
Ai, J, Chen, H, Guo, Z, Cheng, G and Baker, T

 Mitigating Malicious Packets Attack via Vulnerability-aware Heterogeneous
Network Devices Assignment

http://researchonline.ljmu.ac.uk/id/eprint/10636/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Ai, J, Chen, H, Guo, Z, Cheng, G and Baker, T (2019) Mitigating Malicious
Packets Attack via Vulnerability-aware Heterogeneous Network Devices
Assignment. Future Generation Computer Systems. ISSN 0167-739X

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

 1

Abstract—Due to high homogeneity of current network devices,

a network is compromised if one node in the network is

compromised by exploiting its vulnerability (e.g., malicious

packets attack). Many existing works adopt heterogeneity

philosophy to improve network survivability. For example,

“diverse variants” are assigned to nodes in the network. However,

these works assume that diverse variants do not have common

vulnerabilities, which deem an invalid assumption in real

networks. Therefore, existing diverse variants deployment

schemes could not achieve optimal performance. This paper

considers that some variants have common vulnerabilities, and

proposes a novel solution called Vulnerability-aware

Heterogeneous Network Devices Assignment (VHNDA). Firstly,

we introduce a new metric named Expected Infected Ratio (EIR)

to measure the impact of malicious packets’ attacks spread on the

network. Secondly, we use EIR to model the vulnerability-aware

diverse variants deployment problem as an integer-programming

optimization problem with NP-hard complexity. Considering

NP-hardness, we then design a heuristic algorithm named

Simulated Annealing Vulnerability-aware Diverse Variants

Deployment (SA-VDVD) to address the problem. Finally, we

present a low complexity algorithm named Graph

Segmentation-based Simulated Annealing Vulnerability-aware

Diverse Variants Deployment (GSSA-VDVD) for large-scale

networks named graph segmentation-based simulated annealing.

The experimental results demonstrate that the proposed

algorithms restrain effectively the spread of malicious packets

attack with a reasonable computation cost when compared with

baseline algorithms.

Index Terms—network device, malicious packets attack,

diversity, simulated annealing

I. INTRODUCTION

N traditional networks, network devices (e.g., switches and

routers) exhibit high homogeneity due to some practical

considerations (e.g., simplifying network operation and

maintenance, unifying operator training, reducing complexity,

and enhancing interoperability). However, such network device

may suffer serious security threats. For instance, as soon as one

node is compromised, the entire network will be subsequently

compromised.

Malicious attackers exploit vulnerabilities and bugs behind

network devices to launch attacks. These attacks result in

significant information leakage from networks, normal

operational interference, and even worse network destruction.

Recent studies show that the current network devices are

vulnerable to various attacks, such as a DNS spoofing attack

[1], information exposure [2][3], Denial of Service (DoS)

attack [4][5], buffer overflow attack [6][7], and stored

cross-site scripting (XSS) attack [8]. The problem would be

more serious as more new attacks are generating increasingly

and evolving at a rapid pace. Malicious packets attack is a

severe attack to crash and/or control nodes. In a network with

homogenous devices, a malicious packets attack can send a

single message to compromise the entire network.

To address this problem, some researchers are inspired by

the survivability through heterogeneity philosophy [9] and have

investigated the technique of diversity to prevent the

propagation of malicious packets attack. Different network

devices’ vendors use different techniques and implementation

methods (i.e., in terms of hardware, software and operating

system) to provide services. In this paper, we define variants as

the different implementations of the same function. We take the

operating system as an example. For simplicity, we use

“operating system variant” and “variant” interchangeably. If

the number of variants is large enough, each node can have a

unique variant. However, the number of variants is limited in

the real condition. Efficiently assigning limited variants to

nodes is critical to the defense efficiency, which is named

diverse variants deployment problem. Existing works

formulate the problem as a graph coloring problem with an

objective to minimize the number of defective edges, whose

two endpoints have the same variant, while maximizing the

number of disconnected components. These approaches can

achieve a satisfactory defense performance when diverse

variants are completely independent. However, these works

assume that diverse variants do not possess common

vulnerabilities, and thus, malicious packets’ attacks cannot

propagate among different nodes. This assumption is not

always valid. Heterogeneous variants may have common

vulnerabilities since different network device vendors reuse the

same code for different devices. For instance, using a

third-party library may already contain vulnerabilities [10].

Attackers could compromise distinct nodes by exploiting

common vulnerabilities among the nodes. In this case,

Mitigating Malicious Packets Attack via

Vulnerability-aware Heterogeneous Network

Devices Assignment

Jianjian Ai1, Hongchang Chen1, Zehua Guo2, Guozhen Cheng1, Thar Baker3
1National Digital Switching System Engineering & Technological R&D Center,

2University of Minnesota Twin Cities, 3Liverpool John Moores University

I

 2

malicious packets attacks can continue propagating even

though the adjacent nodes are heterogeneous, and the existing

solutions cannot efficiently prevent such malicious packets

attack.

 In this paper, we devise a novel solution named

Vulnerability-aware Heterogeneous Network Devices

Assignment (VHNDA) that effectively deploys diverse variants

to nodes in order to restrain the propagation of malicious

packets attack in the network. By this solution, the network can

effectively defend against the propagation of malicious packets

attack because the proposed solution can use the correlation

information between variants. To achieve the proposed

solution, white box switches can be a feasible choice. Different

from conventional switches, users can run any network

operating system software in a white box switch on demand,

which enables users to design and configure the network

flexibly. In this way, the heterogeneity of network devices can

be realized.

The main contributions of this paper are summarized as

follow:

1. New metric for packets attack. We first analyze

potential attack events with the assumption that diverse

variants have common vulnerabilities. Then, we devise

a metric named Expected Infected Ratio (EIR) that

quantitatively measures the malicious packets attack

propagation’s impact on the network. Besides, we

design a method using the connected graph to efficiently

calculate EIR.

2. Problem formulation. Based on the above-mentioned

metric, we propose the Vulnerability-aware Diverse

Variants Deployment (VDVD) problem and formulate

the problem as an integer-programming problem with

NP-hard complexity.

3. Efficient algorithm design. We use simulated annealing

to efficiently solve the problem and present a graph

segmentation-based simulated annealing to achieve the

tradeoff between computational complexity and

network scalability. It is proved theoretically that the

graph segmentation-based simulated annealing method

can reduce the computational complexity.

4. Simulations verification. We conduct experiments to

verify the validity of the proposed algorithms in terms of

various aspects (e.g., coloring algorithms, compromised

probability, inaccurate information and topology size).

The rest of this paper is structured as follows. The attack

model and motivation of the work are introduced in Section II.

In Section III, we discuss the overview of the proposed scheme;

followed by the formulation of VDVD problem in Section IV.

