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Abstract 

 

This paper describes the development of a model to interface a planned urban drainage 

system with Geographic Information System (GIS) through the introduction of open-source 

tools; Auto Numbering and Get Elevation to extract essential data from GIS and Excel2GIS to 

bridge the output data between GIS and the drainage design program. Creating a range of 

essential data from digital database repositories aids the development of decision-support 

tools for urban planners in a simulation of different urban drainage scheme scenarios and 

moderates the interference with other infrastructure utilities. These tools, modelled with 

design software and GIS platform, are tested in two case studies; the results revealing 

essential improvements in accuracy of output, time taken to prepare and run the model and 

model presentation which visualised the hydraulic design results and global location of the 

drainage layout on an urban master plan. 
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1. Introduction 

 

The rapid development of complicated master plans for cities and infrastructure utilities has 

resulted in drainage systems which are also complex, including substantial amounts of data for 

design, analysis, operation and management (Yazdanfar and Sharma, 2015). Urban drainage 

system design traditionally requires substantial data in order to produce tables and maps which 

illustrate the system and avoid intersecting with other infrastructure utilities (Ferreira and Duarte, 

2006). However, urban planners struggle to deal with all the documents required to manage the 

system and its data because system elements are interrelated and the planners need to be aware 

of the relationships between them and how they impact on the whole system (Jin and Mukherjee, 

2010). The implementation of a variety of scenarios for the designed drainage system requires 

sophisticated procedures and intense data from many infrastructure authorities in the city in 

order to achieve optimisation and resilience (Mikovits et al., 2017); therefore, developing and 

adopting decision-support tools improves the design, management and operational performance 

of the infrastructure urban planning (Kizito et al., 2009). Urban drainage system functionality 

depends on building topological links and the interactions between this system’s elements and 

other utilities’ elements (White and Stewart, 2015). In order to achieve feasible points for 

optimal design and operation, it is important to define all the roles of the elements throughout 

the system (Jurišić et al., 2014) and select an optimisation model which impacts on the results of 

the control system (Mollerup et al., 2016). The task of providing combined management for 

infrastructure utilities is gaining more awareness and the principles of Integrated Urban Water 

Management (IUWM) have become important considerations for both city planners and 

researchers (Bach et al., 2014). 

The basic goal in drainage system design is to determine the optimum layout and the proper size 

of the conduit (pipe or open channel) required to carry the flow, and to provide a smooth 

gradient that keeps the hydraulic integrity requirements within the limitations of the hydraulic 

design criteria(Mays, 2001). Size-wise, the drainage system is bigger when compared with the 

other infrastructure utilities such as electricity lines, potable water networks, gas pipelines, etc.; 

therefore, the areas occupied by this system and which have the potential to conflict with other 
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utilities are considerable. Many planners combine green infrastructure and traditional drainage 

systems to design facilities for stormwater drainage; this method decreases peak flow, allowing 

the use of smaller sewer pipes (Johnson and Sample, 2017; Kong et al., 2017; Liu et al., 2017). 

However, although this scenario decreases the size of sewer lines, the area used by the drainage 

system is still big. Achieving a feasible design with the best possible layout is challenging due to 

the difficulties involved in balancing these criteria (Duque et al., 2016). 

An awareness of the city’s master plan, including the existence of other infrastructure services 

such as electricity and communications lines, potable water networks, gas pipelines and ground 

gradient, is key for the optimisation of the urban drainage system layout and allowing for an 

ideal and feasible drainage system planning (Li and Matthew, 1990). Computer models and 

mapping software such as GIS have been very helpful in assisting planners and authorities to 

find practical solutions to the interference between different infrastructure utilities. They enable 

them to build a vital relationship between elements (Sanzana et al., 2017) and improve the urban 

drainage system performance by mitigating flash flood events (Liu et al., 2017; Zhang and Pan, 

2014). Due to the complexity of environmental models such as urban drainage systems, 

traditional system designs which extracted data from block map input tables are no longer used 

(Morsy et al., 2017). Using GIS as a Computer Mapping Program (CMP) provides efficient and 

accurate tools for urban drainage systems as it links and exchanges data with other field layers 

such as meteorology, censuses, the city master plan, hydrology and geology, enabling urban 

authorities to save the time and costs usually associated with a conventional approach to 

infrastructure services (Mustajoki and Marttunen, 2017). The value of using GIS comes from the 

fact that more than 80% of water and wastewater infrastructure data has already been 

geographically referenced. For example, 90% of infrastructure authorities in the US use GIS 

applications in utilities management (Shamsi, 2005); a similar proportion has been found in the 

UK and other parts of the EU. 

