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Abstract

Modern time-domain astronomy is capable of collecting a staggeringly large

amount of data on millions of objects in real time. Therefore, the production of

methods and systems for the automated classification of time-domain astronom-

ical objects is of great importance. The Liverpool Telescope has a number of

wide-field image gathering instruments mounted upon its structure, the Small

Telescopes Installed at the Liverpool Telescope. These instruments have been

in operation since March 2009 gathering data of large areas of sky around the

current field of view of the main telescope generating a large dataset containing

millions of light sources. The instruments are inexpensive to run as they do not

require a separate telescope to operate but this style of surveying the sky in-

troduces structured artifacts into our data due to the variable cadence at which

sky fields are resampled. These artifacts can make light sources appear variable

and must be addressed in any processing method.

The data from large sky surveys can lead to the discovery of interesting new

variable objects. Efficient software and analysis tools are required to rapidly de-
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termine which potentially variable objects are worthy of further telescope time.

Machine learning offers a solution to the quick detection of variability by char-

acterising the detected signals relative to previously seen exemplars. In this

paper, we introduce a processing system designed for use with the Liverpool

Telescope identifying potentially interesting objects through the application of

a novel representation learning approach to data collected automatically from

the wide-field instruments. Our method automatically produces a set of classi-

fication features by applying Principal Component Analysis on set of variable

light curves using a piecewise polynomial fitted via a genetic algorithm applied

to the epoch-folded data. The epoch-folding requires the selection of a candi-

date period for variable light curves identified using a genetic algorithm period

estimation method specifically developed for this dataset. A Random Forest

classifier is then used to classify the learned features to determine if a light

curve is generated by an object of interest. This system allows for the telescope

to automatically identify new targets through passive observations which do not

affect day-to-day operations as the unique artifacts resulting from such a survey

method are incorporated into the methods.

We demonstrate the power of this feature extraction method compared to

feature engineering performed by previous studies by training classification mod-

els on 859 light curves of 12 known variable star classes from our dataset.

We show that our new features produce a model with a superior mean cross-

validation F1 score of 0.4729 with a standard deviation of 0.0931 compared with

the engineered features at 0.3902 with a standard deviation of 0.0619. We show

that the features extracted from the representation learning are given relatively

high importance in the final classification model. Additionally, we compare en-

gineered features computed on the interpolated polynomial fits and show that

they produce more reliable distributions than those fit to the raw light curve

when the period estimation is correct.

Keywords: Astronomical Time-Series, Light Curve Analysis, Period Analysis,

Variable Stars, Binary Stars, Random Forest Classification
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1. Introduction

Time Domain Astronomy is a field of research addressing astronomical ob-

jects and phenomena responsible for the production of independent light sources

that exhibit variation of timescales detectable by instrumentation. These ob-

jects can exhibit intrinsic variability due to changes in the structure of an object5

or extrinsic variability of separate structures. Analysis of these objects grants

valuable information into physics and the wider universe. A subset of these

variable objects that exhibit periodic variability that, if correctly identified, can

be used to perform a variety of important tasks such as distance measurement

through standard-candle methods. The ability to reliably observe these light10

sources is rapidly improving through the development of new technological so-

lutions, both hardware and software based.

Advances in observational, storage and data processing technologies have

allowed for extended sky surveys to be conducted and exploited. These surveys

range from focused observations of specific regions of the sky such as the MA-15

CHO (Alcock et al., 2000), EROS (Rahal et al., 2009) and OGLE (Udalski et al.,

1997) surveys to extended sky surveys probing large swathes of the night sky

such as SDSS (York et al., 2000), Pan-STARRS (Kaiser, 2002) and CRTS (Lar-

son, 2003). This progress continues to enhance observational capability with the

construction of the Large Synoptic Survey Telescope (LSST) in northern Chile20

due to commence operations at the beginning of the next decade (Ivezic, 2014).

With this constant improvement in capability, the fields of Astronomy, Com-

puter Science, Computational Intelligence and Statistics are striving to develop

efficient implementations of multiple algorithms that can describe the properties

of observed light sources and correctly classify them.25

Time domain astronomy is characterised by the large datasets generated

by sky surveys containing time-series data (Vaughan, 2011). Time-series data

contains information on the temporal component of measurements and the

whole time-series contains multiple observations at differing times. Most data-

gathering exercises outside of astronomy result in a large number of observations30
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with consistent time intervals between individual observations. In Time-Domain

Astronomy, it is common for these observations to have a significantly uneven

distribution in time with inconsistent intervals between observations (Lomb,

1976, Scargle, 1982). Major causes of this include weather limitations that can

prevent telescope operation for uncertain periods and limited access time to tele-35

scopes due to the volume of astronomers requiring observations. As a result,

astronomy requires data processing capable of automated analysis of time-series

data on individual objects that can contain a cluster of observations over the

space of days followed by no additional observations for a period of months

(Lomb, 1976, Scargle, 1982).40

This paper will focus on our system for processing uneven-cadence time-

series astronomical light curve data through representation learning of useful

features using Principal Component Analysis (PCA) unsupervised learning on

PolyFit interpolated phased light curves using a period determined by a ge-

netic algorithm period estimation method and a Random Forest machine learn-45

ing algorithm for classification. The data is in the form of a wide field object

SQL database containing millions of stellar objects generated from observational

images gathered by the Small Telescopes Installed at the Liverpool Telescope

(STILT) instruments (Steele et al., 2004, Mawson et al., 2013). The database

contains time-series data on the magnitude (i.e. brightness) of detected objects50

over a period from March 2009 to March 2012 (Mawson et al., 2013). The

specific nature of the collection of this data using images captured by passive

surveying, i.e. the instrument has no control over the telescope, is greatly advan-

tageous as it does not take up telescope time. Unfortunately, it does introduce

sampling based artifacts into the data that must be accurately determined by55

the processing pipeline. The successful development of a method to perform

survey astronomy whilst compensating for sampling artifacts will allow a novel

implementation of new wide field variability surveys at a relatively low cost to

former variability surveys.

The remainder of this paper is organised as follows. §2 will discuss the60

gathering of data to produce light curves and properties of these for variable
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stars while §3 will discuss our methodology to extract descriptive light curve

features independent of the sampling cadence. §4 demonstrates experimentally

that the new features are atleast as useful as those from previous studies. Finally

§5 discusses the possibilities for a variable star classification system based on the65

proposed method and concludes the paper with proposed further investigations.

2. Light Curves and Variable Stars

Photometry is a branch of instrumentation concerned with the precise mea-

surement of the visible-wavelength electromagnetic radiation (light) captured

by an appropriate instrument from a light source. Photometric data on a large70

number of objects can be generated through the production of wide-angle images

of the sky. The intensity of the image pixels is determined by the activation

of the Charge-Coupled Device (CCD) cameras pixels by incoming light from

multiple astronomical objects with some background noise and detection bias

from the camera (Mawson et al., 2013). As a result, each image contains impor-75

tant information about the brightness (magnitude) of the detected objects. By

identifying objects in multiple images with different observation times, informa-

tion on the change of the brightness of these objects can be determined. This

task itself is non-trivial as the objects could be located in different regions of

consecutive images due to the motion of the telescope. The resulting brightness-80

over-time data for each individual object is defined as the objects light curve

(Lomb, 1976, Scargle, 1982, Huijse et al., 2012).

Light curves present a quantity of useful data on a light source in the form of

a time-series. This time-series is univariate with magnitudes, magnitude error

and the associated time instants of measurement. Magnitude is a logarithmic85

brightness scale used by astronomers as shown in Equation 1.

m−mref = −2.5 log10

F

Fref
(1)

Where m represents the apparent magnitude of a detected source (i.e. the mag-

nitude of the object as it appears from Earth), mref represents the apparent
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magnitude of a suitably chosen reference source, F is the total flux of the de-

tected source and Fref is the total flux of the reference source. Flux is a measure90

of the quantity of light detected by the CCD instrument.

This data can be manually manipulated by experienced astronomers to re-

veal a wealth of properties associated with the light source object(s). However,

the number of light curves being generated by successive extended sky surveys

has already passed the point where it is unfeasible for these light curves to95

be manually analyzed. There are a number of problems associated with the

extraction of useful information from light curve time-series in which compu-

tational intelligence algorithms are of extreme interest. These problems can

be categorized as a parameter (feature) extraction process, an experience-based

classification operation and an organizational method that attempts to identify100

structure across the large assortment of light curves (Richards et al., 2011b).

These problems appear to be precisely positioned for exploitation by modern

machine learning and computational intelligence methods.

