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Abstract—Due to high homogeneity of current network devices, 

a network is compromised if one node in the network is 

compromised by exploiting its vulnerability (e.g., malicious 

packets attack). Many existing works adopt heterogeneity 

philosophy to improve network survivability. For example, 

“diverse variants” are assigned to nodes in the network. However, 

these works assume that diverse variants do not have common 

vulnerabilities, which deem an invalid assumption in real 

networks. Therefore, existing diverse variants deployment 

schemes could not achieve optimal performance. This paper 

considers that some variants have common vulnerabilities, and 

proposes a novel solution called Vulnerability-aware 

Heterogeneous Network Devices Assignment (VHNDA). Firstly, 

we introduce a new metric named Expected Infected Ratio (EIR) 

to measure the impact of malicious packets’ attacks spread on the 

network. Secondly, we use EIR to model the vulnerability-aware 

diverse variants deployment problem as an integer-programming 

optimization problem with NP-hard complexity. Considering 

NP-hardness, we then design a heuristic algorithm named 

Simulated Annealing Vulnerability-aware Diverse Variants 

Deployment (SA-VDVD) to address the problem. Finally, we 

present a low complexity algorithm named Graph 

Segmentation-based Simulated Annealing Vulnerability-aware 

Diverse Variants Deployment (GSSA-VDVD) for large-scale 

networks named graph segmentation-based simulated annealing. 

The experimental results demonstrate that the proposed 

algorithms restrain effectively the spread of malicious packets 

attack with a reasonable computation cost when compared with 

baseline algorithms. 

 
Index Terms—network device, malicious packets attack, 

diversity, simulated annealing 

 

I. INTRODUCTION 

N traditional networks, network devices (e.g., switches and 

routers) exhibit high homogeneity due to some practical 

considerations (e.g., simplifying network operation and 

maintenance, unifying operator training, reducing complexity, 

and enhancing interoperability). However, such network device 

may suffer serious security threats. For instance, as soon as one 

node is compromised, the entire network will be subsequently 

compromised. 

Malicious attackers exploit vulnerabilities and bugs behind 

network devices to launch attacks. These attacks result in 

significant information leakage from networks, normal 

operational interference, and even worse network destruction. 

Recent studies show that the current network devices are 

vulnerable to various attacks, such as a DNS spoofing attack 

[1], information exposure [2][3], Denial of Service (DoS) 

attack [4][5], buffer overflow attack [6][7], and stored 

cross-site scripting (XSS) attack [8]. The problem would be 

more serious as more new attacks are generating increasingly 

and evolving at a rapid pace. Malicious packets attack is a 

severe attack to crash and/or control nodes. In a network with 

homogenous devices, a malicious packets attack can send a 

single message to compromise the entire network.  

To address this problem, some researchers are inspired by 

the survivability through heterogeneity philosophy [9] and have 

investigated the technique of diversity to prevent the 

propagation of malicious packets attack. Different network 

devices’ vendors use different techniques and implementation 

methods (i.e., in terms of hardware, software and operating 

system) to provide services. In this paper, we define variants as 

the different implementations of the same function. We take the 

operating system as an example. For simplicity, we use 

“operating system variant” and “variant” interchangeably. If 

the number of variants is large enough, each node can have a 

unique variant. However, the number of variants is limited in 

the real condition. Efficiently assigning limited variants to 

nodes is critical to the defense efficiency, which is named 

diverse variants deployment problem. Existing works 

formulate the problem as a graph coloring problem with an 

objective to minimize the number of defective edges, whose 

two endpoints have the same variant, while maximizing the 

number of disconnected components. These approaches can 

achieve a satisfactory defense performance when diverse 

variants are completely independent. However, these works 

assume that diverse variants do not possess common 

vulnerabilities, and thus, malicious packets’ attacks cannot 

propagate among different nodes. This assumption is not 

always valid. Heterogeneous variants may have common 

vulnerabilities since different network device vendors reuse the 

same code for different devices. For instance, using a 

third-party library may already contain vulnerabilities [10]. 

Attackers could compromise distinct nodes by exploiting 

common vulnerabilities among the nodes. In this case, 
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malicious packets attacks can continue propagating even 

though the adjacent nodes are heterogeneous, and the existing 

solutions cannot efficiently prevent such malicious packets 

attack. 

 In this paper, we devise a novel solution named 

Vulnerability-aware Heterogeneous Network Devices 

Assignment (VHNDA) that effectively deploys diverse variants 

to nodes in order to restrain the propagation of malicious 

packets attack in the network. By this solution, the network can 

effectively defend against the propagation of malicious packets 

attack because the proposed solution can use the correlation 

information between variants. To achieve the proposed 

solution, white box switches can be a feasible choice. Different 

from conventional switches, users can run any network 

operating system software in a white box switch on demand, 

which enables users to design and configure the network 

flexibly. In this way, the heterogeneity of network devices can 

be realized. 

The main contributions of this paper are summarized as 

follow: 

1. New metric for packets attack. We first analyze 

potential attack events with the assumption that diverse 

variants have common vulnerabilities. Then, we devise 

a metric named Expected Infected Ratio (EIR) that 

quantitatively measures the malicious packets attack 

propagation’s impact on the network. Besides, we 

design a method using the connected graph to efficiently 

calculate EIR. 

2. Problem formulation. Based on the above-mentioned 

metric, we propose the Vulnerability-aware Diverse 

Variants Deployment (VDVD) problem and formulate 

the problem as an integer-programming problem with 

NP-hard complexity.  

3. Efficient algorithm design. We use simulated annealing 

to efficiently solve the problem and present a graph 

segmentation-based simulated annealing to achieve the 

tradeoff between computational complexity and 

network scalability. It is proved theoretically that the 

graph segmentation-based simulated annealing method 

can reduce the computational complexity. 