Section V discusses the proposed two solutions to the problem

of different scales of network. Section VI shows the

experimental evaluation and analyses the results gained from

the experiments. Section VII presents the related work followed

by Section VIII that concludes the paper and paves the way for

the future work.

II. ATTACK MODEL AND MOTIVATION

A. Attack Model

First and foremost, we assume that it is not possible to make a

network device completely immune to malicious attacks. Put it

simply, an attacker can find the vulnerabilities behind a

network device to launch a malicious attack. The attacker can

destroy simultaneously the network devices with the same

operating system. In this paper, we focus on a malicious

packets attack. We define a malicious packet as a crafted

message that exploits the buffer overflow vulnerability of

nodes.

$0000

$FFFF

Registers

Variables

Return

address=$0404

$0404

 Buffer

overflow

Malicious Program

$0000

$FFFF

Registers

Variables

Return

address=$0404

$0404

 Buffer

overflow

Malicious Program

Transfer of

program flow

Relay attack packet

Fig. 1 The spreading process of malicious packets attack

Fig. 1 shows the spreading process of malicious packets

attack. A buffer overflow vulnerability, which is the common

trigger of attacks, may cause transferring program flow to a

transmission component in the code space. Then, an exploited

node may relay the attack packet it received before becoming

irresponsive. This leads to the propagation of the malicious

packet over the entire network which causes failure/corruption

of all nodes in the network. Different from the assumption in

the literature, we assume that there are common vulnerabilities

between different variants. Thus, a malicious packets’ attack

can propagate if there are common vulnerabilities between the

infected node and its adjacent nodes.

B. Motivation

We exemplify different variant deployments using a simple

network that has 5 nodes and 3 software variants. In the below

figures, a circle denotes a node, a circle with a cross indicates a

node infected by a malicious packets’ attack (infected node for

short), and circles with different filling patterns indicate nodes

with different variants. Left slash indicates variant A,

horizontal line indicates variant B and right slash line indicates

variant C. For example, in Fig. 2 in which the initial injected

node is node 1, 2(a) has one variant A, and 2(b) has three

variants: A, B and C.

Fig. 2(a) shows the spread of malicious packets attack under

homogeneity deployment, in which all nodes are assigned with

the same variant A. Due to the homogeneity of nodes, the entire

network would be infected if only one node is injected.

 3

attacker

1
2

3
4

5

1
2 4

53

(a) Malicious packets attacks spread under homogeneity deployment

1

1
2

2
3

3

4

4

5

5

attacker

(b) Malicious packets attacks spread under existing heterogeneity deployment

attacker

1

1

2
3 4

5

2
3

4
5

(c) Malicious packets attacks spread under correlation-aware heterogeneity

deployment

Fig. 2 Malicious packets attacks spread under different deployment

In the same vein, Fig. 2(b) shows diverse variants assigned to

nodes using the existing heterogeneity deployment, and the

variants of adjacent nodes are heterogeneous. In the figure, the

variants are deployed in the following form: A is on nodes 1

and 3, B is on nodes 2 and 4, and variant C is deployed on node

5. We study specific attack cases where common vulnerabilities

exist in different variants. For example, exploited vulnerability

exists in variants A and B. Hence, malicious packets attack can

propagate even though the adjacent nodes are heterogeneous. In

Fig. 2(b), since the exploited vulnerability belongs to the

common vulnerabilities between A and B, a malicious packets

attack contaminates nodes (1–4). Hence, we perceive that

deploying different variants on adjacent nodes cannot

effectively restrain malicious packets attack spread in the

network. In the same vein, Fig. 2(c) depicts the spread of

malicious packets attacks under correlation-aware

heterogeneity deployment. In Fig. 2(c), variant A is deployed

on node 1 and 4, variant B is deployed on node 2 and 5, and

variant C is deployed on node 3. Thus, malicious packets attack

only contaminates nodes 1 and 2.

Therefore, the existing diverse variants deployment cannot

effectively prevent the spread of malicious packets attacks.

This paper proposes a novel diverse variant deployment to

restrain the propagation of malicious packets attack in the case

of a realistic situation.

III. SCHEME OVERVIEW

Fig. 3 depicts the workflow of the proposed

Vulnerability-aware Heterogeneous Network Devices

Assignment (VHNDA) solution. It comprises of two modules:

the EIR calculation, and VDVD problem solving.

Routing infrastructure

EIR calculation

 Problem solving

Large-

scale?

SA-VDVDGSSA-VDVD

Information

collection

Yes

No

Variant deployment

Fig. 3 The workflow of VHNDA

In the EIR calculation module, we analyze the potential

attack events, and calculate a metric named EIR to measure the

impact of malicious packets attack propagation based on the

network information (e.g., topology information and flow

state), which obtained periodically from network devices. Since

the characteristic of malicious packets attack propagation is

similar to the conception of the connected component, we

propose a connected component-based algorithm to calculate

the EIR. In the VDVD problem solving module, we propose

two algorithms, SA-VDVD and GSSA-VDVD, for different

scale networks. We, first, formulate the VDVD problem as an

integer-programming problem with the objective to minimize

the EIR while satisfying constraints. Due to the NP-hardness of

the problem, we propose a SA-VDVD algorithm for

medium-scale networks. Considering that the computational

complexity will significantly rise with the increase of network

size, we also present a low complexity algorithm named

GSSA-VDVD for large-scale networks.

IV. THE DIVERSE VARIANTS DEPLOYMENT PROBLEM

FORMULATION

This section starts with an introduction to the system

description; then, analyzes the potential attack events and

presents a metric named EIR to measure the impact of

malicious packets attack spread.

 4

A. System Description

TABLE I

NOTATIONS

Symbol Description

V Set of network devices. Represented by circles

in figures

L Set of edges in the network

S Set of variants. Represented by filling patterns

of circles in figures
n Number of nodes in the network
m Number of edges in the network

 Cardinal number for set

is
E Set of all the potential events that the malicious

packets attack can propagate in the case that the

incipient injected node belongs to variant
i

s

i
A Set of vulnerabilities for variant

i
s

i
d Size of

i
A

j

i
w Binary. j

i
w is 1 if variant

j
s is deployed onto

node i and 0 otherwise

i
h The weight for node i

()X i The variant deployment of node i . ()X i S

()X i

e
P The probability that event e occurs in the case

that the initial injected node belongs to

variant ()X i

()X i
E Set of all the potential events that the malicious

packets attack can propagate corresponding to

the case that the variant type of incipient

injected node is ()X i

,
()

D e
i Number of infected nodes in the case that

node i is initially infected for a given

deployment D and a compromised variant

event e

,
()

D e
r i The infected ratio for a given

deployment D and a compromised variant

event e

D
R EIR

h

D
R The weighed EIR

The network topology is modeled as a graph (,)G V L ,

whereV denotes the set of all nodes corresponding to network

devices, and L is the set of edges representing links between

network devices. Suppose that there are n nodes and m edges in

the network, such that n V and m L .