The resultant databases from such extended sky surveys can be daunt-

ingly large potentially containing the light curves of millions of individual light105

sources. Additionally, the data itself exhibits a number of characteristics that

can prove greatly detrimental to the efficient and accurate analysis of the light

curves. The dominant property of astronomical light curves is the sampling of

these light curves. Whilst surveys will attempt to optimize for a specific sam-

pling rate, a property named cadence, limitations in observational schedules and110

telescope limitations result in uneven sampling containing artifacts such as gaps

in the dataset and non-integer deviations from the desired sampling rate. For

example, Earth based observations have an unavoidable periodic one-day gap

in observations due to the inability to observe during daytime hours. As well

as sampling artifacts, there are also periodic light variations due to local cycles115

such as the orbit of the moon resulting in different phases, which periodically

vary the background sky brightness through the monthly cycle. Additionally,

a number of noise sources often affect astronomical data. The Earths atmo-

sphere can result in noise in the coordinate positioning of light sources as well
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as refraction and extinction resulting in variations to the measured brightness.120

CCD cameras used to gather this data are subject to two major sources of noise.

Each pixel on a CCD will have slight difference in light sensitivity called flat

field error and there is a thermal noise caused by thermal photons produced by

the instrument. These noise sources are usually limited through the production

of flat field and dark frames as well as the cooling of the CCD cameras.125

The analysis of variable astronomical objects is a major element in the un-

derstanding of stellar and galactic evolution as well as the topology of the uni-

verse (Richards et al., 2011b). Many astronomical objects exhibit brightness

variability due to a large number of differing physical processes that uniquely

influence an objects light curve. Therefore, the light curve can be used in the130

classification of variable objects based on the signature of these potentially peri-

odic physical processes and the detection of unknown candidate objects or even

unknown variability phenomena that might be due to previously unrecognized

astrophysical processes (Protopapas et al., 2006). Figure 1 demonstrates the

light curve of a pulsating variable star of classical Cepheid classification (Eyer135

and Mowlavi, 2008). Pulsating stars are unstable stars and undergo periods of

pulsation where they grow and contract in size (Percy, 2008). These size os-

cillations produce changes to the stars temperature and brightness resulting in

a measurable change upon the light curves (Lomb, 1976, Scargle, 1982, Huijse

et al., 2012).140

Another important type of variable object is the eclipsing binary (LaCourse

et al., 2015). In these systems, two or more stars are in close proximity to each

other and execute orbits around a common gravitational centre-point. The

close proximity of the stars often means that they cannot be distinguished on

an image and appear as a single source of light. Variations in these objects145

are caused by the plane of the orbit aligning with the view from Earth. As a

result, one star periodically passes in front of another resulting in a change in

either the brightness and/or the relative brightness in different colour filters of

the source of light in the astronomical images. These different types of variable

object must be catalogued from the initial surveys so that they can be used by150
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Figure 1: The light curve of the star U Aquilae, a pulsating classical Cepheid star. The star

expands and contracts which produces a clear oscillation in the light curve when phased to

the known period of 7.02 days.
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astronomers for additional research.

2.1. Small Telescopes Installed at the Liverpool Telescope

The Liverpool Telescope is a fully robotic two-metre class telescope located

at the Observatorio del Roque de los Muchachos on the island of La Palma,

Canary Islands. It is administered by a collaboration between Liverpool John155

Moores University and the Instituto de Astrofisica de Canarias (Steele et al.,

2004, Mawson et al., 2013). The Small Telescopes at the Liverpool Telescope

(STILT) are a set of wide field imaging devices that complement the instrumen-

tation available to the Liverpool Telescope (Mawson et al., 2013). The STILT

instruments consist of three instruments with Andor Ikon-M DU934N-BV CCD160

cameras (Steele et al., 2004, Copperwheat et al., 2016) detecting unfiltered op-

tical wavelength white light (all electromagnetic radiation across the visible

spectrum). They are named SkycamA with a whole sky view, SkycamT with a

9◦ × 9◦ (formerly 21◦ × 21◦) field of view (FoV) and SkycamZ with a 1◦ × 1◦

FoV. They have varying field of views and are mounted directly to the body of165

the main Liverpool Telescope aimed co-parallel with the main telescopes focus.

These instruments have no control over the motion of the Liverpool Telescope

and simply take exposures as directed by a small Asus eee pc-powered control

unit (Mawson et al., 2013). The sky coverage and cadence of the Skycams is

highly variable and is not optimised for any particular survey or science program170

(Mawson et al., 2013).

The STILT dataset is a Structured Query Language (SQL) database of multi-

object photometry deployed on the MySQL platform. It contains 1.24 billion

separate object observations of 27.74 million independent stellar objects. The

database contains time-series data on the magnitude of detected objects over a175

period of time from March 2009 to March 2012 for SkycamT and July 2009 to

March 2012 for SkycamZ (Mawson et al., 2013, McWhirter et al., 2016).

To create this MySQL database, the time-stamped observational images

are processed by a data reduction pipeline (Mawson et al., 2013). Software

using this methodology corrects the raw images using dark and flat frames.180
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The dark current and bias noise correction is accomplished by using a single

reduction frame. This reduction frame consists of between 30 and 210 dark

frames generated by obtaining exposures of the inside of the dome at midnight

on nights where the weather prevents observing. These stacked frames must

then be updated on a weekly basis. Upon the removal of these known sources185

of noise, the images are then fit to the World Coordinate System (WCS), a

system that allows the location of the frame in the sky to be determined and

recorded accurately. This is required as the Skycams are not linked to the

Liverpool Telescopes computer systems and therefore they have no knowledge

of the current coordinates of the telescopes primary field of view (Mawson et al.,190

2013). This necessitates the fitting of WCS information through the use of Blind

Astrometric Calibration. This is accomplished through the use of two pieces of

software, Source Extractor (SExtractor) and Astrometry.net. Source Extractor

is capable of identifying the sources of light present in an image and outputting

information about them such as their pixel coordinates, the Flux (intensity)195

of the sources, their ellipticity (how elliptical the light source is on the image)

and properties of the size of the source such as the isophotal area (area of the

same brightness) (Bertin and Arnouts, 1996). It is also capable of filtering out

artifacts to maintain the purity of the sources identified. The second piece of

software, Astrometry.net, uses the observing frame to determine its coordinates200

(Lang et al., 2010). This is accomplished by assigning each source extracted

a unique hash key generated by a quadrilateral produced by the four nearby

bright sources. This hash key is generated in a specific manner such that it is

invariant to the images orientation and scale allowing it to function successfully

for images with various fields of view. The authors of the software claim more205

than a 99% success rate for contemporary near-ultraviolet (near-UV) and optical

survey data with zero false positives for fields with a well matched set of reference

quadrilaterals (Lang et al., 2010).

All data from these images that pass all quality control checks is then stored

in one of two MySQL databases, one for SkycamT images and one for SkycamZ210

images (Mawson et al., 2013, McWhirter et al., 2016). This data comprises
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Source Extractor output as described previously, data from the FITS header

(FITS is a common file type used for astronomy images) and catalogue informa-

tion from the US Naval Observatory B catalogue based on coordinate matching

the sources to known stars. At the end of each observing night, a check is per-215

formed to determine the quality of the observations recorded that night. The

standard deviation of an objects magnitude values is then determined. A larger

value of standard deviation indicates the data is of poor quality as these stan-

dard deviations are many times larger than those expected from even the most

variable stars.220

3. PolyFit Feature Representation

Previous research has resulted in a set of carefully engineered features for the

description of light curves. The process of developing these features was powered

by over a decade of work performed by experts in the analysis of light curves.

The features they developed were designed for the current generation of survey225

data present at the time with many systems relying on OGLE (Udalski et al.,

1997, Richards et al., 2011b), MACHO (Alcock et al., 2000, Kim et al., 2011),

EROS2 (Rahal et al., 2009, Protopapas et al., 2015) and Kepler (LaCourse et al.,

2015, Kugler et al., 2016, Matijevic, 2012, Parvizi et al., 2014, Neff et al., 2014)

data. Some of the early classification features were based on a Fourier decompo-230

sition of the time-series data to generate a set of periodic features (Debosscher

et al., 2007). These features were further extended using a set of non-periodic

features previously identified as useful for variability detection. The full set of

periodic and non-periodic features were then used to train a number of models

using several different machine learning classifiers (Richards et al., 2011b). Ad-235

ditional non-linear features were introduced later and a subset were selected for

variable star classification (Kim and Bailer-Jones, 2016). Unfortunately, despite

the best of intentions, biases have been introduced into the classification pro-

cess. This is due to the engineered features that are designed for and perform

well at classification tasks for one survey does not guarantee good performance240
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in other surveys with differing statistics (Benavente et al., 2017). The efficient

production of a set of informative features is highly important (Huijse et al.,

2014).