4. Simulations verification. We conduct experiments to 

verify the validity of the proposed algorithms in terms of 

various aspects (e.g., coloring algorithms, compromised 

probability, inaccurate information and topology size).  

The rest of this paper is structured as follows. The attack 

model and motivation of the work are introduced in Section II. 

In Section III, we discuss the overview of the proposed scheme; 

followed by the formulation of VDVD problem in Section IV. 

Section V discusses the proposed two solutions to the problem 

of different scales of network. Section VI shows the 

experimental evaluation and analyses the results gained from 

the experiments. Section VII presents the related work followed 

by Section VIII that concludes the paper and paves the way for 

the future work. 

II. ATTACK MODEL AND MOTIVATION   

A. Attack Model  

First and foremost, we assume that it is not possible to make a 

network device completely immune to malicious attacks. Put it 

simply, an attacker can find the vulnerabilities behind a 

network device to launch a malicious attack. The attacker can 

destroy simultaneously the network devices with the same 

operating system. In this paper, we focus on a malicious 

packets attack. We define a malicious packet as a crafted 

message that exploits the buffer overflow vulnerability of 

nodes.  
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Fig. 1 The spreading process of malicious packets attack 

 

Fig. 1 shows the spreading process of malicious packets 

attack. A buffer overflow vulnerability, which is the common 

trigger of attacks, may cause transferring program flow to a 

transmission component in the code space. Then, an exploited 

node may relay the attack packet it received before becoming 

irresponsive. This leads to the propagation of the malicious 

packet over the entire network which causes failure/corruption 

of all nodes in the network. Different from the assumption in 

the literature, we assume that there are common vulnerabilities 

between different variants. Thus, a malicious packets’ attack 

can propagate if there are common vulnerabilities between the 

infected node and its adjacent nodes. 

B. Motivation  

We exemplify different variant deployments using a simple 

network that has 5 nodes and 3 software variants. In the below 

figures, a circle denotes a node, a circle with a cross indicates a 

node infected by a malicious packets’ attack (infected node for 

short), and circles with different filling patterns indicate nodes 

with different variants. Left slash indicates variant A, 

horizontal line indicates variant B and right slash line indicates 

variant C. For example, in Fig. 2 in which the initial injected 

node is node 1, 2(a) has one variant A, and 2(b) has three 

variants: A, B and C.  

Fig. 2(a) shows the spread of malicious packets attack under 

homogeneity deployment, in which all nodes are assigned with 

the same variant A. Due to the homogeneity of nodes, the entire 

network would be infected if only one node is injected. 
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(b) Malicious packets attacks spread under existing heterogeneity deployment 
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(c) Malicious packets attacks spread under correlation-aware heterogeneity 

deployment 

 
Fig. 2 Malicious packets attacks spread under different deployment  

 

In the same vein, Fig. 2(b) shows diverse variants assigned to 

nodes using the existing heterogeneity deployment, and the 

variants of adjacent nodes are heterogeneous. In the figure, the 

variants are deployed in the following form: A is on nodes 1 

and 3, B is on nodes 2 and 4, and variant C is deployed on node 

5. We study specific attack cases where common vulnerabilities 

exist in different variants. For example, exploited vulnerability 

exists in variants A and B. Hence, malicious packets attack can 

propagate even though the adjacent nodes are heterogeneous. In 

Fig. 2(b), since the exploited vulnerability belongs to the 

common vulnerabilities between A and B, a malicious packets 

attack contaminates nodes (1–4). Hence, we perceive that 

deploying different variants on adjacent nodes cannot 

effectively restrain malicious packets attack spread in the 

network. In the same vein, Fig. 2(c) depicts the spread of 

malicious packets attacks under correlation-aware 

heterogeneity deployment. In Fig. 2(c), variant A is deployed 

on node 1 and 4, variant B is deployed on node 2 and 5, and 

variant C is deployed on node 3. Thus, malicious packets attack 

only contaminates nodes 1 and 2. 

Therefore, the existing diverse variants deployment cannot 

effectively prevent the spread of malicious packets attacks. 

This paper proposes a novel diverse variant deployment to 

restrain the propagation of malicious packets attack in the case 

of a realistic situation. 

III. SCHEME OVERVIEW  

Fig. 3 depicts the workflow of the proposed 

Vulnerability-aware Heterogeneous Network Devices 

Assignment (VHNDA) solution. It comprises of two modules: 

the EIR calculation, and VDVD problem solving. 
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Fig. 3 The workflow of VHNDA 

 

In the EIR calculation module, we analyze the potential 

attack events, and calculate a metric named EIR to measure the 

impact of malicious packets attack propagation based on the 

network information (e.g., topology information and flow 

state), which obtained periodically from network devices. Since 

the characteristic of malicious packets attack propagation is 

similar to the conception of the connected component, we 

propose a connected component-based algorithm to calculate 

the EIR. In the VDVD problem solving module, we propose 

two algorithms, SA-VDVD and GSSA-VDVD, for different 

scale networks. We, first, formulate the VDVD problem as an 

integer-programming problem with the objective to minimize 

the EIR while satisfying constraints. Due to the NP-hardness of 

the problem, we propose a SA-VDVD algorithm for 

medium-scale networks. Considering that the computational 

complexity will significantly rise with the increase of network 

size, we also present a low complexity algorithm named 

GSSA-VDVD for large-scale networks. 