Also,  1 2
, , ,

k
S s s s is a set of k software variants. TABLE

I lists the symbols used in the problem statement and

formulations in section IV.

B. The Probability of Potential Attack Events

An attacker can exploit a number of vulnerabilities in each

variant. Let  1 2
, , , id

i i i i
A a a a be the set of vulnerabilities for

variant
i

s with size of i i
d A . For simplicity, we assume that

an attacker employs only one vulnerability to launch an attack.

Let  1 2
= , , ,

is k
E e e e be the set of potential events that

malicious packets attacks can propagate corresponding to the

case that the variant type of incipient injected node is
i

s . The

main idea of calculating the probability is to count up the

vulnerabilities corresponding to the attack event. Note that, the

probability for each potential case is related to the variant

incipient injected nodes. We take the case that the incipient

injected node belongs to variant
1

s as an example to present the

calculation.

Next, we describe how to calculate the probability by the

example of three variants. In this case,
is

E can be expressed

as         1 1 2 1 3 1 2 3
, , , , , , ,s s s s s s s s . As shown in Fig. 4,

 1
s means that only variant

1
s is compromised;  1 2

,s s means

that only variant
1

s and
2

s are simultaneously compromised;

 1 3
,s s means that only variant

1
s and

3
s are simultaneously

compromised; and  1 2 3
, ,s s s means variant

1 2 3
, ,s s s are

simultaneously compromised. Let 1s

e
P be the probability of

event e in the case that the incipient injected node belongs to

variant
1

s . Let A B be the difference set in which elements

exist in A but not in B . Therefore, the formal expressions are as

follow:

 

1

1

1 2 3

1

s

s

A A A
P

A

 
 (1)

 

1

1 2

1 2 1 2 3

,

1

s

s s

A A A A A
P

A

   
 (2)

 

1

1 3

1 3 1 2 3

,

1

s

s s

A A A A A
P

A

   
 (3)

 

1

1 2 3

1 2 3

, ,

1

s

s s s

A A A
P

A

 
 (4)

 1 2,s s

 1 3,s s

 1 2 3, ,s s s

 1s

1s
2s

3s

Fig. 4 Depiction of different potential events when the incipient injected node

belongs to variant
1

s

C. Measuring the Impact of Malicious Packets Attack

Propagation

We devise a metric named EIR which is defined as the

expected value for the proportion of infected nodes to measure

the impact of malicious packets propagation. Let j

i
w be the

 5

binary variable indicating whether variant
j

s is deployed onto

node i . Let  , [1,]
j

i i
W w j k  be the variant placement vector

for node i . The variant placement can be indicated

as  ,
i

D W i V  . Specifically, for a given deployment D and a

compromised variant event e , numerous nodes are infected

after a period of time. Let
,

()
D e

i be the number of infected

nodes in the case that node i is initially infected. Then, the

corresponding infected ratio can be expressed as follows,

,

,

()
()

D e

D e

i
r i

n


 (5)

In fact, it is a persistent process that malicious packets

propagate. In this paper, we do not consider the concrete

propagation process, but we focus on the final decisive effect of

the malicious packets spread on the network. Furthermore, we

present a method to count the number of infected nodes.

A novel graph
,D e

f
G is generated according to the given

deployment scheme D and the current compromised event e .

For each node i V , if ()X i e , then node i will be inserted

to
,D e

f
G . For the inserted nodes, if there exist links between

inserted nodes in previous graph G , then these links remain

in
,D e

f
G . In fact, not all the nodes in

,D e

f
G will be ultimately

infected. If there are no paths between two nodes, at least one

node will not be infected. Intuitively, the characteristic of

malicious packets attack propagation is similar to the

conception of the connected component which is defined as a

subgraph where any two vertices are connected to each other by

paths. Thus, we can adopt connected components to analyze the

final infected nodes. Let
,

()
D e

f
C i be the connected component

of
,D e

f
G containing the initial infected node i . Then, the number

of final infected nodes in the network can be defined as the

number of nodes in
,

()
D e

f
C i . Thus Equation (5) can be rewritten

as,

,

,

()
()

D e

f

D e

C i
r i

n
 (6)

Algorithm 1 details the process of calculating
,

()
D e

r i

Algorithm 1 Calculating infected ratio
,

()
D e

r i

Input：a given deployment  ,
i

D W i V  , the current

compromised event e , the original graph G

Output: infected ratio
,

()
D e

r i

1: initialization
,

(,)
D e

f
G V L 

2: for each node i V do

3: if  ()X i e then

4: insert node i intoV  ;

5: end if

6: end for

7: for each node i V  do

8: for each node j V  do

9: if  (,)l i j L then

10: insert link (,)l i j into E  ;

11: end if

12: end for

13: end for

14: for each node i V  do

15: obtain by calculating the connected component

of
,D e

f
G containing node i ;

16: ,

,

1
() ()

D e

D e f
r i C i

n
 ;

17: end for

attacker

1

1

2
3

4
5

2

5

1

2

Fig. 5 The process of calculating infected ratio

We exemplify the process of calculating infected ratio using

a sample network in Section II. Suppose that the initial injected

node is node 1. As shown in Fig. 5, variant A is deployed on

node 1 and 4, variant B is deployed on node 2 and 5, and variant

C is deployed on node 3. We consider a specific attack case that

the attacker exploits the vulnerability existing in variants A and

B to launch an attack. It can be seen that node 1, 2 and 5 may be

attacked. There is no single path between node 1 and 5, the

same case between node 2 and 5. Thus, node 5 will not be

infected.

Considering all the initial injected nodes and various

compromised events, the EIR can be expressed as,

  
()

()

, ,1

1
() ()

X i

n X i

D D e e D ei e E
R E r i P r i

n  
      (7)

where ()X i

e
P represents the probability of event e in the case that

the initial injected node belongs to variant ()X i ,
()X i

E indicates

the set of all the potential events that malicious packets can

propagate corresponding to the case that the variant type of

incipient injected node is ()X i .

The EIR
D

R assumes that all the nodes in the network are

equally important. In fact, this assumption is not realistic; in

 6

real cases, it is hard to satisfy this assumption as some nodes are

more significant than the others. For instance, a node can be

regarded as vital when it carries more traffic. Alternatively, a

node with a higher degree, which means the node connects to

more customers, can be considered significant. This paper

measures the importance via assigning different weights to

different nodes in the network. We use the degree of node to

represent the weights.