In regards to the classifiers, research has been conducted in mapping the

models trained by one survey to the unclassified data of another such as consid-245

ering different survey statistics to be a rotation in a higher dimensional feature

space (Benavente et al., 2017). Other approaches aim to produce a set of highly

capable classification models on a subset of object types with high performance

and then combine them into a meta-classification model for improved multi-

survey capability (Pichara et al., 2016). The features derived from the works250

of Richards et al. (Richards et al., 2011b) and Kim & Bailer Jones (Kim and

Bailer-Jones, 2016) are useful in the classification of Skycam light curves how-

ever, many of the statistical features are unreliable. The physical reason for

these features to be important for classification remains intact but the consid-

erable noise in the Skycam data heavily poisons these features. As a result,255

research was conducted into the computation of a set of new features tuned for

performance on the Skycam light curves. Representation Learning is a machine

learning technique which extracts useful non-linear representation features of

the raw data based on their performance at a given task, such as the classifica-

tion of the variable star light curves (Bengio et al., 2013). Convolutional Neural260

Networks (CNNs) were used to attempt to extract features automatically from

a two dimensional representation of the Skycam light curve data (McWhirter

et al., 2017). Whilst the results of this method were shown to be inferior to the

engineered features from previous studies, it did demonstrate that representa-

tion learning was possible on the Skycam data.265

The goal of the representation learning is to produce features that model the

shape of the folded light curve. Phase folding or epoch folding is a procedure

that ‘folds’ multiple periodic waves together using equation 2.

φi =

∣∣∣∣ ti − t0P

∣∣∣∣
1

(2)

where φi is the phase of the ith data point, ti is the time instant (in time units)
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of the ith data point, P is the period of the light curve in the same time units,270

t0 is an arbitrary timestamp of phase 0 and |x|1 is the modulus of x with 1, the

decimal remainder of the function x.

This emphasises the shape of the variability over most sampling artifacts

as long as the baseline (duration of time the source was observed) is much

greater than the period of the variation and that the period is not close to a275

spurious sampling period. Equation 2 shows that the period is an important

component of the resulting phased light curve. The period most be estimated

from the data present in the light curve. We make use of GRAPE: Genetic

Routine for Astronomcal Period Estimation designed for use on the Skycam

light curves (McWhirter et al., 2018). This method uses a Bayesian Generalised280

Lomb Scargle (BGLS) periodogram (Mortier et al., 2015, Mortier and Cameron,

2017) optimised within a genetic algorithm to rapidly compute a candidate

period and eliminate spurious results due to the unusual Skycam cadence. This

method has the highest performance at correctly identifying candidate periods

in the Skycam light curves (McWhirter et al., 2018).285

A model can then be produced through the interpolation of a fitted model on

the phase-folded data points. This model would remove much of the light curve

noise and produce a fit which has the flexibility to correctly fit any possible

phase-folded light curve shape whilst not overfitting on the noise. The chosen

model for this interpolation on the Skycam light curves is the PolyFit model290

(Prsa et al., 2008). This model was developed for the fitting of eclipsing binary

light curves and therefore is specifically designed to accurately reproduce the

thin primary and secondary eclipses of detached binaries whilst still maintaining

good performance on other light curve shapes such as pulsating variables (Prsa

et al., 2008, Paegert et al., 2014, Parvizi et al., 2014).295

The PolyFit algorithm is designed to outperform Fourier and Spline models

when applied to any eclipsing binary light curve. The PolyFit algorithm is

a method of fitting a polynomial chain P (x) of smooth, piecewise nth order

polynomials which connect at a set of knots (Prsa et al., 2008). The algorithm

has two main additions compared to normal piecewise polynomial methods to300
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achieve the desired performance. First, unlike spline models, the polynomials

are not required to be differentiable (although they remain continuous) at the

knots allowing the modelling of sharp, narrow features such as eclipses. The

second requirement is that the model cycles across the phase boundary between

0.5 and -0.5 when centred on zero. Our implementation of PolyFit utilises 4305

knots with 4 2nd order piecewise polynomials fit using regularised polynomial

regression through the implementation of the normal equation on the 4 subsets

of data defined between each pair of consecutive knots. This produces a set of

16 parameters which fully describe the fitted PolyFit model, 4 knot locations

with phases of [−0.5, 0.5] and 12 polynomial parameters, a intercept, first order310

and second order for each of the four polynomials. This is substantially less

free parameters than a Fourier model would require for similar eclipse fitting

performance (Debosscher et al., 2007). In addition to these features, the PolyFit

model is used to interpolate 99 magnitude values across the [−0.5, 0.5] phase

range for further analysis.315

Figure 2 demonstrates the PolyFit algorithm applied to the Skycam light

curve of the eclipsing binary RS Sagitarii. The black points indicate the light

curve observations phased by a candidate period and phase binned into 100 bins,

the red line indicates the fitted PolyFit model and the green crosses indicate the

phase locations of the four knots. Figure 3 shows the capability of this method to320

accurately fit narrow eclipse features compared with spline and Fourier models.

The top plot is the PolyFit model which fits the primary and secondary eclipses

without substantially overfitting on the out-of-eclipse noise. The middle plot

demonstrates a spline model with a span of 0.2 where the span defines the

smoothness of the fitted spline polynomials. This shorter span results in a spline325

model which performs well on the deep eclipse but overfits the noise in the out-of-

eclipse light curve. Increasing the span improves the out-of-eclipse performance

at a cost of poorer eclipse modelling. Each eclipsing binary light curve will have

an optimal value of span which compromises between eclipse and noise fitting

yet it is unlikely that this optimal span value will perform as well as the PolyFit330

model. The bottom plot demonstrates a Fourier fit with eight harmonics and
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Figure 2: The PolyFit algorithm applied to the Skycam light curve of the Eclipsing Binary

RS Sagitarii. The light curve has been phase-folded and phase binned into 100 bins. The red

line indicates the fitted PolyFit model and the green crosses indicate the optimal knot points

found by the optimisation algorithm. This method produces a superior fit to the narrow

eclipse feature than the Fourier or spline models in figure 3.
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an intercept with 17 parameters to the 16 PolyFit model parameters. As with

the spline model with a low span argument, the eight harmonic Fourier model

correctly models the deep primary eclipse but also overfits the out-of-eclipse

noise. Reducing the number of harmonics in the Fourier model will result in a335

similar effect to increasing the span argument value. The PolyFit model is the

only method of the three to fit the eclipses without overfitting on the noise.

The PolyFit algorithm is implemented by first selecting an initial state for

the knots either by random or by a controlled method such as where the differ-

ence between the magnitudes of two data points crosses the mean magnitude.340

Using this initial set of knots xk, k = 1, . . . , 4, the phase range of [−0.5, 0.5] is

partitioned into 4 intervals as shown in equation 3 (Prsa et al., 2008).

I1 = [x1, x2), I2 = [x2, x3), I3 = [x3, x4), I4 = [x4, x1) (3)

For the first phase interval I1, use a regularised least-squares regression fit using

the data points in this phase interval with 3 free parameters as shown in equation

4.345

P1(x) = a
(1)
0 + a

(1)
1 (x− x1) + a

(1)
2 (x− x1)2 (4)

where P1(x) is the first polynomial as a function of phase x, x1 is the phase of

the first knot and a
(1)
j are the fitted polynomial parameters where j = 1, . . . , 3.

With the first three parameters computed, the next requirement is to compute

p2(x) with respect to p1(x) and p3(x) with respect to p2(x) as shown in equation

5.350

Pk(x) = a
(k)
0 + a

(k)
1 (x− xk) + a

(k)
2 (x− xk)2 (5)

where Pk(x) is the kth polynomial of interval Ik. This must be computed whilst

satisfying the constraint that the polynomial must connect with the previous

polynomial at the knot xk. This is shown in equation 6 and results in the

computation of p2(x) and p3(x) being for 2 free parameters as the intercept a
(k)
0

where k = [2, 3] has already been computed.355

Pk(xk) = pk−1(xk) : a
(k)
0 = a

(k−1)
0 +a

(k−1)
1 (xk−xk−1)+a

(k−1)
2 (xk−xk−1)2 (6)
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Figure 3: The PolyFit algorithm (top) fitted to a Skycam eclipsing binary light curve. The

model provides a much more satisfactory fit than the spline model (middle) or the Fourier

model (bottom) despite the Fourier model utilising more fitted parameters. The PolyFit

model can accurately reproduce narrow eclipsing binary features whilst still providing good

performance on pulsating and rotational light curves.
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For the final phase interval I4 there are two constraints to be satisfied. The

polynomial must connect with the third interval I3 at the knot location x4

(connectivity) and the phase space wrapping from 0.5 to -0.5. As the connec-

tivity has constrained the intercept of the 4th polynomial, a
(4)
0 , calculated as

before from equation 6 the phase wrapping constraint constrains the first order360

parameter of the polynomial fit a
(4)
1 through constraint equation 7 revealing the

remaining free parameter a
(4)
2 .