IV. THE DIVERSE VARIANTS DEPLOYMENT PROBLEM 

FORMULATION 

This section starts with an introduction to the system 

description; then, analyzes the potential attack events and 

presents a metric named EIR to measure the impact of 

malicious packets attack spread.  
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A. System Description  

TABLE I  

NOTATIONS  

Symbol Description 

V  Set of network devices. Represented by circles 

in figures 

L  Set of edges in the network 

S  Set of variants. Represented by filling patterns 

of circles in figures 
n  Number of nodes in the network 
m  Number of edges in the network 

  Cardinal number for set 

is
E  Set of all the potential events that the malicious 

packets attack can propagate in the case that the 

incipient injected node belongs to variant
i

s  

i
A  Set of vulnerabilities for variant

i
s  

i
d  Size of

i
A  

j

i
w  Binary. j

i
w is 1 if variant

j
s is deployed onto 

node i and 0 otherwise 

i
h  The weight for node i  

( )X i  The variant deployment of node i . ( )X i S  

( )X i

e
P  The probability that event e occurs in the case 

that the initial injected node belongs to 

variant ( )X i  

( )X i
E  Set of all the potential events that the malicious 

packets attack can propagate corresponding to 

the case that the variant type of incipient 

injected node is ( )X i  

,
( )

D e
i  Number of infected nodes in the case that 

node i is initially infected for a given 

deployment D and a compromised variant 

event e  

,
( )

D e
r i  The infected ratio for a given 

deployment D and a compromised variant 

event e  

D
R  EIR 

h

D
R  The weighed EIR  

 

The network topology is modeled as a graph ( , )G V L , 

whereV denotes the set of all nodes corresponding to network 

devices, and L is the set of edges representing links between 

network devices. Suppose that there are n nodes and m edges in 

the network, such that n V and m L . 

Also,  1 2
, , ,

k
S s s s is a set of k  software variants. TABLE 

I lists the symbols used in the problem statement and 

formulations in section IV.  

B. The Probability of Potential Attack Events 

An attacker can exploit a number of vulnerabilities in each 

variant. Let  1 2
, , , id

i i i i
A a a a be the set of vulnerabilities for 

variant
i

s with size of i i
d A . For simplicity, we assume that 

an attacker employs only one vulnerability to launch an attack.  

Let  1 2
= , , ,

is k
E e e e be the set of potential events that 

malicious packets attacks can propagate corresponding to the 

case that the variant type of incipient injected node is
i

s . The 

main idea of calculating the probability is to count up the 

vulnerabilities corresponding to the attack event. Note that, the 

probability for each potential case is related to the variant 

incipient injected nodes. We take the case that the incipient 

injected node belongs to variant
1

s as an example to present the 

calculation. 

Next, we describe how to calculate the probability by the 

example of three variants. In this case, 
is

E can be expressed 

as         1 1 2 1 3 1 2 3
, , , , , , ,s s s s s s s s . As shown in Fig. 4, 

 1
s means that only variant

1
s is compromised;  1 2

,s s means 

that only variant
1

s and
2

s are simultaneously compromised; 

 1 3
,s s means that only variant

1
s and

3
s are simultaneously 

compromised; and  1 2 3
, ,s s s means variant

1 2 3
, ,s s s are 

simultaneously compromised. Let 1s

e
P be the probability of 

event e in the case that the incipient injected node belongs to 

variant
1

s . Let A B  be the difference set in which elements 

exist in A but not in B . Therefore, the formal expressions are as 

follow: 
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Fig. 4 Depiction of different potential events when the incipient injected node 

belongs to variant
1

s  

C. Measuring the Impact of Malicious Packets Attack 

Propagation 

We devise a metric named EIR which is defined as the 

expected value for the proportion of infected nodes to measure 

the impact of malicious packets propagation. Let j

i
w  be the 
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binary variable indicating whether variant
j

s is deployed onto 

node i . Let  , [1, ]
j

i i
W w j k  be the variant placement vector 

for node i . The variant placement can be indicated 

as  ,
i

D W i V  . Specifically, for a given deployment D and a 

compromised variant event e , numerous nodes are infected 

after a period of time. Let
,

( )
D e

i be the number of infected 

nodes in the case that node i is initially infected. Then, the 

corresponding infected ratio can be expressed as follows, 

 
,

,

( )
( )

D e

D e

i
r i

n


   (5) 

In fact, it is a persistent process that malicious packets 

propagate. In this paper, we do not consider the concrete 

propagation process, but we focus on the final decisive effect of 

the malicious packets spread on the network. Furthermore, we 

present a method to count the number of infected nodes. 

A novel graph
,D e

f
G is generated according to the given 

deployment scheme D and the current compromised event e . 

For each node i V , if ( )X i e , then node i will be inserted 

to
,D e

f
G . For the inserted nodes, if there exist links between 

inserted nodes in previous graph G , then these links remain 

in
,D e

f
G . In fact, not all the nodes in

,D e

f
G will be ultimately 

infected. If there are no paths between two nodes, at least one 

node will not be infected. Intuitively, the characteristic of 

malicious packets attack propagation is similar to the 

conception of the connected component which is defined as a 

subgraph where any two vertices are connected to each other by 

paths. Thus, we can adopt connected components to analyze the 

final infected nodes. Let
,

( )
D e

f
C i be the connected component 

of
,D e

f
G containing the initial infected node i . Then, the number 

of final infected nodes in the network can be defined as the 

number of nodes in
,

( )
D e

f
C i . Thus Equation (5) can be rewritten 

as, 

 

,

,

( )
( )

D e

f

D e

C i
r i

n
   (6) 

Algorithm 1 details the process of calculating
,

( )
D e

r i  

 

Algorithm 1 Calculating infected ratio
,

( )
D e

r i  

Input：a given deployment  ,
i

D W i V  , the current 

compromised event e , the original graph G  

Output: infected ratio
,

( )
D e

r i  

1:  initialization 
,

( , )
D e

f
G V L   

2:  for each node i V do 

3:    if  ( )X i e  then 

4:      insert node i intoV  ; 