Now, we extend the EIR by considering the node importance.

Therefore, the weighed EIR is rewritten by replacing the

factor 1
n

with weight factor
i

h ,

  
()

()

, ,1
() ()

X i

nh X i

D D e e i D ei e E
R E r i P h r i

 
      (8)

where
i

h is the weight for node i . Obviously, Equation (7) is a

special case of Equation(8). Thus h

D
R can be regarded as the

universal metric.

D. Problem Formulation

The VDVD problem aims to find the optimal variant

assignment for each node in the network in order to prevent

malicious packets spread. Our objective is to devise a

deployment or mapping :M S V while minimizing the EIR.

We formulate the VDVD problem as follows,

  
()

()

,1
min ()

X i

n X i

e i D ei e E
P h r i

   (9)

subject to

  0,1 ,
j

i j
w i V s S    (10)

 1
j

j

is S
w i V


   (11)

 () , 1
j

i
X i j if w  (12)

In the above formulations, Equation (10) indicates that the

variant deployment for nodes must be one of the only two

statuses including completely a software variant or completely

not of that variant. It is not allowed that a part of variant is

deployed onto one node. Equation (11) represents only one

variant can be deployed on a certain node in the network.

Equation (12) shows the relationship between ()X i and j

i
w . In

the VDVD problem, the possible values of variables are 0 or 1,

thus it is a typical integer-programming problem.

V. SOLUTION

In this section, we propose two algorithms for different scale

networks: SA-VDVD and GSSA-VDVD. The following

subsections discuss these algorithms and the complexity

analysis of them.

A. SA-VDVD algorithm

Obviously, the VDVD problem is an integer-programming

problem. It is difficult to solve such a problem due to its nature

of NP-hard. The computational complexity of the brute force

solution that exhausts all possibilities in the search space

is ()
n

O k , where n is the number of nodes in the network

and k is the number of available variants. It is impractical to

employ the brute force solution when n and k are huge.

In this work, we resort to simulated annealing (SA) [11]

which is regarded as an effective probabilistic searching

technique for approximating the global optimum of a given

function to solve the VDVD problem. As stated in TABLE I,

X is a solution of VDVD problem corresponding to the state in

SA. We define as the state space and ()H X as the energy at

state X . Let T be the temperature, which controls the rate of

progress of SA, and the probability making the transition from

the current state X to a candidate new state X  is specified by an

acceptance probability function in the metropolis algorithm

[12],

  

1, () ()

, () ()
exp ,

T

if H X H X

P X X H X H X
otherwise

T

 


     
 
 

 (13)

The concrete SA-VDVD algorithm is presented as follows.

Algorithm 2 SA-VDVD algorithm

Input：the original graph G , the set of available variants S

Output: deployment  ,
i

D W i V 

1: Initialize the temperature T and number of

iterations L for each T , randomly generate the initial

state X ;

2: for 1:k L do

3: Generate a new state X  which is in the state

space via a random perturbation;

4: Calculate the increment of energy () ()H X H X   ;

5: if 0  then

6: Accept the state transition from X to X  ;

7: else

8: Accept the state transition with the probability

of
() ()

exp
H X H X

T

  
 
 

;

9: end if

10: end for

11: if the cease criterion is attained then

12: stop the process and return the optimal solution;

13: else

14: Cut down the temperature T , and then go back to Line

2;

15: end if

The efficiency and efficacy of SA algorithm depend on the

cooling scheme parameters including the value of the initial

temperature, number of iterations for each temperature, and the

initial state. Several methods have been proposed to set it. Out

of those methods, we adopt ANDYMARK [13] – an analytical

method, which can obtain high quality solution while with less

effort to tune the parameters of the cooling scheme for the SA

algorithm. Let S be the solution space of the problem solved

and
iS

V be the neighborhood set of
i

S . The maximum cost

deteriorations can be written

as     
max

, ,
iV j i j S i

H Max H S H S S V S S       . The

 7

initial temperature is
  

max

max

-

ln

V

A V

H

P H




. In general,

 
max

1
A V

P H  . Here let  
max

=0.9
A V

P H . Let
iS

V be the

neighborhood size. Let  R j
P S be the rejection probability and

generally the value is close to zero. The number of iterations for

each temperature is   ln
iR j S

L P S V .

Typical cooling schedule includes the linear cooling

schedule [11] and the geometric cooling scheme [14]. The

authors in [15] show no significant difference in performance

between linear and geometric schemes. We embrace the

geometric cooling schedule as shown in Equation (14),

 (1) (), 1,2, ,T T      (14)

where is a constant representing the cooling factor and the

value is approximate to 1,  indicates the number of cooling. In

our scenario, we set 0.95  .

B. GSSA-VDVD algorithm

In this section, we first analyze the computational

complexity of the proposed SA-VDVD algorithm. We define a

parameter K which reflects the external loop and inner loop in

the process of SA. According to Algorithm 1, the

computational complexity for calculating the EIR, which

comes from calculating connected component, can be

approximated to
3

()O n . Thus, the total computational

complexity can be expressed as
3

()O Kn . Generally, the

parameter K is relatively constant in the process of SA. It is

obvious that the computational complexity will significantly

rise with the increase of network size n . When the network

size n increases to a certain value, it is not practical to obtain

the deployment scheme via the proposed SA-VDVD algorithm.

Therefore, it is urgent to seek a scheme which can effectively

decrease the computational complexity while maintaining the

performance.

To address this problem, we devise a Graph

Segmentation-based Simulated Annealing Vulnerability-aware

Diverse Variants Deployment (GSSA-VDVD) algorithm

drawing lessons from the graph theory. The idea of this scheme

is to transform the network with large size into smaller

networks and then color them respectively. To do so, there are 2

alternatives including graph clustering [16] and graph

partitioning [17]. Graph clustering algorithms attempt to find

peninsulas of connectivity, while graph partitioning algorithms

try to split the network into balanced partitions.

The concrete GSSA-VDVD algorithm is shown as follows.

Algorithm 3 GSSA-VDVD algorithm

Input: the original graph G , the number of divided

components l , the set of available variantsV

Output: deployment  ,
i

D W i V 

1: obtain subgraph , 1,2, ,
i

G i l by cutting the

original graph G into l partitions via graph partitioning

or graph clustering algorithm;

2: generate the set of node pairs N in which nodes in a

node pair are adjacent and belong to different subgraph;

3: for each
i

G do

4: obtain deployment
i

D corresponding to

subgraph
i

G by executing SA-VDVD algorithm;

5: end for

6: for each element in N do

7: if nodes belong to the same variant then

8: update the variant deployed on one node of the

node pair;

9: end if

10: end for

11: obtain the final deployment D by the integration of

different , 1,2, ,
i

D i l

Graph

partition

Adjacency

processing

Subgraph

coloring

Diversity

deployment for

each subgraph
partition

Avert defective

edges

Integration

Final

deployment

Fig. 6 The workflow of GSSA-VDVD algorithm

As shown in Fig. 6, the GSSA-VDVD algorithm consists of

four phases: graph partition phase (line 1-2 in Algorithm 3),

subgraph coloring phase (line 3-5 in Algorithm 3), adjacency

processing phase (line 6-10 in Algorithm 3) and integration

phase (line 11 in Algorithm 3).