Interface methods, development tools to interface with GIS, have been used to assess and 

improve the management and planning of drainage networks (Halfawy et al., 2007) and to 

enhance applications such as the optimal placement of model elements or system controllers 
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(Leitão et al., 2018; Nielsen et al., 2017; Riaño-Briceño et al., 2016; van Daal-Rombouts et al., 

2016). Many commercial packages, which have started to upgrade to communicate drainage 

modelling with GIS, in their recent versions, are trying to utilise a GIS database to improve the 

drainage system layout. Commercial drainage design products, such as Bentley SewerGEMS 

and XP-PSWMM, provide the ability to interface with GIS. Much of the input data is created 

automatically; for example, pipe length is calculated from the pipes’ coordinates. This enables 

the user to test several layouts before settling on the optimal design. The user can also easily 

depict and label design drawings (Katti et al., 2015). Others, for example, PCSWMM GIS, use 

an integration method with GIS, building a software design package inside the GIS interface, 

using the same programming language as GIS; this avoids the need to exchange data between 

GIS and drainage design programs (Sinske and Zietsman, 2002). However, the majority free 

version trial of these are not appropriate for educational and research purposes as they limit the 

number of conduits that can be included in the designs, whilst others are simply not accessible 

for development purposes (Riaño-Briceño et al., 2016). 

Commercial packages using CMPs such as CAD and GIS are thriving as this technology 

provides for up to date and accurate integration of data from other layers of a city’s master 

plan – such as length of pipe, impervious coefficient of the area, and ground elevation of the 

nodes. However, there are still challenges for the designer in integrating this data between a 

hydrodynamic drainage model and urban development GIS database, extracting the input data 

such as an appropriate sequence ID for the network system elements, or the ground elevation, 

coordinating the system for the drainage system elements, and accurately determining the area 

served by the drainage system elements. Many researchers model urban drainage input data 

using GIS according to the taxonomy described by Shamsi (2005), which comprises Interchange 

(Loose coupling), Interface (Tight coupling) and Integration (Seamless coupling) methods (Bhatt 

et al., 2014; Liu et al., 2014; Pontes et al., 2017; Qin et al., 2017; Wang et al., 2016). 

This paper presents new three tools (Auto Numbering, Get Elevation and Excel2GIS) to model 

essential design drainage input data using a GIS database which can improve the planning 

performance by running many scenarios for the drainage system design and visualise the 
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interference with other infrastructure utilities; Excel is used as a link between the design model 

and GIS. This saves significant time and costs compared with the application of traditional 

methods and some commercial models and improves the level of accuracy. 

 
 

2. Methodology 

 

 

2.1. Software architecture 

 

 

The tools presented in this research are suitable for researchers and planners to use with their 

models or available as open-source drainage system design models and easily integrated with 

GIS databases to extract input data. These tools are open-source repositories, licensed and 

published under the GNU General Public License v3.0 

https://github.com/Ghassankhaleel/Get_Elevations, https://github.com/Ghassankhaleel/Auto- 

Numbering and https://github.com/Ghassankhaleel/GIS_2_Excel). The tools require Windows 8 

or later, Microsoft Office and GIS or Open Source GIS (QGIS). 

The structure of the model implementing these tools, illustrated in Fig. 1, describes the 

principles used to build the tools in the model. The first part from the structure (Extract Input 

Data) is applied to extract data from the GIS repository database for use as input data to design 

an urban drainage system; sketching the layout in GIS is the first step in this structure. The 

program design is the second part of the model. It includes two subroutines, one for sewage flow 

design and the other for storm drainage design. Users can use an alternative open-source urban 

drainage design program but they need to manage the input data table extracted by these tools in 

an Excel format, amended to match the format required by the model. The tools, Auto 

Numbering and Get Elevation, are active at the space between the GIS repository and the design 

model. The Excel2GIS tool gathers the extracted data and creates Excel file input data which can 

then be used as input by the urban drainage design program. In the third part of the model 

(Simulate Output Data), the same tool, Excel2GIS, will receive the output data from the design 

https://github.com/Ghassankhaleel/Get_Elevations
https://github.com/Ghassankhaleel/Auto-Numbering
https://github.com/Ghassankhaleel/Auto-Numbering
https://github.com/Ghassankhaleel/GIS_2_Excel
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program Calculation Report and convert the data to shape files which can be used to visualise 

the results through the GIS repository database. The visualising of results in GIS allows planners 

to figure out the interference of the drainage system with other layers of utilities and analyse 

more than one planning scenario before deciding on the final one. The user can use the GIS 

database to produce different versions of maps for the drainage system output showing the 

interface with other city features. 