5:    end if  

6:  end for 

7:  for each node i V  do 

8:    for each node j V  do 

9:       if  ( , )l i j L  then 

10:        insert link ( , )l i j into E  ; 

11:      end if 

12:   end for 

13: end for 

14: for each node i V  do 

15:   obtain by calculating the connected component 

of
,D e

f
G containing node i ; 

16:   ,

,

1
( ) ( )

D e

D e f
r i C i

n
 ; 

17: end for  

 

attacker
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Fig. 5 The process of calculating infected ratio 

 

We exemplify the process of calculating infected ratio using 

a sample network in Section II. Suppose that the initial injected 

node is node 1. As shown in Fig. 5, variant A is deployed on 

node 1 and 4, variant B is deployed on node 2 and 5, and variant 

C is deployed on node 3. We consider a specific attack case that 

the attacker exploits the vulnerability existing in variants A and 

B to launch an attack. It can be seen that node 1, 2 and 5 may be 

attacked. There is no single path between node 1 and 5, the 

same case between node 2 and 5. Thus, node 5 will not be 

infected. 

Considering all the initial injected nodes and various 

compromised events, the EIR can be expressed as, 

  
( )

( )

, ,1

1
( ) ( )

X i

n X i

D D e e D ei e E
R E r i P r i

n  
        (7) 

where ( )X i

e
P represents the probability of event e in the case that 

the initial injected node belongs to variant ( )X i , 
( )X i

E indicates 

the set of all the potential events that malicious packets can 

propagate corresponding to the case that the variant type of 

incipient injected node is ( )X i .  

The EIR
D

R assumes that all the nodes in the network are 

equally important. In fact, this assumption is not realistic; in 
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real cases, it is hard to satisfy this assumption as some nodes are 

more significant than the others. For instance, a node can be 

regarded as vital when it carries more traffic. Alternatively, a 

node with a higher degree, which means the node connects to 

more customers, can be considered significant. This paper 

measures the importance via assigning different weights to 

different nodes in the network. We use the degree of node to 

represent the weights. 

Now, we extend the EIR by considering the node importance. 

Therefore, the weighed EIR is rewritten by replacing the 

factor 1
n

with weight factor
i

h , 

  
( )

( )

, ,1
( ) ( )

X i

nh X i

D D e e i D ei e E
R E r i P h r i

 
        (8) 

where
i

h is the weight for node i . Obviously, Equation (7) is a 

special case of Equation(8). Thus h

D
R can be regarded as the 

universal metric. 

D. Problem Formulation  

The VDVD problem aims to find the optimal variant 

assignment for each node in the network in order to prevent 

malicious packets spread. Our objective is to devise a 

deployment or mapping :M S V while minimizing the EIR.  

We formulate the VDVD problem as follows, 

  
( )

( )

,1
min ( )

X i

n X i

e i D ei e E
P h r i

     (9) 

subject to 

  0,1 ,
j

i j
w i V s S      (10) 

 1
j

j

is S
w i V


     (11) 

 ( ) , 1
j

i
X i j if w    (12) 

In the above formulations, Equation (10) indicates that the 

variant deployment for nodes must be one of the only two 

statuses including completely a software variant or completely 

not of that variant. It is not allowed that a part of variant is 

deployed onto one node. Equation (11) represents only one 

variant can be deployed on a certain node in the network. 

Equation (12) shows the relationship between ( )X i and j

i
w . In 

the VDVD problem, the possible values of variables are 0 or 1, 

thus it is a typical integer-programming problem.  

V. SOLUTION 

In this section, we propose two algorithms for different scale 

networks: SA-VDVD and GSSA-VDVD. The following 

subsections discuss these algorithms and the complexity 

analysis of them.   

A. SA-VDVD algorithm 

Obviously, the VDVD problem is an integer-programming 

problem. It is difficult to solve such a problem due to its nature 

of NP-hard. The computational complexity of the brute force 

solution that exhausts all possibilities in the search space 

is ( )
n

O k , where n is the number of nodes in the network 

and k is the number of available variants. It is impractical to 

employ the brute force solution when n and k are huge.  

In this work, we resort to simulated annealing (SA) [11] 

which is regarded as an effective probabilistic searching 

technique for approximating the global optimum of a given 

function to solve the VDVD problem. As stated in TABLE I, 

X is a solution of VDVD problem corresponding to the state in 

SA. We define as the state space and ( )H X as the energy at 

state X . Let T be the temperature, which controls the rate of 

progress of SA, and the probability making the transition from 

the current state X to a candidate new state X  is specified by an 

acceptance probability function in the metropolis algorithm 

[12], 

  

1, ( ) ( )

, ( ) ( )
exp ,

T

if H X H X

P X X H X H X
otherwise

T

 


     
 
 

 (13) 

The concrete SA-VDVD algorithm is presented as follows. 