In the graph partition phase, the original graph is divided into

multiple subgraphs by executing the graph cutting algorithm.

Furthermore, the information of adjacency nodes between

different subgraphs is preserved in a specified set. Then,

SA-VDVD algorithm is executed to deploy diverse variants for

each subgraph in the subgraph coloring phase. Once the first

two phases are complete, the initial deployment scheme for the

entire graph is said to be achieved. Up until this point, it seems

that all the work has been done. In fact, the initial scheme is not

the desired one, because there may exist defective links

between subgraphs. To eliminate these links, the adjacency

processing phase is performed in which we can recolor one

node of these defective links. Ultimately, the respective

deployment
i

D for each subgraph is integrated as the final

deployment scheme.

C. Complexity analysis of GSSA-VDVD

The main questions that one may ask about the effectiveness

and performance of GSSA-VDVD are, why can the proposed

scheme decrease the computational complexity? And which

one is better? To answer these questions, we will first introduce

several theorems as follows.

Theorem 1：With a given number of divided components l ,

the computational complexity can attain the minimum if and

 8

only if the size for each component is equal.

Proof: Assume that the network is divided

into l components, let
i

x be the size of the ith component, then

the total computational complexity can be expressed

as
3

1
()

l

ii
O K x

 , and our target is to minimize it under

constraint condition. Naturally, we can establish the following

formula,

3

1

1

min
l

ii

l

ii

x

subject to x n









 (15)

where n denotes the number of nodes in the network. We can

transform the problem to the following via Lagrange Multiplier

Approach. First Lagrange function
1 2

(, , ,)
l

F x x x  is defined

as follows,

  3

1 2 1 1
(, , ,)

l l

l i ii i
F x x x x x n 

 
    (16)

where  is the Lagrange multiplier. Computing partial

derivative towards equation(16), then we can obtain the

following equations,

21 2

1

1

21 2

2

2

21 2

1 2

1

(, , ,)
3 0

(, , ,)
3 0

(, , ,)
3 0

(, , ,)
0

l

l

l

l

l

ll

ii

F x x x
x

x

F x x x
x

x

F x x x
x

x

F x x x
x n












 


  




  




  




  




 (17)

Then we can get the final result by solving(17),

 1 2 l
nx x x

l
    (18)

  
3 3

2min 1 2
(, ,)

l
n nf x x x l

l l
  (19)

From the results, we can conclude

that
3

1 2 1
(, ,)

l

l ii
f x x x x


 can get the minimum value

3

2
n

l
if

and only if 1 2 l
nx x x

l
    .

The results indicate that graph partitioning algorithms can

attain lower computational complexity than graph clustering

algorithms on the same network topology. This is because that

clustering algorithms may produce unbalanced partitions

resulting in high computation cost.

Theorem 2：The computational complexity of network

divided into l components will decrease by a factor

of 2
1

l
compared with the original network.

Proof: In the derivation process of the above-mentioned

Theorem 1, we can easily get the relationship between the

number of components l and the computational complexity.

Note that the computational complexity here indicates the

minimal computing cost for a given number of components l .

For the original network, the computational complexity can

be expressed as
3

()O Kn .

For the divided network, the computational complexity can

be expressed as    
3

3

2min 1

l

ii

KnO K x O
l

 .

Thus, we can get the relationship of computational

complexity of these two schemes,

    
33

3

2 2min 1

()l

ii

O KnKnO K x O
l l

  (20)

It is clear that the computational complexity of network divided

into l components will decrease by a factor of 2
1

l
compared

with the original network. Therefore, we can conclude that the

more the number of divided components l , the lower the

computational complexity. Nevertheless, we should not select

the tremendous l for its performance degradation. As for the

suitable l , it is difficult to derive from rigorous theory.

Alternatively, we can determine the value of l through

experiments and no more details will be shown here.

VI. EVALUATION

In this section, the proposed SA-VDVD algorithm is

evaluated in terms of various aspects, namely coloring

algorithms, compromised probability, inaccurate information

and topology size. We organize this section as follows. First,

the experimental setup used in our experiment is introduced in

subsection A. Then, the comparison algorithms are presented in

subsection B. Finally, in subsection C, we discuss the

simulation results.

A. Experiment Setup

In our evaluation, we use Cenic topology [18] and Interoute1.

Note that the topology is a network device-level topology, in

which each node and edge correspond to a network device and

link between network devices, respectively. The topology

information is shown in TABLE II.
TABLE II

NETWORK TOPOLOGY USED IN OUR EVALUATION

Topology Nodes Edges

Cenic 51 91

Interoute 110 158

B. Comparison Algorithms

The comparison algorithms are introduced below:

(1) randomized coloring: randomly assigns a variant from the

set of variants to each node.

(2) color swapping [19]: each node performs a local search

amongst its immediate neighbors to determine if switching

to a new variant would decrease the number of locally

defective edges.

(3) SA-VDVD: it assigns a variant to each node based on SA.

1 More information about the Interoute topology can be found at

www.topology-zoo.org

 9

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Number of variants

E
IR

randomized coloring

color swapping

SA-VDVD

(a) The results of defense capacity on Cenic topology

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Number of variants

E
IR

randomized coloring

color swapping

SA-VDVD

(b) The results of defense capacity on Interoute topology
Fig. 7 EIR under the different number of variants

(4) GSSA-VDVD: it divides the given network into numerous

smaller subnets and then assigns a variant to each node

based on SA.

The experimental results from these algorithms are stochastic.

To eliminate this effect, the Monte Carlo method is adopted to

reflect the final results. For a given coloring algorithm, each

value in our evaluation is obtained from the following equation,

1

1
i

K

Di
R R

K 
  (21)

where
i

D represents the ith deployment for a certain coloring

algorithm. K is the number of Monte Carlo simulations. In the

experiment, K is 200.