 

 

 

 

 
Fig. 1. Flowcharts showing the structure of the embedded tools in the model for extracting input 

data of an urban drainage system’s design. 

 

 

 

2.2 Auto Numbering: building the topology of drainage systems using GIS 

 

 

The geometric network that GIS provides is a vital facility by which to build an urban drainage 

system network, defining the topology i.e., the relationships – between elements of the system. 

For example, it can link a conduit to a node. The majority of conduits starts or ends with nodes 

such as manholes in a sewer system, although a small number of pipes does end with an outfall 

or at a pump station (PS) or treatment plant (TP) in the network. A geometric network enables 

the user to edit network elements such as the pipe or open channel (line), automatically creating 

nodes (manholes). This process can be performed inversely by editing the manhole, 

automatically linking it with the pipe (Grise et al., 2001). This process saves the designer or user 

valuable time, allowing amendments to the network, which will behave as a correlating system. 

If the user moves the manhole from one point to another location on the map, the pipe will 

automatically move with it. If the network is built through a geometric process, GIS provides 

active tools for the network analyst, enabling a visualisation of the behaviour of the drainage 

system and the ability to test it, for example, changing the direction of flow or adding barriers 
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that can change the flow route. This topological relationship can be used effectively within 

commercial software to analyse and test a multitude of scenarios regarding flood management 

(Totman, 2017; XP Solutions, 2015). This topology between network elements accelerates the 

editing process for the network layout in the master plan using GIS. There are two potential 

ways to identify the horizontal alignment of drainage networks; the first is to identify the pipe, 

the second one is to identify the manhole and use it as a reference to give an ID for the 

corresponding pipe that connects two manholes (Butler and Davis, 2011). Identifying the 

elements in the network is one example of initial input data that can be used when designing a 

model. Researchers have used the advantages provided by geometric networks to build a model 

of the relationships between network elements, as it allows them to create a unique reference 

number (ID) for each. The form of ID can be proposed by the user, and is usually a number 

sequence for the main line (trunk line) which is nominated by the user; this is used as a reference 

to number the other elements in the network. This starts from the end of the network (outfall, PS 

or TP), by marking it as the zero point, allocating ascending numbers for the nodes (manholes) 

upstream of the main line. The tool numbers the elements (manholes) automatically, giving 

priority to branches on the right and then on the left side, using the trunk line which was 

manually numbered by the user as a reference. The tool depends on calculating the slope (the 

angle between links) as the method to identify the next manhole. In order to set the next manhole 

number, taking the next ascending number after manhole ( ), the software looks for the slope 

for each intersection point with     
, where

 
as shows in the equations (1-1, 1-2 

   
 

and 1-3) 

 
S1 of 

 

       
) (1-1) 

 

 

S2 of              (1-2) 
     

 

S3 of              (1-3) 
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(x and y are the coordinates for each intersection (node)). When determining the values of S1, S2 

and S3, the software numbers each manhole sequence in a counter-clockwise rotation. Fig. 2(a) 

shows the sketch for the numbering processes for the innovative software used for numbering 

the system and which has been successfully applied in two case studies. 

Fig. 2(b) shows the sketch for the numbering processes in the interface of the Auto Numbering 

software tool. 

 

 

 

 

 
Fig. 2. The innovative software used for numbering the system (a) sketch of manhole numbering 

process in the tool and (b) interface of the Auto Numbering software tool. 

 

 

 

2.3 Get Elevations and Extract Data from GIS: using Differential Global Position Systems 

(DGPS) 

One important feature of GIS is its ability to extract the properties of the drainage system from 

other features that are available in the database such as street routes and gradient of the area 

(Haile, 2009). Commercial drainage design modelling uses this facility to automatically extract 

the ground elevations for nodes (manholes) from Digital Elevation Models (DEMs) of the design 

area. However, the accuracy of the output elevations depends on the DEM data which are 

susceptible to raster image resolution (Arnone et al., 2016; Li and Wong, 2010). The DEMs do 

not have the accuracy required for use in sewer system modelling design and are generally only 

applicable to natural landscape modelling (ASCE, 1999, cited in Shamsi, 2005). Selecting a 

suitable survey method is one of the most challenging decisions that a designer (Rayburg et al., 

2009) or authority in charge of a drainage system has to make, bearing in mind the suitability of 

the chosen technique and the disadvantages and advantages of the selected method. Today, 