 

Algorithm 2 SA-VDVD algorithm 

Input：the original graph G , the set of available variants S    

Output: deployment  ,
i

D W i V   

1:  Initialize the temperature T and number of 

iterations L for each T , randomly generate the initial 

state X ; 

2:  for 1:k L do  

3:    Generate a new state X  which is in the state 

space via a random perturbation; 

4:   Calculate the increment of energy ( ) ( )H X H X   ; 

5:    if 0  then 

6:      Accept the state transition from X to X  ; 

7:    else 

8:  Accept the state transition with the probability 

of
( ) ( )

exp
H X H X

T

  
 
 

; 

9:    end if  

10: end for  

11:  if the cease criterion is attained then 

12:    stop the process and return the optimal solution; 

13:  else 

14:    Cut down the temperature T , and then go back to Line 

2; 

15:  end if 

 

The efficiency and efficacy of SA algorithm depend on the 

cooling scheme parameters including the value of the initial 

temperature, number of iterations for each temperature, and the 

initial state. Several methods have been proposed to set it. Out 

of those methods, we adopt ANDYMARK [13] – an analytical 

method, which can obtain high quality solution while with less 

effort to tune the parameters of the cooling scheme for the SA 

algorithm. Let S be the solution space of the problem solved 

and
iS

V be the neighborhood set of
i

S . The maximum cost 

deteriorations can be written 

as     
max

, ,
iV j i j S i

H Max H S H S S V S S       . The 



 7 

initial temperature is
  

max

max

-

ln

V

A V

H

P H




. In general, 

 
max

1
A V

P H  . Here let  
max

=0.9
A V

P H . Let
iS

V be the 

neighborhood size. Let  R j
P S be the rejection probability and 

generally the value is close to zero. The number of iterations for 

each temperature is   ln
iR j S

L P S V . 

Typical cooling schedule includes the linear cooling 

schedule [11] and the geometric cooling scheme [14]. The 

authors in [15] show no significant difference in performance 

between linear and geometric schemes. We embrace the 

geometric cooling schedule as shown in Equation (14), 

 ( 1) ( ), 1,2, ,T T        (14) 

where is a constant representing the cooling factor and the 

value is approximate to 1,  indicates the number of cooling. In 

our scenario, we set 0.95  .  

B. GSSA-VDVD algorithm 

In this section, we first analyze the computational 

complexity of the proposed SA-VDVD algorithm. We define a 

parameter K which reflects the external loop and inner loop in 

the process of SA. According to Algorithm 1, the 

computational complexity for calculating the EIR, which 

comes from calculating connected component, can be 

approximated to
3

( )O n . Thus, the total computational 

complexity can be expressed as
3

( )O Kn . Generally, the 

parameter K is relatively constant in the process of SA. It is 

obvious that the computational complexity will significantly 

rise with the increase of network size n . When the network 

size n increases to a certain value, it is not practical to obtain 

the deployment scheme via the proposed SA-VDVD algorithm. 

Therefore, it is urgent to seek a scheme which can effectively 

decrease the computational complexity while maintaining the 

performance. 

To address this problem, we devise a Graph 

Segmentation-based Simulated Annealing Vulnerability-aware 

Diverse Variants Deployment (GSSA-VDVD) algorithm 

drawing lessons from the graph theory. The idea of this scheme 

is to transform the network with large size into smaller 

networks and then color them respectively. To do so, there are 2 

alternatives including graph clustering [16] and graph 

partitioning [17]. Graph clustering algorithms attempt to find 

peninsulas of connectivity, while graph partitioning algorithms 

try to split the network into balanced partitions.  

The concrete GSSA-VDVD algorithm is shown as follows. 

 

Algorithm 3 GSSA-VDVD algorithm 

Input: the original graph G , the number of divided 

components l , the set of available variantsV  

Output: deployment  ,
i

D W i V   

1:  obtain subgraph , 1,2, ,
i

G i l by cutting the 

original graph G into l partitions via graph partitioning 

or graph clustering algorithm; 

2:  generate the set of node pairs N in which nodes in a 

node pair are adjacent and belong to different subgraph; 

3:  for each
i

G do 

4:  obtain deployment
i

D corresponding to 

subgraph
i

G by executing SA-VDVD algorithm; 

5:  end for  

6:  for each element in N do  

7:    if nodes belong to the same variant then  

8:      update the variant deployed on one node of the 

node pair; 

9:    end if  

10: end for  

11: obtain the final deployment D by the integration of 

different , 1,2, ,
i

D i l   

 

Graph 

partition

Adjacency 

processing 

Subgraph 

coloring 

Diversity 

deployment for 

each subgraph
partition

Avert defective 

edges

Integration 

Final 

deployment

Fig. 6 The workflow of GSSA-VDVD algorithm  
 

As shown in Fig. 6, the GSSA-VDVD algorithm consists of 

four phases: graph partition phase (line 1-2 in Algorithm 3), 

subgraph coloring phase (line 3-5 in Algorithm 3), adjacency 

processing phase (line 6-10 in Algorithm 3) and integration 

phase (line 11 in Algorithm 3). 

In the graph partition phase, the original graph is divided into 

multiple subgraphs by executing the graph cutting algorithm. 

Furthermore, the information of adjacency nodes between 

different subgraphs is preserved in a specified set. Then, 

SA-VDVD algorithm is executed to deploy diverse variants for 

each subgraph in the subgraph coloring phase. Once the first 

two phases are complete, the initial deployment scheme for the 

entire graph is said to be achieved. Up until this point, it seems 

that all the work has been done. In fact, the initial scheme is not 

the desired one, because there may exist defective links 

between subgraphs. To eliminate these links, the adjacency 

processing phase is performed in which we can recolor one 

node of these defective links. Ultimately, the respective 

deployment
i

D for each subgraph is integrated as the final 

deployment scheme. 

C. Complexity analysis of GSSA-VDVD  

The main questions that one may ask about the effectiveness 

and performance of GSSA-VDVD are, why can the proposed 

scheme decrease the computational complexity? And which 

one is better? To answer these questions, we will first introduce 

several theorems as follows. 

Theorem 1：With a given number of divided components l , 

the computational complexity can attain the minimum if and 
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only if the size for each component is equal. 