C. Simulation results

1) The impact of coloring algorithms

In this section, we compare the defense capacity against

malicious packets attacks achieved by various algorithms on

the same network topology. Fig. 7 shows the results achieved

by the different algorithms measured using the EIR on Cenic

and Interoute, respectively. With the increase number of

variants, the RIR will decrease for each algorithm. Besides, the

proposed SA-VDVD algorithm clearly outperforms other

coloring algorithms by 35% in terms of the EIR, as the

proposed SA-VDVD algorithm considers the spread across the

distinct nodes. As a good result, it can restrain the propagation

of malicious packets attacks to the greatest extent. Note that

when the number of variants is 2,

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of variants

E
P

C

randomized coloring

color swapping

SA-VDVD

(a) The results of network robustness on Cenic topology

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of variants

E
P

C

randomized coloring

color swapping

SA-VDVD

(b) The results of network robustness on Interoute topology

Fig. 8 EPC under the different number of variants

the defense performance of the proposed algorithm is similar to

that of color swapping but superior to randomized coloring.

This is explained by the fact that the proposed algorithm and

color swapping both aim to make the adjacent nodes

heterogeneous under this scenario.

There is no doubt that the infected nodes can impact on the

network robustness. The network robustness means that the

property of the network keeping connected in the case of a

failure. In such a case, Pair Connectivity (PC) is adopted as the

metric to measure the network robustness. PC is defined as the

following equation,

 

1

2

1
1

2

num

i ii

n

comp comp

U
C







 (22)

where 2

n
C is the number of all node pairs,

i
comp is

the ith component and num is the number of components in the

network. Considering all the possible initial injected nodes, we

define a metric named Expected Pair Connectivity (EPC) in the

following equation,

1

1 n

kk
EPC U

n 
  (23)

where
k

U indicates the PC in the case that node k is initially

injected. It is worth mentioning that we assume the probability

for each node initially injected is equal for the sake of

simplicity. We also assume that there are 6 variants in total. Fig.

 10

8 shows the EPC using different algorithms against the number

of

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

The simultaneously compromised probability

E
IR

randomized coloring

color swapping

SA-VDVD

(a) The results on Cenic topology

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

The simultaneously compromised probability

E
IR

randomized coloring

color swapping

SA-VDVD

(b) The results on Interoute topology

Fig. 9 EIR under the different simultaneously compromised probabilities for
different coloring algorithms

variants. As per the figure, the EPC increases as the number of

variants rises for each algorithm. Obviously, the proposed

SA-VDVD algorithm outperforms other algorithms for a

certain number of variants. Moreover, with the increase of the

number of variants, the EPC for all algorithms will be gradually

closed.

2) The impact of compromised probability

In this section, we investigate the effect from the probability

of compromised events on the defense capability. Next, we take

an example to illustrate the effect. The related parameter is

configured as follows. Assume that there are 3 variants in total

which can be used in our coloring algorithms. For the clarity

purpose, assume that the compromised events comprised only

of two types. One is the nodes with the same variants are

compromised, and the other is the two variants in the variants

set that can be compromised simultaneously. We study the

probability that two variants are simultaneously compromised

varying from 0 to 0.2.

Fig. 9 shows the defense capability using different coloring

algorithms against the probability that two variants are

simultaneously compromised on Cenic and Interoute

respectively. As can be observed, for each algorithm, the EIR

increases as the probability that two variants are compromised

rises. Obviously, with the increase of the probability that two

variants are compromised, the spread ability of the malicious

-1 -0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

Probability deviation

E
IR

accurate

inaccurate

Fig. 10 EIR obtained by different information under the different probability

deviations

packets attack will improve across the distinct nodes. As a

result, more nodes will be infected. Moreover, the proposed

SA-VDVD algorithm outperforms the other coloring

algorithms and randomized coloring performs the worst in the

case of any probability. When the probability that two variants

are compromised is relatively low, the goodness of the

proposed SA-VDVD algorithm is not fully clear. In this case,

spread ability of the malicious packets attack across the distinct

nodes is not powerful. Thus, defense effectiveness is similar

among the algorithms except for randomized coloring. As the

probability that two variants are compromised increases, the

advantage of the proposed SA-VDVD algorithm turns to be

clear. In such a case, spread ability across distinct nodes will

increase quickly. Hence, the SA-VDVD algorithm considering

common vulnerabilities can restrain the propagation of

malicious packets attacks more effectively than other coloring

algorithms without considering common vulnerabilities.

3) The impact of inaccurate information

 So far, we have assumed that the probabilities for all the

compromised events are priori known for us. In real scenarios,

these probabilities could be obtained via two ways, one is

expert opinion and the other is real world statistics. However,

both techniques cannot be completely accurate. In this section,

we study the case that the deployment is based on inaccurate

information.

We use the following equation to depict the inaccurate

information,

 () ()
i i i

P e P e    (24)

where ()
i

P e indicates the available probability, ()
i

P e indicates

the realistic probability and
i

 indicates the deviation between

the available probability and the realistic probability for a

compromised event
i

e . In this section, the evaluated probability

refers to the probability that two variants are simultaneously

compromised. The probability deviation is set ranging from

-0.1 to 0.1 with the common difference 0.05.

Fig. 10 shows the EIR obtained by different information

using the proposed SA-VDVD algorithm against the

probability deviation that two variants are compromised. As is

 11

seen in the figure, the deviation value between accurate and

inaccurate increases as the absolute value of probability

2 4 6 8 10

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of divided subnets

E
IR

SA-VDVD

GSSA-VDVD

Fig. 11 EIR under the different number of divided subnets for SA-VDVD and
GSSA-VDVD

deviation increases. The explanation is that the obtained

deployment with inaccurate information can be not optimal.

4) The impact of the topology size

As stated in Section V, the computation time becomes

excessive when the size of the network is large. In this section,

we explore this particular situation in the aspect of defense

performance and computational complexity. Assume that there

are 3 available variants. Simulations are conducted on Interoute

topology where we first compare the defense performance of

different deployment schemes on the same network topology.

Fig. 11 shows the EIR versus the divided subnets for

SA-VDVD and GSSA-VDVD. As can be seen in Fig. 11, the

deployment based on SA-VDVD algorithm clearly outperforms

the deployment based on GSSA-VDVD algorithm.

Furthermore, as the number of divided components increases,

the EIR will increase simultaneously. When the number of

divided subnets is relatively small, the performance

degradation based on GSSA-VDVD algorithm is not obvious.

Afterward, we investigate the relationship of computational

complexity for different algorithms. To reflect the compared

results clearly, normalization method is adopted. More

specifically, the computational complexity of deployment

based on SA-VDVD algorithm is selected as the benchmark.

For the other scheme, the computational complexity is

calculated as the ratio of the actual computational complexity

of a certain scheme to that of the benchmark. Fig. 12 shows the

computational complexity versus the number of divided

subnets for various algorithms. We can observe that the

deployment based on GSSA-VDVD algorithm has lower

computational complexity than schemes based on SA-VDVD

algorithm. Moreover, the computational complexity for the

deployment scheme based on GSSA-VDVD algorithm will

decrease rapidly with the increase of the number of divided

subnets.