DGPS is not just a faster method; it is also the most accurate method available, providing density 

of data collection (Young, 2012). In this study, the DGPS method was more flexible in enabling 

https://www.google.co.uk/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=6&amp;cad=rja&amp;uact=8&amp;ved=0ahUKEwiTidvUu5fKAhWCThQKHegxDacQFghBMAU&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDigital_elevation_model&amp;usg=AFQjCNFBJCU9NHJjU9MZIB9s441KNQUwpQ&amp;bvm=bv.110151844%2Cd.ZWU
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the creation of a digital table of elevations at one-metre intervals with a given coordinate system 

for each point. This digital table was imported by GIS and created an elevation grid layer 

covering all streets and the extension area in the case study. Fig. 1 (Supplementary material) 

shows the interface and process of the Get Elevation tool. The tool inputs elevations for nodes, 

established by selecting the closest point of elevation to the node from the GIS survey layer 

created from DGPS, which is the second set of input data that GIS provides. Fig. 3 shows that it 

is possible for the user to determine the diameter of a circle (the ‘range circle’) within which the 

node should search, to keep the accuracy within acceptable limits by find the closest elevation 

level. In this case, 2.5 metres was used as the diameter for the range circle around the node; the 

program found two elevation points available within this circle and assigned the level from the 

closer one (the point that was 1.15 metres away from the node). Each manhole has an elevation, 

but if the elevations for some manholes cannot be obtained these can be fed in manually. 

 
 

Fig. 3. The process of matching the manhole with a nearby topographic elevation. 

 

 

 
2.4 Excel2GIS tool: extracting input data from GIS layers 

 

The use of GIS has initiated a new era of easy communication between features on the ground 

and the ability to link different layers of city master plans. GIS can help the designer to extract 

all the necessary input data, the iterative data (Dile et al., 2016), and prepare it for use in the 

drainage design program (Kong et al., 2017). Data extracted by this method is more accurate in 

comparison to using a manual data feed as the process avoids human error and can save much of 

the time and effort required to manually link areas to the corresponding pipes required by some 

commercial sewer design software. The Excel2GIS is a feedback data tool in two ways, 

extracting data from GIS database to hydrodynamic model as input Excel file and exporting the 

output data from hydrodynamic model to GIS database as shape files. The efficiency of using 

this tool with the associated Auto Numbering and Get Elevation is that to improve the 

performance by depicting the layout of the proposed drainage system by GIS, which gives the 
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planner the ability to assess and evaluate more than one alignment path, allowing identification 

of the optimum one at the first stage, as shown in Fig. 1. This process offers advantages with 

reference to time and effort as it is a straightforward task to delineate the drainage system, 

visualise the results and identify any conflict with other layers and infrastructure. It is still 

necessary to collect data from local authorities or conduct a site visit for specific locations to 

identify any interference with other infrastructure services, but the amount of work is reduced, as 

stated by Jankowfsky et al. (2013). Greene et al. (1999) attempted to computerise the selection 

of the appropriate layout for drainage systems by choosing some criteria and integrating them 

with GIS feature layers. This allowed the identification of the optimum path for the drainage 

system connection sequence and detection of a suitable location to site the lift station. However, 

in spite of this, GIS cannot replace the judgement of professional designers, based on their 

experience, which enables them to avoid barriers and select the best routes (Luettinger and Clark, 

2005). After setting-up the route for the network and determining the location of the nodes 

(coordinating the system for each element, which is then used as a function to integrate the 

drainage elements (layers) with other layers in GIS Geodatabase), it is a straightforward task to 

create the initial data. This begins with the identification of networks by allocating a unique ID 

to each node in the system. This system identification allows the results of the design data to be 

linked with elements of the network. These IDs can later be used as a reference when linking 

historical data available for future maintenance or planned inspections (Rettig et al., 2014). 

Ground elevations for each node and the length of link (pipe) between pairs of nodes will be 

determined by the Get Elevation tool; this process provides the design program with the initial 

data to create the optimum incline for each link. This guarantees the required self-cleaning 

velocity of the flow through the pipe or the channel and helps to estimate the lining cost. While 

determining what area, linked with each element, contributes to the estimated flow in each link, 

Fig. 4 shows the process of linking pipes/areas in close vicinity to each other. The benchmarks 

to determine the zone of sub-catchment area drains to each link are the two nodes connected to 

the link (Jang et al., 2018; Xie et al., 2017). GIS database layers are used to determine catchment 

area properties that intersect with drainage system elements. The repository data for these layers 



11 | P a g e  

was assigned as attributes and can be used to extract the required data, such as impervious factor 

or land use, and assign it to the sub-catchment element area layer overlaid with it (Chang et al., 

2015; Roy and Shuster, 2009). 