P4(x) = a
(4)
0 + a

(4)
2 (x− x4)(x− x1) (7)

The original PolyFit implementation placed the four knots where the light

curve data points crossed the mean magnitude of the light curve, randomly

perturbed the knots using a random Gaussian ‘kick’ and then allowed them to365

relax into a minimum χ2 state over a small number of iterations (Paegert et al.,

2014). Each iteration must be carefully checked as the phase intervals must have

an appropriate number of data points to prevent degeneracy in the polynomial

fits. This means that the set of knots xk must be rejected if the interval I1

lacks 5 data points, I2 and I3 lack 4 data points each and I4 lacks 3 data points.370

Finally, to prevent knots from adopting values which place two or more knots

too close to each other, the fitting function must have an additional penalty

term which disincentives this undesirable outcome. This is accomplished by

using a quadratic repulsion term as shown in equation 8 which decreases the

performance of a given fit by the square of the distance between each pair of375

knots with the size of this repulsion defined by an argument ε (Prsa et al., 2008).

rcost(xk; ε) = ε
[
(x2 − x1)−2 + (x3 − x2)−2 + (x4 − x3)−2 + (x1 + 1− x4)−2

]
(8)

Due to the noise in the Skycam light curves this approach was not sufficient

to produce good models as the nearest cost function minimum was highly de-

pendent on where the noise located the initial state of the knots. To initially

limit the noise from the Skycam light curves, the data points are phase binned380

into 100 mean averaged bins. This reduces the high frequency noise from af-

fecting the PolyFit model and is particularly effective on Skycam due to the
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large number of observations in many light curves as well as a substantial re-

duction on computation time as the regression has less data points to compute.

Despite this binning operation, the white noise in the light curves was still of385

sufficient amplitude to produce many local minima in the cost function minimi-

sation procedure. As a result, the fitting procedure was insufficient for reliably

determining the optimal PolyFit model for a given light curve.

3.1. Genetic Optimisation for PolyFit

The poor performance of the PolyFit algorithm’s original fitting routine was390

a substantial problem in the use of this method on the Skycam light curves. For-

tunately, the genetic algorithm optimisation developed for use in the GRAPE

method provide a novel solution to the issues with PolyFit on noisy light curves

(McWhirter et al., 2018). Genetic Algorithms are highly capable at the identi-

fication of the global optimum of a highly non-linear fitness function with many395

local optima (Charbonneau, 1995). The fitness function of the PolyFit algorithm

when applied to the noisy Skycam light curves exhibits these properties.

The Genetic Algorithm method from GRAPE was modified to identify the

optimal knot locations for the set of 4 knots xk through the computation of the

χ2 fitness function augmented by the repulsion term in equation 8. This fitness400

function is showed in equation 9.

χ2(xk; ε) =

N∑
j=1

wj (p(xj)− yj)2 + rcost(xk; ε) (9)

where p(xj) is the PolyFit interpolated magnitude of phase point xj , yj is the

magnitude of the phase binned data point j at a phase of xj , wj are the weights

of each phase bin which are kept at wj = 1 and rcost(xk; ε) is the knot repulsion

from equation 8 which is a function of a repulsion strength ε and the knot405

positions xk and N is the number of binned data points in the light curve.

Where GRAPE utilises a one-dimensional feature space, the genetic PolyFit

method requires the use of a four-dimensional feature space, the phase locations

of the 4 knots. As the 12 polynomial parameters are generated through reg-

ularised regression as a function of the 4 knot positions xk, they do not need410
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to be determined by the genetic algorithm leaving just the 4 knots. The initial

population of size Npop is established by a uniform random number generator

which creates Npop sets of xk = [−0.5, 0.5] sorted from -0.5 to 0.5. This popula-

tion is then encoded into chromosome strings by rescaling the phases to between

0 and 1 (which is simply performed by computing x̂k = xk + 0.5) followed by415

the recording of the top 5 decimal places for each of the 4 knots into a con-

catenated string of 20 base-10 numerals. Similar to the GRAPE method, these

chromosomes undergo a genetic update process where knots which minimise

the χ2 fitness function are bred into children and have crossover, mutation and

fitness selection operations applied for a set number of generations Ngen where420

the knots have converged to the global optimum.

The arguments of the genetic algorithm are selected through a grid cross-

validation procedure on a set of 859 light curves with the limitation that the

PolyFit routine must complete in under two seconds. The input arguments were

as follows: Npop = 100, Npairups = 20, Ngen = 100, Pcrossover = 0.65, Pmutation =425

0.03, Pfdif = 0.6 and Pdfrac = 0.7. For further information on these genetic

algorithm arguments we recommend reading the GRAPE paper (McWhirter

et al., 2018). We found that this genetic optimisation routine produced more

reliable optimal knot locations xk regardless of the distribution of the initial

knot candidates.430

There remained one limitation relative to the original expected PolyFit per-

formance on Eclipsing Binaries. The eclipse features are intended to be modelled

by two knots at the beginning and end of the eclipse with a highly quadratic

polynomial modelling the narrow eclipse dip. Unfortunately, the increased noise

in the Skycam light curves resulted in the genetic PolyFit algorithm determin-435

ing an optimal knot as the base of the eclipse and modelling the two sides of the

dip in two separate phase intevals. This allows the PolyFit to use the second

knot elsewhere in the phase space usually overfitting on the noise. This defect

is shown in figure 4 where the top plot demonstrates the desired PolyFit model

and the bottom plot demonstrates a model with a superior χ2 performance but440

overfit on noise by placing the knot at the bottom of the peak. Our solution is
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Figure 4: The same Skycam light curve with two different PolyFit optimisations. The top plot

demonstrates the desired PolyFit model where the knots are located either side of the eclipse

at the beginning and end of the dimming event. The bottom plot demonstrates a PolyFit

model with a superior fit according to the fitness function in equation 9. This is not an ideal

model as the knot has been located at the base of the eclipse, not the intended location and

the second knot has been used to overfit on noise. Whilst the bottom fit minimises the fitness

function, it is not the desired model and therefore the fitness function requires an additional

corrective penalty term.
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to employ a second additional term to the χ2 fitness function shown in equa-

tion 9 which introduces a penalty to selecting knot phase locations xk where

the resulting polynomial fit interpolated magnitude at that phase is far from

the median magnitude of the light curve. This penalty incentivises the genetic445

PolyFit algorithm to place the knots at locations with interpolated magnitudes

near the out-of-eclipse magnitude. This penalty is shown in equation 10 and is

weighted by an argument δ which defines the relative cost of placing knots far

from the median.

mcost(xk; δ) = δ

4∑
j=1

(
a
(j)
0 −median(y)

)2
(10)

where mcost(xk; δ) is the new cost term, δ is an argument that defines the450

strength of the penalty, a
(j)
0 is the polynomial intercept term for phase interval

Ij and median(y) is the median magnitude of the phase binned light curve.

Equation 11 defines the final fitness function of the genetic PolyFit algorithm

with the two penalty terms.

χ2(xk; ε; δ) =

N∑
j=1

wj (p(xj)− yj)2 + rcost(ε;xk) +mcost(δ;xk) (11)

This method, whilst designed to correctly fit narrow features such as eclipses,455

does not adversely affect smooth continuous light curves such as pulsating vari-

ables. The mcost(xk; δ) penalty term does apply an increased cost to the knots

which may be correctly located far from the median magnitude for these light

curve shapes. In this case, the substantial number of data points far from the

median magnitude in these phase locations allow the initial χ2 component to460

‘outweigh’ this penalty term allowing for the correct PolyFit model to be ap-

plied.

To verify the performance of our genetic algorithm approach to optimising

the PolyFit algorithm, we implement an experiment to compare the knots fit by

the genetic algorithm against those fit using a random perturbation approach465

across a set of 50 initial knot positions. This is applied to the 859 SkycamT

light curves shown in table 1 selected for use by a correct period match or
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Table 1: Data Summary for the 859 object, 12 class, SkycamT light curve dataset.

Number Class Type Count

1 β Lyrae Eclipsing Binary 57

2 β Persei Eclipsing Binary 106

3 Chemically Peculiar Rotational Variable 18

4 Classical Cepheid Pulsating Variable 67

5 δ Scuti Pulsating Variable 14

6 Mira Pulsating Variable 369

7 RR Lyrae Fundamental Mode Pulsating Variable 26

8 RR Lyrae Overtone Mode Pulsating Variable 9

9 RV Tauri Pulsating Variable 5

10 Semiregular Variable Pulsating Variable 50

11 Spotted Variable Rotational Variable 22

12 W Ursae Majoris Eclipsing Binary 116

submultiple match with the American Association of Variable Star Observers

(AAVSO) Variable Star Index (VSI) catalogue period using the GRAPE period

estimation method. These light curves are phased around the AAVSO catalogue470

period in order to generate a set of pulsating, rotational and eclipsing light curve

shapes for the PolyFit algorithm to model.

Figure 5 shows the results of this experiment with the two distinct distri-

butions of standard deviation performance for the two optimisation method.