VII. RELATED WORK

A. Cyber security

Keeping in view the exponentially increasing cybercrime and

fraudulent online activities by fraudster, [20] delves into the

various cyber fraud and probable solutions. B. B. Gupta

identifies in [21] the emergent research and techniques being

utilized in the field of cryptology and cyber threat prevention.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of divided subnets

C
o
m

p
u
ta

ti
o
n
al

 c
o
m

p
le

x
it

y

SA-VDVD

GSSA-VDVD

Fig. 12 Computational complexity under the different divided subnets for

SA-VDVD and GSSA-VDVD

L. Wang et al. [22] propose a novel compressive sensing

scheme that supports medical image sampling, compressing,

encryption and confidentially homomorphic aggregation

simultaneously. Internet of Things (IoT) provides new types of

services in order to improve everyday life [23]. [24] describes

challenges that threaten IoT diffusion and presents open

research questions. [25] surveys the security challenges of the

integration of IoT and cloud computing. [26] presents a

comprehensive survey of secured web application by

identifying numerous serious threats faced by several-related

organizations. [27] presents a cloud-based framework that

thwarts the DOM-based XSS vulnerabilities caused due to the

injection of advanced HTML5 attack vectors in the HTML5

web applications.

B. Diversity

Diversity has long been recognized as a promising solution to

improve the resilience of a software system against various

vulnerabilities. In fact, diversity is no longer a new thing, and it

has been extensively applied in a variety of fields such as

biology and organic systems [19]. Here, we only investigate its

application in computer and network context. At the beginning,

design diversity has been investigated in fault tolerance for a

long time. A typical case is N-Variant programming which

builds 2N  functionally equivalent programs and detects the

faulty version by comparing the output results [28]. Then the

N-Variant system extends N-version programming to detect

intrusions [29]. Apparently, it is an important premise to

generate diversity. So far, substantial literature adopting

randomization techniques has been put forward to

auto-generate diversity [30][31][32]. Recently, from the point

of view of application fields, diversity has been extensively

used in some new scenarios such as cloud computing security

[33], Moving Target Defense (MTD) [34] and network routing

[35][36][37].

The aforementioned studies are basically directed against a

point defense which focuses on the security of network node.

To achieve the global network defense, inspired by the

survivability through heterogeneity philosophy, Zhang et al. [9]

first propose a novel survivability paradigm named

heterogeneous networking to improve the survivability of a

network. In terms of the relationship between diversity and the

 12

robustness of a network, Juan Caballero et al. [10] employ a

graph theoretic approach to explore the benefits of diversity for

the robustness of a network, where robustness is the property of

a network staying connected under a software failure. Though

diversity has been extensively used, most of the existing efforts

rely on intuitive and imprecise notions of diversity. At a higher

abstraction level, as a global property of the entire network,

diversity and its effect on security have been overlooked.

Zhang et al. [38] model network diversity as a security metric

by designing and evaluating a series of diversity metrics and

provide guidelines for the instantiation of the proposed metrics.

C. Graph Coloring

As a well-known problem in graph theory, graph coloring

problem focuses on the assignment of colors to nodes of the

graph subject to certain constraints [39]. In general, it

guarantees that two adjacent nodes possess distinct colors. So

far, graph coloring problem has been extensively used in

various fields such as curriculum schedule, traffic management

and network, etc. Here we mainly focus on its application in the

area of networking. O’Donnell et al. [19] transform the problem

of limiting the spread of malware via diversity on a network

topology into the graph coloring problem and propose a series

of distributed coloring algorithms. Similarly, graph coloring

problem is adopted in order to study how to maximize the

robustness of a network via diversity [10].

D. Malicious Packets Attack

The authors in [40] propose a range of attack approaches to

illustrate that a mal-packet, which only carries specially crafted

data, can exploit memory-related vulnerabilities and utilize

existing application codes in a sensor to propagate itself

without disrupting sensor’s functionality. In [41], the authors

illustrate the feasibility of launching sensor worms through trial

experiments on Mica2 motes and investigates the technique of

software diversity to combat sensor worms.

To summarize, our work is inspired by existing work of [9,

10, 18, 40], but, also, different from them. We investigate an

optimal scheme to restrain the spread of malicious packets

attack via diversity deployment under a more realistic

condition, and theoretically formulate it as

integer-programming.

VIII. CONCLUSIONS AND FUTURE WORKS

The paper investigated the existing common vulnerabilities

among different variants which coincides well with the actual

situation. We, first, devised a quantitative metric reflecting the

effect on the network brought by the spread of malicious

packets attacks. Then, we modeled the VDVD problem as an

integer-programming problem and proposed a SA-VDVD

algorithm to solve it. In addition, we proposed a GSSA-VDVD

algorithm to address the high computational complexity as the

size of network increases. Finally, we performed a series of

experiments to verify the validity of the proposed algorithms.

The proposed SA-VDVD algorithm outperformed other

coloring algorithms by 35% in defense capacity. When variants

had a low correlation, the superiority of SA-VDVD algorithm

was not significant. GSSA-VDVD algorithm can effectively

reduce the computational complexity.

In future, we intend to study the case where attackers can

explore more than one vulnerability.

ACKNOWLEDGMENT

This work is supported by the National Key Research and

Development Plan [No.2016YFB0800101], the Foundation for

Innovative Research Groups of the National Natural Science

Foundation of China [No.61521003] and the National Natural

Science Foundation of China [No.61602509].

REFERENCES

[1] Vulnerability Note VU#403568(Dec 2015)

http://www.kb.cert.org/vuls/id/403568

[2] Vulnerability Note VU#391604(Nov 2015)

http://www.kb.cert.org/vuls/id/391604

[3] Vulnerability Note VU#185100(Jan 2013)

http://www.kb.cert.org/vuls/id/185100

[4] Vulnerability Note VU#893726(Apr 2014)

http://www.kb.cert.org/vuls/id/893726

[5] Vulnerability Note VU#583638(Jan 2005)

http://www.kb.cert.org/vuls/id/583638

[6] Vulnerability Note VU#305448(Mar 2017)

http://www.kb.cert.org/vuls/id/305448

[7] Vulnerability Note VU#677427(Nov 2016)

http://www.kb.cert.org/vuls/id/677427

[8] Vulnerability Note VU#917700(Apr 2014)

http://www.kb.cert.org/vuls/id/917700

[9] Zhang, Yongguang, et al. "Heterogeneous networking: a new

survivability paradigm." Workshop on New Security Paradigms

(2001):33-39.