Proof: Assume that the network is divided 

into l components, let
i

x be the size of the ith component, then 

the total computational complexity can be expressed 

as
3

1
( )

l

ii
O K x

 , and our target is to minimize it under 

constraint condition. Naturally, we can establish the following 

formula,  

 

3

1

1

min
l

ii

l

ii

x

subject to x n









 (15) 

where n denotes the number of nodes in the network. We can 

transform the problem to the following via Lagrange Multiplier 

Approach. First Lagrange function
1 2

( , , , )
l

F x x x  is defined 

as follows, 

  3

1 2 1 1
( , , , )

l l

l i ii i
F x x x x x n 

 
      (16) 

where  is the Lagrange multiplier. Computing partial 

derivative towards equation(16), then we can obtain the 

following equations, 

 

21 2

1

1

21 2

2

2

21 2

1 2

1

( , , , )
3 0

( , , , )
3 0

( , , , )
3 0

( , , , )
0

l

l

l

l

l

ll

ii

F x x x
x

x

F x x x
x

x

F x x x
x

x

F x x x
x n












 


  




  




  




  




  (17) 

Then we can get the final result by solving(17), 

 1 2 l
nx x x

l
      (18) 

  
3 3

2min 1 2
( , , )

l
n nf x x x l

l l
    (19) 

From the results, we can conclude 

that
3

1 2 1
( , , )

l

l ii
f x x x x


 can get the minimum value

3

2
n

l
if 

and only if 1 2 l
nx x x

l
    .  

The results indicate that graph partitioning algorithms can 

attain lower computational complexity than graph clustering 

algorithms on the same network topology. This is because that 

clustering algorithms may produce unbalanced partitions 

resulting in high computation cost. 

Theorem 2：The computational complexity of network 

divided into l components will decrease by a factor 

of 2
1

l
compared with the original network. 

Proof: In the derivation process of the above-mentioned 

Theorem 1, we can easily get the relationship between the 

number of components l and the computational complexity. 

Note that the computational complexity here indicates the 

minimal computing cost for a given number of components l .  

For the original network, the computational complexity can 

be expressed as
3

( )O Kn . 

For the divided network, the computational complexity can 

be expressed as    
3

3

2min 1

l

ii

KnO K x O
l

 . 

Thus, we can get the relationship of computational 

complexity of these two schemes, 

    
33

3

2 2min 1

( )l

ii

O KnKnO K x O
l l

    (20) 

It is clear that the computational complexity of network divided 

into l components will decrease by a factor of 2
1

l
compared 

with the original network. Therefore, we can conclude that the 

more the number of divided components l , the lower the 

computational complexity. Nevertheless, we should not select 

the tremendous l for its performance degradation. As for the 

suitable l , it is difficult to derive from rigorous theory. 

Alternatively, we can determine the value of l through 

experiments and no more details will be shown here. 

VI. EVALUATION 

In this section, the proposed SA-VDVD algorithm is 

evaluated in terms of various aspects, namely coloring 

algorithms, compromised probability, inaccurate information 

and topology size. We organize this section as follows. First, 

the experimental setup used in our experiment is introduced in 

subsection A. Then, the comparison algorithms are presented in 

subsection B. Finally, in subsection C, we discuss the 

simulation results. 

A. Experiment Setup  

In our evaluation, we use Cenic topology [18] and Interoute1. 

Note that the topology is a network device-level topology, in 

which each node and edge correspond to a network device and 

link between network devices, respectively. The topology 

information is shown in TABLE II. 
TABLE II  

NETWORK TOPOLOGY USED IN OUR EVALUATION 

Topology Nodes Edges 

Cenic 51 91 

Interoute 110 158 

B. Comparison Algorithms 

The comparison algorithms are introduced below: 

(1) randomized coloring: randomly assigns a variant from the 

set of variants to each node. 

(2) color swapping [19]: each node performs a local search 

amongst its immediate neighbors to determine if switching 

to a new variant would decrease the number of locally 

defective edges. 

(3) SA-VDVD: it assigns a variant to each node based on SA. 

 
1 More information about the Interoute topology can be found at 

www.topology-zoo.org 
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(a) The results of defense capacity on Cenic topology 
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(b) The results of defense capacity on Interoute topology 
Fig. 7 EIR under the different number of variants  

 

(4) GSSA-VDVD: it divides the given network into numerous 

smaller subnets and then assigns a variant to each node 

based on SA. 

The experimental results from these algorithms are stochastic. 

To eliminate this effect, the Monte Carlo method is adopted to 

reflect the final results. For a given coloring algorithm, each 

value in our evaluation is obtained from the following equation, 

 
1

1
i

K

Di
R R

K 
    (21) 

where
i

D represents the ith deployment for a certain coloring 

algorithm. K is the number of Monte Carlo simulations. In the 

experiment, K is 200. 

C. Simulation results 

1) The impact of coloring algorithms 

In this section, we compare the defense capacity against 

malicious packets attacks achieved by various algorithms on 

the same network topology. Fig. 7 shows the results achieved 

by the different algorithms measured using the EIR on Cenic 

and Interoute, respectively. With the increase number of 

variants, the RIR will decrease for each algorithm. Besides, the 

proposed SA-VDVD algorithm clearly outperforms other 

coloring algorithms by 35% in terms of the EIR, as the 

proposed SA-VDVD algorithm considers the spread across the 

distinct nodes. As a good result, it can restrain the propagation 

of malicious packets attacks to the greatest extent. Note that 

when the number of variants is 2,  
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(a) The results of network robustness on Cenic topology 
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(b) The results of network robustness on Interoute topology 

 

Fig. 8 EPC under the different number of variants  

 

the defense performance of the proposed algorithm is similar to 

that of color swapping but superior to randomized coloring. 

This is explained by the fact that the proposed algorithm and 

color swapping both aim to make the adjacent nodes 

heterogeneous under this scenario.  