 
 

Fig. 4. Process of linking the area of property (A) with the pipe. 

 

 

 
Table 1 shows the initial data that can be extracted automatically from GIS as an Excel input file 

using these tools for drainage design programs. This data represents the initial data for the 

drainage design program such as catchment area of each link, the length measurement of each 

link, node numbers (ID) in sequence, ground level at node locations, and the coordinates system 

of the two nodes (Manhole No. 1 and Manhole No. 2) that are connected at each link. 

 
 

Table 1 

 

Input file extracted from GIS. 

 

 

2.5 Drainage system 

 

The development of a hydrologic and hydraulic computer model provides an effective means of 

evaluating the hydraulic capacity of a drainage system under dry and wet weather flows 

(Vallabhaneni et al., 2007) and improves the management storage capacity process of the 

drainage system (Cunha et al., 2016). To date, several hydrological and hydrodynamic models 

have been exploited and developed, such as the Bentley SewerGEMS, XP-PSWMM, Infoworks 

CS, and MOUSE, as a commercial modelling package, and SWMM, as an open-source model 

developed by the United States Environmental Protection Agency (EPA), and can be used to 

simulate the water flow of drainage systems and provide a fully hydrodynamic pipe flow model 

(Liu et al., 2017). In this case study, a specific drainage design program approved by the 

municipality authority was used. A circular pipe shape and Prandtl-Colebrooks formulas were 

employed in the concept of this hydrodynamic model for the pipe design; the flow conditions are 
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predicted more precisely by the Colebrook-White formula (Valiantzas, 2005), based on the exact 

flow equation 2 by Darcy-Weisbach: 

 

 

(2) 

 
Hf: friction head loss in m, λ: friction factor, L: unit length, D: diameter in m, V: velocity in m/s, g: acceleration due 

to gravity. 

 
 

In order to determine the friction factor (λ), Colebrook-White introduced the following formula 

(Equation 3) based on the theory of boundary layers by von Karman and Prandtl (Chadwick et 

al., 2013): 

 
 

   
     

  (3) 
     

 

  : roughness coefficient and Re: Reynolds number. 

 

 
The formula published by the Hydraulics Research Station (Equation 4) was used to determine 

the flow velocity (Chadwick et al., 2013). 

 
 

     
           

      
  (4) 

 

 

Sf: slope of the hydraulic gradient, υ: kinematics viscosity in m2/s 

By estimating the discharge for each pipe in the drainage network using Equation 5 and 

Equation 6, the corresponding pipe diameter required is calculated. 

 
 

                           (5) 

 
A: catchment Area feeding the pipe, PD: population density, DC: Discharge per capita and inf: Infiltration 

 

 

                                           (6) 

https://en.wikipedia.org/wiki/Reynolds_number
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The diameter can be determined from the qactual peak while the slope can be set as the minimum 

slope at the beginning. Hydraulic properties such as flow velocity and flow depth can be found 

by iterative calculation as the discharge, diameter, and slope of the pipe are known. The program 

used was for a two-part, separate sewer system, one part to design the sewage flow system, the 

other to design the storm flow system. These tools can also be used for the design programs of 

combined sewer systems because both normally require the same initial input data. 

 
 

3. A case study application to validate the tools with an urban drainage model 

 

 

Two areas in the Middle East (Iraq) were selected to apply these tools in association with a study 

conducted by Al Ghalowa Co. Ltd. to plan the optimum scenario to design the drainage system 

for these cities, which have faced a growing number of flash floods in the last decade within the 

current boundaries of their built-up areas. The drainage system plans take into consideration the 

future extension of the cities’ built-up areas until 2040. Table 2 shows the features of the two 

sites and Fig. 2 (a) and (b) (Supplementary material) illustrates the two cities’ land use. 

Currently, the two cities use the onsite sewage facility (septic tank system) to drain the sewage 

flow, which is vacuumed by the water authority vacuum tracks regularly. The two cities have a 

few pipe systems and open channels for the drainage system and to discharge the stormwater 

flow outside the built-up area; however, the capacity of the existing system is now not enough to 

carry the flow during heavy rain events. This prompted the water authority to develop a drainage 

system plan for each city to last until 2040. Therefore, the design plan for the drainage system 

has been scheduled to be constructed in two stages. The first stage covers the current built-up 

area and the second stage will serve the future extension of both cities. Fig. 5 (a) and (b) 

demonstrates the current built-up area, future extension boundary and existing drainage system 

of Afak city and Al Hamza city, respectively. The challenge that the authorities and planners 

face is that each city has complex infrastructure services such as electricity networks, potable 

water, and communications system. 

https://en.wikipedia.org/wiki/Onsite_sewage_facility
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Table 2 

 
The features of the two case study sites (two cities in Iraq). 