[10] Caballero, Juan, et al. “Would Diversity Really Increase the Robustness

of the Routing Infrastructure against Software Defects?” Network and

Distributed System Security Symposium, NDSS 2008, San Diego,

California, USA, February DBLP, 2008.

[11] S. Kirkpatrick, C.D. Gelett, M.P. Vecchi, Optimization by simulated

annealing, Science 220 (1983) 621–630.

[12] N. Metropolis, A.W. Rosenbluth, M.N Rosenbluth, A.H. Teller, E.

Teller, Equation of state calculations by fast computing machines, J.

Chem. Phys. 21 (1953) 1087–1092.

[13] Frausto-Solís, et al. “ANDYMARK: An Analytical Method to Establish

Dynamically the Length of the Markov Chain in Simulated Annealing
for the Satisfiability Problem.” LNCS 4247, pp. 269–276, 2006.

[14] Van Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing:

Theory and Applications. Reidel, Dordrecht
[15] Strenski, P.N. and Kirkpatrick. “Analysis of Finite Length Annealing

Schedules.” Algorithmica, 6, pp.346-366, 1991.

[16] Tabatabaei, Seyed Salim, M. Coates, and M. Rabbat. GANC: Greedy
agglomerative normalized cut for graph clustering. Pattern Recognition.

2012, 45(2), pp. 831-843.

[17] Galinier P, Boujbel Z, Coutinho Fernandes M. An efficient memetic

algorithm for the graph partitioning problem. Annals of Operations

Research, 2011, 191(1), pp. 1-22.

[18] CENIC, available at http://www.cenic.org [last accessed February 2019]

[19] O'Donnell, Adam J., and H. Sethu. "On achieving software diversity for

improved network security using distributed coloring algorithms." ACM

Conference on Computer and Communications Security, CCS 2004,

Washington, Dc, Usa, October DBLP, 2004:121-131.

[20] B. B. Gupta. Computer and Cyber Security: Principles, Algorithm,

Applications, and Perspectives. CRC Press, Taylor & Francis, 666, 2018.

[21] B. B. Gupta. Handbook of research on modern cryptographic solutions

for computer and cyber security. IGI Global, 2016.

[22] Licheng, Wang, et al. Compressive Sensing of Medical Images with

Confidentially Homomorphic Aggregations. IEEE Internet of Things

Journal (2018):1-1.

http://www.kb.cert.org/vuls/id/391604
http://www.kb.cert.org/vuls/id/185100
http://www.kb.cert.org/vuls/id/893726
http://www.kb.cert.org/vuls/id/583638
http://www.kb.cert.org/vuls/id/305448
http://www.kb.cert.org/vuls/id/677427
http://www.kb.cert.org/vuls/id/917700
http://www.cenic.org/

 13

[23] A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang, B.B. Gupta. Efficient

IoT-based sensor BIG Data collection–processing and analysis in smart

buildings. Future Generation Computer Systems 82 (2018): 349-357.

[24] Tewari, Aakanksha, and B. B. Gupta. Security, privacy and trust of

different layers in Internet-of-Things (IoTs) framework. Future

Generation Computer Systems, Elsevier, 2018.

[25] Stergiou, C, Psannis, KE, Kim, BG, B. B. Gupta. Secure integration of

IoT and cloud computing. Future Generation Computer Systems, 2018,

78(3), pp. 964-975.

[26] Gupta, Shashank, and B. B. Gupta. Detection, avoidance, and attack

pattern mechanisms in modern web application vulnerabilities: present

and future challenges. International Journal of Cloud Applications and

Computing (IJCAC), 2017, 7(3), pp. 1-43.

[27] Enhancing the browser-side context-aware sanitization of suspicious

HTML5 code for halting the DOM-based XSS vulnerabilities in cloud."

International Journal of Cloud Applications and Computing (IJCAC),

2017, 7(1), pp. 1-31.

[28] Iñaki Goirizelaia, Maider Huarte, Juanjo Unzilla, Ted Selker:

An Optical Scan E-Voting System based on N-Version Programming.

IEEE Security & Privacy 6(3): 47-53 (2008).

[29] B. Cox et al., “N-variant systems: A secretless framework for security

through diversity,” in Proc. 15th Conf. USENIX Secur. Symp., 2006,

Art. ID 9

[30] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An

efficient approach to combat a broad range of memory error exploits,” in

Proc. 12th USENIX Secur. Symp., Washington, DC, USA, 2003, pp.

105–120.

[31] S. Bhatkar and R. Sekar, “Data space randomization,” in Proc. 5th Int.

Conf. Detection Intrusions Malware, Vulnerability Assessment

(DIMVA), 2008, pp. 1–22.

[32] PaX Address Space Layout Randomization. [Online]. Available:

http://pax.grsecurity.net/, accessed Jun. 2015.

[33] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public

cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan./Feb. 2012.

[34] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving

Target Defense: Creating Asymmetric Uncertainty for Cyber Threats,

1st ed. New York, NY, USA: Springer-Verlag, 2011.

[35] Chen, Y. Y., Chang, E. J., Hsin, H. K., Chen, K. C., & Wu, A. Y. (2017).

Path-diversity-aware fault-tolerant routing algorithm for

network-on-chip systems. IEEE Transactions on Parallel & Distributed

Systems, 28(3), 838-849.

[36] Chen, W., Lea, C. T., He, S., & Zhe, X. Y. (2017). Opportunistic routing

and scheduling for wireless networks. IEEE Transactions on Wireless

Communications, 16(1), 320-331.

[37] Tapolcai, J., et al. “Scalable and Efficient Multipath Routing:

Complexity and Algorithms.” (2016).

[38] Zhang, M., Wang, L., Jajodia, S., Singhal, A., & Albanese, M. (2016).

Network diversity: a security metric for evaluating the resilience of

networks against zero-day attacks. IEEE Transactions on Information

Forensics & Security, 11(5), 1071-1086.

[39] T. R. Jensen. Graph Coloring Problems. Wiley, 1995.

[40] Gu, Q., & Noorani, R. (2008). Towards self-propagate mal-packets in

sensor networks. Acm Conference on Wireless Network Security

(pp.172-182).

[41] Yi Yang, Sencun Zhu, & Guohong Cao. (2016). Improving sensor

network immunity under worm attacks: a software diversity approach.

Ad Hoc Networks, 47(1), 26-40.

https://dblp.uni-trier.de/pers/hd/g/Goirizelaia:I=ntilde=aki
https://dblp.uni-trier.de/pers/hd/h/Huarte:Maider
https://dblp.uni-trier.de/pers/hd/u/Unzilla:Juanjo
https://dblp.uni-trier.de/pers/hd/s/Selker:Ted
https://dblp.uni-trier.de/db/journals/ieeesp/ieeesp6.html#GoirizelaiaHUS08

