges of the 
segmentation result on to the ground truth (right), and their 

corresponding original MRI images (left). The top images are 
taken from D3, middle from D4, and bottom from D5. 

The simulation result indicated that PALMSNet produces 
significantly better segmentation results than SegNet, another 
deep network architecture. Further investigation into the low 
metric score for SegNet reveals that this network suffers greatly 
from overfitting to the training data set which may be attributed 
to the high number of layers that the network has. The network 
overfitting is evidenced by the significantly high accuracy of the 
prediction on the training data (0.95) compared to that on the test 
data (0.75). As illustrated in Fig.  8. 

 

  

Fig.  8. Visual evidence of overfitting of SegNet in this 
experiment. The figure shows prediction on (left) a training 

image and (right) on a test image. The bright pixels outline the 
edges of the segmented image. 



VI. CONCLUSION AND FURTHER WORK 

In this paper, we have outlined the rationale of performing 
image segmentation as an important step to assist the delineation 
process to detect lumbar spinal stenosis in axial-view MRI. We 
did this by first describing the anatomy of the lumbar spine and 
the process carried out by clinicians when analysing lumbar 
spine MRI images. The contribution of this paper can be 
summarised as follows:  

1. The architecture design of PALMSNet, a Deep Neural 
Network suitable to use for image segmentation of lumbar 
spine MRI. Our network is based on the patch-based image 
segmentation approach using Fully Connected Neural 
Network. 

2. Experiment results trained using 400,680 image patches 
and tested on 171,720 image patches of size 25x25 pixels 
taken from T2-weighted axial lumbar spine MRI images of 
the last three intervertebral discs (D3-D5) of ten patients in 
total. Analysis of the results shows that the performance of 
PALMSNet exceeds those of another DNN and ten other 
more conventional image segmentation classifiers. 

In future, we will use PALMSNet on significantly more data. 
We have collected lumbar spine MRI images of over 500 
subjects. We will use the images for better training and 
validation of the network performance. We will also employ 
appropriate post-processing algorithms on the resulting 
segmentation to make it more suitable for medical image 
analysis purposes. The general plan is to use PALMSNet in our 
framework on computer-assisted detection of chronic lower 
back pain which was detailed in our previous publication [37]. 
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