 

 

 
 

Fig. 5. (a) The boundary of the built-up area and future expansion area for Afak city (b) The 

boundary of the built-up area and future expansion area for Al Hamza city. 

 

 
These infrastructure services mean that constructing a new drainage system has a high potential 

risk of increasing the cost of the project without the adoption of a rigorous design plan to avoid 

and manage any conflict with these existing infrastructures. Fig. 3 (a) and (b) (Supplementary 

material) shows the electrical networks in Afak and Al Hamza cities and how they intersect with 

the routes of the proposed drainage system. The tools presented in this research enable the 

planners to run more than one scenario for the new drainage system which can manage the 

intersecting between the alignment of the drainage system and other infrastructure routes; this is 

implemented at the first stage illustrated in Fig. 1. When the second process of the drainage 

system design was run and the size of the system elements was determined, it checked again if 

the system was intersected by other utilities. This occurred in the third stage shown in Fig. 1. 

This process was repeated before the optimum design was decided. 

 

 

4. Running the model and simulating output data 

 

The second data input stage required for the design, as shown in Figure 1 at the design 

programming stage, is performed by the program interface itself. This constitutes the data for the 

whole drainage system and includes population density, discharge per person, pipe material, 

minimum velocity, and minimum and maximum cover depth. It represents the general input data 

used to estimate the discharge from each area and the hydraulic properties of the system. This 

allows optimisation of the design process as more than one scenario can be tested by changing 

the parameters applicable to the data and analysing consequent effects (Mair et al., 2012). This 



15 | P a g e  

offers more resilience by allowing the user to evaluate the effects of variations in design 

parameters. Fig. 6 (a) shows the interface of the drainage design program (Sewage), the initial 

input data extracted by tools, embedding the second set of data, in order to complete the input 

data form required for the design program. The difference between the sewage design and storm 

design sections is the general input data required by the design program interface. The storm 

interface program requires concentration time (minutes), the return period of the storm 

frequency (years), and the impervious factor of the area (runoff of coefficient); this information 

allows the model to calculate the storm runoff. The roughness of the pipe, minimum and 

maximum cover depth, and storage capacity for the storm network can be defined by the user. 

Fig. 6 (b) shows the interface of the drainage design program (storm design). 

 

 

Fig. 6. Sewer design program interface used to input general sewer network data (a) sewage 

system and (b) stormwater system. 

 

 

 

4.1 Visualise the results geographically 

 

The results are produced as a calculation report in an Excel file. Table 3 shows a sample of an 

Excel results file; all elements having a coordinate produced by GIS are linked with the output 

from the hydraulic model. The interface between GIS and hydraulics output allows the 

geographical simulation of the design results (Elliott et al., 2016), improving the construction 

performance by avoiding any conflict with sewer routes, managing barriers and decreasing 

project times. Excel2GIS has been used to transfer the results to the visual stage by producing a 

vector mode from the results file (Dile et al., 2016). This can then be used to create a GIS 

Geodatabase of the sewer design program output and produce many different map versions. It 

can also be integrated with other layers in the GIS repository and by sharing data with other 

environmental models (Morsy et al., 2017). These resultant vectors can be simulated, via profile 

drawings for the sewer network, to create a link between the design results, simulated in a 

visualisation. This reflects the shape of the sewer elements and material of the pipe, such as PVC 
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pipe or GRP pipe, or the pump station building, and includes the location of each element in the 

sewer network. This process makes it easier to know locations in the district and within a whole 

city because of the integration with the city map layer in Geodatabase and the automatic linking 

of each profile sheet with District Name, Sheet No. and Network No., as shown in Fig. 7. This 

profile has several advantages over other profile styles, for example, showing the level and 

diameter of the pipes that intersect with the pipeline profile. This means it is straightforward for 

the contractor to recognise the location of a pipe within the network and city, making the 

construction stage easier and faster when compared to the traditional style of profile drawings. 

 

 

 

Table 3 

Sample of calculation results data file. 

 

 

 
Fig.7. Sample of profile map that visualises the network elements. 

 

 

 

 

 
4.2 Choice of an appropriate scenario 

 

Three scenarios for Al Hamza city and two for Afak city have been selected for this research 

using the initial construction cost of laying pipe networks as a criterion of comparison, Table 4. 