For every knot the genetic algorithm produced more consistent knot locations475

regardless of the initial knot positions with phase standard deviations of 0.01

to 0.1 for most of the 859 light curves. The random perturbation method was

substantially less stable with the standard deviation of the final knots of the

50 initial states varying by a standard deviation of 0.1 for most of the light

curves with many performing more poorly than this out to 0.2 phase standard480

deviation. Both these methods require approximately 1.5 seconds of runtime to

determine the optimal knots and produce a final PolyFit model. The genetic
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algorithm based optimisation has a larger range of standard deviations to the

random perturbation optimisation. This is likely a result of the quality of the

light curve having more effect on the resulting fit as the very noisy light curves485

can still vary substantially with the genetic generational updates due to the

minimal difference between the fitness function values for many potential mod-

els and the optimal model. The variability in the genetically optimised PolyFit

model is still not ideal; however, it is satisfactory as the possible optimised mod-

els are all acceptable for the extraction of classification features for a given light490

curve.

3.2. PolyFit Principal Component Analysis

Despite the efforts of implementing the δ cost and using the genetic algo-

rithm to optimise the knot locations, there is still substantial variation on the

16 parameters of the PolyFit model. Therefore they cannot reliably be used495

as features as, at best, the relationship between these parameters for multiple

classes is highly non-linear and difficult to learn. Therefore, a different method

of representing the important features of the interpolated PolyFit model shape

is required which does not rely on the parameter values but simply the magni-

tudes of the fitted model. Principal Component Analysis has been previously500

used to learn a set of features from interpolated Fourier models applied to light

curves (Deb and Singh, 2009, Tanvir et al., 2005, Yoachim et al., 2009). The

extraction of features from fitted models has also been accomplished using other

methods such as echo-state-networks, a form of recurrent neural network (Ku-

gler et al., 2016) and local linear embedding (Matijevic, 2012) with positive505

results. The method used is not dependent on the model used to interpolate

the light curves and simply on the distribution of interpolated magnitudes. It

is therefore suitable to investigate the performance of such an approach on sets

of interpolated magnitudes extracted from SkycamT light curves by the Poly-

Fit algorithm. This method can potentially generate learned features useful for510

Machine Learning classification in the automated pipeline.

Principal Component Analysis (PCA) is a mathematical method that trans-
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Figure 5: Histograms of the measured standard deviation of the 4 PolyFit knots on the set

of 859 SkycamT light curves from table 1. The knots produced by each light curve over 50

initial states are recorded and the standard deviation measured from this set. Each histogram

contains two distributions. The red distribution was produced by the knots optimised by the

genetic algorithm method and the blue distribution was produced by the knots optimised by

the random perturbation method from the original PolyFit algorithm (Prsa et al., 2008).
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forms a number of variables or features which may be correlated into a set of un-

correlated variables called principal components (Pearson, 1901, Hotelling, 1933,

1936). The principal components account for the variability of the dataset in515

order with the first principal component describing a large amount of the initial

variance and the second principal component describing much of the remaining

variance until the last principal component contains the remaining variance.

Principal components can be calculated from a design matrixX, with columns

containing the variables of the dataset and the rows containing the observations.520

Initially the variables in the design matrix must be scaled so they have compa-

rable values using equation 12.

x̄j =
xj − µj
σj

for j = 1, 2, . . . , N (12)

where x̄j is the rescaled jth variable, µj is the mean of the jth variable, σj is

the standard deviation of the jth variable and N is the number of variables in

the design matrix X. The covariance matrix of the rescaled design matrix X is525

then computed using equation 13.

Σ =
1

m

m∑
i=1

(
X[i]

) (
X>[i]

)
(13)

where X[i] is the row vector of the design matrix X for the ith observation and

m is the total number of observations (rows) in the design matrix. Using the

covariance matrix, the eigenvalues and eigenvectors are computed. The sorted

eigenvalues from high to low give the principal components in the solution in530

order of the variance contained in each principal component. The eigenvector

associated with the eigenvalues can be used to determine the principal compo-

nents using equation 14.

PCAj = Θ>j X (14)

where PCAj is the jth principal component, Θj is the eigenvectors associated

with the jth sorted eigenvalue and X is the design matrix. This produces uncor-535

related principal components and can also be used for dimensionality reduction

through the selection of an integer value k where 1 ≤ k ≤ N . The choice of
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k can be decided through the computation of how much variance is described

by the reduced design matrix X̂ where X̂ = Θ>1,...,kX. Equation 15 shows the

inequality which must be satisfied with the minimum value of k to retain 1− ε540

of the variance of the design matrix X.

ε ≥
1
m

∑m
i=1 ||x[i] − x̂[i]||2

1
m

∑m
i=1 ||x[i]||2

(15)

where (1−ε) is the required retained variance, x[i] is the row vector of the design

matrix X for the ith observation, x̂[i] is the row vector of the reduced design

matrix X̂ for the ith observation reconstructed using k principal components

and m is the total number of observations (rows) in the design matrix.545

The PCA method is used as a dimensionality reduction technique to define

the interpolated magnitudes of the PolyFit model as a set of features determined

by a training set of light curves determined by cross-matching the SkycamT

database on the set of AAVSO catalogue objects with period information and

with types present in the BigMacc All-Sky Automated Survey (ASAS) light550

curve classification pipeline (Richards et al., 2012). This produces 6897 light

curves across 18 variable star classes shown in table 2. The set of light curves

is much bigger in this set as the trained PCA must be capable of modelling any

possible PolyFit interpolation on the Skycam database. Many of these light

curves are of dubious quality and GRAPE does not agree with the catalogue555

period for many of the objects as they are not in the 859 light curve dataset.

Despite this, the learned PCA components using the larger light curve dataset

generalises better than the smaller dataset.

Upon the computation of the PolyFit model for any given light curve, the

model is used to interpolate 99 magnitude data points on an evenly distributed560

grid of phase values from -0.49 to 0.49 with intervals of 0.01. The interpolation

does not go to -0.5 or 0.5 due to limitations in the spline fitting code as the edge

values could be out of bounds. Of course this is not a limitation of the PolyFit

algorithm as the entire phase space is mapped by the polynomial chain P (x)

yet in the event of the PolyFit algorithm failing to converge on a light curve the565

spline algorithm may still produce an acceptable (but likely inferior) fit to collect
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Table 2: The class distribution of the STILT 6897 variable light curves used for the PCA

training.

Number Class Type Count

1 β Lyrae Eclipsing Binary 412

2 β Persei Eclipsing Binary 1518

3 Chemically Peculiar Rotational Variable 477

4 Classical Cepheid Pulsating Variable 195

5 δ Scuti Pulsating Variable 453

6 Ellipsoidal Non-eclipsing Binary 131

7 Mira Pulsating Variable 1256

8 Pop II Cepheid Pulsating Variable 29

9 R Coronae Borealis Eruptive Variable 3

10 RR Lyrae Dual Mode Pulsating Variable 3

11 RR Lyrae Fundamental Mode Pulsating Variable 99

12 RR Lyrae Overtone Mode Pulsating Variable 60

13 RS Canum Venaticorum Non-eclipsing Binary 528

14 RV Tauri Pulsating Variable 36

15 Small Amplitude Red Giant Pulsating Variable 4

16 S Doradus (Luminous Blue Variable) Eruptive Variable 1

17 Semiregular Variable Pulsating Variable 989

18 W Ursae Majoris Eclipsing Binary 703
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some useful information. The interpolated magnitudes are zeroed by having

the mean magnitude of the phase-binned data points subtracted from their

values. Using the phase-binned mean magnitude instead of the interpolated

mean magnitude preserves the interpolated skewness of the light curve. The570

PolyFit interpolated magnitudes are then used to recalculate the phase zero-

point through the identification of the maximum magnitude yi data point (which

corresponds to the minimum brightness). The phase space is then adjusted so

that the minimum brightness of the light curve occurs at phase 0.0. For eclipsing

binaries this is the primary eclipse and for other variables it simply corresponds575

with the minimum brightness of the variability. The interpolated magnitudes

are then normalised by equation 16 which means that the amplitude of the light

curve is not a component of the learned PCA components. The mean zero and

scaling operation corresponds to the operation shown by equation 12.