There is no doubt that the infected nodes can impact on the 

network robustness. The network robustness means that the 

property of the network keeping connected in the case of a 

failure. In such a case, Pair Connectivity (PC) is adopted as the 

metric to measure the network robustness. PC is defined as the 

following equation, 

 
 

1

2

1
1

2

num

i ii

n

comp comp

U
C







  (22) 

where 2

n
C is the number of all node pairs,

i
comp is 

the ith component and num is the number of components in the 

network. Considering all the possible initial injected nodes, we 

define a metric named Expected Pair Connectivity (EPC) in the 

following equation, 

 
1

1 n

kk
EPC U

n 
    (23) 

where
k

U indicates the PC in the case that node k is initially 

injected. It is worth mentioning that we assume the probability 

for each node initially injected is equal for the sake of 

simplicity. We also assume that there are 6 variants in total. Fig. 
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8 shows the EPC using different algorithms against the number 
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(a) The results on Cenic topology 
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(b) The results on Interoute topology 

 
Fig. 9 EIR under the different simultaneously compromised probabilities for 
different coloring algorithms 

 

variants. As per the figure, the EPC increases as the number of 

variants rises for each algorithm. Obviously, the proposed 

SA-VDVD algorithm outperforms other algorithms for a 

certain number of variants. Moreover, with the increase of the 

number of variants, the EPC for all algorithms will be gradually 

closed.  

2) The impact of compromised probability 

In this section, we investigate the effect from the probability 

of compromised events on the defense capability. Next, we take 

an example to illustrate the effect. The related parameter is 

configured as follows. Assume that there are 3 variants in total 

which can be used in our coloring algorithms. For the clarity 

purpose, assume that the compromised events comprised only 

of two types. One is the nodes with the same variants are 

compromised, and the other is the two variants in the variants 

set that can be compromised simultaneously. We study the 

probability that two variants are simultaneously compromised 

varying from 0 to 0.2.  

Fig. 9 shows the defense capability using different coloring 

algorithms against the probability that two variants are 

simultaneously compromised on Cenic and Interoute 

respectively. As can be observed, for each algorithm, the EIR 

increases as the probability that two variants are compromised 

rises. Obviously, with the increase of the probability that two 

variants are compromised, the spread ability of the malicious  
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Fig. 10 EIR obtained by different information under the different probability 

deviations 

 

packets attack will improve across the distinct nodes. As a 

result, more nodes will be infected. Moreover, the proposed 

SA-VDVD algorithm outperforms the other coloring 

algorithms and randomized coloring performs the worst in the 

case of any probability. When the probability that two variants 

are compromised is relatively low, the goodness of the 

proposed SA-VDVD algorithm is not fully clear. In this case, 

spread ability of the malicious packets attack across the distinct 

nodes is not powerful. Thus, defense effectiveness is similar 

among the algorithms except for randomized coloring. As the 

probability that two variants are compromised increases, the 

advantage of the proposed SA-VDVD algorithm turns to be 

clear. In such a case, spread ability across distinct nodes will 

increase quickly. Hence, the SA-VDVD algorithm considering 

common vulnerabilities can restrain the propagation of 

malicious packets attacks more effectively than other coloring 

algorithms without considering common vulnerabilities. 

3) The impact of inaccurate information 

  So far, we have assumed that the probabilities for all the 

compromised events are priori known for us. In real scenarios, 

these probabilities could be obtained via two ways, one is 

expert opinion and the other is real world statistics. However, 

both techniques cannot be completely accurate. In this section, 

we study the case that the deployment is based on inaccurate 

information. 

We use the following equation to depict the inaccurate 

information,  

 ( ) ( )
i i i

P e P e      (24) 

where ( )
i

P e indicates the available probability, ( )
i

P e indicates 

the realistic probability and
i

 indicates the deviation between 

the available probability and the realistic probability for a 

compromised event
i

e . In this section, the evaluated probability 

refers to the probability that two variants are simultaneously 

compromised. The probability deviation is set ranging from 

-0.1 to 0.1 with the common difference 0.05.  

Fig. 10 shows the EIR obtained by different information 

using the proposed SA-VDVD algorithm against the 

probability deviation that two variants are compromised. As is 
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seen in the figure, the deviation value between accurate and 

inaccurate increases as the absolute value of probability  
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Fig. 11 EIR under the different number of divided subnets for SA-VDVD and 
GSSA-VDVD  

 

deviation increases. The explanation is that the obtained 

deployment with inaccurate information can be not optimal.  

4) The impact of the topology size 

As stated in Section V, the computation time becomes 

excessive when the size of the network is large. In this section, 

we explore this particular situation in the aspect of defense 

performance and computational complexity. Assume that there 

are 3 available variants. Simulations are conducted on Interoute 

topology where we first compare the defense performance of 

different deployment schemes on the same network topology. 

Fig. 11 shows the EIR versus the divided subnets for 

SA-VDVD and GSSA-VDVD. As can be seen in Fig. 11, the 

deployment based on SA-VDVD algorithm clearly outperforms 

the deployment based on GSSA-VDVD algorithm. 

Furthermore, as the number of divided components increases, 

the EIR will increase simultaneously. When the number of 

divided subnets is relatively small, the performance 

degradation based on GSSA-VDVD algorithm is not obvious.  

Afterward, we investigate the relationship of computational 

complexity for different algorithms. To reflect the compared 

results clearly, normalization method is adopted. More 

specifically, the computational complexity of deployment 

based on SA-VDVD algorithm is selected as the benchmark. 