Fig. 8 (a) shows the comparison of the initial construction cost of the wastewater networks of Al 

Hamza for three scenarios, which shows high variation in the cost. The same high level of 

variation is shown for the three scenarios for Al Hamza’s storm drainage system illustrated in 

Fig. 8 (b). These scenarios studied different layouts of the wastewater networks trying to avoid 

intersecting with other infrastructure utilities, and included the area from the second stage 

(future extension) in the first stage. The research considered the use of the open channels 

available in the city as a drainage system to drain stormwater, keep it as an aesthetic feature for 

the city in scenario 1, and convert it to a pipe system in scenarios 2 and 3. The research did not 
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discuss the details regarding scenarios and policies of authority or planners in selecting the 

optimum scenario, as they are outside the scope of this research. The scope is to present the 

facilities provided by the tools that integrate the hydrodynamic model with GIS in order to 

accelerate and improve the planning performance. The two scenarios of Afak city, Fig. 9 (a) and 

(b), were not complicated compared with the scenarios of Al Hamza city due to the simplicity of 

Afak’s master plan and the size of the city. Similar principles regarding the scenarios were 

applied to validate the cost when extending scenario 1 to scenario 2 to cover the larger future 

extension area and were also applied in stage one of the project. It was the same for the storm 

drainage system, as the designer tested the cost when using the existing open channels in the 

proposed drainage system (scenario 1), and when converting these open channels to a pipe 

system in scenario 2.  The construction cost is increased under scenario 2. Selecting the 

optimum scenario is a complicated process involving population, economic and social 

behaviour (Mikovits et al., 2017). Therefore, in this case study, the authorities selected scenario 

2 to avoid the garbage collecting in the open channels during dry seasons and to decrease the 

risk of flash floods, because these open channels can become clogged in the rainy season if not 

cleaned regularly. 

 
 

Table 4 

Cost of lining the pipes for each scenario of Al Hamza city and Afak city. 

 

 
Fig. 8. A comparison of three Al Hamza scenarios using the initial cost of construction as a 

criterion (a) for the sewage drainage and (b) for stormwater drainage. 

 
 

Fig. 9. A comparison of two Afak scenarios using the initial cost of construction as a criterion (a) 

 

for the sewage drainage system and (b) for stormwater drainage system. 
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Fig. 10 (a) and (b) demonstrates the elected scenario (scenario 2) designed by tools and 

simulated in the GIS platform to produce a variety of maps for both cities. These maps can 

comprise other layouts and details of utilities such as electricity cables or potable water pipes 

available in the GIS repository and provide details of any interference with the new drainage 

system through construction stages; this enables the water authorities to avoid too much conflict 

with other infrastructure authorities and landowners. 

 
 

Fig. 10. The optimum scenario of the drainage system design (sewage) of produced by the 

support tools, which includes the network details for the current built-up area and trunk lines for 

the proposed future area (a) for Afak city and (b) for Al Hamza city. 

 

 

 

5. Conclusion 

 

Programming software tools using GIS repository data to produce the input parameters for 

environmental models such as drainage system design have attracted the attention of many 

researchers recently because of the richness of the data held by GIS. The current research has 

presented three software tools that use the GIS repository to create the initial input data for 

sewer system design: Auto Numbering, Get Elevation and Excel2GIS. These tools use Excel and 

can play a critical role as the interface media between a drainage design program and GIS, 

improving the performance of the drainage design programs. Such programs can stand 

independently and not be affected by any GIS updates that occur as these tools generate data in 

the form of Excel files which constitute the links for both the drainage design program and GIS. 

Employing topology facilities to build geometric networks between elements of the sewer 

network through GIS offers very powerful advantages regarding the delineation of drainage 

networks, at the same time providing a valuable and reliable process. Integration between other 

layers available in the GIS repository and sewer networks makes it possible to extract initial 

input data such as the area served by a pipe, length of each pipe and sequential numbering of 

network elements as well as matching of ground elevation with manhole location, produced as 



19 | P a g e  

an Excel file for use as input data for the sewer design program. This saves time and effort, 

avoiding the tedious process of transferring data manually; its flexibility offering the opportunity 

to test more than one scenario when designing a drainage system. 

The ‘Generate vectors feature’ (shapefiles) from the hydrodynamic design program output is an 

Excel file, produced using Excel2GIS, which is a software tool that can export and import the 

results of a design program to GIS and connect this data with the attributes of each feature such 

as a pipe or manhole. This allows for the visualisation of the sewer design elements, their 

location on the map, and a simulation of the flow direction and pipe material while also 

including the hydraulic properties of the design in the GIS database. The profile produced using 

this tool shows the intersections of pipes that connect with the profile of the pipe laterally. It 

includes scaling of the dimensions of the pipe diameters and levels of the pipes in profile. This 

facility is novel to this research and is not available in any other commercial design sewer 

system package. Its advantage lies in the ease with which the sewer network can be monitored at 

the construction stage. A profile map can be created linking the pipeline with its location on a 

small-scale map and a city map, as well as producing different styles of data maps via GIS. 