ŷi =
y

|max(y)−min(y)|
(16)

The genetic PolyFit algorithm was then applied to the 6897 light curves in580

table 2 producing a training matrix of 99 columns (the 99 interpolated mag-

nitudes across the phase space) and 6889 rows (6889 light curves generated a

PolyFit model, for 8 light curves the PolyFit did not converge and were dis-

carded). Using equations 13 and 14, the PCA operation is computed producing

99 Principal Components sorted by their variance where the first Principal Com-585

ponent contains most of the information of the system. Figure 6 shows the top

10 principal components of the resulting PCA model. The top ten principal

components describe 96% of the variance in the PolyFit modelled light curves

whereas the remaining 89 principal components only add an additional 4% vari-

ance which is likely noise dominated.590

The top ten Principal Components (PCs) can be used to closely reconstruct

the original PolyFit model as each learned component contains information

about a specific transformation of the light curve weighted by the specific value

for a given light curve. Figure 7 demonstrates this reconstruction on the eclips-

ing binary RS Sagitarii. The black line shows the original PolyFit model as595
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Figure 6: Plot showing the variance described by each principal component determined from

the 6889 SkycamT light curves. The first principal component describes 23.7% of the variance

of the light curves and the second principal component an additional 16.4%. The first ten

principal components describe 96% of the total variance of the light curves. This allows these

ten values to describe the shape of the light curves as the remaining 4% is likely noise related.

seen previously in figure 2. Each coloured line represents the reconstruction of

the original model by adding on an additional principal component. From this

reconstruction it is clear that the first principal component PC1 models the gen-

eral shape of the light curve determining the range between the minimum and

the maximum magnitudes of the light curve but does not model the secondary600

eclipse. PC2 and PC3 are responsible for modelling the asymmetries between

the [−0.5, 0] and [0, 0.5] phase intervals as well as the presence of a secondary

eclipse. This is important in the modelling of eccentric eclipsing binaries as

well as containing the weighting that distinguishes eclipsing binary light curves

from pulsating light curves. PC4 to PC9 are used to reconstruct variations in605

the smooth continuum of the light curve such as the ‘bumps’ common to some

Cepheid and RR Lyrae type pulsating variables although there is likely a large

noise component to these principal components. The final principal component,

PC10 appears specifically for modelling the very narrow primary eclipses seen

in the longer period β Persei variables. As there are few examples of this type610

of variable in the set of Skycam light curves, this explains why this important
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Figure 7: Plot showing the reconstruction of the SkycamT light curve of the eclipsing binary

RS Sagitarii from the top ten principal components of the learned PCA model.

principal component has a lower variance as the variance describes how infor-

mative it is to the given training dataset. The most distinguishing feature of

the principal components is the narrow spike feature located near phase zero.

This is the component of the learned representation that models the width of615

the eclipses and is weaker for objects lacking a narrow eclipse. This is why

PC1 to PC9 contain this spike; it is there to cancel out the narrow eclipse in

the majority of light curves which lack this feature. PC10 is used to apply this

feature when it is required for a given light curve.

The features utilised from this PCA are the ten weights which, in conjunc-620

tion with the PCA model, allow the approximate reconstruction of the PolyFit

model. The different shapes of light curve are expected to produce different

sets of the ten weights and therefore can be used in the classification task. Fig-

ure 8 shows the principal component reconstruction for U Aquilae a Classical

Cepheid and CN Andromedae, a β Lyrae eclipsing binary. Figure 9 shows this625

reconstruction for S Pegasi, a Mira-type Long Period Variable and RS Bootis, a
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fundamental mode RR Lyrae variable. Each variable light curve contains shapes

distinctive to each of their classes and therefore they have unique PCA weights

which can be used to determine the class of an unknown light curve.

Comparing the PCA features for the set of 859 light curves across 12 classes630

allow for the identification of features which may be of potential interest to a

classification method. The best feature for discriminating the classes is the PC2

feature which is not surprising as PC2 and PC3 are the strongest indicators

of the differences between the eclipsing binary ‘double dip’ light curve to the

pulsating variable ‘single dip, single peak’ light curves. Figure 10 demonstrates635

the plot of the base-10 logarithm of the Period (the best feature for distinguish-

ing the classes) against the second principal component feature. Whilst there

is substantial overlap between the classes, the eclipsing binary classes tend to

adopt lower values of P.PCA2 around 1 to 2 whereas the pulsating variables

have larger values of P.PCA2 closer to 3 and 4. The feature appears very useful640

for separating the short-period eclipsing binaries from the RR Lyrae pulsating

variables which means it could be of important use in the machine learning

classifiers.

3.3. Interpolated Statistical Features

The features extracted directly from the PolyFit interpolation are not the645

only set of useful information extractable from the PolyFit method. Many of

the original statistical features, derived from previous studies (Richards et al.,

2011b, Kim and Bailer-Jones, 2016), such as their standard deviation, kurtosis

and amplitude have similar inter-class distributions when computed on the Sky-

cam light curves. This is likely a result of the substantial noise component in the650

Skycam light curves propagating into the features. As a result, the larger noise

causes a larger overlap between the features of different variable star classes

leading to poor discrimination. The interpolated PolyFit model provides an al-

ternative method to define these statistics by computing them directly from the

interpolated data. A number of features are produced to potentially replace the655

original variability indices and Fourier components as the binned genetic Poly-
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Figure 8: Plot showing the reconstruction of a selection of SkycamT light curves using the

learned PCA model. The top light curve is of U Aquilae, a Classical Cepheid pulsating

variable. The bottom light curve is of CN Andromedae, a β Lyrae eclipsing binary.
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Figure 9: Plot showing the reconstruction of a selection of SkycamT light curves using the

learned PCA model. The top light curve is of S Pegasi, a Mira-type Long Period Variable.

The bottom light curve is of RS Bootis, a fundamental mode pulsating RR Lyrae variable.
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Figure 10: Plot showing the base-10 logarithm of the GRAPE-determined Period feature

against the P.PCA2 feature, the second principal component calculated by the PolyFit model

and the PCA model at the estimated GRAPE period. The feature partially seperates the

pulsating variables and eclipsing binaries with a specific stength at classifying RR Lyrae

fundamental mode and overtone mode pulsators from the short-period eclipsing binaries of

similar period range.
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Fit algorithm has reduced the high frequency noise and fit models which are

capable of good quality modelling of any light curve shape. The 99 interpolated

magnitude data points at the 99 evenly split phase positions [xi, yi] replace the

[φi,mi] data points from the phase-binned light curves in the computation of660

the following features:

• PolyFit.Phase.Binned.Ratio

The PolyFit phase binned ratio is a measure of how well sampled a light

curve is. It is the ratio of phase bins containing at least one phased data

point from the light curve n to the total number of phase bins Nbins. It is665

calculated by equation 17.

PBRPF =
n

Nbins
(17)

This feature is not directly related to the classification of variable star

light curves but it is a measure of how well sampled the light curve is

when epoch-folded around the estimated period. Poorly sampled light

curves have less reliable fitted models.670

• PolyFit.Goodness.of.Fit

The PolyFit Goodness of Fit feature is a measure of how well the PolyFit

model matches the phase-binned light curve data points and is defined as

the χ2 value of the fitted model prior to the addition of the penalty terms

rcost and mcost as shown in equation 11. This feature is expected to be of675

moderate usefulness as it indicates light curves with multi-periodic signals

as they have significant variance remaining after fitting the dominant pe-

riod. The feature is limited by the presence of noise which also increases

the χ2 statistic along with poorly selected candidate periods although this

would also disrupt the rest of the PolyFit features.680

• PolyFit.Interpolated.Amplitude

The PolyFit Interpolated Amplitude is calculated by computing equation

36



18 on the interpolated PolyFit magnitude data.

aPF =
|max(y)−min(y)|

2
(18)

where aPF is the interpolated amplitude and y is the vector of interpo-

lated magnitudes. This feature is expected to be very important as many685

variable star types are classified by the amplitude of their light curves and

the interpolated amplitude is expected to be less distorted by noise than

the other amplitude features.

• PolyFit.Interpolated.StD

The PolyFit Interpolated Standard Deviation is calculated by computing690

equation 19 on the interpolated PolyFit magnitude data.

σPF =

√√√√ 1

n− 1

n∑
i=1

(yi − µPF)
2

(19)

where µPF is the mean of the yi magnitudes computed by equation 20.

µPF =
1

n

n∑
i=1

yi (20)

• PolyFit.Interpolated.Skewness

The PolyFit Interpolated Skewness is calculated by computing equation

21 on the interpolated PolyFit magnitude data.695

bPF =

1
n

n∑
i=1

(yi − µPF)3

σ3
PF

(21)

• PolyFit.Interpolated.Small.Kurtosis

The PolyFit Interpolated Small Kurtosis is calculated by computing equa-

tion 22 on the interpolated PolyFit magnitude data.

kPF =

(
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(
yi − µPF

σPF

)4
)
− 3(n− 1)2

(n− 2)(n− 3)
(22)
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• PolyFit.Interpolated.Beyond.1.StD

The PolyFit Interpolated Beyond 1 Standard Deviation feature calculates700

the ratio of interpolated data points [xi, yi] which have magnitude val-

ues outside of plus or minus the standard deviation of the mean of the

interpolated magnitudes. This feature is calculated by equation 23.

(beyond1σ)PF =
n>σPF

n
(23)

where n>σPF
=
∑n
i=1 if |yi − µPF| > σPF = 1, otherwise 0.