For the other scheme, the computational complexity is 

calculated as the ratio of the actual computational complexity 

of a certain scheme to that of the benchmark. Fig. 12 shows the 

computational complexity versus the number of divided 

subnets for various algorithms. We can observe that the 

deployment based on GSSA-VDVD algorithm has lower 

computational complexity than schemes based on SA-VDVD 

algorithm. Moreover, the computational complexity for the 

deployment scheme based on GSSA-VDVD algorithm will 

decrease rapidly with the increase of the number of divided 

subnets. 

VII. RELATED WORK 

A. Cyber security 

Keeping in view the exponentially increasing cybercrime and 

fraudulent online activities by fraudster, [20] delves into the 

various cyber fraud and probable solutions. B. B. Gupta 

identifies in [21] the emergent research and techniques being 

utilized in the field of cryptology and cyber threat prevention.  
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Fig. 12 Computational complexity under the different divided subnets for 

SA-VDVD and GSSA-VDVD  

 

L. Wang et al. [22] propose a novel compressive sensing 

scheme that supports medical image sampling, compressing, 

encryption and confidentially homomorphic aggregation 

simultaneously. Internet of Things (IoT) provides new types of 

services in order to improve everyday life [23]. [24] describes 

challenges that threaten IoT diffusion and presents open 

research questions. [25] surveys the security challenges of the 

integration of IoT and cloud computing. [26] presents a 

comprehensive survey of secured web application by 

identifying numerous serious threats faced by several-related 

organizations. [27] presents a cloud-based framework that 

thwarts the DOM-based XSS vulnerabilities caused due to the 

injection of advanced HTML5 attack vectors in the HTML5 

web applications. 

B. Diversity 

Diversity has long been recognized as a promising solution to 

improve the resilience of a software system against various 

vulnerabilities. In fact, diversity is no longer a new thing, and it 

has been extensively applied in a variety of fields such as 

biology and organic systems [19]. Here, we only investigate its 

application in computer and network context. At the beginning, 

design diversity has been investigated in fault tolerance for a 

long time. A typical case is N-Variant programming which 

builds 2N  functionally equivalent programs and detects the 

faulty version by comparing the output results [28]. Then the 

N-Variant system extends N-version programming to detect 

intrusions [29]. Apparently, it is an important premise to 

generate diversity. So far, substantial literature adopting 

randomization techniques has been put forward to 

auto-generate diversity [30][31][32]. Recently, from the point 

of view of application fields, diversity has been extensively 

used in some new scenarios such as cloud computing security 

[33], Moving Target Defense (MTD) [34] and network routing 

[35][36][37]. 

The aforementioned studies are basically directed against a 

point defense which focuses on the security of network node. 

To achieve the global network defense, inspired by the 

survivability through heterogeneity philosophy, Zhang et al. [9] 

first propose a novel survivability paradigm named 

heterogeneous networking to improve the survivability of a 

network. In terms of the relationship between diversity and the 
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robustness of a network, Juan Caballero et al. [10] employ a 

graph theoretic approach to explore the benefits of diversity for 

the robustness of a network, where robustness is the property of 

a network staying connected under a software failure. Though 

diversity has been extensively used, most of the existing efforts 

rely on intuitive and imprecise notions of diversity. At a higher 

abstraction level, as a global property of the entire network, 

diversity and its effect on security have been overlooked. 

Zhang et al. [38] model network diversity as a security metric 

by designing and evaluating a series of diversity metrics and 

provide guidelines for the instantiation of the proposed metrics. 

C. Graph Coloring 

As a well-known problem in graph theory, graph coloring 

problem focuses on the assignment of colors to nodes of the 

graph subject to certain constraints [39]. In general, it 

guarantees that two adjacent nodes possess distinct colors. So 

far, graph coloring problem has been extensively used in 

various fields such as curriculum schedule, traffic management 

and network, etc. Here we mainly focus on its application in the 

area of networking. O’Donnell et al. [19] transform the problem 

of limiting the spread of malware via diversity on a network 

topology into the graph coloring problem and propose a series 

of distributed coloring algorithms. Similarly, graph coloring 

problem is adopted in order to study how to maximize the 

robustness of a network via diversity [10]. 

D. Malicious Packets Attack 

The authors in [40] propose a range of attack approaches to 

illustrate that a mal-packet, which only carries specially crafted 

data, can exploit memory-related vulnerabilities and utilize 

existing application codes in a sensor to propagate itself 

without disrupting sensor’s functionality. In [41], the authors 

illustrate the feasibility of launching sensor worms through trial 

experiments on Mica2 motes and investigates the technique of 

software diversity to combat sensor worms.  

To summarize, our work is inspired by existing work of [9, 

10, 18, 40], but, also, different from them. We investigate an 

optimal scheme to restrain the spread of malicious packets 

attack via diversity deployment under a more realistic 

condition, and theoretically formulate it as 

integer-programming. 

VIII. CONCLUSIONS AND FUTURE WORKS 

The paper investigated the existing common vulnerabilities 

among different variants which coincides well with the actual 

situation. We, first, devised a quantitative metric reflecting the 

effect on the network brought by the spread of malicious 

packets attacks. Then, we modeled the VDVD problem as an 

integer-programming problem and proposed a SA-VDVD 

algorithm to solve it. In addition, we proposed a GSSA-VDVD 

algorithm to address the high computational complexity as the 

size of network increases. Finally, we performed a series of 

experiments to verify the validity of the proposed algorithms. 

The proposed SA-VDVD algorithm outperformed other 

coloring algorithms by 35% in defense capacity. When variants 

had a low correlation, the superiority of SA-VDVD algorithm 

was not significant. GSSA-VDVD algorithm can effectively 

reduce the computational complexity. 

In future, we intend to study the case where attackers can 

explore more than one vulnerability. 
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