The program has been tested successfully via two case studies (Afak city and Al Hamza city) in 

cooperation with Al Ghalowa Co. Ltd. in Iraq, the results reflecting the accuracy and flexibility 

of integrating sewer design programs with GIS using Excel as an interface media. It was 

possible to run more than one scenario for the drainage system design to manage interference of 

the drainage system with other existing utilities in these cities before deciding on the optimum 

design, including the storm drainage network and sewage drainage network. Using the tools 

presented in this research provided planners with flexibility and a high level of accuracy as 

human error was avoided in transferring input data; it also saved time and sped up the testing of 

more than one design of the drainage system, and provided the ability for the hydrodynamic 

design program and GIS to communicate to produce a variety of maps for the drainage system. 
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Fig. 1. Flowcharts showing the structure of the embedded tools in the model for extracting input data of an urban drainage system’s design. 
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Fig. 2. The innovative software used for numbering the system (b) Interface of the Auto Numbering software tool. 



 

Figure 3 

Click here to download high resolution image 
 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1351430&amp;guid=7369459c-fcbc-49b1-bf6c-e9ce63cf0731&amp;scheme=1


 

Figure 4 

Click here to download high resolution image 
 
 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1351432&amp;guid=febd1115-3cf1-4e09-8a02-05b92ab7ca5f&amp;scheme=1


 

Figure 5 (a) 

Click here to download high resolution image 
 
 
 
 
 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1351434&amp;guid=ae15fb4f-d208-4656-8085-7ca07bdd679e&amp;scheme=1


 

Figure 5 (b) 

Click here to download high resolution image 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1351436&amp;guid=160f11c5-2305-4a47-9727-01f51cfe1c24&amp;scheme=1


 

Figure 6 (a) 

Click here to download high resolution image 
 
 
 
 
 
 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1345842&amp;guid=f7183448-da62-472d-a38e-60d7ed3a17c4&amp;scheme=1


 

Figure 6 (b) 

Click here to download high resolution image 
 
 
 
 
 
 

 

http://ees.elsevier.com/hydrol/download.aspx?id=1345843&amp;guid=cf95f938-79c6-48b2-a540-beb8374b0f54&amp;scheme=1


 

Figure 7. 

Click here to download high resolution image 
 

http://ees.elsevier.com/hydrol/download.aspx?id=1345884&amp;guid=436ab73e-5384-4cd3-ad3d-2f3c27315005&amp;scheme=1


 

Figure 8 (a) 

Initial cost of construction ($) 

6000000 5000000 4000000 3000000 2000000 1000000 0 

2246754 
3485924 

4842781 
0.25 

0 
252605 
328475 

0 
300125 
0 

0 
31500 
0 

691432 
0 
0 

0 
104640 
104640 

182156 
0 
0 

67712 
67712 
0 

142908 
96392 
0 

100516 
154934 
193250 

53479 
46470 
80478 

1600 
15444 
19473 

19708 
52938 
67106 

54899 
41265 
22152 

70191 
63649 
55741 

165097 
70460 
39734 

2.1 

 
2 

 
1.8 

 
1.6 

 
1.5 

 
1.4 

 
1.2 

 
1.1 

 
1 

 
0.8 

 
0.7 

 
0.6 

 
0.5 

 
0.4 

 
0.315 

1200600 
1448750 

0 
2.3 

scenario 3 scenario 2 scenario 1 

P
ip

e 
d

ia
m

et
er

 (
m

et
e

r)
 



 

Figure 8 (b) 
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Figure 9 (a) 
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Table 2 

The features of the two case study sites (two cities in Iraq). 
 

Population (capita) Area (hectares) Annual Precipitation (mm) 

City Current Extension Current Extension Average Max. Min. 

Afak 29228 72125 320 249 116.84 271.78 45.72 

 
Al Hamza 

 
71346 

 
111251 

 
267 

 
1307 

 
116.84 

 
271.78 

 
45.72 
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Table 4 

Installation cost of the sewer systems for each scenario of Al Hamza city and Afak city. 
 

Estimated construction cost ($) 
 

  Al Hamza City  Afak City 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 

Wastewater system 6392479 5984658 4606553 
4262388 4769038 

 

Stormwater system 
 

3363846 
 

3578782 1333611 
1575699 2376167 
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