• PolyFit.Interpolated.Range.Cumulative.Sum705

The PolyFit Interpolated Range of a Cumulative Sum is calculated by

first computing the vector of cumulative sums SPF using equation 24 on

the interpolated PolyFit magnitude data.

SPF =
1

nσPF

l∑
i=1

(yi − µPF) for l = 1, 2, . . . , n (24)

The range of the cumulative sum R(SPF) is then determined using equa-

tion 25.710

R(SPF) = max(SPF)−min(SPF) (25)

4. Experimental Results

Using the 859 SkycamT light curves selected by GRAPE shown in table 1,

we compute a PolyFit model for each light curve phased at 2× the GRAPE

estimated period and calculate these interpolated features. These distributions

of features are shown in a histogram relative to the equivalent feature from the715

non-interpolated data. Figure 11 (top) demonstrates the Interpolated Ampli-

tude relative to the variability index Amplitude. The Interpolated Amplitude

distribution is closer to zero than the Amplitudes for the 859 light curves. This

is due to the interpolated model reducing the high frequency noise allowing the

fit to more accurately reflect the true amplitude of the variability.720
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Figure 11: Histogram showing the distribution of the Interpolated features compared to the

variability index features for the 859 SkycamT light curves. Many of the features exhibit

superior performance due to their resilience to the noise in the data. This explains the

interpolated amplitude being closer to zero and the narrower distribution of the interpolated

skewness and interpolated small kurtosis. This figure contains Interpolated Amplitude (top),

Interpolated Skewness (middle), and the Interpolated Small Kurtosis (bottom).
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Figure 12: Histogram showing the distribution of the Interpolated features compared to the

variability index features for the 859 SkycamT light curves. This figure contains Interpolated

Standard Deviation (top), Interpolated Beyond 1 σ (middle), and the Interpolated Range of

a Cumulative Sum (bottom).
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Figure 11 (middle) shows the Interpolated Skewness feature relative to the

variability index Skewness. The distribution of these two features is very similar

which suggests that the skewness feature is not distorted by the noise. This is

surprising as the skewness feature from the raw light curves did have a wide

inter-class distribution. The conclusion that this is due to noise may not be725

accurate and it is possibly due to a sample bias due to lack of narrow eclipses

in our set of β Persei eclipsing binaries. This bias is not due to noise and is a

result of poor sampling of this class of object by the Skycam cadence. This is

a problem which has been discussed for other surveys such as Kepler and the

Large Synoptic Survey Telescope (LSST) (Prsa et al., 2011, Wells et al., 2017,730

Parvizi et al., 2014, LaCourse et al., 2015).

Figure 11 (bottom) demonstrates the distribution of the Interpolated Small

Kurtosis feature relative to the variability index Small Kurtosis. This feature

is interesting as the Interpolated Small Kurtosis feature is primarily negative

for this set of light curves whereas the small kurtosis feature is positive. The735

Interpolated Small Kurtosis feature has a narrower distribution which is an ef-

fect of the reduced noise component in the interpolated feature which likely

causes the difference in the distribution centres. Figure 12 (top) shows the in-

terpolated standard deviation feature relative to the variability index standard

deviation. The interpolated standard deviation has a much narrower distri-740

bution due to a lower noise component. Figure 12 (middle) demonstrates the

interpolated Beyond 1 Standard Deviation feature. This feature adopts higher

values as the approximately 0.2-0.25 mag white noise component suppresses the

non-interpolated feature in the low amplitude variable classes. Figure 12 (bot-

tom) shows the interpolated Range of a Cumulative Sum feature which also745

exhibits a narrower distribution relative to the variability index Range of a Cu-

mulative Sum feature due to the noise reduction from the interpolated PolyFit

model.

The performance of these features on the 859 SkycamT light curves appear

superior to the associated variability indices. This demonstrates the strength of750

this approach although as the period is an important component of the genera-
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tion of these models, failure of the period estimation method will disrupt these

features substantially more than the variability indices. As the period is the

dominant feature in the variable star classification task, the poorer interpolated

features are unlikely to be the dominant source of error in the classification of755

poorly detected variability.

Using the representation learning features, a dataset was generated from the

859 SkycamT light curves from the GRAPE period match operation. A set

of 38 features are produced and they are displayed in tables 3 and 4. These

features include the GRAPE estimated period, and the PolyFit features, both760

PCA and interpolated variability indices generated by a PolyFit model phased

at the GRAPE estimated period. This process is repeated to produce a second

set of PolyFit features at two times the GRAPE estimated period, the ‘double

period’. The final feature is the ratio of the variances for the period and the

double period.765

A Random Forest classifier was selected to determine the individual im-

portance and overall performance of these features in the classification task of

assigning the 859 SkycamT light curves to the correct variability class out of

12 possible classes. We perform a hyper-parameter optimisation on the three

Random Forest arguments. We found that the number of trees in the Random770

Forest model did not heavily influence the performance of the classification task

therefore we kept this value at ntree = 500. The mtry and nodesize parameters

are determined using a grid-search from 8 to 18 with intervals of 2 for the mtry

parameter and 10 to 30 with intervals of 5 for the nodesize parameter. Fig-

ure 13 demonstrates the surface plot generated from the F1 Score of a 5-fold775

cross-validation with 2 repeats, our figure of merit (FoM) in this experiment

as a function of the Random Forest arguments mtry and nodesize. This hyper-

parameter optimisation procedure selects the optimal values as mtry = 14 and

nodesize = 30 for 500 trees in the Random Forest with a 12-class mean F1

score of 0.4729 with a standard deviation of 0.0931. The results of this PolyFit780

features model were compared to a model trained using a set of the original

engineered features. This model uses the same methodology as the PolyFit
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Table 3: The first half of the 38 features used in the classification of the 859 SkycamT light

curves using the PolyFit algorithm.

Feature Description

Period Period (P) estimated by the GRAPE method

P.Binned.Ratio PolyFit phase binned ratio at P

P.Goodness.of.Fit χ2 of PolyFit model at P

P.Int.Std PolyFit interpolated Standard Deviation at P

P.Int.Skewness PolyFit interpolated Skewness at P

P.Int.Small.Kurtosis PolyFit interpolated small Kurtosis at P

P.Int.Amplitude PolyFit interpolated Amplitude at P

P.Int.Beyond.1.StD PolyFit interpolated Beyond 1 StD at P

P.Int.cs PolyFit interpolated Range of a Cumulative Sum at P

P.PCA1 PolyFit interpolated PC1 at P

P.PCA2 PolyFit interpolated PC2 at P

P.PCA3 PolyFit interpolated PC3 at P

P.PCA4 PolyFit interpolated PC4 at P

P.PCA5 PolyFit interpolated PC5 at P

P.PCA6 PolyFit interpolated PC6 at P

P.PCA7 PolyFit interpolated PC7 at P

P.PCA8 PolyFit interpolated PC8 at P

P.PCA9 PolyFit interpolated PC9 at P

P.PCA10 PolyFit interpolated PC10 at P
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Table 4: The second half of the 38 features used in the classification of the 859 SkycamT light

curves using the PolyFit algorithm.

Feature Description

P2.Binned.Ratio PolyFit phase binned ratio at 2P

P2.Goodness.of.Fit χ2 of PolyFit model at 2P

P2.Int.Std PolyFit interpolated Standard Deviation at 2P

P2.Int.Skewness PolyFit interpolated Skewness at 2P

P2.Int.Small.Kurtosis PolyFit interpolated small Kurtosis at 2P

P2.Int.Amplitude PolyFit interpolated Amplitude at 2P

P2.Int.Beyond.1.StD PolyFit interpolated Beyond 1 StD at 2P

P2.Int.cs PolyFit interpolated Range of a Cumulative Sum at 2P

P2.PCA1 PolyFit interpolated PC1 at 2P

P2.PCA2 PolyFit interpolated PC2 at 2P

P2.PCA3 PolyFit interpolated PC3 at 2P

P2.PCA4 PolyFit interpolated PC4 at 2P

P2.PCA5 PolyFit interpolated PC5 at 2P

P2.PCA6 PolyFit interpolated PC6 at 2P

P2.PCA7 PolyFit interpolated PC7 at 2P

P2.PCA8 PolyFit interpolated PC8 at 2P

P2.PCA9 PolyFit interpolated PC9 at 2P

P2.PCA10 PolyFit interpolated PC10 at 2P

Period.Double.Ratio Ratio of the GRAPE statistic at P and 2P
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Figure 13: Contour plot of the F1 score performance of the 5-fold cross-validation using a

Random Forest classifier with 500 trees on the 859 SkycamT light curves as a function of

the mtry and nodesize hyperparameters. The optimal hyperparameters are mtry = 14 and

nodesize = 30.

model training and makes use of 25 engineered features selected from previous

studies to be similar to the PolyFit features (Richards et al., 2011b, Kim and

Bailer-Jones, 2016). The hyperparameter optimisation procedure for the fea-785

ture engineering model selects the optimal values as mtry = 18 and nodesize =

10 for 500 trees in the Random Forest with a 12-class mean F1 score of 0.3902

with a standard deviation of 0.0619. The PolyFit model appears to slightly

outperform the original features on the set of Skycam variable light curves due

to the improvement in the feature extraction.790

Figure 14 demonstrates the Receiver Operator Characteristic (ROC) Curve

of the PolyFit model trained with the optimal hyperparameters. The poorest

performance is found on the spotted stars, overtone mode RR Lyrae variables
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Figure 14: ROC curve of the model trained at the optimal hyperparameters. Many classes

exhibit good performance as they obtain high recall of the true light curves of their respective

classes whilst minimising the false positives. The poorest performing classes are the spotted

stars, overtone mode RR Lyrae variables and the chemically peculiar variables. This failure

is likely due to the low amplitude of the variability of these classes resulting in lower signal-

to-noise in Skycam.

and the chemically peculiar variables. These three classes exhibit highly sinu-

soidal variability which benefits the period estimation routine in GRAPE but795

they also tend to have low amplitudes. Combined with the relatively high noise

present in the Skycam data, it results in a poor signal-to-noise for many of these

objects which impedes the period estimation and PolyFit interpolation proce-

dures. As the representation learning features are dependent on these steps

being performed accurately, the distributions of these learned feature for these800

classes can be uninformative.

The mean decrease GINI of the Random Forest can be used to display the

importance of the features in the trained classification model. Figure 15 demon-
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strates the importance of the top 20 features in the classification of the 859 light

curves with the PolyFit model. The period is the dominant feature as expected805

by the definition of many variable star types being based on this property of the

variability. The interpolated amplitude features are the next most important

which again relates to the amplitude being an important part of the definition

of the variability classes. The interpolated Range of a Cumulative Sum and

interpolated Skewness features are also of higher importance than many other810

features. The interesting selection is the use of the second principal component

of the PolyFit model folded at the period. This was highlighted as a possible

discriminator between a number of classes which overlap strongly in the Pe-

riod and Amplitude feature space. The mean decrease GINI feature can also

be determined for a specific class and for the two RR Lyrae variable types and815

the W Ursae Majoris eclipsing binaries this feature became the second or third

most important feature replacing the interpolated amplitude features although

period still retained the top position.

These trained models indicate that the PolyFit derived features contain sig-

nificant knowledge on the shape and distribution of the variable light curves.820

These features allow the discrimination of the twelve chosen variability classes

with reasonably strong performance using the SkycamT light curve database.

The features are also limited as they are specifically tuned to detect shaped

based information without taking into account the suitableness of the initial

epoch-folding operation. This means the features rapidly loose importance and825

meaning in the event of a light curve being semi-periodic or non-periodic.

The other primary limitation is the dependency on period. If an incorrect

period is estimated, the interpolated features will be poor and possibly inferior

to the variability indices they were designed to replace. Ultimately, due to

the importance of period, an incorrect period estimation is likely to have wider830

ranging problems than those caused by a poorly generated PolyFit. The PolyFit

features have been shown to be powerful on the noisy SkycamT light curves yet

they cannot be applied to the light curve classification task alone and should

be used in concert with the features discussed in chapter 5. Regardless of the
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Figure 15: Bar Plot of the Mean Decrease GINI of the top 20 features in the PolyFit feature

Random Forest model. As expected, the Period feature is dominant in the classification

task followed by the interpolated amplitudes. The second principal component of the PolyFit

model folded at the period is also important as was suspected earlier. Other important features

include the interpolated Range of a Cumulative Sum feature and the interpolated Skewness.
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strengths and weaknesses of this approach, this investigation has shown that835

representation learning methods can generate new and informative features for

learned light curve classification models.

5. Conclusion

We have implemented an unsupervised dimensionality reduction method in

the form of a PCA applied to PolyFit interpolated phased light curves to auto-840

matically extract variability representative features from a training set of 6897

variable stars of 18 different classes. These features are used to train classifi-

cation models using the Random Forest algorithm and compared with models

produced by the engineered features of previous studies. We find that the new

representation learning models slightly outperform the engineered feature mod-845

els on Skycam data by 0.4729 with a standard deviation of 0.0931 compared to

the 0.3902 with a standard deviation of 0.0619 of the feature engineering due

to the new features being more resilient to the noise inherent to the Skycam

light curves. The mean decrease GINI measure of the feature importance re-

veals that period is the dominant classification feature. This is not surprising as850

many variable star classes are defined by their periods. However, it is clear that

the PolyFit interpolated features such as the interpolated amplitude were just

as capable as the Fourier amplitudes at recording the amplitude of variability

of a source. Additionally, representation learned features such as the second

principal component are useful in separated certain object classes such as the855

eclipsing and pulsating short period variables which have a heavily convolved

period space.

This improvement is dependent on a good measurement of the periodicity

of any candidate light curve shifting alot of the pressure for correct classifica-

tion onto the GRAPE method. As this method was designed for use on this860

dataset, we believe it’s capability is sufficient for this important task. As the

representation learned features are directly learned from a bulk of Skycam light

curves, the cadence artifacts related to this survey are automatically incorpo-
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rated into the classification model. However, it is important to note that due to

the sampling limitations, major features of an underlying astrophysical signal865

may not be sampled. This case is true for eclipsing binaries with long peri-

ods as the eclipse feature becomes a very narrow, short duration event (Prsa

et al., 2011, Wells et al., 2017, Kochoska et al., 2017). It is possible to introduce

an element of manual assistance in the training of these classification models

through the use of Active Learning (Richards et al., 2011a). This method was870

applied to the training of 50,000 variable sources in the All-Sky Automated Sur-

vey (ASAS) allowing for a probabilistic analysis of the variability of these light

curves (Richards et al., 2012).

Our follow-up work will involve using the GRAPE method and the PolyFit

representation learning described in this paper to produce a classification sys-875

tem to run alongside the Liverpool Telescope which will automatically produce

candidate sources for future study during normal telescope operation. As noted

above, this is a unique system as previous survey telescopes were separate to

the follow-up science telescopes. By combining both in a single location, costs

can be substantially reduced whilst maintaining scientific output. The success880

of this method and the development of the classification system it will facilitate

will allow for many telescope installations to deploy similar style wide field cam-

eras. As these cameras do not require use of telescope resources, primarily time

and cost, they are relatively inexpensive ways of collecting large quantities of

astronomy data. Combined with systems such as ours designed to exploit this885

data, the sky can be monitored for time-domain events routinely without requir-

ing dedicated all sky surveys outside of specific examples such as solar system

objects and some extragalactic astronomy. Even a catalogue of variable stars

alone can provide interesting objects for follow-up research. Variable stars are

probes into fascinating phases of stellar evolution allowing our understanding890

of these processes to be improved. It also offers a great potential for the expert

systems community to get involved in big astronomical survey infrastructure

projects as there are possible survey styles currently being ignored due to the

lack of software and methods to fully realise them.
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There are also a number of further investigations recommended to extend the895

conclusions of this paper. The PolyFit method has been demonstrated here and

elsewhere (Prsa et al., 2008, Paegert et al., 2014, Parvizi et al., 2014) to be a po-

tent method of fitting the folded light curves of pulsating and eclipsing variable

stars. There are other interpolation methods which may produce superior fitting

models without requiring an input period which can be a substantial source of900

error. Gaussian Processes are a method which have been successfully used for

other astronomical light curves such as transients which can operate over vari-

able timescales without the rigid limitations of a period (Faraway et al., 2014).

The only concern is the possibility such a model may overfit noisy light curves

such as those from the Skycam data. The dimensionality reduction methods can905

also be improved with more powerful algorithms. PCA is a powerful method

but is limited by its linear nature. By definition it can only produce principal

components which are a linear sum of the original features. There are a num-

ber of methods which can extend this process into the non-linear regime. The

t-distributed stochastic neighbour embedding algorithm is another dimension-910

ality reduction technique originally designed for visualization (van der Maaten

and Hinton, 2008). This method makes use of a similarity measure between

objects in the original feature space to derive a ‘probability of neighbourhood’

such that a lower dimension feature space is selected where high probabilities

neighbours are located a small distance from eachother in this new feature space.915

Further to this, the interactions can be modelled directly using a deep learning

architecture, such as non-linear PCA and deep Autoencoders which are also ca-

pable of determining similar non-linear interactions (Baldi, 2011). By applying

these more powerful techniques, the PolyFit model can better model the noisy

light curves with a set of features which describe the important properties of920

the light curves required for classification. Dimensionality reduction is likely an

easier problem to address as noisier light curves are not a big limitation as long

as the training data size is increased appropriately to prevent overfitting.
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